人教版七年级数学下册 8.3 实际问题与二元一次方程组 同步测试题
人教版数学七年级下册 同步测试 8.3实际问题与二元一次方程组(含答案)
8.3 实际问题与二元一次方程组一、选择题1. 端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是( )A. ⎩⎪⎨⎪⎧x +y =6036x +24y =1 680B. ⎩⎪⎨⎪⎧x +y =6024x +36y =1 680C. ⎩⎪⎨⎪⎧36x +24y =60x +y =1 680D. ⎩⎪⎨⎪⎧24x +36y =60x +y =1 6802. 一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x 米,宽为y 米,根据题意,得( )A. ⎩⎪⎨⎪⎧x =3y x +3=y -4B. ⎩⎪⎨⎪⎧x =3y x -3=y +4C. ⎩⎪⎨⎪⎧3x =y x -3=y +4D. ⎩⎪⎨⎪⎧3x =y x +3=y -43. 父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( )A. ⎩⎪⎨⎪⎧x +y =3.2(1+17)x =(1+13)yB. ⎩⎪⎨⎪⎧x +y =3.2(1-17)x =(1-13)yC. ⎩⎪⎨⎪⎧x +y =3.213x =17yD. ⎩⎪⎨⎪⎧x +y =3.2(1-13)x =(1-17)y4. 某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天.已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,那么这一段时间有( )A. 9天B. 11天C. 13天D. 22天二、填空题5. 已知两数的和是25,差是3,则这两个数是 和 .6. 一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x °,∠2=y °,则可得到的方程组为 .7. 一个三角形的周长是60,这个三角形有两边相等,且有两边之差为21,则这个三角形的三边长分别是.8. 某公园“6·1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣,张凯和李利都随他们的家人参加了本次活动,王斌也想去,就去打听张凯、李利买门票花了多少钱,张凯说他家3个大人4个小孩,共花了38元钱,李利说他家4个大人2个小孩,共花了44元钱,王斌计划去3个大人和2个小孩.请你帮他计算一下,需准备元钱买门票.三、解答题9. 被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342 km,隧道累计长度的2倍比桥梁累计长度多36 km.求隧道累计长度与桥梁累计长度.10. 随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?11. 某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2分钟内可以通过560名学生;当同时开启一个正门和一个侧门时,4分钟内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5分钟内通过这4个门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.12. 小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:(1)小丽买了自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?13. 某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,那么一共支付1 118元,如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?参 考 答 案1. B2. B3. D4. B5. 14 116. ⎩⎪⎨⎪⎧x =y +50x +y =90 7. 27,27,6 8. 349. 解:设隧道累计长度为x km ,桥梁累计长度为y km ,根据题意,得⎩⎪⎨⎪⎧x +y =342,2x =y +36.解得⎩⎪⎨⎪⎧x =126,y =216. 答:隧道累计长度为126 km ,桥梁累计长度为216 km.10. 解:(1)由题意,得⎩⎪⎨⎪⎧8p +8q =12,10p +12q =16.解得⎩⎪⎨⎪⎧p =1,q =12.(2)小华的里程数是11 km ,时间为12 min. 则总费用是:11p +12q =17(元). 答:总费用是17元. 11. 解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎪⎨⎪⎧2x +4y =560,4x +4y =800.解得⎩⎪⎨⎪⎧x =120,y =80. 答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生.(2)全校学生人数:45×10×4=1 800(名). 1 800名学生的撤离时间为:1 800÷[(120+80)×0.8×2]=458(分钟). ∵5<458,∴该教学楼建造的这4个门不符合安全规定.12. 解:(1)设小丽购买自动铅笔x 支,记号笔y 支,根据题意,得⎩⎪⎨⎪⎧x +y =8-(2+2+1),1.5x +4y =28-(6+9+3.5).解得⎩⎪⎨⎪⎧x =1,y =2. 答:小丽购买自动铅笔1支,记号笔2支. (2)设小丽购买软皮笔记本m 本,自动铅笔n 支,根据题意可得:92m +1.5n =15,∵m ,n 为正整数,∴⎩⎪⎨⎪⎧m =1,n =7或⎩⎪⎨⎪⎧m =2,n =4或⎩⎪⎨⎪⎧m =3,n =1. 答:共3种方案:1本软皮笔记本与7支自动铅笔;2本软皮笔记本与4支自动铅笔;3本软皮笔记本与1支自动铅笔.13. 解:(1)设七年级(1)班有x 名学生,七年级(2)班有y 名学生. ①若两班人数多于50人且少于100人,则⎩⎪⎨⎪⎧12x +10y =1 118,10(x +y )=816.解得⎩⎪⎨⎪⎧x =151,y =-69.4.不合题意,舍去;②若两班人数多于100人,则⎩⎪⎨⎪⎧12x +10y =1 118,8(x +y )=816.解得⎩⎪⎨⎪⎧x =49,y =53.答:七年级(1)班有49名学生,七年级(2)班有53名学生. (2)∵49×(12-8)=196,53×(10-8)=106,∴团体购票与单独购票相比较,七年级(1)班节约了196元,七年级(2)班节约了106元.。
人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题和二元一次方程组 同步练习(含答案
实际问题与二元一次方程组同步练习一.选择题(共12小题)1.某校教师举行茶话会,若每桌坐12人,则空出一张桌子;若每桌坐10人,还有10人不能就坐,问:该校有多少名教师?共准备了多少张桌子?若设该校的教师有x人,共准备了y张桌子,则根据题意可列出方程组()A.B.C.D.2.把若干只鸡兔关在同一个笼子里,从上面数,有11个头;从下面数,有32条腿.则笼中的兔子共有()A.3只B.4只C.5只D.6只3.甲种物品每个1kg,乙种物品每个2.5kg,现购买甲种物品x个,乙种物品y个,共30kg.若两种物品都买,则所有可供购买方案的个数为()A.4B.5C.6D.74.一个两位数的十位数字与个位数字的和是7.如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的二位数,则这个二位数是()A.36B.25C.61D.165.如图,宽为60cm的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为()A.60cm B.120cm C.312cm D.576cm6.我国民间流传着许多趣味算题,他们多以顺口溜的形式表达,请大家看这样的一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少二梨,请问君子知道否,几个老头几个梨?请你猜想一下:几个老头几个梨?()A.3个老头4个梨B.4个老头3个梨C.5个老头6个梨D.7个老头8个梨7.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元8.为确保信息安全,信息需加密传输,发送方将明文加密文件传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a、b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1B.1,-3C.-3,1D.-1,39.某同学上学时步行,回家时坐车,路上一共用90min,若往返都坐车,全部行程只需要30min,若往返都步行,全部行程需要(假定步行、坐车的平均速度不变)()A.100 min B.120 min C.150 min D.160 min10.已知某三种图书的价格分别为10元,15元,20元.某学校计划恰好用500元购买上述图书30本,每种图书至少一本,则不同的购书方案有()种.A.10B.9C.12D.1111.某果农要用绳子捆扎甘蔗,有三种规格的绳子可以使用:长绳子1米,每根能捆7根甘蔗;中等长度的绳子0.6米,每根能捆5根甘蔗;短绳子0.3米,每根能捆3根甘蔗.果农最后捆扎好了23根甘蔗,则果农总共最少使用多少米的绳子()A.2.9B.2.7C.2.4D.2.112.某体育文具用品店老板两次购进排球,篮球的个数和费用如表:已知店老板两次购进排球,篮球的单价一样,且一个排球和一个篮球的总价为100元,则b 的值是()A.224B.276C.280D.332二.填空题(共5小题)13.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x尺,长木为y尺,可列方程组为.14.某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获利200元,那么这批衬衫的进价为元,售价为元.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.16.小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时.若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从下车到山顶走了千米(途中休息时间不计).17.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为元.三.解答题(共5小题)18.“春蕾”爱心社给甲、乙两所学校捐赠图书共5000本,已知捐给甲校的图书比捐给乙校的2倍少700本,求捐给甲、乙学校图书各多少本?19.为了防治“新型冠状病毒”,某市某小区购买了若干瓶消毒剂和若干支红外线测温枪,积极号召主动接受测温和各楼道做好消毒工作.其中,每瓶消毒剂5元,每支红外线测温枪560元,总共消费金额为3000元.问本次小区购买消毒剂的数量和测温枪的数量.20.《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.21.某工厂去年的利润(总产值-总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为810万元,去年的总产值、总支出各是多少万元?22.滴滴快车是一种便捷的出行工具,计价规则如表:小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y分钟.(1)则小明乘车费为元(用含x的代数式表示),小亮乘车费为元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的三分之一少2分钟,问他俩谁先出发?先出发多少分钟?参考答案1-5:ACBDB 6-10:ABACB 11-12:CB13\、14、200;30015、516、1017、4018、设捐给甲校图书x本,捐给乙校图书y本,依题意,得:解得:答:捐给甲校图书3100本,捐给乙校图书1900本.19、设本次小区购买消毒剂的数量和测温枪的数量分别为x和y,根据题意可得:5x+560y=3000,当y=1时,x=488,当y=2时,x=376,当y=3时,x=264,当y=4时,x=152,当y=5时,x=40,答:本次小区购买消毒剂的数量和测温枪的数量分别为488,1或376,2或264,3或152,4或40,5.20、买鹅的人数有9人,鹅的价格为70文21、设去年总产值为x万元,总支出为y万元,根据题意得:解得:答:去年的总产值、总支出各是1800万元、1500万元.22、:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元.故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x-y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为3(分钟),∴小明比小亮先出发,先出发的时间=15-6-3=6(分钟),答:明比小亮先出发,先出发6分钟。
人教版七年级数学下册8.3实际问题和二元一次方程组同步测试(包含答案)
绝密★启用前8.3 实际问题与二元一次方程组班级:姓名:一、单选题1.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy y-=⎧⎨-=⎩2.某校啦啦操运动员进行分组训练,若每组4人,余2人,若每组5人,则缺3人,设运动员人数为x人,组数为y,则根据题意所列方程组为()A.4253y xx x=+⎧⎨+=⎩B.4253y xy x=+⎧⎨-=⎩C.4253y xy x=-⎧⎨=+⎩D.4253y xy x=-⎧⎨=-⎩3.小明的外婆送来满满一篮鸡蛋,这只篮子最多只能装55只鸡蛋,小明3只一数,结果剩下1只,但忘了数了多少次,只好重数,他5只一数剩下2只,可又忘了数了多少次.他准备再数时,妈妈笑着说“不用数了,共有()只.A.54 B.52 C.48 D.504.某学校的篮球个数比足球个数的3倍多2,篮球个数的2倍与足球个数的差是49,设篮球有x个,足球有y个,可得方程组()A.32249x yy x=+⎧⎨-=⎩B.32249x yx y=+⎧⎨-=⎩C.23249x yx y=-⎧⎨=+⎩D.32249x yx y=-⎧⎨-=⎩5.某班同学参加运土劳动,一部分同学抬土,另一部分同学挑土.已知全班共用土筐64个,扁担41根,求抬土与挑土的各有多少人?如果设抬土的同学有x人,挑土的同学有y人,那么可得到的方程组应为()A.2642412yxxy⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩B.2642412xyxy⎧+=⎪⎪⎨⎪+=⎪⎩C.2642241xyx y⎧+=⎪⎨⎪+=⎩D.264241x yx y+=⎧⎨+=⎩6.甲、乙两人练习跑步,如果甲让乙先跑10米,那么甲跑5秒就能追上乙;如果甲让乙先跑2秒,那么甲跑4秒就能追上乙.若甲、乙每秒分别跑x y、米,则列出方程组应是()A.5105442x yx y+=⎧⎨-=⎩B.5510424x yx y=+⎧⎨-=⎩C.()551042x yx y y-=⎧⎨-=⎩D.()()51042x yx y⎧-=⎪⎨-=⎪⎩7.某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种8.如图,在长为12cm,宽为9cm的长方形空地上,沿平行于长方形各边的方向分割出三个形状、大小完全相同的小长方形花圃,则其中一个小长方形花圃的周长是()A.10 B.12 C.16 D.14二、填空题9.如图1,在第一个天平上,物块A的质量等于物块B加上物块C的质量;如图2,在第二个天平上,物块A加上物块B的质量等于3个物块C的质量.已知物块A的质量为10g.请你判断:1个物块B的质量是____________g.10.A、B两地相距20千米,甲乙两人分别从A、B两地相向而行,2小时后在途中相遇,然后甲立即返回A地,乙继续向A地走,当甲回到A地时,乙距离A地还有2千米,则甲的速度为____千米/时,乙的速度为_____千米/时.11.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________12.《九章算术》是我国古代一部数学专著,其中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等。
