分层抽样试题(含答案)4

合集下载

抽样调查答案

抽样调查答案

抽样技术第1、2章试题一、单选题1.非概率抽样的优点(D)A.能计算抽样误差B.能从概率的意义上控制误差C.样本数据能对总体情况进行推断D.操作简单,不需要抽样框,经济、快速,调查数据的处理也容易2.概率抽样与非概率抽样的根本区别是(B)A、是否能保证总体中每个单位都有完全相同的概率被抽中B、是否能保证总体中每个单位都有事先已知或可以计算的非零概率被抽中C、是否能减少调查误差D、是否能计算和控制抽样误差3.以下哪种抽样不属于非概率抽样(C)A、判断抽样B、方便抽样C、不等概率抽样D、配额抽样3.抽样调查的根本功能是(C)A、获取样本资料B.、计算样本资料C、推断总体数量特征D、节约费用4.下列不属于概率抽样的是(B)A、不等概率抽样B、滚雪球抽样C、系统抽样D、整群抽样5.下列抽样框中不属于名录框的是(A)A、时间B、学生名单C、公司名录册D、电话号码簿6.用样本统计量对总体参数进行估计时产生的误差是(C)A、总体方差B、样本方差C、估计量方差D、偏倚7.以下抽样方法不属于非概率抽样的是(C)A、目的抽样B、随意抽样C、随机抽样D、判断抽样8.下列说法错误的是(C)A、对于无偏估计量,均方误差等于方差B、抽样误差是抽样方法本身所引起的误差,是由于样本不能完全代替总体而导致的误差C、抽样方差是依据样本方差计算,而方差估计量是依据总体方差计算D、抽样标准误差是抽样方差的平方根9.下列关于非概率抽样和概率抽样说法正确的是(A)A、非概率抽样的一个重要应用是充当预调查角色,作为开发概率抽样的厨师步骤。

B、概率抽样是指按照一定的概率以随机原则抽取样本,也称为等概率抽样。

C、随机与随便的本质区别就在于,是否按照给定的抽样概率,通过一定的随机化程序抽取样本单元。

D、非概率抽样的偏倚较小,有利于评价样本的代表性。

10.概率抽样中的基本抽样方法不包括(C)A、简单随机抽样B、分层抽样C、定额抽样D、整群抽样11. 下列属于总体参数的是(B )A 、)y y (ˆn 21+++=L y nN Y B 、)(121N Y Y Y NY +++=L C 、)(n1ˆ21n y y y P +++=L D 、∑∑===ni in i i x y R 11/ˆ 12. 抽样框的具体表现形式不包括(B )A 、区域框B 、初级框C 、自然框D 、名录框13. 估计量方差是(B )A 、指按照某一抽样方案反复进行抽样,估计值的数学期望与待估参数之间的离差。

抽样设计考试题及答案解析

抽样设计考试题及答案解析

抽样设计考试题及答案解析一、选择题(每题2分,共10分)1. 在抽样设计中,下列哪项不是抽样误差的来源?A. 抽样方法B. 样本大小C. 抽样框的不完整性D. 抽样过程中的随机性答案解析:D选项是正确的。

抽样误差通常来源于抽样方法、样本大小、抽样框的不完整性等因素,而抽样过程中的随机性是抽样误差的一个特征,而非来源。

2. 以下哪种抽样方法可以保证样本的代表性?A. 简单随机抽样B. 分层抽样C. 系统抽样D. 整群抽样答案解析:B选项分层抽样可以保证样本的代表性。

分层抽样通过将总体分成不同的层,然后从每层中进行简单随机抽样,这样可以确保样本在各个层中的分布与总体相似。

3. 以下哪个指标可以用来衡量抽样误差的大小?A. 置信度B. 置信区间C. 标准误差D. 抽样比率答案解析:C选项标准误差可以用来衡量抽样误差的大小。

标准误差是样本统计量的标准差,它反映了样本统计量与总体参数之间的差异程度。

4. 在进行抽样设计时,以下哪项不是必须考虑的因素?A. 总体的异质性B. 抽样成本C. 抽样的便利性D. 抽样的随机性答案解析:C选项抽样的便利性不是必须考虑的因素。

虽然抽样的便利性可能影响抽样的实施,但在设计抽样方案时,更重要的是考虑总体的异质性、抽样成本和抽样的随机性等因素。

5. 以下哪种抽样方法适用于总体单位数量很大,且总体分布均匀的情况?A. 系统抽样B. 分层抽样C. 整群抽样D. 多阶段抽样答案解析:A选项系统抽样适用于总体单位数量很大,且总体分布均匀的情况。

系统抽样通过在总体中选择一个起始点,然后按照一定的间隔选择样本,这种方法在总体分布均匀时较为有效。

二、简答题(每题10分,共20分)1. 简述分层抽样的优点和局限性。

答案解析:分层抽样的优点包括:(1) 可以提高样本的代表性;(2) 可以减少抽样误差;(3) 便于对不同层进行分析。

局限性包括:(1)分层可能需要额外的信息和成本;(2) 如果分层不准确,可能会增加抽样误差;(3) 对于层内差异的估计可能不够准确。

市场调查预测模考试题含答案

市场调查预测模考试题含答案

市场调查预测模考试题含答案1、抽样调查,确定样本数目多少,主要取决于( )。

A、调查结果的准确性要求B、允许误差的大小C、母体幅度大小D、费用开支的大小答案:C2、按照市场调查问卷的传递方式不同,问卷的类型不包括( )。

A、访问问卷B、报刊问卷C、邮寄问卷D、封闭式问卷答案:D3、( )是以若干宽度相等的平行条形的高低或长短来表示统计数字资料的图形。

A、圆饼图B、散点图C、条形图D、折线图答案:C4、经过他人收集、记录、整理所积累,已经存在的各种数据和资料为( )。

A、第一手资料B、第二手资料C、原始资料D、初级信息答案:B5、一个调查方案的制定的最主要依据就是这个调查( )。

A、资料B、目的C、方法D、内容答案:B6、( )职责是组织、控制整个市场调查与预测工作,协调下属各部门之间的关系;制定公司的管理规则、人员的职责。

A、管理人员B、研究人员C、调查员D、督导答案:A7、不能计算和控制抽样误差的市场调查法是( )。

A、任意抽样B、系统抽样C、市场普查D、判断抽样第六章问卷设计一、单项选择题答案:D8、列不属于调查方案可行性分析的方法是( )。

A、试点调查法B、逻辑分析法C、经验判断法D、大众分析法答案:D9、减少误差的首要问题是( )。

A、恰当地确定样本的数目B、合理抽取调查样本C、增加费用开支D、加强抽样调查组织工作,提高工作质量答案:B10、在问卷设计当中,需要被调查者思考的问题应放在( )。

A、后面B、前面C、中间D、随机答案:C11、运用观察值的对数和最小二乘法求得趋势方程的方法叫( )。

A、直线趋势法B、曲线趋势法C、季节指数法D、对数趋势法答案:D12、下列方法不是以平均数为基础的是( )。

A、简易平均法B、移动平均法C、加权平均法D、指教平滑法答案:D13、多元回归分析预测与一元线性回归预测的相同点是( )。

A、参数计算的过程一样B、预测步骤基本相同C、方程的自变量数量一样D、统计检验的复杂程度一致答案:B14、在市场调查实践中,采用单纯随机抽样的方法实现抽样,主要有( )。

抽样调查答案

抽样调查答案

抽样技术第1、2章试题一、单选题1.非概率抽样的优点( D )A.能计算抽样误差B.能从概率的意义上控制误差C.样本数据能对总体情况进行推断D.操作简单,不需要抽样框,经济、快速,调查数据的处理也容易2.概率抽样与非概率抽样的根本区别是( B )A、是否能保证总体中每个单位都有完全相同的概率被抽中B、是否能保证总体中每个单位都有事先已知或可以计算的非零概率被抽中C、是否能减少调查误差D、是否能计算和控制抽样误差3.以下哪种抽样不属于非概率抽样( C )A、判断抽样B、方便抽样C、不等概率抽样D、配额抽样3. 抽样调查的根本功能是( C )A、获取样本资料 B.、计算样本资料C、推断总体数量特征D、节约费用4.下列不属于概率抽样的是( B )A、不等概率抽样B、滚雪球抽样C、系统抽样D、整群抽样5.下列抽样框中不属于名录框的是( A )A、时间B、学生名单C、公司名录册D、电话号码簿6.用样本统计量对总体参数进行估计时产生的误差是( C )A、总体方差B、样本方差C、估计量方差D、偏倚7.以下抽样方法不属于非概率抽样的是( C )A、目的抽样B、随意抽样C、随机抽样D、判断抽样8.下列说法错误的是( C )A、对于无偏估计量,均方误差等于方差B、抽样误差是抽样方法本身所引起的误差,是由于样本不能完全代替总体而导致的误差C、抽样方差是依据样本方差计算,而方差估计量是依据总体方差计算D、抽样标准误差是抽样方差的平方根9.下列关于非概率抽样和概率抽样说法正确的是( A )A、非概率抽样的一个重要应用是充当预调查角色,作为开发概率抽样的厨师步骤。

B、概率抽样是指按照一定的概率以随机原则抽取样本,也称为等概率抽样。

C、随机与随便的本质区别就在于,是否按照给定的抽样概率,通过一定的随机化程序抽取样本单元。

D、非概率抽样的偏倚较小,有利于评价样本的代表性。

10.概率抽样中的基本抽样方法不包括( C )A、简单随机抽样B、分层抽样C 、定额抽样D 、整群抽样11. 下列属于总体参数的是( B )A 、)y y (ˆn21+++=L y n N Y B 、)(121N Y Y Y NY +++=LC 、)(n1ˆ21ny y y P +++=L D 、∑∑===ni ini i x y R 11/ˆ 12. 抽样框的具体表现形式不包括( B ) A 、区域框 B 、初级框 C 、自然框 D 、名录框13. 估计量方差是( B )A 、指按照某一抽样方案反复进行抽样,估计值的数学期望与待估参数之间的离差。

全国自考市场调查与预测(抽样方法)模拟试卷4(题后含答案及解析)

全国自考市场调查与预测(抽样方法)模拟试卷4(题后含答案及解析)

全国自考市场调查与预测(抽样方法)模拟试卷4(题后含答案及解析)题型有:1. 单项选择 2. 多项选择题 3. 名词解释 4. 简答题 6. 计算题单项选择1.对调查对象总体的全部单位进行的逐一的、无遗漏的调查就是( )A.普查B.抽样调查C.问卷D.促销正确答案:A解析:普查就是普遍的调查,指对调查对象总体的全部单位进行的逐一的、无遗漏的调查。

知识模块:抽样方法2.为获得了解某一事物比较全面、比较精确的数据或资料,就需要进行( )A.抽样调查B.整群抽样C.普查D.单个抽样正确答案:C解析:普查的目的在于获得了解某一事物比较全面、比较精确的数据或资料。

知识模块:抽样方法3.下列关于普查的说法错误的是( )A.普查工作量大,需要花费较大的人、财、物和较长的时间B.普查获得的数据不会有误差C.普查可以取得调查总体全面而可靠的原始数据D.如果组织得好,普查结果能够真实地反映调查对象的现状正确答案:B解析:普查的最大优点:第一,可以取得调查总体全面而可靠的原始数据;第二,如果组织得好,普查结果能够真实地反映调查对象的现状。

普查也存在一些问题,主要的不足是:第一,普查涉及调查对象的全部单位,当调查的范围和总体较大时,会有很大的工作量,需要花费较大的人、财、物和较长的时间,才能完成整个调查工作;第二,如果组织不力,即使完成了调查,由于存在较大的非抽样误差,获得的数据也未必准确。

知识模块:抽样方法4.从调查对象的总体中,按照某种原则抽取一部分样本进行调查观察,根据调查样本数据来推断总体的专门调查是( )A.普查B.抽样调查C.分层随机抽样D.判断抽样正确答案:B解析:抽样调查就是从调查对象的总体中,按照某种原则抽取一部分样本进行调查观察,根据调查样本数据来推断总体的专门调查。

知识模块:抽样方法5.下列关于抽样调查说法错误的是( )A.抽样调查包括随机抽样调查和非随机抽样调查B.被调查的对象只是总体中的少数单位,而不是总体的全部单位C.调查结果常常用于推断总体D.被抽取样本单位是主观随意确定的正确答案:D解析:被抽取样本单位是根据随机或非随机原则确定的,而不是主观随意确定的。

抽样调查试题及答案

抽样调查试题及答案

抽样调查试题及答案一、单选题1. 抽样调查中,样本容量的确定主要取决于以下哪个因素?A. 总体的规模B. 总体的变异性C. 研究者的兴趣D. 研究的预算答案:B2. 在抽样调查中,如果样本容量太小,可能导致以下哪种结果?A. 抽样误差增大B. 抽样误差减小C. 抽样误差不变D. 抽样误差无法确定答案:A3. 以下哪种抽样方法属于概率抽样?A. 便利抽样B. 判断抽样C. 系统抽样D. 配额抽样答案:C二、多选题1. 抽样调查的优点包括以下哪些?A. 节省时间和资源B. 可以快速得到结果C. 能够全面反映总体情况D. 可以减少非抽样误差答案:ABD2. 以下哪些因素会影响抽样调查的准确性?A. 抽样方法B. 样本容量C. 抽样误差D. 非抽样误差答案:ABCD三、判断题1. 抽样调查的结果可以完全代表总体。

()答案:错误2. 抽样调查中,样本的代表性越强,抽样误差越小。

()答案:正确3. 抽样调查中,样本容量越大,抽样误差就越小。

()答案:错误四、简答题1. 请简述抽样调查与普查的区别。

答案:抽样调查是从总体中随机抽取一部分样本进行研究,以推断总体的特征,而普查是对总体中的每一个个体都进行调查。

抽样调查的优点是节省时间和资源,但可能存在抽样误差;普查能够全面反映总体情况,但成本较高。

2. 请说明在进行抽样调查时,如何保证样本的代表性?答案:保证样本代表性的方法包括:确保抽样框的全面性,避免样本选择偏差;采用随机抽样方法,如简单随机抽样、分层抽样、系统抽样等;确保样本容量足够大,以减少抽样误差;对样本进行分层或分层抽样,以确保不同子群体的代表性。

五、计算题1. 如果一个总体有10000个个体,研究者希望抽样误差不超过5%,置信水平为95%,试计算所需的最小样本容量。

答案:根据抽样误差公式,n = (Z^2 * p * (1-p)) / E^2,其中n为样本容量,Z为置信水平对应的Z值,p为总体比例,E为允许的误差范围。

现代社会调查方法试题参考答案

现代社会调查方法试题参考答案

现代社会调查方法试题参考答案一、单项选择题1-5 ACCAB 6-10 DBBCA二、名词解释1、社会调查指的是一种采用自填式问卷或结构访问的方法,系统地、直接地从一个取自总体的样本那里收集量化资料,并通过对这些资料的统计分析来认识社会现象及其规律的社会研究方式。

2、层次谬误又称为区群谬误、生态谬误或体系错误,指的是在社会调查中,研究者用一种比较大的集群的分析单位作研究,而用另一种比较小的或非集群的分析单位作结论的现象。

3、偶遇抽样又称做方便抽样或自然抽样,是指研究者根据现实情况,以自己方便的形式抽取偶然遇到的人,或者仅仅选择那些离得最近、最容易找到的人作为调查对象的方法。

4、操作化就是将抽象的概念转化为可观察的具体指标的过程,或者说是对那些抽象层次较高的概念进行具体测量时所采用的程序、步骤、方法、手段的详细说明。

5、回归分析是对有相关关系的现象,根据其关系的形态找出一个合适的数学模型,即建立回归方程,来近似地表达变量间的平均变化关系,以便依据回归方程对未知的情况进行估计和预测。

