高中物理竞赛知识系统整理

合集下载

高考物理竞赛知识点总结

高考物理竞赛知识点总结

高考物理竞赛知识点总结物理作为一门基础科学,不仅是高中教育的重要组成部分,也是高考考试的必考科目之一。

在备战高考的过程中,了解和掌握物理竞赛的知识点对于取得优异的成绩具有重要意义。

本文将针对高考物理竞赛的知识点进行总结和归纳。

一、力学1. 力、质量和加速度的关系:牛顿第二定律表明,一个物体所受合外力等于该物体质量乘以加速度。

F=ma是力学问题中最基本的计算公式。

2. 牛顿运动定律:牛顿第一定律认为,如果一个物体受到的合外力为零,那么该物体将保持静止或匀速直线运动。

牛顿第三定律则说明了力的作用和反作用,即每个作用力都有一个与之大小相等、方向相反的反作用力。

3. 斜面静摩擦力和滑动摩擦力的计算:当物块与斜面接触时,斜面对物块的支持力可以分解为垂直向下的分量和平行于斜面的摩擦力,其中摩擦力可以用来计算物块是否会滑动。

4. 动能和功:动能是物体由于运动而具有的能量,可以通过物体质量和速度的平方来计算。

功则是力对于物体运动所作的功率,在计算功时需要考虑力和物体运动的方向关系。

5. 机械能守恒:当物体只受重力和弹力两种力作用时,机械能守恒定律可以用来解决问题。

机械能守恒定律表示,在这两种力作用下,物体的动能和势能之和保持不变。

二、电学1. 电流与电压:电流是电荷在单位时间内通过导体横截面的数量,可以用欧姆定律I=U/R来计算。

电压则是单位电荷在电场中所具有的电势能。

2. 电阻和电功率:电阻的大小可以决定电流的大小,其单位为欧姆,可以通过欧姆定律来计算。

电功率则是电流通过电阻时所消耗的能量。

P=UI是计算电功率的公式。

3. 并联和串联电路:并联电路中,总电流等于各个支路电流之和,而总电阻可以通过平行电阻公式来计算。

串联电路中,总电压等于各个电阻电压之和,而总电阻可以通过串联电阻公式来计算。

4. 电场和电势:电场是由电荷带来的力的作用区域,单位是牛顿/库仑。

电势则表示单位正电荷在电场中所具有的电势能,单位是伏特。

高中物理竞赛知识点

高中物理竞赛知识点

高中物理竞赛知识点摘要:在高中物理竞赛中,掌握一定的物理知识点对于取得好成绩至关重要。

本文将介绍一些高中物理竞赛中常见的知识点,包括力学、热学、电磁学和光学等方面的内容。

通过学习和理解这些知识点,同学们可以更好地准备和应对物理竞赛。

一、力学1. 牛顿三定律:牛顿第一定律(惯性定律)、牛顿第二定律(力与加速度的关系)、牛顿第三定律(作用力和反作用力)。

2. 运动学:匀速直线运动、匀加速直线运动、曲线运动、圆周运动等基本概念和计算方法。

3. 力学中的几个关键概念:作用力、质量、重力、摩擦力、弹力、弹性势能、动能、功和功率等。

4. 牛顿运动定律的应用:通过具体问题的分析和计算,掌握牛顿运动定律在实际运动中的应用,如斜面运动、谐振运动等。

5. 天体运动:了解行星运动和开普勒定律,理解宇宙中的引力作用。

二、热学1. 温度和热量:热学基本概念,包括温度、热量、热平衡、比热容等。

2. 热传导和传热:热传导的基本原理和计算,了解传热的三种方式:导热、对流和辐射。

3. 热力学定律:热力学第一定律(能量守恒定律)、热力学第二定律(热不可逆过程、熵增原理)等。

4. 热力学循环和功率:热力学循环的工作原理与效率计算,了解功率的概念和计算方法。

三、电磁学1. 电荷和电场:电荷的性质和基本单位,电场的概念和计算方法。

2. 电位差和电势:电场中两点之间的电位差和电势差的概念和计算。

3. 电流和电阻:电流的定义和计算,欧姆定律及其在电路中的应用。

4. 电路分析和电路图:串联、并联、混联电路的分析,理解电路图的符号和组成。

5. 磁场和电磁感应:磁场的产生和性质,电磁感应的基本原理和应用,包括法拉第电磁感应定律等。

四、光学1. 光的直线传播和折射:光的直线传播和折射的基本规律与计算方法,了解光的折射定律和斯涅尔定律。

2. 光的反射:光的反射定律和镜面成像的基本原理。

3. 光的干涉与衍射:理解干涉和衍射的基本概念和现象,了解杨氏双缝干涉和单缝衍射的基本原理。

高中物理竞赛-动力学知识要点分析

高中物理竞赛-动力学知识要点分析

高中物理竞赛—动力学知识要点分析一、牛顿运动定律(1)牛顿第一定律:在牛顿运动定律中,第一定律有它独立的地位。

它揭示了这样一条规律:运动是物体的固有属性,力是改变物体运动状态的原因,认为“牛顿第一定律是牛顿第二定律在加速度为零时的特殊情况”的说法是错误的,它掩饰了牛顿第一定律的独立地位。

物体保持原有运动状态(即保持静止或匀速直线运动状态)的性质叫做惯性。

因此,牛顿第一定律又称为惯性定律。

但二者不是一回事。

牛顿第一定律谈的是物体在某种特定条件下(不受任何外力时)将做什么运动,是一种理想情况,而惯性谈的是物体的一种固有属性。

一切物体都有惯性,处于一切运动状态下的物体都有惯性,物体不受外力时,惯性的表现是它保持静止状态或匀速直线运动状态。

物体所受合外力不为零时,它的运动状态就会发生改变,即速度的大小、方向发生改变。

此时,惯性的表现是物体运动状态难以改变,无论在什么条件下,都可以说,物体惯性的表现是物体的速度改变需要时间。

质量是物体惯性大小的量度。

(2)牛顿第二定律 物体的加速度跟所受的合外力成正比,跟物体的质量成反比。

加速度的方向跟合外力方向相同,这就是牛顿第二定律。

它的数学表达式为a m F =∑牛顿第二定律反映了加速度跟合外力、质量的定量关系,从这个意义上来说,牛顿第二定律的表达式写成m F a ∑=更为准确。

不能将公式a m F=∑理解为:物体所受合外力跟加速度成正比,与物体质量成正比,而公式a F m ∑=的物理意义是:对于同一物体,加速度与合外力成正比,其比值保持为某一特定值,这比值反映了该物体保持原有运动状态的能力。

力与加速度相连系而不是同速度相连系。

从公式at v v +=0可以看出,物体在某一时刻的即时速度,同初速度、外力和外力的作用时间都有关。

物体的速度方向不一定同所受合外力方向一致,只有速度的变化量(矢量差)的方向才同合外力方向一致。

牛顿第二定律反映了外力的瞬时作用效果。

物体所受合外力一旦发生变化,加速度立即发生相应的变化。

高中物理竞赛知识点

高中物理竞赛知识点

高中物理竞赛知识点
以下是满足你要求的 6 条关于高中物理竞赛知识点:
1. 嘿,力的合成与分解呀,这可太有意思了!就像搭积木一样,把几个力拼在一起或者拆开。

比如说你拉着一个箱子往前走,地面的摩擦力往后拽,这不就是力在相互作用嘛!力的合成与分解能让你清楚知道到底哪个力更厉害呢!
2. 动能定理哇,那可真是个宝!它就好像是一个能量的大管家。

