高一数学教学案例
高一数学教案(最新6篇)
高一数学教案(最新6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!高一数学教案(最新6篇)作为一名老师,就难以避免地要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。
高中高一数学教案设计精选5篇
高中高一数学教案设计精选5篇教师根据学生和自己的条件,以及高中阶段学科知识为基础,找寻一套行之有效的教学方法。
下面是由编辑为大家整理的“高中高一数学教案设计精选5篇”,仅供参考,欢迎大家阅读本文。
篇一:高中高一数学教案设计精选教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法。
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:x月x日x点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.关于集合的元素的特征。
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样4.元素与集合的关系。
(1)如果a是集合A的元素,就说a属于(belongto)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作aA(或aA)5.常用数集及其记法。
非负整数集(或自然数集),记作N正整数集,记作N__或N+;整数集,记作Z。
高一数学教案(优秀5篇)
高一数学教案(优秀5篇)高一数学教学教案篇一一、教学目标(一)知识与技能了解数轴的概念,能用数轴上的点准确地表示有理数。
(二)过程与方法通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
(三)情感、态度与价值观在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点(一)教学重点数轴的三要素,用数轴上的点表示有理数。
(二)教学难点数形结合的思想方法。
三、教学过程(一)引入新课提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。
我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习如图,写出数轴上点A,B,C,D,E表示的数。
(四)小结作业提问:今天有什么收获?引导学生回顾:数轴的三要素,用数轴表示数。
高一数学教案全集5 篇二数学教案-圆1、教材分析(1)知识结构(2)重点、难点分析重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备。
难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂。
精选高一数学教案五篇
数学教学是一门精良的艺术,同时也是一种综合性的学科,是人们认识世界的基础。
为了更好地开展高中数学教学工作,许多数学教师在针对不同的教学类别和教学内容时,精心编写出各种教案,以达到更好地教学效果。
今天,我们精选出了五篇高一数学教案来与大家分享,一起来看看吧。
一、分式方程的解法分式方程是初步学习函数方程时必须掌握的一个重要知识点,在数学学习中也是必须深入掌握和熟能生巧的常见题型。
本教案从分式方程的定义、性质和解法三个方面入手,精心设计了数个练习题,帮助学生更好地理解和掌握分式方程的知识点。
二、直线的斜率和截距在数学教学中,直线的斜率和截距是一个非常基础且常见的知识点,也是高中数学中不可或缺的一个环节。
本教案详细地对直线的斜率和截距进行了定义和讲解,并通过精心编排的习题来帮助学生更好地掌握这一知识点,为后续的数学学习打下坚实的基础。
三、正弦和余弦函数及其图像正弦和余弦函数是高中数学中重要且常见的知识点之一,在三角函数的学习中起着非常重要的作用。
本教案从正弦和余弦函数的本质、性质以及图像入手,用通俗易懂的语言和简单易学的方法引导学生掌握正弦和余弦函数的知识点。
四、导数的定义和性质导数是微积分学的核心概念,也是非常重要和常见的知识点之一。
本教案详细地对导数的定义、性质和应用进行了介绍,同时为学生提供了适合其能力水平的练习题目,并帮助学生深入掌握导数的概念和运用方法。
五、等差数列等差数列在高中数学中是比较基础、常见和重要的知识点之一。
本教案从等差数列的定义出发,详细地讲解了等差数列的公式、性质、求和公式等,同时提供了一系列充分考虑了学生能力特点的练习习题,帮助学生更好地掌握等差数列的知识。
总结以上就是我们为大家精选的五篇高一数学教案,它们分别是分式方程的解法、直线的斜率和截距、正弦和余弦函数及其图像、导数的定义和性质、等差数列。
这些教案涵盖了高一数学中基础和重要的知识点,能够帮助学生更好地掌握和应用这些知识点。
高一数学的教案(通用7篇)
高一数学的教案(通用7篇)高一数学的教案篇1一、目的要求结合集合的图形表示,理解交集与并集的概念。
二、内容分析1.这小节继续研究集合的运算,即集合的交、并及其性质。
2.本节课的重点是交集与并集的概念,难点是弄清交集与并集的概念,符号之间的区别与联系。
三、教学过程复习提问:1.说出A的意义。
2.填空:如果全集U={x|0≤x6,X∈Z},A={1,3,5},B={1,4},那么,A=_________,B=__________。
(A={0,2,4},B={0,2,3,5})新课讲解:1.观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?2.定义:(1)交集:A∩B={x∈A,且x∈B}。
(2)并集:A∪B={x∈A,且x∈B}。
3.讲解教科书1.3节例1-例5。
组织讨论:观察下面表示两个集合A与B之间关系的5个图,根据这些图分别讨论A∩B与A∪B。
(2)中A∩B=φ。
(3)中A∩B=B,A∪B=A。
(4)中A∩B=A,A∪B=B。
(5)中A∩B=A∪B=A=B。
课堂练习:教科书1.3节第一个练习第1~5题。
拓广引申:在教科书的例3中,由A={3,5,6,8},B={4,5,7,8},得A∪B={3,5,6,8}∪{4,5,7,8}={3,4,5,6,7,8}我们研究一下上面三个集合中的元素的个数问题。
我们把有限集合A的元素个数记作card(A)=4,card(B)=4,card(A∪B)=6.显然,card(A∪B)≠card(A)+card(B)这是因为集合中的元素是没有重复现象的,在两个集合的公共元素只能出现一次。
那么,怎样求card(A∪B)呢?不难看出,要扣除两个集合的公共元素的个数,即card(A∩B)。
在上例中,card(A∩B)=2。
一般地,对任意两个有限集合A,B,有card(A∪B)=card(A)+card(B)-card(A∩B)。
四、布置作业1.教科书习题1.3第1~5题。
高一数学教案五篇
高一数学教案五篇教案:教学文书教案:电力术语教案:明清来华传教士和教会的案件下面是我为大家整理的高一数学教案五篇,欢迎大家与参考,盼望对大家有所关心。
第1篇: 高一数学教案一、指导思想与理论依据数学是一门培育人的思维,进展人的思维的重要学科。
因此,在教学中,不仅要使同学"知其然'而且要使同学"知其所以然'。
所以在同学为主体,老师为主导的原则下,要充分揭示猎取学问和方法的思维过程。
因此本节课我以建构主义的"创设问题情境提出数学问题尝试解决问题验证解决方法'为主,主要采纳观看、启发、类比、引导、探究相结合的教学方法。
在教学手段上,则采纳多媒体帮助教学,将抽象问题形象化,使教学目标体现的更加完善。
二、教材分析三角函数的诱导公式是一般高中课程标准试验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。
本节是第一课时,教学内容为公式(二)、(三)、(四)。
