2018年北师大版九年级数学 第1章

合集下载

北师大版九年级数学上册第一章四边形1矩形及其性质

北师大版九年级数学上册第一章四边形1矩形及其性质

③矩形的四个角都是直角;
④矩形的对角线相等.
教师讲评
注意:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过对称中心
的任意直线可将矩形分成全等的两部分.
(2)矩形也是轴对称图形,有两条对称轴(通过对边中点的直线).对
称轴的交点就是对角线的交点(即对称中心).
(3)矩形具有平行四边形的所有性质.矩形的性质可以从三个方面看:
点O.点 E,F 分别是AO,AD的中点,连接EF,则△AEF的周长为(
)
A.12
B.18
C.20
D.16
典例精讲
【题型一】利用矩形的性质求线段的长度
例 2: 如图,在矩形 ABCD中,对角线 AC,BD 相交于点O,已知
∠AOB=120°,AB=1,则BC 的长为

.
典例精讲
【题型二】利用矩形的性质求角度
九年级北师上册
2 矩形的性质与判定
第1课时 矩形及其性质
1、通过自主探究掌握矩形的概念和矩形的性质定理,会用
矩形的性质定理进行推导证明,发展学生的分析能力.
2.了解矩形既是中心对称图形又是轴对称图形,经历探索矩形
的概念和性质的过程,发展学生合情推理的意识.
3.在观察、测量、猜想、归纳、推理的过程中,体验数学活动充
(2)已学过的直角三角形性质有①直角三角形两个锐角互余;②直角三角
形两条直角边的平方和等于斜边的平方;③在直角三角形中,如果一个
锐角等于30°,那么它所对的直角边等于斜边的一半.
(3)直角三角形斜边上的中线性质可以用来解决有关线段倍分的问题.
典例精讲
【题型一】利用矩形的性质求线段的长度
例 1: 如图,在矩形ABCD中,AB=12,BC=16,对角线AC,BD相交于

