单片机毕业设计--无刷直流电机控制方案设计(外文翻译)
单片机设计外文翻译
附录I参考文献及译文英文资料AT89S51(8-bit Micro controller with 4K Bytes Flash)The AT89S51 is a low-power, high-performance CMOS 8-bit microcontroller with 4K bytes of In-System Programmable Flash memory. The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT89S51 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications.Features:Compatible with MCS.-51 Products4K Bytes of In-System Programmable (ISP) Flash MemoryEndurance: 1000 Write/Erase Cycles4.0V to5.5V Operating RangeFully Static Operation: 0 Hz to 33 MHzThree-level Program Memory Lock128 x 8-bit Internal RAM32 Programmable I/O LinesTwo 16-bit Timer/CountersSix Interrupt SourcesFull Duplex UART Serial ChannelLow-power Idle and Power-down ModesInterrupt Recovery from Power-down ModeWatchdog TimerDual Data PointerPower-off FlagFast Programming TimeFlexible ISP Programming (Byte and Page Mode)Green (Pb/Halide-free) Packaging OptionThe AT89S51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, two 16-bit timer/counters, a five-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset.VCC:Supply voltage (all packages except 42-PDIP).GND:Ground (all packages except 42-PDIP; for 42-PDIP GND connects only the logic core and the embedded program memory).VDD:Supply voltage for the 42-PDIP which connects only the logic core and the embedded program memory.PWRVDD:Supply voltage for the 42-PDIP which connects only the I/O Pad Drivers. The application board MUST connect both VDD and PWRVDD to the board supply voltage.PWRGND:Ground for the 42-PDIP which connects only the I/O Pad Drivers. PWRGND and GND are weakly connected through the common silicon substrate, but not through any metal link. The application board MUST connect both GND and PWRGND tothe board ground.Port 0:Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, PO has internal pull-ups.Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pull-ups are required during program verification.Port 1:Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (lip) because of the internal pull-ups.Port 2:Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (lip) because of the internal pull-ups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that uses 16-bit addresses (MOVX@DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX@RI), Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals duringFlash programming and verification.Port 3:Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (lip) because of the pull-ups.Port 3 receives some control signals for Flash programming and verification.Port 3 also serves the functions of various special features of the AT89S51,as shown in the following table.RST:Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 98 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.ALE/PROG:Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSEN:Program Store Enable (PSEN) is the read strobe to external program memory.When the AT89S51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPP:External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at OOOOH up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.EA should be strapped to Vcc for internal program executions.This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming.XTAL1:Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2:Output from the inverting oscillator amplifierSpecial Function Registers:Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.User software should not write 1 s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.Interrupt Registers:The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the five interrupt sources in the IP register.Dual Data Pointer Registers:To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DPO at SFR address locations 82H-83H andDP1 at 84H-85H.Bit DPS=0 in SFR AUXR1 selects DPO and DPS=1 selects DP1. The user should ALWAYS initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.Power Off Flag:The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to "1”during power up. It can be set and rest under software control and is not affected by reset.Memory Organization:MCS-51 devices have a separate address space for Program and Data Memory. Up to 64K bytes each of external Program and Data Memory can be addressed. Program Memory:If the EA pin is connected to GND, all program fetches are directed to external memory. On the AT89S51,if EA is connected to Vcc, program fetches to addresses OOOOH through FFFH are directed to internal memory and fetches to addresses 1000H through FFFFH are directed to external memory.Data Memory:The AT89S51 implements 128 bytes of on-chip RAM. The 128 bytes are accessible via direct and indirect addressing modes. Stack operations are examples of indirect addressing, so the 128 bytes of data RAM are available as stack space. Watchdog Timer (One-time Enabled with Reset-out):The WDT is intended as a recovery method in situations where the CPU may be subjected to software upsets. The WDT consists of a 14-bit counter and the Watchdog Timer Reset (WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a user must write 01 EH and OE1 H in sequence to the WDTRST register (SFR location OA6H). When the WDT is enabled, it will increment every machine cycle while the oscillator is running. The WDT timeout period is dependent on the external clock frequency. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.Timer 0 and 1:Timer 0 and Timer 1 is a 16-bit Timer/Counter.中文翻译AT89S51 (8位微控制单片机,片内含4K bytes可系统编程的存储器)AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含4k bytes的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。
基于DSP2407的无刷直流电动机驱动控制系统设计(含外文翻译)
基于DSP2407的无刷直流电动机驱动控制系统设计(含外文翻译)此文档为WORD格式,下载后可随意编辑修改2017年9月修订摘要本课题介绍了基于DSP的无刷直流电机控制系统的设计和工作原理。
文中重点分为系统原理分析,数学算法设计,硬件电路搭建,软件模块组成,实物及课题相关实践阐述等5个部分,根据设计要求,选用TMS320LF2407A作为控制芯片。
文中首先对无刷直流电机的发展历程、前景做了简要阐述,介绍了它基本组成和工作原理,着重介绍了电机换相和PWM对逆变桥路的逻辑控制过程。
在认识了电机工作原理和数学模型的基础上,第三章详细分析了控制系统总体方案设计研究,对速度、电流双闭环PID调节方式进行优化,采用积分分离的PID控制算法以满足无静差平稳调速的需求。
硬件设计部分,根据控制需求并参照DSP引脚定义和性能,完成DSP最小系统、驱动控制电路、采样电路、控制键盘显示电路、保护电路等,并进行详细的原理阐述和过程分析。
在此基础上,提出基于DSP带位置传感器的无刷直流电机控制系统设计方案。
同时,对软件模块进行初步设计——包括主程序的初始化,利用中断子程序完成PWM信号触发、测速、换相、PID算法实现等功能,使设计达到基本要求。
同时,为了更好地理解本课题在实践中应用,设计过程中有幸到“苏州博世技术中心有限公司”对基于XC866 BLDC控制器进行研发测试,真正接触到“无刷直流电机驱动控制系统”在产品中的应用。
关键词:无刷直流电机;DSP;PWM;电子换相ABSTRACTThis thesis describes the design and working principle of the Permanent Magnet Brushless DC (BLDC) motor control system based on DSP. This article is composed of 5parts—system principle, mathematical algorithm design, hardware circuit structures, software modules and practices about this paper. According to the design requirements, the DSP-TMS320LF2407A is chosen as the control chip.Firstly, the thesis introduces course of development and prospect of the BLDC motor. Presents a brief exposition of the basic composition and working principle, which mainly focus on motor commutation and PWM inverter bridge logic control. After this, Chapter III detailed analysis of the overall plan of the control system design. Optimized the speed, current double-loop PID regulation mode to Integral Separation PID control algorithm, which can meet the needs of a smooth speed control without static error. Then, as to the hardware design. DSP minimum system drive circuit module, the current speed sampling module, protection module, control the keyboard display module are completed referring to the control requirements and DSP definitions. For the software part,with the introduction of main program and interrupt subroutine, some flow charts and procedure are provided.Through all the design process ,I had an internship in RBAC(BOSCH)where I can do some research on Electric Control Unit of E-bike (equipped with BLDC)based on Infineon XC866 . The BLDC control system has the characteristic of simple structure, high dependability, and can be used in many fields.KEY WORDS: Permanent Magnet Brushless DC ; DSP ; PWM ; Electronic commutation目录1 绪论 (1)1.1课题背景及意义 (1)1.2国内外相关情况研究综述 (1)1.3论文主要内容 (3)2 无刷直流电机的工作原理和数学模型 (4)2.1无刷直流电机的基本结构 (4)2.1.1电机本体 (4)2.1.2转子位置传感器 (5)2.1.3驱动控制电路 (5)2.2无刷直流电机工作原理 (6)2.3星形全桥驱动 (6)2.4无刷直流电机数学模型 (9)3 控制系统总体方案设计研究 (11)3.1控制系统总体方案 (11)3.2控制结构 (11)3.3 PID控制研究 (12)3.3.1 PID基本原理 (12)3.3.2 PID算法设计 (13)3.4控制技术 (14)3.4.1调速原理 (14)3.4.2电枢电压调节 (15)3.4.3 PWM相关技术 (16)4 控制系统硬件设计 (18)4.1总体硬件结构 (18)4.1.1 TMS320LF2407芯片介绍 (18)4.2 DSP控制模块硬件设计 (19)4.2.1电源电路 (19)4.2.2外围电路 (19)4.3驱动方案和器件选择 (22)4.3.1主功率逆变电路 (22)4.3.2驱动芯片及选型 (22)4.3.3驱动电路设计 (26)4.4采样电路 (27)4.4.1位置信号及速度信号采样 (27)4.4.2电流采样 (30)4.5键盘及显示电路 (31)4.6保护电路 (32)4.6.1过压、欠压保护 (32)4.6.2光耦合隔离 (33)5 控制系统软件设计 (34)5.1软件设计总述 (34)5.2主程序设计 (34)5.2.1初始化子程序 (34)5.3中断服务程序设计 (35)5.3.1捕捉中断模块 (35)5.3.2 PWM波形比较生成模块 (36)5.3.3定时器中断模块 (38)5.3.4电机保护中断模块 (40)6 结论及课题相关实践 (41)6.1课题相关实践 (41)6.2全文总结 (43)参考文献 (45)附录 (47)翻译部分 (48)外文原文 (48)中文译文 (54)致谢 (60)1 绪论1.1课题背景及意义众所周知,日常生活中直流电机因其良好的启制动性能,大范围内平滑调速等优点而被广泛使用,但其电刷和换向器严重影响了它的性能(容量、速度等),从而限制了它的发展空间;交流电机的优点是结构简单,运行稳定,适用特大容量、极高转速的调速系统,但其启动、调速性能差使得应用范围再次受到制约。
外文翻译--基于单片机的智能电风扇控制系统(外文原文+中文翻译)
外文原文Single-chip microcomputer1. the introduction of the singlechip microcomputerThe singlechip is one kind of integrated circuit chip, which uses the ultra large-scale technology and has the data-handling capacity (for example arithmetic operation, logic operation, data transfer, interrupt processing) the microprocessor (CPU), random access data-carrier storage (RAM), read-only program memory (ROM), input output circuit (I/O), possibly also includes fixed time the counter, serial passes unguardedly (SCI), demonstration actuation electric circuit (LCD or LED actuation electric circuit), pulse-duration modulation electric circuit (PWM), simulation multichannel switch and A/Electric circuit and so on D switch integrates to together the monolith chip on, constitutes to be smallest the computer system which however consummates. These electric circuits can under the software control accurate, be rapid, highly effective complete the procedure designer preset the duty. From this looked that, singlechip has the function which the microprocessor does not have, it may alone complete the intellectualization control function which the modern industry control requests, this is singlechip biggest characteristic. However singlechip also is different with the single trigger, the chip before the development, it only has the function greatly strengthened ultra large scale integrated circuit, if entrusts with it the specific procedure, it then is youngest, the integrity microcomputer control system, it (PC machine) has the essential difference with the single trigger or the personal computing, singlechip application belongs to the chip level application, needs the user to understand singlechip chip the structure and the command system as well as other integrated circuit application technologies and the system design need theory and technology, with such specific chip design application procedure, thus causes this chip to have the specific function.The different singlechip has the different hardware characteristic and the software characteristic, namely their technical characteristic is different, the hardware characteristic is decided by singlechip chip internal structure, the user must use some kind of singlechip, must understand whether this product does satisfy the characteristic target which the need the function and the application system requests. Here technical characteristic including function characteristic, control characteristic and electrical specification and so on, these information needs to obtain from in theproduction merchant technical manual. The software characteristic is refers to the command system characteristic and the development support environment, theinstruction characteristic is singlechip addressing way which we is familiar with, the data processing and the logical processing way, input-output characteristic and to power source request and so on. The development support environment is compatible and the probability including the instruction, supports the software (to contain may support development application procedure software resources) and the hardware resources. Must use some model singlechip to develop own application system, master its structure characteristic and the technical characteristic is that we need.. Singlechip control system could substitute for before uses control system which the complex electronic circuit or the digital circuit constituted, might the software control realizes, and could realize the intellectualization, now singlechip control category omnipresent, for example correspondence product, domestic electric appliances, intelligent instrument measuring appliance, process control and special-purpose control device and so on, singlechip application domain was more and more widespread. Indeed, singlechip application significance is far is not restricted in its application category or from this the economic efficiency which brings, it fundamentally changed the traditional control method and the design thought more importantly. Is controls technical a revolution, is an important milestone.2.The MCU’s development outlineIn 1946 first electronic accounting machine birth until now, only then 50 years, depends upon microelectronic technology and the semiconductor technology progress, from the electron tube - transistor- integrated circuit - large scale integrated circuit, now together on the chip definitely may integrate several million even more than ten million transistor, causes the computer volume slightly, the function is stronger. Specially in the nearly 20 years time, computer technology obtained the rapid development, the computer in the industry and agriculture, the scientific research, the education, the national defense and the aerospace domain has obtained the widespread application, computer technology already was a national modern science and technology level important symbol.Singlechip is born in the 20th century 70's, looks like F8 monolithic microcomputer which Fairchid Corporation develops. The so-called singlechip is uses the large scale integrated circuit technology the central processing element (Center Processing Unit, Also is Chang Cheng CPU) and the data-carrier storage (RAM), theprogram memory (ROM) and other I/O passes integrates unguardedly on together the chip, constitutes a smallest computer system, but modern singlechip then has added on the severance unit, fixed time unit and A/D transformation and so on more complex, more perfect electric circuit, causes singlechip the function more and more formidable, the application is more widespread.The 20th century 70's, microelectronic technology is being at the development phase, theintegrated circuit belongs to the scale development time, each kind of new material new craft not yet mature, singlechip still occupied the primary development phase, the part integration scale also quite small, the function quite was simple, CPU, RAM had generally has also included some simple I/O integrates to the chip on, looks like Farichild Corporation to belong to this type, it also must be joined to the periphery other processing electric circuits just now to constitute the integrity the computing system. The similar singlechip also has Zilog Corporation the Z80 microprocessor. In 1976 INTEL Corporation has promoted the MCS-48 singlechip, this time singlechip is the genuine 8 monolithic microcomputers, and pushes to the market. It is young by the volume, function entire, the price has lowly won the widespread application, has laid the foundation for singlechip development, becomes in singlechip history the important milestone. Under the MCS-48 leadership, after that, each big semiconductor company developed and has developed own singlechip one after another, looked like Zilog Corporation the Z8 series.To the beginning of the 80's, singlechip has developed to the high performance stage, looks like INTEL Corporation the MCS-51 series, Motorola Corporation 6,801 and 6,802 series, Rokwell Corporation 6,501 and 6,502 series and so on, In addition,Japan's famous electrical company NEC and HITACHI all one after another developed had oneself characteristic the special-purpose singlechip. The 80's, world each big company competes to develop the variety multi-purpose strong singlechip, some severaldozens series, more than 300 varieties, this time singlechip belongs approximately truely monolithic, mostly integrated CPU, RAM, ROM, number many I/O connection, many kinds of interruption system, even also has some to bring A/D switch singlechip, function more and more formidable, RAM and ROM capacity also more and more big, the addressing space even may reach 64kB, may say, singlechip developed to a brand-new stage, the application domain has beenmore widespread, many domestic electric appliances moved towards the intellectualized development path which controlled using singlechip. After 1982, 16 singlechips are published, represent the product are INTEL Corporation's MCS-96 series, 16 singlechips compare 8 machine, the data width increased a time, real-time processing ability stronger, the basic frequency is higher, the integration rate had achieved 120,000 transistors, RAM increased to 232 bytes, ROM then has achieved 8kB, and had 8 interrupt sources, at the same time has disposed multichannel A/D transformation channel, high speed I/The O processing unit, is suitable for the more complex control system.After 90's, singlechip obtained the rapid development, the world each big semiconductor company has developed a function more formidable singlechip one after another. American Microchip Corporation had issued one kind of incompatible MCS-51 newgeneration of PIC series singlechip, has aroused the field widespread interest completely, its product only then 33 simplified the set of instructions to attract many users specially, caused the people to concentrate from the INTEL 111 complex instructions. The PIC singlechip has obtained the fast development, holds the small space in the field. The afterwards matter, the familiar singlechip public figures quite have been all clear, more monolithic aircraft types pour out, MOTOROLA Corporation had issued one after another the MC68HC series singlechip, Japan's several famous companies all developed a performance stronger product, but Japan's singlechip used in generally the special-purpose systems control, but did not look like company and so on INTEL puts in to the market forms the general singlechip. For example NEC Corporation produces the uCOM87 series singlechip, its representative works uPC7811 is one kind of performance quite outstanding singlechip. MOTOROLA Corporation's characteristic and so on MC68HC05 series its high speed low price has won many users. Zilog Corporation's Z8 series product representative works are Z8671, contains BASIC the Debug interpreter, enormous place then user. But American country half COP800 series singlechip then uses the advanced Harvard structure. ATMEL Corporation then perfectly unifies singlechip technology and the advanced Flash memory technology, has issued the performance quite outstanding AT89 series singlechip. Including company and so on China's Taiwan HOLTEK and WINBOND in abundance has also joined singlechip development ranks, by reason of their inexpensive superiority, shares cup of beautiful thick soup.In 1990 American INTEL Corporation promoted 80,960 super 32 singlechips to cause the computer stir, the product has put in the market one after another, became in singlechip history an important milestone. This period, in singlechip field, singlechip variety extraordinary splendour, competes to be the most unusual. Some 8, 16 even 32 machine, but 8 singlechips by its price inexpensive, the variety complete, the application software rich, the support environment were still full, characteristic and so on development convenience but are occupying the dominant position. But INTEL Corporation by reason of their abundant technology, the performance outstanding type and the good foundation, at present was still singlechip mainstream product. Only is the 90's intermediate stages, INTEL Corporation is busy is developing their personal computing microprocessor, not the enough energy continued singlechip technology which develops oneself creates leads, but by company and so on PHILIPS continues to develop the C51 series singlechip.3.Singlechip application domainSinglechip widely applies in the instrument measuring appliance, the domestic electric appliances, the medical equipment, domain and so on aerospace, special purpose equipment intellectualized management and process control, may divide the following several categoriesapproximately:(1). On intelligent instrument measuring appliance applicationSinglechip has the volume small, the power loss low, the control function strong, the expansion is nimble, merit and so on microminiaturization and easy to operate, widely applies in the instrument measuring appliance, the union different type sensor, may realize such as physical quantity the and so on voltage, power, frequency, humidity, temperature, current capacity, speed, thickness, angle, length, degree of hardness, element, pressure survey. Uses singlechip control to cause the instrument measuring appliance digitization, the intellectualization, the microminiaturization, also the function compares uses the electron or the digital circuit is more formidable. For example precise measurement equipment (dynamometer, oscilloscope, each kind of analyzer).