第七章_(二)可逆电池的电动势及其应用new

合集下载

物理化学07章2_可逆电池

物理化学07章2_可逆电池
上一内容 下一内容 回主目录 返回
2017/1/6
例题:电池与化学反应
写出这些电池作正极时的电极反应(得电子) Hg-HgCl2(s)|ClAg-Ag2O(s)|H2O,OHAg2O(s) + H2O +2e → 2Ag + 2OHHgCl2(s) +2e → 2Hg +2Cl-
(Pt)|Cr3+, Cr2O72-,H+
Sn 4+(a1)+2e- →Sn 2+(a2)
上一内容
下一内容
回主目录
返回
2017/1/6
对消法测定电动势的原理图
E=(R0+Ri)I U=R0I
当R0→∞时,有:
R0+Ri→R0 E≈U
上一内容 下一内容 回主目录 返回
2017/1/6
对消法测电动势的实验装置
标准电池 待测电池 工作电源
2017/1/6
组成可逆电池的必要条件
两个基本条件:
• 可逆电池放电时的反应与充电时的反应必须完 全一致。 • 可逆电池所通过的电流必须为无限小。 *在不同的电解质的界面上不存在扩散现象。用盐桥消除
研究可逆电池的目的:
1、化学能转化为电能的最高极限,改善电池性能; 2、为解决热力学问题提供电化学方法和手段。
上一内容 下一内容 回主目录 返回
2017/1/6
从化学反应设计电池(3)
将反应H2(g, P(H2) )+1/2O2(g, P(H2)) →H2O(l) 设计 成电池 在该题中,被氧化的物质:H2 (g, P(H2) ) 被还原的物质:O2 (g, P(O2)) 氧化还原的产物:H2O(l) 此外,在氢电极和氧电极中均涉及到介质的问 题,我们首先看看。

(二) 可逆电池电动势

(二) 可逆电池电动势

K a (2) = K a (1)
θ
[
]
2
14
3. 由电动势及电动势温度系数值求反应的∆rHm、∆rSm、Qr 由电动势及电动势温度系数值求反应的∆
( ∆ r G m ) T , p = − nFE
∆ rSm
∂E = nF ∂T p
∆ rGm = ∆ r H m − T∆ r Sm
电极电势差紧密层电势扩散层电势24接触电势通常指两种金属相接触时在界面上产生的电势差如cupt由于金属的电子逸出功不同当相互接触时相互逸入的电子数目不相等在接触界面上就形成双电层由此产生电势差称为接触电势
(二)可逆电池电动势
原电池(galvanic cell)运行时将化学能转变为电能。条件: 运行时将化学能转变为电能。 原电池 运行时将化学能转变为电能 条件: (1) 化学反应为氧化还原反应,或者电极反应为氧化还原 化学反应为氧化还原反应, 反应。 反应。 (2) 给予适当的装置,使化学反应分别在电极上反应。 给予适当的装置,使化学反应分别在电极上反应。 (3) 电解质溶液 作用: ①导电, ②提供必需的离子 ,如:水 电解质溶液(作用 作用: 导电, 提供必需的离子), 溶液,非水溶液,熔盐和固体电解质。 溶液,非水溶液,熔盐和固体电解质。 (4) 电极和导线 导电 电极和导线(导电 导电) 如:Zn+CuSO4=ZnSO4+Cu 设计为铜—锌电池 设计为铜 锌电池(Deniell cell): 锌电池 :
7
2. 可逆电极的类型和电极反应 构成可逆电池的电极必须是可逆电极。 构成可逆电池的电极必须是可逆电极。电化学中的电极 由电子导体和离子导体组成。可逆电极有三种类型: 由电子导体和离子导体组成。可逆电极有三种类型: (1)第一类电极:由物质B在含有该物质离子的溶液中构成。 第一类电极:由物质 在含有该物质离子的溶液中构成 在含有该物质离子的溶液中构成。 第一类电极 金属电极: 如:Ni2+/Ni 金属电极: 放电 2+ +2e- → Ni(s) 电极反应: ← 电极反应: Ni 充电 + 起导电作用) 起导电作用 气体电极: 气体电极: Pt | H / H2 (Pt起导电作用 汞齐电极: 汞齐电极:如:Na+/Na(Hg)