教材要求通过同学在已经把握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发觉任意角、终边的对称关系,发觉他们与单位圆的交点坐标之间关系,进而发觉他们的三角函数值的关系,即发觉、把握、应用三角函数的诱导公式公式(二)、(三)、(四)。
同时教材渗透了转化与化归等数学思想方法,为培育同学养成良好的学习习惯提出了要求。
为此本节内容在三角函数中占有特别重要的地位。
三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班同学水平处于中等偏下,但本班同学具有擅长动手的良好学习习惯,所以采纳发觉的教学方法应当能轻松的完成本节课的教学内容。
四、教学目标(1)基础学问目标:理解诱导公式的发觉过程,把握正弦、余弦、正切的诱导公式;(2)力量训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简洁的三角函数求值与化简;(3)创新素养目标:通过对公式的推导和运用,提高三角恒等变形的力量和渗透化归、数形结合的数学思想,提高同学分析问题、解决问题的力量;(4)共性品质目标:通过诱导公式的学习和应用,感受事物之间的一般联系规律,运用化归等数学思想方法,揭示事物的本质属性,培育同学的唯物史观。
关于高一数学优秀教案5篇
关于高一数学优秀教案5篇作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
我们应该怎么写教案呢?这里给大家分享一些关于高一数学优秀教案,方便大家学习。
关于高一数学优秀教案篇1一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
高一数学教案(通用15篇)
高一数学教案(通用15篇)高一数学教案1【内容与解析】本节课要学的内容有函数的概念指的是函数的概念及符号的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。
学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此根底上的进展的。
由于它还与根本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面学问的根底,是本学科的核心内容。
教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简洁函数的定义域和值域。
【教学目标与解析】1、教学目标(1)理解函数的概念;(2)了解区间的概念;2、目标解析(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的缘由是:函数本身就是一个抽象的概念,对学生来说一个难点。
要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培育学生的抽象概况力量,其中关键是理论联系实际,把抽象转化为详细。
【教学过程】问题1:一枚炮弹放射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依靠关系,从问题的实际意义可知,在t的变化范围内任给一个t,根据给定的对应关系,都有唯一的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t根据给定的图象,都有唯一的一个臭氧层空洞面积S 与之相对应。
高一数学教案
高一数学教案高一数学教案14篇作为一位杰出的教职工,可能需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。
教案应该怎么写呢?以下是小编帮大家整理的高一数学教案,希望能够帮助到大家。
高一数学教案篇1一、教学目标(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;(2)理解逻辑联结词“或”“且”“非”的含义;(3)能用逻辑联结词和简单命题构成不同形式的复合命题;(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;(5)会用真值表判断相应的复合命题的真假;(6)在知识学习的基础上,培养学生简单推理的技能.二、教学重点难点:重点是判断复合命题真假的方法;难点是对“或”的含义的理解.三、教学过程1.新课导入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)学生举例:平行四边形的对角线互相平. (1)两直线平行,同位角相等. (2)教师提问:“......相等的角是对顶角”是不是命题? (3)(同学议论结果,答案是肯定的.)教师提问:什么是命题?(学生进行回忆、思考.)概念总结:对一件事情作出了判断的语句叫做命题.(教师肯定了同学的回答,并作板书.)由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.(教师利用投影片,和学生讨论以下问题.)例1 判断以下各语句是不是命题,若是,判断其真假:命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.2.讲授新课大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)(1)什么叫做命题?可以判断真假的语句叫做命题.判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如x2-5x+6=0中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).(2)介绍逻辑联结词“或”、“且”、“非”.“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.命题可分为简单命题和复合命题.不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.(4)命题的.表示:用p ,q ,r ,s ,……来表示.(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)我们接触的复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式.给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q .在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.3.巩固新课例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.(1)5 ;(2)0.5非整数;(3)内错角相等,两直线平行;(4)菱形的对角线互相垂直且平分;(5)平行线不相交;(6)若ab=0 ,则a=0 .(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)高一数学教案篇2一、教材分析本节课选自《普通高中课程标准数学教科书—必修1》(人教A版)《1。
高一数学教案(优秀5篇)
高一数学教案(优秀5篇)作为一名无私奉献的老师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。
我们该怎么去写教案呢?这次漂亮的我为亲带来了5篇《高一数学教案》,可以帮助到您,就是本文我最大的乐趣哦。
高中数学教案篇一教学目标:1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。
2、会求一些简单函数的反函数。
3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。
4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。
教学重点:求反函数的方法。
教学难点:反函数的概念。
教学过程:教学活动设计意图一、创设情境,引入新课1、复习提问①函数的概念②y=f(x)中各变量的意义2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。