(2). In industry control applicationMay constitute the various formats control system, the data acquisition system with singlechip. For example the factory assembly line intellectualized management, the elevator intellectualization control, each kind of alarm system, constitutes two cascade control systems with the computer networking and so on.(3).In domestic electric appliances applicationMay say like this that, the present domestic electric appliances basically have all used singlechip control, praised, the washer, the electric refrigerator, the air conditioner, the color television, other acoustic video frequency equipments from the electricity food, again to the electronic weighting equipment, all kinds of, omnipresent.(4).In computer network and correspondence domain applicationOf the modern singlechip has the correspondence connection generally, may very conveniently and the computer carries on the data communication,for provided the extremely good physical conditions application in between the computer network and the communication facility, the present communication facility basically has all realized singlechip intelligence control, from the handset, the telephone, the small program controlled switch, the building automatic correspondence ringing system, the train wireless correspondence, again the mobile phone which everywhere to the routine work in, the colony mobile communication, radio intercom and so on.(5).Singlechip in medical equipment domain applicationSinglechip quite is also widespread inmedical equipment use, for example medical life-support machine, each kind of analyzer, , ultrasound diagnosis equipment and hospital bed ringing system and so on. In addition, singlechip in the industry and commerce, the finance, the scientific research, the education, domain and so on national defense aerospaceall has the extremely widespread use.4.Singlechip development tendencyNow may say singlechip was all flowers blooms together, the time which hundred school of thought contended, in the world each big chip manufacture company has all promoted own singlechip, from 8, 16 to 32, innumerable, had everything expected to find, has compatibly with the mainstream C51 series, also had not not compatibly, but they unique, became mutually supplementarily, provided the broad world for singlechip application. Looks over singlechip developing process, may indicate singlechip development tendency, has approximately:(1). Low power loss CMOSThe MCS-51 series 8,031 promotes when the power loss reaches 630mW, but the present singlechip all about 100mW, along with more and more is generally low to singlechip power loss request, the present each singlechip manufacturer basic has all used CMOS (complementary metal oxide semiconductor craft). Looked like80C51 to use HMOS (namely high density metal oxide compound semiconductor craft) and CHMOS (supplementary high density metal oxide compound semiconductor craft). CMOS although power loss low, but because its physical characteristic decides its working speed insufficiently high, but CHMOS then had has been high speed and the low power loss characteristic, these characteristics, suited in are requesting the low power loss likely battery power supply the application situation. Therefore this kind of craft will be the main way which the next section of times singlechip will develop.(2). Miniature monolithicNow the conventional singlechip all is generally the central processor (CPU), the random access data storage (RAM), the read-only program memory (ROM), parallel and the serial communication connection, the interruption system, the timing circuit, the clock electric circuit integration on together the sole chip, the enlargement mode singlechip integrated like A/The D switch, PMW (pulse-duration modulation electric circuit), WDT (watch-dog), some singlechips (liquid crystal) actuate LCD the electric circuit all to integrate on the sole chip, such singlechip contains unit electric circuit more, the function is more formidable. Even singlechip merchant also may act according to the user requiremnet the body custom make, makes has oneself characteristic singlechip chip. In addition, present product universal demand volume small, weight light, this requests singlechip strong and the power loss is low besides the function, but also requests its volume to have to be small. Present many singlechips all have the many kinds of seals form, SMD (superficial seal) more and more receives welcome, to enable the system which constitutes by singlechip towards themicrominiaturized direction to develop.(3).Mainstream and multi- varieties coexistenceNow although singlechip variety is many, unique, but still as the core singlechip occupies the mainstream take 80C51, the compatible its structure and the command system have PHILIPS Corporation the product, the ATMEL Corporation's product and the Chinese Taiwan's Winbond series singlechip. Therefore C8051 was the core singlechip occupied the half of the country. But Microchip Corporation's PIC simplified the set of instructions (RISC) also to have the strong development tendency, the Chinese Taiwan's HOLTEK Corporation recent years singlechip output grows day by day, if the low price nature superior superiority, occupied a certain market minute volume. In addition also has MOTOROLA Corporation the product, the Japaneseseveral big companies' special-purpose singlechips. In the certain time, this kind of situation will be able to continue, will not have the monopoly aspect which some singlechip unified, will walk will be depends on for existence supplementarily, will complement one another, the communal development path.中文翻译单片机1. 单片机介绍单片机是一种集成电路芯片,应用超大规模技术把具有数据处理能力(如算术运算,逻辑运算、数据传送、中断处理)的微处理器(CPU),随机存取数据存储器(RAM),只读程序存储器(ROM),输入输出电路(I/O口),可能还包括定时计数器,串行通信口(SCI),显示驱动电路(LCD 或 LED 驱动电路),脉宽调制电路(PWM),模拟多路转换器A/D 转换器等电路集成到一块单块芯片上,构成一个最小然而完善的计算机系统。
单片机基础毕业设计外文翻译
本科生毕业设计(论文)外文翻译毕业设计题目:外文题目:Fundamentals of Single-chip Microcomputer 译文题目:单片机基础学院:信息科学与工程学院专业班级:电子信息工程0802班学生姓名:指导教师:外文原文Fundamentals of Single-chip MicrocomputerDr. Dobbs MacintoshJournalAbstractT h e s i n gl e-chi p m i c r o com pu t er i s t h e cul m i na t i on of bo t h t h e d e v el opm e nt o f t h e di gi t al c om p ut e r a nd t h e i nt e gra t e d c i r c ui t a rgu a b l y t h e t ow m o st s i gn i fi c ant i nv en t i on s of t h e 20t h ce n t u r y .T h es e t o w t yp e s o f a rc hi t e c t u r e a r e fo un d i n s i n gl e-c hi p m i c r o com pu t e r.S om e e m p l o y t h e s pl i t p ro gr a m/d at a m em o r y o f t h e H a r v a rd a r ch i t e ct u r e, s ho wn i n F i g.3-5A-1, ot h er s f o l l o w t he p hi l o so ph y,w i d e l y a d a p t ed f o r ge n e r al-pu rp os e com p ut e rs and m i c r op r oc e s s o rs,of m ak i n g n o l o gi c al di s t i nc t i on be t w ee n p ro gr a m a n d d at a m em o r y a s i n t h e P r i n c et on ar c hi t e ct u r e.In ge n e r a l t er m s a si n gl e-c hi p m i cro c om put e r i s c ha r ac t e ri z ed b y t h e i n co r po r at i o n o f al l t h e u ni t s o f a c om put e r i n t o a s i n gl e d e vi c e.Keyword: Single-chip Microcomputer ROM RAM Programming Algorithm Features• Compatible with MCS-51™ Products• 4K Bytes of In-System Reprogrammable Flash Memory– Endurance: 1,000 Write/Erase Cycles• Fully Static Operation: 0 Hz to 24 MHz• Three-level Program Memory Lock• 128 x 8-bit Internal RAM• 32 Programmable I/O Lines• Two 16-bit Timer/Counters• Six Interrupt Sources• Programmable Serial Channel• Low-power Idle and Power-down ModesDescriptionThe AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4Kbytes of Flash programmable and erasable read only memory (PEROM). The deviceis manufactured using Atmel’s high-density nonvolatile memory technology and iscompatible with the industry-standard MCS-51 instruction set and pinout. Theon-chipFlash allows the program memory to be reprogrammed in-system or by a conventionalnonvolatile memory programmer. By combining a versatile 8-bit CPU with Flashon a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which providesa highly-flexible and cost-effective solution to many embedded control applications.The AT89C51 provides the following standard features: 4Kbytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bittimer/counters, a five vector two-level interrupt architecture,a full duplex serial port, on-chip oscillator and clock circuitry.In addition, the AT89C51 is designed with static logicfor operation down to zero frequency and supports twosoftware selectable power saving modes. The Idle Modestops the CPU while allowing the RAM, timer/counters,serial port and interrupt system to continue functioning. ThePower-down Mode saves the RAM contents but freezesthe oscillator disabling all other chip functions until the nexthardware reset.Pin ConfigurationsBlock DiagramPin DescriptionVCCSupply voltage.GNDGround.Port 0Port 0 is an 8-bit open-drain bi-directional I/O port. As anoutput port, each pin can sink eight TTL inputs. When 1sare written to port 0 pins, the pins can be used as highimpedanceinputs.Port 0 may also be configured to be the multiplexed loworderaddress/data bus during accesses to external programand data memory. In this mode P0 has internalpullups.Port 0 also receives the code bytes during Flash programming,and outputs the code bytes during programverification. External pullups are required during program verification.Port 1Port 1 is an 8-bit bi-directional I/O port with internal pullups.The Port 1 output buffers can sink/source four TTL inputs.When 1s are written to Port 1 pins they are pulled high bythe internal pullups and can be used as inputs. As inputs,Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2Port 2 is an 8-bit bi-directional I/O port with internal pullups.The Port 2 output buffers can sink/source four TTL inputs.When 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pullups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-orderaddress bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bi-directional I/O port with internal pullups.The Port 3 output buffers can sink/source four TTL inputs.When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special features of the AT89C51 as listed below:Port 3 also receives some control signals for Flash programmingand verification.ALE/PROGAddress Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation ALE is emitted at a constant rate of 1/6the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable is the read strobe to external program memory.When theAT89C51 is executing code from external programmemory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH.Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions. This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively,of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.Idle ModeIn idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset. It should be noted that when idle is terminated by a hard ware reset, the device normally resumes programexecution,from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.Figure 1. Oscillator ConnectionsFigure 2. External Clock Drive ConfigurationPower-down ModeIn the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.Program Memory Lock BitsOn the chip are three lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below.When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.Programming the FlashThe AT89C51 is normally shipped with the on-chip Flash memory array in the erased state (that is, contents = FFH) and ready to be programmed. The programming interface accepts either a high-voltage (12-volt) or a low-voltage (VCC) program enable signal. The low-voltage programming mode provides a convenient way to program theAT89C51 inside the user’s system, while the high-voltage programming mode is compatible with conventional thirdparty Flash or EPROM programmers. The AT89C51 is shipped with either the high-voltage or low-voltage programming mode enabled. The respective top-side marking and device signature codes are listed in the following table.The AT89C51 code memory array is programmed byte-bybyte in either programming mode. To program any nonblank byte in the on-chip Flash Memory, the entire memory must be erased using the Chip Erase Mode.Programming Algorithm: Before programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table and Figure 3 and Figure 4. To program the AT89C51, take the following steps.1. Input the desired memory location on the address lines.2. Input the appropriate data byte on the data lines.3. Activate the correct combination of control signals.4. Raise EA/VPP to 12V for the high-voltage programming mode.5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes no more than 1.5 ms.Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.Data Polling: The AT89C51 features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.Ready/Busy: The progress of byte programming can also be monitored by theRDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabled.Chip Erase: The entire Flash array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The code array is written with all “1”s. The chip erase operation must be executed before the code memory can be re-programmed.Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.(030H) = 1EH indicates manufactured by Atmel(031H) = 51H indicates 89C51(032H) = FFH indicates 12V programming(032H) = 05H indicates 5V programmingProgramming InterfaceEvery code byte in the Flash array can be written and the entire array can be erasedby using the appropriate combination of control signals. The write operation cycle is selftimed and once initiated, will automatically time itself to completion. All major programming vendors offer worldwide support for the Atmel microcontroller series. Please contact your local programming vendor for the appropriate software revision.外文资料翻译译文单片机基础摘要:单片机是电脑和集成电路发展的巅峰,有据可查的是它们也是20世纪最意义的两大发明。
单片机毕业设计外文翻译--单片机和keil
附录A 外文文献The SCM and µVision2一、Principle of MCUSingle-chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU, memory, internal and external bus system, most will have the Core. At the same time, such as integrated communication interfaces, timers, real-time clock and other peripheral equipment. And now the most powerful single-chip microcomputer system can even voice, image, networking, input and output complex system integration on a single chip.Also known as single-chip MCU (Microcontroller), because it was first used in the field of industrial control. Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large number of peripherals and CPU in a single chip, the computer system so that smaller, more easily integrated into the complex and demanding on the volume control devices. INTEL the Z80 is one of the first design in accordance with the idea of the processor, From then on, the MCU and the development of a dedicated processor parted ways.Early single-chip 8-bit or all of the four. One of the most successful is INTEL's 8031, because the performance of a simple and reliable access to a lot of good praise. Since then in 8031 to develop a single-chip microcomputer system MCS51 series. Based on single-chip microcomputer system of the system is still widely used until now. As the field of industrial control requirements increase in the beginning of a 16-bit single-chip, but not ideal because the price has not been very widely used. After the 90's with the big consumer electronics product development, single-chip technology is a huge improvement. INTEL i960 Series with subsequent ARM in particular, a broad range of applications, quickly replaced by 32-bit single-chip 16-bit single-chip high-end status, and enter the mainstream market. Traditional 8-bit single-chip performance has been the rapid increase in processing power compared to the 80's to raise a few hundred times. At present, the high-end 32-bit single-chip frequency over 300MHz, the performance of the mid-90's close on the heels of a special processor, while the ordinary price of the model dropped to one U.S. dollars, the most high-end models, only 10 U.S. dollars. Contemporary single-chip microcomputer system is no longer only the bare-metal environment in the development and use of a large number of dedicated embedded operating system is widely used in the full range of single-chip microcomputer. In PDAs and cell phones as the core processing of high-end single-chip or even a dedicated direct access to Windows and Linux operating systems.More than a dedicated single-chip processor suitable for embedded systems, so it was up to the application. In fact the number of single-chip is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will have a single-chip integration. Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse in the Department are equipped with 1-2 single chip. And personal computers also have a large number of single-chip microcomputer in the workplace. Vehicles equipped with more than 40 Department of the general single-chip, complex industrial control systems and even single-chip may have hundreds of work at the same time! SCM is not only far exceeds the number of PC and other integrated computing, evenmore than the number of human beings.Hardwave introductionThe 8051 family of micro controllers is based on an architecture which is highly optimized for embedded control systems. It is used in a wide variety of applications from military equipment to automobiles to the keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the 8051 family of microcontrollers is available in a wide array of variations from manufacturers such as Intel, Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051 such as I2C interfaces, analog to digital converters, watchdog timers, and pulse width modulated outputs. Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5 volts are available. This wide range of parts based on one core makes the 8051 family an excellent choice as the base architecture for a company's entire line of products since it can perform many functions and developers will only have to learn this one platform.The basic architecture consists of the following features:·an eight bit ALU·32 descrete I/O pins (4 groups of 8) which can be individually accessed·two 16 bit timer/counters·full duplex UART·6 interrupt sources with 2 priority levels·128 bytes of on board RAM·separate 64K byte address spaces for DATA and CODE memoryOne 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required by the instruction in question. Therefore, if you have a system which is using an 11.059MHz clock, you can compute the number of instructions per second by dividing this value by 12. This gives an instruction frequency of 921583 instructions per second. Inverting this will provide the amount of time taken by each instruction cycle (1.085 microseconds).二、etting Started with µVision2The Keil Software 8051 development tools listed below are programs you use to compile your C code, assemble your assembly source files, link and locate object modules and libraries, create HEX files, and debug your target program.µVision2 for Windows™ is an In tegrated Development Environment that combines project management, source code editing, and program debugging in one single, powerful environment.The C51 ANSI Optimizing C Cross Compiler creates relocatable object modules from your C source code.The A51 Macro Assembler creates relocatable object modules from your 8051 assembly source code.The BL51 Linker/Locator combines relocatable object modules created by the C51 Compiler and the A51 Assembler into absolute object modules.The LIB51 Library Manager combines object modules into libraries that may be used by the linker.The OH51 Object-HEX Converter creates Intel HEX files from absolute object modules.The RTX-51 Real-time Operating System simplifies the design of complex, time-critical software projects.Software Development CycleWhen you use the Keil Software tools, the project development cycle is roughly the same as it is for any other software development project.1. Create a project, select the target chip from the device database, and configure the tool settings.2. Create source files in C or assembly.3. Build your application with the project manager.4. Correct errors in source files.5. Test the linked application.µVision2 IDEThe µVision2 IDE combines project management, a rich-featured editor with interactive error correction, option setup, make facility, and on-line help. Use µVision2 to create your source files and organize them into a project that defines your target application. µVision2 automatically compiles, assembles, and links your embedded application and provides a single focal point for your development efforts.LIB51 Library ManagerThe LIB51 library manager allows you to create object library from the object files created by the compiler and assembler. Libraries are specially formatted, ordered program collections of object modules that may be used by the linker at a later time. When the linker processes a library, only those object modules in the library that are necessary to create the program are used.BL51 Linker/LocatorThe BL51 linker creates an absolute object module using the object modules extracted from libraries and those created by the compiler and assembler. An absolute object file or module contains no relocatable code or data. All code and data reside at fixed memory locations. The absolute object file may be used:To program an EPROM or other memory devices,With the µVision2 Debugger for simulation and target debugging,With an in-circuit emulator for the program testing.µVision2 DebuggerThe µVision2 symbolic, source-level debugger is ideally suited for fast, reliable program debugging. The debugger includes a high-speed simulator that let you simulate an entire 8051 system including on-chip peripherals and external hardware. The attributes of the chip you use are automatically configured when you select the device from the Device Database.The µVision2 Debugger provides several ways for you to test your programs on real target hardware:Install the MON51 Target Monitor on your target system and download your program using the Monitor-51 interface built-in to the µVision2 Debugger.Use the Advanced GDI interface to attach use the µVision2 Debugger front end with your target system.Monitor-51The µVision2 Debugger supports target debugging using Monitor-51. The monitor program resides in the memory of your target hardware and communicates with the µVision2 Debugger using the serial port of the 8051 and a COM port of your PC. With Monitor-51, µVision2 lets you perform source-level, symbolic debugging on your target hardware.RTX51 Real-Time Operating SystemThe RTX51 real-time operating system is a multitasking kernel for the 8051 microcontroller family. The RTX51 real-time kernel simplifies the system design, programming, and debugging of complex applications where fast reaction to time critical events is essential. The kernel is fully integrated into the C51 Compiler and is easy to use. Task description tables and operating system consistency are automatically controlled by the BL51 linker/locator.C51 Optimizing C Cross CompilerThe Keil C51 Cross Compiler is an ANSI C Compiler that was writtenspecifically to generate fast, compact code for the 8051 microcontroller family.The C51 Compiler generates object code that matches the efficiency and speed of assembly programming.Using a high-level language like C has many advantages over assembly language programming:Knowledge of the processor instruction set is not required. Rudimentary knowledge of the memory structure of the 8051 CPU is desirable (but not necessary).Details like register allocation and addressing of the various memory types and data types is managed by the compiler.Programs get a formal structure (which is imposed by the C programming language) and can be divided into separate functions. This contributes to source code reusability as well as better overall application structure.The ability to combine variable selection with specific operations improves program readability.Keywords and operational functions that more nearly resemble the human thought process may be used.Programming and program test time is drastically reduced.The C run-time library contains many standard routines such as: formatted output, numeric conversions, and floating-point arithmetic.Existing program parts can be more easily included into new programs because of modular program construction techniques.The language C is a very portable language (based on the ANSI standard) that enjoys wide popular support and is easily obtained for most systems.Existing program investments can be quickly adapted to other processors as needed.Code OptimizationsThe C51 Compiler is an aggressive optimizing compiler that takes numerous steps to ensure that the code generated and output to the object file is the most efficient (smallest and/or fastest) code possible. The compiler analyzes the generated code to produce the most efficient instruction sequences. This ensures that your C program runs as quickly and effectively as possible in the least amount of code space.The C51 Compiler provides nine different levels of optimizing. Each increasing level includes the optimizations of levels below it. The following is a list of all optimizations currently performed by the C51 Compiler.General OptimizationsConstant Folding: Constant values occurring in an expression or address calculation are combined as a single constant.Jump Optimizing: Jumps are inverted or extended to the final target address when the program efficiency is thereby increased.Dead Code Elimination: Code that cannot be reached (dead code) is removed from the program.Register Variables: Automatic variables and function arguments are located in registers whenever possible. No data memory space is reserved for these variables.⌝Parameter Passing Via Registers: A maximum of three function arguments⌝may be passed in registers.Global Common Subexpression Elimination: Identical subexpressions or address calculations that occur multiple times in a function are recognized and calculated only once whenever possible.Common Tail Merging: Common instruction blocks are merged together using jump instructions.Re-use Common Entry Code: Common instruction sequences are moved in front of a function to reduce code size.二、Principle of MCUSingle-chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU, memory, internal and external bus system, most will have the Core. At the same time, such as integrated communication interfaces, timers, real-time clock and other peripheral equipment. And now the most powerful single-chip microcomputer system can even voice, image, networking, input and output complex system integration on a single chip.Also known as single-chip MCU (Microcontroller), because it was first used in the field of industrial control. Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large number of peripherals and CPU in a single chip, the computer system so that smaller, more easily integrated into the complex and demanding on the volume control devices. INTEL the Z80 is one of the first design in accordance with the idea of the processor, From then on, the MCU and the development of a dedicated processor parted ways.Early single-chip 8-bit or all of the four. One of the most successful is INTEL's 8031, because the performance of a simple and reliable access to a lot of good praise. Since then in 8031 to develop a single-chip microcomputer system MCS51 series. Based on single-chip microcomputer system of the system is still widely used until now. As the field of industrial control requirements increase in the beginning of a 16-bit single-chip, but not ideal because the price has not been very widely used. After the 90's with the big consumer electronics product development, single-chip technology is a huge improvement. INTEL i960 Series with subsequent ARM in particular, a broad range of applications, quickly replaced by 32-bit single-chip 16-bit single-chip high-end status, and enter the mainstream market. Traditional 8-bit single-chip performance has been the rapid increase in processing power compared to the 80's to raise a few hundred times. At present, the high-end 32-bit single-chip frequency over 300MHz, the performance of the mid-90's close on the heels of a special processor, while the ordinary price of the model dropped to one U.S. dollars, the most high-end models, only 10 U.S. dollars. Contemporary single-chip microcomputer system is no longer only the bare-metal environment in the development and use of a large number of dedicated embedded operating system is widely used in the full range of single-chip microcomputer. In PDAs and cell phones as the core processing of high-end single-chip or even a dedicated direct access to Windows and Linux operating systems.More than a dedicated single-chip processor suitable for embedded systems, so it was up to the application. In fact the number of single-chip is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will have a single-chip integration. Phone, telephone, calculator, homeappliances, electronic toys, handheld computers and computer accessories such as a mouse in the Department are equipped with 1-2 single chip. And personal computers also have a large number of single-chip microcomputer in the workplace. Vehicles equipped with more than 40 Department of the general single-chip, complex industrial control systems and even single-chip may have hundreds of work at the same time! SCM is not only far exceeds the number of PC and other integrated computing, even more than the number of human beings.Hardwave introductionThe 8051 family of micro controllers is based on an architecture which is highly optimized for embedded control systems. It is used in a wide variety of applications from military equipment to automobiles to the keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the 8051 family of microcontrollers is available in a wide array of variations from manufacturers such as Intel, Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051 such as I2C interfaces, analog to digital converters, watchdog timers, and pulse width modulated outputs. Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5 volts are available. This wide range of parts based on one core makes the 8051 family an excellent choice as the base architecture for a company's entire line of products since it can perform many functions and developers will only have to learn this one platform.The basic architecture consists of the following features:·an eight bit ALU·32 descrete I/O pins (4 groups of 8) which can be individually accessed·two 16 bit timer/counters·full duplex UART·6 interrupt sources with 2 priority levels·128 bytes of on board RAM·separate 64K byte address spaces for DATA and CODE memoryOne 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required by the instruction in question. Therefore, if you have a system which is using an 11.059MHz clock, you can compute the number of instructions per second by dividing this value by 12. This gives an instruction frequency of 921583 instructions per second. Inverting this will provide the amount of time taken by each instruction cycle (1.085 microseconds).附录B 中文译文单片机和keil一、单片机原理单片机是指一个集成在一块芯片上的完整计算机系统。
基于51单片机步进电机毕业设计外文资料原文与译文
外文原文Stepping motor application and controlStepping motor is an electrical pulse will be converted into angular displacement of the implementing agencies.Put it in simple language-speaking:When the stepper drive pulse signal to a receiver,it drives stepper motor rotation direction by setting a fixed point of view(and the step angel).You can control the number of pulses to control the amount of angular displacement,so as to achieve the purpose of accurate positioning;At the same time,you can by controlling the pulse frequency to control the motor rotation speed and acceleration,so as to achieve the purpose of speed.Stepping motor directly from the AC-DC power supply,and must use special equipment-stepper motor drive. Stepping motor drive system performance,in addition to their own performance with the motor on the outside.but also to a large extent depend on the drive is good or bad.A typical stepper motor drivesystem is operated by the stepper motor controller,stepper motor drives and stepper motor body is composed of therr parts. Stepping motor controller stepper pulse and direction signal,each made of a pulse,stepper motor-driven stepper motor drives a rotor rotating step angle,that is,step-by=step further.High or low speed stepper motor,or speed,or deceleration,start or stop pulses are entirely dependent on whether the level or frequency.Decide the direction of the signal controller stepper motor clockwise or counterclockwise rotation. Typically,the stepper motor drive circuit from the logic control,power driver circuit,protection circuit and power components. Stepping motor drive controller,once received from the direction of the signal and step pulse,the control circuit on a pre-determined way of the electrical power-phase stepper motor drive controller,once received from the direction of the signal and step pulse,the control circuit on a pre-determined way of the electrical power=phase stepper motor excitation windings of the conduction or cut-off signal.Control circuit output signal power amplifier,which is stepper motor driven power drive part.Power stepper motor drive circuit to control the input current winding to form a space for rotating magnetic filed excitation,the rotor-driven movement.Protection circuit in the event of short circuit,overload,overheating,such as failure to stop the rapid and motor.Motor is usually for the permanent rotor,when the current flows through the stator windings,the stator windings produce a magnetic field vector.The magnetic field will lead to a rotor angle of rotation,making a pair of rotor and stator magnetic field direction of the magnetic field direction.When the stator rotating magnetic field vector from a different angle.Also as the rotor magnetic field to a point of view,An electrical pulse for each input,the motor rotation angle step,Tts output and input of the angular displacement is proportional to the pulses,with pulse frequency proportional to speed.Power to change the order of winding,the electrical will be reversed.We can,therefore,control the pulse number,frequency and electrical power windings of each phase to control the order of rotation of stepper motor.Stepping motor types:Permanent magnet(PM).Magnetic generally two-phase stepper,torque and are smaller ab=nd generally stepping angle of 7.5 degrees or 15 degrees;put more wind for air-conditioning. Reactive (VR),the domestic general called BF,have a common three-phase reaction,step angle of 1.5 degrees;also have five-phase reaction.Noise,no torque has been set at a large number of out.Hybrid(HB),conmmon two-phase hybrid,five-phase hybrid,therr-phase hybrid,four-phasehybrid,two-phase can be common with the four-phase drive,five-phase ,three-phase must be used with their drives;Two-phase, four-phase hybrid step angle is 1.8 degrees more than a small size,great distance,and low noise;Five-phase hybrid stepping motor is generally 0.72,the motor step angle small,high resolution,but the complexity of drive circuits,wiring problems,such as the 5-phase system of 10 lines.Three-phase hybrid stepping motor step angle of 1.2 degrees,but according to the use of 1.8 degrees,the three-phase hybrid more pole will help electric folder symmetric angle,it can be more than two-phase,five-phase high accuracy,the error even smaller,run more smoothly. Stepper motor to maintain torque:stepper motor power means no rotation,the stator locked rotoe torque.It is a stepper motor,one of the most important parameters,usually in the low-speed stepper motor torque at the time of close to maintain the torque.As the stepper motor output torque increases with the speed of constant attention,the output power also increases with the speed of change,so as to maintain torque on the stepper motor to measure the parameters of one of the most important.For example,when people say that the stepper motor 2N.m,in the absence of special circumstances that means for maintaining the torque of the stepper motor 2N.m.Precision stepper motoes:stepper motor step angle accuracy of 3-5%,not cumulative. Stepper motor to allow the minimum amount of surface temperature: Stepper motor causes the motor remperature is too high the first magnetic demagnetization,resulting in loss of torque dowm even further,so the motor surface temperature should be the maximum allowed depending in the motor demagnetization of magnetic material pints; enerally speaking,the magnetic demagnetization points are above 130 degrees Clesius,and some even as high as 200degrees Celsius,so the stepper motor surface temperature of 80-90 degrees Celsius is normal. Start frequency of no-load:the stepper motor in case of no-load to the normal start of the pulse frequency,if the pulse frequency is higher than the value of motor does not start,possible to lose steps or blocking.In the case of the load,start frequency should be to accelerate the process,that is ,the lower frequency to start,and then rose to a certain acceleration of the desired frequency (motor speed from low rise to high-speed).Step angle:that is to send a pulse,the electrical angle corresponding to rotation.Torque positioning: positioning torque stepper motor does not refer to the case of electricity,locked rotor torque stator.Operating frequency:step-by-step stpper motor can run without losing thehighest frequency. Subdivision Drive: stepper motor drives the main aim is to weaken or eliminate low-frequency vibration of the stepper motor to improve the accuracy of the motor running.Reduce noise.If the step angle is 1.8 degrees(full step) the two-phase hybrid stepping motor,if the breakdown of the breakdown of the number of drives for the 8,then the operation of the electrical pulse for each resolution of 0.072 degrees,the precision of motor can reach or close to 0.225 degrees,also depends on the breakdown of the breakdown of the drive current control accuracy and other factors,the breakdown of the number of the more difficult the greater the precision of control.中文步进电机应用和控制步进电机是将电脉冲转换成角位移的执行机构。
