2019届理科一轮复习 北师大版 第10章第4节随机事件的概率 教案

合集下载

随机事件及其概率教案(精)

随机事件及其概率教案(精)

<随机事件及其概率>教案(一)教学目标:1、知识目标:使学生掌握必然事件,不可能事件,随机事件的概念及概率的统计定义,并了解实际生活中的随机现象,能用概率的知识初步解释这些现象2、能力目标:通过自主探究,动手实践的方法使学生理解相关概念,使学生学会主动探究问题,自主实践,分析问题,总结问题。

3、德育目标:1.培养学生的辩证唯物主义观点.2.增强学生的科学意识(二)教学重点与难点:重点:理解概率统计定义。

难点:认识频率与概率之间的联系与区别。

(三)教学过程:一、引入新课:试验1:扔钥匙,钥匙下落。

试验2:掷色子,数字几朝上。

讨论:下列事件能否发生?(1)“导体通电时,发热”---------------必然发生(2)“抛一石块,下落”---------------必然发生(3)“在常温下,铁熔化” -------------不可能发生(4)“某人射击一次,中靶” -----可能发生也可能不发生(5)“掷一枚硬币,国徽朝上” -----可能发生也可能不发生(6)“在标准大气压下且温度低于0℃时,冰融化” ---不可能发生思考:1、“结果”是否发生与“一定条件”有无直接关系?2、按事件发生的结果,事件可以如何来分类?二、新授:(一)随机事件:定义1、在一定条件下必然要发生的事件叫必然事件。

定义2、在一定条件下不可能发生的事件叫不可能事件。

定义3、在一定条件下可能发生也可能不发生的事件叫随机事件。

例1、指出下列事件是必然事件,不可能事件,还是随机事件:(1)扬中明年1月1日刮西北风;x(2)当x是实数时,20(3)手电筒的电池没电,灯泡发亮;(4)一个电影院某天的上座率超过50%。

(5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。

讨论:各举一个你生活或学习中的必然事件、不可能事件、随机事件的例子做一做:(投币实验)抛掷一枚硬币,观察它落地时哪一面朝上?(两人一组)1.你的结果和其他同学一致吗?为什么会出现这样的情况?2.重复试验10次并记录结果(正面朝上的次数)。