在这种情况下,我们说t=是函数S=vt的反函数。
什么是反函数,如何求反函数,就是本节课学习的内容。
3、板书课题由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。
这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。
二、实例分析,组织探究1、问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x 对称。
是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。
同样,与()也互为逆运算。
)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2、问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3、渗透反函数的概念。
高一数学教育教案【精选7篇】
高一数学教育教案【精选7篇】高一数学教育教案【精选7篇】教案对于老师是重要的。
一个完整的说课主要包括以下几个方面内容,说教学目标、说教学内容、还要注意指出教学内容的重点、难点和关键点。
下面小编给大家带来关于高一数学教育教案,希望会对大家的工作与学习有所帮助。
高一数学教育教案篇1一、教材《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。
从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。
从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。
二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。
三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。
(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。
(三)情感态度价值观目标激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。
四、教学重难点(一)重点用解析法研究直线与圆的位置关系。
(二)难点体会用解析法解决问题的数学思想。
五、教学方法根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。
高一数学必修一教案8篇
高一数学必修一教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、述职报告、合同协议、心得体会、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, job reports, contract agreements, personal experiences, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高一数学必修一教案8篇教案写好了,教师规划好课堂纪律和行为规范,营造良好的学习氛围,实用的教案有助于教师制定明确的教学计划,提高教学的系统性和连贯性,以下是本店铺精心为您推荐的高一数学必修一教案8篇,供大家参考。
高一数学教案设计7篇
高一数学教案设计7篇高一数学教案设计7篇好的数学教学课件很有意义的。
现代诗也叫“白话诗”,最早可追源到清末,是诗歌的一种,与古诗相比而言,虽都为感于物而作,但一般不拘格式和韵律。
下面小编给大家带来关于高一数学教案设计,希望会对大家的工作与学习有所帮助。
高一数学教案设计篇1教学目标:(1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1)重点:了解集合的含义与表示、集合中元素的特性。
(2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗集合与元素之间有怎样的关系[设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
高一数学学习教案七篇
高一数学学习教案七篇高一数学学习教案(精选篇1)目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义重点:集合的基本概念教学过程:1.引入(1)章头导言(2)集合论与集合论的-----康托尔(有关介绍可引用附录中的内容)2.讲授新课阅读教材,并思考下列问题:(1)有那些概念?(2)有那些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?(一)有关概念:1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集注:应区分,0等符号的含义5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N_或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N_或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z_课堂练习:教材第5页练习A、B小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质课后作业:第十页习题1-1B第3题高一数学学习教案(精选篇2)教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
高一数学必修一教案8篇
高一数学必修一教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修一教案8篇只有认真准备好详细的教案,我们的教学进度和课堂效率才会有提升,教案在撰写的时候,教师务必要强调逻辑思路清晰,下面是本店铺为您分享的高一数学必修一教案8篇,感谢您的参阅。
高一数学优秀教案(5篇)
高一数学优秀教案(5篇)高一数学必修一教案篇一一、教材分析“解三角形”既是高中数学的。
基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。
这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。
从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。
而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验“观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。
同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。
二、学情分析我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。
但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、教学目标1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。
树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。
2、教学重点、难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。
高一数学教案五篇分享