电子信息毕业设计外文翻译--微型计算机控制系统(单片机控制系统)
毕业设计外文资料翻译Graduation design foreign language translation学院:电气工程与自动化学院专业班级:电子信息科学与技术三班学生姓名:学号:指导教师:外文资料:Microcomputer SystemsElectronic systems are used for handing information in the most general sense; this information may be telephone conversation, instrument read or a company‟s accounts, but in each case the same main type of operation are involved: the processing, storage and transmission of information. in conventional electronic design these operations are combined at the function level; for example a counter, whether electronic or mechanical, stores the current and increments it by one as required. A system such as an electronic clock which employs counters has its storage and processing capabilities spread throughout the system because each counter is able to store and process numbers.Present day microprocessor based systems depart from this conventional approach by separating the three functions of processing, storage, and transmission into different section of the system. This partitioning into three main functions was devised by V on Neumann during the 1940s, and was not conceived especially for microcomputers. Almost every computer ever made has been designed with this structure, and despite the enormous range in their physical forms, they have all been of essentially the same basic design.In a microprocessor based system the processing will be performed in the microprocessor itself. The storage will be by means of memory circuits and the communication of information into and out of the system will be by means of special input/output(I/O) circuits. It would be impossible to identify a particular piece of hardware which performed the counting in a microprocessor based clock because the time would be stored in the memory and incremented at regular intervals but the microprocessor. However, the software which defined the system‟s behavior would contain sections th at performed as counters. The apparently rather abstract approach to the architecture of the microprocessor and its associated circuits allows it to be very flexible in use, since the system is defined almost entirely software. The design process is largely one of software engineering, and the similar problems of construction and maintenance which occur inconventional engineering are encountered when producing software.The figure1-1 illustrates how these three sections within a microcomputer are connected in terms of the communication of information within the machine. The system is controlled by the microprocessor which supervises the transfer of information between itself and the memory and input/output sections. The external connections relate to the rest (that is, the non-computer part) of the engineering system.Fig.1-1 Three Sections of a Typical Microcomputer Although only one storage section has been shown in the diagram, in practice two distinct types of memory RAM and ROM are used. In each case, the word …memory‟ is rather inappropriate since a computers memory is more like a filing cabinet in concept; information is stored in a set of numbered …boxes‟ and it is referenced by the serial number of the …box‟ in question.Microcomputers use RAM (Random Access Memory) into which data can be written and from which data can be read again when needed. This data can be read back from the memory in any sequence desired, and not necessarily the same order in which it was written, hence the expres sion …random‟ access memory. Another type of ROM (Read Only Memory) is used to hold fixed patterns of information which cannot be affected by the microprocessor; these patterns are not lost when power is removed and are normally used to hold the program which defines the behavior of a microprocessor based system. ROMs can be read like RAMs, but unlike RAMs they cannot be used to store variable information. Some ROMs have their data patterns put in during manufacture, while others are programmable by the user by means of special equipment and are called programmable ROMs. The widely used programmable ROMs are erasable by means of special ultraviolet lamps and are referred to as EPROMs, short for Erasable Programmable Read Only Memories. Other new types of device can be erased electrically without the need for ultraviolet light, which are called Electrically Erasable Programmable Read OnlyMemories, EEPROMs.The microprocessor processes data under the control of the program, controlling the flow of information to and from memory and input/output devices. Some input/output devices are general-purpose types while others are designed for controlling special hardware such as disc drives or controlling information transmission to other computers. Most types of I/O devices are programmable to some extent, allowing different modes of operation, while some actually contain special-purpose microprocessors to permit quite complex operations to be carried out without directly involving the main microprocessor.The microprocessor processes data under the control of the program, controlling the flow of information to and from memory and input/output devices. Some input/output devices are general-purpose types while others are designed for controlling special hardware such as disc drives or controlling information transmission to other computers. Most types of I/O devices are programmable to some extent, allowing different modes of operation, while some actually contain special-purpose microprocessors to permit quite complex operations to be carried out without directly involving the main microprocessor.The microprocessor , memory and input/output circuit may all be contained on the same integrated circuit provided that the application does not require too much program or data storage . This is usually the case in low-cost application such as the controllers used in microwave ovens and automatic washing machines . The use of single package allows considerable cost savings to e made when articles are manufactured in large quantities . As technology develops , more and more powerful processors and larger and larger amounts of memory are being incorporated into single chip microcomputers with resulting saving in assembly costs in the final products . For the foreseeable future , however , it will continue to be necessary to interconnect a number of integrated circuits to make a microcomputer whenever larger amounts of storage or input/output are required.Another major engineering application of microcomputers is in process control. Here the presence of the microcomputer is usually more apparent to the user because provision is normally made for programming the microcomputer for the particular application. In process control applications the benefits lf fitting the entire system on to single chip are usually outweighed by the high design cost involved, because this sort lf equipment is produced in smaller quantities. Moreover, process controllers are usually more complicatedso that it is more difficult to make them as single integrated circuits. Two approaches are possible; the controller can be implemented as a general-purpose microcomputer rather like a more robust version lf a hobby computer, or as a …packaged‟ system, signed for replacing controllers based on older technologies such as electromagnetic relays. In the former case the system would probably be programmed in conventional programming languages such as the ones to9 be introduced later, while in the other case a special-purpose language might be used, for example one which allowed the function of the controller to be described in terms of relay interconnections, In either case programs can be stored in RAM, which allows them to be altered to suit changes in application, but this makes the overall system vulnerable to loss lf power unless batteries are used to ensure continuity of supply. Alternatively programs can be stored in ROM, in which case they virtually become part of the electronic …hardware‟ and are often referred to as firmware. More sophisticated process controllers require minicomputers for their implementation, although the use lf large scale integrated circuits …the distinction between mini and microcomputers, Products and process controllers of various kinds represent the majority of present-day micro computer applications, the exact figures depending on one‟s interpretation of the word …product‟. Virtually all engineering and scientific uses of microcomputers can be assigned to one or other of these categories. But in the system we most study Pressure and Pressure Transmitters. Pressure arises when a force is applied over an area. Provided the force is one Newton and uniformly over the area of one square meters, the pressure has been designated one Pascal. Pressure is a universal processing condition. It is also a condition of life on the planet: we live at the bottom of an atmospheric ocean that extends upward for many miles. This mass of air has weight, and this weight pressing downward causes atmospheric pressure. Water, a fundamental necessity of life, is supplied to most of us under pressure. In the typical process plant, pressure influences boiling point temperatures, condensing point temperatures, process efficiency, costs, and other important factors. The measurement and control of pressure or lack of it-vacuum-in the typical process plant is critical.The working instruments in the plant usually include simple pressure gauges, precision recorders and indicators, and pneumatic and electronic pressure transmitters. A pressure transmitter makes a pressure measurement and generates either a pneumatic orelectrical signal output that is proportional to the pressure being sensed.In the process plant, it is impractical to locate the control instruments out in the place near the process. It is also true that most measurements are not easily transmitted from some remote location. Pressure measurement is an exception, but if a high pressure of some dangerous chemical is to be indicated or recorded several hundred feet from the point of measurement, a hazard may be from the pressure or from the chemical carried.To eliminate this problem, a signal transmission system was developed. This system is usually either pneumatic or electrical. And control instruments in one location. This makes it practical for a minimum number of operators to run the plant efficiently.When a pneumatic transmission system is employed, the measurement signal is converted into pneumatic signal by the transmitter scaled from 0 to 100 percent of the measurement value. This transmitter is mounted close to the point of measurement in the process. The transmitter output-air pressure for a pneumatic transmitter-is piped to the recording or control instrument. The standard output range for a pneumatic transmitter is 20 to 100kPa, which is almost universally used.When an electronic pressure transmitter is used, the pressure is converted to electrical signal that may be current or voltage. Its standard range is from 4 to 20mA DC for current signal or from 1 to 5V DC for voltage signal. Nowadays, another type of electrical signal, which is becoming common, is the digital or discrete signal. The use of instruments and control systems based on computer or forcing increased use of this type of signal.Sometimes it is important for analysis to obtain the parameters that describe the sensor/transmitter behavior. The gain is fairly simple to obtain once the span is known. Consider an electronic pressure transmitter with a range of 0~600kPa.The gain isdefined as the change in output divided by the change in input. In this case, the output is electrical signal (4~20mA DC) and the input is process pressure (0~600kPa). Thus the gain. Beside we must measure Temperature Temperature measurement is important in industrial control, as direct indications of system or product state and as indirect indications of such factors as reaction rates, energy flow, turbine efficiency, and lubricant quality. Present temperature scales have been in use for about 200 years, the earliestkPamA kPa mA kPa kPa mA mA Kr 027.0600160600420==--=instruments were based on the thermal expansion of gases and liquids. Such filled systems are still employed, although many other types of instruments are available. Representative temperature sensors include: filled thermal systems, liquid-in-glass thermometers, thermocouples, resistance temperature detectors, thermostats, bimetallic devices, optical and radiation pyrometers and temperature-sensitive paints.Advantages of electrical systems include high accuracy and sensitivity, practicality of switching or scanning several measurements points, larger distances possible between measuring elements and controllers, replacement of components(rather than complete system), fast response, and ability to measure higher temperature. Among the electrical temperature sensors, thermocouples and resistance temperature detectors are most widely used.DescriptionThe AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel‟s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications. Function characteristicThe AT89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.Pin DescriptionVCC:Supply voltage.GND:Ground.Port 0:Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as highimpedance inputs.Port 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups.Port 0 also receives the code bytes during Flash programming,and outputs the code bytes during programverification. External pullups are required during programverification.Port 1Port 1 is an 8-bit bi-directional I/O port with internal pullups.The Port 1 output buffers can sink/source four TTL inputs.When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2Port 2 is an 8-bit bi-directional I/O port with internal pullups.The Port 2 output buffers can sink/source four TTL inputs.When 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 2 pins that are externally being pulled low will source current, because of the internal pullups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses. In this application, it uses strong internal pullupswhen emitting 1s. During accesses to external data memory that use 8-bit addresses, Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bi-directional I/O port with internal pullups.The Port 3 output buffers can sink/source four TTL inputs.When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functionsof various special features of the AT89C51 as listed below:Port 3 also receives some control signals for Flash programming and verification.RSTReset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/PROGAddress Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable is the read strobe to external program memory.When the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage(VPP) during Flash programming, for parts that require12-volt VPP.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit. XTAL2Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively,of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1.Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2.There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.中文翻译:微型计算机控制系统(单片机控制系统)广义地说,微型计算机控制系统(单片机控制系统)是用于处理信息的,这种被用于处理的信息可以是电话交谈,也可以是仪器的读数或者是一个企业的帐户,但是各种情况下都涉及到相同的主要操作:信息的处理、信息的存储和信息的传递。
单片机设计外文翻译--从无线电世界到单片机世界