北师大版九年级数学上册教案:第一章 特殊平行四边形

北师大版九年级数学上册教案:第一章 特殊平行四边形

第一章特殊平行四边形1 菱形的性质与判定第1课时菱形的性质【知识与技能】理解菱形的概念,掌握菱形的性质.【过程与方法】经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.【情感态度】培养学生主动探究的习惯、严密的思维意识和审美意识.【教学重点】理解并掌握菱形的性质.【教学难点】形成推理的能力.一、情境导入,初步认识四人为一小组先在组内交流自己收集的有关菱形的图片,实物等,然后进行全班性交流.引入定义:有一组邻边相等的平行四边形叫做菱形.【教学说明】认识菱形,感受菱形的生活价值.二、思考探究,获取新知教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是平行四边形的特例,因此,菱形也具有平行四边形的所有性质.【教学说明】通过教师的教具操作感受菱形的定义.如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.思考:1.这是一个什么样的图形呢?2.有几条对称轴?3.对称轴之间有什么位置关系?4.菱形中有哪些相等的线段?【教学说明】充分地利用学具的制作,发现菱形所具有的性质,激发课堂学习的热情.【归纳结论】菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直.三、运用新知,深化理解1.见教材P3第1题.2.见教材P3例1 .3.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为(A)A.15B.153 2C.7.5D.153【教学说明】本题考查有一个角是60°的菱形的一条对角线等于菱形的边长.4.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC且交BC的延长线于点E.求证:DE=12 BE.分析:由四边形ABCD是菱形,∠ABC=60°,易得BD⊥AC,∠DBC=30°,又由DE∥AC,即可证得DE⊥BD,由30°所对的直角边等于斜边的一半,即可证得DE=12 BE.证明:方法一:如图,连接BD,∵四边形ABCD是菱形,∠ABC=60°,∴BD⊥AC,∠DBC=30°,∵DE∥AC,∴DE⊥BD,即∠BDE=90°,∴DE=12 BE.方法二:∵四边形ABCD是菱形,∠ABC=60°,∴AD∥BC,AC=AD,∵AC∥DE,∴四边形ACED是菱形,∴DE=CE=AC=AD,又四边形ABCD是菱形,∴AD=AB=BC=CD,∴BC=EC=DE,即C为BE的中点,∴DE=BC=12 BE.【教学说明】此题考查了菱形的性质,直角三角形的性质等知识.此题难度不大,注意数形结合思想的应用.5.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2,又∵OE⊥AB,∠ABD=60°,∴∠BOE=30°,∴BE=1.【教学说明】本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.学生自主完成,如有一定难度可相互交流,最后由教师总结.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作补充.1.布置作业:教材“习题1.1”中第1、2 题.2.完成练习册中相应练习.本节课中,重在探索菱形性质的过程,在操作活动和观察分析过程中发展学生的审美意识,进一步体会和理解说理的基本步骤,了解菱形的现实应用.第2课时菱形的判定【知识与技能】1.理解并掌握菱形的定义及两个判定方法;2.会用这些判定方法进行有关的论证和计算.【过程与方法】经历探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法.【情感态度】培养良好的思维意识以及推理的能力,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】菱形的两个判定方法.【教学难点】判定方法的证明及运用.一、情境导入,初步认识回顾:(1)菱形的定义:一组邻边相等的平行四边形.(2)菱形的性质:性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角.(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)【教学说明】通过对菱形的性质复习回顾,让学生养成勤复习的习惯.用以温故而知新.二、思考探究,获取新知活动1按下列步骤画出一个平行四边形:(1)画一条线段长AC=6cm;(2)取AC的中点O,再以点O为中点画另一条线段BD=8cm,且使BD⊥AC;(3)顺次连接A、B、C、D四点,得到平行四边形ABCD.猜猜你画的是什么四边形?【归纳结论】菱形的判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.【教学说明】首先教师活动让学生观察,然后让学生自己动手亲自体验活动从而猜想出结论来.已知:在□ABCD中,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形,AC ⊥BD,∴□ABCD是菱形.活动2画一画:作一条线段AC,分别以A、C为圆心,以大于AC的一半为半径画弧,两弧分别交于B、D两点,依次连接A、B、C、D.思考:四边形ABCD是什么四边形?你能证明吗?【归纳结论】菱形的判定方法2:四条边相等的四边形是菱形.【教学说明】让学生亲自动手体验活动,猜想出结论来并进行证明.从而加深印象.三、运用新知,深化理解1.见教材P6例2 .2.如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG 与FH交点于O,则图中的菱形共有(B)A.4个B.5个C.6个D.7个3.下列说法正确的是(B)A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形4.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.求证:AD=CE;证明:∵MN是AC的垂直平分线.∴OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO,∴AD=CE.5.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形;证明:∵CE平分∠ACB,EA⊥CA,EF⊥BC,∴AE=FE,∵∠ACE=∠ECF,∴△AEC≌△FEC,∴AC=FC,∵CG=CG,∴△ACG≌△FCG,∴∠CAG =∠CFG =∠B,∴GF∥AE,∵AD⊥BC,EF⊥BC,∴AG∥EF,故四边形AGFE是平行四边形又∵AG=GF(或AE=EF),∴平行四边形AGFE是菱形(一组邻边相等的平行四边形是菱形).【教学说明】让学生先独立完成,然后将不会的问题各小组交流讨论得出结果.让学生从题目中找解题信息,从图形中找解决问题的突破口.四、师生互动、课堂小结1.师生共同回顾判定一个四边形是菱形的方法:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.2”中第2、3题.2.完成练习册中相应练习.本节课让学生动手操作,不仅可以调动学生的积极性,而且通过动手做一做,然后再说一说的过程,巩固了菱形的判定.只有这样,才能使学生在今后的学习中有更严密的思维,使他们的抽象概括能力有更好的提升.第3课时菱形的性质与判定的运用【知识与技能】能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.【过程与方法】经历菱形性质定理及判定定理的应用过程,体会数形结合、转化的思想.【情感态度】培养良好的探究意识以及推理能力,感悟其应用价值;培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】利用菱形性质定理与判定定理解决一些相关问题.【教学难点】菱形性质的探究.一、情境导入,初步认识活动:如图,你能用一张锐角三角形纸片ABC折出一个菱形,使∠A成为菱形的一个内角吗?【教学说明】通过折纸活动激发学生的兴趣,同时对于菱形的相关判定方法也进行了巩固.二、思考探究,获取新知如图,两张等宽的纸条交叉重叠在一起,重叠部分ABCD是菱形吗?为什么?拓展:若纸条的宽度是4cm ,∠ABC=60°,你会求菱形的面积吗?你有几种不同的方法?与同学交流.【归纳结论】菱形面积的计算公式:①如图,S 菱形ABCD =AB ·DE ,即菱形的面积等于底乘高;②S 菱形ABCD =12AC ·BD ,即菱形的面积等于两条对角线乘积的一半.【教学说明】对菱形性质的归纳是学生对菱形特征的认识、是知识的一次升华,有助于培养学生的概括能力,突出教学重点.三、运用新知,深化理解如图,在△ABC 中,AB=BC ,D 、E 、F 分别是BC 、AC 、AB 的重点.(1)求证:四边形BDEF 是菱形;(2)若AB=10cm ,求菱形BDEF 的周长.解:(1)证明:∵E 、F 分别是AC 、AB 的中点,∴EF=12BC ,EF ∥CB. 又∵D 、E 分别是BC 、AC 的中点,∴DE=12AB ,DE ∥AB, ∴四边形BDEF 是平行四边形.又∵AB=BC ,∴EF=DE ,∴四边形BDEF 是菱形.(2)∵F 是AB 的中点,∴BF=12AB.又∵AB=10cm,∴BF=5cm.∵四边形BDEF是菱形,∴BD=DE=EF=BF,∴四边形BDEF的周长为4×5=20(cm).【教学说明】菱形的性质与判定的综合应用,一般先证明四边形是菱形,再利用菱形的性质进行求解或证明,要注意两者的区别与联系.四、师生互动、课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.3”中第2、3、4题.2.完成练习册中相应练习.通过复习回顾菱形的性质和判定,唤醒学生的记忆,然后给学生设置好一个个有梯度的问题,调动学生的求知欲,树立勇于战胜自我的信念.2 矩形的性质与判定第1课时矩形的性质【知识与技能】了解矩形的有关概念,理解并掌握矩形的有关性质.【过程与方法】经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.【情感态度】培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.【教学重点】掌握矩形的性质,并学会应用.【教学难点】理解矩形的特殊性.一、情境导入,初步认识将收集来的有关长方形的图片给学生观察,让学生进行感性认识,引入新课——矩形.【教学说明】让学生体会到数学来源于生活,找到数学的价值.二、思考探究,获取新知1.拿一个活动的平行四边形教具,轻轻拉动一个点并观察,它还是一个平行四边形吗?为什么?(演示拉动过程如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?【归纳结论】矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).让学生观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形所有性质.思考:矩形还具有哪些特殊的性质?为什么?【教学说明】采用观察、操作、交流、演绎的手法来解决重点突破难点.【归纳结论】矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.3.矩形是轴对称图形吗?如果是,它有几条对称轴?4.如图,在矩形ABCD中,AC、BD相交于点O,求AO与BD的数量关系.【归纳结论】直角三角形斜边上的中线等于斜边的一半.【教学说明】引导学生尽可能多地发现结论,养成善于观察的好习惯.三、运用新知,深化理解1.已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知条件,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD = 2OA=2×4=8(cm).2.已知:如图,矩形ABCD,AB长8cm ,对角线比AD长4cm.求AD的长及点A到BD的距离AE的长.分析:因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:(1)设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2,解得x=6. 