设计模式-abstractFactory
设计模式的分类及功能划分
设计模式的分类及功能划分设计模式有两种分类⽅法,即根据模式的⽬的来分和根据模式的作⽤的范围来分。
⼀、根据⽬的来分;通过完成什么⼯作划分为创建型模式、结构型模式和⾏为型模式 3 种类型 1、创建型模式:作⽤于对象的创建,将对象的创建与使⽤分离。
其中囊括了单例、原型、⼯⼚⽅法、抽象⼯⼚、建造者5 种创建型模式。
2、结构型模式:将类或对象按某种布局组成更⼤的结构,其中以代理、适配器、桥接、装饰、外观、享元、组合 7 种结构型模式为主。
3、⾏为型模式:作⽤于类或对象之间相互协作共同完成单个对象⽆法单独完成的任务,以及怎样分配职责。
主要包含了模板⽅法、策略、命令、职责链、状态、观察者、中介者、迭代器、访问者、备忘录、解释器等 11 种⾏为型模式。
⼆、根据作⽤范围来分;根据是⽤于类上还是⽤于对象上划分分为类模式和对象模式两种。
1、类模式:⽤于处理类与⼦类之间的关系,这些关系通过继承来建⽴,在编译时刻便确定下来了。
⼯⼚⽅法、(类)适配器、模板⽅法、解释器均属于该模式。
2、对象模式:⽤于处理对象之间的关系,这些关系可以通过组合或聚合来实现,在运⾏时刻是可以变化的,更具动态性。
除了以上 4种,其他的都是对象模式。
设计模式的分类表设计模式的功能1、单例(Singleton)模式:某个类只能⽣成⼀个实例,该类提供了⼀个全局访问点供外部获取该实例,其拓展是有限多例模式。
2、原型(Prototype)模式:将⼀个对象作为原型,通过对其进⾏复制⽽克隆出多个和原型类似的新实例。
3、⼯⼚⽅法(Factory Method)模式:定义⼀个⽤于创建产品的接⼝,由⼦类决定⽣产什么产品。
4、抽象⼯⼚(AbstractFactory)模式:提供⼀个创建产品族的接⼝,其每个⼦类可以⽣产⼀系列相关的产品。
5、建造者(Builder)模式:将⼀个复杂对象分解成多个相对简单的部分,然后根据不同需要分别创建它们,最后构建成该复杂对象。
6、代理(Proxy)模式:为某对象提供⼀种代理以控制对该对象的访问。
1002 ABSTRACT FACTORY 抽象工厂模式(创建型模式)
Abstract Factory抽象工厂模式(创建型模式) (2)动机 (2)意图 (2)Abstract Factory模式的几个要点 (2)我对Abstract Factory模式的理解 (2)网上资料 (3)我的代码和解释 (6)Abstract Factory抽象工厂模式(创建型模式)动机在软件系统中,经常面临着“一系列相互依赖的对象”的创建工作;同时,由于需求的变化,往往存在更多系列对象的创建工作。
如何应对这种变化?如何绕过常规的对象创建方法(new),提供一种“封装机制”来避免客户程序和这种“多系列具体对象创建工作”的紧耦合?意图提供一个接口,让该接口负责创建一系列“相关或者相互依赖的对象”,无需指定它们具体的类。
——《设计模式》GoF Abstract Factory模式的几个要点1.如果没有应对“多系列对象构建”的变化,则没有必要使用Abstract Factory模式,这时候使用简单的静态工厂完全可以。
2.“系列对象”指的是这些对象之间有相互依赖、或作用的关系,例如游戏开发场景中的“道路”与“房屋”的依赖,“道路”与“地道”的依赖。
3.Abstract Factory模式主要在于应对“新系列”的需求变动。
其缺点在于难以应对“新对象”的需求变动。
4.Abstract Factory模式经常和Factory Method模式共同组合来应对“对象创建”的需求变化。
我对Abstract Factory模式的理解假设有一个游戏场景系列(对象包括:树木、房屋和道路),如果这个系列有很多方式(比如说古典系列的,现代系列的……),当需要变化这系列的方式时(比如说今天变成古典形式的,明天变成现代模式的,但是里面的对象仍旧是:树木、房屋和道路,只是对象的表现形式根据系列的形式来变,而没有增加对象),这时候使用Abstract Factory模式是正确的。
如果场景的对象今天是树木、房屋和道路,明天增加了沙漠对象,后天增加了天气对象,对象在不停的变,则这时就不应该使用Abstract Factory模式。
23种设计模式记忆口诀
23种设计模式记忆口诀设计模式是软件开发中常见的解决方案模板,它们能够解决许多常见的设计问题。
为了帮助记忆23种设计模式,可以使用下面这个口诀来记忆:Creational Patterns(创建型模式):1. Singleton(单例模式):一个类能产生一个实例,全局访问。
2. Builder(建造者模式):分步骤创建复杂对象,易拓展。
3. Factory Method(工厂方法模式):子类决定实例化哪个对象。
4. Abstract Factory(抽象工厂模式):创建一组相关对象,不依赖具体类。
5. Prototype(原型模式):通过复制现有对象来创建新对象。
Structural Patterns(结构型模式):6. Adapter(适配器模式):将类的接口转换为客户端希望的接口。
7. Bridge(桥接模式):将抽象部分与实际部分分离。
将对象组合成树形结构来表示部分整体的层次结构。
9. Decorator(装饰器模式):动态地给对象添加功能。
10. Facade(外观模式):提供一个统一的接口,简化客户端使用。
11. Flyweight(享元模式):共享细粒度对象,减少内存使用。
12. Proxy(代理模式):控制对其他对象的访问。
Behavioral Patterns(行为型模式):13. Chain Of Responsibility(责任链模式):将请求的发送者和接收者解耦,多个对象都可能处理请求。
将请求封装成对象,可以用参数化方式处理。
15. Iterator(迭代器模式):提供一种遍历集合的统一接口。
16. Mediator(中介者模式):将多个对象之间的复杂关系解耦。
17. Memento(备忘录模式):将对象的状态保存起来,以后可以恢复。
18. Observer(观察者模式):当一个对象改变状态时,依赖它的对象都会收到通知。
19. State(状态模式):对象的行为随状态的改变而改变。
[游戏]-游戏开发中常用的设计模式
[游戏]-游戏开发中常⽤的设计模式来源:使⽤设计模式来提⾼程序库的重复利⽤性是⼤型程序项⽬开发必须的。
但是在“四⼈帮”的设计模式概述中提到了23种标准设计模式,不但难以记住,⽽且有些设计模式更多的适⽤于应⽤程序开发,对游戏项⽬引擎设计并没有很多的利⽤价值。
根据经验,精挑细选后,笃志在这⾥记录⼀些⾃认为有利⽤价值的设计模式,以便之后⾃⼰设计时使⽤。
