九年级数学上册期末检测题课件(新版)新人教版

合集下载

2024年人教版初中九年级数学(上册)期末试题及答案(各版本)

2024年人教版初中九年级数学(上册)期末试题及答案(各版本)

专业课原理概述部分一、选择题(每题1分,共5分)1.若一个正方形的边长为a,则它的对角线长为()。

A.a/2B.a√2C.2aD.a√32.下列函数中,哪一个不是二次函数?()A.y=2x^23x+1B.y=x^2+4C.y=3x+2D.y=-x^2+5x43.在直角坐标系中,点(3,-4)位于()。

A.第一象限B.第二象限C.第三象限D.第四象限4.若一组数据的方差为4,则这组数据的()。

A.平均数为4B.标准差为2C.众数为4D.中位数为45.下列哪个数是素数?()A.21B.27C.29D.35二、判断题(每题1分,共5分)1.两个负数相乘的结果是正数。

()2.任何数与零相乘都等于零。

()3.平行四边形的对角线互相平分。

()4.一元二次方程的解一定是实数。

()5.在三角形中,大边对大角,小边对小角。

()三、填空题(每题1分,共5分)1.一个等差数列的前三项分别是2、5、8,那么第四项是______。

2.若直线y=3x+2与y轴的交点为(0,b),则b的值为______。

3.若一个圆的半径为r,则这个圆的面积为______。

4.若一个分数的分子和分母同时除以2,这个分数的值______。

5.若|a|=5,则a的值为______或______。

四、简答题(每题2分,共10分)1.请简述等差数列的定义。

2.请解释什么是一元二次方程的判别式。

3.简述直角三角形的勾股定理。

4.请解释什么是平行四边形的对角线。

5.简述二次函数的性质。

五、应用题(每题2分,共10分)1.已知等差数列的前三项分别是2、5、8,求这个等差数列的公差和首项。

2.已知直角三角形的两个直角边长分别是3和4,求这个直角三角形的斜边长。

3.已知一个圆的半径为5,求这个圆的周长和面积。

4.解一元二次方程x^25x+6=0。

5.已知一个二次函数的顶点为(2,-3),且过点(0,1),求这个二次函数的解析式。

六、分析题(每题5分,共10分)1.分析并解释为什么两个负数相乘的结果是正数。

部编数学九年级上册20232024人教版九年数学上册期末考试核心素养达标检测试卷(04)(解析版)含

部编数学九年级上册20232024人教版九年数学上册期末考试核心素养达标检测试卷(04)(解析版)含

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!2023-2024人教版九年数学上册期末考试核心素养达标检测试卷十套(解析版)2023-2024人教版九年数学上册期末考试核心素养达标检测试卷(04)(满分100分,答题时间90分钟)一、选择题(本大题有6小题,每小题4分,共24分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】D【解析】根据中心对称图形和轴对称图形的定义,即可求解.在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.A 、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;B 、是轴对称图形,不是中心对称图形,故本选项不符合题意;C 、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;D 、既是轴对称图形又是中心对称图形,故本选项符合题意.【点睛】本题主要考查了中心对称图形和轴对称图形的定义,熟练掌握轴对称图形的关键是寻找对称轴,图形关于对称轴折叠后可完全重合;中心对图形是寻找对称中心,图形绕对称中心旋转180° 后与自身重合是解题的关键.2. 书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( )A. 14 B. 13 C. 12 D. 23【答案】B【解析】根据概率公式直接求概率即可;一共有3本书,从中任取1本书共有3种结果,选中书是物理书的结果有1种,∴从中任取1本书是物理书的概率=13.【点睛】本题考查了概率的计算,掌握概率=所求事件的结果数÷总的结果数是解题关键.3.已知关于x 的一元二次方程ax 2﹣4x ﹣1=0有两个不相等的实数根,则a 的取值范围是( )的A .a ≥﹣4B .a >﹣4C .a ≥﹣4且a ≠0D .a >﹣4且a ≠0【答案】D 【解析】根据一元二次方程的定义和判别式的意义得到a ≠0且Δ=(﹣4)2﹣4a ×(﹣1)>0,然后求出a 的范围后对各选项进行判断.根据题意得a ≠0且Δ=(﹣4)2﹣4a ×(﹣1)>0,解得a >﹣4且a ≠0.4.如图,在长为32米、宽为12米的矩形地面上修建如图所示的道路(图中的阴影部分)余下部分铺设草坪,要使得草坪的面积为300平方米,则可列方程为( )A .32123212300x x ´--=B .()()23212300x x x --+=C .()()3212300x x --=D .()23212300x x -+-=【答案】C 【解析】解:根据题意得:()()3212300x x --=;故答案为:()()3212300x x --=.故选C .5. 如图,AB 为O e 的直径,弦CD AB ^于点E ,OF BC ^于点F ,65BOF Ð=°,则AOD Ð为( )A. 70°B. 65°C. 50°D. 45°【答案】C 【解析】根据邻补角得出∠AOF =180°-65°=115°,利用四边形内角和得出∠DCB =65°,结合圆周角定理及邻补角进行求解即可.【详解】∵∠BOF =65°,∴∠AOF =180°-65°=115°,∵CD ⊥AB ,OF ⊥BC ,∴∠DCB =360°-90°-90°-115°=65°,∴∠DOB =2×65°=130°,∴∠AOD =180°-130°=50°,故选:C .【点睛】题目主要考查邻补角的计算及圆周角定理,四边形内角和等,理解题意,综合运用这些知识点是解题关键.6. 二次函数2y ax bx c =++的部分图象如图所示,与y 轴交于(0,1)-,对称轴为直线1x =.以下结论:①0abc >;②13a >;③对于任意实数m ,都有()m am b a b +>+成立;④若()12,y -,21,2y æöç÷èø,()32,y 在该函数图象上,则321y y y <<;⑤方程2ax bx c k ++=(0k …,k 为常数)的所有根的和为4.其中正确结论有( )A. 2B. 3C. 4D. 5【答案】A【解析】【分析】根据图象可判断0,1,0a c b >=-<,即可判断①正确;令2210y ax ax =--=,解得1x ==±根据图得,110-<-<,再由顶点坐标的纵坐标的范围即可求出a 的范围,即可判断②错误;由2b a =-代入变形计算即可判断③错误;由抛物线的增减性和对称性即可判断④错误;分类讨论当20ax bx c ++>时,当20ax bx c ++<时,再根据一元二次方程根与系数的关系进行求解即可判断⑤正确.【详解】Q 二次函数2y ax bx c =++的部分图象与y 轴交于(0,1)-,对称轴为直线1x =,抛物线开头向上,0,1,12b a c a\>=--=,20b a \=-<,0abc \>,故①正确;令2210y ax ax =--=,解得1x ==±,由图得,110-<-<,解得13a >,Q 抛物线的顶点坐标为(1,1)a --,由图得,211a -<--<-,解得01a <<,113a \<<,故②错误;2b a =-Q ,()m am b a b +>+\可化为(2)2m am a a a ->-,即(2)1m m ->-,2(1)0m \->,若()m am b a b +>+成立,则1m ¹,故③错误;当1x <时,y 随x 的增大而减小,122-<Q ,12y y \>,Q 对称轴为直线1x =,2x \=时与0x =时所对应的y 值相等,231y y y \<<,故④错误;2ax bx c k ++=,当20ax bx c ++>时,20ax bx c k ++-=,1222b a x x a a-\+=-=-=,当20ax bx c ++<时,20ax bx c k +++=,3422b a x x a a -\+=-=-=,12344x x x x \+++=,故⑤正确;综上,正确的个数为2,故选:A .【点睛】本题考查了二次函数图象和性质,一元二次方程求根公式,根与系数的关系等,熟练掌握知识点,能够运用数形结合的思想是解题的关键.二、填空题(本大题有10小题,每小题3分,共30分)1. 若1x =是方程220x x a -+=的根,则=a ________.【答案】1【解析】本题根据一元二次方程的根的定义,把x =1代入方程得到a 的值.把x =1代入方程220x x a -+=,得1−2+a =0,解得a =1.【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.2.下列图形:①等腰梯形;②菱形;③函数y=x 2的图象;④函数y=kx+b(k ≠0)的图象.其中既是轴对称图形又是中心对称图形的是 .(填序号)【答案】②④【解析】①等腰梯形是轴对称图形,不是中心对称图形;②菱形既是轴对称图形又是中心对称图形;③函数y=x 2的图象是轴对称图形,不是中心对称图形;④函数y=kx+b(k ≠0)的图象既是轴对称图形又是中心对称图形.所以,既是轴对称图形又是中心对称图形的为②④.3. 一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为14,则这个箱子中黄球的个数为______个.【答案】15【解析】设黄球的个数为x 个,根据概率计算公式列出方程,解出x 即可.【详解】解:设:黄球的个数为x 个,5154x =+解得:15x =,检验:将15x =代入520x +=,值不为零,∴15x =是方程的解,∴黄球的个数为15个.【点睛】本题考查概率计算公式,根据题意列出分式方程并检验是解答本题的关键.4.如图,矩形ABCD 和矩形A'B'C'D 关于点D 成中心对称,已知AB=3,BC=4,则阴影部分的周长和是 .【答案】48【解析】∵四边形ABCD 是矩形,∴∠B=90°.∵AB=3,BC=4,∴∴△ABC 的周长=3+4+5=12.∵矩形ABCD 和矩形A'B'C'D 关于点D 成中心对称,∴阴影部分的四个直角三角形全等,∴阴影部分的周长和=4×12=48.5. (2023重庆)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x ,根据题意,请列出方程________.【答案】2301(1)500x +=【解析】根据变化前数量2(1)x ´+=变化后数量,即可列出方程.Q 第一个月新建了301个充电桩,该市新建智能充电桩个数的月平均增长率为x .\第二个月新建了301(1)x +个充电桩,\第三个月新建了2301(1)x +个充电桩,Q 第三个月新建了500个充电桩,于是有2301(1)500x +=,故答案为2301(1)500x +=.【点睛】本题考查了一元二次方程的实际应用中的增长率问题,若设平均增长率为x ,则有(1)na xb +=,其中a 表示变化前数量,b 表示变化后数量,n 表示增长次数.解决增长率问题时要注意区分变化前数量和变化后数量,同时也要注意变化前后经过了几次增长.6.如图,AB 是⊙O 的直径,AB=4,点M 是OA 的中点,过点M 的直线与⊙O 交于C ,D 两点.若∠CMA=45°,则弦CD 的长为 .【答案】.【解析】连接OD ,作OE ⊥CD 于E ,由垂径定理得出CE=DE ,证明△OEM 是等腰直角三角形,由勾股定理得出OE=OM=,在Rt △ODE 中,由勾股定理求出DE=,得出CD=2DE=即可.【解答】连接OD ,作OE ⊥CD 于E ,如图所示:则CE=DE ,∵AB 是⊙O 的直径,AB=4,点M 是OA 的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM 是等腰直角三角形,∴OE=OM=,在Rt △ODE 中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.【点评】本题考查了垂径定理、勾股定理、等腰直角三角形的判定与性质;熟练掌握垂径定理,由勾股定理求出DE 是解决问题的关键.7. 如图,⊙O 的半径为2,点A ,B ,C 都在⊙O 上,若30B Ð=°.则»AC 的长为_____(结果用含有π的式子表示)【答案】23p 【解析】利用同弧所对的圆心角是圆周角的2倍得到60AOC Ð=°,再利用弧长公式求解即可.【详解】2AOC B Ð=ÐQ ,30B Ð=°,60AOC \Ð=°,Q ⊙O 的半径为2,»60221803AC p p ´\==【点睛】本题考查了圆周角定理和弧长公式,即180n r l p =,熟练掌握知识点是解题的关键.8.在平面直角坐标系中,若点与点关于原点对称,则点在第_____象限。

2022九年级数学上册期末提分练案第3讲二次函数的图象和性质第3课时方法训练课件新版新人教版1

2022九年级数学上册期末提分练案第3讲二次函数的图象和性质第3课时方法训练课件新版新人教版1
(1)判断该二次函数图象与x轴的交点的个数,说明理由; 解:令y=0,得ax2+bx-(a+b)=0. ∵Δ=b2-4·a[-(a+b)]=b2+4ab+4a2=(2a+b)2≥0, ∴方程有两个不相等的实数根或有两个相等的实数根. ∴二次函数图象与x轴有两个交点或一个交点.
(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1) 三个点中的其中两个点,求该二次函数的解析式;
解:由题图可知,当 0<x≤12 时,z=16;
当 12<x≤20 时,z 是关于 x 的一次函数, 设 z=kx+b,则1220kk++bb==1164,,解得kb= =-1914,,∴z=-14x+19.
16(0<x≤12), ∴z 关于 x 的函数解析式为 z=-14x+19(12<x≤20).
②当 12<x≤20 时,w=(-14x+19-10)(5x+40)=-54x2+35x+ 360=-54(x-14)2+605, ∴当 x=14 时,w 最大值=605. 综上所述,工厂第 14 个生产周期创造的利润最大,最大为 605 万元.
解:把点B(3,0)的坐标代入y=-x2+mx+3,得0=-32 +3m+3,解得m=2. ∴y=-x2+2x+3=-(x-1)2+4. ∴顶点坐标为(1,4).
(2)若矩形空地的面积为160 m2,求x的值.
解:由题意得-2x2+36x=160, 解得x=10或x=8. ∵9≤x<18,∴x=8不符合题意,舍去, ∴x的值为10.
(3)若该单位用8 600元购买了甲、乙、丙三种绿色植物共400
棵(每种植物的单价和每棵栽种的合理用地面积如下
表).
甲乙丙
单价/(元/棵) 14 16 28
4.将抛物线y=ax2+bx+c向右平移3个单位长度,再向下 平移2个单位长度,得到抛物线y=x2+2x+3.求原抛物线 的解析式. 解:y=x2+2x+3=(x+1)2+2. ∵把抛物线y=(x+1)2+2向左平移3个单位长度,再向上 平移2个单位长度得到抛物线y=(x+4)2+4, ∴y=ax2+bx+c=(x+4)2+4=x2+8x+20.