三、简答题1、简述抽样调查的一般步骤。

(1)、界定总体(2)、选择适当的抽样方法(3)、确定样本单位,编制抽样框(4)、确定样本大小(5)、收集.整理和分析样本资料2、说明测量的信度与效度及其相互关系。

信度,即可靠性,它指的是采取同样的方法对同一对象重复进行测量时,其所得结果相一致的程度。

换句话说,信度是指测量结果的一致性或稳定性,即测量工具能否稳定地测量所测的事物或变量。

效度,也称为测量的有效度或准确度。

它是指测量工具或测量手段能够准确测出所要测量的变量的程度,或者说能够准确、真实地度量事物属性的程度。

其相互关系:(1)、信度与效度即相互联系又相互区别,效度要以信度为基础,有效的测量必定是可信的,不可信的测量必定是无效的。

(2)、但是,信度高只是测量所要达到的必要条件,还不是其充分条件。

所以,信度高的测量并不等于其效度也高。

抽样技术期末试题及答案

抽样技术期末试题及答案

抽样技术期末试题及答案1. 选择题1.1. 在随机抽样中,下列哪种方法可以保证每个个体都有被选中的机会?A. 简单随机抽样B. 系统抽样C. 分层抽样D. 整群抽样答案:A. 简单随机抽样1.2. 下列哪种抽样方法适用于对城市中不同居住区的居民进行调查?A. 简单随机抽样B. 道路抽样C. 有限总体抽样D. 群集抽样答案:B. 道路抽样1.3. 在抽样调查中,误差来源主要包括以下几个方面,下列哪个不是?A. 非抽样误差B. 抽样误差C. 召回误差D. 地区误差答案:C. 召回误差2. 判断题2.1. 分层抽样是按照抽样单元的层次结构进行抽样的方法。

(×)错误2.2. 构成总体的个体是抽样的单位。

(√)正确2.3. 方便抽样是一种常用的抽样方法,可以得到客观有效的数据。

(×)错误3. 简答题3.1. 请简要解释什么是整群抽样,并说明适用的情况。

整群抽样是在调查研究中,将总体划分为若干个不相交的群组,再从中随机选取一部分群组作为样本,对所选群组中的所有个体进行调查和观察的方法。

适用情况:适用于总体中的个体具有较大的相似性,并能够通过群组进行划分的情况。

例如,在调查某个城市的居民满意度时,可以将城市的街道或社区作为群组,通过整群抽样来获取样本。

3.2. 简要介绍一种非概率抽样方法,并讨论其优缺点。

一种非概率抽样方法是方便抽样。

方便抽样是在调查过程中,选择离调查者最为便利的、容易获取的个体作为样本。

优点:方便抽样方法简单、快速,可以节省调查时间和成本。

适用于在研究设计初期或资源有限的情况下进行初步探索和观察。

缺点:方便抽样容易导致抽样偏差,样本的代表性较差,结果可能不具有普遍适用性。

调查者的主观意愿会对样本选择产生较大的影响,结果可能存在较大的偏差和误差。

4. 计算题4.1. 一个城市有5个区,每个区的居民数分别为1000、1500、2000、1200和1800人。

如果采用分层随机抽样方法,每个区的抽样比例分别为0.2、0.3、0.1、0.25和0.15,求总体的抽样比例。

高中数学系统抽样检测试题(含答案)

高中数学系统抽样检测试题(含答案)

高中数学系统抽样检测试题(含答案)系统抽样[自我认知]:1.一般地,在抽样时,将总体分成____的层,然后按一定的比例,从各层独立地___,将各层取出的个体合在一起作为样本,这种抽样的方法叫做_______.2.为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为 ( )A.40B.30C.20D.123.从N个编号中要抽取个号码入样,若采用系统抽样方法抽取,则分段间隔应为 ( )A. B. C. D.4.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况,若用系统抽样法,则抽样间隔和随机剔除的个体数分别为 ( )A . 3,2 B. 2,3 C. 2,30 D. 30,25.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是 ( ).A.简单随机抽样B.系统抽样C.分层抽样D.其它抽样方法6.一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是 ( ).A. 分层抽样B.抽签法C.随机数表法D.系统抽样法[课后练习]:7.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是 ( ).A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法8.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为A.45,75,15B. 45,45,45C.30,90,15D. 45,60,30 ( )9.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别各抽取的人数是A. 6,12,18B. 7,11,19C. 6,13,17D. 7,12,17 ( )10.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是 ( ).A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法11.一单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采用分层抽样的方法抽取一个容量为10的样本,每个管理人员被抽到的频率为 ( ).A. 1/80B. 1/24C. 1/10D. 1/812.一个年级共有20个班,每个班学生的学号都是1~50,为了交流学习的经验,要求每个班学号为22的学生留下,这里运用的是. ﹙﹚分层抽样法抽签法随机抽样法系统抽样法13.为了保证分层抽样时每个个体等可能的被抽取,必须要求. ﹙﹚.不同层次以不同的抽样比抽样每层等可能的抽样每层等可能的抽取一样多个个体,即若有K层,每层抽样个,。

社会调查方法试题及答案

社会调查方法试题及答案

《社会调查方法》试题(一)一、不定项选择题(2分×10,共20分)1.我国于2000年进行的全国人口调查属于()。

A.普查 B.抽样调查 C.典型调查 D.个案调查2. 统计分析方法的内容可以根据变量的多少划分为( ).A.单变量分析 B.双变量分析C.三变量分析 D.多变量分析3。

“将被调查者工资单上的应发金额数加上每月奖金发放统计表上他所得的奖金数额就是他的收入状况”是( )。

A.测量客体 B.测量内容C.测量法则 D.数字和符号4. 从12。

8万名大学生中抽取1000名大学生,一次直接抽取出40个班级,而以这40个班级中的全部学生(假定正好1000名)作为调查对象,则班级就是( )。

A.抽样框 B.抽样单位 C.元素 D.样本5。

最常见的集中量数有()。

A.平均数B.众数 C.中位数 D.标准差6. 社会调查中所研究的对象称之为()。

A.调查对象 B.研究内容C.分析单位 D.研究主题7. 现代社会调查主要采用( )两种方法收集资料。

A。

自填式问卷 B. 结构式访问C。

个别发送法 D. 电话访问法8. 属于定类测量层次。

A。

性别 B。

年龄 C.收入 D。

职业声望9. 社会调查研究的一般程序包括五个基本环节,即(1)确定研究课题(2)整理与分析资料(3)搜集资料(4)撰写调查研究报告(5)设计调查研究方案.合适的程序应为( )A.(1)—(2)—(3)-(4)—(5)B.(1)—(5)—(3)—(2)—(4)C.(3)—(1)-(5)—(2)—(4)D.(1)—(3)—(5)—(2)—(4)10. 下列抽样方法中属于概率抽样的是:( )A。

随机抽样 B. 偶遇抽样 C。

系统抽样 D. 整群抽样二、名词解释(4分×5,共20分)1。

应用性课题2. 离散趋势分析3. 统计值4。

操作化5. 交互分类三、计算题(15分)调查100名工人和100名教师的收入,得到下列资料。

问工人相互之间收入的差别与教师相互之间收入的差别哪个更大?收入工人数教师数300 30 20400 20 30500 30 40600 20 10四、综合题(15分)某校有4000毕业生,共80个班级。

抽样技术试题及答案

抽样技术试题及答案

抽样技术试题及答案一、单选题(每题2分,共10分)1. 抽样调查中,样本容量的确定主要取决于()。

A. 总体数量B. 抽样误差C. 总体的变异程度D. 抽样方法答案:C2. 简单随机抽样的特点不包括()。

A. 每个样本单位被抽中的概率相同B. 样本容量较小时,代表性较好C. 样本容量较大时,代表性较差D. 抽样误差较小答案:C3. 在分层抽样中,分层的依据是()。

A. 总体的分布情况B. 总体的数量C. 总体的变异程度D. 总体的地理位置答案:C4. 系统抽样中,抽样间隔的确定主要依据()。

A. 总体数量B. 样本容量C. 总体的分布情况D. 抽样误差答案:B5. 抽样调查中,样本的代表性是指()。

A. 样本容量的大小B. 样本的分布情况C. 样本能否代表总体D. 样本的变异程度答案:C二、多选题(每题3分,共15分)1. 抽样调查的优点包括()。

A. 节省人力物力B. 调查速度快C. 调查结果准确D. 调查结果可靠答案:ABD2. 抽样误差的来源包括()。

A. 抽样方法B. 抽样框的不完善C. 抽样过程中的随机性D. 样本容量的大小答案:ABCD3. 在抽样调查中,下列哪些因素会影响样本的代表性()。

A. 抽样方法B. 抽样框的完整性C. 样本容量D. 抽样过程中的随机性答案:ABCD4. 非概率抽样方法包括()。

A. 简单随机抽样B. 系统抽样C. 便利抽样D. 配额抽样答案:CD5. 抽样调查中,样本容量的确定需要考虑的因素包括()。

A. 总体的数量B. 总体的变异程度C. 允许的抽样误差D. 置信水平答案:BCD三、判断题(每题1分,共5分)1. 抽样调查是一种非全面调查方法。

()答案:正确2. 抽样调查的结果可以完全代表总体。

()答案:错误3. 抽样误差的大小与样本容量成反比。

()答案:正确4. 系统抽样是一种概率抽样方法。

()答案:正确5. 抽样框的不完善会导致抽样误差的增加。

()答案:正确四、简答题(每题5分,共10分)1. 简述分层抽样的步骤。

大学《抽样技术》期末考试卷(附详细答案)

大学《抽样技术》期末考试卷(附详细答案)

抽样技术试题期末考试卷一.选择题(每小题3分,共45分)1.概率抽样中的基本抽样方法不包括( C )A 、简单随机抽样B 、分层抽样C 、定额抽样D 、整群抽样2.下列属于总体参数的是( B )A 、)y y (ˆn21+++=L y n N Y B 、)(121N Y Y Y NY +++=LC 、)(n1ˆ21ny y y P +++=L D 、∑∑===ni ini i x y R 11/ˆ3.抽样框的具体表现形式不包括( B )A 、区域框B 、初级框C 、自然框D 、名录框4.估计量方差是( B )A 、指按照某一抽样方案反复进行抽样,估计值的数学期望与待估参数之间的离差。

B 、用样本统计量对总体参数进行估计时产生的误差。

C 、由于抽取样本的随机性造成的样本值与总体值之间的差异。

D 、由其他多种原因引起的估计值与总体参数之间的差异。

5.下列选项属于抽样误差的是( C )A.调查误差B.不完整的抽样框引起的误差C.抽取样本的随机性造成的误差D.不回答误差6. 在简单随机抽样过程中,某一个个体被抽到的可能性( C )A 、与第几次抽样有关,第一次被抽到的概率最大B 、与第几次抽样有关,第一次被抽到的概率最小C 、与第几次抽样无关,每一次被抽到的概率一样D 、与第几次抽样无关,与抽取的样本数有关7.下面的表达式中错误的是( D )A 、∑=1h fB 、∑=n n hC 、∑=1h WD 、∑=1h N8. 下面哪种样本量分配方式属于比例分配?( A )A.NnN n h h = B.hLh hhh hh h c S Nc S N n n ∑==1C.∑==L h h h h h h S N S N n n 1D.∑==L h hh h h h S W SW nn 19.某学校有男、女学生各500名。

为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( D )A .抽签法B .随机数法C .系统抽样法D .分层抽样法10.层权是( B )A 各层样本单元数与总体单元数之比B 各层单元数与总体单元数之比C 各层样本单元数与总体单元数之和D 各层单元数与总体单元数之和11.以下关于参数比率估计的公式中正确的是( A )A xy R=ˆ B Y xy Y R=ˆ C )ˆ(ˆ)ˆ(ˆRR Y V N Y V = D Y xy Y R=ˆ12.关于群内相关系数的公式,以下说法正确的是( D )A 当群内方差2w S 与总体方差2S 相等时,ρ=1B 当群内各个次级单元的指标值都相等时,即2w S =0,ρ达到最小值0C 当群内方差2w S >总体方差2S 时,ρ取正值D 当群间方差2b S =0时,ρ达到最小值11--M13.群内相关系数ρ取值范围( C )A. [ -1/(M-1) , M]B. [ -1/M , 1] B. [ -1/(M-1) , 1] D. [ 1/(M-1) , 1]14.PPS 抽样是( B )。

简单随机抽样、系统抽样、分层抽样含答案

简单随机抽样、系统抽样、分层抽样含答案

简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎪⎨⎪⎧ 抽签法随机数法3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.6.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件 分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案 D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( ),110,15,310,310答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案 C 解析 从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,32 答案 B 解析 由题意知分段间隔为10.只有选项B 中相邻编号的差为10,选B .7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A .抽签法B .随机数表法C .系统抽样D .分层抽样答案 D8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A .70B .20C .48D .2答案B 由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A .某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B .从10台冰箱中抽出3台进行质量检查C .某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D .从50个零件中抽取5个做质量检验答案 C 解析 A 的总体容量较大,宜采用系统抽样方法;B 的总体容量较小,用简单随机抽样法比较方便;C 总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D 与B 类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A .5个B .10个C .20个D .45个答案 A 解析 由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个).11.在简单随机抽样中,某一个个体被抽到的可能性( )A .与第几次抽样有关,第一次抽到的可能性大一些B .与第几次抽样无关,每次抽到的可能性相等C .与第几次抽样有关,最后一次抽到的可能性大些D .与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案 B解析 由简单随机抽样的特点知与第n 次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案 抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案 ①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________. 答案 16解析 用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案 7,4,6解析 应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6. 16.将一个总体分为A 、B 、C 三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C 中抽取________个个体.答案 20解析 由题意可设A 、B 、C 中个体数分别为5k,3k,2k ,所以C 中抽取个体数为2k 5k +3k +2k×100=20. 17.某工厂生产A 、B 、C 、D 四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号有16件,那么此样本的容量n 为________.答案 88解析 在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n =2+3+5+12×16=88.。

统计学期末试题B(附答案)

统计学期末试题B(附答案)

统计学期末试题B一、单选题(15×1分)1、指出下面的数据哪一个属于品质标志()A、年龄B、工资C、汽车产量D、购买商品的支付方式(现金、信用卡、支票)2、某研究部门准备在全市200万个家庭中抽取2000个家庭,据此推断该城市所有职工家庭的年人均收入,这项研究的统计量是( )A、2000个家庭B、200万个家庭C、2000个家庭的人均收入D、200万个家庭的人均收入3、从含有N个元素的总体中抽取n个元素作为样本,使得总体中的每一个元素都有相同的机会(概率)被抽中,这样的抽样方式称为()A、简单随机抽样B、分层抽样C、系统抽样D、整群抽样4、在累计次数分布中,某组的向下累计次数表明()A、大于该组上限的次数是多少B、大于该组下限的次数是多少C、小于该组上限的次数是多少D、小于该组下限的次数是多少5、将全部变量值依次划分为若干个区间,并将这一区间的变量值作为一组,这样的分组方法称为()A、单变量值分组B、组距分组C、等距分组D、连续分组6、将某企业职工的月收入依次分为2000元以下、2000~3000元、3000~4000元、4000~5000元、5000元以上几个组。