可逆电池电动势及其应课件

可逆电池电动势及其应课件
) Pt , H2 ( P)HCl (0.06m) || HCl (0.001m)Cl2 (0.05P) , Pt (+
精选ppt
) Pt , H2 ( P)HCl (0.06m) || HCl (0.001m)Cl2 (0.05P) , Pt (+
精选ppt
四、构成可逆电极的条件
1)反应(物质)可逆; 2)电极上正、逆反应速度相当(正、逆
反应难易程度相当),从实用角度看 ,充、放电过程难易相当。
精选ppt
例如电池: Pt,H2 HCl(m)AgCl Ag (单液电池)
为热力学上严格的可逆电池:
1)H+、H2 在 Pt 上的氧化、还原反应的 难易程度相当;
精选ppt
若采用盐桥法可消除 液接电势,近似地当 作可逆电池。
但严格地说:双液电 池肯定有液接电势, 热力学不可逆。
所以说丹尼尔电池不是可逆电池。
前面介绍的几个电池中Leabharlann 只有铅蓄电池在 i 0 时为可逆电池。
精选ppt
例:单液的可逆电池
放电: Pt ) ½ H2 e H+ Ag +)AgCl + e Ag + Cl
总反应:Pb + PbO2+ 2H2SO4 2PbSO4 + 2H2O
充电:阴)Pb:PbSO4 + 2e Pb + SO42
阳)PbO2:PbSO4 + 2H2O PbO2 + SO42 + 4H+ + 2e
总反应:2PbSO4 + 2H2O Pb + PbO2+ 2H2SO4
电极反应、总反应完全化学可逆。
例如:

07章_可逆电池的电动势及其应用

07章_可逆电池的电动势及其应用

8 8 2Cd( 汞齐) SO 4 H 2O(l) CdSO 4 H 2O(s) 2e 3 3
阴极:
8 8 电池反应 : Cd( 汞齐) Hg 2SO 4 (s) H 2O(l) 2Hg(l) CdSO 4 H 2O(s) 3 3
上一内容 下一内容 回主目录
' r , max
当可逆电池的反应进度=1mol时
下一内容 回主目录
返回
2016/1/6
化学反应设计成电池做功和热机做功区别
根据热力学原理,恒温恒压下,1mol反应进度放热化学反应对外能 放出的热是Qm为反应的摩尔反应焓变 r Hm 。
这一热量通过热机对外做 功或发电
目前最高能量转化 率40 %
上一内容 下一内容 回主目录
返回
2016/1/6
可逆电池可逆电池的必备条件
实际上并不是所有的电池都是可逆的 当电池电动势E >E外 ,电池对外放电, 其反应为: 正极反应: 2H+ +2e → H2 负极反应: Zn -2e → Zn2+ 电池反应: Zn +2H+ → Zn2+ + H2 当E < E外 ,对电池充电,其反应为: 正极反应: Cu-2e → Cu2+ 负极反应: 2H+ +2e → H2 电池反应: Cu+2H+ → Cu2++ H2
由 rGm和rSm 两个量,就可以容易地求得:
E Δr H m ΔrGm TΔr Sm zFE zFT T p (7.6.5)
E
这个rHm 是在没有非体积功的情况下,恒温恒压反应热。 因为电动势容易精确测定,所以按上式求
Zn
Cu
HCl 不满足充、放 电反应互为可逆 反应,因此,这 个电池不是可逆 电池。 P-319

可逆电池电动势及应用

可逆电池电动势及应用

可逆电池电动势及应用可逆电池是指在一定条件下,电池的氧化还原反应既可以正向进行,也可以逆向进行,进而可以通过外加电势来实现电能的存储和释放。

可逆电池的电动势是指在电池没有电流通过时,测得的产生的电动势。

可逆电池的电动势主要是由电极反应引起的。

在可逆电池中,每一个电极都有自己的电对,可以分别写出其电对的反应方程式。

例如,在可逆电池中,如果正极是铜,负极是锌,则其电对可以写作:Cu2+ + 2e- -> Cu (正极反应)Zn -> Zn2+ + 2e- (负极反应)在可逆电池中,正极与负极之间既可以发生正极反应,也可以发生负极反应。

