初二上数学培优题(一)答案
八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)

2019-2020学年八上数学《12.全等三角形》状元培优单元测试题(人教版版附答案)一、选择题1、如图所示,△ABC与△DEF是全等三角形,即△ABC≌△DEF,那么图中相等的线段有( ).A.1组 B.2组 C.3组 D.4组2、如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下哪个条件仍不能判定△ABE ≌△ACD( )A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3、如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.44、如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是().A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5、下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形 B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形 D.所有的等边三角形都是全等三角形6、如图,已知,,与交于点,于点,于点,那么图中全等的三角形有()A.5对B.6对C.7对D.8对7、如图,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠BAD=∠ABC,∠ABD=∠BAC B.AD=BC,BD=ACC.BD=AC,∠BAD=∠ABC D.∠D=∠C,∠BAD=∠ABC8、小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上 B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等 D.以上均不正确9、如图是两个全等三角形,则∠1=()A.62° B.72° C.76° D.66°10、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于( )A.65° B.95° C.45° D.100°11、数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线 B.一条高 C.一条角平分线D.不确定12、已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是()A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E二、填空题13、如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,EF长为.14、如图,已知,,,则.15、如图,点P为△ABC三条角平分线的交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD____________PF.16、如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到AB的距离为________ .17、如图所示,在平行四边形ABCD中,分别以AB.AD为边作等边△ABE和等边△ADF,分别连接CE.CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF⊥CD.三、简答题18、如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.求:(1)∠1的度数;(2)AC的长.19、如图,在平面直角坐标系中A.B坐标分别为(2,0),(-1,3),若△OAC与△OAB全等,(1)试尽可能多的写出点C的坐标;(2)在⑴的结果中请找出与(1,0)成中心对称的两个点。
苏科版八年级上学期数学5.2平面直角坐标系(1) 培优训练卷(有答案)

2020-2021学年苏科版八年级上学期数学5.2平面直角坐标系(1) 培优训练卷一、选择题1、在平面直角坐标系中,点P(-2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2、点在直角坐标系的y 轴上,则P 点坐标为 A. B. C. D.3、已知点M 到x 轴的距离为3,到y 轴的距离为2,且在第三象限.则M 点的坐标为( )A .(3,2)B .(2,3)C .(﹣3,﹣2)D .(﹣2,﹣3)4、过点(-4,3)且平行于y 轴的直线上的点( )A .横坐标都是3B .纵坐标都是3C .横坐标都是-4D .纵坐标都是-45、若点P(1-2m ,m)的横坐标与纵坐标互为相反数,则点P 一定在( )A .第一象限B .第二象限C .第三象限D .第四象限6、若点A(-2,n)在x 轴上,则点B(n -1,n +1)在( )A .第一象限B .第二象限C .第三象限D .第四象限7、如果点B 与点C 的横坐标相同,纵坐标不同,则直线BC 与x 轴的关系为( )A .平行B .垂直C .相交D .以上均不对8、在平面直角坐标系中,点B(-5,-3)到y 轴的距离为( )A .5B .-5C .3D .-39、横坐标与纵坐标互为相反数的点在( )A .第二象限的角平分线上B .第四象限的角平分线上C .原点D .前三种情况都有可能 10、若,则在A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题11、如图,在平面直角坐标系中,点O 是原点,点A 在x 轴上,点B 在y 轴上,点O 的坐标是 ,点A 的坐标是 ,点B 的坐标是 .12、在平面直角坐标系中,已知线段AB=3,且AB ∥x 轴,且点A 的坐标是(1,2),则点B 的坐标是13、若点(5-a ,a -3)在第一、三象限的角平分线上,则a =___14、在平面直角坐标系中,点P (a 2﹣1,a ﹣1)是y 轴上的点,则a 的取值是 .15、已知点B(3a +5,-6a -2)在第二、四象限两坐标轴夹角的平分线上,则a 2-|a|=______16、已知点在第二象限,则m 的取值范围是_____17、若点在y 轴上,则点A 到原点的距离为______个单位长度.18、如图,在平面直角坐标系xOy 中,已知点0M 的坐标为(1,0),将线段O 0M 绕原点O 逆时针方向旋转45°,再将其延长至点1M ,使得1M 0M ⊥O 0M ,得到线段O 1M ;又将线段O 1M 绕原点O 逆时针方向旋转45°,再将其延长至点2M ,使得2M 1M ⊥O 1M ,得到线段O 2M ;如此下去, 得到线段O 3M ,O 4M ,O 5M ,….根据以上规律,请直接写出线段O 200M 的长度为_____三、解答题19、已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?20、已知平面直角坐标系中,点P的坐标为当m为何值时,点P到x轴的距离为1?当m为何值时,点P到y轴的距离为2?点P可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m的值;若不可能,请说明理由.21、在同一直角坐标系中分别描出点、、,再用线段将这三点首尾顺次连接起来,求的面积与周长.22、先阅读下列一段文字,再回答后面的问题.已知在平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=(x2-x1)2+(y2-y1)2,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2-x1|或|y2-y1|.(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为-1,试求A,B两点间的距离.2020-2021学年苏科版八年级上学期数学5.2平面直角坐标系(1)培优训练卷(答案)一、选择题1、在平面直角坐标系中,点P(-2,-3)所在的象限是( C)A.第一象限B.第二象限C.第三象限D.第四象限2、点在直角坐标系的y轴上,则P点坐标为DA. B. C. D.3、已知点M到x轴的距离为3,到y轴的距离为2,且在第三象限.则M点的坐标为()A.(3,2) B.(2,3) C.(﹣3,﹣2) D.(﹣2,﹣3)【解答】解:∵点M到x轴的距离为3,∴纵坐标的长度为3,∵到y轴的距离为2,∴横坐标的长度为2,∵点M在第三象限,∴点M的坐标为(﹣2,﹣3).故选D.4、过点(-4,3)且平行于y轴的直线上的点( C)A.横坐标都是3 B.纵坐标都是3 C.横坐标都是-4 D.纵坐标都是-45、若点P(1-2m,m)的横坐标与纵坐标互为相反数,则点P一定在( B)A.第一象限B.第二象限C.第三象限D.第四象限6、若点A(-2,n)在x轴上,则点B(n-1,n+1)在( B)A.第一象限B.第二象限C.第三象限D.第四象限7、如果点B与点C的横坐标相同,纵坐标不同,则直线BC与x轴的关系为(B)A.平行 B.垂直 C.相交 D.以上均不对8、在平面直角坐标系中,点B(-5,-3)到y轴的距离为( A)A.5B.-5C.3D.-39、横坐标与纵坐标互为相反数的点在()A.第二象限的角平分线上B.第四象限的角平分线上C.原点D.前三种情况都有可能【解答】解:横坐标与纵坐标互为相反数的点的坐标有三种情况:(1)第二象限的角平分线上,x<0,y>0;(2)第四象限的角平分线上,x>0,y<0;(3)原点,x=0,y=0.故符合题意的点在第二或四象限的角平分线上,过原点,故选D.10、若,则在DA. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题11、如图,在平面直角坐标系中,点O是原点,点A在x轴上,点B在y轴上,点O的坐标是,点A的坐标是,点B的坐标是.答案:(0,0),(2,0),(0,4)12、在平面直角坐标系中,已知线段AB=3,且AB∥x轴,且点A的坐标是(1,2),则点B的坐标是【解答】解:∵AB∥x轴,∴点B的纵坐标为2.∵AB=3,∴点B的横坐标为1+3=4或1﹣3=﹣2.∴点B的坐标为(﹣2,2)或(4,2).故答案为:(﹣2,2)或(4,2).13、若点(5-a,a-3)在第一、三象限的角平分线上,则a=_4__14、在平面直角坐标系中,点P(a2﹣1,a﹣1)是y轴上的点,则a的取值是.【解答】解:由点P(a2﹣1,a﹣1)是y轴上的点,得a2﹣1=0,解得a=±1,故答案为:±1.15、已知点B(3a+5,-6a-2)在第二、四象限两坐标轴夹角的平分线上,则a2-|a|=___0___16、已知点在第二象限,则m的取值范围是_____17、若点在y轴上,则点A到原点的距离为__ 5 ____个单位长度.18、如图,在平面直角坐标系xOy 中,已知点0M 的坐标为(1,0),将线段O 0M 绕原点O 逆时针方向旋转45°,再将其延长至点1M ,使得1M 0M ⊥O 0M ,得到线段O 1M ;又将线段O 1M 绕原点O 逆时针方向旋转45°,再将其延长至点2M ,使得2M 1M ⊥O 1M ,得到线段O 2M ;如此下去, 得到线段O 3M ,O 4M ,O 5M ,….根据以上规律,请直接写出线段O 200M 的长度为__2100___三、解答题19、已知平面直角坐标系中有一点M (m ﹣1,2m+3)(1)当m 为何值时,点M 到x 轴的距离为1?(2)当m 为何值时,点M 到y 轴的距离为2?【解答】解:(1)∵|2m+3|=1,2m+3=1或2m+3=﹣1,∴m=﹣1或m=﹣2;(2)∵|m ﹣1|=2,m ﹣1=2或m ﹣1=﹣2, ∴m=3或m=﹣1.20、已知平面直角坐标系中,点P 的坐标为当m 为何值时,点P 到x 轴的距离为1?当m 为何值时,点P 到y 轴的距离为2?点P 可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m 的值;若不可能,请说明理由. 解:点P 到x 轴的距离为1, ,点P 到y 轴的距离为2,点P 可能在第一象限坐标轴夹角的平分线上点P 在第一象限 ,不合题意点P 不可能在第一象限坐标轴夹角的平分线上.21、在同一直角坐标系中分别描出点、、,再用线段将这三点首尾顺次连接起来, 求的面积与周长. 解:利用勾股定理得:, ,, 周长为; 面积.22、先阅读下列一段文字,再回答后面的问题.已知在平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=(x2-x1)2+(y2-y1)2,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2-x1|或|y2-y1|.(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为-1,试求A,B两点间的距离.解:(1)A,B两点间的距离为(-3-2)2+(-8-4)2=13.(2)A,B两点间的距离为|5-(-1)|=6.。