高一数学教案五篇分享高一数学教案1教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解〝属于〞关系的意义(3)使学生初步了解有限集.无限集.空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体.实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集.解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活.学习.工作中,也是认识问题.研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习.掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法.描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的.不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的〝一般地,某些指定的对象集在一起就成为一个集合,也简称集〞这句话,只是对集合概念的描述性说明高一数学教案2教学过程:一.复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.〝物以类聚〞,〝人以群分〞;5.教材中例子(P4)二.讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数.一些点.一些图形.一些整式.一些物体.一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1.集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2.常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N_N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N_N+Q.Z.R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_.元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4.集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5.⑴集合通常用大写的拉丁字母表示,如A.B.C.P.Q……元素通常用小写的拉丁字母表示,如a.b.c.p.q……⑵〝∈〞的开口方向,不能把a∈A颠倒过来写三.练习题:1.教材P5练习1.22.下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)3.设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__4.由实数_,-_,|_|,所组成的集合,最多含(A)(A)2个元素(B)3个元素(C)4个元素(D)5个元素5.设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:(1)当_∈N时,_∈G;(2)若_∈G,y∈G,则_+y∈G,而不一定属于集合G证明(1):在a+b(a∈Z,b∈Z)中,令a=_∈N,b=0,则_=_+0_a+b∈G,即_∈G证明(2):∵_∈G,y∈G,∴_=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴_+y=(a+b)+(c+d)=(a+c)+(b+d)∵a∈Z,b∈Z,c∈Z,d∈Z∴(a+c)∈Z,(b+d)∈Z∴_+y=(a+c)+(b+d)∈G,又∵=且不一定都是整数,∴=不一定属于集合G四.小结:本节课学习了以下内容:1.集合的有关概念:(集合.元素.属于.不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五.课后作业:六.板书设计(略)七.课后记:八.附录:康托尔简介发疯了的数学家康托尔(GeorgCantor,_45-__)是德国数学家,集合论的_45年3月3日生于圣彼得堡,__年1月6日病逝于哈雷康托尔_岁时移居德国,在德国读中学_62年_岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,_66年曾去格丁根学习一学期_67年以数论方面的论文获博士学位_69年在哈雷大学通过讲师资格考试,后在该大学任讲师,_72年任副教授,_79年任教授由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为〝悖论〞),许多大数学家唯恐陷进去而采取退避三舍的态度在_74—_76年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都〝一样多〞,后来几年,康托尔对这类〝无穷集合〞问题发表了一系列文章,通过严格证明得出了许多惊人的结论康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对.攻击甚至谩骂有人说,康托尔的集合论是一种〝疾病〞,康托尔的概念是〝雾中之雾〞,甚至说康托尔是〝疯子〞来自数学_的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神_,被送进精神病医院真金不怕火炼,康托尔的思想终于大放光彩_97年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家.数学家罗素称赞康托尔的工作〝可能是这个时代所能夸耀的最巨大的工作〞可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦__年1月6日,康托尔在一家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础从而解决_世纪牛顿(I.Newton,_42-_27)与莱布尼茨(G.W.Leibniz,_46-__)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从_世纪开始,柯西(A.L.Cauchy,_89-_57).魏尔斯特拉斯(K.Weierstrass,__-_97)等人进行的微积分理论严格化所建立的极限理论克隆尼克(L.Kronecker,_23-_91),康托尔的老师,对康托尔表现了无微不至的关怀他用各种用得上的尖刻语言,粗暴地.连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔横加阻挠康托尔在柏林得到一个薪金较高.声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒(H.Poi-ncare,_54-__):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西集合论是一个有趣的〝病理学的情形〞,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了德国数学家魏尔(C.H.Her-mannWey1,_85-_55)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,_49-_25)不赞成集合论的思想数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从_84年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很自卑,甚至怀疑自己的工作是否可靠他请求哈勒大学_他的数学教授职位改为哲学教授职位健康状况逐渐恶化,__年,他在哈勒大学附属精神病院去世流星埃.