人教版九年级上册数学作业课件 期末学业质量评价(一)

人教版九年级上册数学作业课件 期末学业质量评价(一)

必然事件的是( D )
A.3个都是黑球
B.2个黑球1个白球
C.2个白球1个黑球 D.至少有一个黑球
5.有一个人患了流行性感冒,经过两轮传染后共有 144人患了流行性感冒,则每轮传染中平均一个人传 染的人数是( B ) A.14 B.11 C.10 D.9
6.如图,正五边形ABCDE内接于⊙O,P 为 DE 上的 一点(点P不与点D重合),则∠CPD的度数为( B ) A.30° B.36° C.60° D.72°
当m≠2时,抛物线与y轴交点坐标为(0,-m),令y=0, 则0=(m-2)x2+2x-m.∵Δ=22-4(-m)(m-2)=4m2 -8m+4=4(m-1)2,∴m=1时,Δ=0,满足题意; 当m=0时,抛物线经过原点,且Δ>0,满足题意. 故答案为2或1或0.
18.如图,⊙M的半径为2,圆心M的坐标为(3,4), 点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴 分别交于A、B两点.若点A、点B关于原点O对称, 则AB的最小值为 6 .
16.如图,正方形ABCD的边长为4,以点A为圆心,
AD为半径画圆弧DE,得到扇形DAE(阴影部分,点
E在对角线AC上).若扇形DAE正好是一个圆锥的侧
面展开图,则该圆锥的全面积是
9
4
.
17.已知函数y=(m-2)x2+2x-m的图象与坐标轴有 且只有两个交点,则m= 2或1或0 . 解析:当m=2时,y=2x-2为一次函数,直线与坐标 轴有两个交点,满足题意;
证明:∵C是 BD的中点,∴ CD BC . ∵AB是⊙O的直径,且CF⊥AB,
∴ BC BF .∴CD BF .∴CD=BF.
BFG CDG,
在△BFG和△CDG中,FGB DGC,

人教版九年级上册数学期末学情评估检测试卷(含答案)

人教版九年级上册数学期末学情评估检测试卷(含答案)

人教版九年级上册数学期末学情评估检测试卷满分:120分时间:120分钟得分:一、选择题(每小题3分,共30分)1.下列图形中,是轴对称图形,但不是中心对称图形的是( )2.下列说法中正确的是( )A.方程x(2x-1)=0的解是x=12B.关于x 的方程5x2+√3=0是一元二次方程C.方程8x²−3x−29=0无实数根D.方程x²−6x−1=0配方后为(x+3)²=103.已知x=-1是关于x 的方程x²+mx+n=0的一个根,则代数式m²+n²−2mn的值为( )A.0B.-1C.1D.±14.对于二次函数y=2x²−3,当--1≤x≤2时,y的取值范围是( )A.-1≤y≤5B.-5≤y≤5C.-3≤y≤5D.-2≤y≤55.如图,把△ABC 绕顶点C 按顺时针方向旋转得到△A'B'C,当A'B'⊥AC 于点D,∠A=47°,∠A'CB=128°时,∠B'CA 的度数为( )A.44°B.43°C.42°D.40°6.2022年第24届冬奥会期间,某网店销售的纪念品从原价20元连续两次涨价达到36元,如果每次涨价的百分率都是x,下面所列方程正确的是( )A.20(1+x)²=36B.36(1−x)²=20C.20(1+2x)=36D.36(1−2x)=207.对于抛物线y=ax²+(2a−1)x+a−3,,当x=1时,y>0,则这条抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限8.定义: min {a ,b }={a (a ≤b ),b (a ⟩b),若函数2x+3},则该函数的最大值为 ( ) A.0 B.2 C.3 D.49.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转 45°后得到正方形 OA₁B₁C₁,依此方式,绕点 O 连续旋转 2021 次得到正方形 OA₂₀₂₁B₂₀₂₁C₂₀₂₁,那么点 A ₂₀₂₁的坐标是 ( )A.(√22,−√22)B.(1,0)C.(−√22,−√22)D.(0,-1)10.如图为二次函数 y =ax²+bx +c 的图象,直线 y=t(t>0)与抛物线交于A ,B 两点,A ,B 两点横坐标分别为m ,n.根据函数图象信息有下列结论:①abc>0;②m+n=1;③m<-1;④若对于t>0的任意值都有m<-1,则a≥1;⑤当t 为定值时,若a 变大,则线段 AB 变长.其中,正确的结论有 ( )A.①②④B.①③⑤C.①②⑤D.①②二、填空题(每小题3分,共24分)11.若一个一元二次方程的二次项系数是2,常数项是-14,它的一个根为-7,则这个方程为 .12.抛物线 y =x²+bx +c 经过(5,3)和 (−2,3),则b=13.如图, △ABC 为等边三角形, △AO ′B 绕点 A 逆时针旋转后能与 △AOC 重合.若AO=3,则点 O′. O 之间的距离为 .14.一个两位数,十位上的数字比个位上的数字的平方小3,如果把这个数的个位数字与十位数字交换,那么所得到的两位数比原来的数小27,则原来的两位数是 .15.已知关于x 的一元二次方程 ax²+2x +2−c =0有两个相等的实数根,则 1a +c 的值等于 . 16.如图,要修建一个圆形喷水池,在池中心竖直安装一根长度为3.2m 的水管AB ,在水管的顶端A 点处安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离. BC =3m 处达到最高,水柱落地处离池中心距离. BD =8m,则抛物线形水柱的最高点到地面的距离 EC 是 m.17.一副三角板如图放置,将三角板 ADE 绕点A 逆时针旋转 α(0°<α<90°),使得三角板 ADE 的一边所在的直线与 BC 垂直,则α的度数为 .18.已知抛物线 y =x²−2ax +4的对称轴为直线. x =2.将该抛物线上下平移,使其经过点 A(-1,0),与x 轴的另一个交点为B ,点 P 是平移后抛物线上x 轴下方的一点,则 △PAB 的最大面积为 .。

2022-2023学年新人教版初中数学九年级上册期末综合素养评价测试卷(附参考答案)

2022-2023学年新人教版初中数学九年级上册期末综合素养评价测试卷(附参考答案)