⼀:观察者Observer观察者的设计意图和作⽤是:它将对象与对象之间创建⼀种依赖关系,当其中⼀个对象发⽣变化时,它会将这个变化通知给与其创建关系观察者的设计意图和作⽤是的对象中,实现⾃动化的通知更新。
游戏中观察者的适⽤环境有:游戏中观察者的适⽤环境有1:UI控件管理类。
当我们的GUI控件都使⽤观察者模式后,那么⽤户的任何界⾯相关操作和改变都将会通知其关联对象-----我们的UI事件机。
2:动画管理器。
很多时候我们在播放⼀个动画桢的时候,对其Frame有很⼤兴趣,此时我们设置⼀个FrameLister对象对其进⾏监视,获得我们关⼼的事件进⾏处理是必须的。
观察者伪代码::观察者伪代码// 被观察对象⽬标类Class Subject{// 对本⽬标绑定⼀个观察者 Attach( Observer );// 解除⼀个观察者的绑定 DeleteAttach( Observer );// 本⽬标发⽣改变了,通知所有的观察者,但没有传递改动了什么Notity(){For ( …遍历整个ObserverList …){ pObserver ->Update(); }}// 对观察者暴露的接⼝,让观察者可获得本类有什么变动GetState();}//-------------------------------------------------------------------------------------------------------// 观察者/监听者类Class Observer{// 暴露给对象⽬标类的函数,当监听的对象发⽣了变动,则它会调⽤本函数通知观察者Void Update (){pSubject ->GetState(); // 获取监听对象发⽣了什么变化TODO:DisposeFun(); // 根据状态不同,给予不同的处理}}⾮程序语⾔描述:⾮程序语⾔描述A是B的好朋友,对B的⾏为⾮常关⼼。
【设计模式-工厂模式】男男女女的抽象工厂模式
【设计模式-⼯⼚模式】男男⼥⼥的抽象⼯⼚模式背景虽然⼥娲已经成功将⼈类创造出来了,可是都是没有性别的,那么后续该如何繁衍呢。
为此,除了增加⼈种外,我们还需要增加所有⼈类都有的⼀个属性:性别。
由此:⼈种和性别相互组合⽣成6中不同的⼈类男⿊⼈、⼥⿊⼈、男⽩⼈、⼥⽩⼈、男黄⼈、⼥黄⼈原来的⼀个⼋卦炉也需要进⾏修改,变为专门⽣产男性的"男⼋卦炉" 和专门⽣产⼥性的 “⼥⼋卦炉”类图可以看到我们在原有的⼏个⼈种上,⼜重新继承并实现了两个类,分别⽤于表⽰不同⼈种的男⼥特别说明的是HumanFactory接⼝,在这个接⼝中定义了三个⽅法,分别⽤于⽣产不同的肤⾊的⼈种,也就是我们将肤⾊作为Y轴,性别作为X轴,通过X坐标和Y坐标唯⼀确定⼀个⽣产出来的对象。
代码⼈种接⼝public interface Human {//每个⼈种的⽪肤都是不同的颜⾊public void getColor();//每个⼈类都会发声public void talk();public void getSex();}⼈种接⼝即抽象产品,该产品的共同属性定义:肤⾊和语⾔,⽽性别则是不同产品下更深层的细分实现⼈种接⼝的黄种⼈public abstract class AbstractYellowHuman implements Human{@Overridepublic void getColor() {System.out.println("黄种⼈");}@Overridepublic void talk() {System.out.println("国语");}}继承了该接⼝的抽象黄种⼈类,每个抽象类都会实现产品的公共细节,⽽每个抽象类的都会有两个实现类,分别实现各⾃的不同的细节:性别黄种⼈⼥性public class YellowWoman extends AbstractYellowHuman{@Overridepublic void getSex() {System.out.println("YellowWoman");}}⼋卦炉/*** 产品类* 有N个产品组,在抽象⼯⼚类中就应该有N个创建⽅法;* 每个产品有M个产品扩展维度就应该有M个产品实现⼯⼚类,* 在每个实现⼯⼚中,实现不同的产品族的⽣产任务.* @author LiPeng01* @since 2020/8/8 7:31 下午*/public interface HumanFactory {public Human doYellowHuman();public Human doWhiteHuman();public Human doBlackHuman();}在接⼝中我们可以看到 抽象的⼯⼚是可以⽣产出不同肤⾊的⼈种的。
常见设计模式的解析和实现(C++)整理版
delete cf1; delete cf2; return 0; }
常见设计模式的解析和实现(C++)之三-Builder 模式
作用: 将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示
ConcreateProductB1() { cout<<"ConcreateProductB1"<<endl; } virtual ~ConcreateProductB1(){} }; //派生类ConcreateProductB2,继承自AbstractProductB,代表产品B的第二种实现 class ConcreateProductB2:public AbstractProductB { public: ConcreateProductB2() { cout<<"ConcreateProductB2"<<endl; } virtual ~ConcreateProductB2(){} }; //抽象基类AbstractFactory,工厂的抽象类,生产产品A和产品B class AbstractFactory { public: AbstractFactory(){} virtual ~AbstractFactory(){}
解析:
Builder 模式是基于这样的一个情况:一个对象可能有不同的组成部分,这几个部分的不
同的创建对象会有不同的表示,但是各个部分之间装配的方式是一致的.比方说一辆单
车,都是由车轮车座等等的构成的(一个对象不同的组成部分),不同的品牌生产出来的也 不一样(不同的构建方式).虽然不同的品牌构建出来的单车不同,但是构建的过程还是一 样的(哦,你见过车轮长在车座上的么?).也就是说,Director::Construct 函数中固定 了各个组成部分的装配方式,而具体是装配怎样的组成部分由 Builreator::FactoryMethod:纯虚函数,由派生类实现,创建出对应的 Product.