北师大版版高考数学一轮复习第十章计数原理概率随机变量及其分布二项分布及其应用教学案理

北师大版版高考数学一轮复习第十章计数原理概率随机变量及其分布二项分布及其应用教学案理

1.“二项分布”与“超几何分布”的区别有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体容量很大时,超几何分布可近似为二项分布来处理.2.两个概率公式(1)在事件B发生的条件下A发生的概率为P(A|B)=错误!.注意其与P(B|A)的不同.(2)若事件A1,A2,…,A n相互独立,则P(A1A2…A n)=P(A1)P(A2)…P(A n).3.二项分布进行n次试验,如果满足以下条件:(1)每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”;(2)每次试验“成功”的概率均为p,“失败”的概率均为1—p;(3)各次试验是相互独立的.用X表示这n次试验中成功的次数,则P(X=k)=C错误!p k(1—p)n—k(k=0,1,2,…,n).若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).常用结论二、教材衍化1.天气预报,在元旦假期甲地降雨概率是0.2,乙地降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为________.解析:设甲地降雨为事件A,乙地降雨为事件B,则两地恰有一地降雨为A错误!+错误!B,所以P(A错误!+错误!B)=P(A错误!)+P(错误!B)=P(A)P(错误!)+P(错误!)P(B)=0.2×0.7+0.8×0.3=0.38.答案:0.382.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为________.解析:设A={第一次拿到白球},B={第二次拿到红球},则P(AB)=错误!×错误!,P(A)=错误!,所以P(B|A)=错误!=错误!.答案:错误!一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)条件概率一定不等于它的非条件概率.()(2)相互独立事件就是互斥事件.()(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.()(4)二项分布是一个概率分布,其公式相当于(a+b)n二项展开式的通项公式,其中a=p,b=1—p.()(5)P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(AB)表示事件A,B同时发生的概率.()答案:(1)×(2)×(3)×(4)×(5)√二、易错纠偏错误!错误!(1)条件概率公式套用错误;(2)相互独立事件恰有一个发生的概率的理解有误;(3)独立重复试验公式应用错误.1.由0,1组成的三位数编号中,若事件A表示“第二位数字为0”,事件B表示“第一位数字为0”,则P(A|B)=________.解析:因为第一位数字可为0或1,所以第一位数字为0的概率P(B)=错误!,第一位数字为0且第二位数字也为0,即事件A,B同时发生的概率P(AB)=错误!×错误!=错误!,所以P(A|B)=错误!=错误!=错误!.答案:错误!2.计算机毕业考试分为理论与操作两部分,每部分考试成绩只记“合格”与“不合格”,只有两部分考试都“合格”者,才给颁发计算机“合格证书”.甲、乙两人在理论考试中“合格”的概率依次为错误!,错误!,在操作考试中“合格”的概率依次为错误!,错误!,所有考试是否合格相互之间没有影响.则甲、乙进行理论与操作两项考试后,恰有一人获得“合格证书”的概率为________.解析:甲获得“合格证书”的概率为错误!×错误!=错误!,乙获得“合格证书”的概率是错误!×错误!=错误!,两人中恰有一个人获得“合格证书”的概率是错误!×错误!+错误!×错误!=错误!.答案:错误!3.设随机变量X~B错误!,则P(X=3)=________.解析:因为X~B错误!,所以P(X=3)=C错误!错误!错误!×错误!错误!=错误!.答案:错误!条件概率(典例迁移)(1)(一题多解)现有3道理科题和2道文科题共5道题,若不放回地依次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为()A.错误!B.错误!C.错误!D.错误!(2)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)=()A.错误!B.错误!C.错误!D.错误!【解析】(1)法一:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,P(B|A)=错误!=错误!=错误!.故选C.法二:在第1次抽到理科题的条件下,还有2道理科题和2道文科题,故在第1次抽到理科题的条件下,第2次抽到理科题的概率为错误!.故选C.(2)P(A)=错误!=错误!=错误!,P(AB)=错误!=错误!,由条件概率公式,得P(B|A)=错误!=错误!=错误!.【答案】(1)C (2)B【迁移探究】(变条件)将本例(2)中的“和”改为“积”,求P(B|A).解:事件A:“取到的2个数之积为偶数”所包含的基本事件有:(1,2),(3,2),(4,2),(5,2),(4,1),(4,3),(4,5),所以P(A)=错误!.事件B:“取到的2个数均为偶数”所包含的基本事件有(2,4),所以P(AB)=错误!,所以P(B|A)=错误!=错误!=错误!.错误!条件概率的两种求解方法1.(2020·珠海模拟)夏秋两季,生活在长江口外浅海域的中华鱼洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长大到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为________.解析:设事件A为鱼苗中的一个雌性个体在长江口外浅海域长成熟,事件B为该雌性个体成功溯流产卵繁殖,由题意可知P(A)=0.15,P(AB)=0.05,所以P(B|A)=错误!=错误!=错误!.答案:错误!2.将三颗骰子各掷一次,设事件A为“三个点数都不同”,B为“至少出现一个6点”,则条件概率P(A|B)=________,P(B|A)=________.解析:P(A|B)的含义是在事件B发生的条件下,事件A发生的概率,即在“至少出现一个6点”的条件下,“三个点数都不相同”的概率,因为“至少出现一个6点”有6×6×6—5×5×5=91种情况,“至少出现一个6点且三个点数都不相同”共有C错误!×5×4=60种情况,所以P(A|B)=错误!.P (B|A)的含义是在事件A发生的条件下,事件B发生的概率,即在“三个点数都不相同”的条件下,“至少出现一个6点”的概率,因为“三个点数都不同”有6×5×4=120种情况,所以P(B|A)=错误!.答案:错误!错误!相互独立事件的概率(师生共研)(2020·福州四校联考)某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A,B,C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款方式付款的客户进行统计分析,得到如下的柱状图.已知从A,B,C三种分期付款销售中,该经销商每销售此品牌汽车1辆所获得的利润分别是1万元、2万元、3万元.现甲、乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率估计1位客户采用相应分期付款方式的概率.(1)求甲、乙两人采用不同分期付款方式的概率;(2)记X(单位:万元)为该汽车经销商从甲、乙两人购车中所获得的利润,求X的分布列与数学期望.【解】(1)设“采用A种分期付款方式购车”为事件A,“采用B种分期付款方式购车”为事件B,“采用C种分期付款方式购车”为事件C,由柱状图得,P(A)=错误!=0.35,P(B)=错误!=0.45,P(C)=错误!=0.2,所以甲、乙两人采用不同分期付款方式的概率P=1—[P(A)·P(A)+P(B)·P(B)+P(C)·P (C)]=0.635.(2)由题意知,X的所有可能取值为2,3,4,5,6,P(X=2)=P(A)P(A)=0.35×0.35=0.1225,P(X=3)=P(A)P(B)+P(B)P(A)=0.35×0.45+0.45×0.35=0.315,P(X=4)=P(A)P(C)+P(B)P(B)+P(C)P(A)=0.35×0.2+0.45×0.45+0.2×0.35=0.3425,P(X=5)=P(B)P(C)+P(C)P(B)=0.45×0.2+0.2×0.45=0.18,P(X=6)=P(C)P(C)=0.2×0.2=0.04.所以X的分布列为X23456P0.12250.3150.34250.180.04EX=0.122.04×6=3.7.错误!利用相互独立事件求复杂事件概率的解题思路(1)将待求复杂事件转化为几个彼此互斥简单事件的和.(2)将彼此互斥简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.(3)代入概率的积、和公式求解.1.(2019·高考全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.解:(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1—0.5)×(1—0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1—0.4)+(1—0.5)×0.4]×0.5×0.4=0.1.2.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为错误!,错误!;1小时以上且不超过2小时离开的概率分别为错误!,错误!;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列.解:(1)两人所付费用相同,相同的费用可能为0,40,80元,两人都付0元的概率为P1=错误!×错误!=错误!,两人都付40元的概率为P2=错误!×错误!=错误!,两人都付80元的概率为P3=错误!×错误!=错误!×错误!=错误!,则两人所付费用相同的概率为P=P1+P2+P3=错误!+错误!+错误!=错误!.(2)设甲、乙所付费用之和为ξ,ξ可能取值为0,40,80,120,160,则:P(ξ=0)=错误!×错误!=错误!;P(ξ=40)=错误!×错误!+错误!×错误!=错误!;P(ξ=80)=错误!×错误!+错误!×错误!+错误!×错误!=错误!;P(ξ=120)=错误!×错误!+错误!×错误!=错误!;P(ξ=160)=错误!×错误!=错误!.ξ的分布列为ξ04080120160P错误!错误!错误!错误!错误!独立重复试验与二项分布(师生共研)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.1若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;2以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解】(1)20件产品中恰有2件不合格品的概率为f(p)=C错误!p2(1—p)18.因此f′(p)=C错误![2p(1—p)18—18p2(1—p)17]=2C错误!p(1—p)17(1—10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.1令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以EX=E(40+25Y)=40+25EY=490.2如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于EX>400,故应该对余下的产品作检验.错误!(1)独立重复试验的特点1每次试验中,事件发生的概率是相同的;2每次试验中的事件是相互独立的,其实质是相互独立事件的特例.(2)判断随机变量X服从二项分布的条件(X~B(n,p))1X的取值为0,1,2,…,n;2P(X=k)=C错误!p k(1—p)n—k(k=0,1,2,…,n,p为试验成功的概率).[提醒] 在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为独立重复试验,进而判定是否服从二项分布.1.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现音乐,要么不出现音乐.设每次击鼓出现音乐的概率为错误!,且各次击鼓出现音乐相互独立.设每盘游戏出现音乐的次数为X,则P(X≥1)=________.玩三盘游戏,则恰有两盘出现音乐的概率是________.解析:由题意X~B错误!,所以P(X≥1)=1—P(X=0)=1—C错误!错误!错误!=错误!,或P(X≥1)=P(X=1)+P(X=2)+P(X=3)=C错误!错误!错误!错误!+C错误!错误!错误!错误!+C错误!错误!错误!=错误!,故每盘游戏出现音乐的概率为错误!,所以玩三盘游戏,恰有两盘出现音乐的概率P=C错误!错误!错误!×错误!=错误!.答案:错误!错误!2.(2020·合肥模拟)师大附中学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)记录了他们的幸福度分数.(1)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”,求从这16人中随机选取3人,至多有1人的幸福度是“极幸福”的概率;(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示选到幸福度为“极幸福”的人数,求ξ的分布列及数学期望.解:(1)设事件A i(i=0,1,2,3)表示所取3人中有i人的幸福度是“极幸福”,至多有1人的幸福度是“极幸福”记为事件A,结合茎叶图得P(A)=P(A0)+P(A1)=错误!+错误!=错误!.(2)ξ的可能取值为0,1,2,3,由样本估计总体得任选1人,其幸福度为“极幸福”的概率为错误!=错误!,则P(ξ=0)=错误!错误!=错误!;P(ξ=1)=C错误!×错误!×错误!错误!=错误!;P(ξ=2)=C错误!×错误!错误!×错误!=错误!;P(ξ=3)=错误!错误!=错误!.所以ξ的分布列为ξ0123P错误!错误!错误!错误!所以E(ξ)=0×二项分布与超几何分布的辨别方法写出下列离散型随机变量的分布列,并指出其中服从二项分布的是哪些?服从超几何分布的是哪些?(1)X1表示n次重复抛掷1枚骰子出现点数是3的倍数的次数;(2)X2表示连续抛掷2枚骰子,所得的2枚骰子的点数之和;(3)有一批产品共有N件,其中次品有M件(N>M>0),采用有放回抽取方法抽取n次(n>N),抽出的次品件数为X3;(4)有一批产品共有N件,其中M件为次品,采用不放回抽取方法抽n件,出现次品的件数为X 4(N>M>n>0).【解】(1)X1的分布列为X1012…nPC错误!错误!错误!·错误!错误!C错误!错误!错误!·错误!错误!C错误!错误!错误!·错误!错误!…C错误!错误!错误!11(2)X2的分布列为X223456789101112P错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!2(3)X3的分布列为X 3012…nP错误!错误!C错误!错误!·错误!错误!C错误!错误!错误!·错误!错误!…错误!错误!33(4)X4的分布列为X401…k…nP错误!错误!…错误!…错误!4错误!综上,(1)(3)服从二项分布,(4)服从超几何分布,(2)既不服从二项分布也不服从超几何分布.超几何分布的抽取是不放回抽取,各次抽取不独立,二项分布的抽取是独立的,各次抽取相互独立.当超几何分布所对应的总体数量很大时可以近似地看作二项分布.某市电视台举办纪念红军长征胜利知识回答活动,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.公园甲乙丙丁获得签名人数456030150个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.(1)求此活动中各公园幸运之星的人数;(2)若乙公园中每位幸运之星对每个问题答对的概率均为错误!,求乙公园中恰好2位幸运之星获得纪念品的概率;(3)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为X,求X的分布列.解:(1)甲、乙、丙、丁四个公园幸运之星的人数分别为错误!×10=3,错误!×10=4,错误!×10=2,错误!×10=1.(2)根据题意,乙公园中每位幸运之星获得纪念品的概率为C错误!错误!错误!=错误!,所以乙公园中恰好2位幸运之星获得纪念品的概率为C错误!错误!错误!错误!错误!=错误!.(3)由题意,知X的所有可能取值2,3,4,服从超几何分布,P(X=2)=错误!=错误!,P(X=3)=错误!=错误!,P(X=4)=错误!=错误!.所以X的分布列为X234P错误!错误!错误![基础题组练]1.(2020·马鞍山一模)已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未损坏,则这个元件使用寿命超过2年的概率为()A.0.75B.0.6C.0.52D.0.48解析:选A.设一个这种元件使用到1年时还未损坏为事件A,使用到2年时还未损坏为事件B,则由题意知P(AB)=0.6,P(A)=0.8,则这个元件使用寿命超过2年的概率为P(B|A)=错误!=错误!=0.75,故选A.2.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为()A.0.25B.0.30C.0.31D.0.35解析:选C.设甲、乙、丙、丁需使用设备分别为事件A,B,C,D,则P(A)=0.6,P(B)=P(C)=0.5,P(D)=0.4,恰好3人使用设备的概率P1=P(错误!BCD+A错误!CD+AB错误!D+ABC错误!)=(1—0.6)×0.5×0.5×0.4+0.6×(1—0.5)×0.5×0.4+0.6×0.5×(1—0.5)×0.4+0.6×0.5×0.5×(1—0.4)=0.25,4人使用设备的概率P2=0.6×0.5×0.5×0.4=0.06,故所求概率P=0.25+0.06=0.31.3.某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:0天以上的概率为()A.错误!B.错误!C.错误!D.错误!解析:选D.由表可知元件使用寿命在30天以上的概率为错误!=错误!,则所求概率为C错误!错误!错误!×错误!+错误!错误!=错误!.4.(2020·河南中原名校联盟一模)市场调查发现,大约错误!的人喜欢在网上购买家用小电器,其余的人则喜欢在实体店购买家用小电器.经工商局抽样调查,发现网上购买的家用小电器的合格率约为错误!,而实体店里的家用小电器的合格率约为错误!.现工商局接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性是()A.错误!B.错误!C.错误!D.错误!解析:选A.因为大约错误!的人喜欢在网上购买家用小电器,网上购买的家用小电器的合格率约为错误!,所以某家用小电器是在网上购买的,且被投诉的概率约为错误!×错误!=错误!,又实体店里的家用小电器的合格率约为错误!,所以某家用小电器是在实体店里购买的,且被投诉的概率约为错误!×错误!=错误!,故工商局接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性P=错误!=错误!.5.某群体中的每位成员使用移动支付的概率都为p, 各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=()A.0.7 B.0.6C.0.4D.0.3解析:选B.由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以DX=10p·(1—p)=2.4,所以p=0.6或p=0.4.由P(X=4)<P(X=6),得C错误!p4(1—p)6<C错误!p6(1—p)4,即(1—p)2<p2,所以p>0.5,所以p=0.6.6.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且每次投篮是否投中相互独立,则该同学通过测试的概率为________.解析:该同学通过测试的概率P=C错误!×0.62×0.4+0.63=0.432+0.216=0.648.答案:0.6487.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A为“4个人去的景点不相同”,事件B为“小赵独自去一个景点”,则P(A|B)=________.解析:小赵独自去一个景点共有4×3×3×3=108种情况,即n(B)=108,4个人去的景点不同的情况有A错误!=4×3×2×1=24种,即n(AB)=24,所以P(A|B)=错误!=错误!=错误!.答案:错误!8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立.则该选手恰好回答了4个问题就晋级下一轮的概率为________,该选手回答了5个问题结束的概率为________.解析:依题意,该选手第2个问题回答错误,第3,4个问题均回答正确,第1个问题回答正误均有可能,则所求概率P=0.8×0.2×0.82+0.2×0.2×0.82=1×0.2×0.82=0.128.依题意,设答对的事件为A,可分第3个正确与错误两类,若第3个正确则有A错误!A错误!或错误!错误!A错误!两类情况,其概率为:0.8×0.2×0.8×0.2+0.2×0.2×0.8×0.2=0.0256+0.006 4=0.0320.该选手第3个问题的回答是错误的,第1,2两个问题回答均错误或有且只有1个错误,则所求概率P=0.23+2×0.2×0.8×0.2=0.008+0.064=0.072.所以,所求概率为0.0320+0.072=0.104.答案:0.128 0.1049.(2020·湖南两市联考)某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的个人单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.一个运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为错误!,错误!,错误!,他们出线与未出线是相互独立的.(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;(2)记在这次选拔赛中,甲、乙、丙三名运动员所得分数之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.解:(1)记“甲出线”为事件A,“乙出线”为事件B,“丙出线”为事件C,“甲、乙、丙至少有一名出线”为事件D,则P(D)=1—P(错误!错误!错误!)=1—错误!×错误!×错误!=错误!.(2)ξ的所有可能取值为0,1,2,3.P(ξ=0)=P(错误!错误!错误!)=错误!;P(ξ=1)=P(A错误!错误!)+P(错误!B错误!)+P(错误!错误!C)=错误!;P(ξ=2)=P(AB错误!)+P(A错误!C)+P(错误!BC)=错误!;P(ξ=3)=P(ABC)=错误!.所以ξ的分布列为故Eξ=0×错误!+1×错误!+2×错误!+3×错误!=错误!.10.(2020·河北“五个一名校联盟”模拟)空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上为严重污染.一环保人士记录去年某地六月10天的AQI的茎叶图如图.(1)利用该样本估计该地六月空气质量为优良(AQI≤100)的天数;(2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列.解:(1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,所以该样本中空气质量为优良的频率为错误!=错误!,从而估计该地六月空气质量为优良的天数为30×错误!=18.(2)由(1)估计某天空气质量为优良的概率为错误!,ξ的所有可能取值为0,1,2,3,且ξ~B错误!.所以P(ξ=0)=错误!错误!=错误!,P(ξ=1)=C错误!错误!错误!错误!=错误!,P(ξ=2)=C错误!错误!错误!错误!错误!=错误!,P(ξ=3)=错误!错误!=错误!.ξ的分布列为ξ0123P错误!错误!错误!错误!1.(2020·南昌模拟)为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.记第i名民工选择的项目属于基础设施类、民生类、产业建设类分别为事件A i,B i,C i,i=1,2,3.由题意,事件A i,B i,C i(i=1,2,3)相互独立,则P(A i)=错误!=错误!,P(B i)=错误!=错误!,P(C i)=错误!=错误!,i=1,2,3,故这3名民工选择的项目所属类别互异的概率是P=A错误!P(A i B i C i)=6×错误!×错误!×错误!=错误!.2.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为()A.错误!B.错误!错误!×错误!C.错误!×错误!D.C错误!×错误!错误!×错误!解析:选B.由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的球是白球的情况,此事件发生的概率为错误!错误!×错误!.3.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________.(写出所有正确结论的序号)1P(B)=错误!;2P(B|A1)=错误!;3事件B与事件A1相互独立;4A1,A2,A3是两两互斥的事件;5P(B)的值不能确定,它与A1,A2,A3中哪一个发生都有关.解析:由题意知A1,A2,A3是两两互斥的事件,P(A1)=错误!=错误!,P(A2)=错误!=错误!,P(A3)=错误!,P(B|A1)=错误!=错误!,P(B|A2)=错误!,P(B|A3)=错误!,而P(B)=P(A1B)+P(A2B)+P(A3B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=错误!×错误!+错误!×错误!+错误!×错误!=错误!.故正确的为24.答案:244.已知甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否之间没有影响.(1)甲、乙两人在第一次试跳中至少有一人成功的概率是________;(2)若甲、乙各试跳两次,则甲比乙的成功次数多一次的概率是________.解析:(1)记“甲在第i次试跳成功”为事件A i,“乙在第i次试跳成功”为事件B i,“甲、乙两人在第一次试跳中至少有一人成功”为事件C.法一:P(C)=P(A1错误!1)+P(错误!1B1)+P(A1B1)=P(A1)P(错误!1)+P(错误!1)P(B1)+P(A1)P(B1)=0.7×0.4+0.3×0.6+0.7×0.6=0.88.法二:由对立事件的概率计算公式得P(C)=1—P(错误!1错误!1)=1—P(错误!1)P(错误!)=1—0.3×0.4=0.88.1(2)设“甲在两次试跳中成功i次”为事件M i,“乙在两次试跳中成功i次”为事件N i,所以所求概率P=P(M1N0)+P(M2N1)=P(M1)P(N0)+P(M2)P(N1)=C错误!×0.7×0.3×0.42+0.72×C错误!×0.6×0.4=0.3024.答案:(1)0.88 (2)0.30245.甲、乙两人各射击一次,击中目标的概率分别是错误!和错误!.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设每人连续2次未击中目标,则终止其射击.问:乙恰好射击5次后,被终止射击的概率是多少?。