2022-2023学年新人教版初中数学九年级上册期末综合素养评价测试卷一、选择题(共12小题,满分24分,每小题2分)1.(2分)(2022秋•盱眙县期中)下列方程中是一元二次方程的是( ) A .x +y =2B .2x 2+1=0C .x 2+2x +1=x 2D .xy ﹣9=02.(2分)(2022秋•新抚区期中)下列方程中,关于x 的一元二次方程是( ) A .x 2﹣x (x +3)=0 B .ax 2+bx +c =0 C .x 2﹣2y ﹣1=0D .x 2﹣2x +3=03.(2分)(2022秋•大田县期中)用公式法解方程x 2﹣2x =3时,求根公式中的a ,b ,c 的值分别是( ) A .a =1,b =﹣2,c =3 B .a =1,b =2,c =﹣3 C .a =1,b =2,c =3D .a =1,b =﹣2,c =﹣34.(2分)(2022秋•丹江口市期中)如果m 、n 是一元二次方程x 2﹣x =5的两个实数根,那么多项式m 2﹣mn +n +1的值是( ) A .12B .10C .7D .55.(2分)(2022秋•江夏区期中)抛物线y =12x 2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是( ) A .y =12(x +1)2﹣2 B .y =12(x +1)2+2 C .y =12(x ﹣1)2﹣2D .y =12(x ﹣1)2+26.(2分)(2022秋•西湖区校级期中)关于二次函数y =ax 2+bx +c ,自变量x 与函数y 的对应值如表,下列说法正确的是( )x … ﹣3 ﹣2 0 1 … y…7﹣2﹣27…A .图象与y 轴的交点坐标为(0,2)B .图象的对称轴是直线x =1C .y 的最小值为﹣5D.图象与x轴有且只有一个交点7.(2分)(2022秋•江夏区期中)在下列图案中,属于中心对称图形的是()A.B.C.D.8.(2分)(2022秋•法库县期中)以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率12D.小明做了3次掷均匀硬币的实验,其中有1次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是129.(2分)(2022秋•开福区校级期中)如图,圆锥的底面半径为5,高为12,则该圆锥的侧面积为()A.30πB.60πC.65πD.90π10.(2分)(2022秋•市中区期中)若点A(﹣2,1)在反比例函数y=kx的图象上,则k的值是()A.12B.−12C.2D.﹣211.(2分)(2022秋•肇源县期中)如图四个由小正方体拼成的立体图形中,从正面看是的是()A.B.C.D.12.(2分)(2022秋•奉贤区期中)已知在Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中正确的是()A.tan A=23B.cot A=23C.sin A=23D.cos A=23二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•招远市期中)在平面直角坐标系中,一次函数y=6x与反比例函数y=kx(k>0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是.14.(3分)(2022秋•新抚区期中)已知二次函数y=x2﹣2x+1,当﹣5≤x<3时,y的取值范围是.15.(3分)(2022秋•前郭县期中)如图所示的图形绕其中心至少旋转度就可以与原图形完全重合.16.(3分)(2022秋•源汇区校级月考)如图,在正五边形ABCDE中,在AB,BC边上分别取点M,N,使AM=BN,连接AN,EM交于点O,则∠EOA =.17.(3分)(2022秋•惠山区校级期中)如图,在平面直角坐标系xOy 中,点A 、B 、P 的坐标分别为(1,0),(2,3),(3,1).若点C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心,则点C 的坐标为 .18.(3分)(2022秋•城阳区期中)在一个不透明的袋子中装有除颜色外其余均相同的n 个小球,其中15个黑球,从袋中随机摸出一球,记下其颜色,之后把它放回袋中,这称为一次摸球试验.搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 摸球试验次数 100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出n 的值是 . 三、解答题(共9小题,满分78分)19.(8分)(2022秋•大田县期中)解下列方程: (1)x 2﹣2x ﹣8=0; (2)(x ﹣1)2=2x (x ﹣1).20.(8分)(2022秋•漳州期中)已知关于x 的方程x 2﹣2x +m ﹣2=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若3x 1+3x 2﹣x 1x 2=5,求m 值.21.(9分)(2022秋•鄞州区校级期中)如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若BE是△AEC外接圆的切线,求∠C的大小;(2)当AB=4,BC=8时,求△DEC外接圆的半径.22.(9分)(2022秋•莱芜区期中)北京时间2022年6月5日10时44分,神舟十四号载人飞船在酒泉发射升空,为弘扬航天精神,某校在教学楼上从楼顶位置悬挂了一幅励志条幅GF.如图,已知楼顶到地面的距离GE为18.5米,当小亮站在楼前点B处,在点B正上方点A处测得条幅顶端G的仰角为37°,然后向教学楼方向前行15米到达点D处(楼底部点E与点B,D在一条直线上),在点D正上方点C处测得条幅底端F的仰角为42°,若AB,CD均为1.7米(即四边形ABDC为矩形),请你帮助小亮计算:(1)当小亮站在B处时离教学楼的距离BE;(2)求条幅GF的长度.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(8分)(2022秋•如东县期中)某汽车4S店销售A,B两种型号的轿车,具体信息如下表:每辆进价(万元)每辆售价(万元)每季度销量(辆)A60x﹣x+100B50y﹣2y+150(注:厂家要求4S店每季度B型轿车的销量是A型轿车销量的2倍.)根据以上信息解答下列问题:(1)用含x的代数式表示y;(2)今年第三季度该4S店销售A,B两种型号轿车的利润恰好相同(利润不为0),试求x的值;(3)求该4S店第四季度销售这两种轿车能获得的最大利润.24.(9分)(2022秋•李沧区期中)如图所示为某商场的一个可以自由转动的转盘,商场规定顾客购物满100元即可获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品,如表是活动进行中的统计数据:50100200500800100020005000转动转盘的次数227110931247361211933004落在“纸巾”区的次数根据以上信息,解析下列问题:(1)请估计转动该转盘一次,获得纸巾的概率是;(精确到0.1)(2)现有若干个除颜色外都相同的白球和黑球,根据(1)的结论,在保证获得纸巾和免洗洗手液概率不变的情况下,请你设计一个可行的摸球抽奖规则,详细说明步骤;(3)小明和小亮都购买了超过100元的商品,均获得一次转动转盘的机会,根据(2)中设计的规则,利用画树状图或列表的方法求两人都获得纸巾的概率.25.(9分)(2022秋•南召县期中)如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A 1为位似中心,请你帮小明在图中画出△A 1B 1C 1的位似图形△A 2B 2C 2,且△A 1B 1C 1与△A 2B 2C 2的位似比为2:1. (3)直接写出(2)中C 2点的坐标.26.(9分)(2022秋•宁波期中)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B . (1)求证:∠DF A =∠ECD ;(2)△ADF 与△DEC 相似吗?为什么?(3)若AB =4,AD =3√3,AE =3,求AF 的长.27.(9分)(2022秋•招远市期中)如图,一次函数y =kx +b 与反比例函数y =12x(x >0)的图象交于A (m ,6),B (n ,3)两点. (1)求一次函数的解析式;(2)若M 是x 轴上一点,S △MOB =S △AOB ,求点M 的坐标; (3)当x >0时,根据图象直接写出kx +b −12x>0时,x 的取值范围.参考答案一、选择题(共12小题,满分24分,每小题2分)1.B;2.D;3.D;4.A;5.B;6.C;7.A;8.D;9.C;10.D;11.C;12.B;二、填空题(共6小题,满分18分,每小题3分)13.014.0≤y≤1615.4516.72°17.(4,3)或(5,0)或(5,2)18.30;三、解答题(共9小题,满分78分)19.解:(1)∵x2﹣2x﹣8=0,∴(x+2)(x﹣4)=0,则x+2=0或x﹣4=0,解得x1=﹣2,x2=4;(2)∵(x﹣1)2=2x(x﹣1),∴(x﹣1)2﹣2x(x﹣1)=0,∴(x﹣1)(﹣x﹣1)=0,则x﹣1=0或﹣x﹣1=0,解得x1=1,x2=﹣1.20.解:(1)∵关于x的方程x2﹣2x+m﹣2=0有两个实数根x1、x2,∴Δ=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3;(2)由题意得:x1+x2=2,x1•x2=m﹣2,∵3x1+3x2﹣x1x2=5,∴6﹣(m﹣2)=5,∴m=3.21.解:(1)设DC的中点为O,连接OE,∵DE垂直平分AC,∴∠DEC=90°,∴DC是△AEC外接圆的的直径,∵BE是⊙O的切线,∴∠OEB=90°,∴∠EBO+∠BOE=90°,在Rt△ABC中,E为斜边AC的中点,∴BE=EC=AE=12AC,∴∠EBO=∠C,由圆周角定理得:∠BOE=2∠C,∵∠EBO+∠BOE=90°,∠EBO=∠C,∴∠C+2∠C=90°,∴∠C=30°;(2)在Rt△ABC中,AC=√AB2+BC2=√42+82=4√5,则BE=12AC=2√5,∵∠CED=∠CBA=90°,∠ECD=∠BCA,∴△CED∽△CBA,∴CECB =CDCA,即2√58=4√5,解得:CD=5,则△DEC外接圆的半径为52.22.解:(1)延长AC交EG于H,则AB=CD=EH=1.7米,AC=BD,AH=BE,∵GE=18.5米,∴HG=EG﹣HE=18.5﹣1.7=16.8(米),在Rt△AGH中,∠GAH=37°,∴tan37°=GHAH =16.815+CH≈0.75,∴CH=7.4,∴BE=AH=15+7.4=22.4(米),答:小亮站在B处时离教学楼的距离BE为22.4米;(2)由(1)知CH=7.4米,在Rt△FCH中,∵∠FCH=42°,∴tan42°=FHCH =FH7.4≈0.90,∴FH=6.66,∴FG=GH﹣FH=16.8﹣6.66≈10.1(米),答:条幅GF的长度约为10.1米.23.解:(1)根据题意得:﹣2y+150=2(﹣x+100),整理得:y=x﹣25;(2)根据题意得:(x﹣60)(﹣x+100)=(y﹣50)(﹣2y+150),由(1)知,y=x﹣25,∴(x﹣60)(﹣x+100)=(x﹣75)(﹣2x+200),整理得:x2﹣190x+9000=0,解得x1=90,x2=100,∵x=100时利润为0,∴x的值为90;(3)设该4S店第四季度销售这两种轿车能获得的利润为w万元,则w=(x﹣60)(﹣x+100)+(y﹣50)(﹣2y+150)=(x﹣60)(﹣x+100)+(x﹣75)(﹣2x+200)=﹣3x2+510x﹣21000=﹣3(x﹣85)2+675,∵﹣3<0,∴当x=85时,w有最大值,最大值为675,答:该4S店第四季度销售这两种轿车能获得的最大利润为675万元.24.解:(1)估计转动该转盘一次,获得纸巾的概率约是0.6(精确到0.1);故答案为:0.6;(2)摸球抽奖规则:把3个白球和2个黑球放入一个不透明的袋子(5个球除颜色外都相同),顾客购物满100元即可获得一次摸球的机会,当摸到白球时奖品为纸巾,摸到黑球时奖品为免洗洗手液;(3)画树状图为:共有25种等可能的结果数,其中两人都获得纸巾的结果数为9,.所以两人都获得纸巾的概率为92525.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠ECD=180°,∵∠AFE =∠B ,∴∠AFE +∠ECD =180°,∵∠AFE +∠AFD =180°,∴∠DF A =∠ECD .(2)解:相似,理由如下:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,CD =AB =4,∴∠ADF =∠CED ,又∵∠DF A =∠ECD ,∴△ADF ∽△DEC .(3)解:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵AE ⊥BC ,∴AE ⊥AD ,在Rt △EAD 中,DE =√AE 2+AD 2=√32+(3√3)2=6, ∵△ADF ∽△DEC ,∴AD DE =AF DC ,即3√36=AF 4. ∴AF =2√3.27.解:(1)把点A 代入y =12x 得:6=12m , 解得m =2,把点A 代入y =12x 得3=12n , 解得n =4,∴A (2,6),B (4,3),设要求的一次函数的表达式为y =kx +b ,由题意得:{6=2k +b 3=4k +b, 解之得:{k =−32b =9,∴一次函数的表达式为y=−32x+9;(2)设直线AB交x轴于点P,则0=−32x+9,∴x=6,∴P(6,0),∴S△AOB =S△AOP﹣S△BOP=12×6×6−12×6×3=18−9=9,∴S△MOB=9,设点M的坐标为(m,0),∴OM=|m|,∴12×3×|m|=9,∴|m|=6,∴m=±6,∴点M的坐标为(6,0)或(﹣6,0);(3)观察图象可知,kx+b−12x>0时x的取值范围是2<x<4.。

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2-2x-24=0的根是( )A.x1=6,x2=4 B.x1=6,x2=-4C.x1=-6,x2=4 D.x1=-6,x2=-42.一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是( )A.至少有1个球是白色球B.至少有1个球是黑色球C.至少有2个球是白色球D.至少有2个球是黑色球3.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.16x2-6x+21,有以下结论:①当x>5时,y随x的增大而4.对于二次函数y=12增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中正确结线y=12论的个数为( )A.1 B.2C.3 D.4⏜的长是5.如图,四边形ABCD内接于⊙O,⊙O的半径为3.若∠D=120°,则AC( )πA.πB.23C .2πD .4π6.如图,在△AOB 中,OA =4,OB =6,AB =2√7,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(-4,2)B .(2√3,-4)或(-2√3,4)C .(-2√3,2)或(2√3,-2)D .(2,-2√3)或(-2,2√3)7.如图,AB 是O 的直径,ACD CAB ∠=∠ 2AD = 4AC =,则O 的半径为( )A .B .C .D8.如图,四边形ABCD 中,60A ∠=︒ //AB CD DE AD ⊥交AB 于点E ,以点E 为圆心 、DE 为半径且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A .6π-B .12π-C .6πD .12π 9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .3(1)6210x x -= B .3(1)6210x -=C .(31)6210x x -=D .36210x =10.如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A ,B 是圆上的两点,O 为圆心,∠AOB =120°,小强从点A 走到点B ,走便民路比走观赏路少走( )A .(6π-6√3)米B .(6π-9√3)米C .(12π-9√3)米D .(12π-18√3)米二、填空题:本题共6个小题,每小题3分,共18分。

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。

( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。

若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。

10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。

人教版九年级数学上册期末综合测试题(含答案)

人教版九年级数学上册期末综合测试题(含答案)
11.
12.
13.
14.
15.20
16.(1)解: ,




∴ , ;
(2)解: ,


或 ,
∴ , ;
(3)解: ,
化简整,得 ,

或 ,
∴ , .
17.(1)解:∵参与 活动的人数为36人,占总人数 ,
∴总人数 人,
则参与 活动的人数为: (人);
补全统计图如下:
(2)解:扇形 的圆心角为: ,
A.18°B.28°C.37°D.58°
10.如图,某公司准备在一个等腰直角三角形 的绿地上建造一个矩形的休闲书吧 ,其中点P在 上点N,M分别在 , 上,记 , ,图中阴影部分的面积为S,若 在一定范围内变化,则y与x,S与x满足的函数关系分别是()
A.一次函数关系,一次函数关系B.二次函数关系,一次函数关系
(3)解: 与 相交于 点,如图3,

为 的直径,
四边形 是 的神奇四边形,

, , ,
, ,
在 中, ,

设 ,则 ,
在 中, ,
解得 ,
即 ,
在 中, ,



23.(1)பைடு நூலகம்明:∵ ,
∴ ,
∴ ,
∴弦 平分圆周角 ,
∴圆中存在“爪形 ”;
(2)延长 至点E,使得 ,连接 ,
∵ ,
∴ ,
∵ , ,
根据以上信息,解答下列问题:
(1)参与此次抽样调查的学生人数是______人,补全统计图①;
(2)图②中扇形C的圆心角度数为______度;
(3)若参加成果展示活动的学生共有3600人,估计其中最喜爱“测量”项目的学生人数是多少;

人教版初中九年级数学上册数学期末总复习(全面)精品课件

人教版初中九年级数学上册数学期末总复习(全面)精品课件
2
一元二次方程根与系数的关系 (韦达定理)
若方程ax bx c 0(a 0)的两根为x1 , x2 ,
2
b c 则x1 x2 , x1 x2 a a
特别地:
2
若方程x px q 0的两根为x1 , x2, 则:x1 x2 p, x1 x2 q
(1)确定对称中心; (2)确定关键点; (3)作关键点的关于对称中心的 对称点; (4)连结各点,得到所需图形.
7、关于原点对称的点的坐标:
( -a,-b) (a,b)关于原点的对称点是 ______
例、点P(-1,3)关于原点对称的点 的坐标是 ; 点P(-1,3)绕着原点顺时针旋转 90o与P’重合,则P’的坐标为 ______
解得
- 5≤x<3
题型2:二次根式的非负性的应用.
4.已知:
x4 +
2x y
=0,求 x-y 的值.
解:由题意,得 解得
x-4=0 且 2x+y=0 x=4,y=-8
x-y=4-(-8)= 4+ 8 =12 5.(2005.湖北黄冈市)已知x,y为实数,且
2 =0,则x-y的值为( +3(y-2) x 1
.
4、已知一元二次方程 2 x2 + b x + c = 0的两个根是 – 1 、3 ,则 b= ,c= .
二、选择 2 1、若方程x m x n 0 中有一个根为零,另一个根非零,则m, n 的值为 ( ) A m 0, n 0 B m 0, n 0 C m 0, n 0 D mn 0
2、垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.