23种设计模式 详解
23种设计模式详解设计模式是指面向对象编程中,经过多次验证、被广泛接受的代码实现方法。
这些设计模式可以帮助开发者更快地解决问题,提高代码的可读性、可维护性、可扩展性。
目前,常用的设计模式有23种。
下面,我们来详细介绍一下这23种设计模式。
1. 单例模式(Singleton)单例模式是一种只允许生成一个实例的模式。
在实例化对象时,单例模式的生成过程比较特殊,需要先判断该类是否已经实例化过,如果已经实例化,则直接返回已有的实例对象,否则再进行实例化。
2. 工厂模式(Factory)工厂模式是一种生产对象实例的设计模式。
它将对象实例的生成过程封装在一个工厂类中,客户端需要对象时,只需要调用工厂类中对应的方法即可。
3. 抽象工厂模式(Abstract Factory)抽象工厂模式是一种扩展了工厂模式的模式。
它可以生成一系列相关或相互依赖的对象实例。
具体实现时,通常需要定义一个抽象工厂类和一些具体工厂类,来生产各种相关的对象实例。
4. 建造者模式(Builder)建造者模式是一种用于构建复杂对象的模式。
它将一个复杂对象的构建过程分解成多个简单的步骤,然后通过一个指挥者来管理这些步骤的执行,最终构建出一个复杂的对象。
5. 原型模式(Prototype)原型模式是一种通过复制已有对象来创建新对象的模式。
一般来说,系统中的对象包含大量相同或相似的部分,通过复制对象可以帮助我们节省生成对象的时间和资源。
6. 适配器模式(Adapter)适配器模式是一种将不兼容接口转换为兼容接口的模式。
具体实现时,需要定义一个适配器类,该类实现了客户端所期望的接口,而且还包装了原有不兼容的接口,使其能够兼容客户端期望的接口。
7. 桥接模式(Bridge)桥接模式是一种将抽象部分与其实现部分分离开来的模式。
具体实现时,需要定义抽象部分和实现部分的接口,然后定义一个桥接类,将抽象部分和实现部分联系起来。
8. 组合模式(Composite)组合模式是一种将具有相同属性和方法的对象组合成树形结构的模式。
设计模式实验报告-工厂模式
实验二:工厂模式实验内容简单工厂方法模式:利用简单工厂方法模式创建pad, phone, watch的对象,并使用这些对象娱乐。
工厂模式:利用工厂模式创建pad, phone, watch的对象,并使用这些对象娱乐。
抽象工厂模式:利用抽象工厂模式创建华为、小米、苹果的pad, phone, watch的对象,并使用这些对象娱乐。
简单工厂方法模式设计图1简单工厂模式类图核心代码ConsumerElectronics.java核心代码Pad.java核心代码Watch.java核心代码Phone.java核心代码ConsumerElectronicsFactory.java核心代码实现效果图 2 简单工厂模式实现效果图工厂模式设计图 3 工厂模式类图核心代码ConsumerElectronicsFactory.java核心代码PadFactory.java核心代码WatchFactory.java核心代码PhoneFactory.java核心代码实现效果图4 工厂模式实现效果图抽象工厂模式设计图5抽象工厂模式类图核心代码AbstractFactory.java核心代码AppleFactory.java核心代码HuaweiFactory.java核心代码MiFactory.java核心代码实现效果图 6 抽象工厂模式实现效果图实验体会做完这次试验,下面是我的一些体会:首先,工厂模式是为了解耦:把对象的创建和使用的过程分开。
其次,工厂模式可以降低代码重复。
如果创建对象的过程都很复杂,需要一定的代码量,而且很多地方都要用到,那么就会有很多的重复代码。
我们可以这些创建对象的代码放到工厂里统一管理。
既减少了重复代码,也方便以后对该对象的创建过程的修改维护。
由于创建过程都由工厂统一管理,所以发生业务逻辑变化,不需要逐个修正,只需要在工厂里修改即可,降低维护成本。
另外,因为工厂管理了对象的创建逻辑,使用者并不需要知道具体的创建过程,只管使用即可,减少了使用者因为创建逻辑导致的错误。
23种设计模式记忆口诀
23种设计模式记忆口诀根据内容要求,对23种设计模式进行简要说明,并整理成口诀。
设计模式是软件开发中常用的一种解决方案,它提供了面向对象设计和编程中常见问题的解决思路和方法。
根据GoF(Gang of Four)的分类,设计模式可以分为创建型、结构型和行为型三种类型,共23种设计模式。
1. 创建型模式(Creational Patterns):- 工厂方法模式(Factory Method Pattern):定义一个用于创建对象的接口,但由子类决定实例化的类。
- 抽象工厂模式(Abstract Factory Pattern):提供一个创建一系列相关对象或依赖对象的接口,而无须指定它们的具体类。
- 单例模式(Singleton Pattern):确保一个类只有一个实例,并提供一个全局访问点。
- 原型模式(Prototype Pattern):用于创建重复性对象的一个原型。
- 建造者模式(Builder Pattern):将一个复杂对象的构建和表示分离,使得同样的构建过程可以创建不同的表示。
2. 结构型模式(Structural Patterns):- 适配器模式(Adapter Pattern):将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的类可以一起工作。
- 桥接模式(Bridge Pattern):将抽象部分和它真正的实现分离,使它们独立的变化。
- 装饰器模式(Decorator Pattern):动态地将责任附加到对象上,扩展功能。
- 外观模式(Facade Pattern):为子系统中的一组接口提供一个统一的接口,以简化系统的使用。
3. 行为型模式(Behavioral Patterns):- 策略模式(Strategy Pattern):定义一系列算法,将每个算法封装起来,并使它们可以相互替换。
- 模板方法模式(Template Method Pattern):定义一个算法的骨架,由子类实现具体步骤。
软件设计模式(Java版)
第1章 软件设计模式基础
内容简介
• 本章教学目标: 了解软件设计模式的产生背景; 掌握软件设计模式的概念、意义和基本要素; 明白GoF的23种设计模式的分类与特点; 理解UML类之间的关系,并学会类图的画法; 正确理解面向对象的七种设计原则。 • 本章重点内容: GoF的23种设计模式的分类与特点; UML中的类之间的关系; UML中的类图的画法; 面向对象的七种设计原则。
• 1.2.3 类之间的关系 2.关联(Association)关系 关联关系是对象之间的一种引用关系,用于表示一类对象与另一类 对象之间的联系,如老师和学生、师傅和徒弟、丈夫和妻子等。关联关 系分为一般关联关系、聚合关系和组合关系,我们先介绍一般关联。关 联可以是双向的,也可以是单向的。