《随机事件的概率》教学设计说明

《随机事件的概率》教学设计说明

《随机事件的概率》教学设计说明一、本课数学内容的本质、地位、作用分析《随机事件的概率》是高中数学北师大版教材必修3、第三章、第1节内容,是学生学习《概率》的入门课,也是学习后续知识的基础。

让学生了解随机事件发生的不确定性和频率的稳定性;让学生澄清生活中的一些对概率的错误认识,进一步体会频率的稳定性和随机思想;让学生感受到概率就在身边,从而深化对概率定义的认识。

就知识的应用价值上来看:概率是反映自然规律的基本模型。

概率已经成为一个常用词汇,为人们做决策提供依据。

就内容的人文价值上来看:研究概率涉及了必然与偶然的辨证关系,是培养学生应用意识和思维能力的良好载体。

二、教学目标分析首先要通过丰富实例让学生了解日常生活中的事件,理解必然事件、随机事件、不可能事件等概念。

然后让学生经历抛掷硬币试验,由此激发学生的学习兴趣和求知欲。

通过抛硬币试验,学生获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,在探索中不断提高。

同时让学生明确概率与频率的区别和联系,理解利用频率估计概率的思想方法。

让学生亲历试验过程,培养学生观察、动手和总结的能力,以及同学之间的交流合作能力;培养学生把实际问题与数学理论相结合的能力,提高学生的探究能力;强化辨证思维,通过数学史渗透,培育学生刻苦严谨的科学精神。

但随机现象大量存在于学生周围,让学生通过观察分析,去发现生活中随机现象的例子,从而更好的理解概率的概念,熟练的去应用概率解决问题。

通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受必然性与偶然性的辩证统一思想。

三、教学问题诊断本堂课的特点是概率统计定义的概念教学。

根据学生的心理特征和认知规律,学生在日常生活中,对于概率可能有一些模糊的认识,但学生思维比较灵活,有较强的动手操作能力和较好的实验基础。

因此我采取学生动手试验的教学法。

高中数学概率部分的定位就是使学生对随机现象的概率有个初步的认识,我力求引导学生从以下几个角度来认识随机现象。

《随机事件的概率》教学设计3篇

《随机事件的概率》教学设计3篇

《随机事件的概率》教学设计作为一名老师,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那要怎么写好教学设计呢?以下是小编为大家收集的《随机事件的概率》教学设计,欢迎大家分享。

《随机事件的概率》教学设计1教学目标知识目标:了解必然事件、不可能事件、随机事件的概念;理解和掌握概率的统计定义及其性质.能力目标:通过不断地提出问题和解决问题,培养学生猜测、验证等探究能力;情感目标:在探究过程中,鼓励学生大胆猜测,大胆尝试,培养学生勇于创新、敢于实践等良好的个性品质。

教学重点与难点重点:理解概率的统计定义及其基本性质;难点:认识频率与概率的区别和联系。

教学过程(一)设置情境、引入课题观察下列事件发生与否,各有什么特点?(教师用课件演示情境)(1)地球不停地转动; 必然发生(2)木柴燃烧,产生能量; 必然发生(3)在常温下,石头风化; 不可能发生(4)某人射击一次,中靶; 可能发生也可能不发生(5)掷一枚硬币,出现正面; 可能发生也可能不发生(6)在标准大气压下且温度低于0℃时,雪融化。

不可能发生定义:在条件S下可能发生也可能不发生的事件叫随机事件;在条件S下必然要发生的事件叫必然事件;在条件S下不可能发生的事件叫不可能事件。

确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示。

(二)探索实践、建构知识让我们来做两个实验:实验(1):把一枚硬币抛多次,观察其出现的结果,并记录各结果出现的频数,然后计算各频率。

上课前一天事先布置作业,要求学生每人完成50次,并完成下表(一):的频数,然后计算各频率。

上课前一天事先布置作业,要求学生每人完成50次,并完成下表(一):然后请同学们再以小组为单位,统计好数据,完成表格。

投掷一枚硬币,出现正面可能性究竟有多大?(教师用电脑模拟演示)实验(2):把一个骰子抛掷多次,观察其出现的结果,并记录各结果出现的频数,然后计算各频率。

高三数学一轮复习 随机事件的概率课件 北师大版

高三数学一轮复习 随机事件的概率课件 北师大版

解答:(1)由于口袋内只装有黑、白两种颜色的球,故“取出的球是红球”是不 可能事件. (2)由已知,从口袋内取出一个球,可能是白球也可能是黑球,故“取出的球是 黑球”是随机事件. (3) 由 于 口 袋 内 装 的 是 黑 、 白 两 种 颜 色 的 球 , 故 取 出 一 个 球 不 是 黑 球 , 就 是 白 球.因此,“取出的球是白球或黑球”是必然事件.
【例3】国家射击队的某队员射击一次,命中7~10环的概率如下表所示:
命中环数 10环 9环 8环 7环 概 率 0.32 0.28 0.18 0.12
求该射击队员射击一次 (1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率. 思维点拨:该射击队员在一次射击中,命中几环不可能同时发生,故是彼 此互斥事件,利用互斥事件概率的公式求其概率.另外,当直接求解不容 易时,可先求其对立事件的概率.
3.需准确理解题意,特别留心“至多……”,“至少……”,“不少于……”等语 句的含义.
(2009·全国Ⅱ)(本题满分12分)某车间甲组有10名工人,其中有4名女工人;乙组 有10名工人,其中有6名女工人,现采用分层抽样方法(层内采用不放回简单随机 抽样)从甲、乙两组中共抽取4名工人进行技术考核. (1)求从甲、乙两组各抽取的人数; (2)求从甲组抽取的工人中恰有1名女工人的概率; (3)求抽取4名工人中恰有2名男工人的概率.
10.4 随机事件的概率
(了解随机事件发生的不确定性和频率的稳定性,了解概率的意义, 了解频率与概率的区别/了解互斥事件、对立事件的意义及其概率 运算公式.)
1.必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件. 2.不可能事件:在条件S下,一定不会发生的事件,

随机事件与概率教案

随机事件与概率教案

随机事件与概率教案一、教学目标1.了解什么是随机事件2.理解随机事件的基本概念3.掌握计算随机事件的概率的方法4.能够应用所学知识解决实际问题二、教学重点1.随机事件的概念和特征2.随机事件的计算方法三、教学难点1.随机事件的计算方法四、教学过程1.引入新知识通过举例引入随机事件的概念,如抛一枚硬币、掷一颗骰子等。

引导学生思考这些事件是否具有随机性,以及与随机性有关的因素。

2.讲解随机事件的概念和特征解释随机事件的概念和特征,并结合上述举例,引导学生理解随机事件的概念和特征。

强调随机性的不确定性和不可预测性。

3.讲解随机事件的计算方法a.确定样本空间:样本空间是随机事件的所有可能结果的集合。

举例说明如何确定样本空间,比如抛一枚硬币的样本空间是{正面,反面}。

b.确定事件的概率:事件的概率是指该事件发生的可能性大小。

讲解计算事件的概率的方法,如频率法和几何法。

强调事件的概率是介于0和1之间的实数。

4.练习与讨论让学生通过练习计算事件的概率,巩固所学知识。

鼓励学生进行小组讨论,互相帮助解决问题。

5.应用实例引导学生通过实际问题,将所学知识应用到实际生活中,如计算扔一颗骰子出现奇数的概率,或者计算猜硬币正反面的概率等。

6.总结与拓展对本节课所学内容进行总结,强调重要概念和计算方法。

鼓励学生拓展思维,思考更多的实际问题,并运用所学知识解决。

五、教学反思本节课通过举例引入随机事件的概念,引导学生理解随机事件的特征,讲解了计算随机事件的概率的方法,并通过练习和应用实例巩固了所学知识。

在今后的教学中,可以通过更多的实例和练习来帮助学生更好地理解和应用所学知识。

随机事件的概率的教学设计方案

随机事件的概率的教学设计方案

随机事件的概率的教学设计方案一、教学目标1.了解概率的定义和基本概念;2.能够计算等可能事件的概率;3.掌握按照逆事件求概率的方法;4.熟悉按照全概率公式求概率的方法;5.掌握贝叶斯公式求概率的方法。