【最新】人教版九年级数学上册期末检测试卷(及答案)

【最新】人教版九年级数学上册期末检测试卷(及答案)

人教版九年级数学上册期末试卷(含答案)(时间:120分钟满分:100分)一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个是符合题意的.1.在平面直角坐标系xOy中,点A的坐标为(4,﹣3),如果射线OA与x轴正半轴的夹角为α,那么∠α的正弦值是()A.B.C.D.2.右图是某个几何体,它的主视图是()A.B.C.D.3.已知△ABC,AC=3,CB=4,以点C为圆心r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是()A.r>3 B.r≥4 C.3<r≤4 D.3≤r≤4 4.如果,那么的结果是()A.﹣B.﹣C.D.5.将抛物线y=x2的图象向上平移3个单位后得到新的图象,那么新图象的表达式是()A.y=(x﹣3)2B.y=(x+3)2C.y=x2﹣3 D.y=x2+36.如图,∠DCE是圆内接四边形ABCD的一个外角,如果∠DCE=75°,那么∠BAD的度数是()A.65°B.75°C.85°D.105°7.一个不透明的盒子中装有20张卡片,其中有5张卡片上写着“三等奖”;3张卡片上写着“二等奖”,2张卡片上写着“一等奖”,其余卡片写着“谢谢参与”,这些卡片除写的字以外,没有其他差别,从这个盒子中随机摸出一张卡片,能中奖的概率为()A.B.C.D.8.李师傅一家开车去旅游,出发前查看了油箱里有50升油,出发后先后走了城市路、高速路、山路最终到达旅游地点,下面的两幅图分别描述了行驶里程及耗油情况,下面的描述错误的是()A.此车一共行驶了210公里B.此车高速路一共用了12升油C.此车在城市路和山路的平均速度相同D.以此车在这三个路段的综合油耗判断50升油可以行驶约525公里二、填空题(本题共16分,每小题2分)9.二次函数y=﹣3x2+5x+1的图象开口方向.10.已知线段AB=5cm,将线段AB以点A为旋转中心,逆时针旋转90°得到线段AB′,则点B、点B′的距离为.11.如图,在平面直角坐标系xOy中有一矩形,顶点坐标分别为(1,1)、(4,1)、(4,3)、(1,3),有一反比例函数y=(k≠0)它的图象与此矩形没有交点,该表达式可以为.12.如图,在△ABC中,DE分别与AB、AC相交于点D、E,且DE∥BC,如果,那么= .13.如图,在△ABC中,∠A=60°,⊙O为△ABC的外接圆.如果BC=2,那么⊙O的半径为.14.下图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD 分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h是m.15.如图,在平面直角坐标系xOy中,图形L2可以看作是由图形L1经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由图形L1得到图形L2的过程.16.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是.BA三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.已知:53a b =.求:a bb+.18.计算:2cos30-4sin 45︒︒19.已知二次函数y =x 2-2x -3.(1)将y =x 2-2x -3化成y =a (x -h )2+k 的形式; (2)求该二次函数图象的顶点坐标.20.如图,在△ABC 中,∠B 为锐角, AB=,BC =7,sin 2B =,求AC 的长.21.如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,AD =1,AE =2,BC =3,BE =1.5.求证:∠DEC =90°.22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知:△ABC .求作:在BC 边上求作一点P,使得△PAC ∽△ABC .作法:如图,①作线段AC 的垂直平分线GH ;②作线段AB 的垂直平分线EF,交GH 于点O ; ③以点O 为圆心,以OA 为半径作圆;④以点C 为圆心,CA 为半径画弧,交⊙O 于点D(与点A 不重合); ⑤连接线段AD 交BC 于点P. 所以点P 就是所求作的点.E DCBA ABC根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明: ∵CD=AC,∴CD =.∴∠=∠.又∵∠=∠,∴△PAC∽△ABC ()(填推理的依据).23.在平面直角坐标系xOy中,直线y=x+2 与双曲线kyx相交于点A(m,3).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)若P是坐标轴上一点,当OA=PA时.直接写出点P的坐标.24.如图,AB是O的直径,过点B作O的切线BM,点A,C,D分别为O的三等分点,B连接AC,AD,DC,延长AD交BM于点E,CD交AB于点F. (1)求证://CD BM;(2)连接OE,若DE=m,求△OBE的周长.25.在如图所示的半圆中, P是直径AB上一动点,过点P作PC⊥AB 于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为x cm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为cm.26.在平面直角坐标系xOy中,抛物线22=++(其中a、c为常y ax ax c数,且a<0)与x轴交于点A()-,与y轴交于点B,此抛物线3,0顶点C到x轴的距离为4.(1)求抛物线的表达式;(2)求CAB∠的正切值;(3)如果点P是x轴上的一点,且ABP CAO∠=∠,直接写出点P的坐标.Array27.在菱形ABCD中,∠ADC=60°,BD是一条对角线,点P在边CD 上(与点C,D不重合),连接AP,平移ADP∆,使点D移动到点C,得到BCQ∆,在BD上取一点H,使HQ=HD,连接HQ,AH,PH. (1)依题意补全图1;(2)判断AH与PH的数量关系及∠AHP的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路.(可以不写出计算结果.........)28.在平面直角坐标系xOy 中,点A (x ,0),B (x ,y ),若线段AB 上存在一点Q 满足12QA QB =,则称点Q 是线段AB 的“倍分点”. (1)若点A (1,0),AB =3,点Q 是线段AB 的“倍分点”. ①求点Q 的坐标;②若点A 关于直线y = x 的对称点为A ′,当点B 在第一象限时,求'QA QB; (2)⊙T 的圆心T (0, t ),半径为2,点Q在直线3y x =上,⊙T 上存在点B ,使点Q 是线段AB 的“倍分点”,直接写出t 的取值范围.A B C D P 图1 A B C D 备用图答案一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个是符合题意的.1.【分析】画出图形,根据直角三角形的解法解答即可.【解答】解:过A点作AB⊥x轴,在Rt△OAB中,OA=,∴∠α的正弦值=,故选:A.【点评】此题考查解直角三角形的问题,关键是画出图形,利用勾股定理解答.2.【解答】解:从几何体的正面看可得等腰梯形,故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.【分析】由于AC=3,CB=4,当以点C为圆心r为半径作圆,如果点A、点B只有一个点在圆内时,那么点A在圆内,而点B不在圆内.当点A在圆内时点A到点C的距离小于圆的半径,点B在圆上或圆外时点B到圆心的距离应该不小于圆的半径,据此可以得到半径的取值范围.【解答】解:当点A在圆内时点A到点C的距离小于圆的半径,即:r>3;点B在圆上或圆外时点B到圆心的距离应该不小于圆的半径,即:r ≤4;即3<r≤4.故选:C.【点评】本题考查了点与圆的位置关系,解题的关键是明确半径的大小与位置关系的关系.4.【分析】根据合分比例性质,可得答案.【解答】解:由合分比性质,得==﹣,故选:B.【点评】本题考查了比例的性质,利用合分比性质是解题关键.5.【分析】根据“上加下减”的原则进行解答即可.【解答】解:将抛物线y=x2的图象向上平移3个单位后得到新的图象,那么新图象的表达式是y=x2+3,故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.6.【分析】根据圆内接四边形的性质:圆内接四边形的外角等于它的内对角即可解答.【解答】解:∵四边形ABCD内接于⊙O,∴∠BAD=∠DCE=75°,故选:B.【点评】此题考查了圆内接四边形的性质,熟记圆内接四边形的外角等于它的内对角是解题的关键.7.【分析】能中奖的卡片有5+3+2=10张,根据概率公式计算即可.【解答】解:能中奖的卡片有5+3+2=10张,∴能中奖的概率==,故选:A.【点评】本题考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.8.【分析】找准几个关键点,走了城市路、高速路、山路最终到达旅游地点进行分析解答即可.【解答】解:A、此车一共行驶了210公里,正确;B、此车高速路一共用了45﹣33=12升油,正确;C、此车在城市路的平均速度是30km/h,山路的平均速度是=60km/h,错误;D、以此车在这三个路段的综合油耗判断50升油可以行驶约525公里,正确;故选:C.【点评】本题考查了函数的图象,解答本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本题共16分,每小题2分)9.二次函数y=﹣3x2+5x+1的图象开口方向向下.【分析】由抛物线解析式可知,二次项系数a=﹣3<0,可知抛物线开口向上.【解答】解:∵二次函数y=﹣3x2+5x+1的二次项系数a=﹣3<0,∴抛物线开口向下.故答案为:向下.【点评】本题考查了抛物线的开口方向与二次项系数符号的关系.当a>0时,抛物线开口向上,当a<0时,抛物线开口向下.10.已知线段AB=5cm,将线段AB以点A为旋转中心,逆时针旋转90°得到线段AB′,则点B、点B′的距离为5cm .【分析】根据旋转变换的性质得到∠BAB′=90°,BA=BA′=5cm,根据勾股定理计算即可.【解答】解:由旋转变换的性质可知,∠BAB′=90°,BA=BA′=5cm,由勾股定理得,BB′==5,故答案为:5cm.【点评】本题考查的是旋转变换的性质、勾股定理,旋转变换的性质:对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角.11.如图,在平面直角坐标系xOy中有一矩形,顶点坐标分别为(1,1)、(4,1)、(4,3)、(1,3),有一反比例函数y=(k≠0)它的图象与此矩形没有交点,该表达式可以为y=.【分析】找出经过(1,1)与(4,3)两点的反比例函数k的值,根据反比例与矩形没有交点确定出k的范围,写出一个满足题意的解析式即可.【解答】解:当反比例函数图象经过(1,1)时,k=1,当反比例函数经过(4,3)时,k=12,∵反比例函数y=(k≠0)它的图象与此矩形没有交点,∴反比例函数k的范围是k<1或k>12且k≠0,则该表达式可以为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及矩形的性质,熟练掌握待定系数法是解本题的关键.12.如图,在△ABC中,DE分别与AB、AC相交于点D、E,且DE∥BC,如果,那么= .【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质结合,即可求出的值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===.故答案为:.【点评】本题考查了相似三角形的判定与性质,根据找出的值是解题的关键.13.如图,在△ABC中,∠A=60°,⊙O为△ABC的外接圆.如果BC=2,那么⊙O的半径为 2 .【分析】连接OC、OB,作OD⊥BC,利用圆心角与圆周角的关系得出∠BOC=120°,再利用含30°的直角三角形的性质解答即可.【解答】解:连接OC、OB,作OD⊥BC,∵∠A=60°,∴∠BOC=120°,∴∠DOC=60°,∠ODC=90°,∴OC=,故答案为:2.【点评】此题考查三角形的外接圆与外心,关键是利用圆心角与圆周角的关系得出∠BOC=120°.14.下图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD 分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h是 4 m.【分析】过C作CE⊥AB,交AB的延长线于E,在Rt△BCE中,易求得∠CBE=30°,已知了斜边BC为8m,根据直角三角形的性质即可求出CE的长,即h的值.【解答】解:过C作CE⊥AB,交AB的延长线于E;在Rt△CBE中,∠CBE=180°﹣∠CBA=30°;已知BC=8m,则CE=BC=4m,即h=4m.【点评】正确地构造出直角三角形,然后根据直角三角形的性质求解,是解决此题的关键.15.如图,在平面直角坐标系xOy中,图形L2可以看作是由图形L1经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由图形L1得到图形L2的过程由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L .【分析】根据旋转的性质,平移的性质即可解决问题;【解答】解:图形L2可以看作是由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L2.故答案为:由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.16.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是相等的圆心角所对的弦相等,直径所对的圆周角是直角.【分析】根据作图知CD为AB的垂直平分线,据此得∠AOC=∠BOC=∠BOD=∠AOD=90°,依据相等的圆心角所对的弦相等可判断四边形ACBD是菱形,再根据直径所对的圆周角是直角可得四边形ACBD 是正方形.【解答】解:由作图知CD为AB的垂直平分线,∵AB为⊙O的直径,∴CD为⊙O的直径,且∠AOC=∠BOC=∠BOD=∠AOD=90°,则AC=BC=BD=AD(相等的圆心角所对的弦相等),∴四边形ACBD是菱形,由AB 为⊙O 的直径知∠ACB=90°(直径所对的圆周角是直角), ∴四边形ACBD 是正方形,故答案为:相等的圆心角所对的弦相等,直径所对的圆周角是直角. 