好比一辆快速行驶的汽车,它的动能就是靠发动机提供的动力转化来的,动能定理就能算出这中间的能量变化,神奇吧!
3. 万有引力定律呢,简直就是宇宙的秘密钥匙!想象一下地球绕着太阳转,月亮绕着地球转,这都是万有引力在起作用呀。

就像我们离不开地球的引力一样,万物都被万有引力牵着呢!
4. 楞次定律呀,这就像是个有点调皮的守门员!当电流想变化的时候,它总要出来阻止一下。

比如说通电螺线管,电流变化时产生的感应电动势就会根据楞次定律来变化,多有趣呀!
5. 匀强电场,这可是个很厉害的角色呢!就好像是一个力量均匀分布的场地。

你看那些平行板电容器里的电场,均匀得很呢。

在里面带电粒子的运动可都得遵循它的规则哦!
6. 光的折射,哇哦,简直太神奇啦!就像光线在跟我们玩魔术。

把一根铅笔插进水里,看起来就好像弯折了,这就是光的折射搞的鬼呀。

难道你不想深入探究它的奥秘吗?
我的观点结论:这些高中物理竞赛知识点真的是充满了魅力和趣味,能让我们感受到物理世界的奇妙,一定要好好掌握呀!。

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类物理竞赛需要哪些知识?物理竞赛力学部分需要哪些数学?首先,为了理解力学一开始的匀加速直线运动和变加速直线运动,对于一元函数的简单微积分是必不可少的,当然主要集中在多项式函数的求导和积分上,实际操作起来十分容易。

此后,当运动范围被拓展到二维,运动形式成为曲线时,矢量代数、解析几何、参数方程、斜率、曲率半径等数学概念被融入到物理模型中,用来理解抛体、圆周、一般曲线运动。

这时微积分的应用也被拓展到更为复杂的函数范围,例如三角函数。

随着运动和力的关系——牛顿第二定律的引入,我们逐渐意识到光理解运动是不够的,运动背后的机理——力的作用,以及力的效果,才是我们要研究的。

动量定理、动能定理的引入,实际上反映了力在时空的积累效果,而牛顿方程本身,也是物理学家特别喜欢的形式——微分方程。

对于矢量和微积分更综合的运用体现在一种伴随物理学发展史的特殊运动形式——简谐振动当中。

而振动在介质当中的扩散效应——波动,又引出了波动方程、波函数这一时空函数的概念。

总结下来,力学部分所需要的数学是一元函数的微积分、矢量代数、解析几何、常微分方程、对二元函数的运用。

物理竞赛热学部分需要哪些数学?虽然高中热学部分涉及气体定律和热力学第一定律的内容比较容易,一般不需要微积分,但如果深入学习,热力学过程、各种态函数(内能、熵)、热力学第二定律,那么由于热力学体系变量多,适当的偏微分基础知识是必要的。

热力学是宏观的理论,而其背后有着分子动理论作为基础,它们之间的联系是通过对大量粒子系统的统计来实现的,因此,概率统计的知识就显得十分必要了。

总结下来,热学部分所需要的数学是简单的偏微分和概率统计。

物理竞赛电磁学部分需要哪些数学?依照往年的经验,电磁学是最容易让高考学生放弃物理、竞赛学生放弃物理竞赛的困难内容。

原因是因为数学不到位,非但理解不了场的概念,而且容易产生记忆模型和公式,套例题做习题的固有思维模式,最终对于电磁学可谓是“一点没学会”!从静电场开始,如果仅仅按高中的要求来学习,对于场的理解是空洞的,仅仅是唯像的概念,对于电场线、电势、静电平衡、介质极化等概念无法做到深入掌握,那就更别提解答赛题了。

高中物理竞赛讲义(超级完整版)(1)

高中物理竞赛讲义(超级完整版)(1)

最新高中物理竞赛讲义(完整版)目录最新高中物理竞赛讲义(完整版) (1)第0部分绪言 (5)一、高中物理奥赛概况 (5)二、知识体系 (5)第一部分力&物体的平衡 (6)第一讲力的处理 (6)第二讲物体的平衡 (8)第三讲习题课 (9)第四讲摩擦角及其它 (13)第二部分牛顿运动定律 (15)第一讲牛顿三定律 (16)第二讲牛顿定律的应用 (16)第二讲配套例题选讲 (24)第三部分运动学 (24)第一讲基本知识介绍 (24)第二讲运动的合成与分解、相对运动 (26)第四部分曲线运动万有引力 (28)第一讲基本知识介绍 (28)第二讲重要模型与专题 (30)第三讲典型例题解析 (38)第五部分动量和能量 (38)第一讲基本知识介绍 (38)第二讲重要模型与专题 (40)第三讲典型例题解析 (53)第六部分振动和波 (53)第一讲基本知识介绍 (53)第二讲重要模型与专题 (57)第三讲典型例题解析 (66)第七部分热学 (66)一、分子动理论 (66)二、热现象和基本热力学定律 (68)三、理想气体 (70)四、相变 (77)五、固体和液体 (80)第八部分静电场 (81)第一讲基本知识介绍 (81)第二讲重要模型与专题 (84)第九部分稳恒电流 (95)第一讲基本知识介绍 (95)第二讲重要模型和专题 (98)第十部分磁场 (107)第一讲基本知识介绍 (107)第二讲典型例题解析 (111)第十一部分电磁感应 (117)第一讲、基本定律 (117)第二讲感生电动势 (120)第三讲自感、互感及其它 (124)第十二部分量子论 (127)第一节黑体辐射 (127)第二节光电效应 (130)第三节波粒二象性 (136)第四节测不准关系 (140)第0部分绪言一、高中物理奥赛概况1、国际(International Physics Olympiad 简称IPhO)① 1967年第一届,(波兰)华沙,只有五国参加。

高中物理竞赛辅导讲义-第6篇-角动量

高中物理竞赛辅导讲义-第6篇-角动量

高中物理竞赛辅导讲义第6篇 角动量【知识梳理】 1.力矩(1)力对轴的力矩 力矩=力×力臂(2)力对参考点的力矩 M r F =⨯从参考点指向力的作用点的矢量r 与作用力F 的矢积。

大小 sin M Fr α=;方向 由右手螺旋定则确定。

2.角动量为了描述质点相对某一参考点的运动,可仿照力矩的定义引入动量矩的概念。

从给定的参考点指向质点的矢量和质点动量的矢积称为质点对于参考点的的动量矩。

L r p =⨯,大小 sin L pr θ=,方向 由右手螺旋定则确定。

动量矩又称角动量。

角动量是矢量,方向由右手螺旋定则确定。

3.冲量矩仿照力对时间的积累效应叫冲量,引入冲量矩的概念。

力对时间的积累效应Mt叫做冲量矩。

4.质点角动量定理质点对任参考点的角动量的增量等于外力的冲量矩。

21M t L L ⋅∆=- 。

质点对参考点的角动量的时间变化率等于外力对该点的力矩。

L M t∆=∆。

5.角动量守恒定律当质点所受外力对固定参考点(简称定点)的力矩为零时,质点对该点的角动量守恒。

6.转动惯量 在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I 或J 表示,SI 单位为kg·m 2。