人教版数学八年级上册第11章《三角形》培优测试题(含答案)

第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。
第十二章全等三角形、等腰三角形(培优卷1) 八年级数学人教版上册

人教版2021-2022年八年级上册数学全等三角形、等腰三角形(培优卷1)1.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.2.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.3.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.4.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?5.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,点D,F为BC边上的两点,CF =DB,连接AD,过点C作CE⊥AD于点G,交AB于点E,连接EF.(1)若∠DAB=15°,AD=6,求线段GD的长度;(2)求证:∠EFB=∠CDA;(3)若∠FEB=75°,试找出AG,CE,EF之间的数量关系,直接写出结论.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC.以点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合).(1)如图1,DE与AC交于点P,观察并猜想BD与DP的数量关系:.(2)如图2,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明,如果不成立,请说明理由;(3)若DE与AC延长线交于点P,BD与DP是否相等?请画出图形并写出你的结论,无需证明.7.【阅读理解】已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)∴∠AED=∠B=90°,DE=DB又∵∠C=45°,∴△DEC是等腰直角三角形.∴DE=EC.∴AC=AE+EC=AB+BD.【解决问题】已知,如图2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分线,交BC边于点D,DE⊥AC,垂足为E,若AB=2,则三角形DEC的周长为.【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.【类比猜想】任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.9.如图,D是△ABC的边BC上的点,且CD=AB,∠ADB=∠BAD,AE是△ABD的中线.求证:AC=2AE.10.如图(1),△ABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF =AE,连接BE,EF.(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D,E分别在线段AB,AC上(点E与点A不重合),其他条件不变,如图(2),则(1)题中的结论是否成立?若成立,请证明;若不成立,请说明理由.11.如图,已知BC>AB,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°.12.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:(1)图(1)中线段BE、EF、FD之间的数量关系是;(2)如图(2),已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF =45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;(3)如图(3),已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.13.如图,在四边形ABCD中,AB=BC=AD,∠ADC=90°,AD∥BC.(1)求证:四边形ABCD是正方形;(2)如图,点E在BC上,连接AE,以AE为斜边作等腰Rt△AEF,点F在正方形ABCD 的内部,连接DF,求证:DF平分∠ADC;(3)在(2)的条件下,延长EF交CD的延长线于点H,延长DF交AE于点M,连接CM交EF于点N,过点E作EG∥AF交DC的延长线于点G,若∠BGE+2∠FEC=135°,DH=1,求线段MN的长.14.【问题提出】如图1,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB',则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.【类比应用】(3)如图3,等边△ABC的边长为2,△BDC是顶角为∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.15.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.16.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC =90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.。
初二数学《二次根式》竞赛培优精选题(含解析)

二次根式竞赛培优题(含解析)一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.39940002.计算:=()A.B.C.D.3.的结果是()A.B.C.D.4.的值是()A.B.C.1D.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为.7.化简=.8.化简.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为.10.方程的解是x=11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=.12.计算:=(其中a>0)13.的值为.14.已知:对于正整数n,有,若某个正整数k满足,则k=.15.若n为整数,且是自然数,则n=.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为.17.若u、v满足v=,则u2﹣uv+v2=.18.已知a为实数,且与都是整数,则a的值是.19.使得++=1的一组正整数(a,b,c)为:.20.计算﹣20062的结果是.21.设=.22.若,,则x6+y6的值是.23.当时,的值为.24.已知,,则k=.25.当1≤x≤2时,经化简等于.26.计算=.27.已知x=,那么+1的值是.28.化简:,得到.29.=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).二次根式竞赛培优题(含解析)参考答案与试题解析一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.3994000【分析】设1998=a,把被开方数变形后,利用多项式的乘法法则计算后,加上a2再减去a2,前三项结合提取a2,剩下的三项利用完全平方公式化简,接着三项合并后提取2a,整体再利用完全平方公式化简,从而得到被开方数为一个数的完全平方,利用化简公式=|a|及a大于0即可得到最后结果.【解答】解:设1998=a,则1997×1998×1999×2000+1=(a﹣1)a(a+1)(a+2)+1=a4+2a3+a2﹣a2﹣a2﹣2a+1=a2(a+1)2﹣2a(a+1)+1=[a(a+1)﹣1]2,所以==1998×1999﹣1=3994001.故选:A.【点评】此题考查了二次根式的化简求值,考查了换元的思想,本题的技巧性比较强,要求学生熟练掌握完全平方公式的结构特点,同时注意利用凑项的方法构造满足公式的特征,以及注意二次根式的化简公式=|a|的运用.2.计算:=()A.B.C.D.【分析】根据每个加数的特点,推出一般规律为,将所得式子化简,分别取n=1,2,3,…,40,寻找抵消规律,得出结论.【解答】解:∵=()=()=()=(﹣)∴分别取n=1,2,3, (40)原式=[(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1﹣)=.故选:B.【点评】本题考查了二次根式的化简求值,观察式子的特点,得出一般规律,将一般规律化简代值,再观察抵消规律是解题的关键.3.的结果是()A.B.C.D.【分析】把每个加数分母有理化,然后通分计算即可.【解答】解:=()=.故选:D.【点评】主要考查二次根式的分母有理化.主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.4.的值是()A.B.C.1D.【分析】认真观察式子的特点,总结规律,可发现,,,据此作答.【解答】解:由题意可知第k项是∴原式=(++=1﹣=1﹣=.故选:B.【点评】此题考查二次根式的化简求值,关键是审清题意,找准规律答题.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6【分析】找到1000<5×x2<2000中符合x的整数值即可得出答案.【解答】解:由题意得:与=20,是同类二次根的被开方数一定为5,由此及题意可:1000<5×x2<2000,x可取15、16、17、18、19,共5个.故选:C.【点评】本题考查同类二次根式的知识,有一定难度,关键是根据同类二次根式的形式得出的同类二次根式应该满足.二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为3998000.【分析】由等式可知=x1,=x2,…解得x1=x2=x3=…=x1999=2,由此代入求得数值即可.【解答】解:∵,∴=x1,=x2,…∴x1=x2=x3=…=x1999=2,∴x1+2x2+3x3+…+1999x1999=2×(1+2+3+ (1999)=2×(1999+1)×1999÷2=3998000.故答案为:3998000.【点评】此题考查二次根式的化简求值,解答此题的关键是找出对应关系,求出x1、x2、x3、…、x1999的值.7.