软件设计模式(Java版)、
软件设计模式(Java版)、
1.1 软件设计模式概述(续)
• 1.1.2 软件设计模式的概念与意义 1.什么是软件设计模式? 软件设计模式(Software Design pattern ),又称设计模式, 是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验 的总结。 2.学习设计模式的意义 ⑴ 可以提高程序员的思维能力、编程能力和设计能力。 ⑵ 使程序设计更加标准化、代码编制更加工程化,使软件开发 效率大大提高,从而缩短软件的开发周期。 ⑶ 使设计的代码可重用性高、可读性强、可靠性高、灵活性好、 可维护性强。
软件设计模式(Java版)、
23种设计模式的经典运用
23种设计模式的经典运用介绍设计模式是解决软件设计中常见问题的可重复使用的解决方案。
本文将介绍23种经典的设计模式,并给出它们在实际开发中的应用示例。
通过学习这些设计模式,您将增加对软件设计的理解,并能够更好地解决问题。
创建型设计模式1.工厂方法模式(F a c t o r y M e t h o d)工厂方法模式通过定义一个创建对象的接口,但由子类决定实例化具体类。
这种方法可以延迟实例化过程,具有更高的灵活性和可扩展性。
应用场景:-在一个系统中,希望客户端与具体类的实例化解耦。
-希望通过增加具体类的扩展来增加系统的灵活性。
2.抽象工厂模式(A b s t r a c t F a c t o r y)抽象工厂模式提供一个接口,用于创建相关或依赖对象组。
这种模式将对象的实例化推迟到子类中,从而实现了解耦。
应用场景:-当一个系统独立于其产品的创建、组合和表示时。
-当需要一个系列的相互依赖的对象而无需指定其具体类时。
3.单例模式(S i n gl e t o n)单例模式确保一个类只有一个实例,并提供一个全局访问点。
这种模式常用于控制对资源的访问,例如数据库连接或日志文件。
应用场景:-当需要一个类的唯一实例,并且该实例需要被多个客户端共享时。
-当需要限制系统中特定类的实例数量时。
4.原型模式(P r o to t y p e)原型模式通过复制现有对象来创建新对象。
这种模式对于创建需要消耗大量资源的对象非常有用,可以通过克隆现有对象来提高性能。
应用场景:-当一个系统的某些对象的创建比较昂贵时。
-当需要避免构造函数调用,而直接通过复制现有对象来创建新对象时。
5.建造者模式(B ui l d e r)建造者模式将一个复杂对象的构建过程与其表现分离,使得相同的构建过程可以创建不同的表现。
应用场景:-当想要构建一些复杂对象时,如生成器。
-当需要创建对象的过程具有多个步骤,并且每个步骤都可以按需选择或省略时。
结构型设计模式6.适配器模式(A da p t e r)适配器模式将一个类的接口转换为客户端所期望的另一个接口。
设计模式PPT
结构型模式
• Flyweight(享元)
结构型模式
• Proxy(追求者-代理-被追求者)
– 意图
• 为其他对象提供一种代理以控制对这个对象的访问。
– 适用性
• 1)远程代理(Remote Proxy)为一个对象在不同的地址空间 提供局部代表。 • 2)虚代理(Virtual Proxy)根据需要创建开销很大的对象。 • 3)保护代理(Protection Proxy)控制对原始对象的访问。 • 4)智能引用(Smart Reference)取代了简单的指针,它在 访问对象时执行一些附加操作。
行为模式
• Interpreter(自学)
– 意图
• 根据语言的文法,定义一个解释器,用来解释语言中的句 子。
– 适用性
• 当有一个语言需要解释执行,并且该语言中的句子可以表 示为一个抽象语法树时。 当满足以下情况时,解释器模式的效果最好:
– 文法简单。 – 效率不是一个关键问题。
行为模式
• Iterator(迭代器)
– 实现 • 使用一个原型管理器; • 实现克隆操作(浅拷贝和深拷贝); • 初始化克隆对象;
创建型模式
• Singleton(打印机)
– 意图
• 保证一个类仅有一个实例,并提供一个访问它的全局访问 点。
– 适用性
• 在一个系统要求一个类只有一个实例时才应当使用单例模 式
创建型模式
• Singleton
创建型模式
• Builder(建造小人)
– 意图
• 将一个复杂对象的构建与它的表示分离,使得同样的构建 过程可以创建不同的表示。
– 适用性
• 当创建复杂对象的算法应该独立于该对象的组成部分以及 它们的装配方式时。 • 当构造过程必须允许被构造的对象有不同的表示时。
设计模式题库
1.设计模式的原理 (C)C. 面向接口编程2. 以下对"开-闭"原则的一些描述错误的是(A)A. "开-闭"原则与"对可变性的封装原则"没有相似性.3.以下属于创建型模式是 (A)(生成器)C. PROTOTYPE(原型)(单件)4.以下属于结构型模式是 (D)COMPOSITE(组合) B. ADAPTER(适配器)B.FLYWEIGHT(享元)5.以下属于行为型模式是 (D )MAND(命令)7.STRATEGY(策略)8.MEMENTO(备忘录)/*23模式意图*/6.以下意图那个是用来描述ABSTRACT FACTORY(抽象工厂)(A)A.提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。
7.以下意图那个是用来描述BUILDER(生成器)(B)将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。
8.以下意图那个是用来描述FACTORY METHOD(工厂方法)(C)C.定义一个用于创建对象的接口,让子类决定实例化哪一个类。
该模式使一个类的实例化延迟到其子类。
9.以下意图那个是用来描述PROTOTYPE(原型)(D)D.用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。
10.以下意图那个是用来描述SINGLETON(单件)(B)B.保证一个类仅有一个实例,并提供一个访问它的全局访问点。
11.以下意图那个是用来描述ADAPTER(适配器)(A)A.将一个类的接口转换成客户希望的另外一个接口。
本模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。
12.以下意图那个是用来描述BRIDGE(桥接)(B)B.将抽象部分与它的实现部分分离,使它们都可以独立地变化。
13.以下意图那个是用来描述COMPOSITE(组合)(C)C.将对象组合成树形结构以表示“部分-整体”的层次结构。
Java设计模式知识要点