人教版七年级数学下册 8.3 实际问题与二元一次方程组 同步测试题
8.3 实际问题与二元一次方程组同步测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 一个两位数,十位上数字比个位上数字大,且十位上数字与个位上数字之和为,则这个两位数为A. B. C. D.2. 李老师到文具店买,两种笔(两种都买),种笔元支,种笔元支,共花了元钱,则可供李老师选择的购买方案共有( )A.种B.种C.种D.种3. 一列快车和一列慢车的长分别为米和米,若同向行驶,从快车追及慢车起到全部超过,需秒.现设快车的车速为米/秒,慢车的车速为米/秒,则表示其等量关系的式子是()A. B.C. D.4. 某班有人分组活动,若每组人,则余下人;若每组人,则有一组差人,求全班人数和分组数,正确的方程组是A. B.C. D.5. 张老师到文具店购买、两种文具,种文具每件元,种文具每件元,共花了元钱,则可供他选择的购买方案的个数为(两样都买)()A. B. C. D.6. 学校买排球,足球共个,花费元,足球每个元,排球每个元,设买排球个,买足球个,所列方程组为()A. B.C. D.7. 全国足球联赛规定:胜一场得分,平一场得分,负一场不得分.河南建业队比赛了场,踢平的场数是负的场数的倍,共分,则该队踢平了()A.场B.场C.场D.场8. 在“”促销活动中,小芳的妈妈计划用元在某购物网站购买,两种商品,种商品每件元,种商品每件元.若每种商品至少买一件,且种商品的数量多于种商品的数量,则可供小芳的妈妈选择的购买方案有( )A.种B.种C.种D.种9. 如图,周长为的矩形被分成个全等的矩形,则矩形的面积为()A. B. C. D.二、填空题(本题共计9 小题,每题3 分,共计27分,)10. 小强同学生日的月数减去日数为,月数的两倍和日数相加为,则小强同学生日的月数和日数的和为________.11. 小明用元钱去购买笔记本和钢笔共件,已知每本笔记本元,每枝钢笔元,那么小明最多能买________枝钢笔.12. 今有鸡兔同笼,上有头,下有足,则鸡有________只,兔有________只.13. 设甲数为,乙数为,且甲数的倍与乙数的的和是,则可列方程________.14. 已知两个角的和是差是,则这两个角的度数分别是________.15. 一个两位数,十位上的数字比个位上的数字大,如果把十位上的数字与个位上的数字换位置,那么得到的新两位数比原来的两位数的一半还少,那么原来的两位数是________.16. 学校计划购买和两种品牌的足球,已知一个品牌足球元,一个品牌足球元.学校准备将元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有________种.17. 甲、乙、丙三种物品,若购甲个、乙个、丙个共付元;若购甲个、乙个、丙个共付元,则甲、乙、丙各买个共需________元.18. 某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户居民月份高峰时段用电量是空闲时段用电量倍,月份高峰时段用电量比月份高峰时段用电量少,结果月份的用电量和月份的用电量相等,但月份的电费却比月份的电费少,则该地区空闲时段民用电的单价与高峰时段的用电单价的比值为________.三、解答题(本题共计6 小题,共计60分,)19. 李明以两种形式分别储蓄了元和元,一年后全部取出,扣除利息所得税后可得利息元;已知这两种储蓄年利率的和为,求这两种储蓄的年利率各是百分之几?(公民应交利息所得税利息金额)20. 某商店需要购进甲、乙两种商品共件,其进价和售价如表:(注:获利售价-进价)若商店计划销售完这批商品后能获利元,请利用二元一次方程组求甲,乙两种商品应分别购进多少件?21. 某公司分两次购进化肥,第一次用了节火车皮和辆汽车,运了化肥,第二次用了节火车皮与辆汽车,共运化肥,问节火车皮和辆汽车能运多少吨化肥?22. 名同学被分配到大、小不同的两种寝室,大寝室每间住人,小寝室每间住人,刚好住满.求大、小寝室各住了多少间.如果设大寝室住了间,小寝室住了间,请列出方程,并写出两个解.23. 已知:用辆型车和辆型车载满货物一次可运货吨;用辆型车和辆型车载满货物一次可运货吨.根据以上信息,解答下列问题:(1)辆型车和辆车型车都载满货物一次可分别运货多少吨?(2)某物流公司现有货物若干吨要运输,计划同时租用型车辆,型车辆,一次运完,且恰好每辆车都载满货物,请求出该物流公司有多少吨货物要运输.24. 为了拉动内需,某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共台,政策出台后的第一个月售出这两种型号的汽车共台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长和.在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?若手动型汽车每台价格为万元,自动型汽车每台价格为万元.根据汽车补贴政策,政府按每台汽车价格的给购买汽车的用户补贴,问政策出台后的第一个月,政府对这台汽车用户共补贴了多少万元?参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】D【解答】解:设个位上的数字是,十位上的数字是,依题意得:,解得.则这个两位数是.故选.2.【答案】B【解答】解:设李老师到文具店买种笔支,种笔支,则根据题意得,,∴,∵李老师两种笔都买,∴,都为正整数,∴有∴李老师选择的购买方案共有种.故选.3.【答案】D【解答】解:∵快车的车速为米/秒,慢车的车速为米/秒,∴追击中实际的车速为米/秒,∴根据路程为两车车长的和列方程可得,故选.4.【答案】D【解答】解:设全班人数为人,分了个学习小组;由题意得,若每组人,余下人,;若每组人,不足人,;∴可列出方程组故选.5.【答案】B【解答】设买种文具为件,种文具为件,依题意得:=,则=.∵、为正整数,∴当=时,=;当=时,=;当=时,=;当=时,=;当=时,=;当=时,=(舍去);综上所述,共有种购买方案.6.【答案】D【解答】解:根据买排球,足球共个,得方程;根据足球每个元,排球每个元,共花费元,得方程.可列方程组为.故选.7.【答案】D【解答】此题暂无解答8.【答案】A【解答】解:设种商品买件,种商品买件,则有,即,且,为整数,所以,;,,所以可供小芳妈妈选择的购买方案有种.故选.9.【答案】C【解答】解:设小长方形的长、宽分别为、,依题意得:,解得:,则矩形的面积为.故选.二、填空题(本题共计9 小题,每题 3 分,共计27分)10.【答案】【解答】解:设小强同学生日的月数为,日数为,由题意可列得方程组:,解得,则.故答案为:.11.【答案】【解答】解:设小明一共买了本笔记本,支钢笔,根据题意,可得,可求得因为为正整数,所以最多可以买钢笔支.故答案为:.12.【答案】,【解答】解:设鸡有只,兔有只,故居题意得:,解得:.故答案为:,.13.【答案】【解答】解:∵甲数的倍为,乙数的为,∴根据和为可得方程为:,故答案为.14.【答案】和【解答】解:设这两个角的度数为,则解得故答案为:和.15.【答案】【解答】解:设原来的两位数个位上的数字为,十位上的数字为.则解得所以原来的两位数是.故答案为:.16.【答案】【解答】解:设购买品牌足球个,购买品牌足球个,依题意,得:,∴.∵,均为正整数,∴或或或∴该学校共有种购买方案.故答案为:.17.【答案】【解答】设甲、乙、丙各买个分别需元,元,元,根据题意,得:,①②得:=,方程两边乘以,得=.则甲、乙、丙各买个共需元.18.【答案】【解答】设空闲时段居民用电的单价为元/千瓦时,高峰时段居民用电的单价为元/千瓦时,该用户月份空闲时段居民用电量为千瓦时,则月份高峰时段居民用电量为千瓦时,月份空闲时段居民用电量为千瓦时,月份高峰时段居民用电量为千瓦时,依题意,得:=,解得:,∴该地区空闲时段居民用电的单价比高峰时段的居民用电单价低.三、解答题(本题共计6 小题,每题10 分,共计60分)19.【答案】解:设两种储蓄的年利率分别是,,则解得故两种储蓄的年利率分别是,.【解答】解:设两种储蓄的年利率分别是,,则,解得.故两种储蓄的年利率分别是,.20.【答案】解:设甲,乙两种商品分别购进,件,由题意得解得答:甲商品应购进件,乙商品应购进件.【解答】解:设甲,乙两种商品分别购进,件,由题意得解得答:甲商品应购进件,乙商品应购进件.21.【答案】解:设节火车皮,辆汽车一次分别能装吨,吨化肥.则,解得..答:节火车皮和辆汽车能运吨化肥.【解答】解:设节火车皮,辆汽车一次分别能装吨,吨化肥.则,解得..答:节火车皮和辆汽车能运吨化肥.22.【答案】大寝室住了间,小寝室住了间,由题意,得=.整理,得=.因为、都是正整数,所以当=时,=.当=时,=.当=时,=.当=时,=.当=时,=.【解答】大寝室住了间,小寝室住了间,由题意,得=.整理,得=.因为、都是正整数,所以当=时,=.当=时,=.当=时,=.当=时,=.当=时,=.23.【答案】该物流公司有吨货物要运输.【解答】(1)解:设型车辆运吨,型车辆运吨,由题意得,解之得,所以辆型车满载为吨,辆型车满载为吨.(2)依题意得:(吨).答:该物流公司有吨货物要运输.24.【答案】解:设在政策出台前的一个月销售手动型和自动型汽车分别为,台,根据题意,得解得:答:政策出台前的一个月销售手动型和自动型汽车分别为台和台.手动型汽车的补贴额为:(万元);自动型汽车的补贴额为:(万元);∴(万元).答:政策出台后第一个月,政府对这台汽车用户共补贴万元.【解答】解:设在政策出台前的一个月销售手动型和自动型汽车分别为,台,根据题意,得解得:答:政策出台前的一个月销售手动型和自动型汽车分别为台和台.手动型汽车的补贴额为:(万元);自动型汽车的补贴额为:(万元);∴(万元).答:政策出台后第一个月,政府对这台汽车用户共补贴万元.。
人教版七年级数学下册 8.3实际问题与二元一次方程组 同步练习题含答案
⎨⎩⎩ ⎨⎩ ⎨⎩ ⎩ 实际问题与二元一次方程组一、单选题1.20 位同学在植树节这天共种了 52 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵,设男生有x 人,女生有 y 人,根据题意,列方程组正确的是()⎧x +y = 52 A.⎩3x + 2 y = 20⎧x +y = 20 C.⎨2x + 3y = 52⎧x +y = 52 B.⎨2x + 3y = 20x +y = 20 D.{3x + 2 y = 52⎧2x + 3y = 72.若方程组⎩5x -y = 9的解也是方程3x-a y=8的一个解,则a的值为( )A.1 B.-2 C.-3 D.43.一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需54 min ,从乙地到甲地需42 min .甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程x +y=54,则另一个方程正确的是()3 4 60A.x+y=424 3 60B.x+y=425 4 60C.x+y=424 5 60D.x+y=423 4 604.现有190 张铁皮做盒子,每张铁皮可做8 个盒身或22 个盒底,一个盒身与两个盒底配成一个完整的盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为()⎧x + 2 y=190 A.⎨2 ⨯8x = 22 y⎧2 y +x =190B.⎩8x = 22 y⎧x +y = 190C.⎨2 ⨯ 22 y = 8x⎧x +y = 190D.⎨2 ⨯ 8x = 22 y⎩⎩⎩ ⎩ ⎩ ⎩5. 小明去商店购买 A 、B 两种玩具,共用了10 元钱,A 种玩具每件1元,B 种玩具每件2 元.若每种玩具至少买一件,且 A 种玩具的数量多于 B 种玩具的数量.则小明的购买方案有( )A . 5 种B . 4 种C . 3 种D . 2 种6. 如图,宽为 50cm 的长方形团由 10 个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为( )A .400cm2B .500cm2C .600cm2D .4000cm 27. 我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比举 子长一托,折回索子却量竿,却比竿子短一托“其大意为:现有粮竿和一条绳索,用绳索去量竿,绳索比竿长 5 尺:如果将绳索对半折后再去量竿,就比竿短 5 尺,设绳家长 x 尺,竿长 y 尺,则符合题意的方程组是( )⎧x = y + 5 ⎪ A . ⎨1x = y - 5 ⎩ 2⎧x = y + 5 B . ⎨2x = y - 5⎧x = y - 5⎪ C . ⎨ 1x = y + 5 ⎩ 2⎧x = y - 5 D . ⎨2x = y + 58. 篮球比赛中,每场比赛都要分出胜负,每队胜 1 场得 3 分,负一场扣 1 分。
人教版七年级数学下册8.3实际问题和二元一次方程组同步测试和答案
人教版七年级下学期8.3实际问题与二元一次方程组同步测试一、选择题1.既是方程23x y-=的解,又是方程3410x y+=的解是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.43xy=⎧⎨=⎩D.45xy=-⎧⎨=-⎩2.甲、乙两数这和为16,甲数的3倍等于乙数的5倍,若设甲数为x,乙数为y,则方程组(1)16 35x yx y +=⎧⎨=⎩,;(2)1653x yx y+=⎧⎨=⎩,;(3)16530x yy x-=⎧⎨-=⎩,;(4)1653y xx y-=⎧⎪⎨=⎪⎩,中,正确的有()A.1组B.2组C.3组D.4组3.某校150名学生参加竞赛,平均分为55分,其中及格学生平均分为77分,不及格学生平均分为47分,则不及格学生的人数为()A.49B.101C.40D.1104.某个体商店在一次买卖中同时卖出两件上衣,每件都是以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,则这家商店在这次买卖中() A.不赔不赚 B.赚9元 C.赔8元 D.赔18元5.甲、乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,•那么这艘轮船在静水中的航速与水速分别是()A.24千米/时,8千米/时 B.22.5千米/时,2.5千米/时C.18千米/时,24千米/时 D.12.5千米/时,1.5千米/时6.今年哥哥的年龄是妹妹的2倍,2年前哥哥的年龄是妹妹的3倍,求2年前哥哥和妹妹的年龄,设2年前哥哥x岁,妹妹y岁,依题意,得到的方程组是()A.23(2),2x yx y+=+⎧⎨=⎩B.23(2),2x yx y-=-⎧⎨=⎩C.22(2),3x yx y+=+⎧⎨=⎩D.23(2),3x yx y-=-⎧⎨=⎩7.某文具店出售单价分别为120元和80•元的两种纪念册,•两种纪念册每册都有30%的利润.某人共有1080元钱,欲买一定数量的某一种纪念册,若买单价为120•元的纪念册则钱不够,但经理知情后如数付给了他这种纪念册,结果文具店获利和卖出同数量的单价为80元的纪念册获利一样多,那么这个人共买纪念册()A.8册 B.9册 C.10册 D.11册8.某校初三(2)班40名同学为“希望工程”捐款,•共捐款100元.捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( )A .27,2366x y x y +=⎧⎨+=⎩B .27,23100x y x y +=⎧⎨+=⎩C .27,3266x y x y +=⎧⎨+=⎩D .27,32100x y x y +=⎧⎨+=⎩ 9.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分.•一支青年足球队参加15场比赛,负4场,共得29分,则这支球队胜了( )A .2场B .5场C .7场 C .9场10.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,•求两种球各有多少个?若设篮球有x 个,排球有y 个,依题意,得到的方程组是( )A .23,32x y x y =-⎧⎨=⎩B .23,32x y x y =+⎧⎨=⎩C .23,23x y x y =-⎧⎨=⎩D .23,23x y x y =+⎧⎨=⎩二、填空题11.某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了 枚,80分的邮票买了 枚。
人教版七年级数学下册8.3 实际问题与二元一次方程组同步练习