对于一个质点,I =mr 2,其中m 是其质量,r 是质点和转轴的垂直距离。

转动惯量在转动中的角色相当于平动中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。

7.描述平动与描述转动的相关物理量对照平动转动质量m转动惯量I=∑Δm i r i2速度v=Δx/Δt角速度ω=Δθ/Δt = v/r加速度a=Δv/Δt角加速度β=Δω/Δt = aτ/r动量p=m v角动量(动量矩)L=Iω = Σm i r i2力F力矩M = Fr sinθ牛顿第二定律F=ma刚体定轴转动定律M=Iβ冲量Ft冲量矩Mt动量定理Ft=Δp角动量定理Mt=ΔL动量守恒条件F=0 角动量守恒条件M=0平动动能m v2/2 转动动能Iω2/2【例题选讲】1.如图所示,质量为m的小球自由落下,某时刻具有速度v,此时小球与图中的A、B、C三点恰好位于某长方形四个顶点,且小球与A、C点的距离分别为l1、l2。

全国高中物理竞赛考纲(绝对完整)

全国高中物理竞赛考纲(绝对完整)

全国中学生物理竞赛内容提要2006年2月修订版。

一、理论基础力学1、运动学参照系。

质点运动的位移和路程,速度,加速度。

相对速度。

矢量和标量。

矢量的合成和分解。

矢量的标积和矢积匀速及匀速直线运动及其图象。

运动的合成。

抛体运动。

圆周运动。

刚体的平动和绕定轴的转动。

2、牛顿运动定律力学中常见的几种力牛顿第一、二、三运动定律。

惯性参照系的概念。

摩擦力。

弹性力。

胡克定律。

惯性力的概念。

万有引力定律。

均匀球壳对壳内和壳外质点的引力公式(不要求导出)。

开普勒定律。

行星和人造卫星的运动。

3、物体的平衡共点力作用下物体的平衡。

力矩刚体的平衡。

重心。

物体平衡的种类。

4、动量冲量。

动量。

质点与质点组的动量定理。

动量守恒定律。

质心,质心运动定理。

反冲运动及火箭。

5、冲量距角动量。

质点与质点组的角动量定理(不引入转动惯量)。

角动量守恒定律。

6、机械能功和功率。

动能和动能定理。

重力势能。

引力势能。

质点及均匀球壳壳内和壳外的引力,势能公式(不要求导出)。

弹簧的弹性势能。

功能原理。

机械能守恒定律。

碰撞。

恢复系数。

7、流体静力学静止流体中的压强。

浮力。

8、振动简揩振动[ x=Acos(ωt α)]。

振幅。

频率和周期。

位相。

振动的图象。

参考圆。

振动的速度υ=-Asin(ωt α)]和加速度。

由动力学方程确定简谐振动的频率,简谐振动的能量。

同方向同频率简谐振动的合成。

阻尼振动。

受迫振动和共振(定性了解)。

9、波和声横波和纵波。

波长、频率和波速的关系。

波的图象。

平面简谐波的表达式y= Acos(t-x/v)波的干涉和衍射(定性)。

驻波,声波。

声音的响度、音调和音品。

声音的共鸣。

乐音和噪声。

多普勒效应。

热学1、分子动理论原子和分子的量级。

分子的热运动。

布朗运动。

温度的微观意义。

分子力。

分子的动能和分子间的势能。

物体的内能。

2、热力学第一定律热力学第一定律。

3、热力学第二定律热力学第二定律。

可逆过程和不可逆过程。

4、气体的性质热力学温标。

高中物理竞赛的备考技巧与重点知识点

高中物理竞赛的备考技巧与重点知识点

高中物理竞赛的备考技巧与重点知识点高中物理竞赛是一场知识与技巧的较量,无论是理论能力还是实验技巧,都需要准备足够的素材和考场适应能力。

本文将介绍高中物理竞赛备考的技巧和重点知识点。

备考技巧第一,多练习真题。

真题是备考的重中之重,不仅可以加深对知识点的理解,还可以锻炼做题的速度和思维能力。

建议抽空将历年高考物理试题和各类竞赛真题做一遍,将做错的题目和易错的知识点整理归纳,分析错误的原因,并及时查漏补缺。

第二,注重实际应用。

物理竞赛并不是纯理论的考试,往往涉及到实际问题的解决思路和方法,需要掌握物理知识的实际应用方法。

因此,备考的过程中要多关注实验相关的知识和实验技能,例如实验仪器的使用和实验数据的处理。

第三,注意表达能力。

物理竞赛除了要求考生掌握物理知识和实验技能,还要求考生具有优秀的表达能力。

在备考的过程中,要注重写作和口头表达的技巧,多练习组织语言、演讲和论述等技能。

重点知识点力学部分力学是高中物理竞赛中的重点,包括牛顿定律、运动学、动能定理、力的合成、牛顿万有引力定律等知识点。

这些知识点涉及的领域广泛,备考的时候需要注重细节和实际应用,如利用牛顿第二定律解决质点的运动问题、理解动能定理与势能定理的关系等。

热学部分热学是高中物理竞赛中的另一个重点知识点,包括热力学定律、热传导、热膨胀、理想气体定律等. 这些知识点需要备考者掌握基本概念和计算方法。

实际应用中需要了解一些常见的等温过程和等压过程,例如理解一个气体的热力学过程中压强、温度和体积的关系等。

电学部分电学在高中物理竞赛中占比较大的比例,包括电容、电流、电势、电场、磁场、电磁感应等知识点。

备考者需要掌握这些知识点的基础内容和公式,并能够利用这些知识点解决实际问题。

如了解电容与电压、电势与电场以及电磁感应和电磁波的基本知识,了解电荷的性质和带电粒子的运动规律等。

总体而言,高中物理竞赛的备考需要熟悉不同领域的物理知识和实验技能,理论与实践相结合,深入掌握物理学的基础原理,多关注实际问题的思考和解决方法。

高中物理竞赛辅导教程(新大纲版)

高中物理竞赛辅导教程(新大纲版)

高中物理竞赛辅导教程(新大纲版)一、力学部分1. 运动学- 基本概念:位移、速度、加速度。

位移是矢量,表示位置的变化;速度是描述物体运动快慢和方向的物理量,加速度则反映速度变化的快慢。

- 匀变速直线运动公式:v = v_0+at,x=v_0t+(1)/(2)at^2,v^2-v_{0}^2 = 2ax。

这些公式在解决直线运动问题时非常关键,要注意各物理量的正负取值。

- 相对运动:要理解相对速度的概念,例如v_{AB}=v_{A}-v_{B},在处理多个物体相对运动的问题时很有用。

- 曲线运动:重点掌握平抛运动和圆周运动。

平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动;圆周运动中要理解向心加速度a =frac{v^2}{r}=ω^2r,向心力F = ma的来源和计算。

2. 牛顿运动定律- 牛顿第二定律F = ma是核心。

要学会对物体进行受力分析,正确画出受力图。

- 整体法和隔离法:在处理多个物体组成的系统时,整体法可以简化问题,求出系统的加速度;隔离法用于分析系统内单个物体的受力情况。

- 超重和失重:当物体具有向上的加速度时超重,具有向下的加速度时失重,加速度为g时完全失重。

3. 动量与能量- 动量定理I=Δ p,其中I是合外力的冲量,Δ p是动量的变化量。

- 动量守恒定律:对于一个系统,如果合外力为零,则系统的总动量守恒。

在碰撞、爆炸等问题中经常用到。

- 动能定理W=Δ E_{k},要明确功是能量转化的量度。

- 机械能守恒定律:在只有重力或弹力做功的系统内,机械能守恒。

要熟练掌握机械能守恒定律的表达式E_{k1}+E_{p1}=E_{k2}+E_{p2}。

二、电磁学部分1. 电场- 库仑定律F = kfrac{q_{1}q_{2}}{r^2},描述真空中两个静止点电荷之间的相互作用力。

- 电场强度E=(F)/(q),电场线可以形象地描述电场的分布情况。

- 电势、电势差:U_{AB}=φ_{A}-φ_{B},电场力做功与电势差的关系W = qU。

高中物理竞赛全部要点(全解)