From the world of radio in the world to a single chipModern computer technology, industrial revolution, the world economy from the capital into the economy to knowledge economy. Field in the electronic world, from the 20th century into the era of radio to computer technology in the 21st century as the center of the intelligent modern era of electronic systems. The basic core of modern electronic systems are embedded computer systems (referred to as embedded systems), while the microcontroller is the most typical and most extensive and most popular embedded systems.First, radio has created generations of excellence in the world Fifties and sixties in the 20th century, the most representative of the advanced electronic technology is wireless technology, including radio broadcasting, radio, wireless communications (telegraph), Amateur Radio, radio positioning, navigation and other telemetry, remote control, remote technology. Early that these electronic technology led many young people into the wonderful digital world, radio show was a wonderful life, the prospects for science and technology. Electronics began to form a new discipline. Radio electronics, wireless communications began e-world journey.Radio technology not only as a representative of advanced science and technology at that time, but also from popular to professional fields of science, attracting the young people and enable them to find a lot of fun. Ore from the bedside to the superheterodyne radio radio; report issued from the radio amateur radio stations; from the telephone, electric bell to the radio control model. Became popular youth radio technology, science and technology education is the most popular and most extensive content. So far, many of the older generation of engineers, experts, Professor of the year are radio enthusiasts. Fun radio technology, radio technology, comprehensive training, from basic principles of electronics, electronic components to the radio-based remote control, telemetry, remote electronic systems, has trained several generations of technological excellence.Second, from the popularity of the radio era to era of electronic technologyThe early radio technology to promote the development of electronic technology, most notably electronic vacuum tube technology to semiconductor electronictechnology. Semiconductor technology to realize the active device miniaturization and low cost, so more popular with radio technology and innovation, and to greatly broaden the number of non-radio-control areas.The development of semiconductor technology lead to the production of integrated circuit, forming the modern electronic technology leap from discrete electronics into the era of era of integrated circuits. Electronic design engineers no longer use the discrete electronic components designed circuit modules, and direct selection of integrated circuit components constitute a single system. They freed the design of the circuit unit dedicated to system design, greatly liberating the productive forces of science and technology, promote the wider spread of electronic systems.Semiconductor integrated circuits in the basic digital logic circuits first breakthrough.A large number of digital logic circuits, such as gates, counters, timers, shift registers, and analog switches, comparators, etc., for the electronic digital control provides excellent conditions for the traditional mechanical control to electronic control. Power electronic devices and sensor technology to make the original to the radio as the center of electronic technology turned to mechanical engineering in the field of digital control systems, testing in the field of information collection, movement of electrical mechanical servo drive control object.Semiconductor and integrated circuit technology will bring us a universal age of electronic technology, wireless technology as the field of electronic technology a part of.70 years into the 20th century, large scale integrated circuit appeared to promote the conventional electronic circuit unit-specific electronic systems development. Many electronic systems unit into a dedicated integrated devices such as radios, electronic clocks, calculators, electronic engineers in these areas from the circuit, the system designed to debug into the device selection, peripheral device adapter work. Electronic technology, and electronic products enriched, electronic engineers to reduce the difficulty, but at the same time, radio technology, electronic technology has weakened the charm. The development of semiconductor integrated circuits classical electronic systems are maturing, remain in the large scale integrated circuit other thanthe shrinking of electronic technology, electronic technology is not the old days of radio fun times and comprehensive engineering training.Third, from the classic era of electronic technology to modern electronic technology of the times80 years into the 20th century, the century of economic change is the most important revolution in the computer. The computer revolution in the most important sign is the birth of the computer embedded applications. Modern computer numerical requirements should be born. A long period of time, is to develop the massive computer numerical duty. But the computer shows the logic operation, processing, control, attracting experts in the field of electronic control, they want development to meet the control object requirements of embedded applications, computer systems. If you meet the massive data-processing computer system known as general-purpose computer system, then the system can be the embedded object (such as ships, aircraft, motorcycles, etc.) in a computer system called the embedded computer. Clearly, both the direction of technology development are different. The former requires massive data storage, handling, processing and analysis of high-speed data transmission; while the latter requires reliable operation in the target environment, the external physical parameters on high-speed acquisition, analysis and processing logic and the rapid control of external objects. It will add an early general-purpose computer data acquisition unit, the output driver circuit reluctance to form a heat treatment furnace temperature control system. This general-purpose computer system is not possible for most of the electronic system used, and to make general-purpose computer system meets the requirements of embedded applications, will inevitably affect the development of high-speed numeric processing. In order to solve the contradiction between the development of computer technology, in the 20th century 70s, semiconductor experts another way, in full accordance with the electronic system embedded computer application requirements, a micro-computer's basic system on a chip, the formation of the early SCM (Single Chip Microcomputer). After the advent of single chip in the computer industry began to appear in the general-purpose computer systems and embedded systems the two branches. Since then, both the embedded system, or general-purpose computer systems have been developed rapidly.Although the early general-purpose computer converted the embedded computer systems, and real embedded system began in the emergence of SCM. Because the microcontroller is designed specifically for embedded applications, the MCU can only achieve embedded applications. MCU embedded applications that best meet environmental requirements, for example, chip-level physical space, large-scale integrated circuits low-cost, good peripheral interface bus and outstanding control of instruction.A computer system microcontroller core, embedded electronic systems, intelligent electronic systems for the foundation. Therefore, the current single chip electronic system in widespread use of electronic systems to enable rapid transition to the classical modern intelligent electronic systems.4, single chip to create the modern era of electronic systemsA microcontroller and embedded systemsEmbedded computer systems from embedded applications, embedded systems for early general-purpose computer adapted to the object system embedded in a variety of electronic systems, such as the ship's autopilot, engine monitoring systems. Embedded system is primarily a computer system, followed by it being embedded into the object system, objects in the object system to achieve required data collection, processing, status display, the output control functions, as embedded in the object system, embedded system computer does not have an independent form and function of the computer. SCM is entirely in accordance with the requirements of embedded system design, so SCM is the most typical embedded systems. SCM is the early application of technical requirements in accordance with the design of embedded computer chip integration, hence the name single chip. Subsequently, the MCU embedded applications to meet the growing demands of its control functions and peripheral interface functions, in particular, highlight the control function, so has international name the single chip microcontroller (MCU, Microcontroller Unit).2 MCU modern electronic systems consisting of electronic systems will become mainstreamMCU is a device-level computer systems, it can be embedded into any object system to achieve intelligent control. Small to micro-machinery, such as watches,hearing aids. Low-cost integrated device-level, low-to a few dollars, ten dollars, enough to spread to many civilian SCM appliances, electronic toys to go. SCM constitutes a modern electronic systems has in-depth to the households, are changing our lives, such as home audio, televisions, washing machines, microwave ovens, telephones, security systems, and air conditioners. SCM innovation the original electronic systems, such as microwave ovens use SCM, it can easily set the clock, the program memory, power control; air conditioner after use of SCM is not only convenient for remote parameter setting, running automatically transform, frequency control can be achieved. At present, many household appliances such as VCD, DVD only single chip to achieve its function may occur before.3 Embedded Systems led the entire electronics industryCurrent electronic components industry, in addition to microprocessors, embedded system devices, the most modern electronic systems around the supporting components industries, such as keys used to meet the human-computer interaction, LED / LCD display drivers, LED / LCD display units, voice integrated device, etc., to meet the requirements of data acquisition channel digital sensor, ADC, data acquisition module, signal conditioning modules to meet the servo drive control in the DAC, solid state relays, stepper motor controller, frequency control unit, etc., to meet the communication requirements various bus driver, level converters.Electronic components in the embedded systems world, driven by embedded applications along fully meet requirements of modern electronic systems development. This makes the original classic world of increasingly small electronic systems. Practitioners in the various electronic systems to modern electronic systems as early as possible to stay.5, SCM will create a new generation of electronic eliteIf the 50's, radio has created several generations of the world elite, then today's SCM will create a new generation of e-world elite.A single chip with you to the intelligent electronicsIf we as a dead classic electronic system electronic system, then the intelligent modern electronic systems is a "life" of the electronic system. Application System of hardware, electronic systems, "body", microcontroller applications, the applicationgives it "life." For example, in the design of intelligent machines monitor display, it can boot the system self-test results show, not to enter the work shows a variety of stand-by state, equipment run-time display running processes, work can be displayed after the end of the current results, self results, raw data, reports and other various processing. Unattended, it can run automatically given a variety of functions.Intelligent electronic systems for the endless realm, often without additional hardware resources can achieve all kinds of renovated function. It is also present in many household appliances feature a large number of additional factors.2 single chip computer with you to the industrial areaThe 21st century is the century of humanity into the computer age, many people are not used in the manufacture of computer is the computer. People using the computer, only the people engaged in embedded system applications really into the internal computer system hardware and software systems, can we truly understand the nature of the computer's intelligence and grasp the knowledge of intelligent design. MCU applications starting from the learning technology applications in today's computer software training, hardware and technical personnel of one of the best roads.3 SCM bring you into the most attractive in the digital worldCharming single chip to enable you to experience the true meaning of the computer, you can design intelligent microcontroller hands-on toys, different applications can be designed to achieve different functions. Both software design and hardware making there, both mental and physical, but also hands. Primary level can develop intelligent toys, with macro programming. Intermediate levels can develop some intelligent controller, such as computer mouse, smart cars, all kinds of remote control model. High levels can be developed robots, such as robot soccer, the development of industrial control units, network communications, and high-level language with assembly language or design application. Microcontroller and embedded systems around the formation of the future of the electronics industry, will provide a vast world of electronic fans, an even broader than the current wireless world, richer, more durable, more attractive in the digital world. Plunge into the microcontroller in the world to, will benefit your life.MCU AttacksCurrently, there are four single chip attack technique, namely:(1) software attackThe technology is commonly used processor communication interface and use protocol, encryption algorithm or the algorithm of security vulnerabilities to attack. The success of software attack is a typical example of the early ATMEL AT89C MCU attacks. Attacker single chip erase operation of the timing design flaw, erase the encryption used by ourselves locked in place, the next stop on-chip program memory data erase operation, thus bringing into too close a single chip SCM not encrypted, and then use the programmer to read out chip program.(2) electronic detection of attacksThe technology is usually a high time resolution to monitor the processor during normal operation of all power and interface simulation features, and by monitoring the electromagnetic radiation characteristics of it to attack. Because SCM is an active electronic device, when it executes a different command, the corresponding changes in the power consumption accordingly. This through the use of special electronic measuring instruments and mathematical statistical analysis and detection of these changes, you can access key information specific microcontroller.(3) fault generation technologyAbnormal working conditions of the technology used to make the processor errors, and provide additional access to attack. Produce the most widely used means of attack, including the fault of the impact and the clock voltage shock. Low voltage and high voltage protection circuit attack can be used to prohibit the work of processor execution errors or enforcement action. Clock transition may reset the transient protection circuit will not damage the protected information. Power and clock transients transition effects in certain single-processor instruction decoding and execution.(4) probeThis technology is directly exposed to chip connection, and then observe, manipulate, interfere with single chip to achieve the attack purpose. For convenience, these four people will attack techniques are divided into two categories is theintrusion type attack (physical attack), such attack requires destruction of package, then use semiconductor test equipment, microscopes and micro-positioning device, in a special laboratory spend hours or even weeks to complete. All of the micro-probe techniques are invasive type attack. The other three methods are non-invasive type attack, attack the MCU will not be physical damage. In some cases, non-invasive-type attacks are particularly dangerous, but because of non-invasive type attacks can usually be made and the necessary equipment to upgrade, so it is cheap.Most non-invasive type attack requires the attacker have a good knowledge of processors and software knowledge. In contrast, the invasive type of probe do not need too much of the initial attack of knowledge, and usually a set of similar technology available to deal with a wide range of productsMCU general process of invasion-type attackInvasive type of attack is thrown off its first chip package. There are two ways to achieve this goal: the first one is completely dissolved out chip package, exposed metal connections. The second is only removed to the top of the plastic package silicon core. The first method is the need to bind to the test fixture on the chip, using bind Taiwan to operate. The second method requires the attacker in addition to a certain degree of knowledge and necessary skills, but also the wisdom and patience, but operate relatively easy.Above the plastic chips can be opened with a knife, epoxy around the chip can be eroded by concentrated nitric acid. Hot concentrated nitric acid will dissolve out without affecting the chip, chip packaging and connection. This process usually very dry conditions, because the presence of water may erode the aluminum wire connections have been exposed.Then, in ultrasonic cleaning of the pool first chip with acetone to remove residual nitric acid, then washed with water to remove salt and dried. No ultrasound pool, are generally skip this step. This case, the chip surface, a bit dirty, but do not affect the operation of UV effects on the chip. The final step is to find the location of the protection fuse and fuse protection under exposure to UV light. General use at least a 100 times magnification microscope, from the programming voltage input pin of the connection tracking in, to find protection fuse. If there is no microscope, theuse of different parts of the chip is exposed to ultraviolet light and observe the results under the simple search mode. Operation applied opaque paper cover to protect the program memory chips are not erased by ultraviolet light. Will protect the fuse exposed under UV light 5 to 10 minutes to destroy the protection bit of the protective effect, use a simple programmer can directly read the contents of program memory.The use of the protective layer to protect the MCU EEPROM cell, using ultraviolet light reset protection circuit is not feasible. For this type of MCU, the general use of micro-probe technology to read the memory contents. In the chip package is opened, the chip placed under the microscope can easily find from the memory circuit connected to other parts of the data bus.For some reason, the chip lock-bit programming mode is not locked in the memory of the visit. Advantage of this flaw on the data lines to probe the above data can be read all you want. In programming mode, restart the process of reading and connect probe to the other data can be read online program and data memory, all of the information.There is also a possible means of attack is the use of microscopy and laser cutting machines and other equipment to find the fuse protection to this part of the circuit tracing and linking all the signal lines. Because of the design defects, so long as cut off from other circuit protection fuse to a one signal line, you can ban the entire protection. For some reason, this thread is very far from the other line, so the use of laser cutting machine can cut the wire without affecting the adjacent line. In this way, using a simple programmer can directly read the contents of program memory.Although the most common single chip microcontroller has fuse blown inside the code protection features, but because of general low-end MCU is not positioning the production of safe products, so they often do not provide targeted preventive measures and the low level of security. MCU applications with a broad, large sales volume, commission processing and transfer of technology between firms frequently spilled a lot of technical data, making use of loopholes in the design of such chips and test interface manufacturer, and by modifying the invasive type fuse protection bits, etc. means of attack or invasion-type attack to read MCU's internal procedureshave become easier.About common single chipSTC microcontrollerSTC's mainly based on the 8051 microcontroller core is a new generation of enhanced MCU, the instruction code is fully compatible with the traditional 8051, 8 to 12 times faster, with ADC, 4 Road, PWM, dual serial ports, a global unique ID, encryption of good, strong anti-interference.PIC Microcontroller:MICROCHIP's products is its prominent feature is a small, low power consumption, reduced instruction set, interference, reliability, strong analog interface, the code of confidentiality is good, most of the chip has its compatible FLASH program memory chips.EMC SCM:Elan's products in Taiwan, with much of the PIC 8-bit microcontroller compatible, and compatible products, resources, compared to the PIC's more, cheap, there are many series of options, but less interference.ATMEL microcontroller (MCU 51):ATMEl company's 8-bit microcontroller with AT89, AT90 two series, AT89 series is the 8-bit Flash microcontroller 8051 is compatible with the static clock mode; AT90 RISC MCU is to enhance the structure, all static methods of work, containing the line can be Flash MCU programming, also known A VR microcontroller.PHLIPIS 51PLC Microcontroller (MCU 51):PHILIPS company's MCU is based on the 80C51 microcontroller core, embedded power-down detection, simulation and on-chip RC oscillator and other functions, which makes 51LPC in highly integrated, low cost, low power design to meet various applications performance requirements.HOLTEK SCM:Sheng Yang, Taiwan Semiconductor's single chip, cheap more categories, but less interference for consumer products.TI company microcontroller (MCU 51):Texas Instruments MSP430 provides the TMS370 and two series of general-purpose microcontroller. TMS370 MCU is the 8-bit CMOS MCU with a variety of storage mode, a variety of external interface mode, suitable for real-time control of complex situations; MSP430 MCU is a low power, high functionality integrated 16-bit low-power microcontroller, especially for applications that require low power consumption occasionsTaiwan Sonix's single, mostly 8-bit machines, some with PIC 8-bit microcontroller compatible, cheap, the system clock frequency may be more options there PMW ADC internal noise filtering within the vibration. Shortcomings RAM space is too small, better anti-interference.从无线电世界到单片机世界现代计算机技术的产业革命,将世界经济从资本经济带入到知识经济时代。