第一组的组中值近似为()A、2000B、1000C、1500D、25007、一组数据排序后处于25%和75%位置上的值称为( )A、众数B、中位数C、四分位数D、均值8、某大学经济管理学院有1200名学生,法学院有800名学生,医学院有320名学生,理学院有200名学生。

描述该组数据的集中趋势宜采用()A、众数B、中位数C、四分位数D、均值9、下列数列平均数都是50,在平均数附近离散程度最小的数列是()A、0 20 40 50 60 80 100B、0 48 49 50 51 52 100C、0 1 2 50 98 99 100D、0 47 49 50 51 53 10010、在其他条件不变的情况下,要使置信区间的宽度缩小一半,样本量应增加( )A、一半B、一倍C、三倍D、四倍11、下面的关系中不是相关关系的是()A、身高与体重之间的关系B、工资水平与工龄之间的关系C、农作物的单位面积产量与降雨量之间的关系D、圆的面积与半径之间的关系12、一个由100名年龄在30~60岁的男子组成的样本,测得其身高与体重的相关系数r=0.45,则下列陈述中不正确的是()A、较高的男子趋于较重B、身高与体重存在低度正相关C、体重较重的男子趋于较高D、45%的较高的男子趋于较重13、增长一个百分点而增加的绝对数量称为()A、环比增长率B、平均增长率C、年度化增长率D、增长1%绝对值14、某厂按照其1月份和4月份产量计算的年度化增长率为10%,若已知4月份产量为1000,那么1月份的产量为( )A、909。

25、抽样调查测试题及答案

25、抽样调查测试题及答案

中级经济师基础知识第 1题:多选题(本题2分)在城乡住户收支调查中,非抽样误差的可能来源有( )。

A、抽样框遗漏掉部分城乡住户B、部分高收入住户拒绝接受调查C、调查人员有意作弊D、被调查住户提供虚假数据E、抽样的随机性【正确答案】:ABCD【答案解析】:非抽样误差是指除抽样误差以外,由其他原因引起的样本统计量和总体真值之间的差异。

本题可采用排除法,排除“随机性”即可选择。

第 2题:单选题(本题1分)下列关于简单随机抽样的表述正确的是( )。

A、总体的每个单位入样概率不相同B、是最基本的随机抽样方法C、利用了抽样框更多的辅助信息D、适用个体之间差异较大的调查【正确答案】:B【答案解析】:简单随机抽样需要重点掌握:(1)它是最基本的随机抽样方法, 每个单位的入样概率相同 (2)不放回简单随机抽样每个单位最多只能被抽中一次,比放回抽样有更低的抽样误差。

(3)适用条件: 抽样框中没有更多可以利用的辅助信息;调查对象分布的范围不广阔;个体之间的差异不是很大第 3题:多选题(本题2分)抽样统计中,估计量的性质包括( )。

A、一致性B、相关性C、无偏性D、有效性E、密集性【正确答案】:ACD第 4题:单选题(本题1分)在调查某城市小学教师亚健康状况时,从该城市的200所小学中随机抽取40所,每个被抽取小学中的所有教师都参与调查,这样抽样方法属于( )。

A、简单随机抽样B、整群抽样C、分层抽样D、等距抽样【正确答案】:B【答案解析】:抽样调查中的抽样方法。

整群抽样是先将总体划分为互不重叠的群,抽样时直接抽取群,对抽中的群调查其全部的基本单位。

第 5题:单选题(本题1分)以下各项中不属于抽样调查的特点的是( )。

A、时效性差B、经济性好C、适应面广D、准确性高【正确答案】:A【答案解析】:抽样调查可以迅速、及时的获取所需要的信息。

由于工作量小,调查的准备时间、调查时间、数据处理时间等都可以大大缩减,从而提高数据的时效性。

统计学试题库含答案

统计学试题库含答案

统计学试题库含答案一、选择题1、为了调查某校学生的购书费用支出,从男生中抽取 60 名学生调查,从女生中抽取 40 名学生调查,这种抽样方法属于()A 简单随机抽样B 分层抽样C 系统抽样D 整群抽样答案:B解析:分层抽样是将总体单位按其属性特征分成若干类型或层,然后在每个层中独立地随机抽取样本单位。

本题中按性别分层,分别从男生和女生中抽样,属于分层抽样。

2、一组数据中出现频数最多的变量值称为()A 众数B 中位数C 平均数D 四分位数答案:A解析:众数是一组数据中出现次数最多的数值。

3、下列关于标准差的说法,错误的是()A 标准差越大,表明数据的离散程度越大B 标准差的单位与原数据的单位相同C 一组数据的标准差一定大于其方差D 标准差不受极端值的影响答案:D解析:标准差受极端值的影响,方差不受极端值的影响。

4、若两个变量之间的线性相关程度很高,则其相关系数的绝对值应接近于()A 0B 05C 1D 2答案:C解析:相关系数的取值范围在-1 到 1 之间,绝对值越接近 1,线性相关程度越高。

5、在假设检验中,原假设和备择假设()A 都有可能成立B 都有可能不成立C 只有一个成立而且必有一个成立D 原假设一定成立,备择假设不一定成立答案:C解析:假设检验中,原假设和备择假设是互斥的,只有一个成立而且必有一个成立。

二、填空题1、统计数据按照计量尺度不同,可以分为分类数据、顺序数据和_________。

答案:数值型数据2、描述数据集中趋势的统计量主要有_________、中位数和众数。

答案:平均数3、一组数据的方差为 9,则其标准差为_________。

答案:34、当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都近似服从_________分布。

答案:正态5、假设检验中,第一类错误是指原假设为真时拒绝原假设,第二类错误是指原假设为假时_________原假设。

答案:接受三、简答题1、简述众数、中位数和平均数的特点和应用场合。

安徽省合肥市第一中学2024届高三下学期三模数学试题含答案

安徽省合肥市第一中学2024届高三下学期三模数学试题含答案

安徽省合肥市第一中学2024届高三下学期三模数学试题注意事项:1.本试卷满分150分,考试时间120分钟。

2.答题前,考生务必将姓名、考生号等个人信息填写在答题卡指定位置。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答。