二、教学重难点1.概率的定义和基本概念的教学是本节课的重点。

2.贝叶斯公式的教学是本节课的难点。

三、教学方法1.理论授课法;2.案例分析法;3.游戏体验法。

四、教学过程【第一步】引入概率通过实例引导学生了解概率的基本定义和概念。

例如:我们在把扑克牌洗好后,从中随机抽取一张牌,求这张牌是黑桃的概率。

【第二步】等可能事件的概率在学生理解了概率基本概念后,引导学生了解等可能事件的概率计算方法。

例如:掷一个骰子,求掷出偶数点数的概率。

【第三步】逆事件的概率引导学生了解逆事件概率的计算方法,即P(A') = 1 - P(A)。

例如:有15个学生,其中10个是男生,求第11个学生是女生的概率。

【第四步】全概率公式引导学生了解全概率公式的计算方法。

例如:一件产品有两个工厂生产,一个工厂生产的产品合格率为0.9,另一个工厂生产的产品合格率为0.8,现在从市场中随机抽样抽到一个产品,求这个产品合格的概率。

【第五步】贝叶斯公式对于学生来说,贝叶斯公式的教学难度较大,这里采用案例分析与课外阅读相结合的方法进行教学。

例如:现在有200个人,其中100个已知有某种疾病。

某项检验可以准确地识别出每个患者,并且在未患病的人中只有10%的错误发现率,如果某人在某项检测中发现有该疾病,那么他患该疾病的概率是多少?【第六步】游戏体验引导学生进行游戏体验,通过游戏让学生能够更加深刻地理解概率的概念和计算方法。

例如:掷硬币游戏:将一枚正反面不等的硬币掷10次,如果正面向上出现次数大于等于5次,就算胜利,否则就算失败。

五、教学评估教师采用小论文或个人作业的方式进行评估。

1.学生需自主选择一个实际生活问题,利用所学概率知识进行分析和解答。

随机事件的概率教案

随机事件的概率教案

随机事件的概率教案【随机事件的概率教案】一、引言随机事件的概率是概率论的基础概念之一,它在现代科学和日常生活中都有广泛的应用。

本教案旨在通过具体的案例和实践活动,匡助学生理解随机事件的概念、计算概率的方法以及概率在实际问题中的应用。

二、教学目标1. 理解随机事件的概念和基本术语;2. 掌握计算随机事件的概率的方法;3. 能够运用概率理论解决实际问题。

三、教学内容1. 随机事件的概念1.1 随机事件的定义:随机事件是指在一定条件下,可能发生也可能不发生的事情。

1.2 样本空间和事件:样本空间是指随机试验所有可能结果的集合,事件是样本空间的一个子集。

1.3 事件的分类:必然事件、不可能事件、简单事件和复合事件。

2. 计算概率的方法2.1 经典概型:指样本空间中所有基本事件的概率相等的情况。

2.2 频率概率:指通过实验统计数据计算概率的方法。

2.3 几何概型:指利用几何图形计算概率的方法。

2.4 古典概型:指利用罗列组合等数学方法计算概率的方法。

3. 概率在实际问题中的应用3.1 生活中的概率问题:如掷骰子、抽奖等。

3.2 统计学中的概率问题:如抽样调查、统计判断等。

3.3 金融领域的概率问题:如股票涨跌、投资收益等。

四、教学方法1. 讲授法:通过讲解理论知识,引导学生理解随机事件的概念和计算概率的方法。

2. 案例分析法:通过具体案例,匡助学生掌握概率在实际问题中的应用。

3. 实践活动:设计一些实践活动,让学生亲自进行概率计算和实际问题的解决,提高学生的动手能力和实际运用能力。

五、教学过程1. 导入:通过一个生活中的例子引入随机事件的概念,如抛硬币的结果。

2. 理论讲解:讲解随机事件的定义、样本空间和事件的概念,以及概率的计算方法。

3. 案例分析:通过一些实际案例,引导学生运用概率理论解决问题,如抽奖中奖的概率计算、掷骰子的概率计算等。

4. 实践活动:设计一些实践活动,让学生自己进行概率计算和实际问题的解决,如设计一个抽奖游戏、进行一次投资决策等。

〖2021年整理〗《高中数学理科北师大版一轮第10章随机事件的概率》优秀教案

〖2021年整理〗《高中数学理科北师大版一轮第10章随机事件的概率》优秀教案

随机事件的概率[考试要求]1了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别2了解两个互斥事件的概率加法公式.1.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作2 8834 970 6 9948 892这一地区男婴出生的概率约是________保留四位小数.3[男婴出生的频率依次约是:0, 3, 3, 3由于这些频率非常接近3,因此这一地区男婴出生的概率约为3]考点一事件关系的判断判断互斥、对立事件的两种方法1.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有A.0组B.1组C.2组D.3组B[①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰有1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B]2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是错误!,那么概率是错误!的事件是A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡A[ “至多有一张移动卡”包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.]3.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出两个球,事件A=“取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球中至少有一个白球”,D =“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断中正确的序号为________.①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④,则M=A+B +C∵A,B,C两两互斥,∴=P A+B+C=P A+PB+PC=错误!=错误!,故1张奖券的中奖概率约为错误!3设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴PN=1-P A+B=1-错误!=错误!,故1张奖券不中特等奖且不中一等奖的概率为错误!。

2019年一轮北师大版(理)数学教案:第10章 第4节 随机事件的概率 Word版含解析

2019年一轮北师大版(理)数学教案:第10章 第4节 随机事件的概率 Word版含解析

第四节随机事件的概率[考纲传真] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.1.概率(1)定义:在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时这个常数叫作随机事件A的概率,记作P(A),有0≤P(A)≤1.(2)频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.2.互斥事件与对立事件(1)互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.(2)对立事件:在每一次试验中,两个事件不会同时发生,并且一定有一个发生的事件A和A称为对立事件.3.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率:P(A)=1.(3)不可能事件的概率:P(A)=0.(4)互斥事件的概率加法公式:①P(A+B)=P(A)+P(B)(A,B互斥).②P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n)(A1,A2,…,A n彼此互斥).(5)对立事件的概率:P(A)=1-P(A).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)事件发生的频率与概率是相同的.( )(2)在大量的重复实验中,概率是频率的稳定值.( )(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( )[答案] (1)× (2)√ (3)√ (4)×2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( )A .①B .②C .③D .④B [至少有1个白球和全是黑球不同时发生,且一定有一个发生,∴②中两事件是对立事件.]3.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13A [事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56.]4.(2017·郑州调研)集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是________.:57962459】13 [从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况,其中和为4的有两种情况(2,2),(3,1),故所求事件的概率P =26=13.]。

2019年高考数学一轮复习(北师大版理科) 第10章 第4节 随机事件的概率学案 理 北师大版

2019年高考数学一轮复习(北师大版理科) 第10章  第4节 随机事件的概率学案 理 北师大版

第四节随机事件的概率[考纲传真] (教师用书独具)1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.(对应学生用书第175页)[基础知识填充]1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的必然事件.(2)在条件S下,一定不会发生的事件,叫作相对于条件S的不可能事件.(3)必然事件与不可能事件统称为相对于条件S的确定事件.(4)在条件S下可能发生也可能不发生的事件,叫作相对于条件S的随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母A,B,C,…表示.2.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作P(A).3.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B至少有一个发生.对立事件:不会同时发生,并且一定有一个发生的事件是相互对立事件.4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A+B)=P(A)+P(B).②若事件A与事件A互为对立事件,则P(A)=1-P(A).[知识拓展] 互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)事件发生的频率与概率是相同的.( )(2)在大量的重复试验中,概率是频率的稳定值.( )(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( )[答案] (1)× (2)√ (3)√ (4)×2.(教材改编)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( )A .必然事件B .随机事件C .不可能事件D .无法确定B [抛掷10次硬币正面向上的次数可能为0,1,2,…,10,都有可能发生,正面向上5次是随机事件.]3.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A .56B .25C .16D .13A [事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56.] 4.甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件B [两个事件是对立事件,则它们一定互斥,反之不一定成立.]5.某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未打中.假设此人射击1次,则中靶的概率约为________;中10环的概率约为________.0.9 0.2 [中靶的频数为9,试验次数为10,所以中靶的频率为910=0.9,所以此人射击1次,中靶的概率约为0.9,同理,中10环的概率约为0.2.](对应学生用书第175页)(1)(2017·中山模拟)从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )A.① B.②④C.③D.①③(2)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡(1)C(2)A[(1)从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数,其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.又①②④中的事件可以同时发生,不是对立事件.(2)至多有一张移动卡包含“一张移动卡,一张联通卡”,“2张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.]①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有( )。