伽罗华(E.Galois,__-_32),法国数学家伽罗华_岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题许多数学家为之耗去许多精力,但都失败了直到_70年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展作出了重大贡献_29年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在_30年1月_日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作_30年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿_31年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家S.K.泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它_32年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类_32年5月31日离开了人间死因参加无意义的决斗受重伤_46年,他死后_年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的> 高一数学教案3(一)教学目标1.知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用.(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算.2.过程与方法通过对实例的分析.思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.3.情感.态度与价值观通过集合的并集与交集运算法则的发现.完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.(二)教学重点与难点重点:交集.并集运算的含义,识记与运用.难点:弄清交集.并集的含义,认识符号之间的区别与联系(三)教学方法在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.(四)教学过程教学环节教学内容师生互动设计意图提出问题引入新知思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似〝加法〞运算.(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}(2)A={_|_是有理数},B={_|_是无理数},C={_|_是实数}.师:两数存在大小关系,两集合存在包含.相等关系;实数能进行加减运算,探究集合是否有相应运算.生:集合A与B的元素合并构成C.师:由集合A.B元素组合为C,这种形式的组合就是为集合的并集运算.生疑析疑,导入新知形成概念思考:并集运算.集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集. 定义:由所有属于集合A或集合B的元素组成的集合.称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B={_|_∈A,或_∈B},Venn图表示为:师:请同学们将上述两组实例的共同规律用数学语言表达出来.学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.应用举例例1设A={4,5,6,8},B={3,5,7,8},求A∪B.例2设集合A={_|–1 _ 2},集合b={_|1 _ 3},求a∪b. p=例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.例2解:A∪B={_|–1 _ 2}∪{_|1 _ 3}={_=–1 _ 3}. p=师:求并集时,两集合的相同元素如何在并集中表示.生:遵循集合元素的互异性.师:涉及不等式型集合问题.注意利用数轴,运用数形结合思想求解.生:在数轴上画出两集合,然后合并所有区间.同时注意集合元素的互异性.学生尝试求解,老师适时适当指导,评析.固化概念提升能力探究性质①A∪A=A,②A∪=A,③A∪B=B∪A,④∪B,∪B.老师要求学生对性质进行合理解释.培养学生数学思维能力.形成概念自学提要:①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?②交集运算具有的运算性质呢?交集的定义.由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.即A∩B={_|_∈A且_∈B}Venn图表示老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义.并总结交集的性质.生:①A∩A=A;②A∩=;③A∩B=B∩A;④A∩,A∩.师:适当阐述上述性质.自学辅导,合作交流,探究交集运算.培养学生的自学能力,为终身发展培养基本素质.应用举例例1(1)A={2,4,6,8,_},B={3,5,8,_},C={8}.(2)新华中学开运动会,设A={_|_是新华中学高一年级参加百米赛跑的同学},B={_|_是新华中学高一年级参加跳高比赛的同学},求A∩B.例2设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.学生上台板演,老师点评.总结.例1解:(1)∵A∩B={8},∴A∩B=C.(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A∩B={_|_是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.例2解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.(1)直线l1,l2相交于一点P可表示为L1∩L2={点P};(2)直线l1,l2平行可表示为L1∩L2=;(3)直线l1,l2重合可表示为L1∩L2=L1=L2.提升学生的动手实践能力.归纳总结并集:A∪B={_|_∈A或_∈B}交集:A∩B={_|_∈A且_∈B}性质:①A∩A=A,A∪A=A,②A∩=,A∪=A,③A∩B=B∩A,A∪B=B∪A.学生合作交流:回顾→反思→总理→小结老师点评.阐述归纳知识.构建知识网络课后作业1.1第三课时习案学生独立完成巩固知识,提升能力,反思升华备选例题例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a 的值.【解析】法一:∵A∩B={–2},∴–2∈B,∴a–1=–2或a+1=–2,解得a=–1或a=–3,当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2}.当a=–3时,A={–1,_,6},A不合要求,a=–3舍去∴a=–1.法二:∵A∩B={–2},∴–2∈A,又∵a2+1≥1,∴a2–3=–2,解得a=±1,当a=1时,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}.当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1.例2集合A={_|–1 _ 1},b={_|_ a}, p=(1)若A∩B=,求a的取值范围;(2)若A∪B={_|_ 1},求a的取值范围.【解析】(1)如下图所示:A={_|–1 _ 1},b={_|_ a},且a∩b=, p=∴数轴上点_=a在_=–1左侧.∴a≤–1.(2)如右图所示:A={_|–1 _ 1},b={_|_ a}且a∪b={_|_ 1}, p=∴数轴上点_=a在_=–1和_=1之间.∴–1 a≤1. p=例3已知集合A={_|_2–a_+a2–_=0},B={_|_2–5_+6=0},C={_|_2+2_–8=0},求a取何实数时,A∩B与A∩C=同时成立?【解析】B={_|_2–5_+6=0}={2,3},C={_|_2+2_–8=0}={2,–4}.由A∩B和A∩C=同时成立可知,3是方程_2–a_+a2–_=0的解.