【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握圆心角定理和圆周角定理及正方形的判定.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:∵53ab=,∴1a b a b b +=+=53+1=83.………………………5分=222⨯⨯18.解:原式3分………………………4分5分19.解:(1)y=x 2-2x-3=x 2-2x+1-1-3……………………………2分 =(x-1)2-4.……………………3分 (2)∵y=(x-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分20.解:作AD ⊥BC 于点D ,∴∠ADB =∠ADC =90°.∵sin 2B =, ∴∠B=∠BAD=45° (2)分B∵AB =32∴AD=BD=3.…………………………3分 ∵BC =7,∴DC=4. ∴在Rt △ACD 中,225AC AD DC =+=.…………………………5分21.(1)证明:∵AB ⊥BC ,∴∠B =90°. ∵AD ∥BC ,∴∠A =90°.∴∠A =∠B .………………2分∵AD =1,AE =2,BC =3,BE =1.5, ∴121.53=.∴AD AEBE BC=∴△ADE ∽△BEC .∴∠3=∠2.………………3分 ∵∠1+∠3=90°,∴∠1+∠2=90°.∴∠DEC =90°.………………5分22.(1)补全图形如图所示:………………2分(2)AC ,∠CAP=∠B ,∠ACP=∠ACB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=x+2与双曲线ky x=相交于CB A EFGHOPD yx–1–2–3–4–5–6–71234567–1–2–3–4–51234AO点A (m ,3). ∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入k y x=解得k=3,3y x=……………………………………2分(2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点, ∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径, ∴AB ⊥CD.∵过点B 作O 的切线BM , ∴BE ⊥AB.∴//CD BM .………………………3分 (2) 连接DB.①由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,②在Rt △ADB 中利用30°角,解得,………4分 ③在Rt △OBE 中,由勾股定理得出m.…………………5分 ④计算出△OB E 周长为m.………………………6分 25.(1)3.00…………………………………1分∴(2)……………………………………4分 (3)1.50或4.50……………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分∵a <0,抛物线开口向下,又与x 轴有交点,∴抛物线的顶点C 在x 轴的上方.由于抛物线顶点C 到x 轴的距离为4,因此顶点C 的坐标是()1,4-. 可设此抛物线的表达式是()214y a x =++,由于此抛物线与x 轴的交点A 的坐标是()3,0-,可得1a =-. 因此,抛物线的表达式是223y x x =--+.…………………2分 (2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=. 所以1tan 3BC CAB AB ∠==.即CAB 的正切值等于13 (4)分(3)点p 的坐标是(1,0).……6分 27.(1)补全图形,如图所示.………………2分(2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°. 证明:如图,由平移可知,PQ=DC. ∵四边形ABCD 是菱形,∠ADC=60°, ∴AD=DC ,∠ADB =∠BDQ =30°.∴AD=PQ.∵HQ=HD ,∴∠HQD =∠HDQ =30°.∴∠ADB =∠DQH ,∠DHQ=120°. ∴△ADH ≌△PQH.∴AH =PH ,∠AHD =∠PHQ .∴∠AHD+∠DHP =∠PHQ+∠DHP .∴∠AHP=∠DHQ . ∵∠DHQ=120°,∴∠AHP=120°.…………5分 (3)求解思路如下:由∠AHQ=141°,∠BHQ=60°解得∠AHB=81°.a.在△ABH 中,由∠AHB=81°,∠ABD=30°,解得∠BAH=69°.b.在△AHP 中,由∠AHP=120°,AH=PH ,解得∠PAH=30°.c.在△ADB 中,由∠ADB=∠ABD= 30°,解得∠BAD=120°. 由a 、b 、c 可得∠DAP=21°.在△DAP 中,由∠ADP= 60°,∠DAP=21°,AD=1,可解△DAP , 从而求得DP 长.……………………………7分ABCDPHQ28.解:(1)∵A (1,0),AB =3 ∴B (1,3)或B (1,-3)∵12QA QB = ∴Q (1,1)或Q (1,-1)………………3分 (2)点A (1,0)关于直线y = x 的对称点为A ′(0,1) ∴Q A =Q A ′∴QB A Q '21=………………5分 (3)-4≤t ≤4………………7分三、解答题(本题共68分)解答应写出文字说明、演算步骤或证明过程17.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值. 【解答】解:原式=1+2﹣2×﹣4=﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 18.【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.【解答】证明:在△ABC 中,AB=AC ,BD=CD , ∴AD ⊥BC , ∵CE ⊥AB ,x∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.19.【分析】(1)利用配方法先加上一次项系数的一半的平方来凑完全平方式,再把一般式转化为顶点式即可;(2)根据顶点坐标的求法,得出顶点坐标即可;【解答】解:(1)y=x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4.(2)∵y=(x+1)2﹣4,∴该二次函数图象的顶点坐标是(﹣1,﹣4).20.【分析】根据分式的混合运算法则,化简后利用整体的思想代入计算即可.【解答】解:原式=•=•=m(m+1)=m2+m,∵m是方程x2+x﹣3=0的根,∴m2+m﹣3=0,即m2+m=3,则原式=3.21【分析】(1)利用待定系数法即可解决问题;(2)构建方程即可解决问题;【解答】解:(1)∵直线y1=kx(k≠0)与双曲y2=(m≠0)的一个交点为A(2,2),∴k=1,m=4,(2)∵直线y1=x,y2=,由题意:﹣x=x或x﹣=,解得x=±或,∵x>0,∴x=或2,∴P(,0)或(2,0).【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是学会利用构建方程的思想思考问题,属于中考常考题型.22.【分析】如图,由题意△AMN,△BMQ都是直角三角形,作AH⊥BQ 于H,只要求出AH、BH即可利用勾股定理求出AB的长.【解答】解:如图,由题意△AMN,△BMQ都是直角三角形,作AH⊥BQ于H,只要求出AH、BH即可利用勾股定理求出AB的长.易知四边形ANQH是矩形,可得AH=NQ=30米,在Rt△AMN中,根据AN=QH=MN•tan30°=20米,在Rt△MBQ中,BQ=MQ•tan60°=90,可得BH=BQ﹣QH=70米,由此即可解决问题.【点评】本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.【分析】(1)根据根的判别式可得结论;(2)利用求根公式表示两个根,因为该函数的图象与x轴交点的横坐标均为整数,且k为整数,可得k=±1.【解答】(1)证明:△=(k+1)2﹣4k×1=(k﹣1)2≥0∴无论k取任何实数时,该函数图象与x轴总有交点;(2)解:当y=0时,kx2+(k+1)x+1=0,x=,x=,x1=﹣,x2=﹣1,∵该函数的图象与x轴交点的横坐标均为整数,且k为整数,∴k=±1.【点评】本题考查了抛物线与x轴的交点,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.也考查了二次函数与一元二次方程的关系.24.【分析】(1)连接OE,由AC为圆O的切线,利用切线的性质得到OE 垂直于AC,再由BC垂直于AC,得到OE与BC平行,根据O为DB的中点,得到E为DF的中点,即OE为三角形DBF的中位线,利用中位线定理得到OE为BF的一半,再由OE为DB的一半,等量代换即可得证;(2)设BC=3x,根据题意得:AC=4x,AB=5x,根据cos∠AOE=cosB,可得=,即=,解方程即可;【解答】(1)证明:连接OE,∵AC与圆O相切,∴OE⊥AC,∵BC⊥AC,∴OE∥BC,又∵O为DB的中点,∴E为DF的中点,即OE为△DBF的中位线,∴OE=BF,又∵OE=BD,则BF=BD;(2)解:设BC=3x,根据题意得:AC=4x,AB=5x又∵CF=2,∴BF=3x+2,由(1)得:BD=BF,∴BD=3x+1,∴OE=OB=,AO=AB﹣OB=5x﹣=,∵OE∥BF,∴∠AOE=∠B,∴cos∠AOE=cosB,即=,即=,解得:x=,则圆O的半径为=5.【点评】此题考查了切线的性质,锐角三角函数定义,以及圆周角定理,熟练掌握切线的性质是解本题的关键.25.【分析】(1)如图1﹣1中,连接OD,BD、AN.利用勾股定理求出DM,致力于相似三角形的性质求出MN即可;(2)利用描点法画出函数图象即可;(3)利用图象寻找图象与直线y=x的交点的坐标即可解决问题;【解答】解:(1)如图1﹣1中,连接OD,BD、AN.∵AC=4,OA=3,∴OC=1,在Rt△OCD中,CD==,在Rt△CDM中,DM==,由△AMN∽△DMB,可得DM•MN=AM•BM,∴MN=≈3,故答案为3.(2)函数图象如图所示,(3)观察图象可知,当AC=MN上,x的取值约为2.7.故答案为2.7.【点评】本题考查圆综合题、勾股定理、相似三角形的判定和性质、描点法画函数图象等知识,解题的关键是学会添加常用辅助线,构造直角三角形或相似三角形解决问题,属于中考压轴题.26.【分析】(1)利用图中信息,根据待定系数法即可解决问题;(2)求出y=3时的自变量x的值即可解决问题;(3)当x2﹣x1=3时,易知x1=,此时y=﹣2+3=,可得点P坐标,由此即可解决问题;【解答】解:(1)由图象知抛物线与x轴交于点(1,0)、(3,0),与y轴的交点为(0,3),设抛物线解析式为y=a(x﹣1)(x﹣3),将(0,3)代入,得:3a=3,解得:a=1,∴抛物线解析式为y=(x﹣1)(x﹣3)=x2﹣4x+3;(2)①当y=3时,x2﹣4x+3=3,解得:x1=0,x2=4,∴x2﹣x1=4;②当x2﹣x1=3时,易知x1=,此时y=﹣2+3=观察图象可知当2≤x2﹣x1≤3,求y的取值范围0≤y≤.【点评】本题考查二次函数的性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.(7分)如图1有两条长度相等的相交线段AB、CD,它们相交的锐角中有一个角为60°,为了探究AD、CB与CD(或AB)之间的关系,小亮进行了如下尝试:(1)在其他条件不变的情况下使得AD∥BC,如图2,将线段AB沿AD方向平移AD的长度,得到线段DE,然后联结BE,进而利用所学知识得到AD、CB与CD(或AB)之间的关系:AD+BC=AB ;(直接写出结果)(2)根据小亮的经验,请对图1的情况(AD与CB不平行)进行尝试,写出AD、CB与CD(或AB)之间的关系,并进行证明;(3)综合(1)、(2)的证明结果,请写出完整的结论:AD+BC≥AB .【分析】(1)先判断出BE=AD,DE=AB,利用过直线外一点作已知直线的平行线只有一条判断出点C,B,E在同一条直线上,再判断出CE=AB,即可得出结论;(2)先判断出BE=AD,DE=AB,进而判断出点C,B,E在同一条直线上,再判断出CE=AB,即可得出结论;(3)结合(1)(2)得出的结论即可.【解答】解:(1)如图2,平移AB到DE的位置,连接BE,∴四边形ABED是平行四边形,∴AD=BE,AD∥BD,∵AD∥BC,∴点C,B,E在同一条直线上,∴CE=BC+BE,∵DE∥AB,∴∠CDE=∠1=60°,∵AB=DE,AB=CD,∴CD=DE,∴△CDE是等边三角形,∴CE=AB,∴BC+AD=AB;故答案为:AD+BC=AB;(2)如图1,平移AB到DE的位置,连接BE,∴四边形ABED是平行四边形,∴AD=BE,AD∥BD,∵AD不平行BC,∴点E不在直线BC上,连接CE,∴BC+BE>CE,∵DE∥AB,∴∠CDE=∠2=60°,∵AB=DE,AB=CD,∴CD=DE,∴△CDE是等边三角形,∴CE=AB,∴BC+AD>AB;(3)由(1)(2)直接得出,BC+AD≥AB.故答案为:BC+AD≥AB.28.【分析】(1)根据点P的摇摆区域的定义出图图形后即可作出判断;(2)根据题意分情况讨论,然后根据对称性即可求出此时点P的摇摆角;(3)如果⊙W上的所有点都在点P的摇摆角为60°时的摇摆区域内,此时⊙W与射线PN1相切,设直线PN1与x轴交于点M,⊙W与射线PN1相切于点N,P为端点竖直向下的一条射线PN与x轴交于点Q,根据特殊角锐角三角函数即可求出OM,OW的长度,从而可求出a的范围.【解答】解:(1)根据“摇摆角”作出图形,如图所示,将O、A、B、C四点在平面直角坐标系中描出,后,可以发现,B、C在点P的摇摆区域内,故属于点P的摇摆区域内的点是B、C(2)如图所示,当射线PN1过点D时,由对称性可知,此时点E不在点P的摇摆区域内,当射线PN2过点E时,由对称性可知,此时点D在点P的摇摆区域内,易知:此时PQ=QE,∴∠EPQ=45°,∴如果过点D(1,0),点E(5,0)的线段完全在点P的摇摆区域内,那么点P的摇摆角至少为90°(3)如果⊙W上的所有点都在点P的摇摆角为60°时的摇摆区域内,此时⊙W与射线PN1相切,设直线PN1与x轴交于点M,⊙W与射线PN1相切于点N,P为端点竖直向下的一条射线PN与x轴交于点Q,由定义可知:∠PMW=60°,∵NW=1,PQ=3,∴sin∠PMW=,tan∠PMW=∴MW=,MQ=,∴OM=2﹣,∴OW=OM+MW=2﹣+=2﹣∴此时W的坐标为:(2﹣,0)由对称性可知:当⊙W与射线PN2相切时,此时W的坐标为:(2+,0)∴a的范围为:2﹣≤a≤2+【点评】本题考查圆的综合问题,涉及勾股定理,锐角三角函数,圆的切线判定与性质,等腰直角三角形的性质等知识,综合程度较高,需要学生灵活运用知识.。