人教版七年级数学下册8.3 实际问题与二元一次方程组同步练习选择题既是方程2x-y=3的解,又是方程3x+4y=10的解是()A. B. C. D.【答案】B【解析】本题考查的是二元一次方程组的解的定义把两个方程组成一个方程组,解出即得结果。
由题意得,解得,故选B.选择题甲、乙两数这和为,甲数的倍等于乙数的倍,若设甲数为,乙数为,则方程组(1)(2)(3)(4)中,正确的有()A. 组B. 组C. 组D. 组【答案】C【解析】本题考查的是根据实际问题列方程组根据等量关系:甲、乙两数这和为,甲数的倍等于乙数的倍,即可列出方程组,再分析比较即可。
根据等量关系,甲、乙两数这和为,可列方程为,根据等量关系,甲数的倍等于乙数的倍,可列方程为,根据等式的基本性质可知(1)、(3)、(4)均正确,故选C。
选择题某校名学生参加竞赛,平均分为分,其中及格学生平均分为分,不及格学生平均分为分,则不及格学生的人数为()A.B.C.D.【答案】D【解析】本题考查的是方程组的应用根据等量关系为:总人数150人,及格学生数×77+不及格学生数×47=150×55,即可列出方程组.设不及格的人数为人,及格的人数为人,由题意得,解得,则不及格学生的人数为人,故选D。
选择题已知方程组的解是正整数,则的值为()A.B.C.D.【答案】C【解析】本题考查了解二元一次方程组. 先用加减消元法消去x,把m当做已知表示出y,再把四个选项代入检验选出符合条件的m 的值即可.解:②×2-①得,y=,把A代入得,y==6,代入②得,x+4×6=8,解得,x=-16,不合题意舍去;把B代入得,y==3,代入②得,x+4×3=8,解得,x=-4,不合题意舍去;把C代入得,y==1,代入②得,x+4=8,解得,x=4,符合题意;把D代入得,y==2,代入②得,x+4×2=8,解得,x=0,不合题意舍去;故选C.选择题一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是()A. B.C. D.【答案】D【解析】根据十位上的数字x比个位上的数字y大1,得方程x=y+1.根据互换个位与十位上的数字,得到的新数比原数小9,得方程10x+y=10y+x+9.列方程组为.故选:D.试题解析:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.选择题在一家三口人中,每两个人的平均年龄加上余下一人的年龄分别得到,,,那么这三个人中最大年龄与最小年龄的差是()A.B.C.D.【答案】A【解析】本题考查的是方程组的应用根据等量关系:每两个人的平均年龄加上余下一人的年龄分别得到、、,即可列出方程组,解出即可。
人教版七年级下册数学 8.3 实际问题和二元一次方程组 同步习题(含答案)
8.3 实际问题与二元一次方程组同步习题1.在社会主义新农村建设中,某村积极响应党的号召,大力发动农户扩大烟叶和蔬菜的种植面积,取得了较好的经济效益.今年该村的烟叶和蔬菜的种植面积比去年增加了800亩,其中烟叶种植面积增加了20%,蔬菜种植面积增加了30%,从而使该村的烟叶和蔬菜种植面积共达到了4 200亩.问该村去年种植烟叶和蔬菜的面积各是多少亩?2.在当地农业技术部门的指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.如图是小明、爸爸、妈妈的一段对话.请你用所学过的知识帮助小明算出他们家今年种植菠萝的收入.(收入-投资=净赚)3.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为多少元?4.某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)(2)全部售完500箱矿泉水,该商场共获得利润多少元?5.某商场购进甲、乙两种商品后,甲种商品加价50%、乙种商品加价40%作为标价,适逢元旦,商场举办促销活动,甲种商品打八折销售,乙种商品打八五折销售,某顾客购买甲、乙两种商品各1件,共付款538元,已知商场共盈利88元,求甲、乙两种商品的进价各是多少元.6.张文以两种形式分别储蓄了2 000元和1 000元,一年后全部取出,所得利息为64.8元,已知当时这两种储蓄方式年利率的和为4.23%.问这两种储蓄方式的年利率各是百分之几?(不计利息税)7.某村粮食专业队去年计划生产水稻和小麦共150 t,实际生产了170 t.其中水稻超产15%,小麦超产10%.问该专业队去年实际生产水稻、小麦各为多少吨?8.下面是某一周甲、乙两种股票每股每天的收盘价(单位:元).(收盘价:股票每天交易结束时的价格)(不计手续费、税费等),该人星期二这一天获利200元,星期三这一天获利1 300元,试问该人持有甲、乙股票分别为多少股?9.某地生产一种绿色蔬菜,若在市场上直接销售,每吨的利润为 1 000 元;经粗加工后销售,每吨的利润可达4 500 元;经精加工后销售,每吨的利润涨至7 500 元.当地一家农工商公司收购这种蔬菜140 t,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16 t;如果进行精加工,每天可加工6 t,但两种加工方式不能同时进行.受季节条件的限制,公司必须在15天之内将这批蔬菜处理完毕,为此公司研制了三种加工方案:方案1:将蔬菜全部进行粗加工;方案2:尽可能多地对蔬菜进行精加工,没有来得及加工的蔬菜在市场上直接销售;方案3:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天之内完成. 你认为选择哪种方案获利最多?10.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表:(1)若租用甲、,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?11.张明沿公路匀速前进,每隔4 min就遇到迎面开来的一辆公共汽车,每隔6 min 就有一辆公共汽车从背后超过他.假定公共汽车的速度不变,而且迎面开来的相邻两车的距离和从背后开来的相邻两车的距离都是1 200 m,求张明前进的速度和公共汽车的速度.12.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m,下坡路每分钟走80 m,上坡路每分钟走40 m,则他从家里到学校需10 min,从学校到家里需15 min.问:从小华家到学校的平路和下坡路各有多远?13.一列载客火车和一列运货火车分别在两条平行的铁轨上行驶,载客火车长150 m,运货火车长250 m.若两车相向而行.从车头相遇到车尾离开共需10 s;若载客火车从后面追赶运货火车,从车头追上运货火车车尾到完全超过运货火车共需100 s,试求两车的速度.14.甲、乙两地相距120 km,一艘船从甲地出发顺水航行6 h到达乙地,而从乙地出发逆水航行8 h到达甲地,已知船顺水航行、逆水航行的速度分别为船在静水中的速度与水流速度的和与差,求船在静水中的速度和水流速度.15.甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4 min两人首次相遇,此时乙还需要跑300 m才跑完第一圈,求甲、乙二人的速度及环形场地的周长.16.为了参加2015年国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600 m,跑步的平均速度为每分钟200 m,自行车路段和长跑路段共5 km,用时15 min.求自行车路段和长跑路段的长度.参考答案1.解:设该村去年种植烟叶和蔬菜的面积分别为x亩、y亩,依题意,得解这个方程组,得答:该村去年种植烟叶和蔬菜的面积分别是2 200亩、1 200亩.2.解:设小明家去年种植菠萝的收入为x元,投资为y元,依题意,得解得所以小明家今年种植菠萝的收入为(1+35%)×12 000=1.35×12 000=16 200(元).3.解:设该商品的进价为x元,标价为y元,由题意,得解得x=2 500,y=3750.则3 750×0.9-2 500=875(元).4.解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意,得解得答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36-24)+200×(48-33)=3 600+3 000=6 600(元).答:该商场共获得利润6 600元.5.解:设甲种商品的进价为x元,乙种商品的进价为y元.根据题意,得化简,得解得答:甲种商品的进价为250元,乙种商品的进价为200元.6.解:设存 2 000元和 1 000元的年利率分别是x%,y%,由题意,得解得答:存2 000元和1 000元的年利率分别为2.25%,1.98%.7.解:设该专业队去年计划生产水稻为x t,小麦为y t,依题意,得解得答:该专业队去年实际生产水稻、小麦各为115 t,55 t.8.解:设该人持有甲、乙股票分别为x股、y股,由题意,得解得答:该人持有甲、乙股票分别为1 000股、1 500股.解:观察表格可知:星期二甲种股票每股获利为(12.5-12)元,乙种股票每股获利为+(13.3-13.5)×股(13.3-13.5)元,则星期二这一天总获利为[(12.5-12)×股数甲]元,同理可表示星期三这一天的获利.数乙9.解:方案1获利为4 500×140=630 000(元).方案2获利为7 500×6×15+1 000×(140-6×15)=675 000+50 000=725 000(元). 方案3:设将x t蔬菜进行精加工,y t蔬菜进行粗加工,根据题意,得解得所以方案3获利为7 500×60+4 500×80=810 000(元).因为630 000<725 000<810 000,所以选择方案3获利最多.解:分别计算三种方案的获利情况,然后做出决策.10.解:(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:解得答:甲、乙两种型号的挖掘机各需5台、3台.(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.所以m=9-n.又因为m,n都是正整数,所以方程的解为当m=5,n=3时,支付租金:100×5+120×3=860(元)>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820(元)<850元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.11.解:设张明前进的速度是x m/min,公共汽车的速度是y m/min.根据题意,得解这个方程组,得答:张明前进的速度是50 m/min,公共汽车的速度是250 m/min.解:(1)“相向而遇”时,两者所走的路程之和等于两者原来的距离;(2)“同向追及”时,快者所走的路程减去慢者所走的路程等于两者原来的距离.12.解:设平路有x m,下坡路有y m,根据题意,得解得答:小华家到学校的平路和下坡路各为300 m,400 m.13.解:设载客火车的速度为x m/s,运货火车的速度为y m/s.由题意,得解得答:载客火车的速度是22 m/s,运货火车的速度是18 m/s.解:本题是一道特殊的相遇与追及结合的应用题.①两车相向而行是相遇问题,相遇时两车行驶的路程总和=两车车身长之和;②载客火车从后面追赶运货火车是追及问题,追上时两车所走的路程差=两车车身长之和.错车问题属于特殊的行程问题,它与行程问题的主要区别是:行程问题不考虑车本身的长,而错车问题要考虑车本身的长.与错车问题类似的还有过桥问题、过隧道问题等.14.解:设船在静水中的速度为x km/h,水流速度为y km/h,由题意,得解得答:船在静水中的速度为17.5 km/h,水流速度为2.5 km/h.15.解:设乙的速度为x m/min,环形场地的周长为y m,则甲的速度为2.5x m/min,由题意,得解得所以甲的速度为:2.5×150=375(m/min).答:甲的速度为375 m/min,乙的速度为150 m/min,环形场地的周长为900 m. 16.解:设自行车路段的长度为x m,长跑路段的长度为y m,则解得答:自行车路段的长度为3 000 m,长跑路段的长度为2 000 m.。
8.3-实际问题与二元一次方程组(1)-同步练习-人教版数学-七年级下册(含解析)
8.3 实际问题与二元一次方程组(1)同步练习人教版数学七年级下册学校:___________姓名:___________班级:___________考号:___________一、单选题1.七年级一班相约周末去游乐园划船,若每条船乘7人,则有7人无船可乘;若每条船乘9人,则空出一条船.设该游乐园有x条船,一班共有y人,则下列方程组中正确的是()A.779(1)x yx y+=⎧⎨-=⎩B.779(1)x yx y+=⎧⎨+=⎩C.779(1)x yx y-=⎧⎨-=⎩D.779(1)x yx y-=⎧⎨+=⎩2.某学校为进一步开展好劳动教育实践活动,用1580元购进A,B两种劳动工具共145件,A,B两种劳动工具每件分别为10元,12元.设购买A,B两种劳动工具的件数分别为x,y,那么下面列出的方程组中正确的是()A.14510121580x yx y+=⎧⎨+=⎩B.14510121580x yx y-=⎧⎨+=⎩C.14512101580x yx y+=⎧⎨+=⎩D.14512101580x yx y-=⎧⎨+=⎩3.一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为()A.110109x yx y y x-=⎧⎨+=++⎩B.110109x yy x x y-=⎧⎨+=++⎩C.110109y xx y y x-=⎧⎨+=++⎩D.110109y xy x x y-=⎧⎨+=++⎩4.某药店以同样的价格卖出同样的口罩和酒精,以下是4天的记录:第1天,卖出13包口罩和7瓶酒精,收入222元;第2天,卖出18包口罩和11瓶酒精,收入327元;第3天,卖出7包口罩和11瓶酒精,收入228元;第4天,卖出23包口罩和20瓶酒精,收入468元,聪明的小方发现这四天中有一天的记录有误,其中记录有误的是( )A.第1天B.第2天C.第3天D.第4天5.“洛书”是世界上最古老的一个三阶幻方,它有3行3列,三横行的三个数之和,三竖列的三个数之和,两对角线的三个数之和都相等,其实幻方就是把一些有规律的数填在正方形图内,使每一行、每一列和每一条对角线上各个数之和都相等,如图幻方a、b的值分别是()A.11,9B.9,11C.8,13D.13,8二、填空题6.一家四口人的年龄加在一起是100岁,弟弟比姐姐小8岁,父亲比母亲大2岁,十年前他们全家人年龄的和是65岁,则父亲今年的年龄为岁.7.某班级为筹备运动会,准备用350元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.8.在当地农业技术部门的指导下,小明家种植的大棚油桃喜获丰收,去年大棚油桃的利润(利润=收入-支出)为12000元,今年大棚油桃的收入比去年增加了20%,支出减少了10%,预计今年的利润比去年多11400元,设小明家去年种植大棚油桃的收入为x元,支出是y元.依题意列方程组.9.已知一个两位数,它的十位上的数字与个位上的数字之和为15,若对调个位与十位上的数字,得到的新数比原数小27,求这个两位数,设十位上的数字为x,个位上的数字为y,所列方程组(不用化简)为.10.小慧带着妈妈给的现金去蛋糕店买蛋糕.他若买5个巧克力蛋糕和3个桂圆蛋糕,则妈妈给的钱不够,还缺16元;若买3个巧克力蛋糕和5个桂圆蛋糕,则妈妈给的钱还有剩余,还多10元.若他只买8个桂圆蛋糕,则剩余的钱为元.11.用白铁皮制作罐头盒,每张铁皮可制作盒身16个或者盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用张制作盒身,张制作盒底,能使盒身和盒底恰好配套.三、解答题12.某商场第一次购进20件A商品,40件B商品,共用了1980元.脱销后,在进价不变的情况下,第二次购进40件A商品,20件B商品,共用了1560元.商品A的售价为每件30元,商品B的售价为每件60元.(1)求A,B两种商品每件的进价分别是多少元?(2)为了满足市场需求,需购进A,B两种商品共1000件,且A种商品的数量不少于B种商品数量的3倍,请你设计进货方案,使这1000件商品售完后,商场获利最大,并求出最大利润.13.一个三位数是一个两位数的5倍,如果把这三位数放在两位数的左边,得到一个五位数;如果把这三位数放在两位数的右边,得到另一个五位数,而后面的五位数比前面的五位数大18648,问:原两位数、三位数各是多少?14.