则AD=6cm.(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE·DB=AD·AB,解得AE =4.8cm.3.已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.【教学说明】给予学生足够的时间,让学生独立思考,小组合作,由不同学生表述自己的不同思路,展示不同的方法.使学生能做一题会一类,熟知矩形中的基本图形.4.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为22或20 cm.解:本题需分两种情况解答.即矩形的一个角的平分线分一边为4cm和3cm,或者矩形的角平分线分一边为3cm和4cm.当矩形的一个角的平分线分一边为4cm和3cm时,矩形的周长为2×(3+4)+2×4=22cm;当矩形的角平分线分一边为3cm和4cm时,矩形的周长为2×(3+4)+2×3=20cm.【教学说明】本题考查的是矩形的基本性质,学生需要注意的是分两种情况作答即可.四、师生互动,课堂小结1.师生共同回顾矩形的性质.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.4”中第2、3题.2.完成练习册中相应练习.本节课以“平行四边形变形为矩形的过程”的演示引入课题,将学生的视线集中在数学图形上,思维集中在数学思考上,更好地突出了观察的对象,使学生更容易把握问题的本质,真实、自然、和谐,体现了数学学习的内在需要,加强了学生对知识之间的理解和把握.第2课时矩形的判定【知识与技能】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【过程与方法】经历探索矩形判定的过程,发展学生实验探索的意识;形成几何分析思路和方法.【情感态度】培养推理能力,会根据需要选择有关的结论证明,体会来自于实践的需要.【教学重点】理解并掌握矩形的判定方法及其证明,掌握判定的应用.【教学难点】定理的证明方法及运用.一、情境导入,初步认识事例引入:小华想做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?【教学说明】事例引入,激发学生的兴趣.二、思考探究,获取新知动手操作,拿一个活动的平行四边形教具,轻轻拉动一个点.思考:1.随着∠α的变化,两条对角线的长度将发生怎样的变化?2.当两条对角线的长度相等时,平行四边形有什么特征?你能证明吗?【教学说明】让学生动脑思考,动手操作.为下面的学习做准备.【归纳结论】对角线相等的平行四边形是矩形.证明:(见教材P14例题)矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论,并与同伴交流.【归纳结论】有三个角是直角的四边形是矩形.【教学说明】培养学生的归纳总结能力,同时也训练了学生的语言表达能力和分析问题的能力.三、运用新知,深化理解1. 对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.解析:矩形的判定定理有:(1)对角线相等的平行四边形是矩形;(2)有三个角是直角的四边形是矩形.2.下列说法正确的是(D )A.一组对边平行且相等的四边形是矩形B.一组对边平行且有一个角是直角的四边形是矩形C.对角线互相垂直的平行四边形是矩形D.一个角是直角且对角线互相平分的四边形是矩形解析:A、一组对边平行且相等的四边形是平行四边形,故A错误;B、一组对边平行且相等并有一个角是直角的四边形是矩形,故B错误;C、对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”),故C 错误;D、对角线互相平分且相等的四边形是矩形,故D正确.【教学说明】让学生口答第1、2道题,训练学生的语言表达能力.3.如图所示,□ABCD的四个内角的平分线分别相交于E、F、G、H,试说明四边形EFGH是矩形.解:∵∠HAB+∠HBA=90°.∴∠H=90°.同理可求得∠HEF=∠F=∠FGH=90°∴四边形EFGH是矩形.【教学说明】在黑板上展示第3题,有多种证明方法的题目学生口答展示,教师予以总结.既训练了学生的语言表达能力,也训练了学生的书写能力和分析问题的能力.四、师生互动,课堂小结1.师生共同回顾矩形有哪些判定定理?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.5”中第2、3题.2.完成练习册中相应练习.本节课用逻辑推理的方法对以前曾用直观感知、操作说明得到的矩形判定进行的重新研究,让学生充分感受到逻辑推理是研究几何的重要方法.尽可能地提供多种机会让学生自己去理解、感悟、体验,从而提高学生的数学认识,激发学生的数学情感,促进学生数学水平的提高.第3课时矩形的性质与判定的运用【知识与技能】熟练运用矩形的性质和判定定理进行相关的计算和证明.【过程与方法】经历从性质到判定的转化过程,合理、准确地运用已有的知识进行推导、证明,体会数学知识之间的联系和区别.【情感态度】通过严谨的推理,强化学生的规范意识.【教学重点】灵活运用矩形的性质和判定定理进行相关的计算和证明.【教学难点】利用矩形的相关性质构造新的图形,进而对知识进行转化.一、情境导入,初步认识如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE.求AE的长.【教学说明】通过例题感受知识的应用的同时体会知识之间的联系及转化,并通过规范的步骤强调教学推理的严谨性.二、思考探究,获取新知已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN为△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E.求证:四边形ADCE是矩形.【思考】在上例中,连接DE,交AC于点F.(1)试判断四边形ABDE的形状,并证明你的结论;(2)线段DF与AB有怎样的关系?请证明你的结论.【教学说明】让学生感受矩形与等腰三角形之间的联系,感受知识转化在解决问题中的作用.三、运用新知,深化理解1.见教材P16~P17例3.2.如图,O是矩形ABCD的对角线的交点,过点O的直线EF分别交AB、CD于点E、F,那么阴影部分的面积是矩形ABCD的面积的(B )3.(一题多解)如图所示,△ABC为等腰三角形,AB=AC,CD⊥AB于D,P为BC上的一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F,则有PE+PF=CD,你能说明为什么吗?解:解法一:能.如图所示,过P点作PH⊥DC,垂足为H.可得四边形PHDE是矩形,∴PE=DH,PH∥BD∴∠HPC=∠B又∵AB=AC∴∠B=∠ACB∴∠HPC=∠FCP.又∵PC=CP,∠PHC=∠CFP=90°∴△PHC≌△CFP∴PF=HC∴DH+HC=PE+PF即:DC=PE+PF.解法二:能.如图,延长EP,过C点作CH⊥EP,垂足为点H,如图所示,可得四边形HEDC是矩形,∴EH=PE+PH=DC,CH∥AB∴∠HCP=∠B.∴△PHC≌△PFC∴PH=PF∴PE+PF=DC.【教学说明】通过应用性的练习,巩固基础知识的同时,感受知识的综合运用在解题过程中的重要性,使所学知识进行深化.四、师生互动,课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.6”中第1、2、3题.2.完成练习册中相应练习.本节课在复习前一节课内容的基础上利用矩形的性质和判定解决具体问题,在例题的选择和设计上,追寻知识向能力的转化,让学生主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,同时训练学生清晰、有条理地表达自己的思考过程,从而培养学生的推理能力和分析问题的能力.3 正方形的性质与判定第1课时正方形的性质【知识与技能】使学生掌握正方形的概念,知道正方形具有矩形和菱形的一切性质,并会用它们进行有关的论证和计算.【过程与方法】学会用正方形的性质解决一些问题,进一步发展学生的推理能力,促进其逐步掌握说理的基本方法.【情感态度】通过分析正方形的概念、性质与矩形、菱形的概念、性质的联系和区别,对学生进行辩证唯物主义教育.【教学重点】正方形的性质.【教学难点】正方形的性质.一、情境导入,初步认识1.在我们的生活中除了平行四边形、矩形、菱形外,还有什么特殊的平行四边形呢?2.展示正方形图片,学生观察它们有什么共同特征?【教学说明】学生回答后,再展示图片,使学生感受到生活中到处存在数学,激发学习热情.【归纳结论】有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.二、思考探究,获取新知1.做一做:用一张长方形的纸片折出一个正方形.2.观察:这个正方形具有哪些性质?【教学说明】让学生在动手操作中对正方形产生感性认识.【归纳结论】正方形的四个角都是直角,四条边相等.正方形的对角线相等且互相垂直平分.3.议一议:平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地说明吗?【教学说明】小组交流,引导学生从角、对角线的角度归纳总结.使学生感受变化过程,更清晰地了解各四边形之间的联系与区别.三、运用新知,深化理解1.见教材P21例1 .2.如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中互相全等的三角形的对数为()A.12B.13C.26D.30解析:根据全等三角形的判定可以确定全等三角形的对数,由于图中全等三角形的对数较多,可以根据斜边长的不同确定对数,可以做到不重不漏.设AB=3,图中所有三角形均为等腰直角三角形,其中,斜边长为1的有5个,它们组成102的有6个,它们组成15对全等三角形;斜边长为2的有2个,它们组成1对全等三角形;共计26对.故选C.3.已知正方形ABCD在直角坐标系内,点A(0,1),点B(0,0),则点C,D坐标分别为(1,0)和(1,1).(只写一组)解析:首先根据正方形ABCD的点A(0,1),点B(0,0),在坐标系内找出这两点,根据正方形各边相等,从而可以确定C,D的坐标.∵正方形ABCD 的点A(0,1),点B(0,0),∴AD∥x轴,CD∥y轴,这样画出正方形,即可得出C与D的坐标,分别为:C(1,0),D(1,1).4.如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,求∠EAF度数.分析:根据角平分线的判定,可得出△ABF≌△AGF,故有∠BAF=∠GAF,再证明△AGE≌△ADE,有∠GAE=∠DAE,所以可得∠EAF=45°.解:在Rt△ABF与Rt△AGF中,∵AB=AG,AF=AF,∠B=∠G=90°,∴△ABF≌△AGF(HL),∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAG+∠FAG=12(∠DAG+ ∠BAG)=12∠DAB=45°,故∠EAF=45°【教学说明】主要考查了正方形的性质和全等三角形的判定.5.如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°.(1)求证:DF+BE=EF;(2)求∠EFC的度数.分析:(1)延长EB至G,使BG=DF,连接AG.利用正方形的性质,证明△AGE≌△AFE,△FAE≌△GAE,得出DF+BE=EF;(2)根据△AGE≌△AFE及角之间的关系从而求得∠EFC的度数;解:(1)延长EB至G,使BG=DF,连接AG,∵四边形ABCD是正方形,∴AB=AD,∠ABG=∠ADF=∠BAD=90°,∵BG=DF,∴△ABG≌△ADF,∴AG=AF,∵∠BAE=30°,∠DAF=15°,∴∠FAE=∠GAE=45°,∵AE=AE,∴△FAE≌△GAE,∴EF=EG=GB+BE=DF+BE;(2)∵△AGE≌△AFE,∴∠AFE=∠AGE=∠DFA=90°-∠DAF=75°,∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,∴∠EFC=30°.【教学说明】学生独立完成以培养学生的独立意识.四、师生互动,课堂小结1.师生共同回顾正方形有哪些性质?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.7”中第2 、3题.2.完成练习册中相应练习.本课虽然是学习正方形的性质,实际上应起到对平行四边形、矩形、菱形性。