将3代入方程得a2–3a–_=0,解得a=5或a=–2.当a=5时,A={_|_2–5_+6=0}={2,3},此时A∩C={2},与题设A∩C=相矛盾,故不适合.当a=–2时,A={_|_2+2_–_=0}={3,5},此时A∩B与A∩C=,同时成立,∴满足条件的实数a=–2.例4设集合A={_2,2_–1,–4},B={_–5,1–_,9},若A∩B={9},求A∪B.【解析】由9∈A,可得_2=9或2_–1=9,解得_=±3或_=5.当_=3时,A={9,5,–4},B={–2,–2,9},B中元素违背了互异性,舍去.当_=–3时,A={9,–7,–4},B={–8,4,9},A∩B={9}满足题意,故A∪B={–7,–4,–8,4,9}.当_=5时,A={25,9,–4},B={0,–4,9},此时A∩B={–4,9}与A∩B={9}矛盾,故舍去.综上所述,_=–3且A∪B={–8,–4,4,–7,9}.高一数学教案4一.教学目标:1.知识与技能:理解并掌握等比数列的性质并且能够初步应用.2.过程与方法:通过观察.类比.猜测等推理方法,提高我们分析.综合.抽象. 概括等逻辑思维能力.3.情感态度价值观:体会类比在研究新事物中的作用,了解知识间存在的共同规律.二.重点:等比数列的性质及其应用.难点:等比数列的性质应用.三.教学过程.同学们,我们已经学习了等差数列,又学习了等比数列的基础知识,今天我们继续学习等比数列的性质及应用.我给大家发了导学稿,让大家做了预习,现在找同学对照下面的表格说说等差数列和等比数列的差别.数列名称等差数列等比数列定义一个数列,若从第二项起每一项减去前一项之差都是同一个常数,则这个数列是等差数列. 一个数列,若从第二项起每一项与前一项之比都是同一个非零常数,则这个数列是等比数列.定义表达式 an-an-1=d (n≥2)(q≠0)通项公式证明过程及方法an-an-1=d; an-1-an-2=d,…a2-a1=dan-an-1+ an-1-an-2+…+a2-a1=(n-1)dan=a1+(n-1)_累加法; …….an=a1q n-1累乘法通项公式 an=a1+(n-1)_ an=a1q n-1多媒体投影(总结规律)数列名称等差数列等比数列定义等比数列用〝比〞代替了等差数列中的〝差〞定义表达式 an-an-1=d (n≥2)通项公式证明迭加法迭乘法通项公式加-乘乘—乘方通过观察,同学们发现:? 等差数列中的减法.加法.乘法,等比数列中升级为除法.乘法.乘方.四.探究活动.探究活动1:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习1;等差数列的性质1;猜想等比数列的性质1;性质证明.练习 1 在等差数列{an}中,a2= -2,d=2,求a4=_____..(用一个公式计算) 解:a4=a2+(n-2)d=-2+(4-2)_=2等差数列的性质1: 在等差数列{an}中, a n=am+(n-m)d.猜想等比数列的性质1 若{an}是公比为q的等比数列,则an=am_n-m性质证明右边= am_n-m= a1qm-1qn-m= a1qn-1=an=左边应用在等比数列{an}中,a2= -2 ,q=2,求a4=_____. 解:a4= a2q4-2=-2_2=-8 探究活动2:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习2;等差数列的性质2;猜想等比数列的性质2;性质证明.练习 2 在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8的值为 . 解:a3+a4+a5+a6+a7=(a3+a7)+(a4+ a6)+ a5= 2a5+2a5+a5=5 a5=450 a5=90 a2+a8=2_90=_0等差数列的性质2: 在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq 特别的,当m=n时,2 an=ap+aq猜想等比数列的性质2 在等比数列{an} 中,若m+n=s+t则am_n=as_t 特别的,当m=n时,an2=ap_q性质证明右边=am_n= a1qm-1 a1qn-1= a_qm+n-1= a_qs+t-1=a1qs-1 a1qt-1= as_t=左边证明的方向:一般来说,由繁到简应用在等比数列{an}若an 0,a2a4+2a3a5+a4a6=36,则a3+a5=_____. 解:a2a4+2a3a5+a4a6=a32+2a3a5+a52=(a3+a5)2=36由于an 0,a3+a5 0,a3+a5=6探究活动3:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习3;等差数列的性质3;猜想等比数列的性质3;性质证明.练习 3 在等差数列{an}中,a30=_,a45=90,a60=_____. 解:a60=2_a45- a30=2_90-_=_0等差数列的性质3: 若an-k,an,an+k是等差数列{an}中的三项, 则这些项构成新的等差数列,且2an=an-k+an+kan即时an-k,an,an+k的等差中项猜想等比数列的性质3 若an-k,an,an+k是等比数列{an}中的三项,则这些项构成新的等比数列,且an2=an-k_n+kan即时an-k,an,an+k的等比中项性质证明右边=an-k_n+k= a1qn-k-1 a1qn+k-1= a_qn-k-1+n+k-1= a_q2n-2=(a1qn-1)2t=an2左边证明的方向:由繁到简应用在等比数列 {an}中a30=_,a45=90,a60=_____.解:a60= = =8_应用等比数列{an}中,a_=_, a45=90,a60=________. 解:a30= = = 30A60=探究活动4:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习4;等差数列的性质4;猜想等比数列的性质4;性质证明.练习 4 设数列{an} .{ bn} 都是等差数列,若a1+b1=7,a3+b3=_,则a5+b5=_____.解:a5+b5=2(a3+b3)-(a1+b1)=2_1-7=35等差数列的性质4: 设数列{an} .{ bn} 是公差分别为d1.d2的等差数列,则数列{an+bn}是公差d1+d2的等差数列两个项数相同的等差数列的和任然是等差数列猜想等比数列的性质4 设数列{an} .{ bn} 是公比分别为q1.q2的等比数列,则数列{an_n}是公比为q1q2的等比数列两个项数相同的等比数列的和比一定是等比数列,两个项数相同的等比数列的积任然是等比数列.性质证明证明:设数列{an}的首项是a1,公比为q1; {bn}的首项为b1,公比为q2,设cn=an?bn那么数列{an?bn}的第n项与第n+1项分别为:应用设数列{an} .{ bn} 都是等比数列,若a1b1=7,a3b3=_,则a5b5=_____.解:由题意可知{an?bn}是等比数列,a3b3是a1b1;a5b5的等比中项.由(a3b3)2= a1b1_a5b5 2_= 7_a5b5 a5b5=63(四个探究活动的设计充分尊重学生的主体地位,以学生的自主学习,自主探究为主题,以教师的指导为辅,开展教学活动)五.等比数列具有的单调性(1)q 0,等比数列为摆动数列, 不具有单调性(2)q 0(举例探讨并填表)a1 a1 0 a1 0q的范围 0 q=1 q 1 0 q=1 q 1{an}的单调性单调递减不具有单调性单调递增单调递增不具有单调性单调递减让学生举例说明,并查验有多少学生填对.(真确评价)六.课堂练习:1.已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=_,则a4a5a6等于( ).A. B.?7 C.?6 D.?解析:由已知得a32?=5,? a82=_,∴a4a5a6=a53?= = =5 ?.答案:A2.已知数列1,a1,a2,4是等比数列,则a1a2= .答案:43. +1与 -1两数的等比中项是( ).A.1B.?-1C.?D.±1?