AbstractClass 叫做抽象模板,它的方法分为两类: ● 基本方法 基本方法也叫做基本操作,是由子类实现的方法,并且在模板方法被调用。 ● 模板方法 可以有一个或几个,一般是一个具体方法,也就是一个框架,实现对基本方法的调 度,完成固定的逻辑。 注意: 为了防止恶意的操作,一般模板方法都加上 final 关键字,不允许被覆 写。 具体模板:ConcreteClass1 和 ConcreteClass2 属于具体模板,实现父类所定义的 一个或多个抽象方法,也就是父类定义的基本方法在子类中得以实现 使用场景: ● 多个子类有公有的方法,并且逻辑基本相同时。 ● 重要、复杂的算法,可以把核心算法设计为模板方法,周边的相关细节功能则由 各个子类实现。 ● 重构时,模板方法模式是一个经常使用的模式,把相同的代码抽取到父类中,然 后通过钩子函数(见“模板方法模式的扩展”)约束其行为。
2.工厂模式
定义:Define an interface for creating an object,but let subclasses decide which class to instantiate.Factory Method lets a class defer instantiation to subclasses. (定义一个用于创建对象的接口,让子类决定实例化哪一个类。工厂方法使一个类 的实例化延迟到其子类。)
24种设计模式的定义和使用场合
一.创建型模式(Creational):简单工厂模式(simpleFactory)发音:['simpl] ['fækt(ə)rɪ]定义:提供一个创建对象实例的功能,而无须关心其具体实现.被创建实例的类型可以是接口,抽象类,也可以是具体的类.1.抽象工厂(AbstractFactory)发音: ['æbstrækt]定义:提供一个创建一系列相关或相互依赖对象的接口,而无需指定他们具体的类.使用场合:1.如果希望一个系统独立于它的产品的创建,组合和表示的时候,换句话书,希望一个系统只是知道产品的接口,而不关心实现的时候.2.如果一个系统要由多个产品系列中的一个来配置的时候.换句话说,就是可以,就是可以动态地切换产品簇的时候.3.如果强调一系列相关产品的接口,以便联合使用他们的时候2.建造者模式(Builder)发音: ['bɪldə]定义:将复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示.使用场合:1.如果创建对象的算法,应该独立于该对象的组成部分以及它们的装配方式时2.如果同一个构建过程有着不同的表示时3.工厂方法模式(Factory Method)定义:为创建对象定义一个接口,让子类决定实例化哪个类.工厂方法让一个类的实例化延迟到了子类.使用场景:1.客户类不关心使用哪个具体类,只关心该接口所提供的功能.2.创建过程比较复杂,例如需要初始化其他关联的资源类,读取配置文件等.3.接口有很多具体实现或者抽象类有很多具体子类时,4.不希望给客户程序暴露过多的此类的内部结构,隐藏这些细节可以降低耦合度.5.优化性能,比如缓存大对象或者初始化比较耗时的对象.4.原型模式(Prototype Method)发音: ['prəʊtətaɪp]定义:使用原形实例指定将要创建的对象类型,通过复制这个实例创建新的对象.应用场合:1.如果一个系统想要独立于它想要使用的对象时,可以使用原型模式,让系统只面向接口编程,在系统需要新的对象的时候,可以通过克隆原型来得到.2.如果需要实例化的类是在运行时刻动态指定时,可以使用原型模式,通过克隆原型来得到需要的实例.5.单例模式(Singleton) 发音: ['sɪŋg(ə)lt(ə)n]定义:保证一个类仅有一个实例,并提供一个访问它的全局访问点.使用场合:当需要控制一个类的实例只能有一个,而且客户只能从一个全局访问点访问它时,可以使用单例模式,这些功能恰好是单例模式要解决的问题.二.结构型模式(struct)发音: [strʌkt]6.适配器模式(Adapter)发音:[ə'dæptə]定义:将一个类的接口转换成客户希望的另外一个接口.适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作.使用场合;1.如果先要使用一个已经存在的类,但是它的接口不符合你的需求,这种情况可以使用适配器模式,来把已有的实现转换成你需要的接口.2.如果你想创建一个可以复用的类,这个类可能和一些不兼容的类一起工作,这中情况可以使用适配器模式,到时候需要什么就适配什么.3.如果你想使用一些已经窜在的子类,是不坑对每一个子类都进行适配,这中情况可以使用适配器模式,直接适配这些子类的父类就可以了.7.桥接模式(Bridge)发音: [brɪdʒ]定义:将抽象部分与它的实现部分分离,使他们可以独立变化.使用场合:1.如果你不希望在抽象部分和实现部分采用固定的绑定关系,可以采用桥接模式.2.如果出现抽象部分和实现部分都能够扩展的情况,可以采用桥接模式,让抽象部分和实现部分独立地变化.3.如果希望实现部分的修改不会对客户产生影响,可以采用桥接模式.4.如果采用继承的实现方案,会导致产生很多子类,对于这种情况,可以考虑采用桥接模式.8.组合模式(Composite)发音: ['kɒmpəzɪt]定义:将对象组合成属性结构以表示"部分-整体"的层次结构,组合模式使用的用户对单个对象和组合对象的使用具有一致性.使用场合:1.如果你想表示对象的部分-整体层次结构,可以使用..把整体和部分的操作统一起来,使得层次结构实现更简单,从外部来使用,这个层次结构也容易.2.如果希望同意地使用组合结构中的所有对象,可以选用...,这正是组合模式提供的主要功能.9.装饰器模式(Decorator Method)发音: ['dekəreɪtə]定义:动态的给一个对象增加一些额外的职责,就增加功能来说,装饰模式生成子类更为灵活.使用场合:1.如果需要爱不影响其他对象的情况下,以动态,透明的方式给对象添加职责,可以使用装饰模式.2.如果不适合使用子类来进行扩展的时候,可以考虑使用装饰模式.10.外观模式(Facade)发音: [fə'sɑ:d]定义:为子系统中的一组接口提供一个一致的界面,Facade模式定义了一个高层的接口,这个接口使得这一子系统更加同容易使用.使用场景:1.如果希望为一个复杂的子系统提供一个简单接口的时候,可以考虑使用外观模式.使用外观对象来实现大部分客户需要的功能,从而简化客户的使用.2.如果想要让客户程序和抽象类的实现部分松散耦合,可以考虑使用外观模式,使用外观对象来将这个子系统与他的客户分离开来,从而提高子系统的独立性和可移植性.3.如果构建多层节后的系统,可以考虑使用外观模式使用外观模式对象作为每层的入口,这样可以简化层间调用,也可以松散出层次之间的依赖关系.11.享元模式(Flyweight)发音: ['flaɪweɪt]定义:运用共享技术有效地支持大量细粒度的对象.