北师大版九年级数学上册知识点总结

北师大版九年级数学上册知识点总结

九(上)数学知识点第一章证明(一)1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。

或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。

(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。

4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。

2018-2019学年九年级数学上册 第一章 特殊平行四边形 1.2 矩形的性质与判定作业设计 (新版)北师大版

2018-2019学年九年级数学上册 第一章 特殊平行四边形 1.2 矩形的性质与判定作业设计 (新版)北师大版

1.2矩形的性质与判定一、选择题(本题包括11个小题.每小题只有1个选项符合题意)1. 如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. BD的长度增大C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变2. 如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD3. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A. 17B. 18C. 19D. 204. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A. 10cmB. 8cmC. 6cmD. 5cm5. 如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A. 4B. 3C. 2D. 16. 一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A. 602B. 702C. 1202D. 14027. 如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=,则OE=()A. 1B. 2C. 3D. 48. 矩形具有而菱形不具有的性质是()A. 对角线相等B. 两组对边分别平行C. 对角线互相平分D. 两组对角分别相等9. 矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A. 16cmB. 22cmC. 26cmD. 22cm或26cm10. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A. 57.5°B. 32.5°C. 57.5°,23.5°D. 57.5°,32.5°11. 过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A. 对角线相等的四边形B. 对角线垂直的四边形C. 对角线互相平分且相等的四边形D. 对角线互相垂直平分的四边形二、填空题(本题包括3个小题)12. 如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.13. 平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC 平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________14. 木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)三、解答题(本题包括5个小题)15. 如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形16. 如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积17. 如图,在平行四边形ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.求证:四边形ABCD是矩形18. 有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?19. 如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案一、选择题1. 【答案】C【解析】由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD 的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.考点:1.四边形面积计算;2.四边形的不稳定性.2. 【答案】D【解析】本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误考点:矩形的性质3. 【答案】D【解析】∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=CD=2.5,AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选D.考点:矩形的性质.4. 【答案】D【解析】∵四边形ABCD是矩形,∴OA=OC=AC,OD=OB=BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=O B=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.考点:1.矩形的性质;2.等边三角形的判定与性质.5. 【答案】A【解析】在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.6. 【答案】A【解析】黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,故矩形的面积=21÷(50%-15%)=21÷35%=60(cm2).故选A.考点:矩形的性质.7.【答案】A【解析】∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=,∠OAD=60°,∴∠OAE= 30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A.8.【答案】A【解析】∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.9. 【答案】D【解析】∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.考点:矩形的性质.10. 【答案】D【解析】∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=×(180°﹣∠AOB)=×(180°﹣65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°﹣57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.点睛:本题考查了矩形的性质,三角形的内角和定理,等腰三角形的性质的应用,能正确运用矩形的性质进行推理是解此题的关键,注意:矩形的对角线相等且互相平分.11. 【答案】B【解析】∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选B.二、填空题12. 【答案】AC=BD.答案不唯一【解析】添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯一.13.【答案】①⑤【解析】要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可;故答案为:①⑤.14. 【答案】合格【解析】勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.∵∴这个桌面合格.考点:勾股定理的逆定理点评:本题属于基础应用题,只需学生熟练掌握勾股定理的逆定理,即可完成.三、解答题15. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥B D,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°-α.∵AE=AH,∴∠AHE=∠AEH=.∵AD=AB=CD,AH=AE=CG,∴AD-AH=CD-CG,即DH=DG.∴∠DHG=∠DGH=.∴∠EHG=180°-∠DHG-∠AHE=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.考点:1.矩形的判定与性质;2.全等三角形的判定与性质;3.平行四边形的判定与性质.16. 【答案】12.【解析】利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD•BD=AD•CD.解:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形,∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD,∴BD=AE,∴平行四边形AEBD是矩形.在Rt△ADC中,∠ADB=90°,AC=5,CD=BC=3,∴AD==4,∴四边形AEBD的面积为:BD•AD=CD•AD=3×4=12.点睛:本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.17. 【答案】证明见解析.【解析】欲证明四边形ABCD是矩形,只需推知∠DAB是直角.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°,∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.18. 【答案】AD=140cm.【解析】过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM求出即可.解:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°﹣150°=30°,∴∠MCD=60°﹣30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.19. 【答案】证明见解析.【解析】先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论.证明:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.点睛:本题主要考查矩形的判定和性质,由角平分线及等腰三角形的性质证明AE∥BD是解题的关键.。