解析:根据等比中项的定义式去求.答案:选D4.已知等比数列{an}的公比为正数,且a3a9=2 ? ,a2=1,则a1等于( ).A.2B.?C.?D.?解析:∵a3a9= =2 ?,∴? =q2=2,∵q 0,∴q= ?.故a1= ?= ?= ?.答案:C5练习题:三个数成等比数列,它们的和等于_,它们的积等于64,求这三个数.分析:若三个数成等差数列,则设这三个数为a-d,a,a+d.由类比思想的应用可得,若三个数成等比数列,则设这三个数为: 根据题意再由方程组可得:q=2 或既这三个数为2,4,8或8,4,2.七.小结本节课通过观察.类比.猜测等推理方法,研究等比数列的性质及其应用,从而培养和提高我们综合运用分析.综合.抽象.概括,逻辑思维解决问题的能力. 八.§3.1.2等比数列的性质及应用性质一:若{an}是公比为q的等比数列,则an=am_n-m性质二:在等比数列{an} 中,若m+n=s+t则am_n=as_t性质三:若an-k,an,an+k是等比数列{an}中的三项,则这些项构成新的等比数列,且 an2=an-k_n+k性质四:设数列{an} .{ bn} 是公比分别为q1.q2的等比数列,则数列{an_n}是公比为q1q2的等比数列板书设计九.反思高一数学教案5课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近.现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用.课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合〝属于〞关系;(2)能选择自然语言.图形语言.集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程:一. 引入课题军训前学校通知:8月_日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二.高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.二. 新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的.不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集.3. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,_是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)集合相等:构成两个集合的元素完全一样。
高一数学教案(优秀5篇)-最新
高一数学教案(优秀5篇)继晷焚膏:继:继续,接替;晷:日光;膏:油脂,指灯烛。
点燃蜡烛或油灯接替日光照明。
形容夜以继日地勤奋学习或工作。
它山之石可以攻玉,下面为您精心整理了5篇《高一数学教案》,可以帮助到您,就是最大的乐趣哦。
高一数学教案篇一课题:1.3.2函数的奇偶性一、三维目标:知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操。
通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。
对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:1、复习在初中学习的轴对称图形和中心对称图形的定义:2、分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。
五、学习过程:函数的奇偶性:(1)对于函数,其定义域关于原点对称:如果______________________________________,那么函数为奇函数;如果______________________________________,那么函数为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性。
六、达标训练:a1、判断下列函数的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;(3)f(x)=x+ (4)f(x)=a2、二次函数( )是偶函数,则b=___________ 。
b3、已知,其中为常数,若,则_______ 。
高一数学教案分享5篇
高一数学教案分享5篇俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。
下面就是给大家带来的高一数学教案,希望能帮助到大家!高一数学教案1一、教学思想:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。
通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A 版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学教学案例
巩义五中:李小举
§1.1.1 集合(—)
教学目标
(—)教学知识点
1.集合的概念和性质
2.集合的元素特征
3.有关数的集合
(二)能力训练要求
1.培养学生的思维能力
2.提高学生理解掌握概念的能力
(三)德育渗透目标
1.培养学生认识事物的能力
2.引导学生爱班,爱校,爱国
教学重点
1.集合的概念
2.集合元素的三个特征
教学难点
1.集合元素的三个特征
2.数集与数集的关系
教学方法
尝试指导法
学生依集合概念的要求,集合元素的特征,在教师指导下,能自己举出符合要求的实例,加深对概念的理解,特征的掌握
教具准备
投影片四张
第一张:(记作§1.1.1 A)
观察下列实例
⑴数组1,3,5,7
⑵到两定点距离的和等于两定点距离的点
⑶满足3x-2〉x+3的全体实数
⑷所有直角三角形
⑸高一(3)班全体男同学
⑹所有绝对值等于6的数的集合
⑺所有绝对值小于3的整数的集合
⑻中国足球男队的队员
⑼参加2008年奥运会的中国代表团成员
⑽参与中国加入WTO谈判的中方成员
第二张:(记作§1.1.1 B)
问题及解释
⑴A={1,3},问3,5哪个是A的元素?
⑵A={所有素质好的人}能否表示为集合?
⑶A={2,2,4}表示是否准确?
⑷A={太平洋,大西洋},B={大西洋,太平洋}是否表示为同一集合
第三张:(记作§1.1.1 C)
判断下面说法是否正确,正确的在()内填“√”,错误的填“х”
⑴所有在N中的元素都在N*中()
⑵所有在N中的元素都在Z中()
⑶所有不在N*中的数都不在Z中()
⑷所有不在Q中的实数都在R中()
⑸由既在R中又在Z*中的数组成的集合中一定包含数0 ()
⑹不在N中的数不能使方程4x=8成立()
第四张:(记作§1.1.1 D)
3.常见数集的专用符号
N:非负整数集(或自然数集)(全体非负整数的集合)
N*或N+:正整数集(非负整数集内排除0的集合)
Z:整数集(全体整数的集合)
Q:有理数集(全体有理数的集合)
R:实数集(全体实数的集合)
教学过程
1.复习回顾
师生共同回顾初中代数涉及“集合”的提法
[师]同学们回忆一下,在初中代数第六章不等式的解法一节中提到:
一般的说,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。
不等式的解集的定义中涉及到“集合”。
2.讲授新课
下面我们再看一组实例
投影片:(§1.1.1 A)
观察下列实例
⑴数组1,3,5,7
⑵到两定点距离的和等于两定点距离的点
⑶满足3x-2〉x+3的全体实数
⑷所有直角三角形
⑸高一(3)班全体男同学
⑹所有绝对值等于6的数的集合
⑺所有绝对值小于3的整数的集合
⑻中国足球男队的队员
⑼参加2008年奥运会的中国代表团成员
⑽参与中国加入WTO谈判的中方成员
通过以上实例,教师指出:
1.定义
一般地,某些指定对象集在一起就成为一个集合(集)
师进一步指出:
集合中每个对象叫做这个集合的元素。
[师]上述各例中集合的元素是什么?