北师大版版高考数学一轮复习第十章计数原理概率随机变量及其分布几何概型教学案理

北师大版版高考数学一轮复习第十章计数原理概率随机变量及其分布几何概型教学案理

一、知识梳理1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P(A)=错误!常用结论在几何概型中,如果A是确定事件,(1)若A是不可能事件,则P(A)=0肯定成立;如果随机事件所在的区域是一个单点,由于单点的长度、面积和体积都是0,则它出现的概率为0,显然它不是不可能事件,因此由P(A)=0不能推出A是不可能事件.(2)若A是必然事件,则P(A)=1肯定成立;如果一个随机事件所在的区域是从全部区域中扣除一个单点,则它出现的概率是1,但它不是必然事件,因此由P(A)=1不能推出A是必然事件.二、教材衍化1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()解析:选A.因为P(A)=错误!,P(B)=错误!,P(C)=错误!,P(D)=错误!,所以P(A)>P(C)=P(D)>P(B).2.在线段[0,3]上任投一点,则此点坐标小于1的概率为________.解析:坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为错误!.答案:错误!3.设不等式组错误!表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率为________.解析:如图所示,正方形OABC及其内部为不等式组表示的平面区域D,且区域D的面积为4,而阴影部分表示的是区域D内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4—π.因此满足条件的概率是错误!.答案:1—错误!一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)与面积有关的几何概型的概率与几何图形的形状有关.()答案:(1)√(2)√(3)√(4)×二、易错纠偏错误!错误!选用的几何测度不准确导致出错.在区间[—2,4]上随机地取一个数x,若x满足|x|≤m的概率为错误!,则m=________.解析:由|x|≤m,得—m≤x≤m.当0<m≤2时,由题意得错误!=错误!,解得m=2.5,矛盾,舍去.当2<m<4时,由题意得错误!=错误!,解得m=3.答案:3与长度(角度)有关的几何概型(师生共研)记函数f(x)=错误!的定义域为D,在区间[—4,5]上随机取一个数x,则x∈D的概率是________.【解析】由6+x—x2≥0,解得—2≤x≤3,则D=[—2,3],则所求概率为错误!=错误!.【答案】错误!错误!与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A包含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).1.从区间[—2,2]中随机选取一个实数a,则函数f(x)=4x—a·2x+1+1有零点的概率是()A.错误!B.错误!C.错误!D.错误!解析:选A.令t=2x,函数有零点就等价于方程t2—2at+1=0有正根,进而可得错误!⇒a≥1,又a∈[—2,2],所以函数有零点的实数a应满足a∈[1,2],故P=错误!,选A.2.如图,扇形AOB的圆心角为120°,点P在弦AB上,且AP=错误!AB,延长OP交弧AB于点C,现向扇形AOB内投一点,则该点落在扇形AOC内的概率为________.解析:设OA=3,则AB=3错误!,所以AP=错误!,由余弦定理可求得OP=错误!,∠AOP=30°,所以扇形AOC的面积为错误!,扇形AOB的面积为3π,从而所求概率为错误!=错误!.答案:错误!与面积有关的几何概型(多维探究)角度一与平面图形面积有关的几何概型(1)(2020·黑龙江齐齐哈尔一模)随着计算机的出现,图标被赋予了新的含义,有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为三部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3,宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为()A.错误!B.错误!C.错误!D.错误!(2)(2020·辽宁五校联考)古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图,已知直线x=2交抛物线y2=4x于A,B两点.点A,B在y轴上的射影分别为D,C.从长方形ABCD中任取一点,则根据阿基米德这一理论,该点位于阴影部分的概率为()A.错误!B.错误!C.错误!D.错误!【解析】(1)图标第一部分的面积为8×3×1=24,图标第二部分的面积为π×(32—22)=5π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为错误!.故选B.(2)在抛物线y2=4x中,取x=2,可得y=±2错误!,所以S矩形ABCD=8错误!,由阿基米德理论可得弓形面积为错误!×错误!×4错误!×2=错误!,则阴影部分的面积为8错误!—错误!=错误!.由概率比为面积比可得,点位于阴影部分的概率为错误!=错误!.故选B.【答案】(1)B (2)B角度二与线性规划交汇命题的几何概型(2020·陕西咸阳模拟)已知集合错误!表示的平面区域为Ω,若在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的概率为()A.错误!B.错误!C.错误!D.错误!【解析】因为集合错误!表示的平面区域为Ω,所以作出平面区域Ω为如图所示的△AOB.直线x+y=0与直线x—y=0垂直,故∠AOB=错误!.联立错误!得点A(1,—1),联立错误!得点B(3,3).OA=错误!=错误!,OB=错误!=3错误!,在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的区域是如图所示的半径为1的错误!圆,即扇形OCD,所以由几何概型得点到坐标原点的距离不大于1的概率P=错误!=错误!=错误!.故选B.【答案】B角度三与定积分交汇命题的几何概型(2020·洛阳第一次联考)如图,圆O:x2+y2=π2内的正弦曲线y=sin x与x轴围成的区域记为M(图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是()A.错误!B.错误!C.错误!D.错误!【解析】由题意知圆O的面积为π3,正弦曲线y=sin x,x∈[—π,π]与x轴围成的区域记为M,根据图形的对称性得区域M的面积S=2错误!sin x d x=—2cos x错误!=4,由几何概型的概率计算公式可得,随机往圆O内投一个点A,则点A落在区域M内的概率P=错误!,故选B.【答案】B角度四与随机模拟相关的几何概型从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的1圆周率π的近似值为()A.错误!B.错误!C.错误!D.错误!【解析】设由错误!构成的正方形的面积为S,x错误!+y错误!<1构成的图形的面积为S′,所以错误!=错误!=错误!,所以π=错误!,故选C.【答案】C错误!求与面积有关的几何概型的概率的方法(1)确定所求事件构成的区域图形,判断是否为几何概型;(2)分别求出Ω和所求事件对应的区域面积,用几何概型的概率计算公式求解.1.(2020·江西八校联考)小华爱好玩飞镖,现有如图所示的两个边长都为2的正方形ABCD和OPQR构成的标靶图形,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕点O旋转,则小华随机向标靶投飞镖射中阴影部分的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.如图,连接OB,OA,可得△OBM与△OAN全等,所以S四边形MONB=S△AOB=错误!×2×1=1,即正方形ABCD和OPQR重叠的面积为1.又正方形ABCD和OPQR构成的标靶图形面积为4+4—1=7,故小华随机向标靶投飞镖射中阴影部分的概率是错误!,故选D.2.(一题多解)如图,线段MN是半径为2的圆O的一条弦,且MN的长为2,在圆O内,将线段MN绕点N按逆时针方向转动,使点M移动到圆O上的新位置,继续将新线段NM绕新点M按逆时针方向转动,使点N移动到圆O上的新位置,依此继续转动,…点M的轨迹所围成的区域是图中阴影部分.若在圆O内随机取一点,则该点取自阴影部分的概率为()A.4π—6错误!B.1—错误!C.π—错误!D.错误!解析:选B.法一:依题意,得阴影部分的面积S=6×[错误!(π×22)—错误!×2×2×错误!]=4π—6错误!,所求概率P=错误!=1—错误!,故选B.法二:依题意得阴影部分的面积S=π×22—6×错误!×2×2×错误!=4π—6错误!,所求概率P =错误!=1—错误!,故选B.与体积有关的几何概型(师生共研)已知正三棱锥S­ABC的底面边长为4,高为3,在正三棱锥内任取一点P,使得V P­ABC<错误! V S­ABC的概率是()A.错误!B.错误!C.错误!D.错误!【解析】由题意知,当点P在三棱锥的中截面以下时,满足V P­ABC<错误!V S­ABC,故使得V P­ABC<错误! V S­ABC的概率:P=错误!=错误!.【答案】B错误!与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.1.(2020·山西太原五中模拟)已知四棱锥P­ABCD的所有顶点都在球O的球面上,PA⊥底面ABCD,底面ABCD为正方形,PA=AB=2.现在球O的内部任取一点,则该点取自四棱锥P­ABCD内部的概率为________.解析:把四棱锥P­ABCD扩展为正方体,则正方体的体对角线的长是外接球的直径R,即2错误!=2R,R=错误!,则四棱锥的体积为错误!×2×2×2=错误!,球的体积为错误!×π(错误!)3=4错误!π,则该点取自四棱锥P­ABCD内部的概率P=错误!=错误!.答案:错误!2.一个多面体的直观图和三视图如图所示,点M是AB的中点,一只蝴蝶在几何体ADF­BCE内自由飞翔,则它飞入几何体F­AMCD内的概率为________.解析:因为V F­AMCD=错误!×S四边形AMCD×DF=错误!a3,V ADF­BCE=错误!a3,所以它飞入几何体F­AMCD内的概率为错误!=错误!.答案:错误![基础题组练]1.(2020·江西九江模拟)星期一,小张下班后坐公交车回家,公交车有1,10两路.每路车都是间隔10分钟一趟,1路车到站后,过4分钟10路车到站.不计停车时间,则小张坐1路车回家的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.由题意可知小张下班后坐1路公交车回家的时间段是在10路车到站与1路车到站之间,共6分钟.设“小张坐1路车回家”为事件A,则P(A)=错误!=错误!.故选D.2.(2020·河南洛阳二模)在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为()A.1—错误!B.1—错误!C.1—错误!D.1—错误!解析:选B.若点P到三个顶点的距离都不小于1,则分别以A,B,C为圆心作半径为1的圆,则P 的位置位于阴影部分,如图所示.在三角形内部的三个扇形的面积之和为错误!×3×错误!×12=错误!,△ABC的面积S=错误!×22×sin 60°=错误!,则阴影部分的面积S=错误!—错误!,则对应的概率P=错误!=1—错误!.故选B.3.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1—错误!B.错误!C.错误!D.1—错误!解析:选A.鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π,所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1—错误!,故选A.4.(2020·河北衡水联考)在如图所示的几何图形中,四边形ABCD为菱形,C为EF的中点,EC =CF=3,BE=DF=4,BE⊥EF,DF⊥EF.若在几何图形中任取一点,则该点取自Rt△BCE的概率为()A.错误!B.错误!C.错误!D.错误!解析:选D.因为EC=3,BE=4,BE⊥EC,所以BC=5.又由题可知BD=EF=6,AC=2BE =8,所以S△BCE=S△DFC=错误!×3×4=6,S四边形ABCD=错误!AC·BD=24.由几何概型概率公式可得,所求概率P=错误!=错误!,即该点取自Rt△BCE的概率为错误!.故选D.5.(2020·湖南宁乡一中、攸县一中联考)将一线段AB分为两线段AC,CB,使得其中较长的一段AC是全长AB与另一段CB的比例中项,即满足错误!=错误!=错误!≈0.618,后人把这个数称为黄金分割,把点C称为线段AB的黄金分割点.图中在△ABC中,若点P,Q为线段BC的两个黄金分割点,在△ABC内任取一点M,则点M落在△APQ内的概率为()A.错误!B.错误!—2C.错误!D.错误!解析:选B.所求概率为错误!=错误!=错误!=错误!=错误!—2.故选B.6.如图所示,黑色部分和白色部分图形是由曲线y=错误!,y=—错误!,y=x,y=—x及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是________.解析:根据图象的对称性知,黑色部分图形的面积为圆面积的四分之一,在圆内随机取一点,则此点取自黑色部分的概率是错误!.答案:错误!7.已知平面区域Ω={(x,y)|0≤x≤π,0≤y≤1},现向该区域内任意掷点,则该点落在曲线y=sin 2x下方的概率是________.解析:y=sin2x=错误!—错误!cos 2x,所以错误!错误!d x=错误!错误!=错误!,区域Ω={(x,y)|0≤x≤π,0≤y≤1}的面积为π,所以向区域Ω内任意掷点,该点落在曲线y=sin2x下方的概率是错误!=错误!.答案:错误!8.已知O(0,0),A(2,1),B(1,—2),C错误!,动点P(x,y)满足0≤错误!·错误!≤2且0≤错误!·错误!≤2,则点P到点C的距离大于错误!的概率为________.解析:因为O(0,0),A(2,1),B(1,—2),C错误!,动点P(x,y)满足0≤错误!·错误!≤2且0≤错误!·错误!≤2,所以错误!如图,不等式组错误!对应的平面区域为正方形OEFG及其内部,|CP|>错误!对应的平面区域为阴影部分.由错误!解得错误!即E错误!,所以|OE|=错误!=错误!,所以正方形OEFG的面积为错误!,则阴影部分的面积为错误!—错误!,所以根据几何概型的概率公式可知所求的概率为错误!=1—错误!.答案:1—错误!9.如图所示,圆O的方程为x2+y2=4.(1)已知点A的坐标为(2,0),B为圆周上任意一点,求错误!的长度小于π的概率;(2)若N(x,y)为圆O内任意一点,求点N到原点的距离大于错误!的概率.解:(1)圆O的周长为4π,所以错误!的长度小于π的概率为错误!=错误!.(2)记事件M为N到原点的距离大于错误!,则Ω(M)={(x,y)|x2+y2>2},Ω={(x,y)|x2+y2≤4},所以P(M)=错误!=错误!.10.已知向量a=(2,1),b=(x,y).(1)若x∈{—1,0,1,2},y∈{—1,0,1},求向量a∥b的概率;(2)若x∈[—1,2],y∈[—1,1],求向量a,b的夹角是钝角的概率.解:(1)设“a∥b”为事件A,由a∥b,得x=2y.所有基本事件为(—1,—1),(—1,0),(—1,1),(0,—1),(0,0),(0,1),(1,—1),(1,0),(1,1),(2,—1),(2,0),(2,1),共12个基本事件.其中A={(0,0),(2,1)},包含2个基本事件.则P(A)=错误!=错误!,即向量a∥b的概率为错误!.(2)设“a,b的夹角是钝角”为事件B,由a,b的夹角是钝角,可得a·b<0,即2x+y<0,且x≠2y.基本事件为错误!所表示的区域,B=错误!,如图,区域B为图中的阴影部分去掉直线x—2y=0上的点,所以,P(B)=错误!=错误!,即向量a,b的夹角是钝角的概率是错误!.[综合题组练]1.(2020·安徽合肥模拟)已知圆C:x2+y2=4与y轴负半轴交于点M,圆C与直线l:x—y +1=0相交于A,B两点,那么在圆C内随机取一点,则该点落在△ABM内的概率为()A.错误!B.错误!C.错误!D.错误!解析:选A.由图可知,由点到直线距离公式得|OC|=错误!=错误!,则|AB|=2错误!=错误!,同理可得|MD|=错误!=错误!,所以S△MAB=错误!|AB|·|MD|=错误!,由几何概型知,该点落在△ABM内的概率为错误!=错误!=错误!,故选A.2.已知P是△ABC所在平面内一点,错误!+错误!+2错误!=0,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D.以PB,PC为邻边作平行四边形PBDC,则错误!+错误!=错误!,因为错误!+错误!+2错误!=0,所以错误!+错误!=—2错误!,得错误!=—2错误!,由此可得,P是△ABC边BC上的中线AO的中点,点P到BC的距离等于A到BC距离的错误!,所以S△PBC=错误!S△ABC,所以将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为错误!=错误!.3.两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开,则这两位同学能够见面的概率是________.解析:如图所示,以5:30作为原点O,建立平面直角坐标系,设两位同学到达的时刻分别为x,y,设事件A表示两位同学能够见面,所构成的区域为A={(x,y)||x—y|≤15},即图中阴影部分,根据几何概型概率计算公式得P(A)=错误!=错误!.答案:错误!4.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O被函数y=3sin 错误!x的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y=3sin 错误!x的最小正周期T,又T=错误!=12,所以大圆的面积S=π·错误!错误!=36π,一个小圆的面积S′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率为P=错误!=错误!=错误!.答案:错误!5.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1—(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为错误!=50.由图易知第4,5,6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x,y米,则基本事件满足错误!,设事件A为“甲比乙跳得远”,则x>y,作出可行域如图中阴影部分所示.所以由几何概型得P(A)=错误!=错误!,即甲比乙跳得远的概率为错误!.6.已知关于x的二次函数f(x)=ax2—4bx+1.(1)设集合P={1,2,3}和Q={—1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)设点(a,b)是区域错误!内的随机点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.解:(1)因为函数f(x)=ax2—4bx+1的图象的对称轴为x=错误!,要使f(x)=ax2—4bx +1在区间[1,+∞)上为增函数,当且仅当a>0且错误!≤1,即2b≤a.若a=1,则b=—1;若a=2,则b=—1,1;若a=3,则b=—1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P和Q中随机取一个数作为a和b”的个数是15.所以所求事件的概率为错误!=错误!.(2)由(1)知当且仅当2b≤a且a>0时,函数f(x)=ax2—4bx+1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为错误!,构成所求事件的区域为如图所示的三角形BOC部分.由错误!得交点坐标C错误!,故所求事件的概率P=错误!=错误!=错误!.。