北师大版九年级数学上册第一章特殊平行四边形

北师大版九年级数学上册第一章特殊平行四边形

为什么?
A
D
证明:矩形ABCD中
∵AB∥CD
O
∴∠OAB=∠OCD,
B
C
∠OBA=∠ODC △ABO与△DCO中
∵ ∠OAB=∠OCD,AB=CD,∠OBA=∠ODC
∴ △ABO ≌△DCO, ∴AO=OD,BO=CO
∴AO+OC=BO+OD,即:AC=BD
如图:矩形的对角线 A
D
相交于点E,你可以找
3、进一步体会证明的必要性以及计算与证明在 解决问题中的作用。
4、体会证明过程中所运用的归纳、概括以及转 化等数学思想方法。
5、培养学生实事求是的辩证唯物主义思想及积 极探究的思想意识。
三、教学指导:
本节课共分为三课时内容,教 学过程中可分为三大步完成,即: 理论、方法积累、思路梳理——合 作交流,互助探索学习——自主探 索,拓展延伸,归纳新知。这充分 体现了螺旋上升的原则。
首先,我们应培养学生很好地掌握已熟悉 的逻辑方法,包括证明的思路和证明过程的 准确表达。
其次,对不同证明方法的探索可以提高学 生的逻辑思维水平。因此,在证明了一个命 题以后,同学们还应该思考是否还有其他的 证明方法,如辅助线的添加方法唯一吗?还 可以从什么角度解决问题……。
五、评价建议:
1、关注学生探索结论、分析思路和方法的 过程。

角形斜边上的 中线等于斜边 的一半。
B
D
具有平行四边形 所有边的性质
矩形 四个角都是直角 性质:
对角线相等且 互相平分
证明:过程
解答过程 :
特殊平行四边形(二)
在认真学习第一课时的基础上,本节课的教学 可按以下环节逐步展开:
1.知识回顾——回想知识,加强记忆、理解。 2.新课引入——动手实践,发现新知。 3.新课讲解——互助合作,探索性质,判别。 4.训练应用——强化训练,加深应用。 5.拓展延伸——类比菱形,探索正方形。 6.小 结——综合思想,归纳思路。 7.作 业——综合知识,强化训练。 下面就每个环节,逐层分析。

北师大版九年级数学上册 知识点归纳

北师大版九年级数学上册 知识点归纳

九年级数学上册知识点归纳第一章特殊平行四边形1.菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

2.矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。

矩形是特殊的平行四边形。

※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。

(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。

3.正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。

(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

※两条腰相等的梯形叫做等腰梯形。

※一条腰和底垂直的梯形叫做直角梯形。

※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

※三角形的中位线平行于第三边,并且等于第三边的一半。

※夹在两条平行线间的平行线段相等。

※在直角三角形中,斜边上的中线等于斜边的一半第二章一元二次方程1.认识一元二次方程※只含有一个未知数的整式方程,且都可以化为02=bxax(a、+c+b、c为常数,a≠0)的形式,这样的方程叫一元二次方程......。

※把02=bxax(a、b、c为常数,a≠0)称为一元二次方程的一+c+般形式,a为二次项系数;b为一次项系数;c为常数项。

北师大版九年级上册数学 第一章 直角三角形的边角关系 全章经典教案

北师大版九年级上册数学  第一章 直角三角形的边角关系 全章经典教案

第一章 直角三角形的边角关系第1节 锐角三角函数导入:如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?【知识梳理】1、正切的定义在确定,那么A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA 。

即tanA=baA =∠∠的邻边的对边A■例1已知在Rt △ABC 中,∠C=90°,CD ⊥AB ,AD=8,BD=4,求tanA 的值。

跟踪练习:1、在Rt △ABC 中,锐角A 的对边和邻边同时扩大100 倍,tanA 的值( )A.扩大100倍B.缩小100倍C.不变D.不能确定 2、已知∠A,∠B 为锐角(1)若∠A=∠B,则tanA tanB; (2)若tanA=tanB,则∠A ∠B.3、在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.4、在等腰△ABC 中,AB=AC=13,BC=10,求tanB.5、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tan θ=______.2、坡度的定义及表示(难点)我们通常把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或坡比)。

坡度常用字母i 表示。

斜坡的坡度和坡角的正切值关系是:lha =tan 注意:(1)坡度一般写成1:m 的形式(比例的前项为1,后项可以是小数); (2)若坡角为a ,坡度为a lhi tan ==,坡度越大,则a 角越大,坡面越陡。

■例2拦水坝的横断面为梯形ABCD ,坝顶宽BC 为6m ,坝高为3.2m ,为了提高拦水坝的拦水能力,需要将水坝加高2m ,并且保持坝顶宽度不变,迎水坡CD 的坡度不变,但是背水坡的坡度由原来的i=1:2变成i’=1:2.5(有关数据在图上已标明)。

求加高后的坝底HD 的宽为多少?跟踪练习:1、如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)2、若某人沿坡度i =3:4的斜坡前进10米,则他所在的位置比原来的位置升高_______米3、正弦、余弦的定义在Rt 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。

数学九年级上册第1章 课件 北师大版

数学九年级上册第1章 课件 北师大版
3.4菱形3或AB2CD的3-边2长是4,∠DAB=60°,点M,N分别在边AD,AB上,且MN⊥AC,垂 足为3P,把△AMN沿MN折叠得到△A′MN,若△A′DC恰为等腰三角形,则AP的长为 _________________
类型二 矩形中的折叠问题 4.(2018·资阳)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无 重叠的四边形EFGH,EH=12 cm,EF=16 cm,则边AD的长是( C ) A.12 cm B.16 cm C.20 cm D.28 cm
解:(1)证明:∵AD⊥BC,点 E,F 分别是 AB,AC 的中点,
∴Rt△ABD 中,DE=1AB=AE,
2
Rt△ACD 中,DF=1AC=AF.
2 又∵AB=AC,∴AE=AF=DE=DF, ∴四边形 AEDF 是菱形
(2)∵菱形 AED.4
B.2 3
C.2 2 D.2
16 或 4 5
9.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C 重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形, 则DB′的长为_____________
第一章 特殊平行四边形
专题练习二 特殊平行四边形中的动点 及最值问题
A.AG=4 AD 5
B.AG=3 AD 5
C.AG=4 AD 9
D.AG=3 AD 8
25°
3.如图,以菱形ABCD的对角线AC为边向上作等边△ACE.已知∠DAB=70°,则 ∠EAD=____.
4.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E,F分别是AB,AC 的中点. (1)求证:四边形AEDF是菱形; (2)如果四边形AEDF的周长为12,两条对角线的长度的和等于7,求四边形AEDF的面 积S.