高中物理竞赛全部要点(全解)

物理竞赛基础知识复习第一部分 力&物体的平衡第一讲 物体的平衡一、共点力平衡1、特征:质心无加速度。

2、条件:ΣF= 0 ,或 x F ∑ = 0 ,y F ∑ = 0二、转动平衡1、特征:物体无转动加速度。

2、条件:ΣM= 0 ,或ΣM + =ΣM -如果物体静止,肯定会同时满足两种平衡,因此用两种思路均可解题。

3、非共点力的合成大小和方向:遵从一条直线矢量合成法则。

作用点:先假定一个等效作用点,然后让所有的平行力对这个作用点的和力矩为零。

第二讲 摩擦角及其它一、摩擦角1、全反力:接触面给物体的摩擦力与支持力的合力称全反力,一般用R 表示,亦称接触反力。

2、摩擦角:全反力与支持力的最大夹角称摩擦角,一般用υm 表示。

此时,要么物体已经滑动,必有:υm = arctan μ(μ为动摩擦因素),称动摩擦力角;要么物体达到最大运动趋势,必有:υms = arctan μs (μs 为静摩擦因素),称静摩擦角。

通常处理为υm = υms 。

3、引入全反力和摩擦角的意义:使分析处理物体受力时更方便、更简捷。

二、隔离法与整体法1、隔离法:当物体对象有两个或两个以上时,有必要各个击破,逐个讲每个个体隔离开来分析处理,称隔离法。

在处理各隔离方程之间的联系时,应注意相互作用力的大小和方向关系。

2、整体法:当各个体均处于平衡状态时,我们可以不顾个体的差异而将多个对象看成一个整体进行分析处理,称整体法。

应用整体法时应注意“系统”、“内力”和“外力”的涵义。

第二部分 牛顿运动定律第一讲 牛顿三定律一、牛顿第一定律1、定律。

惯性的量度2、观念意义,突破“初态困惑”二、牛顿第二定律1、定律2、理解要点a、矢量性b、独立作用性:ΣF →a ,ΣF x→a xΣF y→a y,…c、瞬时性。

合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。

高中物理竞赛-曲线运动知识要点分析

高中物理竞赛-曲线运动知识要点分析

高中物理竞赛—曲线运动知识要点分析一、运动的合成与分解1、标量和矢量物理量分为两大类:凡是只须数值就能决定的物理量叫做标量,例如:时间、路程、质量、温度、功和能量等;另一类,既有大小,也需要方位和指向才能确定的物理量叫做失量,例如:位移、速度、加速度、力、动量都是矢量。

标量和矢量在进行运算时遵守不同的法则,标量的运算遵守代数法则如加、减、乘、除等。

而矢量的运算不能用上述法则。

中学常用的矢量运算是所谓矢量的合成与分解,这种运算都遵守平行四边形定则(或三角形法则)。

当矢量在一条直线上合成和分解时,规定正方向后,可转化为代数运算。

2.运动的合成由已知的分运动求其合运动叫运动的合成.这既可能是一个实际问题,即确有一个物体同时参与几个分运动而存在合运动;又可能是一种思维方法,即可以把一个较为复杂的实际运动看成是几个基本的运动合成的,通过对简单分运动的处理,来得到对于复杂运动所需的结果.描述运动的物理量如位移、速度、加速度都是矢量,运动的合成应遵循矢量运算的法则:(1)如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量取负,矢量运算简化为代数运算.(2)如果分运动互成角度,运动合成要遵循平行四边形定则.3.合运动的性质取决于分运动的情况:①两个匀速直线运动的合运动仍为匀速直线运动.②一个匀速运动和一个匀变速运动的合运动是匀变速运动,二者共线时,为匀变速直线运动,二者不共线时,为匀变速曲线运动。

③两个匀变速直线运动的合运动为匀变速运动,当合运动的初速度与合运动的加速度共线时为匀变速直线运动,当合运动的初速度与合运动的加速度不共线时为匀变速曲线运动。

3、运动的分解1.已知合运动求分运动叫运动的分解.2.运动分解也遵循矢量运算的平行四边形定则.3.将速度正交分解为 v x =vcos α和v y =vsin α是常用的处理方法.4.速度分解的一个基本原则就是按实际效果来进行分解,常用的思想方法有两种:一种思想方法是先虚拟合运动的一个位移,看看这个位移产生了什么效果,从中找到运动分解的办法;另一种思想方法是先确定合运动的速度方向(物体的实际运动方向就是合速度的方向),然后分析由这个合速度所产生的实际效果,以确定两个分速度的方向.4、合运动与分运动的特征:(1)等时性:合运动所需时间和对应的每个分运动所需时间相等.(2)独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响.(3)等效性:合运动和分运动是等效替代关系,不能并存;(4)矢量性:加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类高中物理竞赛的知识与分类是非常广泛的,涵盖了许多物理的基础知识和应用技巧。