北师大版版高考数学一轮复习计数原理概率随机变量及其分布排列与组合教学案理解析版

北师大版版高考数学一轮复习计数原理概率随机变量及其分布排列与组合教学案理解析版

[考纲传真] 1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.3.理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.4.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,…,在第n类办法中有m n种方法.那么,完成这件事共有N=m1+m2+…+m n种方法.(也称加法原理)2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,…,做第n步有m n种方法.那么,完成这件事共有N=m1×m2×…×m n种方法.3.排列、组合的定义排列的定义从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合的定义合成一组排列数组合数定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数公式A错误!=n(n—1)(n—2)…(n—m+1)=错误!C错误!=错误!=错误!性质A错误!=n!,0!=1C错误!=C错误!,C错误!+C错误!=C错误!1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)所有元素完全相同的两个排列为相同排列.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(4)k C错误!=n C错误!. ()[答案] (1)×(2)√(3)√(4)√2.(教材改编)图书馆的一个书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取1本书,不同的取法有()A.12B.16C.64D.120B[书架上共有3+5+8=16本不同的书,从中任取一本共有16种不同的取法,故选B.]3.(教材改编)用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为()A.8 B.24C.48 D.120C[末位只能从2,4中选一个,其余的三个数字任意排列,故这样的偶数共有A错误!C错误!=4×3×2×2=48个.故选C.]4.某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85B.56C.49 D.28C[法一(直接法):甲、乙两人均入选,有C错误!C错误!种方法,甲、乙两人只有1人入选,有C错误!C错误!种方法,由分类加法计数原理,共有C错误!C错误!+C错误!C错误!=49种选法.法二(间接法):从9人中选3人有C错误!种方法,其中甲、乙均不入选有C错误!种方法,∴满足条件的选排方法有C错误!—C错误!=84—35=49种.]5.将6名教师分到三所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.360 [将6名教师分组,分3步完成:第1步,在6名教师中任取1名作为一组,有C错误!种取法;第2步,在余下的5名教师中任取2名作为一组,有C错误!种取法;第3步,余下的3名教师作为一组,有C错误!种取法.根据分步乘法计数原理,共有C错误!C错误!C错误!=60(种)取法.将这三组教师分配到三所中学,有A错误!=6(种)分法,故共有60×6=360(种)不同法.]两个计数原理的综合应用【例1】(1)从甲地到乙地每天有直达汽车4班,从甲到丙地,每天有5个班车,从丙地到乙地每天有3个班车,则从甲地到乙地不同的乘车方法有()A.12种B.19种C.32种D.60种(2)如图,用6种不同的颜色分别给图中A,B,C,D四块区域涂色,若相邻区域不能涂同一种颜色,则不同的涂法共有()A.400种B.460种C.480种D.496种(1)B(2)C[(1)分两类:一类是直接从甲到乙,有n1=4种方法;另一类是从甲经丙再到乙,可分为两步,有n2=5×3=15种方法.由分类加法计数原理可得:从甲到乙的不同乘车方法n=n1+n2=4+15=19.故选B.(2)完成此事可能使用4种颜色,也可能使用3种颜色.当使用4种颜色时:从A开始,有6种方法,B有5种,C有4种,D有3种,完成此事共有6×5×4×3=360种方法;当使用3种颜色时,A,D使用同一种颜色,从A,D开始,有6种方法,B有5种,C有4种,完成此事共有6×5×4=120种方法.由分类加法计数原理可知:不同的涂法有360+120=480(种).][规律方法] 与两个计数原理有关问题的解题策略(1)在综合应用两个原理解决问题时,一般是先分类再分步,但在分步时可能又会用到分类加法计数原理.(2)对于较复杂的两个原理综合应用的问题,可恰当地画出示意图或列出表格,化抽象为直观.________.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有________种.(2)用0,1,2,3,4,5,6这7个数字可以组成________个无重复数字的四位偶数.(用数字作答)(1)4554(2)420 [(1)五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.(2)1当末位数字是0时,如图(1)所示,共有A错误!个不同的四位偶数;图(1)2当末位数字是2或4或6时,如图(2)所示,共有A错误!A错误!C错误!个不同的四位偶数;即共有A错误!+A错误!A错误!C错误!=120+5×5×4×3=420个无重复数字的四位偶数.]图(2)排列问题【例2】3名女生和5名男生排成一排.(1)若女生全排在一起,有多少种排法?(2)若女生都不相邻,有多少种排法?(3)若女生不站两端,有多少种排法?(4)其中甲必须排在乙左边(可不邻),有多少种排法?(5)其中甲不站最左边,乙不站最右边,有多少种排法?[解] (1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同5名男生合在一起有6个元素,排成一排有A错误!种排法,而其中每一种排法中,3名女生之间又有A错误!种排法,因此共有A错误!·A错误!=4320种不同排法.(2)(插空法)先排5名男生,有A错误!种排法,这5名男生之间和两端有6个位置,从中选取3个位置排女生,有A错误!种排法,因此共有A错误!·A错误!=14400种不同排法.(3)法一(位置分析法):因为两端不排女生,只能从5名男生中选2人排,有A错误!种排法,剩余的位置没有特殊要求,有A错误!种排法,因此共有A错误!·A错误!=14400种不同排法.法二(元素分析法):从中间6个位置选3个安排女生,有A错误!种排法,其余位置无限制,有A错误!种排法,因此共有A错误!·A错误!=14400种不同排法.(4)8名学生的所有排列共A错误!种,其中甲在乙左边与乙在甲左边的各占错误!,因此符合要求的排法种数为错误!A错误!=20 160.(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法):甲在最右边时,其他的可全排,有A错误!种不同排法;甲不在最右边时,可从余下6个位置中任选一个,有A错误!种.而乙可排在除去最右边位置后剩余的6个中的任一个上,有A错误!种,其余人全排列,共有A错误!·A错误!·A错误!种不同排法.由分类加法计数原理知,共有A错误!+A错误!·A错误!·A错误!=30 960种不同排法.法二(特殊位置法):先排最左边,除去甲外,有A错误!种排法,余下7个位置全排,有A错误!种排法,但应剔除乙在最右边时的排法A错误!·A错误!种,因此共有A错误!·A错误!—A错误!·A错误!=30 960种排法.法三(间接法):8名学生全排列,共A错误!种,其中,不符合条件的有甲在最左边时,有A错误!种排法,乙在最右边时,有A错误!种排法,其中都包含了甲在最左边,同时乙在最右边的情形,有A错误!种排法.因此共有A错误!—2A错误!+A错误!=30 960种排法.[规律方法] 求解排列应用问题的六种常用方法除法处理间接法正难则反、等价转化的方法A.144B.120C.72D.24(2)旅游体验师小明受某网站邀请,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则小李可选的旅游路线数为()A.24B.18C.16 D.10(1)D(2)D[(1)先把3把椅子隔开摆好,它们之间和两端共有4个位置,再把3人带椅子插放在4个位置,共有A错误!=24(种)方法.故选D.(2)分两种情况,第一种:最后体验甲景区,则有A错误!种可选的路线;第二种:不在最后体验甲景区,则有C错误!·A错误!种可选的路线.所以小李可选的旅游路线数为A错误!+C错误!·A错误!=10.故选D.]组合问题【例3】某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生当选;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.[解] (1)只有一名女生当选等价于有一名女生和四名男生当选.故共有C错误!·C错误!=350种.(2)两队长当选,共有C错误!·C错误!=165种.(3)至少有一名队长当选含有两类:只有一名队长当选,有两名队长当选.故共有C错误!·C错误!+C错误!·C错误!=825种.(或采用排除法:C错误!—C错误!=825(种)).(4)至多有两名女生当选含有三类:有两名女生当选,只有一名女生当选,没有女生当选.故选法共有C错误!·C错误!+C错误!·C错误!+C错误!=966种.[律方规法] 组合问题的常见类型与处理方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.1天.若6位员工中的甲不值9日,乙不值11日,则不同的安排方法共有()A.30种B.36种C.42种D.48种(2)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232B.252C.472D.484(1)C(2)C[(1)若甲在11日值班,则在除乙外的4人中任选1人在11日值班,有C错误!种选法,9日、10日有C错误!C错误!种安排方法,共有C错误!C错误!C错误!=24(种)安排方法;若甲在10日值班,乙在9日值班,余下的4人有C错误!C错误!C错误!种安排方法,共有12种安排方法;若甲、乙都在10日值班,则共有C错误!C错误!=6(种)安排方法.所以总共有24+12+6=42(种)安排方法.(2)分两类:第一类,含有1张红色卡片,不同的取法共有C错误!C错误!=264(种);第二类,不含有红色卡片,不同的取法共有C错误!—3C错误!=220—12=208(种).由分类加法计数原理知,不同的取法有264+208=472(种).]排列、组合的综合应用【例4】(1)将5名同学分到甲、乙、丙3个小组,若甲小组至少2人,乙、丙组至少1人,则不同的分配方案种数为()A.80 B.120C.140 D.50(2)如果一个三位正整数“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240 B.204C.729 D.920(1)A(2)A[(1)先将5名同学分成3组,有两种分配方案,一是三组人数分别为2,2,1,分组方法有错误!=15(种),然后将有2人的两组分给甲、乙或甲、丙,分配方法是15×(A错误!+A错误!)=60(种);二是三组人数分别为3,1,1,分组方法有错误!=10(种),然后将1人的两组分给乙、丙两组,分配方法是10×A错误!=20(种).故共有60+20=80(种).(2)如果这个三位数含0,则0必在末位,共有这样的凸数C错误!个;如果这个三位数不含0,则这样的凸数共有C错误!A错误!+C错误!个.即共有2C错误!+C错误!A错误!=240个.] [规律方法] 1.排列组合综合题思路,先选后排,先组合后排列.当有多个限制条件时,应以其中一个限制条件为标准分类,限制条件多时,多考虑用间接法,但需确定一个总数.2.(1)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:1不均匀分组;2均匀分组;3部分均匀分组,注意各种分组类型中,不同分组方法的求法.(2)对于相同元素的“分配”问题,常用的方法是采用“隔板法”.求每个班级至少分到一人,则甲被分到A班的分法种数为()A.6 B.12C.24D.36(2)(2017·浙江高考)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)(1)B(2)660 [(1)甲和另一个人一起分到A班有C错误!A错误!=6种分法,甲一个人分到A班的方法有:C错误!A错误!=6种分法,共有12种分法.故选B.(2)法一:只有1名女生时,先选1名女生,有C错误!种方法;再选3名男生,有C错误!种方法;然后排队长、副队长位置,有A错误!种方法.由分步乘法计数原理,知共有C错误!C错误!A错误!=480(种)选法.有2名女生时,再选2名男生,有C错误!种方法;然后排队长、副队长位置,有A错误!种方法.由分步乘法计数原理,知共有C错误!A错误!=180(种)选法.所以依据分类加法计数原理知共有480+180=660(种)不同的选法.法二:不考虑限制条件,共有A错误!C错误!种不同的选法,而没有女生的选法有A错误!C错误!种,故至少有1名女生的选法有A错误!C错误!—A错误!C错误!=840—180=660(种).]1.(2017·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种D[由题意可得其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C错误!·C 错误!·A错误!=36(种),或列式为C错误!·C错误!·C错误!=3×错误!×2=36(种).故选D.]2.(2016·全国卷Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9B[从E到G需要分两步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F.因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.]3.(2018·全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16 [法一:可分两种情况:第一种情况,只有1位女生入选,不同的选法有C错误!C错误!=12(种);第二种情况,有2位女生入选,不同的选法有C错误!C错误!=4(种).根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种.法二:从6人中任选3人,不同的选法有C错误!=20(种),从6人中任选3人都是男生,不同的选法有C错误!=4(种),所以至少有1位女生入选的不同的选法有20—4=16(种).]。