超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合}{}{22,R ,230x M y y x N x x x ==∈=--≤,则M N ⋂=()A .()0,3B .(]0,3C .()3,+∞D .[)3,+∞2.已知1e ,2e 是单位向量,且它们的夹角是60︒,若122a e e =+ ,12b e e λ=- ,且a b ⊥,则λ=()A .25B .45C .1D .23.拋掷一枚质地均匀的硬币()2n n ≥次,记事件A =“n 次中至多有一次反面朝上”,事件B =“n 次中全部正面朝上或全部反面朝上”,若A 与B 独立,则n 的值为()A .2B .3C .4D .54.在三棱锥A BCD -中,AB ⊥平面BCD ,3AB =,2BC BD CD ===,E ,F 分别为AC ,CD 的中点,则下列结论正确的是()A .AF ,BE 是异面直线,AF BE⊥B .AF ,BE 是相交直线,AF BE⊥C .AF ,BE 是异面直线,AF 与BE 不垂直D .AF ,BE 是相交直线,AF 与BE 不垂直5.波斯诗人奥马尔•海亚姆于十一世纪发现了一元三次方程32(0,0)x a x b a b +=≠>的几何求解方法.在直角坐标系xOy 中,,P Q 两点在x 轴上,以OP 为直径的圆与抛物线C :2x ay =交于点R ,RQ OQ ⊥.已知x OQ =是方程32x a x b +=的一个解,则点P 的坐标为()A .2,0b a ⎛⎫ ⎪⎝⎭B .,0b a ⎛⎫⎪⎝⎭C .2,0a b ⎛⎫ ⎪⎝⎭D .,0a b ⎛⎫ ⎪⎝⎭6.已知数列{}n a 满足12a =,12n n a a +=,若10114n n a ==-∑,则13579a a a a a ++++=()A .512B .678C .1010D .10227.已知函数()()π2sin 22f x x ϕϕ⎛⎫=+< ⎪⎝⎭,若关于x 的方程()1f x =在()0,π上恰有一个实数根m ,则(2)f m ()A .2-B .CD .28.已知函数()()sin (0,0,π2π)f x A x A ωϕωϕ=+>><<的部分图象如图所示,其图象上最高点的纵坐标为2,且图象经过点()π0,1,,13⎛⎫- ⎪⎝⎭,则5π6f ⎛⎫-= ⎪⎝⎭()AB .1C .-1D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A .某校高一年级共有男女学生500人,现按性别采用分层抽样的方法抽取容量为50人的样本,若样本中男生有30人,则该校高一年级女生人数是200B .数据1,3,4,5,7,9,11,16的第75百分位数为10C .线性回归方程中,若线性相关系数r 越大,则两个变量的线性相关性越强D .根据分类变量x 与y 的成对样本数据,计算得到2 3.937χ=,根据小概率值0.05α=的独立性检验()0.05 3.841=x ,可判断x 与y 有关联,此推断犯错误的概率不大于0.0510.如图,在棱长为2的正方体1111ABCD A B C D -中,点P 是侧面11ADD A 内的一点,点E 是线段1CC 上的一点,则下列说法正确的是()A .当点P 是线段1A D 的中点时,存在点E ,使得1A E ⊥平面11PB D B .当点E 为线段1CC 的中点时,过点A ,E ,1D 的平面截该正方体所得的截面的面积为94C .点E 到直线1BD 2D .当点E 为棱1CC 的中点且22PE =时,则点P 的轨迹长度为2π311.我们把方程1x xe =的实数解称为欧米加常数,记为Ω.Ω和e 一样,都是无理数,Ω还被称为在指数函数中的“黄金比例”.下列有关Ω的结论正确的是()A .()Ω0.5,1∈B .1lnΩΩ=C .Ωu u u =,其中1eu =D .函数()1e ln 1xx x f x x +=+的最小值为(Ω)f 三、填空题:本题共3小题,每小题5分,共15分.12.已知向量(2,3),(1,2)a t b t =--=-+ ,若a b ⊥,则t =.13.已知抛物线22(0)y px p =>的焦点为F ,半径为6的圆C 过坐标原点O 以及F ,且与该抛物线的准线l 相切,则p =.14.欧拉函数()n ϕ表示不大于正整数n 且与n 互素(互素:公约数只有1)的正整数的个数.已知()12111111r n n p p p ϕ⎛⎫⎛⎫⎛⎫=-⋅⋅⋅-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,其中1p ,2p ,…,r p 是n 的所有不重复的质因数(质因数:因数中的质数).例如()11100100114025ϕ⎛⎫⎛⎫=⨯--= ⎪⎝⎭⎝⎭.若数列{}n a 是首项为3,公比为2的等比数列,则()()()()123100a a a a ϕϕϕϕ+++⋅⋅⋅+=.四、解答题:本题共5小题,第15小题13分,第16、17小题15分,第18、19小题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知)tan tan 1C B C +-,(1)求角A .(2)若a =ABC 所在平面内有一点D 满足2π3BDC ∠=,且BC 平分ABD ∠,求ACD 面积的取值范围.16.已知某科技公司的某型号芯片的各项指标经过全面检测后,分为Ⅰ级和Ⅱ级,两种品级芯片的某项指标的频率分布直方图如图所示:若只利用该指标制定一个标准,需要确定临界值K ,按规定须将该指标大于K 的产品应用于A 型手机,小于或等于K 的产品应用于B 型手机.若将Ⅰ级品中该指标小于或等于临界值K 的芯片错误应用于A 型手机会导致芯片生产商每部手机损失800元;若将Ⅱ级品中该指标大于临界值K 的芯片错误应用于B 型手机会导致芯片生产商每部手机损失400元;假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)设临界值60K =时,将1个Ⅰ级品芯片和1个Ⅱ级品芯片分别应用于A 型手机和B 型手机.求两部手机有损失的概率(计算结果用小数表示);(2)设K x =且[]50,55x ∈,现有足够多的芯片Ⅰ级品、Ⅱ级品,分别应用于A 型手机、B 型手机各1万部的生产,试估计芯片生产商损失费用的最小值.17.如图,四棱锥P ABCD -中,四边形ABCD 是菱形,π3ABC ∠=,ABP 是正三角形,G 是BCD △的重心,点F 满足3AP FP =.(1)求证://FG 平面BCP ;(2)若32CP AB =,求直线BG 与平面BCP 所成角的正弦值.18.若正实数数列{}n c 满足()2*12n n n c c c n ++≤∈N ,则称{}n c 是一个对数凸数列;若实数列{}n d 满足122n n n d d d ++≤+,则称{}n d 是一个凸数列.已知{}n a 是一个对数凸数列,ln n n b a =.(1)证明:11056a a a a ≥;(2)若1220241a a a ⋅⋅⋅=,证明:101210131a a ≤;(3)若11b =,20242024b =,求10b 的最大值.19.已知椭圆()2222:10x y E a b a b +=>>的离心率为3,且过点()3,1M .若斜率为1k 的直线1l 与椭圆E 相切于点T ,过直线1l 上异于点T 的一点P ,作斜率为2k 的直线2l 与椭圆E 交于,A B 两点,定义2PTPA PB⋅为点P 处的切割比,记为P λ.(1)求E 的方程;(2)证明:P λ与点P 的坐标无关;(3)若35P λ=,且2l OT ∥(O 为坐标原点),则当20k <时,求直线1l 的方程.参考答案:1.B【分析】利用指数函数的性质及一元二次不等式的解法,结合交集的定义即可求解.【详解】由x ∈R ,得20x y =>,所以()0,M =+∞,由2230x x --≤,得()()130x x +-≤,解得[]1,3N =-,所以()[](]0,30,1,3M N +∞-== .故选:B.2.B【分析】由a b ⊥ 得0a b ⋅=,列出方程求解即可.【详解】由a b ⊥ 得,()2212121122(2)()220a b e e e e e e e e λλλ⋅=+⋅-=+-⋅-=,即22102λλ-+-=,解得4=5λ,故选:B .3.B【分析】分别求出11C ()2nnP A +=,2()2n P B =,1()2n P AB =,根据相互独立事件概率乘法公式即可求解.【详解】抛掷一枚质地均匀的硬币()2n n ≥次,则基本事件总数为2n ,事件A =“n 次中至多有一次反面朝上”,则n 次全部正面朝上或n 次中恰有1次反面朝上,则11C ()2nnP A +=,事件B =“n 次中全部正面朝上或全部反面朝上”,则2()2n P B =,于是1()2n P AB =,因为A 与B 独立,所以()()()P AB P A P B =,即121n n -=+,分别代入2n =,3,4,5,验证,可得3n =符合题意.故选:B 4.A【分析】先用定理判断AF ,BE 是异面直线,再证明BE 与AF 垂直,连接BF ,即可得到CD ⊥平面ABF ,取AF 的中点Q ,连接BQ ,EQ ,从而得到EQ AF ⊥、BQ AF ⊥,即可证明AF ⊥平面BEQ ,从而得解.【详解】显然根据异面直线判定方法:经过平面ACD 外一点B 与平面ACD 内一点E 的直线BE 与平面ACD 内不经过E 点的直线AF 是异面直线.下面证明BE 与AF 垂直:证明:因为AB ⊥平面BCD ,CD ⊂平面BCD ,所以AB CD ⊥,因为BC BD CD ==,F 分别为CD 的中点,连接BF ,所以BF CD ⊥,因为AB BF B = ,,AB BF ⊂平面ABF ,所以CD ⊥平面ABF ,如图:取AF 的中点Q ,连接BQ ,EQ ,因为AF ⊂平面ABF ,所以CD AF ⊥,又因为//EQ CD ,所以EQ AF ⊥,因为2BC BD CD ===,所以2BF AB =,又因为Q 为AF 的中点,所以BQ AF ⊥,因为BQ EQ Q ⋂=,,BQ EQ ⊂平面BEQ ,所以AF ⊥平面BEQ ,又因为BE ⊂平面BEQ ,所以AF BE ⊥.故选:A .5.A【分析】求得以OP 为直径的圆的方程,与抛物线的方程联立,消去y ,可得x 的方程,由题意考虑两个三次方程有相同的解,可得所求点的坐标.【详解】设(,0)P t ,OP 的中点为,02t ⎛⎫⎪⎝⎭,则以OP 为直径的圆的方程为22224t t x y ⎛⎫-+= ⎪⎝⎭,与抛物线2:C x ay =联立,可得2242124t t x x a ⎛⎫-+= ⎪⎝⎭,化简可得4220x x tx a-+=,由于RQ OQ ⊥,可得R ,Q 的横坐标相等,则方程32x a x b +=和方程320x x t a -+=有相同的解,即有2b a t =,解得2bt a =,则2,0b P a ⎛⎫⎪⎝⎭.故选:A .6.B【分析】由12a =,12n n a a +=计算出前10项,利用分析分类讨论进行计算【详解】由题意知12a =,222a =,⋅⋅⋅,101021024a ==,因为11014n n a =∑=-,所以110,,a a ⋅⋅⋅中至少有一项是负数.①若101024a =-,则111010910141010n n n n a a a a ==∑=∑-=--=,若129,,,a a a ⋅⋅⋅均为正数,则()919212102212n n a =⨯-∑==-,比1010多12,所以前9项中必有负项,且其和为6-.易得当122,4a a =-=-,且其他项为正项时满足题意,故135792832128512678a a a a a ++++=-++++=.②若101024a =,当129,,,a a a ⋅⋅⋅均为负数时,数列{}n a 的前9项和最小,此时()919212102212n n a =⨯-∑=-=--,11010221024214n na=∑=-+=>-,不符合题意.综上,13579678a a a a a ++++=故选:B 7.A【分析】直接利用三角函数的图象和性质求出结果.【详解】若关于x 的方程()1f x =在()0,π上恰有一个实数根m ,则()2sin 21x ϕ+=,即()1sin 22x ϕ+=在()0,π上恰有一个实数根m ,因为π恰为()sin 2y x ϕ=+的最小正周期,且当()0,πx ∈时,2(,2π)x ϕϕϕ+∈+,所以1sin 2ϕ=,若1sin 2ϕ≠,则关于x 的方程()1f x =在()0,π上有两个实数根,因为π2ϕ<,所以π6ϕ=,此时π()2sin(2)16f m m =+=,即π5π266m +=,解得π3m =,所以2π4ππ(2)()2sin(2336f m f ==+=-.故选:A 8.A【分析】先通过图象经过点()π0,1,,13⎛⎫- ⎪⎝⎭列方程求出,ωϕ,进而可得()f x 的解析式,再代入5π6x =-计算即可.【详解】由已知得2A =,所以()()2sin f x x ωϕ=+,又图象经过点()π0,1,,13⎛⎫- ⎪⎝⎭,则()02sin 1ππ2sin 133f f ϕωϕ⎧==-⎪⎨⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭⎩,即1sin 2π1sin 32ϕωϕ⎧=-⎪⎪⎨⎛⎫⎪+=⎪⎪⎝⎭⎩,又()0,1-为单调减区间上的点,π,13⎛⎫⎪⎝⎭为单调增区间上的点,且在一个周期内,所以5π2π6,Z ππ2π36k k k ϕωϕ⎧=-+⎪⎪∈⎨⎪+=+⎪⎩,两式相减得π3πω=,所以3ω=,又π2πϕ<<,所以π67ϕ=,所以()7π2sin 36f x x ⎛⎫=+ ⎪⎝⎭,所以5π5π7π4π2π2sin 2sin 2sin 62633f ⎛⎫⎛⎫⎛⎫-=-+=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选:A.9.ABD【分析】利用分层抽样计算判断A ;求出第75百分位数判断B ;利用线性相关系数的意义判断C ;利用独立性检验的思想判断D.【详解】对于A ,该校高一年级女生人数是503020050500-=,A 正确;对于B ,由875%6⨯=,得第75百分位数为911102+=,B 正确;对于C ,线性回归方程中,线性相关系数r 绝对值越大,两个变量的线性相关性越强,C 错误;对于D ,由20.053.937 3.841x χ=>=,可判断x 与y 有关联,此推断犯错误的概率不大于0.05,D 正确.故选:ABD 10.ACD【分析】由题意分别画出图形,再逐项解决线面垂直、截面面积、距离最值和轨迹问题即可.【详解】对于A ,如下图所示,连接11,A C AB,因为点P 是线段1A D 的中点,所以点P 也是线段1AD 的中点,所以平面11PB D 即为平面11AB D .根据正方体的性质,1AD ⊥平面1A DC ,1AB ⊥平面1A BC ,所以1111,AD A C AB A C ⊥⊥,又因为11AD AB A ⋂=,1AD ⊂平面11AB D ,1AB ⊂平面11AB D ,所以1A C ⊥平面11AB D ,所以E 与C 重合时,1A E ⊥平面11PB D ,故A 正确;对于B ,如下图所示,取BC 的中点M ,根据,E M 分别为1,CC BC 的中点,易得1EM AD ∥,所以1,,,A M E D 四点共面,所以截面为四边形1AMED ,且该四边形为等腰梯形.又因为11ME AD AM ED ====所以等腰梯形1AMED 2,所以截面面积为1922=,故B 错误;对于C ,如图建立空间直角坐标系,由图可得,1(2,2,0),(0,0,2)B D ,所以1(2,2,2)BD =--,设(0,2,)(02)E m m ≤≤,所以(2,0,)BE m =-,所以点E 到直线1BD的距离d =所以1m=C 正确;对于D ,如图所示,取1DD 的中点G ,连接,,EG GP PE ,易得GE ⊥平面11AA D D ,又因为GP ⊂平面11AA D D ,所以GE GP ⊥,所以2GP ==,则点P 在侧面11AA D D 内的运动轨迹为以G 为圆心,半径为2的劣弧,圆心角为π3,所以点P 的轨迹长度为π2π2=33⨯,故D 正确.故选:ACD.11.ABC【分析】对于A :构建()e 1xg x x =-,利用导数判断其单调性,结合零点存在性定理分析判断;对于B :对e 1ΩΩ=,()Ω0.5,1∈,取对数整理即可;对于C :设u uu a =N,整理得1e aa ⎛⎫= ⎪⎝⎭,结合选项A 分析判断;对于D :结合不等式e 1x x ≥+分析可知()1f x ≥,当且仅当1ln 0x x-=时,等号成立,结合()1ln m x x x=-的零点分析判断.【详解】对于选项A :构建()e 1xg x x =-,则Ω为()g x 的零点,因为()()1e xg x x +'=,若1x <-,则()0g x '<,可知()g x 在(),1∞--内单调递减,且()0g x <,所以()g x 在(),1∞--内无零点;若1x >-,则()0g x '>,可知()g x 在()1,∞-+内单调递增,()0.510g =<且()1e 10g =->,所以()g x 在()1,∞-+内存在唯一零点()Ω0.5,1∈;综上所述:()Ω0.5,1∈,故A 正确;对于选项B :因为e 1ΩΩ=,()Ω0.5,1∈,即1e Ω=Ω,两边取对数可得:1lnlne Ω==ΩΩ,故B 正确;对于选项C :设u uu a =N,则a u a =,整理得au a =,即1e aa ⎛⎫= ⎪⎝⎭,可得e 1a a =,所以a =Ω,即Ωu u u =,故C 正确;对于选项D :构建()e 1xh x x =--,则()e 1x h x '=-,令()0h x '>,解得0x >;令()0h x '<,解得0x <;可知()h x 在(),0∞-内单调递减,在()0,∞+内单调递增,则()()00h x h ≥=,可得e 1x x ≥+,当且仅当0x =时,等号成立,则()1111ln 111e ln ln 1ln e ln e ln 11111111x xx xx x x x x x x x f x x x x x+++++++===≥=++++,当且仅当11ln 0x x+=,即1ln 0x x -=时,等号成立,因为1,ln y y x x==-在()0,∞+内单调递减,可知()1ln m x x x =-在()0,∞+内单调递减,且()()1110,e 10em m =>=-<,可知()m x 在()0,∞+内存在唯一零点()01,e x ∈,即0>Ωx ,所以()f x 的最小值为()01f x =,不为(Ω)f ,故D 错误;故选:ABC.【点睛】方法点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.12.4-【分析】根据题意,利用空间向量的坐标表示,列出方程,即可求解.