当外加电势为正极时,正极反应发生;当外加电势为负极时,负极反应发生。

当外加电势为零时,正负极反应同时发生,而且它们的速率相等。

因此,在可逆电池中,电化学动力学状态迅速达到平衡状态,电池的电动势不会因为正负极反应到达平衡而发生变化。

应用方面,可逆电池具有以下几个方面的重要应用。

1. 电能存储和释放:可逆电池是一种可充放电电池,可以通过外加电势电化学反应的正向和逆向来在化学能和电能之间进行转换。

电池在充电状态下将电能转化为化学能,而在放电状态下将化学能转化为电能。

可逆电池被广泛应用于手机、笔记本电脑、电动车等各种移动设备中,能够实现电能的高效存储和释放。

2. 电源备份:可逆电池的典型例子是蓄电池,它们能够储存电能并在需要时释放出来。

蓄电池被应用于各种场合,如UPS电源、太阳能和风能储能系统、汽车启动电池等。

蓄电池的高可逆性和长寿命使得它们成为电力系统的备用电源,确保供电的稳定性和可靠性。

3. 温度控制:可逆电池也被应用于温度控制的设备中,如恒温器和温度计。

可逆电池在恒温器中起到稳定温度的作用,通过测量温度引起的电动势差,来调整继电器的工作状态,从而实现恒定的温度控制。

4. 电化学分析:可逆电池的电动势在电化学分析中也具有重要的应用价值。

通过测量可逆电池的电动势变化,可以对溶液中的阳离子或阴离子进行定量分析。

07章2_可逆电池

07章2_可逆电池
= nEF 以电功的形式做非体积功。
又因为电动势的测量精确度高,所以由此计算 的热力学函数的变化值远较直接量热法测得准确。 因而在热力学研究中,对于可安排成电池的化 学反应,总是通过测量E和(∂E/∂T)p以求得△rGm , △rHm ,△rSm。
上一内容 下一内容 回主目录 返回
2013-1-2
(-) H2(p)→2H+(aH+)+2e(+) Cl2(p)+2e-→2Cl-(aCl-) →2HCl(a)(2)
净反应:H2(p)+Cl2(p)→2H+(aH+)+ 2Cl-(aCl-)(1)
能斯特方程:
E1 E
$
RT zF
ln
aH aCl

2
2

aH aCl
2
2
aB a a a v v m a m
RT RT vB E ln( aB )平 ln K B zF zF
G zE F $ G RT ln K
$ r m $ r m $
$ $
RT $ E ln K zF
$
$ $
$ r Gm 将两者从数值上联系在 处于平衡态,只是
E 与 K 所处的状态不同, 处于标准态, E K
v v v
返回
2013-1-2
上一内容
下一内容
回主目录
E与a(活度)的关系
(1)
a a
2 H
2 Cl
aH aCl


2
a m m
一起。
上一内容 下一内容 回主目录 返回
2013-1-2
E , rGm 和 K $ 与电池反应的关系

2023年大学_物理化学简明教程(邵谦著)课后答案下载

2023年大学_物理化学简明教程(邵谦著)课后答案下载

2023年物理化学简明教程(邵谦著)课后答案下载2023年物理化学简明教程(邵谦著)课后答案下载绪论0.1 物理化学的研究对象及其重要意义0.2 物理化学的研究方法0.3 学习物理化学的方法第一章热力学第一定律(一)热力学概论1.1 热力学的研究对象1.2 几个基本概念(二)热力学第一定律1.3 能量守恒--热力学第一定律1.4 体积功1.5 定容及定压下的热1.6 理想气体的热力学能和焓1.7 热容1.8 理想气体的绝热过程1.9 实际气体的节流膨胀(三)热化学1.10 化学反应的热效应1.11 生成焓及燃烧焓1.12 反应焓与温度的关系--基尔霍夫方程思考题第二章热力学第二定律2.1 自发过程的共同特征2.2 热力学第二定律的经典表述2.3 卡诺循环与卡诺定理2.4 熵的概念2.5 熵变的计算及其应用2.6 熵的物理意义及规定熵的计算2.7 亥姆霍兹函数与吉布斯函数2.8 热力学函数的?些重要关系式2.9 厶C的计算__2.10 非平衡态热力学简介思考题第三章化学势3.1 偏摩尔量3.2 化学势3.3 气体物质的化学势3.4 理想液态混合物中物质的化学势 3.5 理想稀溶液中物质的化学势3.6 不挥发性溶质理想稀溶液的依数性 3.7 非理想多组分系统中物质的化学势思考题第四章化学平衡4.1 化学反应的方向和限度4.2 反应的标准吉布斯函数变化4.3 平衡常数的各种表示法4.4 平衡常数的实验测定4.5 温度对平衡常数的影响4.6 其他因素对化学平衡的影响思考题第五章多相平衡5.1 相律(一)单组分系统5.2 克劳修斯一克拉佩龙方程5.3 水的相图(二)二组分系统5.4 完全互溶的双液系统__5.5 部分互溶的双液系统__5.6 完全不互溶的双液系统5.7 简单低共熔混合物的固一液系统 5.8 有化合物生成的固一液系统__5.9 有固溶体生成的固一液系统(三)三组分系统5.10 三角坐标图组成表示法__5.11 二盐一水系统__5.12 部分互溶的三组分系统思考题第六章统计热力学初步6.1 引言6.2 玻耳兹曼分布6.3 分子配分函数6.4 分子配分函数的求算及应用第七章电化学(一)电解质溶液7.1 离子的迁移7.2 电解质溶液的电导7.3 电导测定的应用示例7.4 强电解质的活度和活度系数__7.5 强电解质溶液理论简介(二)可逆电池电动势7.6 可逆电池7.7 可逆电池热力学7.8 电极电势7.9 由电极电势计算电池电动势7.10 电极电势及电池电动势的应用(三)不可逆电极过程7.11 电极的.极化7.12 电解时的电极反应7.13 金属的腐蚀与防护__7.14 化学?源简介第八章表面现象与分散系统(一)表面现象8.1 表面吉布斯函数与表面张力 8.2 纯液体的表面现象8.3 气体在固体表面上的吸附 8.4 溶液的表面吸附8.5 表面活性剂及其作用(二)分散系统8.6 分散系统的分类8.7 溶胶的光学及力学性质8.8 溶胶的电性质8.9 溶胶的聚沉和絮凝8.10 溶胶的制备与净化__8.11 高分子溶液思考题第九章化学动力学基本原理9.1 引言9.2 反应速率和速率方程9.3 简单级数反应的动力学规律9.4 反应级数的测定9.5 温度对反应速率的影响9.6 双分子反应的简单碰撞理论9.7 基元反应的过渡态理论大意__9.8 单分子反应理论简介思考题第十章复合反应动力学10.1 典型复合反应动力学10.2 复合反应近似处理方法10.3 链反应__10.4 反应机理的探索和确定示例10.5 催化反应10.6 光化学概要__10.7 快速反应与分子反应动力学研究方法简介思考题附录Ⅰ.某些单质、化合物的摩尔热容、标准摩尔生成焓、标准摩尔生成吉布斯函数及标准摩尔熵Ⅱ.某些有机化合物的标准摩尔燃烧焓(298K)Ⅲ.不同能量单位的换算关系Ⅳ.元素的相对原子质量表Ⅴ.常用数学公式Ⅵ.常见物理和化学常数物理化学简明教程(邵谦著):内容简介本教材自8月出版以来,受到了广大读者,特别是相关高校师生的厚爱,并被许多高校选作教材。