基于单片机的无刷直流电机控制硬件设计外文文献资料
基于单片机的无刷直流电机控制硬件设计外文文献资料基于单片机的无刷直流电机控制硬件设计外文文献资料作者:AI辅助写手前言:在现代工业领域,无刷直流电机(BLDC)是一种广泛应用的电机类型。
它们具有高效、可靠和精确控制的特点,因此在许多自动化系统中得到了广泛的应用。
而控制无刷直流电机的关键是设计合理的硬件电路,以确保电机能够稳定运行、高效输出,并在需要时能够实现精确的速度和位置控制。
在本文中,我们将着重介绍基于单片机的无刷直流电机控制硬件设计的外文文献资料,并根据这些资料提供的内容和观点,为读者呈现一篇高质量、深度和广度兼具的文章。
文献1:《A Survey of Sensorless Algorithms for Brushless DC Motor Drives》在这篇文献中,作者主要讨论了无刷直流电机的传感器算法。
传感器通常用于测量电机的转子位置和速度,以实现精确的控制。
然而,传感器的成本和故障率会对电机系统的可靠性和成本产生不利影响。
研究人员开发了一些无传感器算法,以降低系统成本。
这篇文献提供了对不同类型无传感器算法的综述,包括基于反电动势(back electromotive force, BEMF)的算法、基于电流观测的算法和基于功率和能耗的算法。
作者对这些算法的原理和性能进行了详细分析,并比较了它们的优缺点。
他们还提出了一些未来的研究方向和挑战。
根据这篇文献的内容,我们可以了解到传感器算法和无传感器算法的优缺点。
传感器算法可以提供较高的控制精度,但成本较高;而无传感器算法则能够降低系统成本,但对电机的参数和工作条件要求较高。
对于基于单片机的无刷直流电机控制硬件设计,我们可以根据实际应用需求选择合适的算法。
文献2:《Development of a brushless DC motor controller based on a microcontroller》这篇文献介绍了一种基于单片机的无刷直流电机控制器的开发。
外文翻译--基于单片机的电动保护控制器系统的设计
中文1880字电子信息科学系外文翻译(2012届)基于单片机的电动保护控制器系统的设计学生姓名学号专业班级指导教师完成日期一、外文原文:A.C. Motor ProtectionAREVAINTRODUCTIONThere are a wide range of a.c. motors and motor characteristics in existence, because of the numerous duties for which they are used.All motors need protection, but fortunately, the more fundamental problems affecting the choice of protection are independent of the type of motor and the type of load to which it is connected. There are some important differences between the protection of induction motors and synchronous motors.Motor characteristics must be carefully considered when applying protection; while this may be regarded as stating the obvious, it is emphasised because it applies more to motors than to other items of power system plant. For example, the starting and stalling currents/times must be known when applying overload protection, and furthermore the thermal withstand of the machine under balanced and unbalanced loading must be clearly defined.The conditions for which motor protection is required can be divided into two broad categories: imposed external conditions and internal faults.THERMAL(OVERLOAD) PROTECTIONThe majority of winding failures are either indirectly or directly caused by overloading (either prolonged or cyclic), operation on unbalanced supply voltage, or single phasing, which all lead through excessive heating to the deterioration of the winding insulation until an electrical fault occurs. The generally accepted rule is that insulation life is halved for each 10°C rise in temperature above the rated value, modified by the length of time spent at the higher temperature. As an electrical machine has a relatively large heat storage capacity, it follows that infrequent overloads of short duration may not adversely affect the machine. However, sustained overloads of only a few percent may result in premature ageing and insulation failure.Furthermore, the thermal withstand capability of the motor is affected by heating in the winding prior to a fault. It is therefore important that the relay characteristic takes account of the extremes of zero and full-load pre-fault current known respectively as the 'Cold' and 'Hot' conditions.{}⎥⎦⎤⎢⎣⎡-=2)/(11log I I t R e τThe variety of motor designs, diverse applications, variety of possible abnormal operating conditions and resulting modes of failure result in a complex thermal relationship. A generic mathematical model that is accurate is therefore impossible to create. However, it is possible to develop an approximate model if it is assumed that the motor is a homogeneous body, creating and dissipating heat at a rate proportional to temperature rise. This is the principle behind the ‘thermal replica’ model of a motor used for overload protection. The temperature T at any instant is given by:)(max τt e I T T --=where:max T =final steady state temperatureτ=hrating time constant Temperature rise is proportional to the current squared:)1(2τt R e KI T --=where:R I =current which,if flowing continuously,produces temperature max T inthe motor.Therefore, it can be shown that, for any overload current I , the permissible time t for this current to flow is:In general, the supply to which a motor is connected may contain both positive and negative sequence components, and both components of current give rise to heating in the motor. Therefore, the thermal replica should take into account both of these components, a typical equation for the equivalent current being:)(2221KI I I eq += Where:1I =positive sequence current2I =negative sequence currentAnd:K =negative sequence rotor resistance/positive sequence rotor resistanceAt rated speed. A typical value of K is 3.Finally, the thermal replica model needs to take into account the fact that the motor will tend to cool down during periods of light load, and the initial state of themotor. The motor will have a cooling time constant r τthat defines the rate of cooling. Hence, the final thermal model can be expressed as:)1/()(log 222--=k A k t e τ…Equation 19.1Where:τ=heating time constant2A = initial state of motor (cold or hot)th I =thermal setting currentEquation 19.1 takes into account the ‘cold’ and ‘hot’ characteristics defined in IEC 60255, part 8.Some relays may use a dual slope characteristic for the heating time constant, and hence two values of the heating time constant are required. Switching between the two values takes place at a pre-defined motor current. This may be used to obtain better tripping performance during starting on motors that use a star- delta starter. During starting, the motor windings carry full line current, while in the ‘run’ condition, they carry only 57% of the current seen by the relay. Similarly, when the motor is disconnected from the supply, the heating time constant τ is set equal to the cooling time constant r τ.Since the relay should ideally be matched to the protected motor and be of capable close sustained overload protection, a wide range of relay adjustment is desirable together with good accuracy and low thermal overshoot.SHORT-CIRCUIT PROTECTIONMotor short-circuit protection is often provided to cater for major stator winding faults and terminal flashovers. Because of the relatively greater amount of insulation between phase windings, faults between phases seldom occur. As the stator windings are completely enclosed in grounded metal, the fault would very quickly involve earth, which would then operate the instantaneous earth fault protection. A single definite time over current relay element is all that is required for this purpose, set to about 125% of motor starting current. The time delay is required to prevent spurious operation due to CT spill currents, and is typically set at 100ms. If the motor is fed from a fused contactor, co-ordination is required with the fuse, and this will probably involve use of a long time delay for the relay element. Since the object of the protection is to provide rapid fault clearance to minimize damage theqI I k =caused by the fault, the protection is effectively worthless in these circumstances. It is therefore only provided on motors fed via circuit breakers.Differential (unit) protection may be provided on larger HV motors fed via circuit breakers to protect against phase- phase and phase-earth faults, particularly where the power system is resistance-earthed. Damage to the motor in case of a fault is occurring minimized, as the differential protection can be made quite sensitive and hence detects faults in their early stages. The normal definite time over current protection would not be sufficiently sensitive, and sensitive earth fault protection may not be provided. The user may wish to avoid the detailed calculations required of capacitance current in order to set sensitive non-directional earth fault over current protection correctly on HV systems (Chapter 9) or there may be no provision for a VT to allow application of directional sensitive earth fault protection. There is still a lower limit to the setting that can be applied, due to spill currents from CT saturation during starting, while on some motors, neutral current has been found to flow during starting, even with balanced supply voltages that would cause the differential protection to operate. For details on the application of differential protection, refer to Chapter 10. However, non-directional earth fault over current protection will normally be cheaper in cases where adequate sensitivity can be provided.UNDER VOLTAGE PROTECTIONMotors may stall when subjected to prolong under voltage conditions. Transient under voltages will generally allow a motor to recover when the voltage is restored, unless the supply is weak.Motors fed by contactors have inherent under voltage protection, unless a latched contactor is used. Where a specific under voltage trip is required, a definite time under voltage element is used. If two elements are provided, alarm and trip settings can be used. An interlock with the motor starter is required to block relay operation when the starting device is open, otherwise a start will never be permitted. The voltage and time delay settings will be system and motor dependent. They must allow for all voltage dips likely to occur on the system during transient faults, starting of motors, etc. to avoid spurious trips. As motor starting can result in a voltage depression to 80% of nominal, the voltage setting is likely to be below this value. Re-acceleration is normally possible for voltage dips lasting between 0.5-2 seconds, depending on system, motor and drive characteristics, and therefore the time delaywill be set bearing these factors in mind.LOSS-OF-LOAD PROTECTIONLoss-of-load protection has a number of possible functions. It can be used to protect a pump against becoming unprimed, or to stop a motor in case of a failure in a mechanical transmission (e.g. conveyor belt), or it can be used with synchronous motors to protect against loss-of-supply conditions. Implementation of the function is by a low forward power relay element, interlocked with the motor starting device to prevent operation when the motor is tripped and thus preventing a motor start. Where starting against a very low load (e.g. a compressor), the function may also need to be inhibited for the duration of the start, to prevent the maloperation.The setting will be influenced by the function to be performed by the relay.A time delay may be required after pickup of the element to prevent operation during system transients. This is especially important for synchronous motor loss-of supply protection.二、翻译内容:交流电机保护阿海珐集团引言交流电动机因为应用的范围很广,并且拥有较好的电动机特性,所以被用来完成许多任务。
毕业论文--无刷直流电动机控制系统设计方案
无刷直流电动机控制系统设计方案摘要无刷直流电动机是在有刷直流电动机的基础上发展起来的。
现阶段,虽然各种交流电动机和直流电动机在传动应用中占主导地位,但无刷直流电动机正受到普遍的关注。
自20世纪90年代以来,随着人们生活水平的提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都越来越趋向于高效率化、小型化及高智能化,作为执行元件的重要组成部分,电机必须具有精度高、速度快、效率高等特点,无刷直流电机的应用也因此而迅速增长。
本设计是把无刷直流电动机作为电动自行车控制系统的驱动电机,以PIC16F72单片机为控制电路,单片机采集比较电平及电机霍尔反馈信号,通过软件编程控制无刷直流电动机。
关键词无刷直流电动机单片机霍尔位置传感器AbstractBrushless DC motor in a brush DC motor developed on the basis of. At this stage, although exchanges of all kinds of DC motors and motor drive in the application of the dominant, but brushless DC motor is under common concern。
Since the 1990s,as people's living standards improve and modernize production, the development of office automation, household appliances, industrial robots and other equipment are increasingly tend to be high efficiency,small size and high intelligence, as the implementation of components An important component of the motor must have a high accuracy, speed, high efficiency, brushless DC motor and therefore the application is also growing rapidly.This design is the brushless DC motor as the electric bicycle motor—driven control system, PIC16F72 microcontroller for control circuit, SCM collection and comparison—level electrical signal Hall feedback, software programming through brushless DC motor control . Key words bldcm the single chip processor hall position sensor 摘要 (I)Abstract (II)第1章概述 (1)1。
单片机设计外文翻译1
外文资料与中文翻译外文资料:1 microcontroller features of the development oftechnologySCM has been there since, SCM technology has gone through nearly 20 years of development journey. Throughout the past 20 years of SCM Exhibition history we can see that the SCM technology to the development of the microprocessor (MPU) technology and ultra-large-scale integrated circuit technology for the Exhibition for the pilot to pull a wide range of applications, showing more personality than the microprocessor trend of development:SCM long life here said the long-life, on the one hand refers to the development of SCM products can be stable and reliable work 10, 20, on the other hand refers to the microprocessor compared to the long life. With the rapid development of semiconductor technology, MPU replacement faster, to 386,486,586 as the representative of the MPU, within a very short time to be out of Bureau, and the traditional microcontroller as 68 HC05, 8051, and so has been 15 years of age, the output is still rising. This is from Its application to the corresponding areas of adaptation, on the other hand is due to such CPU as the core, integrated with more I / O functions SCM module of the new series emerging. It is expected that the successful listing of the relatively young core CPU, also with the The I / O modules of the rich, have a long life cycle. New types of joining the CPU, the SCM team Has grown to the user brings more choice.8, 16, 32-bit microcontroller common development this is the current SCM technology development trends of the other. For a long time, single - Machinetechnology is the development of eight-oriented. As mobile communication, network technology, multimedia technology, and other high-tech productsAccess to family, 32-bit microcontroller applications have been developed by leaps and bounds. Motorola 68K for the CPU to the 32 of the 97 SCM August sales of 10 million. That because of the past eight SCM function is growing, more and cheaper 32-bit machine, 16 SCM living space is limited, and 16-bit microcontrollers from the development of both varieties and production, in recent years have substantially more。
基于单片机的步进电机控制系统设计外文资料翻译
毕业设计(论文)外文资料翻译学院:机械工程学院专业:机械设计制造及其自动化姓名:张XX学号:XXXXXXXXXX外文出处:《Computational Intelligence and (用外文写)Design》附件: 1.外文资料翻译译文;2.外文原文。
注:请将该封面与附件装订成册。
附件1:外文资料翻译译文基于微型计算机的步进电机控制系统设计孟天星余兰兰山东理工大学电子与电气工程学院山东省淄博市摘要本文详细地介绍了一种以AT89C51为核心的步进电机控制系统。
该系统设计包括硬件设计、软件设计和电路设计。
电路设计模块包括键盘输入模块、LED显示模块、发光二极管状态显示和报警模块。
按键可以输入设定步进电机的启停、转速、转向,改变转速、转向等的状态参数。
通过键盘输入的状态参数来控制步进电机的步进位置和步进速度进而驱动负载执行预订的工作。
运用显示电路来显示步进电机的输入数据和运行状态。
AT89C51单片机通过指令系统和编译程序来执行软件部分。
通过反馈检测模块,该系统可以很好地完成上述功能。
关键词:步进电机,AT89C51单片机,驱动器,速度控制1概述步进电机因为具有较高的精度而被广泛地应用于运动控制系统,例如机器人、打印机、软盘驱动机、绘图仪、机械式阀体等等。
过去传统的步进电机控制电路和驱动电路设计方法通常都极为复杂,由成本很高而且实用性很差的电器元件组成。
结合微型计算机技术和软件编程技术的设计方法成功地避免了设计大量复杂的电路,降低了使用元件的成本,使步进电机的应用更广泛更灵活。
本文步进电机控制系统是基于AT89C51单片机进行设计的,它具有电路简单、结构紧凑的特点,能进行加减速,转向和角度控制。
它仅仅需要修改控制程序就可以对各种不同型号的步进电机进行控制而不需要改变硬件电路,所以它具有很广泛的应用领域。
2设计方案该系统以AT89C51单片机为核心来控制步进电机。
电路设计包括键盘输入电路、LED显示电路、发光二极管显示电路和报警电路,系统原理框图如图1所示。
单片机设计外文翻译---- 单片机工作原理