【详解】由向量(2,3),(1,2)a t b t =--=-+,因为a b ⊥,可得(2,3)(1,2)2630a b t t t t ⋅=--⋅-+=-+--= ,解得4t =-.故答案为:4-.13.8【分析】首先得到抛物线的焦点坐标与准线方程,依题意可知圆心C 在直线4px =上,且642p p+=,解得即可.【详解】抛物线22(0)y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线为2p x =-,因为圆C 过坐标原点O 以及F ,所以圆心C 在直线4px =上,因为圆C 的半径为6且与该抛物线的准线l 相切,所以642p p+=,解得8p =.故答案为:814.1002【分析】计算出等比数列的通项公式后,结合欧拉函数()n ϕ计算即可得解.【详解】由题意可得132n n a -=⨯,则()()1133123a ϕϕ⎛⎫==⨯-= ⎪⎝⎭,当2n ≥时,()11113211223n n n a ϕ--⎛⎫⎛⎫=⋅⨯--= ⎪⎪⎝⎭⎝⎭,则()()()()()99129910012310021222222212a a a a ϕϕϕϕ-+++⋅⋅⋅+=++++=+=- .故答案为:1002.【点睛】关键点点睛:本题关键点在于分1n =及2n ≥进行讨论,结合题中公式求(){}n a ϕ的通项公式.15.(1)π3(2)⎛ ⎝⎭【分析】(1)由两角和的正切公式结合题意化简得tan A =(2)设ABC CBD x ∠=∠=,由正弦定理把边化成角,再用三角形面积公式得34sin cos ACD S x x = ,结合导数求解即可.【详解】(1)由题)tan tan 1C BC =-,即)tan tan 1tan tan B C B C +=-,即tan tan 1tan tan B CB C+=-所以()tan B C +=()tan πA -=,所以tan A =,又(0,π)A ∈,所以π3A =.(2)由题(1)知π3BAC ∠=,又2π3BDC ∠=,设ABC CBD x ∠=∠=,由BCD △中,2π3BDC ∠=,故π0,3x ⎛⎫∈ ⎪⎝⎭,则π2π2π2π233ACD x x ∠=---=-,由正弦定理有sin sin BC AC BAC x =∠,sin sin BC DCBDC x=∠,则2sin AC CD x ==,故ACD 面积()()2312sin sin π24sin cos 2ACD S x x x x =⋅-= ,令()34sin cos x x x ϕ=,则())224212sin cos 4sin 4sin sin sin x x x x xx xx x ϕ=-=+-',又π0,3x ⎛⎫∈ ⎪⎝⎭,所以()0x ϕ'>,知函数()34sin cos x x x ϕ=在π0,3⎛⎫ ⎪⎝⎭上单调递增,又()00ϕ=,π3ϕ⎛⎫= ⎪⎝⎭,故ACD 面积的取值范围为⎛ ⎝⎭.16.(1)0.007(2)136万元【分析】(1)根据频率分布直方图,I 级品中该指标小于或等于60的频率和II 级品中该指标大于60的频率,即可求解;(2)由题意分别计算A 、B 型手机的损失费用可得()5768f x x =-,结合一次函数的性质即可求解.【详解】(1)临界值60K =时,I 级品中该指标小于或等于60的频率为()0.0020.005100.07+⨯=,II 级品中该指标大于60的频率为0.1,故将1个I 级品芯片和1个II 级芯片分别应用于A 型手机和B 型手机,两部手机均有损失的概率为:0.070.10.007⨯=;(2)当临界值K x =时,I 级品中该指标小于或等于临界值K 的概率为()0.002100.005500.0050.23x x ⨯+⨯-=-,可以估计10000部A 型手机中有()100000.0050.23502300x x -=-部手机芯片应用错误;II 级品中该指标大于临界值K 的概率为()0.01100.03600.03 1.9x x ⨯+⨯-=-+,可以估计10000部B 型手机中有()100000.03 1.919000300x x -+=-部手机芯片应用错误;故可以估计芯片生产商的损失费用()()()0.085023000.0419000300f x x x =⨯-+⨯-5768x=-又[]50,55x ∈,所以()[]136,176f x ∈,即芯片生产商损失费用的最小值为136万元.17.(1)证明见解析【分析】(1)根据重心的性质可得FG PC ∥,即可根据线线平行求证,(2)根据线线垂直可得线面垂直,进而可得平面COP ⊥平面ABP ,根据余弦定理以及勾股定理求解长度,即可利用等体积法求解长度,利用线面角的几何法求解,或者建立空间直角坐标系,利用法向量与直线方向向量的夹角求解即可.【详解】(1)如图,连接AC BD 、,交点为M ,则M 是BD 的中点.因为G 是BCD △的重心,所以2CG GM =.又M 是AC 的中点,所以3AC GC =.由3AP FP =知F 在线段AP 上,且3AP FP =,所以FG PC ∥,而FG ⊄平面BCP ,PC ⊂平面BCP ,所以//FG 平面BCP .(2)方法1:设2AB =,则3CP =.取AB 中点O ,连接CO PO 、,则AB CO ⊥,AB PO ⊥,,,CO PO O CO PO ⋂⊂=平面COP ,故AB ⊥平面COP ,又AB ⊂平面ABP ,所以平面COP ⊥平面ABP ,交线为PO .由3CO PO ==3PC =,则2221cos 22CO PO PC COP CO PO +-∠==-⋅,得2π3COP ∠=.所以C 到平面ABP 的距离1h 等于C 到直线OP 的距离2π33sin32==.设G 到平面BCP 的距离为2h ,由//FG 平面BCP 知F 到平面BCP 的距离也是2h .由F BCP C BPF V V --=得211133BCP BPF S h S h ⋅=⋅△△,22221113373222224BCPS PC BC PC ⎛⎫⎛⎫=⋅-⨯⋅-= ⎪ ⎪⎝⎭⎝⎭,113331222332BPF BPA S S =⨯⨯⨯=△△从而221h =在CGB △中,2CB =,23CG =,π3BCG ∠=,由余弦定理得2211272333BG BC CA BC CA ⎛⎫=+-⋅=⎪⎝⎭所以直线BG 与平面BCP 所成角的正弦值是223372127h BG ==方法2:如图,以AB 中点O 为原点,OC 所在直线为x 轴,OB 所在直线为y 轴建立空间直角坐标系.设2AB =,则3CP =,()0,1,0A -,()0,1,0B ,332P ⎛⎫⎪ ⎪⎝⎭,)3,0,0C ,()3,2,0D-,31,033G ⎛⎫- ⎪ ⎪⎝⎭,所以234,,033BG ⎛⎫=- ⎪ ⎪⎝⎭,333,0,22CP ⎛⎫-= ⎪ ⎪⎝⎭ ,()3,1,0BC =-,设平面PBC 的法向量是()000,,m x y z =,由()()())()0000000000000000,,1,0000,,033,,000,,,0,0222x y z y x y z BC x y z CP z x y z ⎧⋅-=-+=⎪⎧⋅=⎪⎪⇒⇒⎨⎨⎨⎛⎫⋅=++=⋅-=⎪⎪⎪ ⎪⎩ ⎪⎩⎪⎝⎭⎩.令01x =,则00y z =,(m =.所以,cos<,m BG =>= ,从而直线BG 与平面BCP18.(1)证明见解析;(2)证明见解析;(3)10.【分析】(1)法一:由212n n n a a a ++≤得到10695a a a a ≥,9584a a a a ≥,8473a a a a ≥,7362a a a a ≥,6251a aa a ≥,累乘法得到11056a a a a ≥;法二:由109329821a a a aa a a a ≥≥⋅⋅⋅≥≥得到11029384756a a a a a a a a a a ≥≥≥≥;(2)法一:由题意得()111n k n k n k n k a a a a k n +-++--⋅≤⋅≤<,从而得到()1012101210131220241a a a a a ⋅≤⋅⋅⋅=,证明出101210131a a ⋅≤;法二:考虑反证法,假设101210131a a >,得到101110141a a >,进而推出1220241a a a ⋅⋅⋅>,假设不成立;法三:得到1220240b b b ++⋅⋅⋅+=,且121n n n n b b b b +++-≤-,利用累加法得到()101210131210120n b b b b b +≤++⋅⋅⋅+=,证明出结论;(3)由222n n n a a a ++≤可得()()222ln ln n n n a a a ++≤,即121n n n n b b b b +++-≤-,累加得()20241011102014b b b b -≥-,另外()11101019b b b b -≥-,故202410101111020149b b b bb b --≥-≥,故10102024120149b b --≥,化简得:1010b ≤,显然n b n =符合题意,此时1010b =,综上,10b 的最大值为10.【详解】(1)法一:由题意得:212n n n a a a ++≤,∴21121121n n n n n n n n a a a a aa a a a a ++-+--≥≥≥≥⋅⋅⋅,∴10695a a a a ≥,9584a a a a ≥,8473a a a a ≥,7362a a a a ≥,6251a aa a ≥,将以上式子累乘得:10651a a a a ≥,也即11056a a a a ≥成立.法二:由题意得:109329821a a a a a a a a ≥≥⋅⋅⋅≥≥,∴11029384756a a a a a a a a a a ≥≥≥≥,∴11056a a a a ≥成立.(2)法一:∵121n n n n a a a a +++≤,∴112111n k n k n n n k n k n k n n n k a a a a aa a a a a --+++++---++≤≤⋅⋅⋅≤≤≤⋅⋅⋅≤,∴()111n k n k n k n k a a a a k n +-++--⋅≤⋅≤<,则10121013101110141010101512024a a a a a a a a ⋅≤⋅≤⋅≤⋅⋅⋅≤⋅,∴()1012101210131220241a a a a a ⋅≤⋅⋅⋅=,∴101210131a a ⋅≤.法二:考虑反证法,假设101210131a a >,由121n n n n a a a a +++≤得101210131014101110121013a a a a a a ≤≤,∴1012101310111014a a a a ≤,∴101110141a a >,同理:101210121011101410151015101010111010101310141013a a a a a a a a a a a a =⋅≤⋅=,∴1010101510121013a a a a >,∴101010151a a >,同理可证:100910161a a >,100810171a a >,…,120241a a >,综上可得:1220241a a a ⋅⋅⋅>,与条件矛盾,∴假设不成立,∴101210131a a ≤成立.法三:∵1220241a a a ⋅⋅⋅=,∴122024()ln 0a a a ⋅⋅⋅=,也即1220240b b b ++⋅⋅⋅+=,同时,由212n n n a a a ++≤可得:()()212ln ln n n n a a a ++≤,∴122n n n b b b ++≤+,也即121n n n n b b b b +++-≤-,∴1013101220242023b b b b -≤-,1012101120232022b b b b -≤-,…,2110131012b b b b -≤-,将以上式子累加得:1013120241012b b b b -≤-,也即1012101312024b b b b +≤+,同理可得:1012101322023b b b b +≤+,1012101332022b b b b +≤+,……1012101310121013b b b b +≤+,将以上式子累加得:()101210131210120n b b b b b +≤++⋅⋅⋅+=,∴101210130b b +≤,∴10121013ln ln 0a a +≤,∴101210131a a ≤成立.(3)由222n n n a a a ++≤可得:()()222ln ln n n n a a a ++≤,∴122n n n b b b ++≤+,也即121n n n n b b b b +++-≤-,∴202420231110b b b b -≥-,202320221110b b b b -≥-,…,11101110b b b b -≥-,将以上式子累加得:()20241011102014b b b b -≥-,①另外,1110109b b b b -≥-,111098b b b b -≥-,…,111021b b b b -≥-,将以上式子累加得:()11101019b b b b -≥-,②结合①②式可得:202410101111020149b b b b b b --≥-≥,∴10102024120149b b --≥,化简得:1010b ≤,另外,显然有n b n =符合题意,此时1010b =,综上,10b 的最大值为10.【点睛】思路点睛:数列{}n b 的性质可参考2y x =这类下凸函数进行理解,不等式2024101110101201419b b b b b b ---≥≥相当于函数图象上三条直线的斜率大小关系.19.(1)221124x y +=(2)证明见解析(3)4y x =-或4y x =+.【分析】(1)根据椭圆离心率得223a b =,又()3,1M 在椭圆上得22911a b +=,联立可得结果;(2)设点(),P m n ,直线1l 的方程为()1y n k x m -=-,联立椭圆方程,由直线1l 与椭圆E 相切,得()2211124n k m k -=+,并求2PT ,设直线2l 的方程为()2y n k x m -=-,联立椭圆方程结合韦达定理,求出PA PB ⋅,利用()2211124n k m k -=+化简2PT PA PB ⋅可得结果;(3)由(2)可知切点()00,T x y ,得00113OT y k x k ==-,结合已知进而可得直线OT 的方程,联立椭圆方程求T 点坐标,从而求出直线1l 的方程.【详解】(1)设椭圆E 的半焦距为c,由题意知,c a =22223a b a -=,解得223a b =.又椭圆E 过点()3,1M ,所以22911a b+=,结合223a b =,解得2212,4a b ==,所以E 的方程为221124x y +=.(2)设点(),P m n ,直线1l 的方程为()1y n k x m -=-,由()2211124x y y n k x m ⎧+=⎪⎨⎪-=-⎩,消去y ,得()()()22211111363120k x k n k m x n k m ++-+--=,()()()()22222111111Δ641331212124k n k m k n k m k n k m ⎡⎤⎡⎤⎡⎤=--+--=--+⎣⎦⎣⎦⎣⎦,由直线1l 与椭圆E 相切,得()2211124n k m k -=+.设切点()00,T x y ,则()11021313k n k m x k -=-+,101012113n k m y k x n k m k -=+-=+,所以()()()()()22221111212221113311313k m nk k n k m PT k m k k ++⎡⎤-=+--=⎢⎥++⎣⎦,设直线2l 的方程为()2y n k x m -=-,联立由()2221124x y y n k x m ⎧+=⎪⎨⎪-=-⎩,消去y ,得()()()22222221363120k x k n k m x n k m ++-+--=,设()()1122,,,A x y B x y ,则()221222613k n k m x x k -+=-+,()22122231213n k m x x k --=+,所以12PA PB m m ⋅=--()()22212121k x x m x x m =+-++()()()22222222222312611313n k m k n k m k m m k k ⎡⎤---=+--+⎢⎥++⎣⎦222222131213k n m k +=+-+,易知,点(),P m n 在椭圆E 外,所以221124m n +>,所以223120n m +->,()222222131213k PA PB n m k +⋅=+-+.由()2211124n k m k -=+,得22221112124n k m mnk k +-=+,即()222112412mnk n k m -+=-.因为()()212221331213m nk n m k +-+-+()()()2222112131331213m nk k n m k +-++-=+()222222221112196312331213m k n mnk n m k n m k ++--+-+-=+()()222222111219324331213k n mnk n k n m k +-+-+-=+()()2222222111219312331213k n k m k n m k +--+-=+()()22222211213312331213k n m k n m k +--+-=+0=.所以()212221331213m nk n m k+=+-+,所以()2222121131213k PT n m k +=+-+.所以()()()()222122212113131P k k PT PA PB k k λ++==⋅++,与点P的坐标无关.(3)由(2)得()11021313k n k m x k -=-+,102113n k m y k -=+,所以00113OT y k x k ==-,因为2l OT ∥,所以2113k k =-①,又35P λ=,所以()()()()2212221211335131k k k k ++=++②,由①②解得12113k k =⎧⎪⎨=-⎪⎩或12113k k =-⎧⎪⎨=⎪⎩(舍去).所以直线OT 的方程为13y x =-,由22112413x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩,解得3,1x y =⎧⎨=-⎩或3,1,x y =-⎧⎨=⎩故切点T 的坐标为()3,1-或()3,1-.所以直线1l 的方程为4y x =-或4y x =+.【点睛】方法点睛:解决直线与圆锥曲线相交问题,往往需联立直线与圆锥曲线方程,消元并结合韦达定理,运用弦长公式、点到直线距离公式、斜率公式、向量数量积公式进行转化变形,结合已知条件得出结果.。