某校准备组织师生共300人参加一项公益活动,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A型车3辆,B型车3辆,则空余15个座位;如果租用A型车5辆,B型车1辆,则有15个人没座位.(1)求A,B两种车型各有多少个座位.(2)若最终租用了两种车型的车,且座位恰好坐满,则两种车型的车各租用了多少辆?15.某商店分两次购进A,B型两种台灯进行销售,两次购进的数量及费用如下表所示,由于物价上涨,第二次购进A,B型两种台灯时,两种台灯每台进价分别上涨30%,20%.购进的台数购进所需要的费用(元)A型B型第一次10203000第二次15104500(1)求第一次购进A,B型两种台灯每台进价分别是多少元?(2)A,B型两种台灯销售单价不变,第一次购进的台灯全部售出后,获得的利润为2800元,第二次购进的台灯全部售出后,获得的利润为1800元.求A,B型两种台灯每台售价分别是多少元?参考答案:1.A【分析】设该游乐园有x 条船,一班共有y 人,由“若每条船乘7人,则有7人无船可乘”得到方程7x +7= y ;由“若每条船乘9人,则空出一条船”得到方程9(x - 1)= y ,联立组成方程组即可解答.【详解】解:设该游乐园有x 条船,一班共有y 人,根据题意得:779(1)x y x y +=⎧⎨-=⎩;故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.2.A【分析】设购买A ,B 两种劳动工具的件数分别为x ,y ,根据“用1580元购进A ,B 两种劳动工具共145件,A ,B 两种劳动工具每件分别为10元,12元.”列出方程组,即可求解.【详解】解:设购买A ,B 两种劳动工具的件数分别为x ,y ,根据题意得:14510121580x y x y +=⎧⎨+=⎩.故选:A【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.3.D【分析】先表示出颠倒前后的两位数,然后根据十位上的数字y 比个位上的数字x 大1,若颠倒个位与十位数字的位置,得到新数比原数小9,列方程组即可.【详解】解:根据十位上的数字y 比个位上的数字x 大1,得方程y=x+1;根据对调个位与十位上的数字,得到的新数比原数小9,得方程10y+x=10x+y+9.列方程组为110109y x y x x y -=⎧⎨+=++⎩故选D .【点睛】y 本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解4.D【分析】设口罩的单价为x 元,酒精的单价为y 元,假设第1天、第2天的记录无误,根据题意列二元一次方程组求解,再分别计算第3天和第4天的收入,比较即可得到答案.【详解】解:设口罩的单价为x 元,酒精的单价为y 元,若第1天、第2天的记录无误时,依题意得:1372221811327x y x y +=⎧⎨+=⎩,解得:915x y =⎧⎨=⎩,∴第3天收入791115228⨯+⨯=元,符合记录,第4天收入2392015507⨯+⨯=元,不符合记录,∴第4天的记录有误,故选:D .【点睛】本题主要考查了二元一次方程组的实际应用,有理数的混合运算,根据题意正确列方程组是解题关键.5.D【分析】本题是一道有关探究规律的题目,侧重考查知识点的应用能力,依题意,得1112111715a b a b ++=++=++,再解二元一次方程组即可.【详解】解:依题意,得1112111715a b a b ++=++=++,解得:138ab=⎧⎨=⎩,故选:D.6.42【分析】由题意得:弟弟今年的年龄为5岁,姐姐今年的年龄为13岁,设母亲今年的年龄为x岁,父亲今年的年龄为y岁,再由题意:一家四口人的年龄加在一起是100岁,父亲比母亲大2岁,列出方程组,解方程组即可.【详解】解:现在一家四口人的年龄之和应该比十年前全家人年龄之和多40岁,但实际上100-65=35(岁),说明十年前弟弟没出生,则弟弟的年龄为10-(40-35)=5(岁),姐姐的年龄为5+8=13(岁),设母亲今年的年龄为x岁,父亲今年的年龄为y岁,由题意得:5131002x yy x+++=⎧⎨=+⎩,解得:4042xy=⎧⎨=⎩,即父亲今年的年龄为42岁,故答案为:42.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.两【分析】本题考查二元一次方程的应用.设甲种运动服买了x套,乙种买了y套,根据准备用350元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y为正整数可求出解.【详解】解:设甲种运动服买了x套,乙种买了y套,2035350x y +=,得7074y x -=,∵x ,y 必须为正整数,∴70704y ->,即010y <<,∴当2y =时,14x =;当6y =时,7x =;所以有两种方案.故答案为:两.8.12000(120%)(110%)1200011400x y x y -=⎧⎨+--=+⎩【分析】审题,明确等量关系,建立方程组.【详解】解:由题意知,今年收入为(120%)x +,今年支出(110%)y -,故12000(120%)(110%)1200011400x y x y -=⎧⎨+--=+⎩故答案为:12000(120%)(110%)1200011400x y x y -=⎧⎨+--=+⎩【点睛】本题考查二元一次方程组的应用,根据题意明确等量关系是解题的关键.9.15101027x y y x x y +=⎧⎨+=+-⎩【分析】本题考查二元一次方程组的应用,由“十位上的数字与个位上的数字之和为15”可得15x y +=,这个两位数表示为()10x y +,对调个位与十位上的数字表示为()10y x +,根据“得到的新数比原数小27”可得方程“101027y x x y +=+-”,组成方程组即可.【详解】解:根据“它的十位上的数字与个位上的数字之和为15,若对调个位与十位上的数字,得到的新数比原数小27”,可得:15 101027x yy x x y+=⎧⎨+=+-⎩故答案为:15 101027x yy x x y+=⎧⎨+=+-⎩.10.49【分析】设买一个巧克力x元,买一个蛋糕y元,根据已知条件可得到他妈妈给小慧的钱为5x+3y-16和3x+5y+10,由此建立关于x,y的方程,求出x-y的值,然后求出他买8个桂圆蛋糕的剩余的钱为5x+3y-16-8y,将其整理可求出结果.【详解】解:设买一个巧克力x元,买一个蛋糕y元,∵他若买5个巧克力蛋糕和3个桂圆蛋糕,则妈妈给的钱不够,还缺16元,∴他妈妈给小慧的钱为5x+3y-16;∵若买3个巧克力蛋糕和5个桂圆蛋糕,则妈妈给的钱还有剩余,还多10元,∴3x+5y+10∴5x+3y-16=3x+5y+10,解之:x-y=13.他买8个桂圆蛋糕的钱为8y,他剩余的钱为5x+3y-16-8y=5x-5y-16=5(x-y)-16=5×13-16=49元.故答案为:49.【点睛】本题考查了二元一次方程的应用,以及整式的加减,根据题意找出等量关系是解决本题的关键.11.20 16【分析】根据题意可知,本题中的相等关系是(1)盒身的个数2⨯=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数36=,列方程组求解即可.【详解】解:设用x张制作盒身,y张制作盒底,根据题意,得3621640x y x y+=⎧⎨⨯=⎩,解得2016x y =⎧⎨=⎩,故答案为:20,16.【点睛】本题考查了二元一次方程组的应用,解题的关键是正确分析题目中的等量关系.12.(1)A 种商品每件的进价为19元,B 种商品每件的进价为40元;(2)当购进A 种商品750件、B 种商品250件时,销售利润最大,最大利润为13250元.【分析】(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为y 元,根据两次进货情况表,可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进B 种商品m 件,获得的利润为w 元,则购进A 种商品(1000-m)件,根据总利润=单件利润×购进数量,即可得出w 与m 之间的函数关系式,由A 种商品的数量不少于B 种商品数量的3倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再根据一次函数的性质即可解决最值问题.【详解】(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为y 元,根据题意得:2040198040201560x y x y +=⎧⎨+=⎩,解得:1940x y =⎧⎨=⎩.答:A 种商品每件的进价为19元,B 种商品每件的进价为40元;(2)设购进B 种商品m 件,获得的利润为w 元,则购进A 种商品(1000﹣m )件,根据题意得:w =(30﹣19)(1000﹣m )+(60﹣40)m =9m +11000.∵A 种商品的数量不少于B 种商品数量的3倍,∴10003m m ≥﹣,解得:250m ≤,∵在w =9m +11000中,k =9>0,∴w 的值随m 的增大而增大,∴当m =250时,w 取最大值,最大值为9×250+11000=13250,∴当购进A 种商品750件、B 种商品250件时,销售利润最大,最大利润为13250元.【点睛】本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w 与m 之间的函数关系式.13.原两位数是37;三位数是185.【分析】设两位数是x ,三位数是y .根据一个三位数是一个两位数的5倍,得方程y=5x ;根据把这个三位数放在两位数的左边,得到一个五位数,即100y+x ,根据把这个三位数放在两位数的右边,得到另一个五位数,即1000x+y ,再根据后面的五位数比前面的五位数大18648,列方程1000x+y-(100y+x )=18648.联立解方程组即可.【详解】解:设两位数是x ,三位数是y .根据题意,得()5100010018648y x x y y x ⎧⎨+-+⎩=,= 解,得37185x y ⎧⎨⎩=.=答:两位数、三位数各是37、185.【点睛】本题考查二元一次方程组的应用,解题关键是掌握数的表示方法,把三位数放在两位数的左边,相当于把三位数扩大了100倍,把三位数放在两位数的右边,相当于把两位数扩大了1000倍.14.(1)每个A 型车有45个座位,B 型车有60个座位(2)需租用A 型车4辆,B 型车2辆【分析】本题主要考查了二元一次方程(组)的应用,解题的关键是根据题意找出等量关系.(1)设该公司A ,B 两种车型各x 、y 个座位,根据题意得:3330015530015x y x y +=+⎧⎨+=-⎩,即可求解;(2)设需租A 型车m 辆,B 型车n 辆,可得354n m =-,再利用正整数解的含义可得答案.【详解】(1)解:设每个A 型车有x 个座位,B 型车有y 个座位,依题意,得:3330015530015x y x y +=+⎧⎨+=-⎩,解得:4560x y =⎧⎨=⎩.答:每个A 型车有45个座位,B 型车有60个座位.(2)设需租A 型车m 辆,B 型车n 辆,依题意,得:4560300m n +=,∴354n m =-.∵m ,n 均为正整数,∴42m n =⎧⎨=⎩.答:需租用A 型车4辆,B 型车2辆.15.(1)第一次购进A 型台灯每台进价为200元,B 型台灯每台进价为50元;(2)A 型台灯每台售价为340元,B 型台灯每台售价为120元【分析】本题主要考查了二元一次方程组的实际应用:(1)根据等量关系式:第一次购买10台A 型台灯的费用+第一次购买20台B 型台灯的费用3000=元,第二次购买15台A 型台灯的费用+第二次购买10台B 型台灯的费用4500=元,列出方程组,接可求解;(2)根据等量关系式:第一次的10台A 型台灯的利润+第一次的20台B 型台灯的利润2800=元,第二次的15台A 型台灯的利润+第二次购买10台B 型台灯的利润1800=元,列出方程组,接可求解.【详解】(1)解:设第一次购进A 型台灯每台进价为x 元,B 型台灯每台进价为y 元,由题意得:()()1020300015130%10120%4500x y x y +=⎧⎨+++=⎩,解得:20050x y =⎧⎨=⎩,答:第一次购进A 型台灯每台进价为200元,B 型台灯每台进价为50元.(2)解:设A 型台灯每台售价为m 元,B 型台灯每台售价为n 元,由题意得:()()()()102002050280015200130%1050120%1800m n m n ⎧-+-=⎪⎨⎡⎤⎡⎤-++-+=⎪⎣⎦⎣⎦⎩,解得,340120m n =⎧⎨=⎩,答:A 型台灯每台售价为340元,B 型台灯每台售价为120元.。
人教版七年级数学下册《8.3实际问题与二元一次方程组》测试题-带答案
人教版七年级数学下册《8.3实际问题与二元一次方程组》测试题-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.甲、乙两人分别从相距40km 的两地同时出发,若同向而行,则5h 后,快者追上慢者;若相向而行,则2h 后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( ) A .14和6 B .24和16 C .28和12 D .30和12.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x 、y 分钟,列出的方程是( )A .B .C .D .3.甲、乙两人骑自行车同时从相距65 km 的两地相向而行,2 h 相遇,若甲比乙每小时多骑2.5 km ,则乙的速度是每小时( )A .12.5 kmB .15 kmC .17.5 kmD .20 km4.甲、乙二人都以不变的速度在环形路上跑步,如果同时同地出发,反向而行,每隔2min 相遇一次;如果同时同地出发,同向而行,每隔6min 相遇一次,已知甲比乙跑得快,则甲每分跑( )A .12圈B .13圈C .14圈D .16圈 5.某船顺流航行的速度为a ,逆流航行的速度为b ,则水流速度为( )A .2a b +B .2a b -C .a b -D .以上都不对 6.小明郊游时,早上9时下车,先走平路然后登山,到山顶后又沿原路返回到下车处,正好是下午2时.若他走平路每小时行4km ,爬山时每小时走3km ,下山时每小时走6km ,小明从上午到下午一共走的路程是( )A .5kmB .10kmC .20kmD .答案不唯一二、填空题7.已知某一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,则火车的速度是 .8.小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时.若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从下车到山顶走了千米(途中休息时间不计).9.《水浒传》中关于神行太保戴宗有这样一段描述:程途八百里,朝去暮还来.某日,戴宗去160里之外的地方打探情报,去时顺风,用了2小时;回来时逆风,用了4小时,则戴宗在无风时的平均速度为里/小时.10.小蒲家与学校之间是一条笔直的公路,小蒲从家步行前往学校的途中发现忘带作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小蒲沿原路返回,两人相遇后,小蒲立即赶往学校,妈妈沿原路返回家,小蒲到达学校刚好比妈妈到家晩了2分钟.若小蒲步行的速度始终不变,打电话和交接作业本的时间忽略不计,小蒲和妈妈之间的距离y米与小蒲打完电话后步行的时间x分钟之间的函数关系如图所示;则相遇后妈妈返回家的速度是每分钟米.11.某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为u1, u2表示),请你根据下面的示意图,求电车每隔分钟(用t表示)从车站开出一部.12.甲、乙、丙三人在A、B两块地植树,其中甲在A地植树,丙在B地植树,乙先在A 地植树,然后转到B地.已知甲、乙、丙每小时分别能植树8棵,6棵,10棵.若乙在A地植树10小时后立即转到B地,则两块地同时开始同时结束;若要两块地同时开始,但A 地比B地早9小时完成,则乙应在A地植树小时后立即转到B地.三、解答题13.我市某校准备组织学生及学生家长坐高铁到杭州进行社会实践,为了便于管理.所有人员必须乘坐在同一列高铁上.根据报名人数,若都买一等座单程火车票需6560元,若都买二等座单程火车票,则需3120元(学生票二等座打7.5折,一等座不打折).