[生]例⑴的元素为1,3,5,7。
例⑵的元素为到两定点距离的和等于两定点尖距离的点。
例⑶的元素为满足不等式3x-2〉x+3的实数x
例⑷的元素为所有直角三角形
例⑸为高一(3)班全体男同学
例⑹的元素为-6,6
例⑺的元素为-2,-1,0,1,2
例⑻的元素为中国足球男队的队员
例⑼的元素为参加2008年奥运会的中国代表团成员
例⑽的元素为参与WTO谈判的中方成员
[师]请同学们另外举出三个例子,并指出其元素。
[生]⑴高一年级所有女同学。
⑵学校学生会所有成员。
⑶我国公民基本道德规范。
其中例⑴的元素为高一年级所有女同学。
例⑵的元素为学生会所有成员。
例⑶的元素为爱国守法,明礼诚信,团结友爱,勤俭自强,敬业奉献。
[师]一般地来讲,用大括号表示集合。
师生共同完成上述例题集合的表示。
如:例⑴{1,2,5,7};
例⑵到{两定点距离的和等于两定点尖距离的点};
例⑶{3x-2}x+3的解}
例⑷{直角三角形};
例⑸{高一(3)班全体男同学};
例⑹{-6,6};
例⑺{-2,-1,0,1,2};
例⑻{中国足球男队的队员};
例⑼{参加2008年奥运会的中国代表团成员};
例⑽{参与中国加入WTO谈判的中方成员}。
2集合元素的三个特征
投影片:(§1.1.1 B)问题及解释
⑴A={1,3},问3,5哪个是A的元素?
⑵A={所有素质好的人}能否表示为集合?
⑶A={2,2,4}表示是否准确?
⑷A={太平洋,大西洋},B={大西洋,太平洋}是否表示为同一集合?
生在师的指导下回答问题:
例⑴3是集合A的元素,5不是集合A的元素。
例⑵由于素质好的人标准不可量化,故A不能表示为集合。
例⑶的表示不准确,应表示为A={2,4}。
例⑷的A与B表示同一集合,因其元素相同。
由此从所给问题可知,集合元素具有以下三个特征:
⑴确定性
集合中的元素必须是确定的,也就是说,对于一个给定的集合,其元素的意义是明确的。
如上的例⑴,例⑵,再如{参加学校运动会的年龄较小的人}也不能表示为一个集合。
⑵互异性
集合中的元素必须是互异的,也就是说,对于一个给定的集合,它的任何两个元素都是不同的。
如例⑶,再如A={1,1,2,4,6}应表示为A={1,2,4,6}
⑶无序性
集合中的元素是无先后顺序,也就是说,对于一个给定的集合,它的任何两个元素都是可以交换的。
如上例⑴
[师]元素与集合的关系有“属于∈”及“不属于”两种。
如A={2,4,8,16} 4∈A 8∈A 32不属于A
请同学们考虑:
A={2,4},B={{1,2},{2,3},{2,4} ,{3,5},A与B的关系如何?
虽然A本身是一个集合。
但相对B来讲,A是B的一个元素。
故A∈B。
投影片:(§1.1.1 C)3.常见数集的专用符号
N:非负整数集(或自然数集)(全体非负整数的集合)
N*或N+:正整数集(非负整数集内排除0的集合)
Z:整数集(全体整数的集合)
Q:有理数集(全体有理数的集合)
R:实数集(全体实数的集合)
[师]请同学们熟记上述符号及其意义。
3.课堂练习
1)(口答)下面集合中的元素。
⑴{大于3小于11的偶数}
其元素为4,6,8,10
⑵{平方等于1的数}
其元素为1,-1
⑶{15的正约数}
其元素为1,3,5,15
2)用符号∈或不属于填空
1∈N O∈N -3不属于N 0.5不属于N ∏不属于N
1∈Z O∈Z -3∈Z 0.5不属于Z ∏不属于Z
1∈Q O∈Q -3∈Q 0.5∈Q ∏不属于Q
1∈R O∈R -3∈R 0.5∈R ∏∈R
(一)补充练习
投影片:(§1.1.1 D)
判断下面说法是否正确,正确的在()内填“√”,错误的填“х”
⑴所有在N中的元素都在N*中(х)
⑵所有在N中的元素都在Z中(√)
⑶所有不在N*中的数都不在Z中(х)
⑷所有不在Q中的实数都在R中(√)
⑸由既在R中又在Z*中的数组成的集合中一定包含数0 (х)
⑹不在N中的数不能使方程4x=8成立(√)
4.课时小结
1)集合的概念中,“某些指定的对象”,可以是任意的具体确定的事物,例如数,点,形,物等。
2)集合元素的三个特征:确定性,互异性,无序性,要能熟练运用之。
5.课后
作业
(一)课本P6习题1.1 .1
(二)1.预习内容:课本P4~P5
1.预习提纲:
⑴集合的表示方法有几种?怎样表示?试举例说明。
⑵集合如何分类?依据是什么?
板书设计§1.1.1 集合
1.集合的概念练习
2.集合元素的三个特征
⑴确定性小结
⑵互异性
⑶无序性作业
教学反思
本堂课是遵循充分尊重学生,相信学生,依靠学生的“主体”教学思想,运用助思,助学,助练的启发式教学方法,启动师生交流的“匣门”,是教学相长的教学过程真正成为师生间的双向活动。
要求教师在备课时,除常规内容外还要突出地精备学生,要备学生的认知规律,心理活动,要备学生在“触新”时,可能回忆,再现哪些“旧知”?可能萌生哪些“猜想”?在理解,掌握“新知”时可能出现哪些正确的,不正确的;不完全,不严密的思维……设法在“前,后,左,右”给予帮助,这也正是教师“主导”作用的重要所在。
高一数学教学案例
巩义五中:李小举。