第七章 可逆电池的电动势及其应用

第七章 可逆电池的电动势及其应用

第七章 可逆电池的电动势及其应用教学目的:通过本章学习能熟练掌握可逆电池的热力学,能熟练、正确地写出所给电池的电极反应和电池反应并能计算电动势。

教学要求:明确电动势与m r G ∆的关系。

熟悉标准电极电势表的应用。

对于所给的电池能熟练、正确地写出电极反应和电池反应并能计算电动势。

明确温度对电动势的影响及了解m r H ∆和m r S ∆的计算。

了解电动势产生的机理及电动势测定法的一些应用。

教学重点和难点电动势和能斯特方程式,用电化学法测定并计算热力学函数平衡常数。

教学方法:讲授法和讨论法相结合,双边交流教学用具:多媒体教学内容:第一节 可逆电池和可逆电极应用热力学原理来研究电池,必须首先区别电池反应是可逆过程还是不可逆过程。

当电池的反应是可逆过程时,热力学原理才能应用于研究电池的问题。

一、可逆电池和不可逆电池根据力学可逆过程的定义,可逆电池必须满足下面两个条件。

1.电极上的化学反应可以向正反两个方向进行,对应的放电反应与充电反应必须互为逆反应。

E>E 外时作为原电池,发生的是放电反应;E<E 外时作为电解池,发生的是充电反应2.可逆电池在放电或充电时所通过的电流必须无限小,以使电池在接近平衡状态下工作。

此时,若作为原电池它能做出最大有用功,若作为电解池它消耗的电能最小。

换言之,如果设想能把电池放电时所放出的能量全部储存起来,则用这些能量充电,就恰好可以使体系和环境均恢复原状。

3.电池中没有不可逆的液体接界存在。

只有同时满足上述三个条件的电池才是可逆电池,即可逆电池在充电和放电时不仅物质转变是可逆的(即总反应可逆),而且能量的转变也是可逆的(即电极上的正、反向反应是在平衡状态下进行的)。

若不能同时满足上述两个条件的电池均是不可逆电池。

不可逆电池两电极之间的电势差E ′将随具体工作条件而变化,且恒小于该电池的电动势,此时△G T, p <-nFE ′。

研究可逆电池十分重要,因为从热力学来看,可逆电池所作的最大有用功是化学能转变为电能的最高极限,这就为我们改善电池性能提供了一个理伦依据,另一方面在研究可逆电池电动势的同时,也为解决热力学问题提供了电化学的手段和方法。

可逆电池的电动势

可逆电池的电动势

膜 孔

隔 硫酸水溶液
1
加电动势E 加电动势 电池 极(锌极 极 锌极) 锌极 极(铜极 铜极) 极 铜极
电池的电动势E时 电池的电动势 时 Zn-2e→Zn2+ 2H++2e→H2 Zn+2H+
电池
————————————————————————————
电池
Zn2++H2
2 当E外稍大于 时,则起电解池作用,其反应是: 稍大于E时 则起电解池作用,其反应是: 阴极(锌极 阴极 锌极) 锌极 阳极(铜极 铜极) 阳极 铜极 2H++2e→H2 Cu-2e→Cu2+
如何由原电池表示符号写出其化学反应式? 如何由原电池表示符号写出其化学反应式? 先分别写出左边电极(负极 进行的氧化反应和右边电 先分别写出左边电极 负极)进行的氧化反应和右边电 负极 正极)进行的还原反应 极(正极 进行的还原反应,然后相加得原电池反应。 正极 进行的还原反应,然后相加得原电池反应。 写出下列原电池的电池反应: 例2.1 写出下列原电池的电池反应: -) Pt,H2(101325Pa)|HCl(a=1)|AgCl(s),Ag(s)(+ | = | 负极) 解:左边(负极 左边 负极 右边(正极 右边 正极) 正极 H2(101325Pa)→2H+(aH+=1)+2e 2AgCl(s)+2e→2Ag(s)+2Cl-(aCl-=1) (+
三、 电动势产生的种类和机理
1、界面电势差
在金属与溶液的界面上,由于正、负离子静电吸引 和热运动两种效应的结果,溶液中的反离子只有一部分 • 一 紧密地排在固体表面附近,相距约一、二个离子厚度称 为紧密层;