(北师大版)高三理科第一轮复习学案: 第10章第4节 随机事件的概率学案

(北师大版)高三理科第一轮复习学案: 第10章第4节 随机事件的概率学案

第四节随机事件的概率[考纲传真] (教师用书独具)1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.(对应学生用书第175页)[基础知识填充]1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的必然事件.(2)在条件S下,一定不会发生的事件,叫作相对于条件S的不可能事件.(3)必然事件与不可能事件统称为相对于条件S的确定事件.(4)在条件S下可能发生也可能不发生的事件,叫作相对于条件S的随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母A,B,C,…表示.2.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作P(A).3.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B至少有一个发生.对立事件:不会同时发生,并且一定有一个发生的事件是相互对立事件.4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A+B)=P(A)+P(B).②若事件A与事件A互为对立事件,则P(A)=1-P(A).[知识拓展] 互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)事件发生的频率与概率是相同的.( )(2)在大量的重复试验中,概率是频率的稳定值.( )(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( ) [答案] (1)× (2)√ (3)√ (4)×2.(教材改编)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( )A .必然事件B .随机事件C .不可能事件D .无法确定B [抛掷10次硬币正面向上的次数可能为0,1,2,…,10,都有可能发生,正面向上5次是随机事件.]3.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A .56B .25C .16D .13A [事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56.]4.甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件B [两个事件是对立事件,则它们一定互斥,反之不一定成立.]5.某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未打中.假设此人射击1次,则中靶的概率约为________;中10环的概率约为________.0.9 0.2 [中靶的频数为9,试验次数为10,所以中靶的频率为910=0.9,所以此人射击1次,中靶的概率约为0.9,同理,中10环的概率约为0.2.](对应学生用书第175页)(1)(2017·中山模拟)从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )A .①B .②④C .③D .①③(2)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡(1)C (2)A [(1)从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数, 其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.又①②④中的事件可以同时发生,不是对立事件.(2)至多有一张移动卡包含“一张移动卡,一张联通卡”,“2张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.]①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有( )【导学号:79140352】A.0组B.1组C.2组D.3组B [①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰有1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B.](2017·湖北七市联考)某电子商务公司随机抽取1 000名网络购物者进行调查,这1 000名购物者2015年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为 [0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如图10­4­1.图10­4­1电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.[解] (1)购物者的购物金额x 与获得优惠券金额y 的频率分布如下表:这1 00050×400+100×300+150×280+200×201 000=96.(2)由获得优惠券金额y 与购物金额x 的对应关系,由(1)有P(y =150)=P(0.6≤x<0.8)=0.28, P(y =200)=P(0.8≤x≤0.9)=0.02,从而获得优惠券金额不少于150元的概率为P(y≥150)=P(y =150)+P(y =200)=0.28+0.02=0.3.入各组区间的频率视为概率.(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.[解] (1)设月销量为x ,则P(0<x≤50)=330=110,P(50<x≤100)=530=16,所以P(0<x≤100)=110+16=415. (2)日销售量低于100枝共有8天,从中任选两天促销共有n =28种情况; 日销售量低于50枝共有3天,从中任选两天促销共有m =3种情况. 由古典概型公式得P =m n =328.某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P(A),P(B),P(C); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. [解] (1)P(A)=11 000,P(B)=101 000=1100, P(C)=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A∪B∪C. ∵A,B ,C 两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C) =1+10+501 000=611 000,故1张奖券的中奖概率约为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)=1-⎝ ⎛⎭⎪⎫11 000+1100=9891 000,故1张奖券不中特等奖且不中一等奖的概率为9891 000.求:(1)(2)至少3人排队等候的概率.【导学号:79140353】[解] 记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A 、B 、C 、D 、E 、F 彼此互斥.(1)记“至多2人排队等候”为事件G ,则G =A +B +C ,所以P(G)=P(A +B +C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H ,则H =D +E +F ,所以P(H)=P(D +E +F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.。