2021-2022学年山东省菏泽市高一下学期期末数学试题【含答案】

2021-2022学年山东省菏泽市高一下学期期末数学试题【含答案】

2021-2022学年山东省菏泽市高一下学期期末数学试题一、单选题1.已知复数,则复数共轭复数的虚部为( )11i z =+z A .B .C .D .1-112-12D【分析】利用复数的除法化简复数,利用共轭复数和复数的定义可得结果.z 【详解】,则,()()11i 11i 1i 1i 1i 22z -===-++- 11i 22z =+故复数共轭复数的虚部为.z 12故选:D.2.高一、1班有学生54人,高一、2班有学生42人,用分层抽样的方法从这两个班中抽出一部分人组成方队,进行会操比赛,则高一、1班和高一、2班分别被抽取的人44⨯数是( )A .9、7B .15、1C .8、8D .12、4A【分析】利用分层抽样的定义求解即可【详解】由题意得高一、1班被抽取的人数为人,541695442⨯=+高一、2班被抽取的人数人,421675442⨯=+故选:A3.甲、乙两名同学做同一道数学题,甲做对的概率为0.8,乙做对的概率为0.9,下列说法错误的是( )A .两人都做对的概率是0.72B .恰好有一人做对的概率是0.26C .两人都做错的概率是0.15D .至少有一人做对的概率是0.98C【分析】甲乙两人做题属于相互独立事件,根据独立事件的乘法公式求得两人都做对的概率和两人都做错的概率,判断A,C;根据互斥事件的概率加法公式可求恰好有一人做对的概率,判断B ;至少有一人做对的概率等于1减去两人都做错的概率,判断D.【详解】由于甲做对的概率为0.8,乙做对的概率为0.9,故两人都做对的概率是 ,所以A 正确;0.80.90.72⨯=恰好有一人做对的概率是 ,故B 正确;0.8(10.9)(10.8)0.90.26⨯-+-⨯=两人都做错的概率是,故C 错误;(10.8)(10.9)0.02-⨯-=至少有一人做对的概率是,故D 正确,1(10.8)(10.9)0.98--⨯-=故选:C 4.已知向量,,若,则( )()1,2a =-()2,b m =a b ⊥ m =A .-1B .1C .D .14-14B【分析】根据数量积公式,即可得答案.【详解】因为,a b ⊥ 所以,解得.(1)220m -⨯+=1m =故选:B5.紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众多,经典的有西施壶、掇球壶、石瓢壶、潘壶等.其中石瓢壶的壶体可以近似看成一个圆台,如图给出了一个石瓢壶的相关数据(单位:cm ),那么该壶的最大盛水量为( )A .B .C .D .368cm π3152cmπ3cm3204cmπB【分析】由题得上底面半径为4,下底面半径为6,圆台高为6,代入台体体积公式,即可得答案.【详解】由题意得上底面半径为4,面积,21=4=16S ππ⨯下底面半径为6,面积,圆台高h 为6,22=6=36S ππ⨯则圆台的体积.((1211=+1636615233V S S h πππ=+⨯=3cm 故选:B6.甲,乙两个车间生产同一种产品,为保证产品质量,现从两车间抽取100件产品进行检验.采取以下方法抽取:从装有除颜色不同外完全相同的2个红球和3个白球的袋子里抽取两个球,如果抽到两球颜色相同就从甲车间抽取一件产品,如果两球颜色不同就从乙车间抽取一件产品,两车间分别抽取的产品数最接近的是( )A .甲车间30件,乙车间70件B .甲车间70件,乙车间30件C .甲车间59件,乙车间41件D .甲车间41件,乙车间59件D【分析】根据题意,分别计算出从装有除颜色不同外完全相同的2个红球和3个白球的袋子里抽取两个球,抽到两球颜色相同的概率及抽到两球颜色不同的概率,从而即可求解.【详解】解:因为从装有除颜色不同外完全相同的2个红球和3个白球的袋子里抽取两个球,抽到两球颜色相同的概率为,抽到两球颜色不同的概率为222325C C 42C 105+==,112325C C 63C 105⋅==所以从两车间抽取100件产品进行检验,甲车间抽取产品数为件,乙车间2100405⨯=抽取产品数为件,3100605⨯=所以两车间分别抽取的产品数最接近的是甲车间41件,乙车间59件,故选:D.7.在中,角A 、B 、C 对边分别为a 、b 、c ,且时,ABC cos sin A B=a =2b =的面积是()ABC A B CDC【分析】利用正弦定理求出,利用余弦定理求出,即可求出的面积.3A π=3c =ABC【详解】对于.cos sin A B=cos sin A B =因为,且,所以.()0,A π∈tan A =3A π=由余弦定理得:,2222cos a b c bc A =+-2174222c c =+-⨯⨯解得:(舍去).3c =1c =-所以的面积是.ABC 11sin 2322S bc A ==⨯⨯=故选:C8.某餐厅提供自助餐和点餐两种服务,为了进一步提高菜品及服务质量,餐厅从某日中午就餐的顾客中随机抽取了100人作为样本,进行满意度调查,得到以下数据表格(单位:人次),则下列说法正确的是( )老年人中年人青年人满意度自助餐点餐自助餐点餐自助餐点餐10分(满意)1212022015分(一般)22634120分(不满意)116232A .满意度为0.5B .不满意度为0.1C .三种年龄层次的人群中,青年人更倾向于选择自助餐D .从点餐不满意的顾客中选取2人,则两人都是中年人的概率是0.1D【分析】对A 、B :根据表格中所给数据即可求解;对C :根据表格中数据分别计算三种年龄层次选择自助餐的频率,比较大小即可判断;对D :根据古典概型的概率计算公式即可求解.【详解】解:对A :满意度为,故选项A 错误;1212022010.56100+++++=对B :不满意度为,故选项B 错误;1162320.15100+++++=对C :老年人选择自助餐的频率为,中年人选择自助餐的频率为,青年11519P =23239P =人选择自助餐的频率为,由,可得中年人更倾向于选择自助餐,故32742P =213P P P >>选项C 错误;对D :从点餐不满意的顾客中选取2人有种选法,其中两人都是中年人有25C 10=种选法,所以从点餐不满意的顾客中选取2人,则两人都是中年人的概率是22C 1=,故选项D 正确.10.110=故选:D.二、多选题9.某学校有1000名学生,为更好的了解学生身体健康情况,随机抽取了100名学生进行测试,测试成绩(单位:分)的频率分布直方图如图所示,则下列说法正确的有( )A .频率分布直方图中a 的值为0.005B .估计这100名学生成绩的中位数约为77C .估计这100名学生成绩的众数为80D .估计总体中成绩落在内的学生人数为160[)60,70AB【分析】对于A ,由各组频率和为1可求出a 的值,对于B ,利用中位数的定义求解,对于C ,由从数的定义求解,对于D ,先求出的频率,再利用总人数乘以频率[)60,70可求得答案【详解】对于A ,由频率分布直方图可得,解得,10(23762)1a a a a a ++++=0.005a =所以A 正确,对于B ,由频率分布直方图可知,前2组的频率和为,前3组1050.0050.250.5⨯⨯=<的频率和为,所以中位数在第3组,设中位数为,则10120.0050.60.5⨯⨯=>x ,解得,所以B 正确,0.2570.005(70)0.5x +⨯-=77x ≈对于C ,由频率分布直方图可知成绩在70到80的最多,所以众数为75,所以C 错误,对于D ,由频率分布直方图可知成绩在的频率为,所以总体[)60,7030.005100.15⨯⨯=中成绩落在内的学生人数约为人,所以D 错误,[)60,700.151000150⨯=故选:AB10.已知三个内角A ,B ,C 的对应边分别为a ,b ,c ,且,,则ABC 3C π∠=2c =下列结论正确的有( )A .B .ABC cos cos b A a B +=C .周长的最大值为6D .的取值范围为ABC cos cos BA )∞∞⎛-⋃+ ⎝AC【分析】A 选项,利用余弦定理和基本不等式求解面积的最大值;B 选项,利用余弦定理计算可判断;C 选项,利用余弦定理和基本不等式求解周长的最大值;D 选项,用进行变换得到,结合A 的取值范围得到()cos cos B A C =-+cos 1cos 2B A A=-的取值范围.cos cos BA 【详解】解:对于A ,由余弦定理得:,解得:2241cos 22a b C ab +-==,224a b ab +=+由基本不等式得:,当且仅当时,等号成立,2242a b ab ab +=+≥a b=所以,故A 正确;4ab ≤1sin 2ABC S ab C =≤ 对于B ,,故B 不正确;2222222cos cos 2+2222b c a a c b c a c bc b A ac c a B b +-+-⋅===+=⋅对于C ,由余弦定理得:,解得:,2241cos 22a b C ab +-==224a b ab +=+所以,当且仅当时,等号成立,()22+343+42a b a b ab ⎛⎫+=+≤⨯ ⎪⎝⎭a b =解得,当且仅当时,等号成立,+4a b ≤a b =所以,周长,所以周长的最大值为6,故C 正确;ABC 4+26l a b c =++≤=ABC对于D ,,πcos cos 13cos cos 2A B A AA ⎛⎫-+ ⎪⎝⎭===-因为,所以,2π0,3A ⎛⎫∈ ⎪⎝⎭(()tan ,0,A ∞∞∈-⋃+,故D 错误.()11,2,22A ∞∞⎛⎫-∈--⋃-+ ⎪⎝⎭故选:AC.11.如图,在中,,D ,E 是BC 的三等分点,且,则ABC 6BC =4AD AE ⋅=( )A .B .2133AE AB AC=+ 1122AD AB AE=+ C .D .4⋅=-AB AC 2228AB AC += BCD【分析】由向量的线性运算即可判断A ,B,取DE 的中点G ,由,D ,E 是BC6BC =的三等分点得G 是BC 的中点,计算可得,进而得出,2214AD AE AG DE⋅=- 25AG = 计算可判断选项C,由C 可知,两边平方,化简计算可判断选项D .2AB AC AG += 【详解】对于A ,,故选()11123333AE AC CE AC CB AC AB AC AB AC=+=+=+-=+项A 不正确;对于B ,由题意得D 为BE 的中点,所以,故选项B 正确;1122AD AB AE=+ 对于C ,取DE 的中点G ,由,D ,E 是BC 的三等分点得G 是BC 的中点,且6BC =,所以2DE =,221114224AD AE AG DE AG DE AG DE ⎛⎫⎛⎫⋅=-⋅+=-= ⎪ ⎪⎝⎭⎝⎭ 所以,,故选25AG = 22111594224AB AC AG BC AG BC AG BC ⎛⎫⎛⎫⋅=-⋅+=-=-=- ⎪ ⎪⎝⎭⎝⎭ 项C 正确;对于D ,由G 是BC 的中点得,两边平方得2AB AC AG +=,所以,故选项D 正确.22224AB AB AC AC AG +⋅+= 2220828AB AC +=+= 故选:BCD.12.如图1所示,四边形是边长为的正方形,、、分别为、、ABCD 2E F M BC CD 的中点,分别沿、及所在直线把、和折起,使、BE AE AF EF AEB △AFD EFC △B、三点重合于点,得到如图2所示的三棱锥,则下列结论中正确的有C D P P AEF -( )A .四面体中互相垂直的棱有对PAEF 3B .三棱锥的体积为M AEF -23C .与平面所成角的正切值为AM PEF 4D .过点的平面截三棱锥的外接球所得截面的面积的取值范围为M P AEF -3,42ππ⎡⎤⎢⎥⎣⎦ACD【分析】利用翻折的性质可判断A 选项;利用锥体的体积公式可判断B 选项;利用线面角的定义可判断C 选项;计算出过点的平面截三棱锥的外接球所得截面M P AEF -的面积的取值范围,可判断D 选项.【详解】对于A 选项,易知,F AE A =====EF 翻折前,,,AB BE ⊥CE CF ⊥AD DF ⊥翻折后,则有,,,PA PE ⊥PA PF ⊥PE PF ⊥因为是非直角的等腰三角形,所以,四面体中互相垂直的棱有对,A 对;AEF PAEF 3对于B 选项,因为,,,,PA PE ⊥PA PF ⊥PE PF ⊥PE PF P = 、平面,平面,PE PF ⊂PEF PA ∴⊥PEF 为的中点,则,M PE 2111112224MEF PEFS S ==⨯⨯=△△,B 错;111123346M AEF A MEF MEF V V S PA --∴==⋅=⨯⨯=△对于C 选项,因为平面,与平面所成角为,PA ⊥PEF AM ∴PEF AMP ∠在中,,C 对;Rt AMP tan 4PAAMP PM ∠==对于D 选项,将三棱锥补成长方体,P AEF -PEQA FGNH -则三棱锥的外接球球心为体对角线的中点,P AEF -O PN且的半径为,PN ==O R =所以,过点的平面截三棱锥的外接球所得截面圆的半径设为,M P AEF -r 设球心到截面圆的距离为,则,O d 0d OM ≤≤、分别为、的中点,则O M PN PE 12OM EN ===则,则,0d ≤≤12r ⎡∴=⎢⎣23,42r πππ⎡⎤∈⎢⎥⎣⎦因此,过点的平面截三棱锥的外接球所得截面的面积的取值范围为M P AEF -,D 对.3,42ππ⎡⎤⎢⎥⎣⎦故选:ACD.方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度,从而不必h 作出线面角,则线面角满足(为斜线段长),进而可求得线面角;θsin hl θ=l (3)建立空间直角坐标系,利用向量法求解,设为直线的方向向量,为平面的al n 法向量,则线面角的正弦值为.θsin cos ,a n θ=<>三、填空题13.复数在复平面内对应的点在第一、三象限的角平分线上,则实数(i)(34i)a -+___________.=a 7【分析】根据复数的乘法运算,可得,根据其几何意义,(i)(34i)34(43)i a a a -+=++-可得在复平面所对应的点坐标,根据题意,列出方程,即可得答案.【详解】由题意得,2(i)(34i)34i 3i 4i 34(43)i a a a a a -+=+--=++-在复平面内对应的点为(34,43)a a +-因为该点在第一、三象限的角平分线上,所以,解得.3443a a +=-7a =故714.中,,,则此三角形的外接圆半径是___________.ABC 5AB AC ==8BC =256【分析】根据余弦定理,可得,进而可得的值,根据正弦定理,即可得答cos A sin A 案.