已知学生家长与教师的人数之比为3:1,余姚北站到杭州东站的火车票价格如表所示:运行区间票价上车站下车站一等座二等座余姚北杭州东82(元)48(元)(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买m张(m小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y(元)(用含m的代数式表示).14.某人要在规定时间内由A城市开车到B城市,如果每小时行驶35km,那么要比规定时间迟2h到达;如果每小时行驶50km,那么就能提前1h到达.求A,B两城市间的距离和规定时间.15.男女运动员各一名在环形跑道上练习长跑,男运动员比女运动员速度快,他们从同一起点沿相反方向同时出发,每隔25秒相遇一次.现在他们从同一起跑点沿相同方向同时出发,经过25分钟男运动员追上女运动员,并且比女运动员多跑20圈.求(1) 男运动员的速度是女运动员的多少倍?(2) 男运动员追上女运动员时,女运动员跑了多少圈?16.货车从A地出发将一批防疫物资运往B地.A、B两地相距164千米,货车匀速行驶一段路程后,出现了故障,司机师傅立刻抢修,排除了故障后,继续运送物资赶往B地.已知货车离开A地行驶的路程y(km)与离开A的时间x(h)之间的函数关系如图所示.(1)填表:(分别写出①、①、①处的数据)离开A地行驶的路程/km20①80①①(2)填空:①货车行驶km时出现的故障;①修车所用的时间为h;①货车如果没出现故障,一直匀速行驶,会比实际早到多长时间?17.列方程组解应用题:甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇.二人的平均速度各是多少?18.甲乙二人分别从相距20千米的A,B两地出发,相向而行.如果甲比乙早出发半小时,那么在乙出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米,求甲乙二人每小时各走多少千米?参考答案:1.A2.D3.B4.B5.B6.C7.20米/秒8.109.6010.50.11.312.18.13.(1)老师5人,家长15人,学生60人.(2)①当0<m<60时,y=6560﹣46m;①当60≤m<80时,y=5840﹣34m.14.8h15.(1)男运动员速度是速度的2倍;(2)女运动员跑了20圈.16.(1)① 32,① 80,① 92(2)① 80,① 1.2,① 0.5小时17.甲的平均速度为4千米/小时,乙的平均速度为2千米/小时18.甲每小时走4千米,乙每小时走5千米。
人教版初中数学七年级下册第八章《8.3实际问题与二元一次方程组》同步练习题(含答案)
10.在方程5 中,若 ,则z=__________.
11.牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.那么可供25头牛吃____天.
A.50元,150元B.150元,50元C.80元,120元D.120元,80元
5.一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,若设小瓶单价为x角,大瓶为y角,可列方程为()
A. B. C. D.
6.扬州某中学七年级一班40名同学为灾区共捐款2 000元,捐款情况如下表:
A. B.
C. D.
3.某公司向银行申请了甲、乙两种贷款共计68万元,每年需付出8.42万元利息,已知甲种贷款每年的利率为12%,乙种贷款每年的利率为13%,则该公司甲、乙两种贷款的数额分别为()
A.26万元,42万元B.40万元,28万元
C.28万元,40万元D.42万元,26万元
4.已知甲、乙两种商品的原价和为200元,因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%,求甲、乙两种商品的原单价分别是( )
(1)求甲乙两班组平均每天各掘进多少米?
(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天比原来多掘进0.3米,乙组平均每天比原来多掘进0.2米.按此施工进度,能够比原来少用多少天完成任务?
16.我市某超市举行店庆活动,对甲、乙两种商品实行打折销售。打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元。而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折少花多少钱?
人教版七年级数学下册 8.3 实际问题与二元一次方程组 同步练习(含答案).pdf
人教版七年级数学下册8.3实际问题与二元一次方程组同步练习一.选择题(共12小题)1.一道来自课本的习题:甲乙两人相距27km.若两人同时出发相向而行,则出发1.5h相遇;若两人仍是相向而行,但甲比乙先出发30min,则乙出发70min后两人相遇,求甲乙两人的速度.嘉琪将这个实际问题转化为二元一次方程组问题,设甲乙两人的速度分别为x、ykm/h,已经列出一个方程1.5x+1.5y=27,则另一个方程是()A.0.3x+0.7y=27B.C.D.2.用一块A型钢板可制成2块C型钢板、3块D型钢板;用一块B型钢板可制成1块C 型钢板、4块D型钢板.某工厂现需14块C型钢板、36块D型钢板,设恰好用A型钢板x块,B型钢板y块,根据题意,则下列方程组正确的是()A.B.C.D.3.学校组织春游,每人车费4元.一班班长与二班班长的对话如下:一班班长:我们两班共93人.二班班长:我们二班比你们一班多交了12元的车费.由上述对话可知,一班和二班的人数分别是()A.45,42B.45,48C.48,51D.51,424.小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付()A.10元B.11元C.12元D.13元5.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元B.310元C.320元D.330元6.我国古代问题:以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?(注:绳儿折即把绳平均分成几等分.)()A.36,8B.28,6C.28,8D.13,37.买1根油条和3个大饼共7元,买3根油条和1个大饼共5元.下列说法中正确的是()A.买1根油条和1个大饼共2.5元B.2根油条比1个大饼便宜C.买2根油条和4个大饼共9元D.买5根油条和7个大饼共19元8.小明在商店购买了A,B,C三种商品,恰好用去了150元,其中A,B,C三种商品的单价分别为50元、30元、10元,要求每种商品至少买一件,且A商品最多买两件,则小明的购买方案共有()A.3种B.4种C.5种D.6种9.《九章算术》是中国古代数学专著在数学上有其独到的成就,不仅最早提到了分数问题,首先记录了“盈不足”等问题如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱又会缺16文钱,问买鸡的人数、鸡的价格各是多少?通过计算可得买鸡的人数是()A.6B.7C.8D.910.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm211.班主任老师给获得文明小组的同学们发放水果,若每人5个,多8个,若每人7个,差4个,问有多少名同学?多少个水果?()A.6名,38个B.4名,28个C.5名,30个D.7名,40个12.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:cm)所示.则桌子的高度h=()A.30cm B.35cm C.40cm D.45cm二.填空题(共5小题)13.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为.14.古代有个数学问题,意思是“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”你的答案是每头牛两.15.今年年初,受新冠肺炎疫情的影响,人们对病毒的防范意识加强,市面上的洗手液也备受欢迎,小王计划购进A型、B型、C型三种洗手液共50箱,其中B型洗手液数量不超过A型洗手液数量,且B型洗手液数量不少于C型洗手液数量的一半.已知A型洗手液每箱60元,B型洗手液每箱80元,C型洗手液每箱100元.在价格不变的条件下,小王实际购进A型洗手液是计划的六分之五倍,C型洗手液购进了12箱,结果小王实际购进三种洗手液共35箱,且比原计划少支付1240元,则小王实际购进B型洗手液箱.16.重庆是长江上游地区的经济中心、金融中心和创新中心.某公司为了调动员工积极性,将公司员工分成了三个小组进行集分制考核:每月销售业绩第一名集x分,销售业绩第二名集y分,销售业绩第三名集0分(x>y,且均为正整数),经过若干个月(超过4个月)考核后,第一小组集分为23分,第二小组集分为20分,第三小组集分为9分,则第一小组最多得到次第二名.17.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下:如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为.三.解答题(共6小题)18.《九章算术》中有这样一个问题:今“有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”其大意是:甲乙二人各持有一定数量的钱,甲得乙钱的半数则有50钱;乙得甲钱的三分之二也有50钱;请问甲乙各持有多少钱?19.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽是否存在恰好配套?若存在恰好配套,请求出加工螺栓和螺帽各需要的金属原料块数,若不存在恰好配套,请说明理由.20.(我国古代问题)有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?21.某中学共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供3000名学生就餐;同时开放1个大餐厅,1个小餐厅,可供1700名学生就餐.(1)请问1个大餐厅、1个小餐厅分别可供多少名学生就餐.(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全校4500名学生就餐?请说明理由.22.某商场从厂家批发电视机进行零售,批发价格与零售价格如下表:若商场购进甲、乙两种型号的电视机共50台,用去9万元.(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“国庆”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利8.5%,求甲种型号电视机打几折销售?23.高铁苏州北站已于几年前投入使用,计划在广场内种植A,B两种花木共10500棵,若B花木数量是A花木数量的一半多1500棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排27人同时种植这两种花木,每人每天能种植A花木50棵或B花木30棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?参考答案1-5:CABCC6-10:ADBDA11-12:AC13、14、15、816、817、1518、设甲原来有x钱,乙原来有y钱.依题意,得:得:答:甲原来有37.5钱,乙原来有25钱.19、设把x块金属原料加工成螺栓,y块金属原料加工成螺帽正好配套,依题意,得:解得:∵x,y均为整数,∴加工的螺栓和螺帽不存在恰好配套.20、设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则解得:21、:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,依题意,得:解得:答:1个大餐厅可供1300名学生就餐,1个小餐厅可供400名学生就餐.(2)∵3×1300+2×400=4700(名),4700>4500,∴如果3个大餐厅和2个小餐厅全部开放,那么能满足全校4500名学生的就餐要求.22、:(1)设商场购进甲型号电视机x台,乙型号电视机y台,则解得答:商场购进甲型号电视机35台,乙型号电视机15台;(2)设甲种型号电视机打a折销售,依题意得:15×(3640×0.75-2500)+35×(2025×0.1a-1500)=(15×2500+35×1500)×8.5%解得a=8答:甲种型号电视机打8折销售.23、解:(1)设A花木的数量是x棵,则B花木的数量是y棵,根据题意可得:得:答:A花木的数量是6000棵,B花木的数量是4500棵;(2)安排12人种植A花木,15人种植B花木,才能确保同时完成各自的任务。
人教版七年级下册数学实际问题与二元一次方程组同步训练
人教版七年级下册数学8.3 实际问题与二元一次方程组同步训练一、单选题1.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A .46383548x y x y -=⎧⎨+=⎩ B .46483538x y y x +=⎧⎨+=⎩ C .46485338x y x y +=⎧⎨+=⎩ D .46483538x y x y +=⎧⎨+=⎩2.《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两,问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x 两,一枚白银的重量为y 两,则可列方程组为( )A .91191113x y x y y x =⎧⎨-=-+⎩B .91191113x y x y y x =⎧⎨-=--⎩C .91181013x y x y y x =⎧⎨+=++⎩D .91181013x y x y y x =⎧⎨+=+-⎩3.如图,宽为50cm 的长方形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .2400cmB .2500cmC .2600cmD .2300cm4.我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头.大和尚1人分3个馒头,小和尚3人分一个馒头,刚好分完.问大、小和尚各有多少人?若大和尚有m 人,小和尚有n 人.则方程组中正确的是( )A .10033100m n m n +=⎧⎨+=⎩B .1003100m n m n +=⎧⎨+=⎩C .1003100m n m n +=⎧⎨+=⎩D .10031003m n n m +=⎧⎪⎨+=⎪⎩ 5.春节将至,某超市准备用价格分别是36元/kg 和20元/kg 的两种糖果混合成100kg 的什锦糖出售,混合后什锦糖的价格是28元/kg .若设需要36元/kg 的糖果kg x ,20元/kg 的糖果kg y ,则下列方程组中能刻画这一问题中数量关系的是( )A .100362028x y x y +=⎧⎨+=⎩B .100362028100x y x y +=⎧⎨+=⨯⎩C .()10028281003620x y x y +=⎧⎨+=⨯+⎩D .100203628100x y x y +=⎧⎨+=⨯⎩6. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩ 7.在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元购买A ,B 两种奖品(两种都要买),A 种每个15元,B 种每个25元,在钱全部用完的情况下,购买方案共有( )A .2种B .3种C .4种D .5种8.育才中学初一年级某班为奖励在校运动会上取得好成绩的同学,花了184元购买甲、乙两种奖品共20件.其中甲种奖品每件8元,乙种奖品每件6元,若设购买甲种奖品x 件,乙种奖品y 件,则所列方程组正确的是( ).A .2068184x y x y +=⎧⎨+=⎩B .2086184x y x y +=⎧⎨+=⎩C .6820184x y x y +=⎧⎨+=⎩D .8620184x y x y +=⎧⎨+=⎩9.如图,面积为64的正方形ABCD 被分成4个相同的长方形和1个面积为4的小正方形,则a ,b 的值分别是( )A .3,5B .5,3C .6.5,1.5D .1.5,6.510.我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A .510330x y x y +=⎧⎨+=⎩B .531030x y x y +=⎧⎨+=⎩C .305103x y x y +=⎧⎪⎨+=⎪⎩D .305310x y x y +=⎧⎪⎨+=⎪⎩ 11.