可逆电池的电动势及其应用

可逆电池的电动势及其应用
答:从Hg-Cd的相图可知,在室温下, 镉汞齐中镉含量在5~14%之间时,体 系处于熔化物和固溶体两相平衡区, 镉汞齐活度有定值。而标准电池电动 势只与镉汞齐的活度有关,所以也有 定值。
Weston标准电池电动势与温度的关系:
ET / V=1.01845 - 4.05×10-5(T/K-293.15) - 9.5×10-7(T/K-293.15)2 +1×10-8(T/K-293.15)3
可逆电池的电动势及其应用
主要内容
可逆电池和可逆电极
电动势的测定
可逆电池的书写方法及电动势的取号
可逆电池的热力学
电动势产生的机理
电极电势和电池的电动势
浓差电池和液体接界电势的计算公式
电动势测定的应用 生物电化学
本章总结复习 典型例题
§ 7.6 可逆电池和可逆电极
(Reversible cells and reversible electrodes)
对消法测定电动势的原理图(自学)
E = (R0 + Ri) I U = R0 I 当 R0→∞ 时,有: R0 + Ri → R0 E≈U
对消法测电动势的实验装置
待测电池
标准电池
工作电源
检流计
物理化学基础实验!!!
电位计
标准电池:
电池反应: (-) Cd(Hg)→Cd2++Hg(l)+2e(+)Hg2SO4(s)+2e-→2Hg(l)+SO42-
处于平衡态,只是 rGm 将两者从数值上联系在
一起。
问题: ① H2 (p) + Cl2 (p) → 2H+ (a+) +2Cl- (a-) ② 1/2H2 (p) +1/2Cl2 (p) → H+ (a+) + Cl- (a-)

可逆电池的电动势及其应用

可逆电池的电动势及其应用
要发展方向。
钠离子电池
钠离子电池具有资源丰富、成本 低廉等优势,其研发和应用逐渐 受到关注,有望成为大规模储能
领域的重要选择。
电池生产成本的降低
规模经济
随着电池产量的增加和技术的成 熟,电池生产成本逐渐降低,使 得电动汽车等产品更具市场竞争
力。
材料优化
通过改进材料制备工艺和选用低成 本材料,可以降低电池生产成本, 提高经济效益。
金属或氧化物组成。
负极
电池中发生氧化反应的 电极,通常由低电势的
金属或还原物组成。
电解液
连接正负极的介质,具 有离子导电性,能够传
递电荷。
隔膜
防止正负极直接接触, 避免短路,同时允许离
子通过。
电池的工作过程
充电过程
在外加电压的作用下,正极上的 电子通过外部电路流向负极,同 时电解液中的正离子向正极移动 ,负离子向负极移动。
绝对温度(K)
气体常数(8.314 J/(mol·K))
R
InQ T
电动势的计算公式
I
电流(A)
R
外电路电阻(Ω)
S
电极反应的电子当量(mol)
影响电动势的因素
温度
温度对电动势的影响较大,随着温度的升高,电动势通常 会降低。
浓度
反应物和生成物的浓度也会影响电动势,浓度变化会影响 电极电位,从而影响电动势。
可逆电池的电动势及其应用
目录
CONTENTS
• 可逆电池的电动势 • 可逆电池的工作原理 • 可逆电池的应用 • 可逆电池的发展趋势与挑战 • 可逆电池与其他能源的比较
01
CHAPTER
可逆电池的电动势
电动势的定义
01
02