【详解】由余弦定理得,2222525647cos 225525AC AB BC A AC AB +-+-===-⋅⨯⨯因为,所以,(0,)A π∈24sin 25A ==设外接圆半径为R ,由正弦定理得,解得8224sin 25BC RA ==256R =故25615.如图,已知二面角的棱l 上有A ,B 两点,,,,l αβ--C α∈AC l ⊥D β∈,若,,有以下结论:BD l ⊥2AC AB BD ===CD=(1)直线AB 与CD 所成角的大小为 ;45︒(2)二面角的大小为 ;l αβ--60︒(3)三棱锥的体积为A BCD -(4)直线CD与平面β则正确结论的序号为___________.(1)(2)(4)【分析】采用平行线法作出直线AB 与CD 所成角,解三角形求出角的大小,判断(1);通过作辅助线,作出二面角的平面角,解三角形求得角的大小,判断(2);l αβ--根据等体积法求得3);通过作垂线,找到13A BCD C ABD ABD V V s CH --==⋅ 直线CD 与平面所成角,解三角形求得该角大小,判断(4).β【详解】如图,在 内作 ,交于E 点,β,DE AB AE BD ∥∥则即为直线AB 与CD 所成角或其补角,CDE ∠因为,,则 ,BD l ⊥2AB BD ==,AE AB ED BD ⊥⊥故四边形AEDB 为正方形,则 ,又,则 ,DE AE ⊥AC l ⊥DE AC ⊥而 ,故平面ACE ,平面ACE ,AC AE A ⋂=DE ⊥CE ⊂故,又,故DE CE ⊥2CD DE AB ===cos DE CDE CD ∠==由于,故,故(1)正确;090CDE ︒︒<∠≤45CDE ∠= 由于 ,故为二面角的平面角,,AC AB EA AB ⊥⊥CAE ∠l αβ--由以上分析可知,2,2,2CE AE BD AC =====故 为正三角形,则,故(2)正确;ACE 60CAE ∠=由于平面ACE ,平面AEDB,故平面ACE 平面AEDB,DE ⊥DE ⊂⊥且平面ACE 平面AEDB=AE,故作 ,垂足为H ,CH AE ⊥则平面AEDB ,且CH ⊥sin 60CH AC ==所以,故(3)错误;11122332A BCD C ABD ABD V V s CH --==⋅=⨯⨯⨯=连接DH ,由于平面AEDB ,故为直线CD 与平面所成角,CH ⊥CDH ∠β在中,故(4)正确,Rt CHD sin CH CDH CD ∠===故(1)(2)(4)四、双空题16.已知样本的各个个体的值由小到大依次为2,3,3,7,a ,b ,12,13,19,20,且样本的中位数为10.5,则___________;若要使该样本的方差最(),N a b ∈a b +=小,则___________.ab = 21 110【分析】根据中位数的定义可得与的关系,要使样本的方差最小, 即a b 最小,利用与的关系消去,得关于的一元二次式,利用配方22(10)(10)a b -+-a b a b 法可求出函数的最小值,进而可得和的值,从而即可得的值.a b ab 【详解】解:因为样本的各个个体的值由小到大依次为2,3,3,7,a ,b ,12,13,19,20,且样本的中位数为10.5,(),N a b ∈所以,即;10.52a b+=21a b +=所以样本平均数为,2337121319201010a b +++++++++=要使样本方差最小,即最小,22(10)(10)a b -+-又因为2222(10)(10)(2110)(10)a b b b -+-=--+-,2222211(11)(10)242221222b b b b b ⎛⎫=-+-=-+=-+⎪⎝⎭因为,,N a b ∈所以当或时,取得最小值,11b =10b =22(10)(10)a b -+-又,21a b +=所以或,11,10a b ==10,11a b ==所以.110ab =故21;110.五、解答题17.如图,AB 是的直径,PA 垂直于所在的平面,C 是圆周上不同于A 、B 的O O 任意一点,且.求证:PA AB =(1)平面平面PBC ;PAC ⊥(2)当点C (不与A 、B 重合)在圆周上运动时,求平面PBC 与所在的平面所成二面O 角大小的范围.(1)证明见解析(2),42ππ⎛⎫ ⎪⎝⎭【分析】(1)根据线面垂直的性质定理,可得,根据圆的性质,可得PA BC ⊥,根据线面垂直的判定定理,即可得证.AC BC ⊥(2)由(1)可得,,所以即为平面PBC 与所在的平面AC BC ⊥BC PC ⊥PCA ∠O 所成二面角的平面角,设,圆O 的半径为R ,根据三角函数的定,0,2CAB πθθ⎛⎫∠=∈ ⎪⎝⎭义,可得的表达式,根据的范围,计算求解,即可得答案.tan PCA ∠θ【详解】(1)因为PA 垂直于所在的平面ABC ,平面ABC ,O BC ⊂所以,,PA BC ⊥PA AC ⊥因为AB 是的直径,O 所以,AC BC ⊥因为平面PAC ,,PA AC ⊂所以平面PAC ,BC ⊥因为平面PBC ,BC ⊂所以平面平面PBCPAC ⊥(2)因为平面PAC ,平面PAC ,BC ⊥PC ⊂所以,又,BC PC ⊥AC BC ⊥所以即为平面PBC 与所在的平面所成二面角的平面角,PCA ∠O 设,圆O 的半径为R ,,0,2CAB πθθ⎛⎫∠=∈ ⎪⎝⎭则,又,2cos AC R θ=2PA AB R ==所以,21tan 2cos cos PA R PCA AC R θθ∠===因为,所以,0,2πθ⎛⎫∈ ⎪⎝⎭cos (0,1)θ∈所以,1tan 1cos PCA θ∠=>因为0,2PCA π⎛⎫∠∈ ⎪⎝⎭所以,,42PCA ππ⎛⎫∠∈ ⎪⎝⎭所以平面PBC 与所在的平面所成二面角大小的范围为O ,42ππ⎛⎫⎪⎝⎭18.第24届北京冬季奥林匹克运动会于2022年2月4日至2月20日由北京和张家口联合举办,这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的热潮.某比赛场馆为了顺利完成比赛任务,招募了100名志愿者,并分成医疗组和服务组,根据他们的年龄分布得到如图频率分布直方图.(1)试估计100名志愿者的平均年龄及第75百分位数;(2)已知医疗组40人,服务组60人,如果按分层抽样的方法从医疗组和服务组中共选取5人,再从这5人中选取3人组成综合组,求综合组中至少有1人来自医疗组的概率.(1)平均年龄岁,第75百分位数为52.543.5(2)0.9【分析】(1)根据频率分布直方图中,所有小矩形面积和为1,可求得a 值,根据频率分布直方图中平均数的求法,代数即可得平均值,根据百分位数的求法,可得答案.(2)根据分层抽样,可得医疗组抽取2人,设为a ,b ,服务组抽取3人,设为A 、B 、C ,列出综合组所有可能情况,选出满足题意的情况,代入概率公式,即可得答案.【详解】(1)由题意得,解得,(0.0150.0250.020.01)101a ++++⨯=0.030a =所以100名志愿者的平均年龄为250.01510350.02510⨯⨯+⨯⨯岁,450.0310550.0210650.011043.5+⨯⨯+⨯⨯+⨯⨯=因为,0.015100.025100.03100.70.75⨯+⨯+⨯=<,0.015100.025100.03100.02100.90.75⨯+⨯+⨯+⨯=>所以第75百分位数位于[50,60)内,设第75百分位数为x ,则,解得,0.7(50)0.020.75x +-⨯=52.5x =所以第75百分位数为52.5(2)医疗组抽取人数为人,设为a ,b ,则服务组抽取5-2=3人,设为40524060⨯=+A 、B 、C ,5人中选取3人组成综合组,情况可能为(,,),(,,),(,,),(,,),(,,),a b A a b B a b C a A B a A C ,共10种,(,,),(,,),(,,),(,,),(,,)a B C b A B b A C b B C A B C 至少有1人来自医疗组的情况为,共9种,(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,)a b A a b B a b C a A B a A C a B C b A B b A C b B C 所以综合组中至少有1人来自医疗组的概率90.910P ==19.如图,一条河两岸平行,河的宽度,一艘船从河边的A 点出发到达对AC =岸的B 点,船只在河内行驶的路程,行驶时间为0.2.已知船在静水中的速度2km AB =h 的大小为,水流的速度的大小为.求:1v 1v 2v 22km/h v =(1);1v (2)船在静水中速度与水流速度夹角的余弦值.1v 2v(1)1v =【分析】(1)先求出船只沿AB 方向的速度为,,利用向量的10km/hv =2,60v v =︒数量积运算求出;(2)利用数量积及夹角公式求出船在静水中速度与水流速度1v 1v夹角.2v 【详解】(1)因为船只在河内行驶的路程,行驶时间为0.2,2km AB =h 所以船只沿AB 方向的速度为.210km/h0.2v ==由,,根据勾股定理可得:,所以,AC =2km AB =BC =30BAC ∠=︒即2,60v v =︒由,得:,12v v v =+12v v v =-.===(2)因为,所以,12v v v =+ ()2212v v v =+即,解得.(221210022cos ,2v v =+⨯+12cos ,v v =即船在静水中速度与水流速度1v 2v20.如图,在四棱锥中,底面ABCD 是梯形,,且,P ABCD -AD BC ∥2AD BC =,.PA PD ⊥AB PB =(1)若F 为PA 的中点,求证平面PCD BF ∥(2)求证平面PCD .PA ⊥(1)证明见解析(2)证明见解析【分析】(1)取PD 中点E ,连接EF 、EC ,可得且,则四边形EF BC ∕∕EF BC =EFBC 为平行四边形,则,根据线面平行的判定定理,即可得证BF EC ∕∕(2)根据三角形性质,可证,结合(1)可得,根据线面垂直的判BF AP ⊥EC AP ⊥定定理,即可得证【详解】(1)取PD 中点E ,连接EF 、EC ,如图所示因为E 、F 分别为PD 、PA 中点,所以,且,EF AD ∕∕12EF AD =又因为,且,AD BC ∥2AD BC =所以且,EF BC ∕∕EF BC =所以四边形EFBC 为平行四边形,所以,BF EC ∕∕因为平面PCD ,平面PCD ,BF ⊄EC ⊂所以平面PCDBF ∥(2)因为,F 为PA 中点,AB PB =所以,则,BF AP ⊥EC AP ⊥因为,平面PCD ,PA PD ⊥,EC PD ⊂所以平面PCD .PA ⊥21.如图,在中,已知,,,且.求ABC 1AC =3AB =60BAC ∠=︒++0PA PB PC =.cos APC ∠【分析】根据向量线性运算结合已知可得故,++0PA PB PC = 1()3PA AB AC =-+,平方后利用数量积的运算法则求得,再利用向量的夹角1(2)3PC AC AB =-||,||PA PC 公式即可求得答案.【详解】由题意得,的夹角为,||3,||1AB AC == ,AB AC60BAC ∠=︒,则,++0PA PB PC =+PB PC PA =-又,所以,,AB PB PA AC PC PA =-=- 3AB AC PB PA PC PA PA +=-+-=- 故,同理1()3PA AB AC =-+111()()(2)333PC BC AC AC AB AC AC AB =+=-+=- 于是,2222111113||[()](2)(92311)39929PA AB AC AB AB AC AC =-+=+⋅+=+⨯⨯⨯+=,||PA ∴=222211||(2)(44)39PC AC AB AB AB AC AC ⎡⎤=-=-⋅+⎢⎥⎣⎦117(94314),||929PC =-⨯⨯⨯+=∴= 11()(2)33cos ||||||||AB AC AC AB PA PC APC PA PC PA PC -+⋅-⋅∴∠==⋅⋅.221(2)9||||AC AB AC AB PA PB -+⋅-====⋅ 22.如图,已知正三棱柱中,所有棱长均为2,点E ,F 分别为棱,111ABC A B C -1BB 的中点.11AC (1)过A 、E 、F 三点作该正三棱柱的截面,求截面图形的周长;(2)求与平面AEF 所成角的正弦值.1A E(1)【分析】(1)延长AF 与延长线交于点M ,连接EM ,交于点P ,连接FP ,则1CC 11B C过点A 、E 、F 三点的截面为四边形AEPF ,根据三角形相似及勾股定理,分别求得AF 、AE 、PE ,PF 的长,即可得答案.(2)如图建系,求得各点坐标,可得坐标,进而可得平面AEF 的法向量1,,A E AE AF的坐标,根据线面角的向量求法,即可得答案.n【详解】(1)延长AF 与延长线交于点M ,连接EM ,交于点P ,连接FP ,1CC 11B C 因为M 在AF 的延长线上,平面AEF ,AF ⊂所以平面AEF ,M ∈因为平面AEM 平面,平面AEM 平面,11BCC B PE = 111A B C FP =所以过点A 、E 、F 三点的截面为四边形AEPF ,因为,1FC AC ∕∕所以,1MFC MAC ∽所以,解得,1112MC FC MC AC ==1=2MC 取中点N ,连接EN ,可得,1CC 1EN CC ⊥因为,1PC EN ∕∕所以,1MPC MEN ∽所以,解得,则,1123MC PC MN EN ==14=3PC 12=3PB在中,1Rt AA F AF ==在中,Rt ABE △AE ==在中,,1Rt PB E PE ==在中,,1PFC 11141,=,603FC PC FC P =∠=︒所以,则2221111132cos 609PF FC PC FC PC =+-⋅︒=PF =所以四边形AEPF +=(2)取AC 中点O ,连接OB ,OF ,因为正三棱柱,F 为的中点,111ABC A B C -11A C 所以两两垂直,以O 为原点,为x ,y ,z 轴正方向建系,如图,,OA OB OF ,,OA OB OF所示所以,1(1,0,0),(0,0,2),(1,0,2)A E F A 所以,1(1),((1,0,2)A E AE AF =--=-=- 设平面AEF 的法向量,(,,)n x y z = 则,即,00n AE n AF ⎧⋅=⎨⋅=⎩20x z x z ⎧-+=⎪⎨-+=⎪⎩令x =2,则,所以,1y z ==n ⎛⎫= ⎪ ⎪⎝⎭ 设与平面AEF 所成角为,1A E θ则1sin cos ,A E θ=< 所以与平面AEF1A E。