下面将其分为几个不同的类别,以帮助参赛选手更好地备战。

1. 力学:力学是物理竞赛中的重要一环,包括运动学、静力学、动力学等。

参赛选手需要了解质点运动的基本规律、力的合成与分解、斜面、滑轮等相关概念及应用。

2. 热学:热学是研究热量传递和温度变化的学科,包括热力学、热传导、热辐射等。

参赛选手需要掌握理想气体状态方程、热导率、热容等相关概念,并能应用于解决实际问题。

3. 电磁学:电磁学是物理竞赛中的重要领域,包括静电学、电流电路、电磁感应等。

参赛选手需要熟悉库仑定律、电场强度、电流分布等基本概念,还需要了解电磁感应和电磁波的相关知识。

4. 光学:光学是研究光的传播与变化的学科,包括光的反射、折射、干涉、衍射等。

参赛选手需要了解光的传播速度、光的折射定律、镜面成像、薄透镜成像等概念及应用。

5. 现代物理:现代物理包括相对论、量子力学等新的物理理论与实验。

可以了解爱因斯坦的相对论、波粒二象性、原子核和粒子物理学等相关内容。

除了这些主要的物理类别之外,物理竞赛还涉及到实验设计与数据处理、计算机模拟与编程等技能。

此外,解题技巧、分析思维和快速运算能力也是非常重要的。

参加高中物理竞赛需要广泛学习和掌握相关知识,注重理论与实践的结合,注重对基本原理的理解和应用能力的培养。

多做一些练习题、模拟考试和实验操作,能够提高解题和实验技巧。

通过不断努力和积累经验,选手们将能够在物理竞赛中取得好成绩。

物理竞赛是一项需要广泛知识和丰富经验的挑战。

除了之前提到的力学、热学、电磁学、光学和现代物理,还有一些其他的物理知识和分类也是值得关注的。

6. 波动与声学:波动与声学是研究波的传播和振动的学科。

参赛选手需要了解波的特性、波速、波程、共振、多普勒效应等相关概念。

此外,音叉、共鸣管、声纳等设备的原理和应用也需要掌握。

7. 核物理学:核物理学是研究原子核内部结构和核反应的学科。

高中物理竞赛指导知识点剖析

高中物理竞赛指导知识点剖析

第一章运动学第一节质点运动的基本概念赛点直击一、参考系二、位置、位移和路程三、平均速度和平均速率四、即时速度和即时速率五、加速度六、匀变速直线运动赛题解析赛法归纳1.物理模型的建立——将实际问题理想化2.图像法的巧用——包括示意图3.追击类问题的研究——必须把握临界条件第二节运动的合成与分解赛点直击一、矢量和标量二、矢量的标积和矢积三、运动的合成法则四、物系相关速度赛题解析赛法归纳1.参考系的变换——通过恰当选择参考系简化解题2.关联速度的探寻——包括微元方法,杠绳约束物系,接触物系,交叉物系等3.瞬心的寻找——处理转动问题时特别有效第三节抛体运动赛点直击一、平抛运动二、斜抛运动赛题解析赛法归纳1.参考系的变换——处理抛体运动的相遇问题时,在自由落体参考系中求解可使问题变得十分简单2.对称关系的巧用3.斜抛运动中的极值4.各种碰撞可能性的讨论第四节质点的圆周运动与螺旋运动赛点直击一、刚体的平动和绕定轴转动二、圆周运动的角量描述三、质点的螺旋运动赛题解析赛法归纳1.纯滚动问题的研究2.物理模型的建立3.曲率半径的确定和应用4.圆周运动中的倒转与周期重复性问题5.圆周运动切向与法向加速度的确定第五节综合题例典型例题第二章物体的平衡第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第六节综合题例典型例题第三章牛顿运动定律第一节一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节综合题例第四章动量和角动量第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.4.第五节综合题例典型例题第五章能量第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第六节赛点直击一、二、三、四、赛法归纳1.2.3.4.第七节综合题例典型例题第六章振动与波第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节综合题例典型例题第七章热学第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.第六节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第七节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.第八节综合题例典型例题第八章静电场第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第六节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第七节综合题例典型例题第九章稳恒电流第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、三、四、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第六节赛点直击一、三、四、赛题解析赛法归纳1.2.3.4.第七节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第八节综合题例典型例题第十章磁场与电磁感应第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第六节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第七节综合题例典型例题第十一章交流电与电磁波第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节综合题例典型例题第十二章光学第一节赛点直击一、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、三、四、赛题解析赛法归纳1.2.3.4.第六节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第七节赛点直击一、三、四、赛题解析赛法归纳1.2.3.4.第八节综合题例典型例题第十三章近代物理第一节原子结构赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节原子核赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节时间和长度的相对论效应赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节相对论动力学基础和不确定关系赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节综合题例典型例题。

高中物理奥林匹克竞赛大纲

高中物理奥林匹克竞赛大纲

全国中学生物理竞赛内容提要(2013 年开始实行)一.理论基础力学1. 运动学:参考系坐标系直角坐标系※平面极坐标质点运动的位移和路程速度加速度矢量和标量矢量的合成和分解※矢量的标积和矢积匀速及匀变速直线运动及其图像运动的合成抛体运动圆周运动圆周运动中的切向加速度和法向加速度※任意曲线运动中的切向加速度和法向加速度, 曲率半径相对运动伽里略速度变换刚体的平动和绕定轴的转动角速度和角加速度2.牛顿运动定律力学中常见的几种力牛顿第一、二、三运动定律惯性参考系摩擦力弹性力胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出)※非惯性参考系※平动加速参考系中的惯性力※匀速转动参考系中的惯性离心力3.物体的平衡共点力作用下物体的平衡力矩刚体的平衡条件重心物体平衡的种类4.动量冲量动量质点与质点组的动量定理动量守恒定律※质心※质心运动定理反冲运动及火箭5.※角动量※冲量矩※角动量※质点和质点组的角动量定理(不引入转动惯量)※角动量守恒定律6.机械能功和功率动能和动能定理重力势能引力势能质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)弹簧的弹性势能功能原理机械能守恒定律碰撞恢复系数7.在万有引力作用下物体的运动开普勒定律行星和人造天体的圆轨道运动和椭圆轨道运动8.流体静力学静止流体中的压强浮力9.振动简谐振动x=Acos(ωt+ Φ)振幅频率和周期相位振动的图像参考圆振动的速度v= -ωAsin(ωt+Φ)(线性)恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成阻尼振动受迫振动和共振(定性)10 波和声横波和纵波波长频率和波速的关系波的图像※平面简谐波的表示式y=Acosω(t-x/v)波的干涉※驻波波的衍射(定性)声波声音的响度、音调和音品声音的共鸣乐音和噪声※多普勒效应热学1.分子动理论原子和分子的数量级分子的热运动布朗运动气体分子热运动速率分布律(定性)温度的微观意义分子热运动的动能※气体分子的平均移动动能,玻尔兹曼常量分子力分子间的势能物体的内能2.气体的性质※温标,热力学温标,气体实验定律理想气体状态方程,普适气体恒量理想气体状态方程的微观解释(定性)3.热力学第一定律热力学第一定律理想气体的内能热力学第一定律在理想气体等容、等压、等温和绝热过程中的应用,※定容摩尔热容量和定压摩尔热容量※等温过程中的功(不要求导出)※绝热过程方程(不要求导出)※热机及其效率※致冷机和致冷系数4.※热力学第二定律※热力学第二定律的开尔文表述和克劳修斯表述※可逆过程与不可逆过程※宏观过程的不可逆性※理想气体的自由膨胀※热力学第二定律的统计意义5.液体的性质液体分子运动的特点表面张力系数※球形液面两边的压强差浸润现象和毛细现象(定性)6.固体的性质晶体和非晶体空间点阵固体分子运动的特点7.物态变化熔化和凝固熔点熔化热蒸发和凝结饱和气压沸腾和沸点汽化热临界温度固体的升华空气的湿度和湿度计** 8.热传递的方式传导※导热系数对流辐射※黑体辐射的概念※斯特藩定律9 热膨胀热膨胀和膨胀系数电学1.静电场电荷守恒定律库仑定律静电力常量和真空介电常数电场强度电场线点电荷的场强场强叠加原理匀强电场※无限大均匀带面的场强(不要求导出)均匀带电球壳壳内的场强和壳外的场强公式(不要求导出)电势和电势差等势面点电荷电场的电势公式(不要求导出)电势叠加原理均匀带电球壳壳内和壳外的电势公式(不要求导出)静电场中的导体静电屏蔽电容平行板电容器的电容公式※球形电容器的电容公式电容器的连接电容器充电后的电能电介质的极化,介电常量2.稳恒电流欧姆定律,电阻率和温度的关系电功和电功率电阻的串、并联电动势,闭合电路的欧姆定律一段含源电路的欧姆定律※基尔霍夫定律电流表,电压表,欧姆表惠斯通电桥补偿电路3.物质的导电性金属中的电流欧姆定律的微观解释※液体中的电流※法拉第电解定律※气体中的电流※被激放电和自激放电(定性)真空中的电流示波器半导体的导电特性p 型半导体和n 型半导体※ P-N 结晶体二极管的单向导电性※及其微观解释(定性)三极管的放大作用(不要求机理)超导现象4.磁场电流的磁场磁感应强度磁感线匀强磁场长直导线、圆线圈、螺线管中的电流的磁场分布(定性)※无限长直导线中电流的磁场表示式※圆线圈中电流的磁场在轴线上的表示式※无限长螺线管中电流的磁场表示式(不要求导出)※真空磁导率安培力洛伦兹力电子荷质比的测定质谱仪回旋加速器霍尔效应5.电磁感应法拉第电磁感应定楞次定律※感应电场(涡旋电场)※电子感应加速器自感和互感,自感系数,※通电自感的磁能(不要求推导)6.交流电交流发电机原理交流电的最大值和有效值纯电阻、纯电感、纯电容电路感抗和容抗※电流和电压的相位差整流滤波和稳压理想变压器三相交流电及其连接法感应电动机原理7.电磁振荡和电磁波电磁振荡振荡电路及振荡频率,电磁波谱电磁场和电磁波电磁波的波速赫兹实验电磁波的发射和调制电磁波的接收、调谐、检波光学1. 几何光学光的直进反射折射全反射光的色散折射率与光速的关系平面镜成像,球面镜成像公式及作图法※球面折射成像公式,※焦距与折射率、球面镜半径的关系薄透镜成像公式及作图法眼睛放大镜显微镜望远镜2.波动光学光程光的干涉双缝干涉光的衍射现象单缝衍射(定性)※分辩本领(不要求导出)光谱和光谱分析近代物理1.光的本性光电效应爱因斯坦方程光的波粒二象性光子的能量与动量2.原子结构卢瑟福实验原子的核式结构玻尔模型用玻尔模型解释氢光谱玻尔模型的局限性原子的受激辐射激光的产生(定性)和它的特性3. 原子核原子核的量级天然放射现象原子核的衰变半衰期放射线的探测质子的发现中子的发现原子核的组成核反应方程质能方程裂变和聚变4.粒子“基本”粒子,轻子与夸克(简单知识)四种基本相互作用实物粒子具有波粒二象性※德布罗意关系p=h/λ※不确定关系?p?x ≥ h/4 π5.※狭义相对论爱因斯坦假设时间和长度的相对论效应相对论动量相对论能量相对论动量能量关系6.※太阳系,银河系,宇宙和黑洞的初步知识.数学基础1.中学阶段全部初等数学(包括解析几何).2.矢量的合成和分解,极限、无限大和无限小的初步概念3.※导数及其应用(限于高中教学大纲所涉及的内容)。