使用场合:1.如果一个应用程序使用了大量的细粒度对象,可以使用享元模式来减少对象的数量.2.如果犹豫使用大量的对象,造成很大的存储开销,可以使用享元模式来减少对象数量,并节约内存.3.如果对象的大多数状态都可以转变成外部状态,比如通过计算得到,或者从外部传入等,可以使用享元模式来实现内部状态和外部状态的分离.4.如果不考虑对象的外部状态,可以用相对较少的共享对象取代很多组合对象,可以使用享元模式来共享对象.然后组合对象来使用这些共享对象.12.代理模式(Proxy)发音: ['prɒksɪ]定义:为其他对象提供一种代理以控制对这个对象的访问.使用场合:1.需要为一个对象在不同的地址空间提供局部代表的时候,可以使用远程代理.2.需要按照需要创建开销很大的对象的时候,可以使用虚代理.3.需要控制对原始对象的访问的时候,可以使用保护代理.4.需要在访问你对象执行一些附加操作的时候,可以使用智能指引代理.三.行为型模式(behavioral)发音[bi'heivjərəl]13.职责链模式(Chain Of Responsibility)发音: [tʃeɪn] [rɪ,spɒnsɪ'bɪlɪtɪ]定义:使多个对象都有机会处理请求,,从而避免请求的发送者和接收者之间耦合关系.将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止.使用场合:1.如果有多个对象可以处理同一个请求,但是具体由哪个对象来处理该请求,是运行时刻动态确定的.2.如果你想在不明确指定接收者的情况下,向多个对象中的其中一个提交请求的话,可以使用职责链模式.3.如果想要动态指定处理一个请求的对象结合,可以使用职责链模式.14.命令模式(Command)发音: [kə'mɑːnd]定义:将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化,对请求排队或者记录请求日志,以及支持可撤销的操作.15.解释器模式(Interpreter)发音: [ɪn'tɜːprɪtə]定义:给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子.使用场合:16.迭代器模式(Iterator)定义:提供一种方法顺序访问一个聚合对象中的各个元素,而又不需要暴露该对象的内部表示.使用场合:1.如果你希望提供访问一个聚合对象的内容,但是又不想暴露他的内部表示的时候,可以使用迭代器模式来提供迭代器接口,从而让客户端只是通过迭代器的接口来访问聚合对象,而无须关心聚合对象的内部实现.2.如果你希望有多种遍历方式可以访问聚合对象,可以使用...3.如果你希望为遍历不同的聚合对象提供一个统一的接口,可以使用....17.中介模式(Mediator) 发音:['mi:dieitə]定义:用一个中介对象类封装一系列对象的交互.中介者使得各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变他们之间的交互.使用场合:1.如果一组对象之间的通信方式比较复杂,导致相互依赖,结构混乱,可以采用中介模式,把这些对象相互的交互管理起来,各个对象都只需要和中介者交互,从而是的各个对象松散耦合,结构也更清晰易懂.2.如果一个对象引用很多的对象,并直接跟这些对象交互,导致难以复用该对象,可以采用中介者模式,把这个对象跟其他对象的交互封装到中介者对象里面,这个对象只需要和中介者对象交互就可了.18.备忘录模式(Memento)发音: [mɪ'mentəʊ]在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态.这样以后就可将该对象恢复到原先保存的状态.使用场合:1.如果必须要保存一个对象在某一个时刻的全部或者部分状态,方便以后需要的时候,可以把该对象恢复到先前的状态,可以使用备忘录模式.2.如果需要保存一个对象的内部状态,但是如果用接口来让其他对象直接得到这些需要保存的状态,将会暴露对象的实现希捷并破坏对象的封装性,这是可以使用备忘录.19.观察者模式(Observer)发音: [əb'zɜːvə]定义:定义对象间的一种一对多的依赖关系.当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新.使用场合;1.当一个抽象模型有两个方面,其中一个方面的操作依赖于另一个方面的状态变化,那么就可以选用观察者模式,将这两者封装成观察者和目标对象,当目标对象变化的时候,依赖于它的观察者对象也会发生相应的变化.这样就把抽象模型的这两个方面分离了使得,它们可以独立地改变和复用.2.如果在更改一个对象的时候,需要同时连带改变其他对象,而且不知道究竟应该有多少对象需要被连带改变,这种情况可以选用观察者模式,被改的那一个对象很明显就相当于是目标对象,而需要连带修改的对歌其他对象,就作为多个观察着对象了.3.当一个对象必须通知其他的对象,但是你又希望这个对象和其他被它通知的对象是松散耦合的,也就是说这个对象其实不详知道具体被通知的对象.这种情况可以选用观察者模式,这个对象就相当于是目标对象,而被它通知的对象就是观察者对象了.20.状态模式(State)发音: [steɪt]允许一个对象在其内部状态改变是改变它的行为.对象看起来似乎修改了他的类.使用场合:1.如果一个对象的行为取决于它的状态,而且它必须在运行时刻根据状态来改变它的行为,可以使用...来包状态和行为分离开.虽然分离了,但是状态和行为是有对应关系的,可以在运行期间,通过改变状态,就能够调用到该状态对应的状态处理对象上去从而改变对象的行为.2.如果一个操作中含有庞大的多分枝语句,而且这些分支依赖于该对象的状态,可以使用....把各个分支的处理分散包装到单独的对象处理类中,这样,这些分支对应的对象就可以不依赖于其他对象而独立变化了.21.策略模式(Strategy)发音: ['strætɪdʒɪ]定义:定义一系列的算法,把它们一个个封装起来,并且使他们可以相互替换.本模式使得算法可独立于使用它的客户而变化.使用场合;1.出现有许多相关的类,仅仅是行为有差别的情况下,可以使用策略模式来使用多个行为中的一个来配置一个类的方法,实现算法动态切换2.出现同一算法,有很多不同实现的情况下,可以使用策略模式来把这些"不同的实现"实现成为一个算法的类层次.3.需要封装算法中,有与算法相关数据的情况下,可以使用策略模式来避免暴露这些跟算法相关的数据结构.4.出现抽象一个定义了很多行为的类,并且是通过多个if-else语句来选择这些行为的情况下,可以使用策略模式来替换这些条件语句.22.模版方法模式(Template Method)发音:['templeɪt; -plɪt]定义:定义在一个操作中的算法框架,把一些步骤推迟到子类去实现.模版方法模式让子类不需要改变算法的结构而重新定义特定的算法步骤功能:1.