2022-2023学年四川省凉山州宁南中学高二年级上册学期期末考试数学(理)试题【含答案】

2022-2023学年四川省凉山州宁南中学高二年级上册学期期末考试数学(理)试题【含答案】

2022-2023学年四川省凉山州宁南中学高二上学期期末考试数学(理)试题一、单选题1.某单位职工老年人有30人,中年人有50人,青年人有20人,为了了解职工的建康状况,用分层抽样的方法从中抽取10人进行体检,则应抽查的老年人的人数为 A .3 B .5 C .2 D .1【答案】A【分析】先由题意确定抽样比,进而可求出结果. 【详解】由题意该单位共有职工305020100++=人, 用分层抽样的方法从中抽取10人进行体检,抽样比为10110010=, 所以应抽查的老年人的人数为130310⨯=. 故选A【点睛】本题主要考查分层抽样,会由题意求抽样比即可,属于基础题型. 2.已知,a b R ,则“220a b +=”是“0ab =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】根据充分条件和必要条件的定义进行判断即可. 【详解】若220a b +=,则0a b ,则0ab =成立. 而当0a =且1b =时,满足0ab =,但220a b +=不成立; ∴“220a b +=”是“0ab =”的充分不必要条件.故选:A .3.下列说法中错误的是( )A .对于命题p :存在0x ∈R ,使得20010x x ++<,则p ⌝:任意R x ∈,均有210x x ++≥B .两个变量线性相关性越强,则相关系数r 就越接近1C .在线性回归方程20.5y x =-中,当变量x 每增加一个单位时,y 平均减少0.5个单位D .某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的方差不变 【答案】D【分析】A 选项,存在量词命题的否定是全称量词命题,把存在改为任意,把结论否定; B 选项,相关系数r 就越接近1,则两个变量线性相关性越强; C 选项,根据线性回归方程的解析式中x 的系数得到结论; D 选项,计算出添加新数据4后的方程,作出判断.【详解】存在0x ∈R ,使得20010x x ++<,的否定是:任意R x ∈,均有210x x ++≥,A 正确;两个变量线性相关性越强,则相关系数r 就越接近1,B 正确;在线性回归方程20.5y x =-中x 的系数为0.5-,当变量x 每增加一个单位时,y 平均减少0.5个单位,C 正确;某7个数1234567,,,,,,x x x x x x x 的平均数为4,方差为2,则()72142714i i x =-=⨯=∑,现加入一个新数据4,则平均数不变,仍为4,此时这8个数的方差变为()21444784+-=,故D 错误. 故选:D4.如图的程序框图的算法思路源于欧几里得在公元前300年左右提出的“辗转相除法”.执行该程序框图,若输入1813,333m n ==,则输出m 的值为( )A .4B .37C .148D .333【答案】B【分析】利用辗转相除法求1813和333的最大公约数.【详解】题中程序框图为辗转相除法求1813和333的最大公约数.因为181********=⨯+,333148237=⨯+,1483740=⨯+, 所以1813和333的最大公约数为37. 故选:B.5.圆x 2+y 2-2x -3=0与圆x 2+y 2-4x +2y +3=0的位置关系是( ) A .相离 B .内含 C .相切 D .相交【答案】D【分析】求出圆心和半径,再根据两个圆的圆心距与半径之差和半径和的关系,可得两个圆相交. 【详解】由于圆x 2+y 2﹣2x ﹣3=0的圆心为(1,0),半径等于2,而圆x 2+y 2﹣4x +2y +3=0即(x ﹣2)2+(y +1)2=2,表示以(2,﹣1的圆.22 故两个圆相交, 故选D .【点睛】本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于中档题. 6.已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.7.已知1F ,2F 为双曲线2214xy -=的两个焦点,点P 在双曲线上且满足1290F PF ∠=︒,那么点P 到x 轴的距离为( )A B C D 【答案】D【解析】设12||,||()PF x PF y x y ==>,由双曲线的性质可得x y -的值,再由1290F PF ∠=︒,根据勾股定理可得22xy +的值,进而求得xy ,最后利用等面积法,即可求解【详解】设12||,||()PF x PF y x y ==>,1F ,2F 为双曲线的两个焦点,设焦距为2c ,c ∴=P 在双曲线上,4x y ∴-=,1290F PF ∠=︒,2220x y ∴+=,2222()4xy x y x y ∴=+--=,2xy ∴=,12F PF ∴的面积为112xy =,利用等面积法,设12F PF △的高为h ,则h 为点P 到x 轴的距离,则12512h c h ⋅⋅==,55h ∴=故选:D【点睛】本题考查双曲线的性质,难度不大.8.椭圆221925x y +=上的点A 到一个焦点F 的距离为2,B 是AF 的中点,则点B 到椭圆中心O 的距离为. A .2 B .4 C .6 D .8【答案】B【分析】由三角形的中位线的性质得12OB AF =',再由椭圆的定义得108AF AF =-=',由此可求得答案.【详解】∵椭圆方程为221925x y +=,∴225a =,得5a =, ∵AFF '中,B 、O 分别为AF 和FF '的中点,∴12OB AF =',∵点A 在椭圆上,得210AF AF a +==', ∴108AF AF =-=', 由此得118422OB AF =⨯'==,故选:B .9.已知直线y=x+m 和圆x2+y2=1交于A 、B 两点,O 为坐标原点,若3AO AB 2⋅=,则实数m=( )A .1±B .C .D .12±【答案】C【分析】联立221y x mx y =+⎧⎨+=⎩,得2x 2+2mx +m 2﹣1=0,由此利用根的判别式、韦达定理、向量的数量积能求出m .【详解】联立221y x mx y =+⎧⎨+=⎩ ,得2x 2+2mx+m 2-1=0, ∵直线y=x+m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点,∴△=4m 2+8m 2-8=12m 2-8>0,解得m 或m <设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,21212m x x -= , y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO =(-x 1,-y 1),AB =(x 2-x 1,y 2-y 1), ∵21123,2AO AB AO AB x x x ⋅=∴⋅=-+y 12-y 1y 2=1221122m m ----+m 2-m 2=2-m 2=32,解得m= 故选C .【点睛】本题考查根的判别式、韦达定理、向量的数量积的应用,考查了运算能力,是中档题. 10.已知0a >,0b >,直线1l :(1)10a x y -+-=,2l :210x by ++=,且12l l ⊥,则21a b+的最小值为( ) A .2 B .4 C .8 D .9【答案】C【分析】由12l l ⊥,可求得21a b +=,再由()2121424b aa b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,利用基本不等式求出最小值即可.【详解】因为12l l ⊥,所以()11120a b -⨯+⨯=,即21a b +=,因为0a >,0b >,所以()2121422248b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4b a a b =,即11,24a b ==时等号成立,所以21a b+的最小值为8.故选:C.【点睛】本题考查垂直直线的性质,考查利用基本不等式求最值,考查学生的计算求解能力,属于中档题.11.已知O 为坐标原点,1F ,2F 是双曲线C :22221x y a b -=(0a >,0b >)的左、右焦点,双曲线C 上一点P 满足12PF PF ⊥,且2122PF PF a ⋅=,则双曲线C 的离心率为AB .2CD 【答案】D【详解】设P 为双曲线右支上一点,1PF =m ,2 PF =n ,|F 1F 2|=2c , 由双曲线的定义可得m −n =2a , 点P 满足12PF PF ⊥,可得m 2+n 2=4c 2, 即有(m −n )2+2mn =4c 2, 又mn =2a 2, 可得4a 2+4a 2=4c 2,即有c ,则离心率e 故选D .12.已知圆224410M x y x y +---=:,直线:34110l x y P ++=,为l 上的动点,过点P 作圆M 的切线PA PB ,,切点为A B ,,当四边形PAMB 面积最小时,直线AB 的方程为( ) A .3450x y +-= B .3450x y --= C .3450x y ++= D .3450x y -+=【答案】A【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 46PAM PM AB S PA ⋅==△可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】解:圆的方程可化为()()22229x y -+-=,点M 到直线l 的距离为52d ==>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14462PAM PM AB S PA AM PA ⋅==⨯⨯⨯=△,而 PA =当直线MP l ⊥时,min 5MP =, min 4PA =,此时PM AB ⋅最小.∴()4:223MP y x -=-,即 4233y x =-,由423334110y x x y ⎧=-⎪⎨⎪++=⎩,解得12x y =-⎧⎨=-⎩.所以以MP 为直径的圆的方程为()()()()21220x x y y -+++-=, 即2260x x y -+-=,两圆的方程相减可得:3450x y +-=,即为直线AB 的方程. 故选:A .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.二、填空题13.某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的的频率分布直方图,根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数为:_____.【答案】140【分析】求出这200名学生中每周的自习时间不少于22.5小时的频率,即可求得答案. 【详解】由频率分布直方图得:这200名学生中每周的自习时间不少于22.5小时的频率为: (0.020.10) 2.50.71+⨯-=,这200名学生中每周的自习时间不少于22.5小时的人数为:2000.7140⨯=, 故答案为:140.14.从800名同学中,用系统抽样的方法抽取一个20人的样本,将这800名同学按1800进行随机编号,若第一组抽取的号码为3,则第五组抽取的号码为__________. 【答案】163【分析】根据系统抽样的知识求得正确答案. 【详解】组距为8004020=,所以第五组抽取的号码是()35140163+-⨯=. 故答案为:16315.抛物线2:12C y x =-的焦点为F ,P 为抛物线C 上一动点,定点(5,2)A -,则PA PF +的最小值为___________. 【答案】8【分析】根据抛物线的定义,将||PF 转化为P 到准线的距离,再结合图形可求出结果. 【详解】由212y x =-,得(3,0)F -,准线方程为:3x =,过P 作准线3x =的垂线,垂足为M ,则PA PF +||||PA PM =+||3(5)8AM ≥=--=, 当且仅当,,A P M 三点共线时,等号成立. 故答案为:816.数学中有许多美丽的曲线,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.如曲线22:C x y x y +=+,(如图所示),给出下列三个结论①曲线C 关于直线y x =对称;②曲线C 2;③曲线C 围成的图形的面积是2π+. 其中,正确结论的序号是_________. 【答案】①③【分析】根据点的对称性可判断①,由曲线方程知曲线关于原点,x ,y 轴对称,当0x ≥,0y ≥时,可得220x y x y +--=,可得22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以可得曲线为11,22C ⎛⎫ ⎪⎝⎭为圆心,22r为半径的半圆,由此可作出曲线C 的图象,从而通过运算可判断命题②③的真假.【详解】设点(),A x y 在曲线C 上,则22x y x y +=+,(),A x y 关于直线y x =对称的点(),A y x ',将(),A y x '代入曲线C 中得22y x y x +=+,因此(),A y x '在曲线C 上,故①正确,曲线22:||||C x y x y +=+可知曲线C 关于原点,x ,y 轴对称,当0x ≥,0y ≥时,可得220x y x y +--=,可得22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以可得曲线为11,22C ⎛⎫ ⎪⎝⎭为圆心,22r为半径的半圆,曲线上任意点到原点的距离的最大值为OC r +=C,故命题②错误;根据对称性可知曲线C 围成的图形的面积为4的正方形的面积,即214π2π2⨯⨯⨯=+⎝⎭,故命题③正确; 故答案为:①③三、解答题17.已知直线:(1)20()l a x y a a R ++--=∈.(1)若直线l 在两坐标轴上的截距相等,求直线l 的方程; (2)当()0,0O 点到直线l 距离最大时,求直线l 的方程. 【答案】(1)0x y -+=或20x y +-=(2)20x y +-=【解析】(1)先求出直线l 在两坐标轴上的截距,根据题意,列出方程,解方程即可;(2)根据直线的点斜式方程可以确定直线恒过的定点,然后根据直线l 与AO 垂直时,()0,0O 点到直线l 距离最大,最后求出a 的值,进而求出直线的方程. 【详解】(1)直线:(1)20l a x y a ++--=,取0x =,2y a =+ 取0y =,21a x a +=+即221a a a ++=+,解得2a =-或0a =, 故直线方程为0x y -+=或20x y +-=(2):(1)20l a x y a ++--=变换得到(1)20a x x y -++-=, 故过定点()1,1A当直线l 与AO 垂直时,距离最大. 1OA k =,故1k =-,解得0a =,故所求直线方程为20x y +-=【点睛】本题考查了直线的截距的定义,考查了直线过定点的判断,考查了已知点到直线的距离的最大值求参数问题,考查了数学运算能力. 18.已知命题[]:0,2p x ∈; 命题:23q m x m <≤+. (1)若p 是q 的充分条件,求m 的取值范围;(2)当1m =时,已知p q ∧是假命题,p q ∨是真命题,求x 的取值范围. 【答案】(1)102m -≤<;(2)[](]0,12,5⋃.【分析】(1)解不等式组0232m m <⎧⎨+≥⎩即得解;(2)由题得p 、q 一真一假,分两种情况讨论得解.【详解】(1)解:由题意知p 是q 的充分条件,即p 集合包含于q 集合,有[](]010,2,2302322m m m m m <⎧⊆+⇒⇒-≤<⎨+≥⎩; (2)解:当1m =时,有(]:1,5q x ∈, 由题意知,p 、q 一真一假,当p 真q 假时,020115x x x x ≤≤⎧⇒≤≤⎨≤>⎩或, 当p 假q 真时,022515x x x x ⎧⇒<≤⎨<≤⎩或, 综上,x 的取值范围为[](]0,12,5⋃19.已知某绿豆新品种发芽的适宜温度在6℃~22℃之间,一农学实验室研究人员为研究温度x (℃)与绿豆新品种发芽数y (颗)之间的关系,每组选取了成熟种子50颗,分别在对应的8℃~14℃的温度环境下进行实验,得到如下散点图:(1)由折线统计图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明; (2)建立y 关于x 的回归方程,并预测在19℃的温度下,种子发芽的颗数. 参考数据:24y =,()()7170i i i x xy y =--=∑,()721176i i y y=-=∑778.77.参考公式:相关系数()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑y bx a =+中斜率和截距的最小二乘估计公式分别为()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-.【答案】(1)答案见解析; (2)44.【分析】(1)直接套公式求出系数r ,即可判断;(2)套公式求出回归方程,把19x =代入,即可求解.【详解】(1)由题意可知:()1891011121314117x =++++++=. ()()()()()()()()27222222218119111011111112111311141128ii x x =-=-+-+-+-+-+-+-=∑.又()721176i i y y=-=∑,所以相关系数()()()()122110.99717628niii nni i i i x x y y r x xy y===--==≈⨯--∑∑∑.因为相关系数0.998r ≈,所以y 与x 的线性相关性较高,可以利用线性回归模型拟合y 与x 的关系.(2)由(1)知11x =,24y =,()27128i i x x=-=∑,()()7170i i i x x y y =--=∑.所以()()()121702.528niii ni i x x y y b x x==--===-∑∑, 所以24 2.511 3.5a y bx =-=-⨯=-. 所以y 与x 的回归直线为 2.5 3.5y x =-.当19x =时, 2.519 3.544y =⨯-=.即在19℃的温度下,种子发芽的颗数为44.20.圆心在()300x y x -=>上的圆C 与x 轴相切,且被直线0x y -=截得的弦长为 (1)求圆C 的方程;(2)求过点()2,3P --且与该圆相切的直线方程. 【答案】(1)()()22139x y -+-= (2)2x =-和3460x y --=【分析】(1)设圆心()(),30C a a a >,求出圆心到直线的距离d ,由勾股定理计算弦长求得参数,得圆标准方程;(2)分类讨论,斜率不存在的直线直接验证,斜率存在的直线设出直线方程(用点斜式),由圆心到切线距离等于半径求得参数值,得直线方程.【详解】(1)设圆心()(),30C a a a >,则3ra =C 到直线0x y -=的距离为d ==22227r d d =+=+⎝⎭22927a a =+∴21a =∴1a =∴圆C 的方程为()()22139x y -+-=(2)①当切线l 斜率不存在时,l :2x =-满足题意 ②设l :()32y k x +=+,即230kx y k -+-= 圆心到直线l 的距离为3d '=,∴34k =综上得过P 与圆C 相切的直线方程为2x =-和3460x y --=21.已知抛物线C 的顶点是坐标原点O ,而焦点是双曲线2241x y -=的右顶点. (1)求抛物线C 的方程;(2)若直线:2l y x =-与抛物线相交于A 、B 两点,则直线OA 与OB 的斜率之积是否为定值,若是,求出定值;若不是,说明理由. 【答案】(1)22y x = (2)是定值,1-【分析】(1)将双曲线的方程化为标准形式,求得右顶点坐标,根据抛物线的焦点与双曲线的右顶点重合得到抛物线的方程;(2)联立直线与抛物线方程,结合韦达定理求得弦长及两点连线的斜率公式即可求解.【详解】(1)双曲线2241x y -=化为标准形式:22114x y -=,211,42a a ==,右顶点A 1,02⎛⎫ ⎪⎝⎭,设抛物线的方程为22y px =,焦点坐标为,02p F ⎛⎫⎪⎝⎭,由于抛物线的焦点是双曲线的右顶点,所以1p =, 所以抛物线C 的方程22y x =;(2)联立222y xy x ⎧=⎨=-⎩,整理得2240y y --=,设()()1122,,,A x y B x y ,则12124,2,y y y y =-+=, ()()()121212121121224122242442OA OB y y y y y y k k x x y y y y y y -∴⋅=⋅==+++++++==--⨯, 综上,抛物线C 的方程22y x =,OA ,OB 斜率的乘积为-1.22.已知椭圆22221(0)x y a b a b +=>>的左、右两个焦点1F ,2F,离心率e =2.(1)求椭圆的方程;(2)如图,点A 为椭圆上一动点(非长轴端点),2AF 的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求ABC 面积的最大值.【答案】(1)椭圆的标准方程为2212x y += (2)ABC ∆2【详解】试题分析:(1) 由题意得1b =,再由22222c e a b c a a ===+=1c = ⇒标准方程为2212x y +=;(2)①当AB 的斜率不存在时,不妨取222,1,,1,A B C ⎛⎛⎛- ⎝⎭⎝⎭⎝⎭12222ABC S ∆=⨯ ②当AB 的斜率存在时,设AB 的方程为()1y k x =-,联立方程组()22112y k x x y ⎧=-⎪⎨+=⎪⎩ ⇒ ()222222121222422214220,2121k k k x k x k x x x x k k -+-+-=+=⋅=++ ⇒ 2212221k AB k +=+又直线0kx y k --=的距离2211k k d k k -=++⇒点C 到直线AB 的距离为2221k d k =+ ⇒ ()22222211111222222222141421ABCk k S AB d ABC k k k ∆⎛⎫+=⋅=⋅=-∆ ⎪++⎝⎭+面2试题解析:(1) 由题意得22b =,解得1b =, ∵2222c e a b c a ===+,∴2a =1c =, 故椭圆的标准方程为2212x y +=(2)①当直线AB 的斜率不存在时,不妨取 222,1,,1,A B C ⎛⎛⎛- ⎝⎭⎝⎭⎝⎭, 故12222ABC S ∆=⨯②当直线AB 的斜率存在时,设直线AB 的方程为 ()1y k x =-, 联立方程组()22112y k x x y ⎧=-⎪⎨+=⎪⎩,化简得()2222214220k x k x k +-+-=,设()()221122121222422,,,,,2121k k A x y B x y x x x x k k -+=⋅=++AB==点O 到直线0kx y k --=的距离d ==因为O 是线段AC 的中点,所以点C 到直线AB 的距离为2d∴2211122221ABCk S AB d k ∆⎛⎫+=⋅=⋅ ⎪+⎝⎭==综上,ABC ∆【点睛】本题主要考查椭圆的标准方程及其性质、点到直线的距离、弦长公式和三角形面积公式等知识,涉及函数与方程思想、数形结合思想分类与整合、转化与化归等思想,并考查运算求解能力和逻辑推理能力,属于较难题型. 第一小题由题意由方程思想建立方程组求得标准方程为22x y 12+=;(2)利用分类与整合思想分当AB 的斜率不存在与存在两种情况求解,在斜率存在时,由舍而不求法求得2121224k x x ,x x 2k 1+=⋅=⇒+ AB =,再求得点C到直线AB 的距离为2d⇒2ΔABC211k 1S AB 2d ABC 222k 1⎛⎫+=⋅=⋅= ⎪+⎝⎭面。

国开(中央电大)本科《社会统计学》网上形考任务试题及答案

国开(中央电大)本科《社会统计学》网上形考任务试题及答案

国开(中央电大)本科《社会统计学》网上形考任务试题及答案章节测试试题及答案一、试题部分1.某班级有60名男生,40名女生,为了了解学生购书支出,从男生中抽取12名学生,从女生中抽取8名学生进行调查。

这种调查方法属于( )。

2.以下关于因变量与自变量的表述不正确的是( )。

3.为了解某地区的消费,从该地区随机抽取5000户进行调查,其中30%回答他们的月消费在5000元以上,40%回答他们每月用于通讯、网络的费用在300元以上。

此处5000户是( )。

4.某班级有100名学生,为了了解学生消费水平,将所有学生按照学习成绩排序后,在前十名学生中随机抽出成绩为第3名的学生,后面依次选出第13、23、33、43、53、63、73、83、93九名同学进行调查。

这种调查方法属于( )。

1.某班级学生平均每天上网时间可以分为以下六组:1)1小时及以下;2)1-2小时;3)2-3小时;4)3-4小时;5)4-5小时;6)5小时及以上,则5小时及以上这一组的组中值近似为( )。

2.下表为某专业一年级学生平均每周上网时间的频率分布表,按照向上累积的方法计算第5组的累积频率是( )。

3.以下关于条形图的表述,不正确的是( )。

等距分组和不等距分组有什么区别?请举例说明。

某行业管理局所属40个企业2011年产品销售额数据如下所示。

要求:(1)对2011年销售额按由低到高进行排序,求出众数、中位数和平均数。

(2)如果按照规定,销售额在125万元以上的为先进企业,115万-125万之间的为良好企业,105万-115万之间的为一般企业,105万以下的为落后企业,请按先进企业、良好企业、一般企业、落后企业进行分组,编制频数分布表,并计算累积频数和累积频率。

某大学有六门选修课,全校学生可以随意选择,不受任何限制。

根据教务处最终选课结果发现,全校一年级2000名学生中,有200人选修大学生心理分析,有400人选修影视欣赏,有180人选修古代中国文学鉴赏,有350人选修人格魅力的欣赏与培养,有570人选修社会统计方法及SPSS软件的应用,有300人选修当代中国外交分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学备课大师 目录式免费主题备课平台!
一、选择题
1、某校共有N名学生,分为M个班级,要用分层抽样的方法从所有
学生中抽取一个容量为n的样本,已知某班有m个学生,那么该班应被抽取的人数为 ( )
A、 B,、 m C、
D、
2、某校高中有900人,其中高一年级300人,高二年级200人,高
A、120名学生 B、1200名学生
C、120名学生的成绩 D个零件中,一级品24个,二级品36个,三级品60个,从
中抽取容量为20的一个样本,则每个个体被抽到的概率为( ) A 1
120 B、 1
20 C 、1
60 D、 61
5、某校有高一学生300人,高二学生270人,高三学生210人,现
教育局督导组欲用分层抽样的方法抽取26名学生进行问卷调查,则下列判断正确的是 ( )
A、高一学生被抽到的概率最大 B、高二学生被抽到的概率最大
数学备课大师 今日用大师 明日做大师!
三年级400人,现采用分层抽取容量为45 人的样本,那么高一、高二、高三年级抽取的人数分别为( )
A、15、5、25 B、15、15、15 C、10、5、30 D、15、10、20
3、对某校1200名学生的耐力做调查,抽取其中120名学生测试他们
的1500米跑的成绩,得到相应的数值,在这项调查中,样本是指( )
相关文档
最新文档