高中物理竞赛学习内容

高中物理竞赛学习内容

高中物理竞赛学习内容
高中物理竞赛的知识范畴涵盖了物理的各个方面,从基础物理知识到现代物理知识,其中不乏重要的概念、定律、原理和实验。

高中物理竞赛的学习具体内容,主要可以分为以下几个方面。

第一,要系统学习物理基础理论。

在物理竞赛中,参赛者要掌握基础的物理知识,包括力学、热力学、电磁学、光学、原子物理、核物理等等。

这些基础理论都是物理竞赛的基础,也是考生最基本的知识储备,在竞赛中考生要根据基础理论准确掌握考题知识点。

第二,要了解物理学习的基本方法。

每一个科学问题都有自己的研究方法,物理也不例外,参赛者要系统学习物理的基本方法,了解到哪些解题方法能够更快地解决物理问题,掌握到物理学科的基本解题流程,努力提高应对考题的能力。

第三,要加强实验技能的提高。

物理学不仅要掌握理论知识,还要掌握实验技能,只有掌握了实验技能,才能深入了解物理的本质,更能有效地应对物理考题。

同时,实验让参赛者更加深入地理解物理原理,深物理知识的体验,从而提高考试的解题能力。

第四,要熟悉物理竞赛的常用考题形式,多加练习。

物理竞赛的考题形式有选择题、判断题、填空题、计算题等等。

物理竞赛中,考生要全面掌握所有考题形式,多加练习,以便在考试中更好地发挥自己的优势,达到较高的分数。

总之,高中物理竞赛要求参赛者在物理的基础理论、基本方法、实验技能和常用考题形式上有一定的掌握,这是高中物理竞赛的基本
学习内容。

只有系统又准确地学习、理解、掌握和掌握这些内容,才能更好地发挥自己的优势,在物理竞赛中取得较好的成绩。

高中物理竞赛公式总结

高中物理竞赛公式总结

dW = ba F • dr = ba F cos θds
( L) ( L)
F △t = m v − m v
i i i i =1 i =1 i =1
n
n
n
i i0
W = ba F • dr = ba ( F1 + F2 + Λ Fn ) • dr = W1 + W2 + Λ +
Mdt =
t0
t
L
L0
dL = L − L0 = Iω − Iω 0
2.35 L = I ω = 常量 2.36 W = Fr cos θ 2.37 W = F • r 力的功等于力沿质点位移方向的分量与 质点位移大小的乘积 2.38 Wab = 2.39
b a ( L)
2.12 质 点 系 的 动 量 定 理 (F1+F2) △ t=(m1v1+m2v2) — (m1v10+m2v20) 左面为系统所受的外力的总动量,第一项为系统的 末动量,二为初动量 2.13 质点系的动量定理:
( L) ( L)
作用在系统上的外力的总冲量等于系统总动量的增 量 2.14 质点系的动量守恒定律 (系统不受外力或外力矢量和 为零)
gx 2 2 2v 0 cos 2 a
1.23 向心加速度 a=
v2 R
1.45 滑动摩擦系数 f=μN (μ滑动摩擦系数略小于μ0) 第二章 守恒定律 2.1 动量 P=mv 2.2 牛顿第二定律 F= 2.3
动量保持不变。质点系的角动量守恒定律 2.28 I =
Δm r
i
2
i i
刚体对给定转轴的转动惯量
v = v 0 − gt 1 2 y = v 0 t − gt 2 2 2 v = v − 2 gy 0

高中物理竞赛知识点

高中物理竞赛知识点

高中物理竞赛知识点高中物理竞赛涵盖了广泛而深入的物理知识,对于想要在竞赛中取得好成绩的同学来说,系统地掌握这些知识点至关重要。

一、力学1、运动学这部分包括直线运动、曲线运动。

直线运动中的匀变速直线运动,其速度、位移公式需要熟练掌握。

对于曲线运动,重点是平抛运动和圆周运动。

平抛运动要理解水平和竖直方向的分运动规律,圆周运动则要清楚线速度、角速度、向心加速度等概念,以及向心力的来源和计算。

2、牛顿运动定律牛顿第一定律揭示了物体的惯性本质;牛顿第二定律是力学的核心,F = ma 这个公式要能灵活运用,解决各种受力情况下物体的运动问题;牛顿第三定律则说明了作用力和反作用力的关系。