新版人教版九年级数学上册期末试卷(附答案)

新版人教版九年级数学上册期末试卷(附答案)

新版人教版九年级数学上册期末试卷(附答案)一、单选题1.如图,已知在正方形ABCD中,连结AC,在AC上截取AE=AD,作△ADE的外接圆交AB于点F,连结DF交AC于点M,连结EF,下列选项不正确的是()A.B.AM=ECC.∠EFB=∠AFDD.S四边形BCMF=S四边形ADEF2.如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD 相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:⊙OD2=DE•CD;⊙AD+BC=CD;⊙OD=OC;⊙S梯形ABCD=CD•OA;⊙⊙DOC=90°,其中正确的是()A.⊙⊙⊙B.⊙⊙⊙C.⊙⊙⊙D.⊙⊙⊙3.如图,有一个质地均匀的正四面体,其四个面上分别画着圆、等边三角形、菱形、正五边形.投掷该正四面体一次,向下的一面的图形既是轴对称图形又是中心对称图形的概率是()A.1B.C.D.4.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.5.已知有且仅有一个正实数满足关于x的方程(x﹣1)(x﹣3)=k,则k不可能为()A.﹣1B.1C.3D.56.若抛物线y=x2﹣x﹣1与x轴的交点坐标为(m,0),则代数式m2﹣m+2017的值为()A.2016B.2017C.2018D.20197.已知m,n是关于x的一元二次方程的两个解,若,则a的值为()A.﹣10B.4C.﹣4D.108.在一个不透明的盒子中放有2个黄色乒乓球和4个白色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出白色乒乓球的概率为()A. B. C. D.9.若关于x的方程mx2﹣2(3m﹣1)x+9m﹣1=0有两个不相等的实数根,则实数m的取值范围是()A.m>﹣B.m<C.m>﹣且m≠0D.m<且m≠010.下列方程中是关于x的一元二次方程的是()A. B.C. D.二、填空题11.如图,平面直角坐标系中,已知直线y=x上一点P(2,2),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q,当△OPC≌△ADP时,则C点的坐标是_____,Q点的坐标是_____.12.在一个不透明的口袋中装有40个红、白两色小球,这些小球除颜色外都相同,如果从中随机摸出一球为红球的概率是,那么袋中一共有白球_____________个.13.圆锥形的烟囱冒的底面直径是,母线长是,制作个这样的烟囱冒至少需要________㎡的铁皮(结果保留).14.如图,扇形OAB的圆心角为122°,C是上一点,则⊙ACB=________°.15.如图,⊙ABC是⊙O的内接三角形,连接OB、OC,若⊙BAC+⊙BOC=180°,BC=2cm,则⊙O 的半径为______cm.16.若直线y=2x+t﹣3与函数y=的图象有且只有两个公共点时,则t的取值范围是_____.17.如图,在⊙O中,直径AB的长是26,弦CD⊥AB交AB于E,若OE=5,则CD的长度为,若∠B=35°,则∠AOC= .18.把方程(2x+1)2﹣x=(x+1)(x﹣1)化成一般形式是.19.如图,正五边形ABCDE内接于圆O,对角线AC、BD交于点P,则∠APD= °20.点A到⊙O的最小距离为1,最大距离为3,则⊙O的半径长为_____.三、解答题21.如图①,已知是⊙的直径,是上的一个动点(点与点、不重合),连接.是的中点,作弦,垂足为.()若点和点不重合,连接、和.当是等腰三角形时,求的度数.()若点和点重合,如图②.探索与的数量关系并说明理由.22.如图,已知,.求证:;若,问经过怎样的变换能与重合?23.如图,⊙O的半径OA⊥弦BC于H,D是⊙O上另一点,AD与BC相交于点E,若DC=DE,OB=,AB=5.(1)求证:∠AOB=2∠ADC.(2)求AE长.24.如图,已知一次函数y=0.5x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=0.5x2+bx+c 的图象与一次函数y=0.5x+1的图象交于点B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求二次函数的解析式;(2)在在x轴上有一动点P,从O点出发以每秒1个单位的速度沿x轴向右运动,是否存在动点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出点P运动时间t的值;若不存在,请说明理由;(3)若动点P在x轴上,动点Q在射线AC上,同时从A点出发,点P沿x轴正方向以每秒2个单位的速度运动,点Q以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,求a的值;若不存在,说明理由.25.解方程:.26.是否存在这样的x ,使代数式7 -,2 x -,- 12 x - 2 的值相等.若存在,求出相应的x 的值;若不存在,请说明理由.参考答案1.D2.A3.C4.C5.B6.C7.C8.C9.D10.C.11.(0,4+2)(2+2,2+2)12.24;13.14.11915.2.16.t=0或t>1.17.24,70°.18.3x2+3x+2=019.108°20.1或221.()()22.(1)见解析;(2)先将绕点逆时针旋转,再将沿直线对折,即可得与重合.或先将绕点顺时针旋转,再将沿直线对折,即可得与重合23.(1)详见解析;(2)AE=24.(1)解析式为:;(2)t=1或3;(3)当a值为或时,△APQ与△ABD相似25.=9,=-11.26.见解析.。

人教版九年级数学上册 期末检测题(一)

人教版九年级数学上册 期末检测题(一)

期末检测题(一)时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.(盐城中考)已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为( B )A .-2B .2C .-4D .42.(2020·深圳)下列图形既是轴对称图形又是中心对称图形的是( B )3.(2020·武汉)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( C )A .13B .14C .16D .184.(2020·营口)如图,AB 为⊙O 的直径,点C ,点D 是⊙O 上的两点,连接CA ,CD ,AD .若∠CAB =40°,则∠ADC 的度数是( B )A .110°B .130°C .140°D .160°第4题图 第7题图 第8题图第9题图5.对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( B )A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =-1,最小值是2D .对称轴是直线x =-1,最大值是26.(2020·滨州)对于任意实数k ,关于x 的方程12x 2-(k +5)x +k 2+2k +25=0的根的情况为( B )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法判定7.(2020·无锡)如图,在矩形ABCD 中,AB =5,AD =4,将矩形ABCD 绕点A 逆时针旋转得到矩形AB ′C ′D ′,AB ′交CD 于点E ,且DE =B ′E ,则AE 的长为( D )A .3B .25C .258D .41108.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB =60°,若量出AD =6 cm ,则圆形螺母的外直径是( D )A .12 cmB .24 cmC .6 3 cmD .12 3 cm9.(2020·乐山)在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1.如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′.则图中阴影部分面积为( B )A .π4B .π-32C .π-34D .32π10.(2020·恩施州)如图,已知二次函数y =ax 2+bx +c的图象与x 轴相交于A (-2,0),B (1,0)两点.则以下结论:①ac >0;②二次函数y =ax 2+bx +c 的图象的对称轴为x =-1;③2a +c =0;④a -b +c >0.其中正确的有( C )A .0个B .1个C .2个D .3个二、填空题(每小题3分,共24分)11.(资阳中考)a 是方程2x 2=x +4的一个根,则代数式4a 2-2a 的值是__8__.12.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB =15°,则∠AOD =__30__度. 第12题图 第15题图 第16题图第18题图13.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有__3__个.14.(2020·宜宾)已知一元二次方程x 2+2x -8=0的两根为x 1,x 2,则x 2x 1 +2x 1x 2+x 1x 2=__-372 __. 15.(北京中考)如图,点A ,B ,C ,D 在⊙O 上,CB =CD ,∠CAD =30°,∠ACD =50°,则∠ADB =__70°__.16.(2020·呼和浩特)如图,在△ABC 中,D 为BC 的中点,以D 为圆心,BD 长为半径画一弧,交AC 于点E ,若∠A =60°,∠ABC =100°,BC =4,则扇形BDE 的面积为__4π9__.17.已知二次函数y =ax 2+bx -3自变量x 的部分取值和对应函数值y 如下表:则在实数范围内能使得y -5>0成立的x 取值范围是__x <-2或x >4__.18.(咸宁中考)如图,已知∠MON =120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM ′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM ′的对称点C ,画直线BC 交OM ′于点D ,连接AC ,AD ,有下列结论:①AD =CD ;②∠ACD 的大小随着α的变化而变化;③当α=30°时,四边形OADC 为菱形;④△ACD 面积的最大值为3 a 2;其中正确的是__①③④__.(把你认为正确结论的序号都填上)三、解答题(共66分)19.(6分)用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0; (2)(y +2)2-(3y -1)2=0.解:x 1=-1+62 ,x 2=-1-62 解:y 1=-14 ,y 2=3220.(7分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB ⊥BC ,BE =CE ,连接DE .(1)求证:△BDE ≌△BCE ;(2)试判断四边形ABED 的形状,并说明理由.解:(1)∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得,∴DB =CB ,∠ABD =∠EBC ,∠ABE =60°,∵AB ⊥BC ,∴∠ABC =90°,∴∠DBE =∠CBE =30°,在△BDE 和△BCE中,⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE (2)四边形ABED 为菱形.理由如下:由(1)得△BDE ≌△BCE ,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BEC ,∴BA =BE ,AD =EC =ED ,又∵BE =CE ,∴AB =BE =ED =AD ,∴四边形ABED 为菱形21.(7分)(2020·江西)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为_______;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为14,故答案为:14(2)用列表法表示所有可能出现的结果如下:共有12种等可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P (小志、小晴)=212 =16 22.(8分)(2020·南充)已知x 1,x 2是一元二次方程x 2-2x +k +2=0的两个实数根.(1)求k 的取值范围;(2)是否存在实数k ,使得等式1x 1 +1x 2=k -2成立?如果存在,请求出k 的值;如果不存在,请说明理由.解:(1)∵一元二次方程x 2-2x +k +2=0有两个实数根,∴Δ=(-2)2-4×1×(k +2)≥0,解得k ≤-1 (2)∵x 1,x 2是一元二次方程x 2-2x +k +2=0的两个实数根,∴x 1+x 2=2,x 1x 2=k +2.∵1x 1 +1x 2 =k -2,∴x 1+x 2x 1x 2 =2k +2=k -2,∴k 2-6=0,解得k 1=-6 ,k 2=6 .又∵k ≤-1,∴k =-6 .∴存在实数k ,使得等式1x 1 +1x 2=k -2成立,k 的值为-6 23.(8分)某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?解:(1)(14-10)÷2+1=3(档次).答:此批次蛋糕属第三档次产品 (2)设烘焙店生产的是第x 档次的产品,根据题意得(2x +8)×(76+4-4x )=1080,整理得x 2-16x +55=0,解得x 1=5,x 2=11(不合题意,舍去).答:该烘焙店生产的是第五档次的产品24.(8分)(2020·潍坊)如图,AB 为⊙O 的直径,射线AD 交⊙O 于点F ,点C 为劣弧BF 的中点,过点C 作CE ⊥AD ,垂足为E ,连接AC .(1)求证:CE 是⊙O 的切线;(2)若∠BAC =30°,AB =4,求阴影部分的面积.解:(1)连接BF ,∵AB 是⊙O 的直径,∴∠AFB =90°,即BF ⊥AD ,∵CE ⊥AD ,∴BF ∥CE ,连接OC ,∵点C 为劣弧BF 的中点,∴OC ⊥BF ,∵BF ∥CE ,∴OC ⊥CE ,∵OC 是⊙O 的半径,∴CE 是⊙O 的切线(2)连接OF ,FC ,∵OA =OC ,∠BAC =30°,∴∠BOC =60°,∵点C 为劣弧BF 的中点,∴FC =BC ,∴∠FOC =∠BOC =60°,∴∠AOF =60°,∵OF =OC ,∴△FOC 为等边三角形,∴∠CFO =60°,∴∠CFO =∠AOF ,∴FC ∥AB ,∴S △AFC =S △FOC ,∵AB=4,∴S 阴影=S 扇形FOC =60π×22360 =23π 25.(10分)(2020·南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第x (0<x ≤20)个生产周期设备售价z 万元/件,z 与x 之间的关系用图中的函数图象表示.求z 关于x 的函数解析式(写出x 的范围).(2)设第x 个生产周期生产并销售的设备为y 件,y 与x 满足关系式y =5x +40(0<x ≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)解:(1)由图可知,当0<x ≤12时,z =16,当12<x ≤20时,z 是关于x 的一次函数,设z =kx +b ,则⎩⎪⎨⎪⎧12k +b =16,20k +b =14, 解得⎩⎪⎨⎪⎧k =-14,b =19,∴z =-14 x +19,∴z 关于x 的函数解析式为z =⎩⎪⎨⎪⎧16(0<x ≤12)-14x +19(12<x ≤20) (2)设第x 个生产周期工厂创造的利润为w 万元,①当0<x ≤12时,w =(16-10)×(5x+40)=30x +240,∴由一次函数的性质可知,当x =12时,w 最大值=30×12+240=600(万元);②当12<x ≤20时,w =(-14 x +19-10)(5x +40)=-54 x 2+35x +360=-54(x -14)2+605,∴当x =14时,w 最大值=605(万元).综上所述,工厂第14个生产周期创造的利润最大,最大是605万元26.(12分)(2020·上海)在平面直角坐标系xOy 中,直线y =-12x +5与x 轴、y 轴分别交于点A ,B (如图).抛物线y =ax 2+bx (a ≠0)经过点A .(1)求线段AB 的长;(2)如果抛物线y =ax 2+bx 经过线段AB 上的另一点C ,且BC =5 ,求这条抛物线的表达式;(3)如果抛物线y =ax 2+bx 的顶点D 位于△AOB 内,求a 的取值范围.解:(1)对于直线y =-12 x +5,令x =0,y =5,∴B (0,5),令y =0,则-12x +5=0,∴x =10,∴A (10,0),∴AB =52+102 =55 (2)设点C (m ,-12m +5),∵B (0,5),∴BC =m 2+(-12m +5-5)2 =52 |m |,∵BC =5 ,∴52 |m |=5 ,∴m =±2,∵点C 在线段AB 上,∴m =2,∴C (2,4),将点A (10,0),C (2,4)代入抛物线y =ax 2+bx (a ≠0)中,得⎩⎪⎨⎪⎧100a +10b =0,4a +2b =4, ∴⎩⎨⎧a =-14,b =52, ∴抛物线的表达式为y =-14 x 2+52x (3)∵点A (10,0)在抛物线y =ax 2+bx 上,得100a +10b =0,∴b =-10a ,∴抛物线的解析式为y =ax 2-10ax=a (x -5)2-25a ,∴抛物线的顶点D 坐标为(5,-25a ),将x =5代入y =-12x +5中,得y =-12 ×5+5=52 ,∵顶点D 位于△AOB 内,∴0<-25a <52 ,∴-110 <a <0。