化简=2011.【分析】先根据平方差公式和二次根式的性质得到=,然后根据同样的方法由内到外依次化简即可得到答案.【解答】解:∵=,∴原式=======2011.故答案为2011.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了平方差公式.8.化简后2.【分析】由于===﹣1,其他根式也可以进行同样的化简,然后合并同类二次根式即可求解.【解答】解:=﹣1+﹣++++++=3﹣1=2.故答案为:2.【点评】此题主要考查了二次根式的化简求值,解题的关键是利用完全平方公式化简二次根式从而达到化简题目的目的.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为10.【分析】利用不等式≤,结合S1+S2+S3+…+S n >10,解不等式即可.【解答】解:∵S i表示第i个三角形的面积,由不等式≤n,得≤n=n,而S1+S2+S3+…+S n=,S1+S2+S3+…+S n>10,∴n>10,即n2(n+1)>800,n为正整数,n的最小值为9.但n=9时,代入S1+S2+S3+…+S n<10,不符合题意,故n=10.【点评】本题考查了二次根式的运用.利用均值不等式和不等式的传递性解题.10.方程的解是x=2011【分析】将各分式中的分母有理化,再通分,注意观察抵消规律.【解答】解:原方程化为:+++…+=,通分得=,解得x=2011.故答案为:2011.【点评】本题考查了二次根式的化简在解方程中的运用.关键是将各分式的分母有理化,寻找抵消规律.11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=﹣.【分析】首先将M式中各个分式进行分母有理化,再求出N式的值,代入代数式求值即可解答.【解答】解:将M分母有理化可得M=(﹣1)+(﹣)+(﹣)+…+(﹣)=﹣1.N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994=(1﹣2)+(3﹣4)+(5﹣6)+┉+(1993﹣1994)=﹣1×997=﹣997,∴==﹣.故答案为﹣.【点评】本题主要考查分母有理化的方法,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.12.计算:=4(其中a>0)【分析】仔细观察会发现有以下规律:第1项加上第8项等于1,第2项加上第7项等于1,依此类推最后求得的结果4.【解答】解:第一项与最后一项相加得:+,=+,=,=1,同理可得:第二项与倒数第二项的和也是1;第三项与倒数第三项的和也是1;所以原式=1+1+1+1=4.故应填:4.【点评】本题考查了二次根式的加减运算,同时也考查了学生的逻辑思维能力,是一道不错的规律型问题.13.的值为1998999.5.【分析】本题涉及数字大且数字之间有联系,可用换元法解题,设k=2000,将所求算式转化为关于k的算式,将被开方数配成完全平方式,开平方,再将k的值代入即可.【解答】解:设k=2000,原式=====,当k=2000时,原式=1998999.5.故本题答案为:1998999.5.【点评】本题考查了二次根式的化简求值,当算式数字较大,并且数字之间有联系时,用换元法解题,可使运算简便.14.已知:对于正整数n,有,若某个正整数k满足,则k=8.【分析】读懂规律,按所得规律把左边所有的加数写成的形式,把互为相反数的项结合,可使运算简便.【解答】解:∵,∴+,即1﹣,∴,解得k=8.故答案为:8.【点评】解答此题的关键是读懂题意,总结规律答题.15.若n为整数,且是自然数,则n=﹣14或﹣7或﹣2或5.【分析】设=p,再把等式两边同时乘以4,利用平方差公式把等式左边化为两个因式积的形式,列出关于p、n的方程组,求出n 的值即可.【解答】解:∵设=p(P为非负整数),则n2+9n+30=p2,∴4n2+36n+120=4p2,∴(2n+9)2+39=4p2,∴(2p+2n+9)(2p﹣2n﹣9)=39,∴或或或,解得或或或,∴n=﹣14或﹣7或﹣2或5.故答案为:﹣14或﹣7或﹣2或5.【点评】本题考查的是二次根式的性质与化简,先根据题意把原式化为两个因式积的形式是解答此题的关键.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为2012.5.【分析】根据新定理得f()=,f()=,则f()+f()=1;f()=,f()=,则f()+f()=1,由此得到f()+f()=1(n≥2的整数),所以原式=+.【解答】解:f()=,∵f()==,f()=,则f()+f()=1,f()==,f()==,则f()+f()=1,∴f()+f()=1,∴=+=2012.5.故答案为2012.5.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.也考查了阅读理解能力.17.若u、v满足v=,则u2﹣uv+v2=.【分析】根号里面的式子大于等于0,从而可得≥0,﹣≥0,从而能得出u和v的值,继而可得出答案.【解答】解:由题意得:≥0,﹣≥0,从而=0,2u﹣v=0,u=v,又v=,∴u=,∴u2﹣uv+v2=.故答案为.【点评】本题考查二次根式有意义的条件,注意掌握根号里面的式子大于等于0这个知识点比较关键.18.已知a为实数,且与都是整数,则a的值是或.【分析】由是正整数可得,a是含﹣2的代数式;再由是整数,可得化简后为﹣2的代数式分母有理化后,是1或﹣1,据此确定a的值.【解答】解:∵是正整数,∴a是含﹣2的代数式;∵是整数,∴化简后为﹣2的代数式分母有理化后,是1或﹣1,∴a=或.故答案为:或.【点评】此题主要考查二次根式的混合运算,要熟练掌握合并同类二次根式和分母有理化.19.使得++=1的一组正整数(a,b,c)为:答案不唯一;如(288,8,8),(48,24,8).【分析】由于三个复合二次根式的和为1,则它们的被开方数为完全平方数,设任意一个复合二次根式的被开方数为()2(x,y为正整数,x>y),然后通过正整数的含义,得到x,y为两个相邻正整数,即每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后是﹣1,则第二个复合二次根式化简后必为﹣,第三个复合二次根式化简后必为,最后求的a,b,c的值.【解答】解:因为几个复合二次根式的和为1,则每个复合二次根式的被开方数一定为完全平方数.设==x+y﹣2,(x,y为正整数,x>y),所以有=x+y,﹣=﹣2.∴a+1=(x+y)2,a=4xy,∴(x﹣y)2=1,即x﹣y=1.则每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后为﹣1,而要消掉,则第二个复合二次根式化简后必为﹣,要消掉,则第三个复合二次根式化简后必为.最后正好为﹣=1.所以=(﹣1)2=3﹣=3﹣,则a=8,同理得b=24,c=48.故得到一组正整数(a,b,c)为:8,24,48.故答案为8,24,48.【点评】本题考查了二次根式的性质和二次根式的化简:.20.计算﹣20062的结果是2005.【分析】先把“2005×2006×2007×2008+1=(20052+3×2005+1)2”化为完全平方的形式,再开平方,然后再来求值.【解答】解:∵2005×2006×2007×2008+1=2005×(2005+3)×(2005+1)(2005+2)+1=(20052+3×2005)×(20052+3×2005+2)+1=(20052+3×2005)2+2(20052+3×2005)+1=(20052+3×2005+1)2∴=20052+3×2005+1;∴﹣20062=20052+3×2005+1﹣20062=(2005+2006)(2005﹣2006)+3×2005+1=2005;故答案为:2005.【点评】本题主要考查了二次根式的化简求值.解答此题的难点是化“2005×2006×2007×2008+1”为完全平方的形式,并开平方,然后再利用平方差公式求出20052﹣20062=(2005+2006)(2005﹣2006)的值.21.设=.【分析】把已知条件的左边相乘得,这样出现了所求代数式,设=z,代入变形所得的等式,逐步变形,消去x、y,即可求得z.【解答】解:据条件式令=z,则(1)式化为:z+xy+=9,即有9﹣z=xy+,平方得,81﹣18z+z2=x2y2+(x2+1)(y2+4)+2xy(2),又由z2==x2(y2+4)+y2(x2+1)+2xy,代入(2)得,81﹣18z=4,所以.即=,故答案为:.【点评】此题考查二次根式的化简求值,难度较大,多次利用已知条件求解.22.若,,则x6+y6的值是40.【分析】根据题意可求出x2+y2,x2﹣y2,利用平方差公式可求得x4﹣y4,(x2﹣y2)(x4﹣y4)=x6+y6﹣x2y4﹣y2x4,由此可得答案.【解答】解:由题意得:x2+y2=2++2﹣=4,x2﹣y2=2+﹣(2﹣)=2,x4﹣y4=(x2+y2)(x2﹣y2)=8,又(x2﹣y2)(x4﹣y4)=x6+y6+x2y4+y2x4,∴可得:x6+y6=32﹣x2y2(x2+y2)=32+2×4=40.故答案为:40.【点评】本题考查二次根式的乘除法运算,有一定难度,关键是熟练运用平方差及完全平方公式.23.当时,的值为.【分析】利用完全平方公式对代数式化简再把代入化简的结果计算即可.【解答】解:原式=﹣,∵,∴=2005,∴x<,∴原式=﹣+x,=x,当时,原式=.故答案为.【点评】本题考查的是二次根式的化简求值和二次根式的性质=a(a≥0)的应用.24.已知,,则k=﹣1.【分析】先从等式右边进行分母有理化,即原式=﹣2,然后依次循环即可求k的值.【解答】解:由原式可知=+2﹣4=﹣2,∴4+=+2,依此类推得:=+2,∴k=﹣1.故答案为﹣1.【点评】本题考查了分母有理化的知识,解题时可从等式右边进行分母有理化,那样会简便些.25.当1≤x≤2时,经化简等于2.【分析】先配成完全平方式,再根据二次根式的性质化简计算即可.【解答】解:∵1≤x≤2,∴=+=+1+1﹣=2.故答案为:2.【点评】考查了二次根式的性质,解题的关键是将根号内的式子配成完全平方式.26.计算=2010.【分析】因为=,=,=,…,可发现=1+=1+1﹣,=1+=1+﹣…,依此类推再把1+1﹣,1+﹣…相加可得问题答案.【解答】解:原式=++++…+,=1+1﹣+1+﹣+1+﹣+1+﹣…+1+﹣,=2010+(1﹣+﹣+﹣…+﹣),=2010+(1﹣),=2010.【点评】本题考查了二次根式的化简,在化简中注意有关数列的规律.27.已知x=,那么+1的值是2.【分析】先根据分母有理化得到x=﹣1,所以x+1=,然后将代数式化为含有(x+1)2的形式,把x+1的值代入求出代数式的值.【解答】解:∵x==﹣1,∴x+1=.原式=(3x3+10x2+5x+4)=[(3x3+6x2+3x)+3x2+(x2+2x+1)+3]=[3x(x+1)2+3x2+(x+1)2+3]=[3x•2+3x2+2+3]=[(3x2+6x+3)+2]=[3(x+1)2+2]=(3×2+2)=2.故答案是:2.【点评】本题考查的是二次根式的化简求值,先根据分母有理化把x的值化简,得到x+1=,再把代数式化成含有x+1的形式,然后代入代数式可以求出代数式的值.28.化简:,得到1.【分析】将被开方数的分子、分母提公因式,约分,再开平方,约分即可.【解答】解:原式=()1004=()1004()1004=1.【点评】本题考查了二次根式的化简求值,关键是将被开方数的分子、分母提公因式,约分.29.=﹣3.【分析】因为=,代入并通分计算即可.【解答】解:原式===﹣1﹣1﹣1=﹣3.故答案为:﹣3.【点评】此题考查二次根式的混合运算,关键是求=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).【分析】(1)设n=1999,从而可将根号里面的数化为完全平方的形式,继而可得出答案.(2)分别将各二次根式配方可得出答案.(3)将分子及分母分别化简,然后运用提公因式的知识将分子及分母简化,继而得出答案.(4)设=a,=b,=c,从而可将原式化简,继而可得出答案.【解答】解:(1)设n=1999,则原式===n2+3n+1,故原式=20002+1999;(2)原式=+++++++=﹣1+﹣+﹣+﹣+﹣+﹣+﹣+﹣,=﹣1,=3﹣1,=2;(3)原式=,=,=+,=﹣;(4)设=a,=b,=c,则原式=++,=,=0.【点评】本题考查了二次根式的混合运算,难度较大,注意换元法及完全平方知识的运用.。