北师大版九年级上册数学课件 第一章1

北师大版九年级上册数学课件 第一章1
A.对角相等 B.对角线相等 C.对边相等 D.对角线互相平分
新课讲解
知识点04 直角三角形斜边上中线的性质
议一议
如图,矩形ABCD的对角线AC与BD交于点E,那么 BE是Rt△ABC中一条怎样的特殊线段?它与AC有什 么大小关系?由此你能得到怎样的结论?
新课讲解
典例分析
如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,
知识点1 矩形的定义
矩形的定义:有一个角是直角的平行四边形叫做矩形. 注意: (1)由矩形的定义知,矩形一定是平行四边形,但平行
四边形不一定是矩形. (2)矩形必须具备两个条件:①它是一个平行四边形;
②它有一个角是直角.这两个条件缺一不可.
新课讲解
例1 如图所示,l1∥l2,A、B是l1上的两点,过A、B分 别作l2的垂线,垂足分别为D、C.四边形ABCD是矩形
课堂小结
1.矩形定义:有一个角是直角的平行四边形叫做矩 形,因此,矩形是平行四边形的特例,具有平行四 边形所有性质. 2.性质归纳:
(1)边的性质:对边平行且相等. (2)对角线性质:对角线互相平分且相 等. (3)对称性:矩形是轴对称图形.
当堂小练
1.如图,P 是矩形ABCD的对角线AC的中点,E是 AD的中点.若AB=6,A4.理解并掌握直角三角形斜边上中线的性质。
新课导入
知识回顾
请从边、角、对角线三个方面说一说平行四边 形有哪些性质?
边:对边平行且相等; 角:对角相等; 对角线:对角线互相平分.
新课导入
情境导入
下面图片中都含有一些特殊的平行四边形.观察这些特 殊的平行四边形,你能发现它们有什么样的共同特征?
新课讲解
第一章 特殊平行四边形

北师大版-数学九年级上册知识点归纳总结

北师大版-数学九年级上册知识点归纳总结

北师大版-数学九年级上册知识点归纳总结第一章特殊的平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质(1)平行四边形的对边平行且相等。

(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。

(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。

(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。

(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。

(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。

(对角)(5)定理4:对角线互相平分的四边形是平行四边形。

(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

注意:平行线间的距离处处相等。

5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。

(边)(2)菱形的相邻的角互补,对角相等。

(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。

(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。

(2)定理1:四边都相等的四边形是菱形。

(边)(3)定理2:对角线互相垂直的平行四边形是菱形。

(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。

(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。

北师大版九年级数学上册第1章第3节正方形性质与判定(共18张PPT)

北师大版九年级数学上册第1章第3节正方形性质与判定(共18张PPT)

D
C
D
C
F●
N P●
N
A M B E A MB
E
如图,分别延长等腰直角三角形OAB的两条直 角边AO和BO,使AO=OC,BO=OD
求证:四边形ABCD是正方形。
A
D
O
B
C
练一练
1、如图,在AB上取一点C,以AC、BC为正方形的一边 在同一侧作正方形AEDC和BCFG连结AF、BD延长BD交AF 于H。 求证:(1) △ACF≌△DCB (2) BH⊥AF
2、如图(6),△ABC的外面作正方形ABDE和ACFG,连 结BG、CE,交点为N。 求证:∠CEA=∠ABG 证明:∵四边形ABDE和四边形ACFG是正方形。
∴AE=AB AG=AC ∠1=∠2=90° 又∵∠EAC=∠1+∠BAC=90°+∠BAC
∠BAG=∠2+∠BAC=90°+∠BAC ∴∠EAC=∠BAG ∴△AEC≌△ABG (SAS)
证明:
∵CE⊥AF 四边形ABCD是正方形 ∴∠ADC=∠AEM=90°
∵∠CMD=∠AME ∴∠1=∠2
又∵CD=AD,∠ADF=∠MDC=Rt∠
∴Rt△CDM≌Rt△ADF (AAS) ∴DM=DF ∴∠MFD=45°
3、在正方形ABCD中,点A`,B`,C`,D`分别在
AB,BC,CD,DA上,且AA`=BB`=CC`=
探究三: 假设正方形OEFG继续旋转时, AM 与
探究四B:N之如间图的,关有系两是个否大还小成不立等?的两个正 方形,其中小正方形的面积是大正方形面 积的一半,假设阴影局部的面积为8,那 么小正方形的边长为多少?
∴∠CEA=∠ABG
思考题: 如图正方形ABCD的对角线相交于点O,O 又是另一个正方形OEFG的一个顶点,假设正方形 OEFG绕点O旋转,在旋转的过程中.

北师大版九年级上册数学第一章《特殊平行四边形》整章优质课件

北师大版九年级上册数学第一章《特殊平行四边形》整章优质课件
30°
_______.
B
O
A
C
D
6.已知菱形的一条对角线与边长相等,则菱形的
60°、60°、120°、120°
四个内角度数分别为_____________________.
B.104°
C.105°
D.110°
课堂小结
菱形的定义
有一组邻边相等的平行四
边等
菱形的性质
2.对角线互相垂直平分,且
每条对角线平分一组对角.
当堂检测
1.菱形具有而一般平行四边形不具有的性质是 ( C )
A.对角相等
B.对边相等
C.对角线互相垂直
D.对角线相等
2.如图,菱形的两条对角线长分别是6和8,则此菱形的
(1)图中有哪些线段是相等的?哪些角是相
等的?
(2)有哪些特殊的三角形?那些全等三角形?
知识讲解
已知四边形ABCD是菱形
A
7
1 2
相等的线段:AB=CD=AD=BC
8
O
5
OA=OC OB=OD
D
6
3
B
4
C
∠DAB=∠BCD ∠ABC =∠CDA
相等的角:
∠AOB=∠DOC=∠AOD=∠BOC =90°
第一章 特殊平行四边形
北师大版九年级上册数学第一章整章课件
第一章 特殊平行四边形
第一章 特殊平行四边形
1 菱形的性质与判定
第1课时 菱形的定义与性质
学习目标
1.了解菱形的概念及其与平行四边形的关系;
2.探索并证明菱形的性质定理.(重点)
3.应用菱形的性质定理解决相关问题.(难点)
新课导入
新课导入