四川省绵阳市平武县2022-2022学年九年级数学上学期期末试题(含解析) 新人教版

四川省绵阳市平武县2022-2022学年九年级数学上学期期末试题(含解析) 新人教版

四川省绵阳市平武县2022-2022学年九年级数学上学期期末试题一、选择题:每小题3分,共36分.1.方程x2=4x的解是()A.x=4 B.x=2 C.x=4或x=0 D.x=02.在下列事件中,是必然事件的是()A.购买一张彩票中奖一百万元B.抛掷两枚硬币,两枚硬币全部正面朝上C.在地球上,上抛出去的篮球会下落D.打开电视机,任选一个频道,正在播新闻3.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1﹣x)=121 C.100(1+x)2=121 D.100(1﹣x)2=1214.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.05.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3) D.开口向上,顶点坐标(﹣5,3)6.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0C.k≤3 D.k≤3且k≠07.二次函数y=ax2+bx+c的图象如图所示,则下列关系式中错误的是()A.a<0 B.c>0 C.b2﹣4ac>0 D.a+b+c>08.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A.B.C.D.9.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是()A.内切 B.相交 C.外切 D.外离10.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25π B.65π C.90π D.130π11.如图,四个边长为2的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为2,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30° B.45° C.60° D.90°12.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△A DE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形二、填空题:每小题3分,共18分.13.已知关于x的方程x2﹣3x+k=0有一个根为1,则它的另一个根为.14.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是.15.如图,⊙O的直径AB=12,弦CD⊥AB于M,且M是半径OB的中点,则CD的长是(结果保留根号).16.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣x1•x2= .17.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.18.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于.三、解答题:本大题共7小题,19题10分,其余每题6分,共46分.19.解方程:(1)3x2﹣2x=4x2﹣3x﹣6(2)3x2﹣6x﹣2=0.20.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.21.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个半圆,每一个扇形或半圆都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x,y)落在坐标轴上的概率;(2)直接写出点(x,y)落在以坐标原点为圆心,2为半径的圆内的概率.22.如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交劣弧CB于D,连接AC.(1)请写出两个不同的正确结论;(2)若CB=8,ED=2,求⊙O的半径.23.在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC.(1)如图1,以点B为旋转中心,将△EBC按顺时针方向旋转,得到△E′BA(点C与点A重合,点E到点E′处),连接DE′.求证:DE′=DE;(2)如图2,若∠ABC=90°,AD=4,EC=2,求DE的长.24.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)25.如图,对称轴为直线x=2的抛物线经过点A(﹣1,0),C(0,5)两点,与x轴另一交点为B,已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP面积的最大值,并求此时点P的坐标.2022-2022学年四川省绵阳市平武县九年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共36分.1.方程x2=4x的解是()A.x=4 B.x=2 C.x=4或x=0 D.x=0【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】本题可先进行移项得到:x2﹣4x=0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0.【解答】解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,∴x=0或x=4.故选:C.【点评】本题考查了运用提取公因式的方法解一元二次方程的方法.2.在下列事件中,是必然事件的是()A.购买一张彩票中奖一百万元B.抛掷两枚硬币,两枚硬币全部正面朝上C.在地球上,上抛出去的篮球会下落D.打开电视机,任选一个频道,正在播新闻【考点】随机事件.【专题】推理填空题.【分析】必然事件指在一定条件下一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,B,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有C,在地球上,上抛出去的篮球会下落,是必然事件,符合题意.故选C.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1﹣x)=121 C.100(1+x)2=121 D.100(1﹣x)2=121【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为121元,列出关于x的方程.【解答】解:设平均每次提价的百分率为x,根据题意得:100(1+x)2=121,故选C.【点评】此题考查了一元二次方程的应用,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.4.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.0【考点】一元二次方程的一般形式.【专题】计算题.【分析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m的值即可.【解答】解:根据题意,知,,解方程得:m=2.故选:B.【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.5.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3) D.开口向上,顶点坐标(﹣5,3)【考点】二次函数的性质.【分析】二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a>0时开口向上,当a <0时开口向下.【解答】解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选:A.【点评】本题主要是对抛物线一般形式中对称轴,顶点坐标,开口方向的考查,是中考中经常出现的问题.6.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0C.k≤3 D.k≤3且k≠0【考点】抛物线与x轴的交点.【分析】利用kx2﹣6x+3=0有实数根,根据判别式可求出k取值范围.【解答】解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选D.【点评】考查二次函数与一元二次方程的关系.7.二次函数y=ax2+bx+c的图象如图所示,则下列关系式中错误的是()A.a<0 B.c>0 C.b2﹣4ac>0 D.a+b+c>0【考点】二次函数图象与系数的关系.【专题】压轴题;数形结合.【分析】根据二次函数的开口方向,与y轴的交点,与x轴交点的个数,当x=1时,函数值的正负判断正确选项即可.【解答】解:A、二次函数的开口向下,∴a<0,正确,不符合题意;B、二次函数与y轴交于正半轴,∴c>0,正确,不符合题意;C、二次函数与x轴有2个交点,∴b2﹣4ac>0,正确,不符合题意;D、当x=1时,函数值是负数,a+b+c<0,∴错误,符合题意,故选D.【点评】考查二次函数图象与系数的关系;用到的知识点为:二次函数的开口向下,a<0;二次函数与y轴交于正半轴,c>0;二次函数与x轴有2个交点,b2﹣4ac>0;a+b+c的符号用当x=1时,函数值的正负判断.8.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A.B.C.D.【考点】概率公式.【分析】让白球的个数除以球的总个数即为所求的概率.【解答】解:因为一共有6个球,白球有4个,所以从布袋里任意摸出1个球,摸到白球的概率为:.故选D.【点评】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.9.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是()A.内切 B.相交 C.外切 D.外离【考点】圆与圆的位置关系.【专题】常规题型.【分析】本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).【解答】解:根据题意,得R+r=7+3=10,R﹣r=7﹣3=4,∵4<圆心距7<10∴两圆相交.故选B.【点评】本题考查了由数量关系来判断两圆位置关系的方法.10.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25π B.65π C.90π D.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式s=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.【点评】要学会灵活的运用公式求解.11.如图,四个边长为2的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为2,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30° B.45° C.60° D.90°【考点】圆周角定理.【分析】根据圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半求解.【解答】解:根据题意∠APB=∠AOB,∵∠AOB=90°,∴∠APB=90°×=45°.故选B.【点评】本题考查了圆周角和圆心角的有关知识.根据正方形的性质得到圆心角的度数是解题的关键.12.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形【考点】旋转的性质;矩形的判定.【分析】根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.【解答】解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF矩形.故选:A.【点评】本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.二、填空题:每小题3分,共18分.13.已知关于x的方程x2﹣3x+k=0有一个根为1,则它的另一个根为 2 .【考点】根与系数的关系.【分析】首先根据根与系数的关系可以得到两根之和,然后利用两根之和,可以求出另一个根.【解答】解:设x1,x2是方程的两根,由题意知x1+x2=1+x2=3,∴x2=2.故填空答案:2.【点评】此题比较简单,主要利用了根与系数的关系:x1+x2=,x1x2=.14.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2 .【考点】二次函数图象与几何变换.【分析】根据“上加下减,左加右减”的法则进行解答即可.【解答】解:根据“上加下减,左加右减”的法则可知,抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2.故答案为:y=3(x﹣1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.15.如图,⊙O的直径AB=12,弦CD⊥AB于M,且M是半径OB的中点,则CD的长是6(结果保留根号).【考点】垂径定理;勾股定理.【专题】计算题.【分析】连OC,易得OC=6,OM=3,根据勾股定理可计算出CM=3,由于CD⊥AB,根据垂径定理得到CM=CD,即可计算出CD的长.【解答】解:连OC,如图,∵直径AB=12,M是半径OB的中点,∴OC=6,OM=3,在Rt△OCM中,CM===3,∵CD⊥AB,∴C M=CD,∴CD=2CM=6.故答案为6.【点评】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理.16.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣x1•x2= 2 .【考点】根与系数的关系.【专题】方程思想.【分析】根据一元二次方程的根与系数的关系x1+x2=﹣\frac{b}{a},x1•x2=c求得x1+x2和x1•x2的值,然后将其代入所求的代数式求值即可.【解答】解:∵一元二次方程x2﹣3x+1=0的二次项系数a=1,一次项系数b=﹣3,常数项c=1,∴由韦达定理,得x1+x2=3,x1•x2=1,∴x1+x2﹣x1•x2=3﹣1=2.故答案是:2.【点评】本题考查了一元二次方程的根与系数的关系.解题时,务必弄清楚根与系数的关系x1+x2=﹣,x1•x2=c中的a、b、c所表示的意义.17.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是14 .【考点】切线长定理.【分析】由切线长定理可知:AD=AE,BC=BE,因此梯形的周长=2AB+CD,已知了AB和⊙O的半径,由此可求出梯形的周长.【解答】解:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14,故答案为:14.【点评】本题考查了切线长定理的应用,运用切线长定理,将梯形上下底的和转化为梯形的腰AB的长是解答本题的关键.18.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于4﹣4 .【考点】旋转的性质.【专题】计算题.【分析】根据等腰直角三角形的性质得∠B=∠C=45°,再根据旋转的性质得∠CAC′=∠BAB′=45°,∠B′=∠B=45°,AB′=AB=2,于是可判断△AFB′是等腰直角三角形,得到AD⊥BC,B′F⊥AF,AF=AB′=2,可计算出BF=AB﹣AF=2﹣2,接着证明△ADB和△BEF为等腰直角三角形得到AD=BD=AB=2,EF=BF=2﹣2,然后利用图中阴影部分的面积=S△ADB﹣S△BEF进行计算即可.【解答】解:如图,∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°,∵△ABC绕点A顺时针旋转45°得到△AB′C′,∴∠CAC′=∠BAB′=45°,∠B′=∠B=45°,AB′=AB=2,∴△AFB′是等腰直角三角形,∴AD⊥BC,B′F⊥AF,AF=AB′=2,∴BF=AB﹣AF=2﹣2,∵∠B=45°,EF⊥BF,AD⊥BD,∴△ADB和△BEF为等腰直角三角形,∴AD=BD=AB=2,EF=BF=2﹣2,∴图中阴影部分的面积=S△ADB﹣S△BEF=•22﹣•(2﹣2)2=4﹣4.故答案为4﹣4.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.三、解答题:本大题共7小题,19题10分,其余每题6分,共46分.19.解方程:(1)3x2﹣2x=4x2﹣3x﹣6(2)3x2﹣6x﹣2=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【专题】计算题.【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)先计算判别式的值,然后利用求根公式法解方程.【解答】解:(1)x2﹣x﹣6=0,(x﹣3)(x+2)=0,x﹣3=0或x+2=0,所以x1=3,x2=﹣2;(2)△=(﹣6)2﹣4×3×(﹣2)=60,x==,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.20.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.【考点】一元二次方程的应用;二次函数的应用.【分析】(1)利用每件衬衫每降价1元,商场平均每天可多售出2件,即可得出每件衬衣降价x元,每天可以多销售2x件,进而得出y与x的函数关系式;再利用商场降价后每天盈利=每件的利润×卖出的件数=(50﹣降低的价格)×(40+增加的件数),把相关数值代入即可求解;(2)利用商场降价后每天盈利=每件的利润×卖出的件数=(50﹣降低的价格)×(40+增加的件数),利用二次函数最值求法得出即可.【解答】解:(1)设每件衬衫应降价x元,由题意得:(50﹣x)(40+2x)=2400,解得:x1=10,x2=20,因为尽量减少库存,x1=10舍去.答:每件衬衫应降价20元.(2)设每天盈利为W元,则W=(50﹣x)(40+2x)=﹣2(x﹣15)2+2450,当x=15时,W最大为2450.答:每件衬衫降价15元时,商场服装部每天盈利最多.【点评】此题主要考查了一元二次方程的应用以及二次函数的应用,解决本题的关键是找到销售利润的等量关系,难点是得到降价后增加的销售量.21.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个半圆,每一个扇形或半圆都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x,y)落在坐标轴上的概率;(2)直接写出点(x,y)落在以坐标原点为圆心,2为半径的圆内的概率.【考点】列表法与树状图法.【分析】(1)首先利用画树状图的方法,求得所有点的等可能的情况,然后再求得点(x,y)落在坐标轴上的情况,求其比值即可求得答案;(2)求得点(x,y)落在以坐标原点为圆心,2为半径的圆内所有情况,即可求得答案.【解答】解:(1)树状图得:∴一共有6种等可能的情况点(x,y)落在坐标轴上的有4种,∴P(点(x,y)在坐标轴上)=;(2)∵点(x,y)落在以坐标原点为圆心,2为半径的圆内的有(0,0),((0,﹣1),∴P(点(x,y)在圆内)=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交劣弧CB于D,连接AC.(1)请写出两个不同的正确结论;(2)若CB=8,ED=2,求⊙O的半径.【考点】垂径定理;勾股定理.【分析】(1)根据直角所对的圆周角是直角、垂径定理写出结论;(2)根据勾股定理求出DE的长,设⊙O的半径为R,根据勾股定理列出关于R的方程,解方程得到答案.【解答】解:(1)∵AB是⊙O的直径,∴∠C=90°,∵OD⊥CB,∴CE=BE, =,则三个不同类型的正确结论:∠C=90°;CE=BE; =;(2)∵OD⊥CB,∴CE=BE=BC=4,又DE=2,∴OE2=OB2﹣BE2,设⊙O的半径为R,则OE=R﹣2,∴R2=(R﹣2)2+42,解得R=5.答:⊙O的半径为5.【点评】本题考查的是垂径定理和勾股定理的应用,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.23.在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC.(1)如图1,以点B为旋转中心,将△EBC按顺时针方向旋转,得到△E′BA(点C与点A重合,点E到点E′处),连接DE′.求证:DE′=DE;(2)如图2,若∠ABC=90°,AD=4,EC=2,求DE的长.【考点】旋转的性质;勾股定理.【专题】计算题.【分析】(1)先根据旋转的性质得BE′=BE,∠E′BA=∠EBC,则∠E′BE=∠ABC,再利用∠DBE=∠ABC易得∠DBE′=∠DBE,根据“SAS”判断△BDE′≌△BDE,所以DE′=DE;(2)以点B为旋转中心,将△EBC按顺时针方向旋转90°得到△E′BA(点C与点A重合,点E到点E′处),如图2,利用等腰直角三角形的性质得∠BCE=∠BAD=45°,利用旋转的性质得∠BAE′=∠BCE=45°,AE′=CE=2,则∠DAE′=90°,在Rt△DAE′中利用勾股定理可计算出DE′=2,然后就根据(1)的结论即可得到DE=DE′=2.【解答】(1)证明:∵以点B为旋转中心,将△EBC按顺时针方向旋转,得到△E′BA(点C与点A 重合,点E到点E′处),∴BE′=BE,∠E′BA=∠EBC,∴∠E′BE=∠ABC,∵∠DBE=∠ABC,∴∠DBE=∠E′BE,即∠DBE′=∠DBE,在△BDE′和△BDE中,,∴△BDE′≌△BDE(SAS),∴DE′=DE;(2)解:以点B为旋转中心,将△EBC按顺时针方向旋转90°得到△E′BA(点C与点A重合,点E到点E′处),如图2,∵∠ABC=90°,BA=BC,∴∠BCE=∠BAD=45°,∵△EBC按顺时针方向旋转90°得到△E′BA,∴∠BAE′=∠BCE=45°,AE′=CE=2,∴∠DAE′=∠BAD+∠BAE′=90°,在Rt△DAE′中,∵DE′2=AD2+AE′2=42+22=20,∴DE′=2,由(1)的结论得DE=DE′=2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和勾股定理.24.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)【考点】扇形面积的计算;切线的判定.【分析】(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)阴影部分的面积可由梯形OBCD和扇形OBD的面积差求得;扇形的半径和圆心角已求得,那么关键是求出梯形上底CD的长,可通过证四边形ABCD是平行四边形,得出CD=AB,由此可求出CD的长,即可得解.【解答】解:(1)直线CD与⊙O相切.理由如下:如图,连接OD∵OA=OD,∠DAB=45°,∴∠ODA=45°∴∠AOD=90°∵CD∥AB∴∠ODC=∠AOD=90°,即OD⊥CD又∵点D在⊙O上,∴直线CD与⊙O相切;(2)∵⊙O的半径为1,AB是⊙O的直径,∴AB=2,∵BC∥AD,CD∥AB∴四边形ABCD是平行四边形∴CD=AB=2∴S梯形OBCD===;∴图中阴影部分的面积等于S梯形OBCD﹣S扇形OBD=﹣×π×12=﹣.【点评】此题主要考查了切线的判定、平行四边形的判定和性质以及扇形的面积计算方法.不规则图形的面积一定要注意分割成规则图形的面积进行计算.25.如图,对称轴为直线x=2的抛物线经过点A(﹣1,0),C(0,5)两点,与x轴另一交点为B,已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP面积的最大值,并求此时点P的坐标.【考点】抛物线与x轴的交点.【分析】(1)利用待定系数法求出抛物线的解析式;(2)首先求出四边形MEFP面积的表达式,然后利用二次函数的性质求出最值及点P坐标.【解答】解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△P MN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+,∴当x=时,四边形MEFP的面积有最大值为,把x=时,y=﹣(﹣2)2+9=.此时点P坐标为(,).【点评】此题考查抛物线与x轴的坐标特点,待定系数法求函数解析式,组合图形的面积,求得函数解析式,利用函数的性质解决问题.。