如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x,y,那么下列求出这两个角的度数的方程是( )A.18010x yx y+=⎧⎨=-⎩B.180310x yx y+=⎧⎨=-⎩C.180+10x yx y+=⎧⎨=⎩D.3180310yx y=⎧⎨=-⎩二、填空题12.古代《张丘建算经》中有一个问题,意思是:甲、乙两人各有钱若干,如果甲得到乙的10个钱,那么甲所有的钱就比乙所剩的多4倍;如果乙得到甲的10个钱,那么两人所有的钱相等,甲原有钱_______个,乙原有钱_________个.13.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm,小红所搭的“小树”的高度为22 cm,设每块A型积木的高为x cm,每块B型积木的高为y cm,则x=__________,y=__________.14.在我国新冠疫情虽然得到了有效的控制,但防范意识仍不能松懈,小丽去药店购买口罩和酒精消毒湿巾,若买150只一次性口罩和10包酒精消毒湿巾,需付75元;若买200只一次性口罩和12包酒精消毒湿巾,需付96元.设一只一次性医用口罩x元,一包酒精消毒湿巾y元,根据题意可列二元一次方程组:___________.15.一轮船从甲地到乙地顺流航行需4小时,从乙地到平地逆流航行需6小时,则一木筏由甲地漂流到乙地的时间为__________.16.某铁路桥长1000米,一列火车从桥上匀速通过,从上桥到离开桥共用1分钟,整列火车全在桥上的时间为40秒钟,则火车的长度为_________,火车的速度为_________.17.两个两位数的差是20,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边接着写较小的两位数,也得到一个四位数,若这两个四位数的和是6060,求这两个两位数分别是多少?设较大的两位数为x,较小的两位数为y,根据题意列方程组为__________.18.如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,列出关于x、y的二元一次方程组____________.19.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组_________.20.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.三、解答题21.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?22.某农场去年计划生产玉米和小麦共200吨.采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%.该农场去年实际生产玉米、小麦各多少吨?23.甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?24.小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341.原来两个加数是多少?25.甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?26.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?27.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料.该厂现有A种原料120吨,B种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)在(1)的条件下,计划每件甲产品的售价为3万元,每件乙产品的售价为5万元,可全部售出.根据市场变化情况,每件甲产品实际售价比计划上涨a%,每件乙产品实际售价比计划下降10%,结果全部出售的总销售额比原计划增加了3.5万元,求a的值.28.体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?。
人教版七年级数学下册 8.3: 实际问题与二元一次方程组 同步练习(含答案)
实际问题与二元一次方程组同步练习一.选择题(共12小题)1.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min相遇一次,已知甲比乙跑得快,设甲每分钟跑x圈,乙每分钟跑y圈,则可列方程为()A.B.C.D.2.两个角的大小之比是7:3,它们的差是72°,则这两个角的关系是()A.相等B.互余C.互补D.无法确定3.A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km B.750km C.765km D.780km4.《算法统宗》中有如下的类似问题:“哑子来买肉,难言钱数目,一斤少二十五,八两多十五,试问能算者,合与多少肉”,意思是一个哑巴来买肉,说不出钱的数目,买一斤(16两)还差二十五文钱,买八两多十五文钱,问肉数和肉价各是多少?则该问题中,哑巴所带的钱共能买到的肉为()A.10两B.11两C.12两D.13两5.老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有()A.4种B.3种C.2种D.1种6.“今有五十鹿进舍,小舍容四鹿,大舍容六鹿,需舍几何?(改编自《缉古算经》)”大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,求所需圈舍的间数.求得的结果有()A.3种B.4种C.5种D.6种7.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长()尺.A.25B.20C.15D.108.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.小明原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱还少240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.每盒圆形礼盒比每盒方形礼盒多()A.90元B.140元C.100元D.120元9.某学校计划用17件同样的奖品全部用于奖励在“扫黑除恶宣传”活动中表现突出的班级,一等奖奖励3件,二等奖奖励2件,则分配一、二等奖个数的方案有()A.1种B.2种C.3种D.4种10.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有()A.4种B.5种C.6种D.7种11.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三:人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱:每人出7钱,又会差4钱,则物价是()钱.A.7B.45C.53D.5912.利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm二.填空题(共5小题)13.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为.14.要用20张白卡纸做长方体的包装盒,准备把这些白卡纸分成两部分,一部分x张做侧面,另一部分x张做底面.已知每张白卡纸可以做侧面2个,或做底面3个,如果5个侧面可以和2个底面做成一个包装盒.依题意列方程组为15.学校进行了一次智力测试,共25题.规定答对一题得2分,答错一题扣1分,未答的题不得分也不扣分.小刚同学共得了34分,且已知他有奇数道题目未答,则他有道题未答.16.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走4km,平路每小时走5km,下坡每小时走6km,那么从甲地到乙地需54min,从乙地到甲地需42min,甲地到乙地全程是km17.小华同学生日的月数减去日数为9,月数的两倍和日数相加为27,则小强同学生日的月数和日数的和为.三.解答题(共6小题)18.“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?19.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?20.某商场用13000元购进甲、乙两种矿泉水共400箱,矿泉水的成本价与销售价如下表所示:求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这400箱矿泉水,可获利多少元?21.某中学共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供3000名学生就餐;同时开放1个大餐厅,1个小餐厅,可供1700名学生就餐.(1)请问1个大餐厅、1个小餐厅分别可供多少名学生就餐.(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全校4500名学生就餐?请说明理由.22.某家具商先准备购进A,B两种家具,已知100件A型家具和150件B型家具需要35000元,150件A型家具和100件B型家具需要37500元.(1)求A,B两种家具每件各多少元;(2)家具商现准备了8500元全部用于购进这两种家具,他有几种方案可供选择?请你帮他设计出所有的购买方案.23.某建设工程队计划每小时挖掘土540方,现决定租用甲、乙两种型号的挖掘机来完成这项工作,已知一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机恰好能完成每小时的挖掘量.(1)求甲、乙两种型号的挖掘机每小时各挖土多少方?(2)若租用一台甲型挖掘机每小时100元,租用一台乙型挖掘机每小时120元,且每小时支付的总租金不超过850元,又恰好完成每小时的挖掘量,请设计该工程队的租用方案.参考答案1-5:CCBBC 6-10:BBDCC 11-12:CD13、14、15、516、17、1518、甜果买了657个,需要803文钱;苦果买了343个,需要196文钱19、设1辆大货车一次运货x吨,1辆小货车一次运货y吨,依题意,得:解得:x2x+y=11.答:2辆大货车与1辆小货车可以一次运货11吨.20、:(1)设购进甲种矿泉水x箱,乙种矿泉水y箱,依题意,得:解得:答:购进甲种矿泉水100箱,乙种矿泉水300箱.(2)(35-25)×100+(48-35)×300=4900(元).答:该商场售完这400箱矿泉水,可获利4900元.21、:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,依题意,得:解得:答:1个大餐厅可供1300名学生就餐,1个小餐厅可供400名学生就餐.(2)x3×1300+2×400=4700(名),4700>4500,x如果3个大餐厅和2个小餐厅全部开放,那么能满足全校4500名学生的就餐要求.22、:(1)设A型家具每件x元,B型家具每件y元,依题意,得:解得:答:A型家具每件170元,B型家具每件120元.(2)设该家具商购入a件A型家具,b件B型家具,依题意,得:170a+120b=8500,xa=50-b.xa,b均为正整数,xb为17的整数倍,xx该家具商总共有两种购入方案,方案一:购进A型家具38件,B型家具17件;方案二:购进A型家具26件,B型家具34件.23、:(1)设甲型挖掘机每小时挖土x方,乙型挖掘机每小时挖土y方,依题意,得:解得:答:甲型挖掘机每小时挖土60方,乙型挖掘机每小时挖土80方.(2)设租用m台甲型挖掘机、n台乙型挖掘机,依题意得:60m+80n=540,化简得:3m+4n=27,xm、n均为正整数,x当m=5、n=3时,支付租金:100×5+120×3=860(元),x860>850,x此租车方案不符合题意;当m=1、n=6时,支付租金:100×1+120×6=820(元),x820<850,x此租车方案符合题意.答:该工程队的租用方案为租1台甲型挖掘机和6台乙型挖掘机。
人教版七年级数学 下册 第八章 8.3 实际问题与二元一次方程组 同步练习题(含答案)
第八章 二元一次方程组 8.3 实际问题与二元一次方程组一、选择题1、某文具店出售单价分别为120元和80•元的两种纪念册,•两种纪念册每册都有30%的利润.某人共有1080元钱,欲买一定数量的某一种纪念册,若买单价为120•元的纪念册则钱不够,但经理知情后如数付给了他这种纪念册,结果文具店获利和卖出同数量的单价为80元的纪念册获利一样多,那么这个人共买纪念册( )A .8册B .9册C .10册D .11册2、某个体商店在一次买卖中同时卖出两件上衣,每件都是以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,则这家商店在这次买卖中( )A .不赔不赚B .赚9元C .赔8元D .赔18元3、某校七年级一班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可列方程组( )A .⎩⎪⎨⎪⎧x +y =272x +3y =66B .⎩⎪⎨⎪⎧x +y =272x +3y =100 C .⎩⎪⎨⎪⎧x +y =273x +2y =66 D .⎩⎪⎨⎪⎧x +y =273x +2y =1004、有一些苹果箱,若每只装苹果25 kg ,则剩余40 kg 无处装;若每只装30 kg ,则还有20个空箱,这些苹果箱有( )A .12只B .6只C .112只D .128只5、已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( )A. 42{43x y x y +== B. 42{ 34x y x y+==C. 42{ 1134x yx y-== D. 42{ 43y xx y +==二、填空题6、 一个两位数,个位上的数比十位上的数的2倍多1,若将十位数字与个位数字调换位置,则比原两位数的2倍还多2,则原两位数是_________。
人教版七年级下数学同步测试卷: 8.3 实际问题与二元一次方程组
实际问题与二元一次方程组一、填空题1、一商贩第一天卖出鲤鱼30千克,草鱼50千克,共获毛利润310元,第二天卖出鲤鱼25千克,草鱼45千克,共获毛利润267元,若该商贩某个月卖出鲤鱼700千克,草鱼1200千克,则共能获毛利润元。
2、一个两位数,个位上的数字比十位上的数字的2倍多1,将十位数字与个位数字调换位置,所得新数比原两位数的2倍还多2,则原两位数是。
3、蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现这两种小虫共有腿108条和20对翅膀,则蜻蜓有只,蝉有只。
4、陕北的放羊娃隔着沟峁唱着信天游,比他们养的羊数.一个唱到:“你羊没有我羊多,你若给我一只羊,我的是你的两倍”,另一个随声唱到:“没那事,你要给我给一只,咱俩的羊儿一样多”.听了他们的对唱,你能知道他们各有多少只羊吗?答:________________.5、我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元,问这个物品的价格是多少元?”该物品的价格是元.二、选择题6、“十一黄金周”期间,几位同学一起去郊外游玩。
男同学都背着红色的旅行包,女同学都背着黄色的旅行包。
其中一位男同学说,我看到红色旅行包个数是黄色旅行包个数的1.5倍。
另一位女同学说,我看到红色旅行包个数是黄色旅行包个数的2倍。