数学八年级上册 全册全套试卷(培优篇)(Word版 含解析)

数学八年级上册全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析【解析】【分析】(1)先利用ASA判定△BGD≅CFD,从而得出BG=CF;(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.【详解】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵DBG DCFBD CDBDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.【点睛】本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明3.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.4.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC =α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,求证:△DEF 是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB≌△CEA,∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.5.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,如图1,求t的值;(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.【答案】(1)4;(2)∠OA ′B 的度数不变,∠OA ′B =45︒,理由见解析;(3)点M 的坐标为(6,﹣4),(4,7),(10,﹣1)【解析】【分析】(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP 为等腰直角三角形,从而求得答案;(2)根据对称的性质得:PA =PA '=PB ,由∠PAB +∠PBA =90°,结合三角形内角和定理即可求得∠OA 'B =45°;(3)分类讨论:分别讨论当△ABP ≌△MBP 、△ABP ≌△MPB 、△ABP ≌△MPB 时,点M 的坐标的情况;过点M 作x 轴的垂线、过点B 作y 轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M 的坐标即可.【详解】(1)∵AB ∥x 轴,△APB 为等腰直角三角形,∴∠PAB =∠PBA =∠APO =45°,∴△AOP 为等腰直角三角形,∴OA =OP =4.∴t =4÷1=4(秒),故t 的值为4.(2)如图2,∠OA ′B 的度数不变,∠OA ′B =45°,∵点A 关于x 轴的对称点为A ′,∴PA =PA ',又AP =PB ,∴PA =PA '=PB ,∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,又∵∠PAB +∠PBA =90°,∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '=180()PAB PBA ∠∠︒-+180=︒-90°=90°,∴∠AA 'B =45°,即∠OA 'B =45°;(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等,①如图3,若△ABP ≌△MBP ,则AP =PM ,过点M 作MD ⊥OP 于点D ,∵∠AOP =∠PDM ,∠APO =∠DPM ,∴△AOP ≌△MDP (AAS ),∴OA =DM =4,OP =PD =3,∴M 的坐标为:(6,-4).②如图4,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠, ∴12∠=∠∴Rt AOP Rt PGB ≅∴34BG OP PG AO ====,∵BG ⊥x 轴BF ,⊥y 轴∴四边形BGOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OG OP PG ==+=+=在Rt ABF 和Rt PME 中∠BAF =45︒+1∠,∠MPE =45︒+2∠,∴∠BAF =∠MPE∵AB PM =∴Rt ABF Rt PME ≅∴71ME BF PE AF ====,∴M 的坐标为:(4,7),③如图5,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PEB ≅∴34BE OP PE AO ====,∵BE ⊥x 轴BF ,⊥y 轴∴四边形BEOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OE OP PE ==+=+=在Rt ABF 和Rt PMD 中∵BF ⊥y 轴∴42∠=∠∵42ABF PMD ∠∠∠+=∠+∴ABF PMD ∠∠=∵AB PM =∴Rt ABF Rt PMD ≅∴17MD AF PD BF ====,∴M 的坐标为:(10,﹣1).综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.二、八年级数学轴对称解答题压轴题(难)6.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB ,作B 关于y 轴的对称点D ,由已知可得,BD =4,AD =2.∴在Rt △ABD 中,AB =25(2)如图,①以A 为直角顶点,过A 作l 1⊥AB 交x 轴于C 1,交y 轴于C 2 .②以B 为直角顶点,过B 作l 2⊥AB 交x 轴于C 3,交y 轴于C 4.③以C 为直角顶点,以AB 为直径作圆交坐标轴于C 5、 C 6、 C 7.(用三角板画找出也可) 由图可知,C 2(0,7),C 4(0,-4),C 5(-1,0)、 C 6(1,0).(3)不存在这样的点P .作AB 的垂直平分线l 3,则l 3上的点满足PA =PB ,作B 关于x 轴的对称点B ′,连结AB ′,由图可以看出两线交于第一象限.∴不存在这样的点P .【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.7.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC和△ADE均为等边三角形(如图1),∴ AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS)∴ BD=CE.②由△CAE≌△BAD,∴∠AEC=∠ADB=180°-∠ADE=120°.∴∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n ,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ ∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n . ∴∠AEC=90°+12n ︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.8.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP,证得AOP∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC∆≅∆得到AOE DOC∠=∠,通过角的关系得到60AOP COE∠=∠=°,即可证得AOP∆是等边三角形.【详解】(1)∵ABC∆为等边三角形∴60BAC∠=︒∵O为BC中点∴1302CAO BAC∠=∠=︒且,90AO BC AOC⊥∠=︒∵OA OD=∴AOD∆中,30D CAO∠=∠=︒∴180120AOD D CAO∠=︒-∠-∠=︒∴30COD AOD AOC∠=∠-∠=︒(2)过O作//OE AB,OE交AD于E∵//OE AB∴60EOC ABC∠=∠=︒60CEO CAB∠=∠=︒∴COE∆为等边三角形∴OE OC CE==180120AEO CEO∠=︒-∠=︒180120DCO ACB∠=︒-∠=︒又∵OA OD=∴EAO CDO∠=∠在AOE∆和COD∆中AOE DOCEAO CDOOA OD∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS∆≅∆∴CD EA=∵EA AC CE=-BO BC CO=-∴EA BO=∴BO CD=,∵AB AC=,AD AC CD=+∴AD AB BO=+(3)AOP∆为等边三角形证明过程如下:连接,PC PD,延长OC交PD于F ∵P D、关于OC对称∴,90 PF DF PFO DFO=∠=∠=︒在ODF∆与OPF∆中,PF DFPFO DFOOF OF=⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS∆≅∆∴OP OD=,POC DOC∠=∠∵OA OD=∴AO=OP∴AOP∆为等腰三角形过O作//OE AB,OE交AD于E 由(2)得AOE DOC∆≅∆∴AOE DOC∠=∠又∵POC DOC∠=∠∴AOE POF∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE ∠=∠∵AB ∥OE ,∠B=60°∴60COE B ∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形. 【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.9.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC 中,当B 只有一个度数时,A ∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC 中,∠A=100°,∴∠A 为顶角,∠B 为底角,∴∠B =1801002-=40°; 变式2: ∵等腰三角形ABC 中,∠A= 45° ,∴当AB=BC 时,∠B =90° ,当AB=AC 时, ∠B =67.5° ,当BC=AC 时 ∠B =45° ;(2)等腰三角形ABC 中,设A x ∠=,当90°≤x <180°,∠A 为顶角,此时,B 只有一个度数,当x=60°时,三角形ABC 是等边三角形,此时,B 只有一个度数,综上所述:90°≤x <180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.10.