部编数学九年级上册 人教版九年数学上册期末考试核心素养达标检测试卷(07)(解析版)含答案

部编数学九年级上册 人教版九年数学上册期末考试核心素养达标检测试卷(07)(解析版)含答案

2023-2024人教版九年数学上册期末考试核心素养达标检测试卷十套(解析版)2023-2024人教版九年数学上册期末考试核心素养达标检测试卷(07)(满分100分,答题时间90分钟)一、选择题(本大题有7小题,每小题4分,共28分)1. 下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.【答案】A【解析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不中心对称图形,是轴对称图形,故此选项错误.点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.2. 在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是()A. 34B. 12C.13D.14【答案】A【解析】根据概率公式计算,即可求解.根据题意得:从袋中任意摸出一个球为红球的概率是33 314=+.【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.3. 若关于x的一元二次方程20x x k+-=有两个实数根,则k的取值范围是()A.14k>- B.14k³- C.14k<- D.14k£-是【答案】B【解析】根据关于x 的一元二次方程x 2+x -k =0有两个实数根,得出Δ=b 2-4ac ≥0,即1+4k ≥0,从而求出k 的取值范围.∵x 2+x -k =0有两个实数根,∴Δ=b 2-4ac ≥0,即1+4k ≥0,解得:k ≥-14.【点睛】本题考查一元二次方程根的判别式,掌握Δ>0⇔方程有两个不相等的实数根;Δ=0⇔方程有两个相等的实数根;Δ<0⇔方程没有实数根是本题的关键.4.某蔬菜种植基地2018年的蔬菜产量为800吨,2020年的蔬菜产量为968吨,设每年蔬菜产量的年平均增长率都为x ,则年平均增长率x 应满足的方程为( )A .800(1﹣x )2=968B .800(1+x )2=968C .968(1﹣x )2=800D .968(1+x )2=800【答案】B【解析】根据该种植基地2018年及2020年的蔬菜产量,即可得出关于x 的一元二次方程,此题得解.依题意得:800(1+x )2=968.5. 如图,在O e 中,弦,AB CD 相交于点P ,若48,80A APD Ð=°Ð=°,则B Ð的大小为( )A. 32°B. 42°C. 52°D. 62°【答案】A 【解析】根据三角形的外角的性质可得C A APD Ð+Ð=Ð,求得32C Ð=°,再根据同弧所对的圆周角相等,即可得到答案.C A APD Ð+Ð=ÐQ ,48,80A APD Ð=°Ð=°,32C \Ð=°32B C \Ð=Ð=°【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.6. 如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L2,则图中两个阴影部分的面积和为( )A.1B.2C.3D.4【答案】B【解析】根据题意可推出OB=2,OA=1,AD=OC=2,根据平移的性质及抛物线的对称性可知阴影部分的面积等于矩形OCDA的面积,利用矩形的面积公式进行求解即可.如图所示,过抛物线L2的顶点D作CD∥x轴,与y轴交于点C,则四边形OCDA是矩形,∵抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),∴OB=2,OA=1,将抛物线L1向下平移两个单位长度得抛物线L2,则AD=OC=2,根据平移的性质及抛物线的对称性得到阴影部分的面积等于矩形OCDA的面积,∴S阴影部分=S矩形OCDA=OA•AD=1×2=2.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是( )A.①②B.②④C.①③D.③④【答案】C【解析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.【点评】本题考查了二次函数图象与系数的关系以及抛物线与x轴的交点,观察函数图象逐一分析四条结论的正误是解题的关键.二、填空题(本大题有7小题,每小题4分,共28分)1. 不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是___________.【答案】7 9【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.∵袋子中共有9个小球,其中绿球有7个,∴摸出一个球是绿球的概率是79.【点睛】此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .2. 若一元二次方程2240x x m -+=有两个相等的实数根,则m =________.【答案】2【解析】由方程有两个相等的实数根可知,利用根的判别式等于0即可求m 的值,由题意可知:2a =,4b =-,c m =240b ac =-=V ,∴16420m -´´=,解得:2m =.【点睛】本题考查了利用一元二次方程根的判别式24b ac =-△求参数:方程有两个不相等的实数根时,0V >;方程有两个相等的实数根时,0=V ;方程无实数根时,△<0等知识.会运用根的判别式和准确的计算是解决本题的关键.3. 如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若2AB =,60BAD Ð=°,则图中阴影部分的面积为_________.(结果不取近似值)【答案】23p -【解析】【分析】连接BD 交AC 于点G ,证明△ABD 是等边三角形,可得BD =2,然后根据菱形的性质及勾股定理求出AC ,再由S 阴影=S 菱形ABCD -S 扇形ADE -S 扇形CBF 得出答案.【详解】连接BD 交AC 于点G ,∵四边形ABCD 是菱形,∴AB =AD =2,AC ⊥BD ,∵60BAD Ð=°,∴△ABD 是等边三角形,∠DAC =∠BCA =30°,∴BD =2,∴BG =112BD =,∴AG ===,∴AC =2AG =,∴S 阴影=S 菱形ABCD -S 扇形ADE -S 扇形CBF =2213023022223603603p p p ××´--=-,故答案为:23p -.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理,扇形的面积公式等,在求阴影部分面积时,能够将求不规则图形的面积转化为求规则图形的面积是解题的关键.4.如图,圆锥的高是4,它的侧面展开图是圆心角为120°的扇形,则圆锥的侧面积是 (结果保留π).【答案】6π.【解析】设圆锥的底面半径为r ,母线长为l ,根据题意得:2πr =,解得:l =3r ,然后根据高为4,利用勾股定理得r 2+42=(3r )2,从而求得底面半径和母线长,利用侧面积公式求得答案即可.【解答】解:设圆锥的底面半径为r ,母线长为l ,根据题意得:2πr =,解得:l =3r ,∵高为4,∴r 2+42=(3r )2,解得:r =,∴母线长为3,∴圆锥的侧面积为πrl =π××3=6π.5.如图,若四边形ABCD 与四边形FGCE 成中心对称,则它们的对称中心是 ,点A 的对称点是 ,点E 的对称点是 .BD ∥ 且BD= .连接点A,点F 的线段经过点 ,△ABD ≌ .【答案】点C;点F;点D;EG;EG;C;△FGE【解析】根据对称中心的概念和性质解决即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档