3、机械能包括动能、势能(重力势能、弹性势能)的概念和计算。

机械能守恒定律是重点,要能判断在何种情况下机械能守恒,并运用其解决问题。

4、动量动量和冲量的概念要清晰,动量定理和动量守恒定律在碰撞、爆炸等问题中经常用到。

二、热学1、分子动理论了解物质是由大量分子组成的,分子在不停地做无规则运动,分子间存在相互作用力。

2、热力学定律热力学第一定律揭示了能量的守恒与转化,热力学第二定律则说明了热现象的方向性。

三、电磁学1、静电场库仑定律、电场强度、电势、电势能等概念是基础。

要能熟练运用电场线和等势面来分析电场的性质。

2、电路掌握串并联电路的特点,欧姆定律,电阻的串并联计算。

复杂电路可以用基尔霍夫定律来分析。

3、磁场磁感应强度的概念,安培力和洛伦兹力的计算。

带电粒子在磁场中的运动是重点和难点,需要掌握其运动规律和半径、周期的计算。

4、电磁感应法拉第电磁感应定律是关键,要能分析各种情况下的电磁感应现象,计算感应电动势。

四、光学1、几何光学光的直线传播、反射、折射定律,全反射现象。

能利用这些知识解决平面镜成像、凸透镜和凹透镜成像等问题。

2、物理光学光的干涉、衍射、偏振现象,了解双缝干涉实验和薄膜干涉的原理。

五、近代物理1、原子物理原子的结构模型,氢原子能级,原子核的组成,放射性衰变等内容都需要掌握。

高中物理竞赛指导知识点

高中物理竞赛指导知识点

第一章运动学第一节质点运动的基本概念赛点直击一、参考系二、位置、位移和路程三、平均速度和平均速率四、即时速度和即时速率五、加速度六、匀变速直线运动赛题解析赛法归纳1.物理模型的建立——将实际问题理想化2.图像法的巧用——包括示意图3.追击类问题的研究——必须把握临界条件第二节运动的合成与分解赛点直击一、矢量和标量二、矢量的标积和矢积三、运动的合成法则四、物系相关速度赛题解析赛法归纳1.参考系的变换——通过恰当选择参考系简化解题2.关联速度的探寻——包括微元方法,杠绳约束物系,接触物系,交叉物系等3.瞬心的寻找——处理转动问题时特别有效第三节抛体运动赛点直击一、平抛运动二、斜抛运动赛题解析赛法归纳1.参考系的变换——处理抛体运动的相遇问题时,在自由落体参考系中求解可使问题变得十分简单2.对称关系的巧用3.斜抛运动中的极值4.各种碰撞可能性的讨论第四节质点的圆周运动与螺旋运动赛点直击一、刚体的平动和绕定轴转动二、圆周运动的角量描述三、质点的螺旋运动赛题解析赛法归纳1.纯滚动问题的研究2.物理模型的建立3.曲率半径的确定和应用4.圆周运动中的倒转与周期重复性问题5.圆周运动切向与法向加速度的确定第五节综合题例典型例题第二章物体的平衡第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第六节综合题例典型例题第三章牛顿运动定律第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节综合题例典型例题第四章动量和角动量第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节综合题例典型例题第五章能量赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第六节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第七节综合题例典型例题第六章振动与波第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节综合题例典型例题第七章热学第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.4.第六节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第七节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第八节综合题例典型例题第八章静电场第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第六节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第七节综合题例典型例题第九章稳恒电流第一节赛点直击一、二、三、四、赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第六节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第七节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第八节综合题例典型例题第十章磁场与电磁感应第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第六节赛点直击一、二、三、四、赛题解析1.2.3.4.第七节综合题例典型例题第十一章交流电与电磁波第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节综合题例典型例题第十二章光学第一节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第三节赛点直击一、三、四、赛题解析赛法归纳1.2.3.4.第四节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第六节赛点直击一、二、四、赛题解析赛法归纳1.2.3.4.第七节赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第八节综合题例典型例题第十三章近代物理第一节原子结构赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第二节原子核赛点直击二、三、四、赛题解析赛法归纳1.2.3.4.第三节时间和长度的相对论效应赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第四节相对论动力学基础和不确定关系赛点直击一、二、三、四、赛题解析赛法归纳1.2.3.4.第五节综合题例典型例题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理知识整理知识点睛 一.惯性力先思考一个问题:设有一质量为m 的小球,放在一小车光滑的水平面上,平面上除小球(小球的线度远远小于小车的横向线度)之外别无他物,即小球水平方向合外力为零。

然后突然使小车向右对地作加速运动,这时小球将如何运动呢?地面上的观察者认为:小球将静止在原地,符合牛顿第一定律; 车上的观察者觉得:小球以-a s 相对于小车作加速运动;我们假设车上的人熟知牛顿定律,尤其对加速度一定是由力引起的印象至深,以致在任何场合下,他都强烈地要求保留这一认知,于是车上的人说:小球之所以对小车有 -a s 的加速度,是因为受到了一个指向左方的作用力,且力的大小为 - ma s ;但他同时又熟知,力是物体与物体之间的相互作用,而小球在水平方向不受其它物体的作用,物理上把这个力命名为惯性力。

惯性力的理解 :(1) 惯性力不是物体间的相互作用。

因此,没有反作用。

(2)惯性力的大小等于研究对象的质量m 与非惯性系的加速度a s 的乘积,而方向与 a s 相反,即sa m f -=*(3)我们把牛顿运动定律成立的参考系叫惯性系,不成立的叫非惯性系,设一个参考系相对绝对空间加速度为a s ,物体受相对此参考系加速度为a',牛顿定律可以写成:a m f F '=+*其中F 为物理受的“真实的力”,f*为惯性力,是个“假力”。

(4)如果研究对象是刚体,则惯性力等效作用点在质心处,说明:关于真假力,绝对空间之类的概念很诡异,这样说牛顿力学在逻辑上都是显得很不严密。

所以质疑和争论的人比较多。

不过笔者建议初学的时候不必较真,要能比较深刻的认识这个问题,既需要很广的物理知识面,也需要很强的物理思维能力。

在这个问题的思考中培养出爱因斯坦2.0版本的概率很低(因为现有的迷惑都被1.0版本解决了),在以后的学习中我们的同学会逐渐对力的概念,空间的概念清晰起来,脑子里就不会有那么多低营养的疑问了。

极其不建议想不明白这问题的同学Baidu 这个问题,网上的讨论文章倒是极其多,不过基本都是民哲们的梦呓,很容易对不懂的人产生误导。

二.惯性力的具体表现(选讲) 1.作直线加速运动的非惯性系中的惯性力这时惯性力仅与牵连运动有关,即仅与非惯性系相对于惯性系的加速度有关。

惯性力将具有与恒定重力相类似的特性,即与惯性质量正比。

记为:sa m f -=*2.做圆周运动的非惯性系中的惯性力这时候的惯性力可分为离心力以及科里奥利力:1)离心力为背向圆心的一个力:r m f 2ω=*2)科里奥利力概念比较麻烦(竞赛复赛阶段还考不到),这里就不做介绍了。

大家只要了解当物体相对转动参考系有相对运动时必须考虑科里奥利力就行了。

计算公式如下:ω⨯=*相vmfk2这是个叉积式。

总的来说惯性力可以用万有引力去等效,其本质都是引力场作用,“施力物体”都可以当成整个宇宙(还好不是上帝)。

所以我们在地球上上随着地球自转的时候,来自宇宙中遥远的群星正把我们往外拉(离心力),结果导致我们对地面压力比地球对我们的引力小了不少。

不过南北极极点的人受这种群星的引力就可以忽略不计。

这个观点比较雷人,很多人听到后感觉很痛苦,感觉完全不符合逻辑。

其实只要摒弃物体间的相互与运动状态无关的惯性思维就会舒服多了。

当我们相对于某个天体静止时,天体对我们的引力与我们现对运动时不一样。

这个理解可以类比电磁学里洛伦兹力与静电力,它们都产生于电荷间但不同的原因在于前者有相对运动。

当两个物体间有相互作用的时候,它们是通过一种物质实现这种作用的,这种物质就是我们看不见但可以检测到的“场”,场力的特点是与物体相对运动有关。

实际生活中的一切现象都是场作用。

第一次世界大战期间,英、德在阿根廷附近马尔维纳斯岛的洋面上进行了一次大战。

当德国军舰位于英国军舰北方大约7km时,英舰炮手瞄准德舰开炮,炮弹全都落在德舰的左侧大约100多米以外的地方,也是由于神奇的惯性力的作用造成的。

(当然也可以理解为炮弹飞到目标位置时,德国人的舰船已经随着地球的自转跑到新的地方去了)学习物理学我们应该可以意识到,这世上任何的事情没有绝对正确的解释,只有相对来说适用范围大,精确度高的解释。