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:22222111111251151151124112422242222x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++-+=+-=+++- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭根据以上材料,解答下列问题:(1)用配方法将281x x +-化成2()x m n ++的形式,则281=x x +- ________; (2)用配方法和平方差公式把多项式228x x --进行因式分解;(3)对于任意实数x ,y ,多项式222416x y x y +--+的值总为______(填序号).①正数②非负数 ③ 0【答案】(1)2(4)17x +-;(2)(2)(4)x x +-;(3)①【解析】【分析】(1)根据材料所给方法解答即可;(2)材料所给方法进行解答即可;(3)局部进行因式分解,最后写成非负数的积的形式即可完成解答.【详解】解:(1)281x x +-=2816116x x ++--2(4)17x +-.(2)原式=22118x x -+--=2(1)9x --=(13)(13)x x -+--=(2)(4)x x +-.(3)222416x y x y +--+=()()22214411x x y y -++-++=()()221211x y -+-+>11故答案为①.【点睛】本题考查了配方法,根据材料学会配方法并灵活运用配方法解题是解答本题的关键.12.若一个正整数x 能表示成22a b -(,a b 是正整数,且a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解. 例如:因为22532=-,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:22222222()M x xy x xy y y x y y =+=++-=+-(,x y 是正整数),所以M 也是“明礼崇德数”,()x y +与y 是M 的一个平方差分解.(1)判断:9_______“明礼崇德数”(填“是”或“不是”);(2)已知2246N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的一个k 值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m 既是“七喜数”,又是“明礼崇德数”,请求出m 的所有平方差分解.【答案】(1)是;(2)k=-5;(3)m=279,222794845=-,222792011=-.【解析】【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N 应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N 平方差分解,得到答案;(3)确定“七喜数”m 的值,分别将其平方差分解即可.【详解】(1)∵9=52-42,∴9是“明礼崇德数”,故答案为:是;(2)当k=-5时,N 是“明礼崇德数”,∵当k=-5时,22465N x y x y =-+--,=224649x y x y -+-+-,=22(44)(69)x x y y ++-++,=22(2)(3)x y +-+,=(23)(23)x y x y ++++--=(5)(1)x y x y ++--.∵,x y 是正整数,且1x y >+,∴N 是正整数,符合题意,∴当k=-5时,N 是“明礼崇德数”;(3)由题意得:“七喜数”m=178或279,设m=22a b -=(a+b )(a-b ),当m=178时,∵178=2⨯89,∴892a b a b +=⎧⎨-=⎩,得45.543.5a b =⎧⎨=⎩(不合题意,舍去); 当m=279时,∵279=3⨯93=9⨯31,∴①933a b a b +=⎧⎨-=⎩,得4845a b =⎧⎨=⎩,∴222794845=-, ②319a b a b +=⎧⎨-=⎩,得2011a b =⎧⎨=⎩,∴222792011=-, ∴既是“七喜数”又是“明礼崇德数”的m 是279,222794845=-,222792011=-.【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.13.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积: 方法1: 方法2:(2)观察图②请你写出下列三个代数式:(m+n )2,(m ﹣n )2,mn 之间的等量关系. ;(3)根据(2)题中的等量关系,解决:已知:a ﹣b=5,ab=﹣6,求:(a+b )2的值;【答案】(1)(m-n)2;(m+n)2-4mn;(2)(m-n)2=(m+n)2-4mn;(3)1.【解析】【分析】(1)方法1:表示出阴影部分的边长,然后利用正方形的面积公式列式;方法2:利用大正方形的面积减去四周四个矩形的面积列式;(2)根据不同方法表示的阴影部分的面积相同解答;(3)根据(2)的结论整体代入进行计算即可得解.【详解】解:(1)方法1:∵阴影部分的四条边长都是m-n,是正方形,∴阴影部分的面积=(m-n)2方法2:∵阴影部分的面积=大正方形的面积减去四周四个矩形的面积∴阴影部分的面积=(m+n)2-4mn;(2)根据(1)中两种计算阴影部分的面积方法可知(m-n)2=(m+n)2-4mn;(3)由(2)可知(a+b)2=(a-b)2+4ab,∵a-b=5,ab=-6,∴(a+b)2=(a-b)2+4ab=52+4×(-6)=25-24=1.【点睛】本题考查几何图形与完全平方公式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.14.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么形如a+bi (a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=5﹣3i.(1)填空:i3=,2i4=;(2)计算:①(2+i)(2﹣i);②(2+i)2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y)+3i=(1﹣x)﹣yi,(x,y为实数),求x,y的值.(4)试一试:请你参照i2=﹣1这一知识点,将m2+25(m为实数)因式分解成两个复数的积.【答案】(1)i;2(2)①5②3+4i(3)x=5,y=﹣3(4)m2+25=(m+5i)(m﹣5i)【分析】(1)根据同底数幂的乘法法则及2i 的概念直接运算;(2)利用平方差、完全平方公式把原式展开,根据21i =-计算即可;(3)根据虚数定义得出方程组,解方程组即可;(4)根据21i =- 将25转化为2(-5)i ,再利用平方差公式进行因式分解即可。
八年级上数学培优及答案(可以直接打印)

一、填空题1、设∆ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a , 则第三边的长c 的取值范围是 .2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。
3、在△ABC 中,∠B 和∠C 的平分线相交于O ,若∠BOC=α,则∠A=_________。
4、直角三角形两锐角的平分线交角的度数是 。
5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。
6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为__ _________。
7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。
其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题1、等腰三角形腰上的高与底边的夹角为Cm °则顶角度数为( )) A.m ° B.2m ° C.(90-m)° D.(90-2m)°2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x ≤6时,y 的取值范围是( ) A . 8 3≤y ≤ 64 11 B . 64 11≤y ≤8 C . 8 3≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④4、将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同 的截法有( )A.5种B. 6种C. 7种D.8种5、在△ABC 中,适合条件C B A ∠=∠=∠4131,则△ABC 中是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ).A .x >1B .x <1C .x >-2D .x <-27、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( ) A.23y x =-- B.26y x =-- C.23y x =-+ D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )A.32B.23C.32-D.23-9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作c k 1x +bx2y =-A .B .C .量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( ) A.甲的效率高 B.乙的效率高 C.两人的效率相等 D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )A.5个B.6个C.7个D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、 排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。
八年级初二数学数学勾股定理的专项培优练习题(含答案