如果这两位同学说的都对,那么女同学的人数是()A.2B.4C.6D.87、小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1.小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图2那样的正方形,中间还留下了一个洞,恰好是边长为3的小正方形,则每个小长方形的面积为( )A.120 B.135 C.108 D.968、小颖家离学校1 200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡时的平均速度是3千米/时,下坡时的平均速度是5千米/时,若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( )9、甲、乙两人分别从相距40 km的两地同时出发,若同向而行,则5 h后,快者追上慢者;若相向而行,则2 h后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( )A.14和6 B.24和16 C.28和12 D.30和1010、某乡中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%.这样,在校学生增加3.6%,那么该学校现有女生和男生人数分别是()A.200和300B.300和200C.320和180D.180和32011、有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为().A.129 B.120 C.108 D.9612、如图,用8块相同的长方形地砖拼成一个矩形地面,则每块长方形地砖的长和宽分别是()A.48cm,12cm B.48cm,16cmC.44cm,l6cm D.45cm,15cm13、商店里把塑料凳整齐地叠放在一起,根据图中的信息,当有10张塑料凳整齐地叠放在一起时的高度是()A.50em B.47cm C.44cm D.41cm14、一个l9升的混合物是由一份果汁和l8份水混合而成的,如果在该混合物中再加入升果汁和升水,配成由1份果汁以及2份水形成的54升混合物,则y的值是()A.17 B.18 C.27 D.3515、学校总务处与教务处各领了同样数量的信封和信笺,总务处每发出一封信都只用1张信笺,教务处每发出一封信都用3张信笺.结果,总务处用掉了所有的信封,但余下50张信笺;而教务处用掉了所有信笺,但余下50个信封.则两处所领的信笺张数、信封个数分别为()A.150,100B.125,75C.120,70D.100,15016、一条船在一条河上的顺流航速是逆流航速的3倍,这条船在静水中的航速与河水的流速之比是()A.3∶1B.2∶1C.1∶1D.5∶217、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有()(A)5个(B)6个(C)7个(D)8个18、足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场三、简答题19、明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?20、据研究,一般洗衣水的浓度以0.2%~0. 5%为合适,即100kg洗衣水里含有200~500g的洗衣粉比较合适。
人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题和二元一次方程组 同步练习(含答案)
实际问题与二元一次方程组同步练习一.选择题(共12小题)1.明代大数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问都多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程为()A.B.C.D.2.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长()尺.A.25B.20C.15D.103.《九章算术》中记载:“今有善田一亩,价三百+器田七亩,价五百.今并买一頃,价钱一万.问善、恶田各几何?”其大意是:今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好,坏田1顷(1顷=100亩),价线10000钱.问好、坏田各买了多少亩?设好田买了x南,坏田买了y亩,根意可列方程组为()A.B.C.D.4.某公司生产大、小两种礼盒装粽子,大礼盒内装有12枚粽子,小礼盒内装5枚粽子,端午将至,该公司赠送夕阳红养老院大、小礼盒各若干(礼盒的总数超过20盒),装有粽子共150枚,则该公司赠送了大、小礼盒总数共有()A.21盒B.22盒C.23盒D.24盒5.班主任老师给获得文明小组的同学们发放水果,若每人5个,多8个,若每人7个,差4个,问有多少名同学?多少个水果?()A.6名,38个B.4名,28个C.5名,30个D.7名,40个6.设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要第三架天平也平衡,那么“?”处应放“■”的个数为()A.5B.4C.3D.27.小明打算购买气球装扮“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图,则第三束气球的价格为()A.16B.15C.14D.138.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:cm)所示.则桌子的高度h=()A.30cm B.35cm C.40cm D.45cm9.《九章算术》是中国古代数学专著在数学上有其独到的成就,不仅最早提到了分数问题,首先记录了“盈不足”等问题如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱又会缺16文钱,问买鸡的人数、鸡的价格各是多少?通过计算可得买鸡的人数是()A.6B.7C.8D.910.团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为()A.20B.35C.30D.4011.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种.A.3B.4C.5D.612.“六一”儿童节快到了,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种儿童玩具赠送给某幼儿园,则可供小芳妈妈选择的购买方案有()A.4种B.5种C.6种D.7种二.填空题(共6小题)13.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为14.用16元钱买了80分、120分的两种邮票共17枚,则买了80分的邮票枚.15.小华同学生日的月数减去日数为9,月数的两倍和日数相加为27,则小强同学生日的月数和日数的和为16.鸡兔同笼问题是我国古代著名的数学趣题,出自《孙子算经》.原文为:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?小雪自己解决完此题后,又饶有兴趣地为同学编制了四道题目:①今有雉兔同笼,上有三十头,下有五十二足,问雉兔各几何?①今有雉兔同笼,上有三十头,下有八十一足,问雉兔各几何?①今有雉兔同笼,上有三十四头,下有九十足,问雉兔各几何?①今有雉兔同笼,上有三十四头,下有九十二足,问雉兔各几何?根据小雪编制的四道题目的数据,可以求得鸡兔只数的题目是(填题目前的序号).17.某班对思想品德,历史,地理三门课程的选考情况进行调研,数据如下:其中思想品德、历史两门课程都选了的有3人,历史、地理两门课程都选了的有4人,则该班选了思想品德而没有选历史的有人;该班至少有学生人.18.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱:若每人出7钱,还差3钱.则合伙人数为人;羊价为钱.三.解答题(共6小题)19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?请你建立适当的数学模型,解决上面问题.20.为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.21.为备战体育中考,学校新购买一批排球和实心球,在某体育用品商店,若购买10个排球和20个实心球需用960元,若购买20个排球和10个实心球需用1380元.(1)排球、实心球的单价各是多少元?(2)寒假期间,该店开展了促销活动,所有商品一律九折销售.则购买20个排球和20个实心球实际共需要花费多少元?22.中秋节临近,某商场决定开展“金秋十月,回馈顾客”的让利活动,对部分品牌月饼进行打折销售,其中甲品牌月饼打八折,乙品牌月饼打七五折.已知打折前,买6盒甲品牌月饼和3盒乙品牌月饼需660元;打折后买50盒甲品牌月饼和40盒乙品牌月饼需5200元.(1)打折前甲、乙两种品牌月饼每盒分别为多少元?(2)幸福敬老院需购买甲品牌月饼100盒,乙品牌月饼50盒,问打折后购买这批月饼比不打折节省了多少钱?23.高铁苏州北站已于几年前投入使用,计划在广场内种植A,B两种花木共10500棵,若B花木数量是A花木数量的一半多1500棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排27人同时种植这两种花木,每人每天能种植A花木50棵或B花木30棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?24.某商场从厂家批发电视机进行零售,批发价格与零售价格如下表:若商场购进甲、乙两种型号的电视机共50台,用去9万元.(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“国庆”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利8.5%,求甲种型号电视机打几折销售?参考答案1-5:BBBCA 6-10:ACCDC 11-12:BA13、14、1115、1516、①①17、16;1918、21;15019、买美酒0.25斗,普通酒1.75斗20、设平路有x千米,坡路有y千米,由题意可知,解得21、:(1)设排球的单价为x元,实心球的单价为y元,依题意,得:,解得:答:排球的单价为60元,实心球的单价为18元.(2)60×0.9×20+18×0.9×20=1404(元).答:购买20个排球和20个实心球实际共需要花费1404元.22、:(1)设打折前甲品牌月饼每盒x元,乙品牌月饼每盒y元,依题意,得:,解得:.答:打折前甲品牌月饼每盒70元,乙品牌月饼每盒80元.(2)70×100+80×50-70×0.8×100-80×0.75×50=2400(元).答:打折后购买这批月饼比不打折节省了2400元钱.23、:(1)设A花木的数量是x棵,则B花木的数量是y棵,根据题意可得:解得:答:A花木的数量是6000棵,B花木的数量是4500棵;(2)设安排a人种植A花木,则安排(27-a)人种植B花木,解得,a=12,经检验,a=12是原方程的解,①27-a=15,答:安排12人种植A花木,15人种植B花木,才能确保同时完成各自的任务24、:(1)设商场购进甲型号电视机x台,乙型号电视机y台,则解得答:商场购进甲型号电视机35台,乙型号电视机15台;(2)设甲种型号电视机打a折销售,依题意得:15×(3640×0.75-2500)+35×(2025×0.1a-1500)=(15×2500+35×1500)×8.5%解得a=8答:甲种型号电视机打8折销售。
人教版七年级下册数学8.3实际问题与二元一次方程组--销售利润问题同步训练(word、含答案)
人教版七年级下册数学8.3 实际问题与二元一次方程组--销售利润问题同步训练一、单选题1.某商场购进商品后,加价40%作为销售价.某日商场搞优惠促销,由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到七折和八折,共付款499元,两种商品原售价之和为590元,设两种商品的进价分别为x元和y元,根据题意所列方程组为()A.590,0.7 1.40.8 1.4499x yx y+=⎧⎨⨯+⨯=⎩B.499,0.7 1.40.8 1.4590x yx y+=⎧⎨⨯+⨯=⎩C.1.4 1.4590,0.7 1.40.8 1.4499x yx y+=⎧⎨⨯+⨯=⎩D.1.4 1.4499,0.7 1.40.8 1.4590x yx y+=⎧⎨⨯+⨯=⎩2.珠算发明者,我国明代数学家程大位的《算法统宗》中,有一首歌诀:“九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜.甜苦两果各几个?请君布算其迟疑!”大意是说,用999文钱共买了1000个甜果和苦果,其中4文钱可以买蓄果7个,11文钱可以买甜果9个,请问甜、苦果各买几个?若设买苦果x个,买甜果y个,可以列方程组为()A.999411100079x yx y+=⎧⎪⎨+=⎪⎩B.100041199979x yx y+=⎧⎪⎨+=⎪⎩C.100079999411x yx y+=⎧⎪⎨+=⎪⎩D.999791000411x yx y+=⎧⎪⎨+=⎪⎩3.某花店在母亲节的账目记录显示,5月7日卖出39支康乃馨和21支百合花,收入396元(记录正确);5月8号以同样的价格卖出同样的52支康乃馨和28支百合花,收入518元;对于5月8号的记录,下列说法正确的是()A.记录正确B.记录不正确,少记录了10元C.记录不正确,多记录了10元D.条件不足,无法判断4.某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是()A.95元,140元B.155元,200元C.100元,145元D.150元,195元5.端午节又称端阳节,是中华民族重要的传统节日,我国各地都有吃粽子的习俗.某超市以10元每袋的价格购进一批粽子,根据市场调查,售价定为每袋16元,每天可售出200袋:若售价每降低1元,则可多售出80袋,问此种粽子售价降低多少元时,超市每天售出此种粽子的利润可达到1440元?若设每袋粽子售价降低x 元,则可列方程为( )A .()()1610200801440x x --+=B .()()16200801440x x -+=C .()()1610200801440x --+=D .()()16200801440x -+=6.某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )A .95元,180元B .155元,200元C .100元,120元D .150元,125元7.为迎接2022年北京冬奥会,某班开展了以迎冬奥为主题的体育活动,计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件25元,乙种奖品每件10元,则购买方案有( )A .2种B .3种C .4种D .5种 8.开学后书店向学校推销两类素质教育书,如果原价买这两种书共需880元,书店推销时第一种书打了八折,第二种书打了七五折,结果两种书共少要了200元,则原来每种书需钱数为( ).A .400元,480元B .480元,400元C .360元,300元D .300元,360元二、填空题9.小慧去花店买鲜花,若买6支玫瑰和4支百合,则她所带的钱还剩11元;若买4支玫瑰和6支百合,则她所带的钱还缺5元.若她想购买10支百合,则她所带的钱还缺______元.10.某超市的账目记录显示,某天卖出13盒牙膏和7支牙刷,收入132元;另一天以同样的价格卖出同类的5盒牙膏和8支牙刷,收入72元,则该超市以同样的价格卖出同类的6盒牙膏和5支牙刷,可收入_______元.11.某公司用30 000元购进甲、乙两种货物,货物卖出后,甲种货物的利润率是10%,乙种货物的利润率是11%,共获得利润3 150元,则甲种货物的进货价为_________元,乙种货物的进货价为_________元.12.打折:卖货时,按照标价乘以________或________,则称将标价进行了几折(或理解为:销售价占标价的百分率).例如某种服装打8折即按标价的百分之八十出售.13.某种电器产品,每件若以原定价的8折销售,可获利120元;若以原定价的6折销售,则亏损20元,该种商品每件的进价为________ 元.14.五一期间,时代商场开展打折促销活动,某商品如果按原售价的八折出售,将盈利20元,而按原售价的六折出售,将亏损60元,则该商品的原售价为_____.15.有A,B两种医用外科口罩,2包A型口罩与3包B型口罩合计27元,7包A型口罩与8包B型口罩合计77元,则3包A型口罩与2包B型口罩合计________元.16.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有_________种.三、解答题17.某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场计划同时只购进其中两种不同型号的电视机,并且正好用完拨款.请你给出所有可行的采购方案.(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元.在以上的方案中,为使获利最多,你选择哪种进货方案?18.某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场计划同时只购进其中两种不同型号的电视机,并且正好用完拨款.请你给出所有可行的采购方案.