学而思的物理课程在教学上一直强调两条:1.讲到任何一个点,尽量在同学能接受的情况下,从这个点出发,给出将来大家要会继续学习的物理体系的框架,避免那种”学习物理就是下一个老师否定上一个老师”的痛苦。

2.加强物理思想对我们同学思维习惯,认识方式的塑造,可能的话,甚至对人生观世界观加以引导。

做到学懂物理的人不会被各种迷信,各种哲学,各种“思想”,各种“主义”所蛊惑,学懂物理的同学进了清华北大也不自杀,不出家。

学懂物理的人对待任何事情抱着研究归纳的心态,眼光去面对,以惯有的,高超的类比能力,思维迁移能力,总结能力去做人生道路上的任何事情。

问题分类详解3.“分离”问题观察思考:弹跳器是很多运动爱好者喜欢的运动,如图所示,人通过向下踩踏板,在弹簧缩短的过程中,人受到向上的力,就把弹跳器从地面上拉起来了。

粗略一想“道理”确实不难,不过对现象能做出定量的描述才是关键,比如中国人发明了火药大炮,但是弹道学却让欧洲人的炮兵技术远远领先于中国(火炮确实是中国人发明的)。

我们的问题是,人是什么时候脱离踏板往上“飞出”,以至于把弹跳器拉离地面的?为了便于分析,我们忽略与力学无关的细节,把问题描述成以下原理图,这个过程叫物理建模。

不妨把人用物块代表,质量设为M,弹簧质量忽略,踏板质量设为m,在人脱离踏板前,不考虑人的手对弹跳器的力,当人离开踏板后,人再对通过手向上拉弹跳器,使之离开地面。

问题是:在弹簧回复的过程中,踏板带着人向上运动,当弹簧恢复到什么程度人会离开踏板?人离开踏板前人与踏板运动细节如何?解析:显然分离时人的加速度几乎与踏板仍然一样,隔离人,此时人加速度为g,说明踏板也是这个值,人和踏板相互作用力N=0,隔离踏板知其受合力等于其重力,所以是在弹簧原长处分离。

这个问题也可以用惯性力去解决。

讲解的时候不妨多对熟知的结论(用向上的力拉地面上箱子,拉力等于重力时箱子离开地面)适用范围作出描述,并把这个问题向着原有情景类比,训练学生类比能力。

二.“轻物”动力学分析 反思:“轻”是物理习题中经常描述的词,指的的质量忽略不计的物体,这类物体动力特点很容易通过思考发现。

大家先不放思考一下:当我们用一根轻绳拉一个物体加速前进时,为什么我们对绳子的拉力等于绳子对物体的拉力?只能用牛顿定律去解释,而不能用力具有传递性之类的理论. 总结是:“轻”物体在动力学中的行为特征是 1.受的力以及力矩的特点: 2.运动特点:牛顿运动定律定理对流体静力学规律的拓展 流体力学是最古老的物理学之一,也是物理上在工业上应用最广泛的物理学之一。

在流体中使用牛顿运动定律比较复杂,比较容易想到的是取一小片质点为对象,受力分析,这个方法能处理一些不考虑压缩,静态的流体问题。

复杂的情况,我们以后会逐步在各章介绍一些。

由于在工业上的应用广泛,流体力学发展成了一门体系庞大的,模型与方程众多的独立学科。

大学的物理系的同学也不会太深入学习。

一般来说,具有物理能力的人不太了解流体力学的应用体系,熟悉方程的人又普遍缺乏物理的思维能力。

可以说,这方面我国的理论水平还远远落后于发达国家,这些年我国在某些技术上有了些进步,但是理论上的差距才是真正是级别性的差距,因为不是所有的公式都会公开发表的,还有很多问题等待我们同学将来去突破。

有个两个简单的原理要先交代一下:1:对每一个流体质元,其现对周围流体静止时受到的力都垂直与接触面,这是由于流体之间无静摩擦的原因,可以看当成流体的定义。

2:对无穷小质元,忽略质量力(重力与惯性力)后各个面的压强处处一样,这个证明很容易用微元法实现,这里就不证明了。

这个原理其实就是帕斯卡原理,但是初中课本上表述的帕斯卡原理完全无法在负责情况下应用,这里提醒大家不要用“液体能传递压强之类”的朴素理论分析问题。

知识点睛恒力作用下匀变速运动动力学分析思路 动力学的两类基本问题应用牛顿运动定律解决的问题主要可分为两类:(1)已知受力情况求运动情况,(2)已知运动情况求受力情况. 分析解决这两类问题的关键是抓住受力情况和运动情况之间联系的桥梁——加速度.J20战斗机风动实验 著名空气动力学家:钱学森(他讲的是什么)海啸动力学问题的处理方法:(1)正确的受力分析物体进行受力分析,是求解力学问题的关键,也是学好力学的基础. (2)受力分析的依据① 力的产生条件是否存在,是受力分析的重要依据之一.② 力的作用效果与物体的运动状态之间有相互制约的关系,结合物体的运动状态分析受力情况是不可忽视的.③ 由牛顿第三定律(力的相互性)出发,分析物体的受力情况,可以化难为易.解题思路(1)由物体的受力情况求解物体的运动情况的一般方法和步骤.① 确定研究对象,对研究对象进行受力分析,并画出物体的受力图. ② 根据力的合成与分解的方法,求出物体所受合外力(包括大小和方向). ③ 根据牛顿第二定律列方程,求出物体的加速度.④ 结合给定的物体运动的初始条件,选择运动学公式,求出所需的运动参量. (2)由物体的运动情况求解物体的受力情况.解决这类问题的基本思路是解决第一类问题的逆过程,具体步骤跟上面所讲的相似,但需特别注意:①由运动学规律求加速度,要特别注意加速度的方向,从而确定合力的方向,不能将速度的方向与加速度的方向混淆.②题目中求的力可能是合力,也可能是某一特定的作用力.即使是后一种情况,也必须先求出合力的大小和方向,再根据力的合成与分解知识求分力.知识点睛 一.概念引入 1.动量⑴ 定义:运动物体的质量和速度的乘积叫做动量,p mv =.⑵ 动量表征物体的运动状态,是矢量,其方向与速度的方向相同,两个物体的动量相同必须是大小相等、方向相同.2.动量的变化量 ①0t p p p ∆=-.②动量的变化量是矢量,其方向与速度变化的方向相同,与合外力冲量的方向相同,跟动量的方向无关. ③求动量变化量的方法:021t p p p mv mv ∆=-=-,p Ft ∆= 3.冲量⑴ 定义:力和力的作用时间的乘积,叫做该力的冲量,I Ft =.⑵ 冲量表示力在一段时间内的累积作用效果,是矢量,其方向由力的方向决定,如果在作用时间内力的方向不变,冲量的方向就和力的方向相同.动力学第一类基本问题物体的受力情况 牛顿第二定律 物体的加速度a 运动学公式 物体的运动情况动力学第二类基本问题基本公式流程图为: Fa0v t xF ma =合020220021222t t t t v v at x v t at v v ax v v x v v t =+=+-=+===⑶ 求冲量的方法:I Ft =(适用于求恒力的冲量);I p =∆(适用于恒力和变力). 二.动量定理内容:物体所受合外力的冲量,等于这个物体动量的变化量.(')I Ft p p m v v '==-=-合三.知识理解1.动量变化p ∆:不指动量大小的变化,仍然必须用矢量计算,这个量是衡量动量大小方向总变化的一个物理量,大部分时候我们会把复杂的动量变化分解到几个独立的方向上进行计算。

相关文档
最新文档