能够解决代码的冗余问题2.把某些算法步骤延迟到子类3.易于扩展4.父类提供了算法框架,控制了算法的执行流程,而子类不能改变算法的流程,子类的方法的调用由父类的模版方法决定.5.父类可以把那些重要的,不允许改变的方法屏蔽掉,不让子类去复写他们.1.需要固定定义算法骨架,实现一个算法的不变的部分,并把可变的行为留给子类来实现的情况.2.各个子类中具有公共行为,应该抽取出来,集中在一个公共类中去实现,从而避免复杂的代码重复3.需要控制子类扩展的情况.模版方法模式会在特定的点来调用子类的方法,这样只允许在这些点进行扩展.知识:回调:表示一段可执行逻辑的引用(或者指针),我们把该引用(或者指针)传递到另外一段逻辑(或者方法)里供这段逻辑适时调用(网站:)23.访问者模式(Visitor)发音:['vɪzɪtə]定义:表示一个作用于某对象结构中的各个元素的操作.它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作.使用场合:1.如果想对一个对象结构实施一些依赖于对象结构中具体类的操作,可以使用访问者模式.2.如果想对一个对象结构中的各个元素进行很多不同的而且不相关的操作,为了避免这些操作使类变得杂乱,可以使用访问者模式.3.如果对象结构很少变动,但是需要经常给对象结构中的元素定义新的操作,可以使用访问者模式.3.如果对象结构很少变动,但是需要经常给对象结构中的元素定义新的操作,可以使用访问者模式.。
23种设置模式
OO中对于23种设计模式的整理设计模式的分类1.抽象工厂Abstract FACTORY厂模式:客户类和工厂类分开,把各种需要使用到的实例的创建方法统一单独写成抽象类,实现类具体实现创建过程,创建出来的对象类型用接口来表示,抽象工厂可以用在高层类中使用,不用考虑太多具体的创建细节,如何创建由工厂的具体实现去定义。
核心工厂类不再负责所有产品的创建,而是将具体创建的工作交给子类去做,成为一个抽象工厂角色,仅负责给出具体工厂类必须实现的接口,而不接触哪一个产品类应当被实例化这种细节。
2.BUILDER建造模式:将产品的内部表象和产品的生成过程分割开来,从而使一个建造过程生成具有不同的内部表象的产品对象。
建造模式使得产品内部表象可以独立的变化,客户不必知道产品内部组成的细节。
建造模式可以强制实行一种分步骤进行的建造过程。
3.FACTORY METHOD工厂方法模式:用一个方法来创建所需要的所有实例,跟抽象工厂的区别,就是不需要单独写个工厂类,相当于把抽象工厂类里面定义的抽象方法,合并到应用类里面,子类去实现就好了,比抽象工厂更简洁。
4. PROTOTYPE原始模型模式:通过给出一个原型对象来指明所要创建的对象的类型,然后用复制这个原型对象的方法创建出更多同类型的对象。
原始模型模式允许动态的增加或减少产品类,产品类不需要非得有任何事先确定的等级结构,原始模型模式适用于任何的等级结构。
缺点是每一个类都必须配备一个克隆方法。
5.SINGLETON单例模式:单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例单例模式。
单例模式只应在有真正的“单一实例”的需求时才可使用。
6.ADAPTER适配器(变压器)模式:把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口原因不匹配而无法一起工作的两个类能够一起工作。
适配类可以根据参数返还一个合适的实例给客户端。
7.BRIDGE桥梁模式:将抽象化与实现化脱耦,使得二者可以独立的变化,也就是说将他们之间的强关联变成弱关联,也就是指在一个软件系统的抽象化和实现化之间使用组合/聚合关系而不是继承关系,从而使两者可以独立的变化。
东北大学《软件设计模式(一)》在线平时作业3
学期《软件设计模式(一)》在线平时作业3以下()用来描述抽象工厂( Abstract Factory )模式。
A:提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们具体的类B:定义一个用于创建对象的接口,让子类决定实例化l哪一个类C:将一个类的接口转换成客户希望的另外一个接口D:表示一个作用于某对象结构中的各元素的操作参考选项:A对观察者模式,以下叙述不正确的是()。
A:必须找出所有希望获得通知的对象。
B:所有的观察者对象有相同的接口。
C:如果观察者的类型相同,目标就可以轻易地通知它们。
D:在大多数情况下,观察者负责了解自己观察的是什么,目标需要知道有哪些观察者依赖自己。
参考选项:A有关模板方法模式,以下叙述不正确的是()。
A:允许定义不同的子过程,同时维护基本过程的一致性。
B:将定义和操作相互分离。
C:创建一个抽象类,用抽象方法实现一个过程,这些抽象方法必须在子类中实现。
D:实现抽象方法的子类的步骤可以独立变化,并且这些步骤可以采用Strategy 模式来实现。
参考选项:B以下关于创建型模式说法正确的是()。
A:创建型模式关注的是对象的创建B:创建型模式关注的是功能的实现C:创建型模式关注的是组织类和对象的常用方法D:创建型模式关注的是对象间的协作参考选项:A以下有关 Abstract Factory(抽象工厂)模式正确的是( )。
A:Abstract Factory 的实例化方法就是具体工厂方法.B:Abstract Factory 类和具体工厂方法可以分离,每个具体工厂负责一个抽象工厂方法接口的实现C:由于 Abstract Factory 类和具体工厂方法可以分离,因此在实现时会产生更多的类.D:当问题存在相同的对象用于解决不同的情形时,应该使用抽象工厂模式.参考选项:A以下叙述不正确的是()。
1。
设计模式及其应用场景
设计模式及其应用场景
设计模式是指在编写一个应用程序时,应该考虑的常见问题的可重复使用的解决方案。
它们是软件设计过程中最重要的工具,并且能够提高程序的可扩展性,可重用性和可维护性。
设计模式的应用场景包括:
1. 工厂模式:工厂模式可用于创建一组相关或依赖对象,通常是使用一个工厂类来管理操作,以避免将创建代码集成到应用程序中。
2. 抽象工厂模式:抽象工厂模式是工厂模式的进一步抽象,它用于创建一组抽象产品对象,而不需要明确指定具体的产品类。
3. 单例模式:单例模式是一种将一个类的实例限制为一个的设计模式,它可以保证一个类只有一个实例,并且该实例易于访问,以满足特定需求。
4. 命令模式:命令模式是一种将动作封装到对象中的设计模式,它将请求、动作(action)和接收者(receiver)分离,从而使得发送者和接收者之间形成解耦。
5. 观察者模式:观察者模式是一种行为设计模式,它允许一个对象(观察者)注册另一个对象(主题)的更改,以便在主题更改时收到通知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计模式学习笔记(三)——Abstract Factory抽象工厂模式