一、选择题1.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =6,DC =2,点P 是AB 上的动点,则PC +PD 的最小值为( )A .8B .10C .12D .142.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm 3.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a 、b 、c 三个正方形的面积之和为( )A .11B .15C .10D .224.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )A .36B .9C .6D .18 5.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A .8B .9.6C .10D .126.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对 7.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( ) A .a =3,b =4,c =6B .a =5,b =6,c =7C .a =6,b =8,c =9D .a =7,b =24,c =25 8.下列各组数据,是三角形的三边长能构成直角三角形的是( )A .2,3,4B .4,5,6C .2223,4,5D .6,8,10 9.如图,点A 和点B 在数轴上对应的数分别是4和2,分别以点A 和点B 为圆心,线段AB 的长度为半径画弧,在数轴的上方交于点C .再以原点O 为圆心,OC 为半径画弧,与数轴的正半轴交于点M ,则点M 对应的数为( )A .3.5B .23C .13D .36210.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为( )A .5B .7C .5或7D .3或4二、填空题11.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.12.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).13.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.14.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.15.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.16.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.17.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.18.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.19.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.20.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.三、解答题21.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形;(2)经过多少秒,△BMN 为直角三角形.22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.26.如图1,△ABC 中,CD ⊥AB 于D ,且BD : AD : CD =2 : 3 : 4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以每秒1cm 速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止. 设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.图1 图2 备用图27.2ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.28.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.29.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=2,BD=6,得到BC=8,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【详解】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=2,BD=6,∴BC=8,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=8,根据勾股定理可得DC′=2222'+=+=.8610BC BD故选:B.【点睛】此题考查了轴对称﹣线路最短的问题,确定动点P为何位置时 PC+PD的值最小是解题的关键.2.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=D F设AF=xcm ,则DF=(8-x )cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm , 222(8)6x x =-+254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.3.B解析:B【分析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a 的面积等于1号的面积加上2号的面积,b 的面积等于2号的面积加上3号的面积,c 的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.【详解】利用勾股定理可得:12a S S S =+ ,23b S S S =+,34c S S S =+∴122334a b c S S S S S S S S S ++=+++++74415=++=故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.4.A解析:A【分析】先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.【详解】 CE 平分ACB ∠,CF 平分ACD ∠,,1122ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=, 111(90222)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,,BCE CEF DCF F ∠=∴∠∠=∠,,ACE CEF ACF F ∴∠=∠∠=∠,3,3EM CM FM CM ∴====,6EF EM FM ∴=+=,在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,故选:A .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.5.B解析:B【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥11,22ABC S BC AD AB CE ∆==1289.6.10CE ⨯∴== 故选B. 【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.6.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+=13AC ∴=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.7.D解析:D【解析】A 选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B 选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C 选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D 选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确. 故选D .8.D解析:D【分析】根据勾股定理的逆定理对各选项进行判断即可.【详解】解:A 、∵22+32=13≠42,∴不能构成直角三角形,故本选项不符合题意;B 、∵42+52=41≠62,∴不能构成直角三角形,故本选项不符合题意;C 、∵222222(3)(4)337(5)+=≠,∴不能构成直角三角形,故本选项不符合题意;D 、∵62+82=100=102,∴能构成直角三角形,故本选项符合题意.故选:D .【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.9.B解析:B【分析】如图,作CD ⊥AB 于点D ,由题意可得△ABC 是等边三角形,从而可得BD 、OD 的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.【详解】解:∵点A 和点B 在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,∴△ABC 是等边三角形,∴BD=AD=112AB =, ∴OD=OB+BD=3,223CD BC BD =-=,∴()22223323OC OD CD =+=+=,∴OM=OC=23,∴点M 对应的数为23.故选:B .【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.10.C解析:C【分析】根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.【详解】由题意可得,当3和4为两直线边时,第三边为:22+=5,43当斜边为4时,则第三边为:22-=7,43故选:C【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.二、填空题11.5【解析】试题分析:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,利用勾股定理的逆定理可得△ACB是直角三角形,所以CE=AB,利用OE+CE≥OC,所以OC的最大值为OE+CE,即OC的最大值=AB=5.考点:勾股定理的逆定理,12.45【分析】∠+∠=∠,只需证△ADC是如下图,延长BA至网络中的点D处,连接CD. ABC ACB DAC等腰直角三角形即可【详解】如下图,延长BA至网络中的点D处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC 是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA ,构造处△ABC 的外角∠CAD13.(0,21009)【解析】【分析】本题点A 坐标变化规律要分别从旋转次数与点A 所在象限或坐标轴、点A 到原点的距离与旋转次数的对应关系.【详解】∵∠OAA 1=90°,OA=AA 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作等腰Rt △OA 2A 3,…,∴OA 1,OA 2=)2,…,OA 2018=)2018,∵A 1、A 2、…,每8个一循环,∵2018=252×8+2∴点A 2018的在y 轴正半轴上,OA 2018=2018=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.14.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.15 【分析】 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=ABC 113ABB BCB S S ==B 1B 2,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n =2n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,∴233133112422B B =⨯⨯+⨯⨯, B 2B 3=38, B 3B 4=3, B 4B 5=3, …, B n ﹣1B n =3.故答案为:3,3. 【点睛】 本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.16.82【分析】根据S △PAD =13S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l 的对称点E ,连接DE ,BE ,则DE 的长就是所求的最短距离.然后在直角三角形ADE 中,由勾股定理求得DE 的值,即可得到PA+PD 的最小值.【详解】设△PAD 中AD 边上的高是h .∵S △PAD =13S 矩形ABCD , ∴12 AD •h =13AD •AB , ∴h =23AB =4, ∴动点P 在与AD 平行且与AD 的距离是4的直线l 上,如图,作A 关于直线l 的对称点E ,连接BE ,DE ,则DE 的长就是所求的最短距离.