物化第七章可逆电池电动势及其应用概要

物化第七章可逆电池电动势及其应用概要

电极反应
Mz+(a+)+ze- →M(s) 2H+(a+)+2e- →H2(p)
OH-(a-)|H2(p),Pt
H+(a+)|O2(p),Pt
2H2O+2e- →H2(p)+2OH-(a-)
O2(p)+4H+(a+)+4e- →2H2O
OH-(a-)|O2(p),Pt
Cl- (a-)|Cl2(p),Pt Na+(a+)|Na(Hg)(a)
(+) Cl2(p2)+2e-→2Cl-(aCl-)
净反应:
H2(p1)+Cl2(p2)→2H+(aH+)+ 2Cl-(aCl-) (1)
→2HCl(a)
上一内容 下一内容 回主目录
(2)
返回
2018/11/14
(1) E与a(活度)的关系
(1) r Gm,1 r Gm RT ln
回主目录
返回
2018/11/14
(4) 从E和
(
E )p T
求rHm和rSm
G S T p
(G) S T p
dG SdT Vdp
( zEF ) r Sm T p
E QR T r Sm zFT T p
我国在1975年提出的公式为:
ET/V=E(293.15K)/V-{39.94(T/K-293.15) +0.929(T/K-293.15)2 - 0.009(T/K-293.15)3 +0.00006(T/K-293.15)4}×10-6

第七章 可逆电池的电动势及其应用#(精选.)

第七章 可逆电池的电动势及其应用#(精选.)

第七章 可逆电池的电动势及其应用教学目的:通过本章学习能熟练掌握可逆电池的热力学,能熟练、正确地写出所给电池的电极反应和电池反应并能计算电动势。

教学要求:明确电动势与m r G ∆的关系。

熟悉标准电极电势表的应用。

对于所给的电池能熟练、正确地写出电极反应和电池反应并能计算电动势。

明确温度对电动势的影响及了解m r H ∆和m r S ∆的计算。

了解电动势产生的机理及电动势测定法的一些应用。

教学重点和难点电动势和能斯特方程式,用电化学法测定并计算热力学函数平衡常数。

教学方法:讲授法和讨论法相结合,双边交流教学用具:多媒体教学内容:第一节 可逆电池和可逆电极应用热力学原理来研究电池,必须首先区别电池反应是可逆过程还是不可逆过程。

当电池的反应是可逆过程时,热力学原理才能应用于研究电池的问题。

一、可逆电池和不可逆电池根据力学可逆过程的定义,可逆电池必须满足下面两个条件。

1.电极上的化学反应可以向正反两个方向进行,对应的放电反应与充电反应必须互为逆反应。

E>E 外时作为原电池,发生的是放电反应;E<E 外时作为电解池,发生的是充电反应2.可逆电池在放电或充电时所通过的电流必须无限小,以使电池在接近平衡状态下工作。

此时,若作为原电池它能做出最大有用功,若作为电解池它消耗的电能最小。

换言之,如果设想能把电池放电时所放出的能量全部储存起来,则用这些能量充电,就恰好可以使体系和环境均恢复原状。

3.电池中没有不可逆的液体接界存在。

只有同时满足上述三个条件的电池才是可逆电池,即可逆电池在充电和放电时不仅物质转变是可逆的(即总反应可逆),而且能量的转变也是可逆的(即电极上的正、反向反应是在平衡状态下进行的)。

若不能同时满足上述两个条件的电池均是不可逆电池。

不可逆电池两电极之间的电势差E ′将随具体工作条件而变化,且恒小于该电池的电动势,此时△G T, p <-nFE ′。

研究可逆电池十分重要,因为从热力学来看,可逆电池所作的最大有用功是化学能转变为电能的最高极限,这就为我们改善电池性能提供了一个理伦依据,另一方面在研究可逆电池电动势的同时,也为解决热力学问题提供了电化学的手段和方法。

电化学之可逆电池的电动势及其应用讲解

电化学之可逆电池的电动势及其应用讲解

8
(一)可逆电池与不可逆电池
4.电池符号与电池反应的互译 (1)电池符号的写法 (2)不同类型电池的设计
9
(二)电动势产生的机理
(二)电动势产生的机理 1.产生原因
() Cu' | Zn | ZnSO4 (a1) | CuSO4 | Cu()
接触 -
扩散
+
E = - + 扩散 + +
17
(四)可逆电池的热力学
(四)可逆电池的热力学
1、从E和
(
E T
)
p
求DrHm和DrSm
Dr Gm zEF
判据;最大有效功
D
r Sm

zF

E T
p
温度系数:单位V/K
QR D r Hm
TD D
r Sm zFT rGm T D
E T p r Sm zEF
电化学II. 可逆电池电动势及其应用
II.可逆电池电动势及其应用
一、基本概念和公式 (一)可逆电池与不可逆电池
1. 可逆电池的条件 (1)电极上的化学反应可向正反两个方向进行
作为原电池(E>E外)的放电反应是作为电解池 (E<E外)的充电反应的逆反应。 (2)可逆电池在放电或充电时所通过的电流 必须无限小。 (3)电池中没有不可逆的液体接界存在。
2

Na+ (a ) nHg(l) e Na(Hg)(a)
5
(一)可逆电池与不可逆电池来自⑵第二类电极金属-难溶盐及其阴离子组成的电极 金属-氧化物电极
6
(一)可逆电池与不可逆电池
电极
电极反应(还原)