附录一、英文原文:The Principle of MicrocontrollerIn operation the Single Chip Microcomputer (SCM)is connected to a host PC microcomputer via aserial port. The connecting cable is included with the unit.The SCM is supplied fitted with an 8751 chip. This chip features internal ROM containing versatile,real time monitor to communicate with a PC via the built-in serial port. The monitor includes a line assembler, disassembler, break points, single stepping and the facility to examine and exchange memory or register contents.A special function of the monitor is to store the program under development in the RAM of the SCM development board. The great advantage of the method that is direct access to the I/O ports is provided by the 8051 is retained and, consequently,the need for a costly in-circuit-emulation (ICE)package is not required.Once a program has been completed on the SCM development system it can be easily transferred intothe ROM of another 8751 via an EPROM programmer. This second 8751, now containing the control program, can be removed from the Programmer and installed into the SCM-TB target board. Most importantly, because direct access to the input/output ports of the 8751 has been retained during the development stage there is no need for peripheral I/O and address decoding chips; only the8751 chip is required. Thus the Single Chip Micro-Control, not multi-chip control is realised.The SCM-TB target board feature a single 40-wayDIL socket for the micro-controller chip plus termination facilities identical to the SCMDevelopment Board for simple and convenient transfer of any connecting cables. 8751 ICS should be purchased separately for the target board.In addition to the Single Chip Development System and Target Board, a number of add-on boards are available. These include a Port Monitor Board,Multi-Channel ADC, Screw Terminal Board andOutput Driver Board.Voice input to a machine is the most natural form of man-machine communications. Research coming to fruition overthe past several years indicates that the techniques ofmanmachine communication by voice constitute a whole new range of communication services—services that can extend man's capabilities, serve his social needs, and increase his productivitySpeech recognition can be defined as the technology which makes it possible for a computer to accept voice dataas input and then identify the word or phrases. There is atwofold rationale for a speech-recognition systea:(1) It is an easier means for noncomputer professionals toenter data into the computer.(2) In certain applications, such as in semiautomatedquality-control inspection procedures, computer usersneed to use their hands for other tasks. Speech recognition is a part of a broader speech processingtechnology involving computer identification or verification of speakers, computer synthesis of speech, production ofstoredspokenresponses,computer analysis of the physicaland psychological state of the speaker, efficienttransmission of spoken conversations, detection of speechpathologies, and aids to the handicapped , taking machinestalk and listen to humans depends upon economical implementationof speech synthesis and speech recognition.A number of different feature sets have been proposedto represent speech signals; these include energy and zerocrossing rates, formant filtering, short time spectrum,waveform digitization and linear predictive coding (LPC).The motivation for choosing one feature set over another isoften complex and highly dependent an constraints imposedupon the system, e.g., cost, speed, response time, computationalcomplexity, etc- Of all the many available feature sets, linear predictive coding is usually the most effectiveone .There are many classifications for computers, ranging from inexpensive microcomputers used in homes and offices, to liquid-cooled supercomputers used in universities and research laboratories. The present invention relates to microcomputers, also known as "personal computers" (or "PCs").A microcomputer can be defined as a "computer having a mass-produced integrated circuit microprocessor", such as, for example, the Intel 80×86 family of products which presently includes the 8086, 80286, 80386 and 80486 microprocessors. Although the microprocessor is the heart and defining feature of a microcomputer, it is not very useful unless it is integrated with a memory and a set of input/output ("I/O") devices, also known as peripherals. These three classes of devices communicate among themselves over a shared set of digital signal lines called a bus.The bus is logically organized into sets of address, data, and control lines. The address lines are for communicating device addresses which uniquely identify a particular device on the bus. The data lines are for communicating binary data between two bus devices, a bus master, which initiates a data transfer by placing an address on the address lines, and a bus slave, which reads and decodes the address generated by the bus master as its own. The control lines are for coordinating access to the bus and selecting a mode of operation on the bus such as write data or read data modes. For example, if the bus master is a microprocessor and the bus slave is a memory, the microprocessor may direct thememory to be read by placing the proper logic level on a write/read control line. In this way, the microprocessor gains access to the data stored in the memory location specified by the logic levels placed on the address lines by the microprocessor.A bus cycle begins when the bus master directs a write or a read on the bus. The bus cycle is completed after all data has been transferred across the bus and the bus master releases control of the bus. If the two devices communicating with each other over the bus operate at the same speed, then a bus cycle may be achieved over a minimum number of clock cycles. If, on the other hand, a bus device can only transmit or receive data over many clock cycles, then a delay must be injected into the state sequencing of the faster device. In such cases, a "ready" control line is typically activated by the slower device to indicate to the faster device that data is available on the bus or has been taken from the bus.Buses may be generally classified as synchronous or asynchronous, where synchronous buses are distinguished by the requirement that all bus devices synchronize their use of the bus by a single clock source (or a fundamental frequency). An example of a synchronous bus used in a microcomputer is the IBM PC AT I/O Channel, AT-bus or Industry Standard Architecture bus ("ISA-bus"). Present bus frequency standards for the ISA-bus are 8 MHz and 10 MHz.The ISA-bus, an example of a synchronous bus, is used with the Intel 80386 microprocessor. The ISA-bus provides a 16-bit data bus and a 24-bit address bus. For purposes of this discussion, the control lines of the ISA-bus include four bus cycle definition lines. The bus cycle definition lines define the type of bus cycle being performed. (In the following definitions, and throughout the remainder of this patent document, all signal names that are terminated with an asterisk [*] indicate an active low signal). A bus cycle definition line called memory read ("MEMR*") is activewhen data is to be read from memory. A bus cycle definition line called memory write ("MEMW*") is active when data is to be written to memory. A bus cycle definition line called I/O read ("IOR*") is active when data is to be read from a peripheral device. A bus cycle definition line called I/O write ("IOW*") is active when data is to be written to a peripheral device.In addition to the above-mentioned bus cycle definition signals there are some microprocessor specific signals that are used in most microcomputers for specifically interfacing the Intel 80×86 microprocessor family. There are two bus control signals and two bus arbitration signals of particular importance for bus interfacing. The bus control signals allow the microprocessor to indicate when a bus cycle has begun, and allows other bus devices to indicate a bus cycle termination. The address status ("ADS*") signal indicates that a valid bus cycle definition, and address, is being driven at the output pins of the 80386 microprocessor. The transfer acknowledge ("READY*") signal indicates that the current bus cycle is complete.One skilled in the technology will understand the operation of the ISA-bus, other applicable industry standard buses, and the Intel 80×86 microprocessor family. At least two references are available on the subject including The IBM PC from the Inside Out, Revised Edition, by Murray Sargent III and Richard L. Shoemaker; and IBM PC AT Technical Reference published by IBM Corporation.Synchronous buses are ordinarily preferred for microcomputers since they can often transfer data faster than asynchronous buses. Certain applications, however, especially where lengthy communication distances are involved, require asynchronous or "handshake only" type buses. When devices are separated by some distance, the same phase transition of a common clock cannot be guaranteed.The primary disadvantage of the synchronous ISA-bus has only recently been recognized. Basically, microcomputers are evolving down two separate paths of variables: one set of variables is associated with the bus design and the other set is associated with the microprocessor and memory designs. A synchronous bus, such as the ISA-bus, should remain constant so that microcomputers in a single product line are all compatible. That is, a peripheral such as a modem, printer and so on will operate through a respective controller at the clock frequency defined in the bus specification. Therefore, the bus should only change through more efficient (i.e., cost effective) designs which meet the same specifications. For example, the operating frequency of the bus should remain constant to assure proper operation of allperipherals constructed in accordance with the bus standard.In contrast, microprocessor and memory technologies are rapidly evolving in functionality and performance. For example, the microprocessor changes in architectural definition (e.g., number of pins, instruction sets, etc.) and clock frequency (e.g., 16 MHz, 25 MHz, 33 MHz), the cache becomes more sophisticated, coprocessors become a part of the microcomputer architecture (e.g., Intel 80387 numeric coprocessor), and main memory becomes faster.As an example of memory evolution, consider dynamic random access memory, or "DRAM". As DRAM technology improves, the opportunity for improved system performance becomes clear. In the early days of personal computers, the common DRAM chip being used in microcomputers was 64K×1 (65,536×1 bits), having an access time of 150 nanoseconds. Recently, a standard (i.e., readily available and cost effective) DRAM size used by microcomputer manufacturers was 256K×1, having an access time of 100 nanoseconds. Presently, a DRAM chip standard of 1M×1 (i.e., 1,048,576×1 bits), having an access time of 80 nanoseconds or less is evolving as a commercially feasible standard, and the technology trend is toward a 16M by 1 bit chip.It is desireable to isolate the memory and microprocessor from the synchronous I/O bus design so that different DRAM and microprocessors at different operating frequencies can be used without affecting the synchronous I/O bus design. Otherwise, if the synchronous bus is not isolated from the computation and storage elements, each technological improvement in memory or microprocessor products will require unique interface circuitry to scale-down communication speed with other devices across the synchronous bus.Consequently, a need exists for improvements in microcomputer systems to isolate I/O channel design from memory and microprocessor designs.二、英文翻译:单片机工作原理在通过端口把单片机连接到个人电脑上的操作中连接电缆也包含在这个系统中。
直流无刷电动机控制系统设计毕业设计 精品
天津职业技术师范大学本科生毕业设计直流无刷电动机控制系统设计Brushless dc motor control system design摘要当今社会,电动机的发展十分迅速,无刷直流电机是一种新型电机。
直流无刷电机主要由转子、定子和转子位置检测元件等组成,它具有结构简单、效率高、工作特性优良等特点,而且具有可靠性更高、制造维护更方便、应用范围更广泛、体积更小、控制更容易等优点。
因此对无刷直流电动机及其控制器研究具有很大意义。
本课题主要是根据直流无刷专用控制器MC33035与MC33039相结合,通过融合电路设计速度闭环电路的控制系统。
首先,以直流无刷电动机控制器的研究现状为出发点,对直流无刷电动机的原理及结构进行了总述,详细分析了直流无刷电机的运行特性,推导出了其传递函数,并且创立了直流无刷电动机的数学模型。
讲述了本系统的总体设计方法和思路,建立了系统的总体框架,然后介绍了主电路设计、控制器外围电路设计以及MOSFET驱动电路设计,其中重点讲述了系统各个功能模块的工作原理和作用,以及其硬件设备设计和实现。
在课题的最后阶段对直流无刷电机系统控制效果专门进行了实验数据分析,并且对总体的设计过程做出了总结。
关键词:直流无刷电动机;开闭环电路;双闭环调速;MOSFET驱动ABSTRACTNowadays society,motor has spread all areas of national economy and People's Daily life, and the Brushless DC motor, as a new mechanical and electrical integration, is rapidly matured in recent years. The motor consists of the stator, rotor and rotor position detection devices etc. In the absence of excitation device, it takes advantage of high efficiency, simple structure and excellent features, what’s more, it is smaller, more reliable, easier to control and more convenient to maintain and manufacture, and it has more extensive application scope. All the advantages mentioned above make the brushless motors and their control device of great significance. This design is mainly produced by ON Semiconductor MC33035 and MC33039 design of the closed-loop brushless motor speed controller.First, this paper starts from the current research situation of brushless DC motor controller. The structure of the brushless DC motor and principle are reviewed to establish a mathematical model of brushless DC motor, and a detailed analysis of the operational characteristics of the motor is derived out of its transfer function. This part describes the overall design of this system and establishes the overall framework of the system. Then, the paper introduces the main circuit design, MOSFET driver circuit design and controller peripherals circuit design, including emphatically expounds the functional modules of the system and its working principle and hardware design and realization. Finally, there is a experimental data analysis on the effects of this system control, and a summary of the design process.Key Words:the brushless DC motor;Hall signal detection;double-loop speed regulation;mosfet driver目录1 概述 (1)1.1课题背景与研究意义 (1)1.2无刷直流电动机的发展概况 (1)1.3本文的主要研究内容 (2)2 直流无刷电动机结构特点及基本工作原理 (3)2.1直流无刷电动机的基本结构 (3)2.2无刷直流电动机的运行特性 (5)2.2.1 机械特性 (5)2.2.2 调节特性 (6)2.2.3 工作特性 (7)2.3 无刷直流电动机的应用与研究动向 (8)2.4小结 (9)3 直流无刷电动机控制系统的整体方案设计 (10)3.1系统总体设计方案 (10)3.2主电路的设计 (11)3.3 MOSFET的驱动电路设计 (12)3.3 .1驱动电路分类 (13)3.3.2高端功率MOSFET驱动电路 (14)3.4控制单元设计 (17)3.4.1 MC33035无刷直流电动机控制器集成电路简介 (18)3.4.2电流检测模块设计 (22)3.4.3速度闭环设计 (23)3.4.4误差放大器设计 (24)3.4.5振荡器设计 (24)3.5控制器的开环电路设计 (25)3.6控制器的闭环电路设计 (26)3.7 小结 (27)4 本文总结 (28)参考文献 (29)附录1:系统电路图 (30)附录2:简易速度闭环电路 (31)附录3 (32)致谢 (39)1 概述1.1课题背景与研究意义直流电机具有线性机械特性优秀、起动转矩较大、调速范围宽、控制电路结构简单等优点。
(完整word版)单片机外文文献翻译
中文资料原文单片机单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。
INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。
早期的单片机都是8位或4位的。
其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。
此后在8031上发展出了MCS51系列单片机系统。
基于这一系统的单片机系统直到现在还在广泛使用。
随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。
90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。
随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。
而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。
目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。
当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。
而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。
单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。
事实上单片机是世界上数量最多的计算机。
现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。
手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。
而个人电脑中也会有为数不少的单片机在工作。
单片机外文翻译—永磁无刷直流电机
BLDCMBLDCM small size, light weight, it has a DC motor similar to the general good speed performance, without the existence of machinery for the device, electromagnetic interference noise and small, low maintenance requirements, reliability, good; and as a result of not required excitation power, efficiency is relatively high, it has been rapid development. A company based on ADI's ADSP-21992 chip high-speed brushless DC motor control system, which has a high-speed, high load moment of inertia, have greater motor starting torque characteristics.DSP-based motor control system with the traditional single-chip motor control system and a dedicated chip motor control system, that is, a dedicated motor control mechanisms, user-programmable, scalable, and powerful, and so on; at the same time, overcome their respective shortcomings, such as peripherals and memory integrated into the chip to reduce circuit board area, reducing the number of system components to improve the CPU processing capacity, improve system reliability. System, the ultimate aim is the application of high-speed flywheel system brushless DC motor, therefore, very high speed processors, from the real-time performance to consider,Need to select the highest possible processing speed of the chip. 2199x series and ADI's speed reached 160 M, and then to adapt to take into account their poor working environment, in this paper, we have chosen the ADSP-21992 as a core control chip.(A) hardware1. Control circuitMainly by the control circuit and its corresponding externalADSP21992 expansion circuit. Including the crystal oscillator circuit, extend outside the FLASH, JTAG interface, power supply voltage conversion circuit, PWM interface, 1 / 0 interface and A / D interface circuit modules. ADSP21992 for the 160 M high-performance mixed-signal DSP chips, the chip in addition to a powerful data-processing capabilities, for motor control, but also to provide 6-channel PWM output, 8-channel 14-bit A / D conversion channels, 16 general-purpose I / 0 I, as well as three 32-bit dedicated hardware resources, such as counting unit.2. Power circuitDrive circuit from the diode rectifier bridge, filter capacitor and the IGBT inverter constituted; drive circuit using IR's I82130 dedicated MOs power device gate drive dedicated chip, the chip can not only achieve the optimal IGBT driver, and has a perfect protection, can significantly improve system integration and reliability; isolated part of the use of high-speed optocoupler HCPL4504, isolation from the role of potential.3. Rotor position and current detection circuitDue to current high-speed motor, back-EMF waveform distortion is more serious, it is not suitable for position sensorless control for easy installation, the use of small size, convenient installation and electromagnetic Hall sensor mounted on the end of stator windings, the output signal by the partial pressure , filter the buffer.PI current regulator current aim is to achieve fast and accurate tracking of a given value, the incremental selection of PI regulator; speed PI regulator related to the system dynamic and static performance, it is separated from the use of integral PI regulator. Encountered in software design PI regulator design that is the proportion coefficient and integral coefficient kP selection of ki. System uses a factor of ADand Industrial standard procedures set forth in PI coefficient (Kp = 25, Wpi = kp / ki = 50Hz), and use the normal input in order to achieve DSPI / 0 I. LEM sensor module DC bi-directional high-frequency detection,And the corresponding current signal directly to the sensor signal input voltage DSP A / D port for digital-to-analog conversion.4. Protection CircuitUnder-voltage protection circuit by detecting the battery voltage, when the battery voltage down to the closure of motor threshold, the battery does not over-discharge to cause unnecessary damage, to protect the battery. AID voltage power conversion, if the under-voltage, under-voltage when the second location of a sign so that it can interrupt timer 0 to start from time to time, under-voltage shutdown over after five seconds, jump to self-test mode.MOSFET over-current protection circuit can protect the most current control will set the framework, illustrates the value reached when the motor shut down to avoid a high current through the MOSFET on the risk of burning. Over-current protection is the controller of the last line of defense, over-current protection resistor is used in wire and Culture, current when the system exceeds the maximum protection of current value, the wire will be blown, Culture and Sport in order to play a protective effect.Drive motor in the process of running the system on the motor will "speed - the current" relevant control, the controller to determine the electrical current and electric vehicles is in the relevant range of speed, if in the relevant context, the controller should not exceed current limiting settings based on speed control of electric vehicles; when the motor current and speed of electric vehicles is not related to serious,even if the electric current does not meet current limiter settings, if the motor current is greater than 8A, the controller 8A first cut into the power supply, and then again with the motor speed to determine the relevance of current in the relevant context, into the normal power supply mode; If there is no relevance,Further reduce the power flow controller. A negative correlation for each controller to determine the electrical current to reduce by half until(B) software strategyThe system software by the main program and interrupt service routine pose. Main program to initialize the main complete system, including the register, variable initialization and the initialization of the external devices, as well as detection of I / O port status. Interrupt service routine are mainly synchronous PWM interrupt service routine, each current sampling A / D conversion after the end of interruption. Software processes as shown in Figure 2. Optimization of the selection coefficient for further experiments and research.Fourth, the conclusionsHigh-performance brushless DC motor with high-speed real-time digital control system for speed control devices consisting of devices, hardware and software, and control the whole system is relatively simple, low cost, speed of a smooth, low noise. Experiments show that the control system has good control performance, has good practical value.永磁无刷直流电机体积小、重量轻,它既具有类似普通直流电动机的良好调速性能,又不存在机械换向装置,电磁噪声与干扰小,维护要求低,可靠性好;而且由于不需电励磁,效率相对较高,因此得到了迅速的发展。