在Rt △ADE 中,∵AD =8,AE =4+4=8,DE =22228882AE AD +=+= ,即PA +PD 的最小值为82 .故答案82.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.17.5【分析】设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值【详解】如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D 由题意知AD=1,BE=5,BC=10设绳索x 尺,则OA=OB=x∴OC=x+1-5=x-4在Rt △OBC 中,OB 2=OC 2+BC 2∴222(4)10x x =-+得x=14.5(尺)故填14.5 ,【点睛】此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键. 18.4【分析】根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE 和EF ,即可求出FG ,再求出BF=FG 即可【详解】∵AC 的垂直平分线FG ,∴AE=EC ,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC ,∴∠B=∠C=12(180°-∠BAC )=30°, ∴∠B=∠G ,∴BF=FG ,∵在Rt △AEG 中,∠G=30°,EG=3,∴AG=2AE ,即(2AE )2=AE 2+32,∴即同理在Rt △CEF 中,∠C=30°,CF=2EF ,(2EF )2=EF 2+2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.19.49【分析】先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.【详解】∵∠ACB=90︒,25AB = ,24AC =,∴22222252449BC AB AC =-=-=,∴阴影部分的面积=249BC =,故答案为:49.【点睛】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC 的平方是解题的关键.20.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点GAD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线 1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,222251213AC CG AG =+=+=13CE AB AC ==∴=由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.三、解答题21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°, ∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°,∴BM =12BN ,即30-x =12×2x , 解得x =15, 答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.22.(1)2)83;(3)5.5秒或6秒或6.6秒【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒, 90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B点作BE AC⊥于点E,则684.8()10AB BCBE cmAC⨯===22 3.6CE BC BE cm∴=-=,27.2CQ CE cm∴==,13.2BC CQ cm∴+=,13.22 6.6t∴=÷=秒.由上可知,当t为5.5秒或6秒或6.6秒时,BCQ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.23.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=32AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH32AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.24.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=32BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF 2=(EB+12BF )2+(32BF )2 ∴DE 2= (EB+12AD )2+(3AD )2 ∴DE 2= EB 2+AD 2+EB ·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,∴A′D=A′B ,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC 关于AC 的对称图形△AD′C .∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE,设D′E=BE=x,在Rt△CEB中,CE2=CB2-BE2=102-x2,在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.∴102-x2=172-(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.26.(1)见详解;(2)①t值为:103s或6s;②t值为:4.5或5或4912.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即2<t≤5时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-4;分别得出方程,解方程即可.【详解】解:(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC=5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:由(1)知,AB=5x,CD=4x,∴S△ABC=12×5x×4x=40cm2,而x>0,∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AB=AC=10cm.由运动知,AM=10-2t,AN=t,①当MN∥BC时,AM=AN,即10-2t=t,∴103t ;当DN∥BC时,AD=AN,∴6=t,得:t=6;∴若△DMN的边与BC平行时,t值为103s或6s.②存在,理由:Ⅰ、当点M在BD上,即0≤t<2时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=2时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即2<t≤5时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=5当DE=DM,则2t-4=5,∴t=4.5s;当ED=EM,则点M运动到点A,∴t=5s;当MD=ME=2t-4,如图,过点E作EF垂直AB于F,∵ED=EA,∴DF=AF=12AD=3,在Rt△AEF中,EF=4;∵BM=2t,BF=BD+DF=4+3=7,∴FM=2t-7在Rt△EFM中,(2t-4)2-(2t-7)2=42,∴t=49 12.综上所述,符合要求的t 值为4.5或5或4912. 【点睛】 本题主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.27.(1)①见解析;②()22012x y x x-=<<-;(2)见解析 【解析】【分析】(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.【详解】(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,∴CB=CD ,∠BCE =∠DCE =45°,又∵CE=CE ,∴△CBE ≌△CDE (SAS ),∴EB=ED ,∠CBE =∠1,∵∠BEC =90°,∠BCF =90°,∴∠EBC +∠EFC =180°,∵∠EFC +∠2=180°,∴∠EBC =∠2,∴∠1=∠2.∴ED=EF ,∴BE=EF .②解:∵正方形ABCD 2,∴对角线AC =2.将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩,∴△PBG ≌△EBG (SAS ).∴PG=EG =2-x -y ,∵∠PCG =∠GCB +∠BCP =45°+45°=90°,∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--, 化简,得()22012x y x x-=<<-. (2)如图3,作法如下:①延长BE 交AD 于点M , ②连接MO 并延长交BC 于点N ,③连接DN 交AC 于点Q ,④连接DE 、BQ ,则四边形BEDQ 为菱形.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q 的位置是解决(2)题的关键.28.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.【分析】(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解.【详解】(1)不存在一组数,既符合上述规律,且其中一个数为71.理由如下:根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;若271m =,则35.5,m =,此时m 不符合题意;若2171m +=,则270m =,此时m 不符合题意,所以不存在一组数,既符合上述规律,且其中一个数为71.(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.理由如下:对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数).因为2224222(1)(2)21(1)m m m m m -+=++=+所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.注意分类思想的应用29.(1)45°;(2)GF=AG+CF ,证明见解析;(3)①6; ②s ab =,理由见解析.【解析】【分析】(1)如图1中,连接BE .利用全等三角形的性质证明EB=ED ,再利用等角对等边证明EB=EF 即可解决问题.(2)猜想:GF=AG+CF .如图2中,将△CDF 绕点D 旋转90°,得△ADH ,证明△GDH ≌△GDF (SAS )即可解决问题.(3)①设CF=x ,则AH=x ,BF=6-x ,GF=3+x ,利用勾股定理构建方程求出x 即可. ②设正方形边长为x ,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学培优题(一)
1.如图所示,已知△ABC中,点D为BC边上一点,∠1=∠2=∠3,AC=AE,(1)求证:△ABC≌△ADE;
(2)若AE∥BC,且∠E=∠CAD,求∠C的度数.