可逆电池的电动势及其应用PPT课件

可逆电池的电动势及其应用PPT课件

电池符号与电池反应互译
1、根据电池符号写出电池反应
Pt|H2(pH2)|H2SO4(a)|Hg2SO4(s)|Hg(l)
负极:H2(g)2H++2e
氧化反应(阳极)
正极:Hg2SO4(s)+2e
2Hg(l)+ SO
2 4
还原反应(阴极)
电池反应:
H2(g)+ Hg2SO4(s) 2Hg(l)+ H2SO4(a)
最后,用此电池写出对应的电池反应,与原反应对 比,以判定构成的电池是否正确。
负极: Ag Ag+ + e 正极: AgI(s) + e Ag + I 电池反应: AgI(s) Ag+ + I 与原反应相反,电池的正负极安排反了,应为
Ag| AgI(s) | I(a2) || Ag+ (a1)|Ag
() Zn(s) Zn2 2e
() 2AgCl(s) 2e 2Ag(s) 2Cl
净反应 Zn(s) 2AgCl(s) Zn2 2Cl 2Ag(s)
作电解池 阴极: Zn2 2e Zn(s) 阳极: 2Ag(s) 2Cl 2AgCl(s) 2e
净反应 Zn 2 2Cl 2Ag(s) Zn(s) 2AgCl(s)