(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元.在以上的方案中,为使获利最多,你选择哪种进货方案?19.在疫情防控期间,某中学为保障广大师生生命健康安全购进一批免洗手消毒液和84消毒液.如果购买100瓶免洗手消毒液和150瓶84消毒液,共需花费1500元;如果购买120瓶免洗手消毒液和160瓶84消毒液,共需花费1720元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)某药店出售免洗手消毒液,满150瓶免费赠送10瓶84消毒液.若学校从该药店购进免洗手消毒液150瓶和84消毒液60瓶,共需花费多少元?20.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B 商品用了840元.(1)打折前,买一件A商品和一件B商品各需多少元?(2)打折后,买500件A商品和500件B商品用了9600元,比不打折少花了多少钱?参考答案:1.C2.B3.B4.B5.A6.B7.B8.A9.3710.6811.15000,1500012.十分之几百分之几十13.44014.400元15.2316.217.(1)可选择方案:1、采购甲乙两种电视机各25台2、采购甲丙两种电视机分别35台和15台(2)选择方案2:采购甲丙两种电视机分别35台和15台,获利最大18.(1)可选择方案:1、采购甲乙两种电视机各25台2、采购甲丙两种电视机分别35台和15台(2)选择方案2:采购甲丙两种电视机分别35台和15台,获利最大19.(1)每瓶免洗手液的价格为9元,每瓶84消毒液4元(2)学校从该药店购进免洗手消毒液150瓶和84消毒液60瓶,共需花费1550元20.(1)买一件A商品需16元,一件B商品需4元(2)400元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.3 实际问题与二元一次方程组 同步测试题(满分120分;时间:120分钟)一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , )1. 一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A.46B.64C.57D.752. 李老师到文具店买A ,B 两种笔(两种都买),A 种笔1.5元/支,B 种笔1元/支,共花了20元钱,则可供李老师选择的购买方案共有( )A.5种B.6种C.7种D.8种3. 一列快车和一列慢车的长分别为180米和225米,若同向行驶,从快车追及慢车起到全部超过,需81秒.现设快车的车速为x 米/秒,慢车的车速为y 米/秒,则表示其等量关系的式子是( )A.81(x −y)225B.81(x −y)=180C.81(x −y)=225−180D.81(x −y)=225+180 4. 某班有x 人分y 组活动,若每组7人,则余下3人;若每组8人,则有一组差5人,求全班人数和分组数,正确的方程组是( )A.{7y =x +38y =x −5B.{7y =y +38x =y −5C.{7x =y −38x =y +5D. {7y =x −38y =x +55. 张老师到文具店购买A 、B 两种文具,A 种文具每件2.5元,B 种文具每件1元,共花了30元钱,则可供他选择的购买方案的个数为(两样都买)( )A.4B.5C.6D.76. 学校买排球,足球共25个,花费732元,足球每个36元,排球每个24元,设买排球x 个,买足球y 个,所列方程组为( )A.{x +y =2536x −24y =732.B.{x +y =2536x +24y =732.C.{y=25−x36x+24y=732. D.{x+y=2536y+24x=732.7. 全国足球联赛规定:胜一场得3分,平一场得1分,负一场不得分.河南建业队比赛了8场,踢平的场数是负的场数的2倍,共17分,则该队踢平了()A.6场B.4场C.3场D.2场8. 在“6.18”促销活动中,小芳的妈妈计划用1000元在某购物网站购买A,B两种商品,A 种商品每件80元,B种商品每件120元.若每种商品至少买一件,且A种商品的数量多于B 种商品的数量,则可供小芳的妈妈选择的购买方案有()A.2种B.3种C.4种D.5种9. 如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280B.140C.70D.196二、填空题(本题共计9 小题,每题3 分,共计27分,)10. 小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为________.11. 小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.12. 今有鸡兔同笼,上有35头,下有94足,则鸡有________只,兔有________只.13. 设甲数为x,乙数为y,且甲数的2倍与乙数的13的和是5,则可列方程________.14. 已知两个角的和是67∘56′差是12∘40′,则这两个角的度数分别是________.15. 一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字换位置,那么得到的新两位数比原来的两位数的一半还少9,那么原来的两位数是________.16. 学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有________种.17. 甲、乙、丙三种物品,若购甲3个、乙5个、丙1个共付15.5元;若购甲4个、乙7个、丙1个共付19.5元,则甲、乙、丙各买3个共需________元.18. 某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户居民5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少40%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,则该地区空闲时段民用电的单价与高峰时段的用电单价的比值为________.三、解答题(本题共计6 小题,共计60分,)19. 李明以两种形式分别储蓄了2 000元和1 000元,一年后全部取出,扣除利息所得税后可得利息43.92元;已知这两种储蓄年利率的和为3.24%,求这两种储蓄的年利率各是百分之几?(公民应交利息所得税=利息金额×20%)20. 某商店需要购进甲、乙两种商品共160件,其进价和售价如表:(注:获利=售价-进价)若商店计划销售完这批商品后能获利1100元,请利用二元一次方程组求甲,乙两种商品应分别购进多少件?21. 某公司分两次购进化肥,第一次用了6节火车皮和15辆汽车,运了180t化肥,第二次用了8节火车皮与10辆汽车,共运200t化肥,问3节火车皮和3辆汽车能运多少吨化肥?22. 48名同学被分配到大、小不同的两种寝室,大寝室每间住8人,小寝室每间住4人,刚好住满.求大、小寝室各住了多少间.如果设大寝室住了x间,小寝室住了y间,请列出方程,并写出两个解.23. 已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有货物若干吨要运输,计划同时租用A型车3辆,B型车5辆,一次运完,且恰好每辆车都载满货物,请求出该物流公司有多少吨货物要运输.24. 为了拉动内需,某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?参考答案一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1.【答案】D【解答】解:设个位上的数字是x ,十位上的数字是y ,依题意得:{y −x =2x +y =12, 解得{x =5y =7. 则这个两位数是75.故选D .2.【答案】B【解答】解:设李老师到文具店买A 种笔x 支,B 种笔y 支,则根据题意得,1.5x +y =20,∴ y =20−1.5x ,∴ 李老师两种笔都买,∴ x ,y 都为正整数,∴ 有{x 1=2,y 1=17;{x 2=4,y 2=14;{x 3=6,y 3=11;{x 4=8,y 4=8;{x 5=10,y 5=5;{x 6=12,y 6=2.∴ 李老师选择的购买方案共有6种.故选B .3.【答案】D【解答】解:∴ 快车的车速为x 米/秒,慢车的车速为y 米/秒,∴ 追击中实际的车速为(x −y)米/秒,∴ 根据路程为两车车长的和列方程可得81(x −y)=225+180,故选D .4.【答案】D【解答】解:设全班人数为x 人,分了y 个学习小组;由题意得,若每组7人,余下3人,x −3=7y ;若每组8人,不足5人,8y =x +5;∴ 可列出方程组{7y =x −3,8y =x +5.故选D .5.【答案】B【解答】设买A 种文具为x 件,B 种文具为y 件,依题意得:2.5x +y =30,则y =30−2.5x .∴ x 、y 为正整数,∴ 当x =2时,y =25;当x =4时,y =20;当x =6时,y =15;当x =8时,y =10;当x =10时,y =5;当x =12时,y =0(舍去);综上所述,共有5种购买方案.6.【答案】D【解答】解:根据买排球,足球共25个,得方程x +y =25;根据足球每个36元,排球每个24元,共花费732元,得方程36y +24x =732.可列方程组为{x +y =2536y +24x =732. 故选D .7.【答案】D【解答】此题暂无解答8.【答案】A【解答】解:设A 种商品买x 件,B 种商品买y 件,则有80x +120y =1000,即y =25−2x 3,x >y 且x ,y 为整数,所以x =8,y =3;x =11,y =1,所以可供小芳妈妈选择的购买方案有2种.故选A .9.【答案】C【解答】解:设小长方形的长、宽分别为x 、y ,依题意得:{2x =5y 3x +y =17, 解得:{x =5y =2, 则矩形ABCD 的面积为7×2×5=70.故选C .二、 填空题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )10.【答案】20【解答】解:设小强同学生日的月数为x ,日数为y ,由题意可列得方程组:{x −y =22x +y =31, 解得{x =11y =9, 则x +y =11+9=20.故答案为:20.11.【答案】13【解答】解:设小明一共买了x 本笔记本,y 支钢笔,根据题意,可得{x +5y ≤100,可求得y ≤403因为y 为正整数,所以最多可以买钢笔13支.故答案为:13.12.【答案】23,12【解答】解:设鸡有x 只,兔有y 只,故居题意得:{x +y =352x +4y =94, 解得:{x =23y =12. 故答案为:23,12.13.【答案】2x +13y =5 【解答】解:∴ 甲数的2倍为2x ,乙数的13为13y ,∴ 根据和为5可得方程为:2x +13y =5,故答案为2x +13y =5. 14.【答案】40∘18′和27∘38′【解答】解:设这两个角的度数为x,y ,则{x +y =67∘56′,x −y =12∘40′,解得{x =40∘18′,y =27∘38′.故答案为:40∘18′和27∘38′.15.【答案】72【解答】解:设原来的两位数个位上的数字为x ,十位上的数字为y .则{x +5=y ,12(10y +x)−(10x +y)=9, 解得{x =2,y =7.所以原来的两位数是72.故答案为:72.16. 【答案】4【解答】解:设购买A 品牌足球x 个,购买B 品牌足球y 个,依题意,得:60x +75y =1500,∴ y =20−45x .∴ x ,y 均为正整数,∴ {x 1=5,y 1=16 或{x 2=10,y 2=12 或{x 3=15,y 3=8 或{x 4=20,y 4=4.∴ 该学校共有4种购买方案.故答案为:4.17.【答案】22.5【解答】设甲、乙、丙各买1个分别需x 元,y 元,z 元,根据题意,得:{3x +5y +z =15.54x +7y +z =19.5, ①×3−②×2得:x +y +z =7.5,方程两边乘以3,得3x +3y +3z =22.5.则甲、乙、丙各买3个共需22.5元.18.【答案】27【解答】设空闲时段居民用电的单价为x 元/千瓦时,高峰时段居民用电的单价为y 元/千瓦时,该用户5月份空闲时段居民用电量为a 千瓦时,则5月份高峰时段居民用电量为2a 千瓦时,6月份空闲时段居民用电量为1.8a 千瓦时,6月份高峰时段居民用电量为1.2a 千瓦时, 依题意,得:(1−25%)(ax +2ay)=1.8ax +1.2ay ,解得:x =57y ,∴ 该地区空闲时段居民用电的单价比高峰时段的居民用电单价低y−x y =27. 三、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 ) 19.【答案】解:设两种储蓄的年利率分别是x ,y ,则{x +y =3.24%,(2000x +1000y)×80%=43.92,解得{x =2.25%,y =0.99%.故两种储蓄的年利率分别是2.25%,0.99%.【解答】解:设两种储蓄的年利率分别是x ,y ,则 {x +y =3.24%(2000x +1000y)×80%=43.92, 解得{x =2.25%y =0.99%. 故两种储蓄的年利率分别是2.25%,0.99%.20.【答案】解:设甲,乙两种商品分别购进x ,y 件,由题意得{x +y =160,(20−15)×x +(45−35)×y =1100,解得{x =100,y =60.答:甲商品应购进100件,乙商品应购进60件.【解答】解:设甲,乙两种商品分别购进x ,y 件,由题意得{x +y =160,(20−15)×x +(45−35)×y =1100,解得{x =100,y =60.答:甲商品应购进100件,乙商品应购进60件.21.【答案】解:设1节火车皮,1辆汽车一次分别能装x 吨,y 吨化肥.则{6x +15y =1808x +10y =200, 解得{x =20y =4. 3x +3y =3×20+3×4=72.答:3节火车皮和3辆汽车能运72吨化肥.【解答】解:设1节火车皮,1辆汽车一次分别能装x 吨,y 吨化肥.则{6x +15y =1808x +10y =200, 解得{x =20y =4. 3x +3y =3×20+3×4=72.答:3节火车皮和3辆汽车能运72吨化肥.22.【答案】大寝室住了x 间,小寝室住了y 间,由题意,得8x +4y =48.整理,得y =12−2x .因为x 、y 都是正整数,所以当x =1时,y =10.当x =2时,y =8.当x =3时,y =6.当x =4时,y =4.当x =5时,y =2.【解答】大寝室住了x 间,小寝室住了y 间,由题意,得8x +4y =48.整理,得y =12−2x .因为x 、y 都是正整数,所以当x =1时,y =10.当x =2时,y =8.当x =3时,y =6.当x =4时,y =4.当x =5时,y =2.23.【答案】该物流公司有29吨货物要运输.【解答】(1)解:设A 型车1辆运x 吨,B 型车1辆运y 吨,由题意得{2x +y =10x +2y =11, 解之得{x =3y =4, 所以1辆A 型车满载为3吨,1辆B 型车满载为4吨.(2)依题意得:3×3+5×4=29(吨).答:该物流公司有29吨货物要运输.24.【答案】解:(1)设在政策出台前的一个月销售手动型和自动型汽车分别为x ,y 台, 根据题意,得{x +y =960,(1+30%)x +(1+25%)y =1228,解得:{x =560,y =400.答:政策出台前的一个月销售手动型和自动型汽车分别为560台和400台.(2)手动型汽车的补贴额为:560×(1+30%)×8×5%=291.2(万元); 自动型汽车的补贴额为:400×(1+25%)×9×5%=225(万元); ∴ 291.2+225=516.2(万元).答:政策出台后第一个月,政府对这1228台汽车用户共补贴516.2万元.【解答】解:(1)设在政策出台前的一个月销售手动型和自动型汽车分别为x ,y 台, 根据题意,得{x +y =960,(1+30%)x +(1+25%)y =1228,解得:{x =560,y =400.答:政策出台前的一个月销售手动型和自动型汽车分别为560台和400台.(2)手动型汽车的补贴额为:560×(1+30%)×8×5%=291.2(万元); 自动型汽车的补贴额为:400×(1+25%)×9×5%=225(万元); ∴ 291.2+225=516.2(万元).答:政策出台后第一个月,政府对这1228台汽车用户共补贴516.2万元.。