抽象工厂是一种创建型模式,是为了解决实例化时所带来的问题。
我们先来看看是什么问题,有的时候我们会遇到这种情况,我们需要一系列的对象。
举个例子,有一系列BMW汽车零部件的对象:轮子bmwwheel,油箱bmwoilbox,在一个管理函数中调用它们,代码如下
class BMWWheel
{
public BMWWheel(){};
}
class BMWOilbox
{
public BMWOilbox(){};
}
public void Manage()
{
BMWOilbox oilbox = new BMWOilbox();
BMWWheel wheel = new BMWWheel();
}
如果现在需求变了,我们要用大众一汽BORA的零件,不用BMW的,那么我们除了要再加上相应的零件对象外还要将Manage函数中的对象更改为BORA的零件对象。
那这时发现new会带来了一些问题:实现依赖,不能应对具体实例化类型的变化。
如何解决这类问题呢?封装变化点。
(没有变化的就不需要封装)
工厂模式的缘起:
1、变化点在“对象创建”,因此就封装“对象创建”
2、面向接口编程
简单工厂问题:
1、不能应对“不同系列对象”的变化。
如:我们要在上面的代码中加上其他的对象就不能很好的应对了
2、使用面向对象国内的技术来封装变化点
动机:在软件系统中,经常面临着“一系列相互依赖的对象”的创建工作;同时,由于需求的变化,往往存在更多系列对象的创建工作。
面对这种问题,我们想绕过常规的对象创建方法,提供一种“封装机制”来避免客户程序和这种“多系列具体对象创建工作”的紧耦合。
对于“紧耦合”,我原来是不喜欢这个词的,但是今天明白了,不是程序紧耦合不好,而是面对频繁变化的需求,紧耦合会使程序的编写变得很吃力。
如果面对一个不变的需求,松耦合和紧耦合在代码编写上应该是没什么区别的。
《设计模式》中解释这种模式的意图是:提供一个接口,让该接口负责创建一系列“相关或者相互依赖的对象”,无需指定他们的具体类。
下面我们来看看如何使用抽象工厂模式完成对这种变化的封装:
首先我们的需求是BMW的车轮和油箱,当然他们要继承各自的基类,代码如下 abstract class AbstractWheel
{
public AbstractWheel()
{
//Console.Write("Create a AbstractProduct");
}
}
abstract class AbstractOilBox
{
public AbstractOilBox()
{}
}
class BMWWheel:AbstractWheel
{
public BMWWheel()
{
Console.Write("Create a BMWwheel");
}
}
class BMWOilBox:AbstractOilBox
{
public BMWOilBox()
{
Console.Write("Create a BMWOilBox");
}
}
然后,我们在建立一个生产这些零件的工厂,它继承自一个抽象工厂
//抽象工厂
abstract class AbstractFactory
{
abstract public AbstractWheel CreatWheel();
abstract public AbstractOilBox CreatOilBox();
}
class BMWFactory:AbstractFactory
{
public override AbstractWheel CreatWheel()
{
return new BMWWheel();
}
public override AbstractOilBox CreatOilBox()
{
return new BMWOilBox();
}
}
现在我们在Main函数中调用它们:
static void Main(string[] args)
{
AbstractFactory factory = null;
factory = new BMWFactory();
factory.CreatWheel();
Console.Write("\n");
factory.CreatOilBox();
Console.Write("\n");
Console.Read();
}
显示结果:
Create a BMWwheel
Create a BMWOilBox
现在我们想不用BMW的零件,用BORA的零件了,先写一些BORA零件的类: class BORAWheel:AbstractWheel
{
public BORAWheel()
{
Console.Write("Create a BORAWheel");
}
}
class BORAOilBox:AbstractOilBox
{
public BORAOilBox()
{
Console.Write("Create a BORAOilBox");
}
}
然后我们再创建BORA零件的工厂:
class BORAFactory:AbstractFactory
{
public override AbstractWheel CreatWheel()
{
return new BORAWheel();
}
public override AbstractOilBox CreatOilBox()
{
return new BORAOilBox();
}
}
再来看看如何在Main函数中修改使其调用BORA的零件;我们只要在将Main中的f actory对象实例化为BORA的工厂BORAFactory就可以了:
static void Main(string[] args)
{
AbstractFactory factory = null;
factory = new BORAFactory();
factory.CreatWheel();
Console.Write("\n");
factory.CreatOilBox();
Console.Write("\n");
Console.Read();
}
结果如下:
Create a BORAWheel
Create a BORAOilBox
Abstract Factory模式的几个要点:
1、如果没有应对“多系列对象构建”的需求变化,则没有必要使用Abstract Fact ory模式。
2、“系列对象”指的是这项对象之间有相互依赖、或作用的关系。
3、Abstract Factory模式主要在于应对“新系列”的需求变动。
缺点是难以应对“新
对象”的需求变动。
这一点应该注意,就像前面说的,如果我们现在要在加入其他系列的类,代码的改动会很大。
4、Abstract Factory模式经常和Factory Method模式共同组合来应对“对象创建”的需求变化。