相固






与镉汞齐的活度有关,

A
F
G
所以也有定值。
0 0.2 0.4
0.6 0.8 1.0
Hg
w(Cd)
Cd
§3 可逆电池的书写方法及电动势的取号
可逆电池的书写方法
1、左边为负极,起氧化作用,是阳极; 右边为正极,起还原作用,是阴极。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E(Ox|Red) = E
=E
K E 与 K 所处的状态不同, 处于标准态, E
处于平衡态,只是 r Gm 将两者从数值上联系在 一起.
上一内容 下一内容 回主目录
返回
2010-6-19
(3) E ,r Gm 和 K 与电池反应的关系
例如: ① H2( p )+Cl2( p )→2H+(a+)+2Cl-(a-) ② H2( p )+ Cl2( p )→H+(a+)+Cl-(a-)
r H m = r Gm + T r S m
上一内容 下一内容 回主目录
E r S m = zF T p
E = zEF + zFT T p
返回
2010-6-19
7.5 电动势产生的机理 界面电势差
在金属与溶液的界面上,由于正,负离子静电吸引 和热运动两种效应的结果,溶液中的反离子只有一部分 紧密地排在固体表面附近,相距约一,二个离子厚度称 为紧密层; 另一部分离子按一定的浓 度梯度扩散到本体溶液中, 称为扩散层.紧密层和扩散 层构成了双电层.金属表面 与溶液本体之间的电势差即 为界面电势差.
第七章 (二)可逆电池的电动势及其应用
主要内容
可逆电池和可逆电极 电动势的测定 可逆电池的书写方法及电动势的取号 写 可逆电池的热力学 电动势产生的机理 电极电势和电池的电动势 浓差电池和液体接界电势的计算公式 电动势测定的应用
上一内容
下一内容
回主目录
返回
2010-6-19
7.1 组成可逆电池的必要条件
上一内容 下一内容
电极反应
Mz+(a+)+ze- →M(s) 2H+(a+)+2e- →H2(p) 2H2O+2e- →H2(p)+2OH-(a-) O2(p)+4H+(a+)+4e- →2H2O O2(p)+2H2O+4e- →4OH-(a-) Cl2(p)+2e- →2Cl-(a-) Na+(a+)+nHg+e- →Na(Hg)n(a)
上一内容 下一内容 回主目录
返回
2010-6-19
可逆电池电动势的取号
rGm=-zEF
自发电池: 非自发电池: 例如: Zn(s)|Zn2+||Cu2+|Cu(s) Zn(s)+Cu2+→Zn2++Cu(s) Cu(s)|Cu2+||Zn2+|Zn(s) Zn2++Cu(s)→Zn(s)+Cu2+
返回
2010-6-19
7.4 可逆电池的热力学
E与活度a的关系 从E 求平衡常数K E, r Gm 和K 与电池反应的关系 从E及其温度系数求 r H m , r Sm
上一内容
下一内容
回主目录
返回
2010-6-19
(1) E与a(活度)的关系 Pt,H2(p1)|HCl(0.1molkg-1)|Cl2(p2),Pt (-) H2(p1)→2H+(aH+)+2e(+) Cl2(p2)+2e-→2Cl-(aCl-) 净反应: H2(p1)+Cl2(p2)→2H+(aH+)+ 2Cl-(aCl-) (1) →2HCl(a)
上一内容 下一内容 回主目录
返回
2010-6-19
从化学反应设计电池(2) AgCl(s)→Ag++ClAg(s)|Ag+(aq)||HCl(aq)|AgCl(s)|Ag(s) 验证: (-) Ag(s) →Ag++e(+) AgCl(s)+e-→Ag(s)+Cl净反应: AgCl(s)→Ag++Cl上一内容 下一内容 回主目录
Φ扩散
+
Φ+
返回
Φ扩散 + Φ+
2010-6-19
7.6 电极电势和电池电动势 标准氢电极 氢标还原电极电势 电极电势计算通式 为何电极电势有正,负 二级标准电极——甘汞电极 电池电动势的计算
上一内容 下一内容 回主目录
返回
2010-6-19
标准氢电极 标准氢电极
Pt | H 2 (p ) | H + (aH + = 1)
上一内容 下一内容 回主目录
rGm<0,E>0 rGm>0,E<0
rGm<0,E>0 rGm>0,E<0
返回
2010-6-19
从化学反应设计电池(1) Zn(s)+H2SO4(aq)→H2(p)+ZnSO4(aq) Zn(s)|ZnSO4||H2SO4|H2(p),Pt 验证: (-) Zn(s) →Zn2++2e(+) 2H++2e-→H2(p) 净反应: Zn(s)+2H+→Zn2++H2(p)
ET/V=E(293.15K)/V-{39.94(T/K-293.15) +0.929(T/K-293.15)2 - 0.009(T/K-293.15)3 +0.00006(T/K-293.15)4}×10-6
通常要把标准电池恒温,恒湿存放,使电动势稳定.
上一内容 下一内容 回主目录
返回
2010-6-19
上一内容
下一内容
回主目录
返回
2010-6-19
第三类电极及其反应
电极
Fe3+(a1), Fe2+(a2)|Pt Cu2+(a1), Cu+(a2)|Pt Sn4+(a1), Sn2+(a2)|Pt
电极反应
Fe3+(a1)+e- →Fe2+(a2) Cu2+(a1)+e- →Cu+(a2) Sn4+(a1)+2e- →Sn2+(a2)
RT 2 2 E1 = E ln a+ a 2F RT E2 = E ln a+ a F
E1 = E2
r Gm (1) = 2 EF
RT E1 = ln K1 2F
上一内容 下一内容
r Gm (2) = EF
RT E2 = ln K 2 F
回主目录
r Gm (1) = 2 r Gm (2)
回主目录
返回
2010-6-19
第二类电极及其反应
电极
Cl-(a-)|AgCl(s)|Ag(s) OH-(a-)|Ag2O|Ag(s) H+(a+)|Ag2O(s)|Ag(s)
电极反应
AgCl(s)+e- →Ag(s)+Cl-(a-) Ag2O(s)+H2O+2 e→2Ag(s)+2OH-(a-) Ag2O+2H+(a+)+2e→2Ag(s)+H2O
例如有电池 作为原电池 Zn(s)|ZnSO4||HCl|AgCl(s) | Ag(s)
() Zn(s) → Zn
2+
+ 2e
-
(+ )2AgCl(s) + 2e - → 2Ag(s) + 2Cl -
净反应: Zn(s) + 2AgCl(s) → 2Ag(s) + ZnCl 2
作为电解池 阴极: Zn 2+ + 2e - → Zn(s) 阳极: 2Ag(s) + 2Cl - → 2AgCl(s) + 2e -
2 HCl
a
2 HCl
= (a )
2 2 ±
m± 4 = (γ ± ) ≈ (0.1) 4 m
(γ ± = 1)
两种写法,结果相同.但要记住:
aHCl = a
返回
2 ±
上一内容
下一内容
回主目录
2010-6-19
(2) 从 E 求 K
r Gm = zE F r Gm = RT ln K
RT E = ln K zF
上一内容 下一内容 回主目录
返回
2010-6-19
问题
RT
上一内容
下一内容
回主目录
返回
2010-6-19
标准电池电动势与温度的关系 ET/V=1.01845-4.05×10-5(T/K-293.15) - 9.5×10-7(T/K-293.15)2 +1×10-8(T/K-293.15)3
我国在1975年提出的公式为:
上一内容 下一内容 回主目录
返回
2010-6-19
第一类电极及其反应
电极
Mz+(a+)|M(s) H+ (a+)|H2(p),Pt OH-(a-)|H2(p),Pt H+(a+)|O2(p),Pt OH-(a-)|O2(p),Pt Cl- (a-)|Cl2(p),Pt Na+(a+)|Na(Hg)(a)
RO + Ri → RO
E ≈U
上一内容 下一内容 回主目录
返回
2010-6-19
标准电池结构图
电池反应: (-) Cd(Hg)→Cd2++Hg(l)+2e(+)Hg2SO4(s)+2e-→2Hg(l)+SO42净反应: Hg2SO4(s)+Cd(Hg)(a)+8/3H2O →CdSO48/3H2O(s)+Hg(l)
总反应:2Ag(s) + ZnCl 2 → Zn(s) + 2AgCl(s)
相关文档
最新文档