2018届九年级数学上册第一章特殊平行四边形第3节正方形的性质与判定练习(含答案)北师大版

2018届九年级数学上册第一章特殊平行四边形第3节正方形的性质与判定练习(含答案)北师大版

2018届九年级数学上册第⼀章特殊平⾏四边形第3节正⽅形的性质与判定练习(含答案)北师⼤版正⽅形的性质与判定⼀、选择题(本⼤题共10⼩题)1.如图,四边形ABCD是正⽅形,延长AB到点E,使AE=AC,则∠BCE的度数是()A.22.5°B.25°C.23° D.20°2.如⼀个四形的两对线互垂直平分且相等那么个四边形是()A.平⾏四边形B.菱形C.正⽅形 D.矩形3.四边形ABCD的对⾓线AC、BD相交于点O,AD∥BC,AD=BC,使四边形ABCD为正⽅形,下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD.需要满⾜()A.①②B.②③C.②④D .①②或①④4.如图,正⽅形ABCD的对⾓线AC、BD相交于点O,OA=3,则此正⽅形的⾯积为()A.3B.12C.18D.365.如图,在四边形ABCD中,对⾓线AC、BD相交于点O,若AO=C0=BO=DO,AC⊥BD,则四边形ABCD的形状是()A.平⾏四边形B.矩形C.菱形 D.正⽅形6.已知在正⽅形ABCD中,对⾓线AC与BD相交于点O,OE∥AB交BC于点E,若AD=8cm,则OE的长为()A.3cmB.4cmC.6cmD.8cm7.如图,正⽅形ABCD的边长为x,点E、F分别是对⾓线BD上的两点,过点E、F作AD、AB的平⾏线,则图中阴影部分的⾯积的和为()A.x2B.x2C.x2D.x28.如图,正⽅形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的⾯积是()A.30B.34C.36D.409.如图,E是正⽅形ABCD对⾓线AC上⼀点,EF⊥AB,EG⊥BC,F、G是垂⾜,若正⽅形ABCD周长为a,则EF+EG等于()A. B. C.aD.2a10.已知正⽅形ABCD的⼀条对⾓线长为2,则它的⾯积是()A.2B.4C.6⼆、填空题(本⼤题共6⼩题)11.如图,在正⽅形ABCD中,E为CD边上⼀点,以CE为对⾓线构造正⽅形CMEN,点N在正⽅形ABCD内部,连接AM,与CD边交于点F.若CF=3,DF=2,连接BN,则BN的长为 ______ .12.如图,已知:正⽅形EFGH的顶点E、F、G、H分别在正⽅形ABCD的边DA、AB、BC、CD上.若正⽅形ABCD的⾯积为16,AE=1,则正⽅形EFGH的⾯积为 ______ .13.如图,将正⽅形纸⽚按如图折叠,AM为折痕,点B落在对⾓线AC上的点E处,则∠CME= ______ .14.如图,BD是△ABC的⾓平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满⾜条件 ______ 时,四边形BEDF是正⽅形.15.如图,正⽅形ABCD的边长为4,线段GH=AB,将GH的两端放在正⽅形的相邻的两边上同时滑动,如果G点从A点出发,沿图中所⽰⽅向按A→B→C→D→A滑动到A⽌,同时点H从点B出发,沿图中所⽰⽅向按B→C→D→A→B滑动到B⽌,在这个过程中,线段GH的中点P所经过的路线围成的图形的⾯积为 ______ .16.如图,在正⽅形ABCD中,AB=,点P为边AB上⼀动点(不与A、B重合),过A、P在正⽅形内部作正⽅形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三⾓形时,AP= ______ .三、解答题(本⼤题共8⼩题)17.已知:P是正⽅形ABCD对⾓线AC上⼀点,PE⊥AB,PF⊥BC,E、F分别为垂⾜.(1)求证:DP=EF.(2)试判断DP与EF的位置关系并说明理由.18.如图,在正⽅形ABCD中,E为对⾓线AC上⼀点,连接EB、ED.(1)写出图中所有的全等三⾓形;(2)延长BE交AD于点F,若∠DEB=140°,求∠AFE的度数.19.已知,在正⽅形ABCD中,E是CB延长线上⼀点,且EB=BC,F是AB的中点,请你将F点与图中某⼀标明字母的点连接成线段,使连成的线段与AE相等.并证明这种相等关系.20.如图,矩形ABCD的对⾓线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.(1)猜想四边形PCOB是什么四边形,并说明理由;(2)当矩形ABCD满⾜什么条件时,四边形PCOB是正⽅形.正⽅形的性质与判定练习参考答案⼀、选择题。

九年级数学上册第1章例说菱形的判定(北师大版)

九年级数学上册第1章例说菱形的判定(北师大版)

例说菱形的判定
菱形,是四边相等的四边形,这是菱形的定义,要判断一个四边形是不是菱形,除用定义判断,还可用其它等价条件。

1. 证明四边形的四条边相等
例1 已知:如图1,C是线段BD上一点,和都是等边三角形,R、F、G、H分别是四边形ABDE各边的中点。

求证:四边形RFGH是菱形。

证明:连结AD、BE
因为和都是等边三角形
所以
故四边形RFGH是菱形
2. 邻边相等的平行四边形一定是菱形
例2 已知:如图2,在等腰梯形ABCD中,AD//BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点。

求证:四边形MENF是菱形。

证明:因为E是BM的中点,N是BC的中点,F是CM的中点
3. 对角线互相垂直的平行四边形是菱形
例3 已知:如图3,梯形ABCD中,AD//BC,对角线,M、N为底边BC的三等分点,且BC=3AD,AM与BD交于点G,AC与DN交于点H。

求证:四边形AGHD是菱形。

证明:因为BC=3AD
M、N是BC的三等分点
又1= 2
所以四边形AGHD是平行四边形
又,所以四边形AGHD是菱形。

4. 对角线互相垂直平分的四边形是菱形
例4 已知:如图4,中,BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F。

求证:四边形CDEF是菱形。

证明:连结CE交AD于点O
因为AC=AE
所以为等腰三角形因为AO平分CAE
所以,且OC=OE 因为EF//CD,
所以1= 2
所以OF=OD
于是CE垂直平分DF
所以四边形CDEF是菱形总结以上,得到下表。