【分析】(1)由∠1=∠2=∠3,可得∠1+∠DAC=∠DAC+∠2,即∠BAC=∠DAE,又∠1+∠B=∠ADE+∠3,则可得∠B=∠ADE,已知AC=AE,即可证得:△ABC ≌△ADE;
(2)由题意可得,∠ADB=∠ABD=4x,在△ABD中,可得x+4x+4x=180°,解答处即可;
【解答】解:(1)∵∠1=∠2=∠3,
∴∠1+∠DAC=∠DAC+∠2,(三角形的一个外角等于与它不相邻的两个内角的和)
即∠BAC=∠DAE,
又∵∠1+∠B=∠ADE+∠3,则可得∠B=∠ADE,
在△ABC和△ADE中,
∴△ABC≌△ADE(AAS);
(2)∵AE∥BC,
∴∠E=∠3,∠DAE=∠ADB,∠2=∠C,
又∵∠3=∠2=∠1,令∠E=x,
则有:∠DAE=3x+x=4x=∠ADB,
又∵由(1)得AD=AB,∠E=∠C,
∴∠ABD=4x,
∴在△ABD中有:x+4x+4x=180°,
∴x=20°,
∴∠E=∠C=20°.
【点评】本题主要考查了全等三角形的判定与性质,判定三角形全等是证明线段或角相等的重要方式,在判定三角形全等时,关键是选择恰当的判定条件.
2.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.
(1)证明:BC=DE;
(2)若AC=12,CE经过点D,求四边形ABCD的面积.
【分析】(1)求出∠BAC=∠EAD,根据SAS推出△ABC≌△ADE,利用全等三角形的性质证明即可;
(2)由△ABC≌△ADE,推出四边形ABCD的面积=三角形ACE的面积,即可得出答案;
【解答】(1)解:∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD,
∴∠BAC=∠EAD.
在△ABC和△ADE中,
∴△ABC≌△ADE(SAS).
∴BC=DE
(2)∵△ABC≌△ADE,
∴S△ABC=S△ADE,
∴S四边形ABCD=S△ABC+S△ACD=S△ADE+S△ACD=S△ACE=×122=72.
【点评】本题考查了全等三角形的性质和判定,等腰直角三角形的性质和判定,并利用割补法求四边形ABCD的面积是解此题的关键,难度适中.
3.如图,在△ABC中,∠B=∠C,AB=8,BC=6,点D为AB的中点,点P在线段BC上以每秒2个单位的速度由点B向点C运动,同时点Q在线段CA上以每秒a个单位的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).(1)用含t的代数式表示线段PC的长;
(2)若点P、Q的运动速度相等,t=1时,△BPD与△CQP是否全等,请说明理由.
(3)若点P、Q的运动速度不相等,△BPD与△CQP全等时,求a的值.
【分析】(1)用BC的长度减去BP的长度即可;
(2)求出PB,CQ的长即可判断;
(3)根据全等三角形对应边相等,列方程即可得到结论.
【解答】解:(1)PC=BC﹣BP=6﹣2t;
(2)∵t=1时,PB=2,CQ=2,
∴PC=BC﹣PB=6﹣2=4,
∵BD=AD=4,
∴PC=BD,
∵∠C=∠B,CQ=BP,
∴△QCP≌△PBD.
(3)∵点P、Q的运动速度不相等,
∴BP≠CQ,
又∵△BPD与△CPQ全等,∠B=∠C,
∴BP=PC,BD=CQ,
∴2t=6﹣2t,at=4,
解得:t=,a=.
【点评】本题考查了全等三角形的性质,等腰三角形的性质等知识,解题的关键是学会分类讨论的思想思考问题,属于中考常考题型.
4.如图1所示,AB=AD,AC=AE,
∠1=∠2.
(1)求证:BC=DE.
(2)如图2,若M、N分别为BC、
DE的中点,试确定AM与AN的关系,并说明理由.
【分析】(1)根据题意证明∠BAC=∠DAE,利用SAS判断△ABC≌△ADE,根据全等三角形的性质证明;
(2)根据全等三角形的性质得到BM=DN,证明△ABM≌△ADN即可.
【解答】(1)证明:∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC.即∠BAC=∠DAE.
在△ABC与△ADE中,
,
∴△ABC≌△ADE.
∴BC=DE.
(2)AM=AN;理由如下:
由(1)△ABC≌△ADE,
∴∠B=∠D,
∵BC=DE,M、N分别为BC、DE的中点,
∴BM=DN,
在△ABM和△ADN中,
,
∴△ABM≌△ADN,
∴AM=AN.
【点评】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
5.如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q 在线段CA上从点C向终点A运动,
①若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;
②点Q的速度与点P的速度不相等,当点Q的速度为多少时,能够使△BPD≌△CPQ;
(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q 第一次在△ABC的哪条边上追上点P?
【分析】(1)①根据等腰三角形的性质得到∠B=∠C,再加上BP=CQ=3,PC=BD=5,则可判断△BPD与△CQP全等;
②设点Q的运动速度为xcm/s,则BP=3t,CQ=xt,CP=8﹣3t,当△BPD≌△CQP,则BP=CQ,CP=BD;然后分别建立关于t和v的方程,再解方程即可;
(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解方程得到点P运动的路程为3×10=30,得到此时点P在BC边上,于是得到结果.【解答】解:(1)①∵BP=3×1=3,CQ=3×1=3,
∴BP=CQ,
∵D为AB的中点,
∴BD=AD=5,
∵CP=BC﹣BP=5,
∴BD=CP,
在△BPD与△CQP中,
,
∴△BPD≌△CQP;
②设点Q运动时间为t秒,运动速度为vcm/s,
∵△BPD≌CPQ,
∴BP=CP=4,CQ=5,
∴t=,
∴v===;
(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,
解得:x=10,
∴点P运动的路程为3×10=30,
∵30=28+2,
∴此时点P在BC边上,
∴经过10秒,点Q第一次在BC边上追上点P.
【点评】本题考查了全等三角形的判定和性质,找准对应边是解题的关键.
6.如图,已知l1∥l2,射线MN分别和直线l1,l2交于A、B,射线ME分别和直线l1,l2交于C、D,点P在A、B间运动(P与A、B两点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.
(1)试探索α,β,γ之间有何数量关系?说明理由.
(2)如果BD=3,AB=9,AC=6,并且AC垂直于MN,那么点P运动到什么位置时,△ACP≌△BPD说明理由.
(3)在(2)的条件下,当△ACP≌△BPD时,PC与PD之间有何位置关系,说明理由.
【分析】(1)过点P作PF∥l1,根据l1∥l2,可知PF∥l2,故可得出∠α=∠DPF,∠β=∠CPF,由此即可得出结论;
(2)根据平行线的性质得到BD⊥MN,根据全等三角形的性质即可得到结论;(3)根据全等三角形的性质得到∠ACP=∠DPB,根据垂直的定义即可得到结论.【解答】解:(1)∠γ=α+∠β,
理由:过点P作PF∥l1(如图1),
∵l1∥l2,
∴PF∥l2,
∴∠α=∠DPF,∠β=∠CPF,
∴∠γ=∠DPF+∠CPF=α+∠β;
(2)当AP=BD=3,△ACP≌△BPD,∵l1∥l2,AC垂直于MN,
∴BD⊥MN,
∴∠CAP=∠PB D=90°,
∵AB=9,
∴PB=6,
∴AC=PB,
在△CAP与△PBD中,,∴△ACP≌△BPD,
∴当AP=3时,△ACP≌△BPD;(3)CP⊥PD,
理由:∵△ACP≌△BPD,
∴∠ACP=∠DPB,
∵∠ACP+∠APC=90°,
∴∠APC+∠DPB=90°,
∴∠CPD=90°,
∴CP⊥PD.
精品教育
-可编辑
-
【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定与性质是解题的关键.。