无刷直流电机控制器的软件设计中英文翻译(精)
Commutation Torque Ripple Reduction in BLDC Motor Using PWM_ON_PWM ModeGuangwei Meng, Hao Xiong, Huaishu Li Department of Electrical Engineering, Naval University of Engineering, Wuhan, China.Abstrac t:The paper analyzes the steady commutation process of the BLDC motor using PWM mode, confirms the commutation time to keep noncommutation phase current amplitude constant during commutation period by way of PWM in the period to implement the compensation control to eliminate commutation torque ripple under both low speed and high speed operation, investigates the effect by PWM mode on a three-phase six-state 120°turn-on BLDC motor, and presents torque ripple compensation control in PWM_ON_PWM mode, which can not only entirelyeliminate torque ripple resulted from the current emerging in the turn-off phase during non-commutation period but also compensate torque ripple caused by the commutation current during commutation period.Index Terms—BLDC motor, commutation, PWM, torque ripple.I. INTRODUCTIONThe BLDC motors have been widely used due to its features - a simple structure, good speed adjusting performance,high power density, low noise and simple control, etc. It is a hotspot to suppress the torque ripple and improve the control performance of a BLDC motor with the trapezoidal back emf.BLDC motors usually operate in all kinds of PWM modes, which not only affect the dynamic loss of power switches and radiation uniformity, but also influence the torque ripple. It is an effective way to suppress the torque ripple through changing dc bus chopper control to remain non-commutation phase current amplitude constant, but it results into a more complex topology [1]-[3]. It is just fit for low speed applications tocontrol non-commutation phase current amplitude to regulate the commutation torque ripple . It is analyzed about the influence resulted from PWM ON mode on the torque ripple .The ideas in [1]-[3] are to adopt different suppression methods in different speed interval, but they don’t take t he effect by PWM mode s on the systemin account. The predictive current, neural network control and active disturbance rejection control etc are introduced to suppress the torque ripple , but the control algorithm is more complicated and harder for realization.Depending on the commutation process of BLDC motors and the effect by PWM modes on the system, thepaper presents a torque ripple com-pensation control inPWM_ON_PWM mode at different speeds by seeking different PWM modulation ratios during commutation period as motor runs at low speed and high speed.The method retains the original to-pology, improves the control performance of the system dramatically,and moreover is easy to realize.II. ELECTROMAGNETIC TORQUE OF BLDC MOTORDURING COMMUTATION PROCESSAssume that the BLDC motor is three-phase symmetrical and Y- connected, and neglect eddy currents and hysteresis losses, its equivalent circuit and main circuit are shown in Figure 1. r, L are the resistance andinductance of the stator windingsrespectively;C B A e e e ,, are the counter emfs of the corresponding phase windings respectively; C B A i i i ,, are the corresponding phase currents respectively.0=++C B A i i i (1The counter emf of every phase winding is a trapezoidal waveform with a flat-top width greater than or equal to 1200 electrical degree,and its flat-top amplitude is Em. When the motor works in three-phase six-state 1200 turn-on mode, the currents don’t commutates instantaneously as a result of the inductanceof the armature winding. Take the power switch 1T and 2T ’s turn-on to2T and 3T ’s turn -on for example. During the commutation, it is gained as follows m C B A E e e e =-== (2Suppose that the mechanical angular velocity of the rotor is Ω, the toque can be obtained as follows during the commutation process.Ω=Ω++=C m C C B B A A e i E i e i e i e T 2 (3 It is obvious from (3 that the toque is proportional to the non-commutation phase current during commutation,i.e. the commutation torque ripple can be eliminated so long as non-commutation phase current remains constant during commutation. III TORQUE RIPPLE REDUCTION IN PWM MODEa new PWM mode is presented -PWM _ON _PWM, i.e. using PWM mode in the first30°and the last 30° while keeping constant turn-onmode in the middle 60°. The mode can entirely eliminate the emerging current in the turn-off phase during non-commutation and thus reduce the torqueripple during non-commutation.PWM _ON _PWM is a bilateral modulation, but the dynamic losses of power switches in the mode are equal to those of unilateral modulation. Six switches are modulated in turn, so the power switches have a uniform radiation and the system has a higher reliability. The mode is employing PWM on the turn-on power switchesand thus it can suppress the torque ripple during commutation to a certain extent even if a compensation control is not applied at a low speed.In PWM _ON _PWM mode, it can not only eliminate the torque ripple during non-commutation but also suppress the commutation torque ripple at low speed operation by keeping dm BB U rI E D 034+= in the commutation compensation control time ⎪⎪⎭⎫⎝⎛++=m c E rI rI r L t 21ln 00 at low speed operation, i.e.d m U rI E ≤+034.At high speed operation i.e.d m U rI E ≥+034,overlapping commutation is used to keep the turn-on phase constantly on and make the control pulse duty cycle of the turn-off phase 1340-+=dm AA U rI E D in the commutation compensation control time⎪⎪⎭⎫⎝⎛----=0021ln rI E U rI r L t m d c ,which can not only eliminate the torque ripple during noncommutation but also suppress the commutation torque ripple at high speed operation.A simulation is carried out to verify the method.The parameters areN T m r n V U m kg J r mH L L N N 4.0,1600,48,0157.0,66.0,262===⋅=Ω==.In non-full-bridge modulation mode such as H_PWM-L_ON mode, power switches in the upper arms use PWM mode while the others in the lowerarms use constant turn-on mode in 1200 turn-on interval. The simulation waveform of phase current is shown in Fig. 3. It is obvious that a current emerges in the turn-off phase during non-turn-on period and its pulsating frequency is the same as the modulatingfrequency while its amplitude varies with the variation of back emf amplitude, whichproduces a reverse torque.Figure 2 H_ PWM - L_ ON phase current waveform Figure 3 PWM_ON_PWM phase current waveform The simulation waveform of phase current in PWM _ON _PWM mode is shown in Fig.4. It is obvious that no current emerges in the turn-off phase duringnon-turnon period, which reduces the torque ripple during noncommutation compared with other PWM mode.Fig.5 shows the waveforms of the phase current and torque at low speed with PWM pulse duty cycle DA=0.2 without compensation control. Fig. 6 shows thewaveforms of the phase current and torque at low speed with the control pulse duty cycle DBB=0.4 in the turn-on phase within the commutation time tc=0.0013 by a compensation control. The comparison indicates that the torque ripple caused by commutation can be almost eliminated by means of a commutation compensationcontrol at low speed application.It is found from Fig.3 to Fig.8 that using a commutation compensation control in PWM_ON_PWM mode can not only avoid the torque ripple caused by the emerging current in the turn-off phase during noncommutation but also effectively suppress the commutation torque ripple at both low speed and high speed applications.Figure4 phase current and torque waveform during Figure 5 when running at low speed by changing theLow speed running phase current and phase compensation torque waveformFigure 6under the speed of phase current and torque waveform Figure 7high-speed run through the compensation control ofphase current and torque waveformIV. CONCLUSIONSBased on the analysis of commutation process of BLDC motor and the effect by PWM mode on the control system, a commutation compensation control inPWM_ON_PWM mode is worked out, which can not only eliminate torque ripple resulted from the current emerging in the turn-off phase during non-commutation period but also compensate commutation torque ripple. A control system without torque ripple can be realized through the method under both low speed and high speed operation.REFERENCES[1] S. Wang, T. Li, and Z. Wang, “Commutation torque ripple reduction in brushless DC motor drives using a sin gle current sensor,” Electric Machines and Control, vol. 12,pp. 288-293, March. 2008.[2] X. Zhang and Z. Lü, “New BLDCM drive method to smooth the torque,” Power Electronics, vol. 41, pp. 102-104, Feb. 2007.[3] H.J. Song and C. Ick. “Commutation torque r ipple reduction in brushless DC motor drivers using a single DC current sensor,” IEEE Trans. On Power Electr, vol. 19,pp. 312-319, Feb. 2004.[4] G.H. Kim, J. Seog and S.W. Jong, “Analysis of the commutation torque ripple effect for BLDCM fed by HCRPWM-VSI,” Proc. of APEC’92, 1992, pp.277-284. [5] X. Zhang and B. Chen, “The different influences of four PWM modes on commutation torque ripples in brushless DC motor control system,” Electric Machines andControl,vol.7, pp. 87-91, Feb. 2003.[6] D. Chen, Z. Liu and J. Ren et al, « Analysis of effects onBLDCM torque ripple by PWM modes,”. Electrical Drivers, vol.35, pp. 18-20, April 2005.中文翻译用PWM_ON_PWM模式抑制无刷直流电机换相引起的脉动转矩中国武汉海军工程大学电机工程系蒙广伟、雄郝、李怀树编摘要:本文分析了无刷直流电动机采用PWM控制稳定换相的过程,证实了运用PWM模式,在换相时控制非换相相电流有稳定不变的幅度,并进行补偿以消除低速和高速工作下的换相转矩脉动;研究了运用三相六状态的PWM模式120°启动无刷直流电机的方法,并提出基于脉宽调制的PWM模式如何来抑制转矩脉动,PWM 控制不仅可以消除非换相期间由关断电流引起的转矩脉动,还可以补偿换相期间由换相电流引起的转矩脉动。
基于8051单片机无刷直流电机控制器设计
文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
本科毕业设计说明书基于8051单片机无刷直流电机控制器设计BASED ON 8051 SINGLE CHIP MICROCOMPUTER CONTROLLER OF BRUSHLESS DC MOTOR DESIGN 学院(部):专业班级:学生姓名:指导教师:年月日基于8051单片机无刷直流电机控制器设计摘要无刷直流电动机的出现源于有刷直流电机。
如今各种直流电动机和交流电动机在传动应用中虽占主导地位,但是无刷直流电动机的前景更光明。
无刷直流电机是随着社会的需要而产生的,当今世界对电机的要求越来越高,传统的直流电机已经满足不了当今工业对其的需要,因此无刷直流电机得以迅速发展,无刷直流电机满足了人们对高效率,高精度,高速度的要求,配合微处理器得以智能化,是各知识领域的重要结晶成果。
再对控制器的选用上,选择单片机AT89C51,其能够满足对控制器的要求,因本文是对无刷直流电机的控制,显然驱动电机用无刷直流电机,整个思路是通过单片机采集获得的比较电平、以及电机霍尔位置传感器反馈过来的信号,单片机将接收到的信号,将其用软件编程故而发出指令驱动无刷直流电动机。
关键词:无刷直流电动机,单片机,霍尔位置传感器BASED ON 8051 SINGLE CHIP MICROCOMPUTER CONTROLLER OF BRUSHLESS DC MOTOR DESIGNABSTRACTThe appearance of brushless dc motor from a brush dc motor. Now all kinds of dc motor and ac motor is dominant in the drive applications, but a more bright future of brushless dc motor.Brushless dc motor is along with the social needs, the demand is higher and higher in today's world of motor, the traditional dc motor has already can't satisfy the need of the industry to its, so rapidly the brushless dc motor development, meet the brushless dc motor of high efficiency, high precision, high speed requirements, cooperate with the microprocessor to intelligent, is the important achievements of crystallization in the field of knowledge.This design is mainly for the selection of controller, the controller selection plays a key role in this design, so the main controller use AT89C51, brushless dc motor as drive motor, the control method by comparing with the single chip microcomputer collected level, and motor hall position sensor feedback signal, single chip receives the signal, its software programming to issue instructions to drive the brushless dc motor.KEYWARDS: Brushless dc motor, the microcontroller, hall position sensor目录摘要...................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要无刷直流电机具有高速度、高效率、高动态响应、高热容量和高可靠性等优点的同时,还具有低噪声和长寿命等特点。
在计算机系统、家用电器、工业、交通工具、医疗机械等领域有广泛应用。
目前国内对无刷直流电机的研究以及成为了重要的课题。
DSP是在数字信号处理的各种理论和算法的基础上发展起来的,对于完成各种实时数字信息处理。
在无刷直流控制系统中引入DSP技术,对采集的信号直接进行实时处理,提高了系统控制放入自动化程度、精确和可靠性。
本文研究的主要内容是基于DSP的无刷直流电机控制系统的研究与设计,实现全数字化双闭环控制系统。
论文主要研究了无刷直流电机的控制眼里,给出了系统的整体方案,设计了硬件电路,编写了软件程序。
关键词:无刷直流电机;PIC单片机;控制系统;位置传感器AbstractBLDC has advantages of high speed,high efficiebncy,high dynamic response,high temperature bearing capacity and reliability. It also behaves a long life and low noise characteristics. There are extensive applications in many field, such as computer system,electrical house appliances, Industry,traffic and the medical equipment and so on. The research of brushless DC motor is an important topic now in china, DSP is developing in the foundation of variable theories and arithmetic,used for completing real-time digital information processing.Bringing the DSP technique to the brushless DC motor control system makes the collected signal directly carried on in real time and improves the autormation degree,the accuracy and the credibility of the control system. The thesis studied and designed the brushless DC motor control system based on DSP.It realized fully digital-controlled and double closed-loop control system. The thesis mainly discusses and control principle of the brushless DC motor,gives the whole plan of the system, designs the hardware circuit, and programs the software.Keywrd: BLDC, PIC MCU, Control System, position sensor目录第一章绪论....................................................................................................................................... - 1 -1.1无刷直流电机的现状 (1)1.2无刷直流电机控制器概述 (2)1.3论文研究内容 (3)第二章无刷电机控制系统分析 ....................................................................................................... - 4 -2.1电机的基本原理 (4)2.1.1稀土永磁无刷直流电机的基本结构................................................................................ - 4 -2.1.2电机的基本工作原理........................................................................................................ - 5 -2.1.3三相无刷直流电机星形连接全桥驱动原理.................................................................... - 6 -2.2电机的特性分析 (8)2.2.1电机的运行特性分析........................................................................................................ - 8 -2.2.2机械特性和调速特性分析.............................................................................................. - 11 -2.2.3其他特性分析.................................................................................................................. - 11 -2.3直流电动机的PWM调速原理.. (12)2.4霍尔传感器 (13)2.4.1开关型霍尔集成传感器.................................................................................................. - 14 -2.4.2霍尔器件在无刷直流电机中的应用.............................................................................. - 14 -第三章无刷直流电机控制器硬件设计 ......................................................................................... - 15 -3.1单片机选择 (15)3.1.1单片机选择依据.............................................................................................................. - 15 -3.1.2 PIC单片机特点.............................................................................................................. - 15 -3.1.3 PIC16F72单片机的功能特性..................................................................................... - 17 -3.1.4 PWM信号在PIC单片机中的处理.............................................................................. - 18 -3.2微控制器电路 . (18)3.3三相全桥逆变电路和驱动电路 (21)3.3.1顶端、底端驱动电路...................................................................................................... - 22 -3.3.2电源电路.......................................................................................................................... - 24 -3.3.3振荡倍压电路.................................................................................................................. - 25 -3.3.4硬件保护电路.................................................................................................................. - 25 -第四章系统软件设计..................................................................................................................... - 26 -4.1系统软件设计概述 (26)4.2主程序介绍 (27)4.2.1 启动子程序..................................................................................................................... - 28 -4.3中断 (29)4.3.1单片机中断资源.............................................................................................................. - 29 -4.3.2定时器资源分配.............................................................................................................. - 30 -4.4PWM(脉冲宽度调制) . (31)4.5欠压保护、过流保护和堵转保护 (32)4.5. 1欠压和过流保护功能..................................................................................................... - 32 -4.5.2堵转保护功能.................................................................................................................. - 32 -4.6数字PI速度调节 .. (33)4.6.1概述.................................................................................................................................. - 33 -4.6.2 P I D基本原理 ................................................................................................................ - 33 -4.6.3位置型PID算法程序的设计......................................................................................... - 35 -4.6.4数字PI速度调节器设计................................................................................................ - 36 -第五章系统调试与运行分析 ......................................................................................................... - 38 -5.1系统软、硬件部分调试 (38)5.1 .1系统硬件调试................................................................................................................. - 38 -5.1.2系统软件调试.................................................................................................................. - 39 -5.2实验结果分析与建议.. (40)5.2.1实验结果分析.................................................................................................................. - 40 -5. 2. 2实验结论与建议............................................................................................................ - 40 -第六章总结..................................................................................................................................... - 42 -参考文献..................................................................................................................................... - 43 -致谢................................................................................................................................................... - 45 -英文论文及翻译............................................................................................................................... - 46 -第一章绪论1.1无刷直流电机的现状有刷直流电动机作为最早的电动机广泛应用于工农业生产的各个领域,由于其宽阔而平滑的优良调速性能,在需要调速的应用领域占有重要地位,但机械换向装置的存在,限制了其发展和应用范围。