山东省青岛26中2018-2019学年度第一学期北师大版九年级数学上册_第一章_特殊平行四边形_单元检测试题

山东省青岛26中2018-2019学年度第一学期北师大版九年级数学上册_第一章_特殊平行四边形_单元检测试题

山东省青岛26中2018-2019学年度第一学期北师大版九年级数学上册_第一章_特殊平行四边形_单元检测试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相平分且相等2. 正方形具有而矩形不一定具有的特征是()A.四个角都相等B.四边都相等C.对角线相等D.对角线互相平分3. 下列关于四边形是矩形的判断中,正确的是()A.对角线互相平分B.对角线互相垂直C.对角线互相平分且垂直D.对角线互相平分且相等4. 如图,若要使?ABCD成为菱形,则可添加的条件是( )A.AB=CD B.AD=BC C.AB=BC D.AC=BD5. 能够判别一个四边形是菱形的条件是()A.一组对角相等且一条对角线平分这组对角B.对角线互相平分C.对角线互相垂直且相等D.对角线相等且互相平分6. 对角线互相垂直平分且相等的四边形一定是()A.正方形B.菱形C.矩形D.平行四边形7. 如图,小华剪了两条宽为的纸条,交叉叠放在一起,且它们较小的交角为,则它们重叠部分的面积为()A.1 B.2 C.D.8. 中,,点为三条角平分线的交点,于,于,于,且,,,则点到三边、、的距离为()A.2cm,2cm,2cm B.3cm,3cm,3cmC.4cm,4cm,4cm D.2cm,3cm,5cm9. 四边形的对角线、相交于点,下列各组条件,不能判定四边形是矩形的是()A.,,B.,,D.,,C.,,10. 下列命题中正确的有( )(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个二、填空题11. 两张宽矩形纸片重叠在一起,然后将其中的一张任意旋转一个角度,则重叠部分(图中的阴影部分)的四边形的形状为________,其面积的最小值为________.12. 已知正方形的边长为,则该正方形的边长与对角线之比为________.13. 一个内角的平分线把矩形的一边分成和两部分,则矩形的周长为________.14. 菱形的一边与两条对角线所构成的两个角的差是,则菱形较小的内角是________.15. 四边形的对角线与互相平分,且相交于点、在不添加其它线条的前提下,要使四边形为矩形,还需添加一个条件,这个条件可以是________(填一个即可).16. 如图,在中,,,,为边上一动点,于,于,为中点,则的取值范围是________.17. 在四边形ABCD中,AC⊥BD,AB=AD,要使四边形ABCD是菱形,只需添加一个条件,这个条件可以是_____(只要填写一种情况).18. 如图,把矩形沿翻折,点恰好落在边的处,若,,,则矩形的面积是________.三、解答题19. 如图,在中,,平分,过点分别作,,垂足分别为,.证明:四边形为正方形;若,,求四边形的面积.20. 如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是AD,DC的中点,如果OE=,,求菱形ABCD的周长和面积;连接OF,猜想:四边形OEDF是什么特殊四边形?并证明你的猜想.21. 如图,是矩形内一点,于点,于点,.请判断四边形是否是正方形?若是,写出证明过程:若不是,说明理由;延长到点,使,连接交的延长线于点,求的度数.22. 如图,在矩形中,、相交于点,过点作于点,过点作的平行线,交的延长线于点,在的延长线上截取,连接、.若,,求四边形的周长.23. 如图,在ABC中,点F是BC的中点,点E是线段AB的延长线上的一动点,连接EF,过点C作AB的平行线CD,与线段EF的延长线交于点D,连接CE,BD.(1)求证:四边形DBEC是平行四边形.(2)若,,则在点E的运动过程中:①当BE=___________时,四边形BECD是矩形,试说明理由;②当BE=__________时,四边形BECD是菱形.24. 在平行四边形中,对角线、相交于点,,点、分别是、的中点.连接、.求证:;在上述条件下,若,是上一点,且,连接、,试判断四边形的形状,并证明你的结论.。

北师大版数学九年级第一章知识点

北师大版数学九年级第一章知识点

北师大版数学九年级第一章知识点数学是一门智慧的科学,它贯穿人类的生活始终。

在人们眼中,数学似乎与生活脱节,是一种抽象的概念,只适合聪明的头脑解决。

然而,数学其实是一个非常实用、丰富的学科,它在日常生活中的应用无处不在。

而在学习的过程中,我们也需要理解数学的基本概念和知识点,才能更好地应用于实际问题的解决。

在北师大版的九年级数学教材中,第一章主要介绍了一些基本的数学概念和知识点。

首先,我们来了解一下常见的数学运算符号和含义。

加减乘除,相信小伙伴们都不陌生。

它们是我们学习数学的基石,应用范围非常广泛。

比如在购物时,我们需要计算商品的总价,就要用到加法;在分糖果时,我们需要平均分配,就要用到除法等等。

接下来就是整数的概念了。

正数、负数和零组成了整数的基本构成元素。

正数代表了事物的数量,负数则代表了相反的概念,零则代表了没有数量的概念。

对于整数的认识,帮助我们更好地理解世界的事物,将抽象的概念具象化。

相信大家对小数也不陌生,在我们的日常生活中经常会涉及到小数的计算。

小数是指不完全是整数的数字,它主要由整数部分和小数部分组成。

数轴是我们理解小数的一个重要工具,它能够帮助我们直观地比较和计算小数。

除了整数和小数,分数也是我们应用数学的重要概念之一。

分数由分子和分母组成,分子代表了分数的份数,分母代表了整体的份数。

分数的运算是我们在日常生活中经常遇到的,比如家里的饭量是整体中的一部分,在菜谱上要按照比例准备食材等等。

几何学是数学的一个重要分支,它以空间和形状为研究对象。

在第一章中,我们主要了解了平面图形中的一些基本概念。

比如点、线、线段、射线等。

这些概念帮助我们理解和描述图形的特征,比如一个球场有多少个角,一个房间有多少个边等等。

除了平面图形,我们还学习了立体图形的一些基本概念。

比如正方体、长方体、球体等等。

这些图形在我们的日常生活中随处可见,了解它们的特点和属性能够帮助我们更好地认识世界。

最后,我们还学习了一些数的性质和数的比较大小。

九年级数学上册第1章《特殊平行四边形》教学设计(北师大版)

九年级数学上册第1章《特殊平行四边形》教学设计(北师大版)

第一章特殊平行四边形回顾与思考一、学生知识状况分析“特殊的平行四边形”是学生继学习了平行四边形之后的一个学习内容,学生已经学习了平行四边形的有关知识,对平行四边形的性质和判定已有一定的认识,学生在小学也接触过矩形,菱形,正方形的一些简单应用。

本节主要复习三种特殊平行四边形的性质和判定,以及对他们的比较。

研究过程中以类比,归类为主要方法,同时,九年级学生已经具备比较强的归纳、总结能力,利用学生间相互评价、相互提问,使之参与课堂的热情提高。

二、教学任务分析本节是从三种特殊平行四边形的关系入手,使学生进一步认识矩形、菱形、正方形的内在关系:不仅要让学生了解三种特殊平行四边形的性质和判定,更重要的是让学生通过观察、比较、归类找出他们内在的转化方法。

通过自己动手经历和体验图形的变化过程,进一步发展学生的空间观念,为后续章节的学习打下基础。

本节共一个课时,已总结和简单练习为主。

1.知识目标:复习三种特殊平行四边形的性质及判定,及理解他们之间的关系。

2.能力目标:(1)经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.(2)经历课前准备总结,探索三种特殊平行四边形的关系,发展总结归纳能力和初步的演绎推理的能力;(3)在具体问题的证明过程中,有意识地渗透实验论证、逆向思维的思想,提高学生的能力。

3.情感与价值观要求(1)积极参与数学学习活动,对数学有好奇心和求知欲.(2)通过“猜想—总结—证明—应用”的数学活动提升科学素养.4. 教学重点(1) 三种特殊平行四边形性质和判定的复习.(2) 三种特殊平行四边形的关系.5.教学难点总结关系方法的多样性和系统性。

三、教学过程分析本节课设计了五个教学环节:第一环节:交流创意,导入课题;第二环节:动手操作、探求新知;第三环节:先猜想再实践,发展几何直觉;第四环节:巩固基础,检测自我;第五环节:课堂小结,布置作业。

第一环节:交流创意,导入课题内容:事先布置好任务,让学生用自己的方式总结三种特殊平行四边形的关系图,课堂上先交流讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档