「最新」北师大版(理)数学教案:第10章 第4节 随机事件的概率 含解析-可编辑修改

「最新」北师大版(理)数学教案:第10章 第4节 随机事件的概率 含解析-可编辑修改

第四节随机事件的概率[考纲传真] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.1.概率(1)定义:在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时这个常数叫作随机事件A的概率,记作P(A),有0≤P(A)≤1.(2)频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.2.互斥事件与对立事件(1)互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.(2)对立事件:在每一次试验中,两个事件不会同时发生,并且一定有一个发生的事件A和A称为对立事件.3.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率:P(A)=1.(3)不可能事件的概率:P(A)=0.(4)互斥事件的概率加法公式:①P(A+B)=P(A)+P(B)(A,B互斥).②P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n)(A1,A2,…,A n彼此互斥).(5)对立事件的概率:P(A)=1-P(A).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)事件发生的频率与概率是相同的.( )(2)在大量的重复实验中,概率是频率的稳定值.( )(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( )[答案] (1)× (2)√ (3)√ (4)×2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( )A .①B .②C .③D .④B [至少有1个白球和全是黑球不同时发生,且一定有一个发生,∴②中两事件是对立事件.]3.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13A [事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56.]4.(2017·郑州调研)集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是________.【导学号:57962459】13 [从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况, 其中和为4的有两种情况(2,2),(3,1), 故所求事件的概率P =26=13.]5.一个人打靶时连续射击两次,事件“至少有一次中靶”的经斥事件是________.(填序号)①至多有一次中靶;②两次都中靶;③只有一次中靶;④两次都不中靶④数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③C[从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数,其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.又①②④中的事件可以同时发生,不是对立事件.][规律方法] 1.本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.2.准确把握互斥事件与对立事件的概念.(1)互斥事件是不可能同时发生的事件,但可以同时不发生.(2)对立事件是特殊的互斥事件,特殊在对立的两个事件有且仅有一个发生.[变式训练1]口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________.①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C+E)=1;⑤P(B)=P(C).①④[当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C+E为必然事件,④正确.由于B≠C,故P(B)≠P(C),所以⑤不正确.]人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)记(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.[解](1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55. 4分(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.8分(3)由所给数据得调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a. 12分[规律方法] 1.解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.2.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值.[变式训练2] (2017·西安质检)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:...(2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨的概率.[解] (1)由4月份天气统计表知,在容量为30的样本中,不下雨的天数是26, 2分以频率估计概率,在4月份任选一天,西安市不下雨的概率为2630=1315. 5分 (2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率f =1416=78.10分 以频率估计概率,运动会期间不下雨的概率为78.12分该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率). [解] (1)由题意,得⎩⎨⎧25+y +10=100×55%,x +30=45,解得⎩⎨⎧x =15,y =20.2分该超市所有顾客一次性购物的结算时间组成一个总体,100位顾客一次购物的结算时间视为总体的一个容量为100的简单随机抽样,顾客一次购物的结算时间的平均值可用样本平均数估计.又x =1×15+1.5×30+2×25+20×2.5+10×3100=1.9,∴估计顾客一次购物的结算时间的平均值为1.9分钟.5分(2)设B ,C 分别表示事件“一位顾客一次购物的结算时间分别为2. 5分钟、3分钟”.设A 表示事件“一位顾客一次购物的结算时间不超过2分钟的概率.” 7分将频率视为概率,得P (B )=20100=15, P (C )=10100=110.∵B ,C 互斥,且A =B +C ,∴P (A )=P (B +C )=P (B )+P (C )=15+110=310, 10分因此P (A )=1-P (A )=1-310=710,∴一位顾客一次购物结算时间不超过2分钟的概率为0.7.12分 [规律方法] 1.(1)求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来.(2)结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误. 2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P (A )=1-P (A )求解.当题目涉及“至多”“至少”型问题,多考虑间接法.[变式训练3] 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. [解] (1)P (A )=11 000, P (B )=101 000=1100, 2分P (C )=501 000=120.故事件A ,B ,C 的概率分别为11 000,1100,120.5分 (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A +B +C .∵A ,B ,C 两两互斥,∴P (M )=P (A +B +C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000,8分故1张奖券的中奖概率约为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A +B )=1-⎝ ⎛⎭⎪⎫11 000+1100=9891 000,故1张奖券不中特等奖且不中一等奖的概率为9891 000.12分[思想与方法]1.对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.3.求复杂的互斥事件的概率一般有两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算.(2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(A),即运用逆向思维(正难则反).[易错与防范]1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.2.正确认识互斥事件与对立事件的关系:对立事件是特殊的互斥事件,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.。

1.4随机事件的运算-北师大版高中数学必修第一册(2019版)教案

1.4随机事件的运算-北师大版高中数学必修第一册(2019版)教案

1.4 随机事件的运算-北师大版高中数学必修第一册(2019版)教案前置知识在讲解随机事件的运算之前,我们需要先了解一些基本的概率知识。

概率可以理解为一个事件发生的可能性大小,通常用一个在0到1之间的实数来表示。

具体来说,如果一个事件发生的概率为0,则表示这个事件不可能发生;如果一个事件发生的概率为1,则表示这个事件一定会发生;如果一个事件发生的概率在0和1之间,则表示这个事件有可能发生,但也有可能不发生。

对于两个事件A和B,我们可以定义它们的交集、并集和补集:•交集:事件A和B的交集是指既属于A又属于B的所有样本点构成的集合,通常用符号A∩B来表示;•并集:事件A和B的并集是指属于A或属于B的所有样本点构成的集合,通常用符号A∪B来表示;•补集:事件A的补集是指所有不属于A的样本点构成的集合,通常用符号A的撇(即A’)来表示。

通过这些基本定义,我们可以开始讲解随机事件的运算了。

随机事件的运算相关概念在讲解随机事件的运算之前,我们先介绍一些相关的概念。

•完备事件组:设S为样本空间,如果S中的若干个事件A1,A2,…,An满足它们两两互不相容(即任意两个事件的交集为空集),且它们的并集等于S,则称A1,A2,…,An为S的一个完备事件组;•随机事件的和:设A和B为两个事件,则A和B的和为事件A∪B;•随机事件的积:设A和B为两个事件,则A和B的积为事件A∩B;•互相独立的事件:如果事件A和B满足P(AB) = P(A)P(B)成立,则称事件A 和B是互相独立的。

随机事件的和的概率设A和B为两个事件,其和为A∪B。

我们可以将A∪B划分为三个部分:A,B,和在A和B中同时出现的部分,它们之间两两互不相容。

因此,有:P(A∪B) = P(A) + P(B) - P(A∩B)其中,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。

这个公式可以很方便地用于计算两个事件的和的概率。

《一轮复习教学案第十章第四节随机事件的概率》优秀教案

《一轮复习教学案第十章第四节随机事件的概率》优秀教案

第四节随机事件的概率☆☆☆2021考纲考题考情☆☆☆考纲要求真题举例命题角度1了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别;2了解两个互斥事件的概率加法公式。

2021,全国卷Ⅱ,18,12分随机事件的概率2021,北京卷,17,13分用频率估计概率2021,陕西卷,19,12分用频率估计概率2021,福建卷,20212分用频率估计概率1多以选择题或填空题的形式直接考查互斥事件的概率及运算,而随机事件的有关概念和频率很少直接考查;2互斥事件、对立事件发生的概率问题有时也会出现在解答题中,多为应用问题。

微知识小题练自|主|排|查1.事件1在条件S下,一定会发生的事件,叫做相对于条件S的必然事件。

2在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件。

3在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件。

2.概率和频率1在相同的条件S下重复n次试验,观察某一事件A是否发生,称n次实验中事件A发生的次数n A为事件A 发生的频数,称事件A发生的比例f n A=错误!为事件A发生的频率。

2对于给定的随机事件A,由于事件A发生的频率f n A随着试验次数的增加稳定于概率123A。

当n很大时,的关系是A.B.C.D.【解析】事件A发生的概率近似等于该频率的稳定值。

故选A。

【答案】 A2.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有两个红球【解析】A中的两个事件不互斥,B中两事件互斥且对立,C中的两个事件不互斥,D中的两个互斥而不对立。

故选D。

【答案】 D3.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上。

则下列结果正确的是A.=错误!错误!=错误!错误!=错误!错误!=错误!错误!包含:正、反、反、正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节随机事件的概率[考纲传真](教师用书独具)1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.(对应学生用书第175页)[基础知识填充]1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的必然事件.(2)在条件S下,一定不会发生的事件,叫作相对于条件S的不可能事件.(3)必然事件与不可能事件统称为相对于条件S的确定事件.(4)在条件S下可能发生也可能不发生的事件,叫作相对于条件S的随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母A,B,C,…表示.2.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作P(A).3.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B至少有一个发生.对立事件:不会同时发生,并且一定有一个发生的事件是相互对立事件.4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A+B)=P(A)+P(B).②若事件A与事件A互为对立事件,则P(A)=1-P(A).[知识拓展]互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)事件发生的频率与概率是相同的.()(2)在大量的重复试验中,概率是频率的稳定值.()(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.()(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.()[答案](1)×(2)√(3)√(4)×2.(教材改编)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是() A.必然事件B.随机事件C.不可能事件D.无法确定B[抛掷10次硬币正面向上的次数可能为0,1,2,…,10,都有可能发生,正面向上5次是随机事件.]3.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为()A.56B.25C.16D.13A[事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56.]4.甲:A1,A2是互斥事件;乙:A1,A2是对立事件,那么() A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件B[两个事件是对立事件,则它们一定互斥,反之不一定成立.] 5.某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未打中.假设此人射击1次,则中靶的概率约为________;中10环的概率约为________.0.90.2[中靶的频数为9,试验次数为10,所以中靶的频率为910=0.9,所以此人射击1次,中靶的概率约为0.9,同理,中10环的概率约为0.2.](对应学生用书第175页)(1)(2017·中山模拟)从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③(2)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡(1)C(2)A[(1)从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数,其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.又①②④中的事件可以同时发生,不是对立事件.(2)至多有一张移动卡包含“一张移动卡,一张联通卡”,“2张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.]事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有()【导学号:79140352】A.0组B.1组C.2组D.3组B[①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰有1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B.](2017·湖北七市联考)某电子商务公司随机抽取1 000名网络购物者进行调查,这1 000名购物者2015年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如图10-4-1.图10-4-1电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.[解](1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:这1 000名购物者获得优惠券金额的平均数为50×400+100×300+150×280+200×201 000=96.(2)由获得优惠券金额y与购物金额x的对应关系,由(1)有P(y=150)=P(0.6≤x<0.8)=0.28,P(y=200)=P(0.8≤x≤0.9)=0.02,从而获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.销售天数统计如下,将日销售量落入各组区间的频率视为概率.(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.[解](1)设月销量为x,则P(0<x≤50)=330=110,P(50<x≤100)=530=16,所以P(0<x≤100)=110+16=415.(2)日销售量低于100枝共有8天,从中任选两天促销共有n=28种情况;日销售量低于50枝共有3天,从中任选两天促销共有m=3种情况.由古典概型公式得P=mn=328.某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.[解](1)P(A)=11 000,P(B)=101 000=1100,P(C)=501 000=120.故事件A,B,C的概率分别为11 000,1100,120.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.∵A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=1+10+501 000=611 000,故1张奖券的中奖概率约为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝ ⎛⎭⎪⎫11 000+1100=9891 000, 故1张奖券不中特等奖且不中一等奖的概率为9891 000.求:(2)至少3人排队等候的概率.【导学号:79140353】[解] 记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A 、B 、C 、D 、E 、F 彼此互斥.(1)记“至多2人排队等候”为事件G ,则G =A +B +C ,所以P (G )=P (A +B +C )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H ,则H =D +E +F ,所以P (H )=P (D +E +F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44.。

相关文档
最新文档