2020高中数学人教A版必修4阶段质量检测(二) Word版含解析
高中数学本册综合检测题素养作业提技能含解析第二册
本册综合检测题考试时间120分钟,满分150分。
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知i是虚数单位,复数z1在复平面内对应的向量错误!=(-2,1),则复数z=错误!的虚部为(D)A.-错误!B.-错误!C.错误!D.错误![解析]由题意可知z1=-2+i,所以z=错误!=错误!=错误!=-错误!+错误!i,因此,复数z的虚部为错误!。
2.某台机床加工的1 000只产品中次品数的频率分布如下表:则次品数的众数、平均数依次为(A)A.0,1.1B.0,1C.4,1D.0。
5,2[解析]由表可知,次品数的众数为0,平均数为0×0.5+1×0.2+2×0.05+3×0。
2+4×0.05=1.1.3.已知l,m表示两条不同的直线,α表示平面,则下列说法正确的是(A)A.若l⊥α,m⊂α,则l⊥mB.若l⊥m,m⊂α,则l⊥αC.若l∥m,m⊂α,则l∥αD.若l∥α,m⊂α,则l∥m[解析]对于A,若l⊥α,m⊂α,则根据直线与平面垂直的性质,知l⊥m,故A正确;对于B,若l⊥m,m⊂α,则l可能在α内,故B不正确;对于C,若l∥m,m⊂α,则l∥α或l⊂α,故C不正确;对于D,若l∥α,m⊂α,则l与m可能平行,也可能异面,故D不正确.故选A.4.在△ABC中,角A,B,C所对的边分别是a,b,c,若a=a cos B +b cos A,则△ABC是(A)A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形[解析]因为a=a cos B+b cos A,所以由余弦定理可得a=a×错误!+b×错误!,整理得a=c,所以△ABC为等腰三角形。
5.已知平面向量a与b的夹角为错误!,且|a|=1,|b|=2,则|a+b|=(B)A.3B.错误!C.7D.错误![解析]因为|a+b|2=(a+b)2=a2+2a·b+b2=|a|2+2|a|·|b|cos错误!+|b|2=1+2×1×2×错误!+4=3,所以|a+b|=错误!。
2019-2020高中数学人教A版必修四教师用书:2.1 平面向量的实际背景及基本概念 Word版
姓名,年级:时间:2.1 平面向量的实际背景及基本概念[教材研读]预习课本P74~76,思考以下问题1.向量是如何定义的?向量与数量有什么区别?2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.零向量与单位向量有什么特殊性?0与0的含义有什么区别? 5.如何判断相等向量或共线向量?向量错误!与向量错误!是相等向量吗?[要点梳理]1.向量的概念和表示方法(1)概念:既有大小,又有方向的量称为向量.(2)向量的表示2.向量的长度(或称模)与特殊向量(1)向量的长度(或模)定义:向量的大小叫做向量的长度(或模).(2)向量的长度表示:向量错误!,a的长度分别记作:|错误!|,|a|。
(3)特殊向量:①长度为0的向量为零向量,记作0;②长度等于1个单位的向量,叫做单位向量.3.向量间的关系(1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a =b。
(2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行.[自我诊断]判断(正确的打“√",错误的打“×”)1.两个向量能比较大小.()2.向量的模是一个正实数.()3.单位向量的模都相等.( )4.向量错误!与向量错误!是相等向量.( )[答案]1。
×2。
× 3.√ 4.×错误!思考:已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有__________,是向量的有__________.提示:②④⑤⑨⑩①③⑥⑦⑧下列说法正确的有__________.(填序号)①若|a|=|b|,则a与b的长度相等且方向相同或相反;②若|a|=|b|,且a与b的方向相同,则a=b;③由于0方向不确定,故0不能与任意向量平行;④向量a与向量b平行,则向量a与b方向相同或相反;⑤起点不同,但方向相同且模相等的向量是相等向量.[思路导引] 利用向量的有关概念逐一判断.[解析] ①不正确.由|a|=|b|只能判断两向量长度相等,不能确定它们方向的关系.②正确.因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.③不正确.依据规定:0与任一向量平行.④不正确.因为向量a与向量b若有一个是零向量,则其方向不定.⑤正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.[答案] ②⑤解决与向量概念有关问题的方法解决与向量概念有关题目的关键是突出向量的核心——方向和长度,如:共线向量的核心是方向相同或相反,长度没有限制;相等向量的核心是方向相同且长度相等;单位向量的核心是方向没有限制,但长度都是一个单位长度;零向量的核心是方向没有限制,长度是0;规定零向量与任一向量共线.只有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.[跟踪训练]下列说法错误的有__________.(填上你认为所有符合的序号)①两个单位向量不可能平行;②两个非零向量平行,则它们所在直线平行;③当两个向量a,b共线且方向相同时,若|a|〉|b|,则a>b.[解析]①错误,单位向量也可以平行;②错误,两个非零向量平行,则它们所在直线还可能重合;③错误,两个向量是不能比较大小的,只有模可以比较大小.[答案] ①②③错误!思考:向量就是有向线段,这种说法对吗?提示:不对,向量与有向线段是两个不同的概念,可以用有向线段表示向量.在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)错误!,使|错误!|=4错误!,点A在点O北偏东45°;(2)错误!,使|错误!|=4,点B在点A正东;(3)错误!,使|错误!|=6,点C在点B北偏东30°。
2020年高中数学 人教A版 必修4 单元测试卷 平面向量(含答案解析)
7
7
∴Error!解得 m=2,n= ,∴D(2, ),故选 A.225.答案为:D.
解析:由题意,得 a·b=3×(-3)+4×1=-5,|a|=5,|b|= 10,
a·b -5 1
则 cos θ=
= =- .
|a||b| 5 10 10
3
sin θ
∵θ∈[0,π],∴sin θ= 1-cos2θ= ,∴tan θ=
22.已知 a=(2+sin x,1),b=(2,-2),c=(sin x-3,1),d=(1,k)(x∈R,k∈R). ππ
(1)若 x∈[- , ],且 a∥(b+c),求 x 的值; 22
(2)若函数 f(x)=a·b,求 f(x)的最小值; (3)是否存在实数 k 和 x,使得(a+d)⊥(b+c)?若存在,求出 k 的取值范围;若不存在, 请说明理由.
3.在△ABC 中,AB=BC=3,∠ABC=60°,AD 是边 BC 上的高,则A→D·A→C的值等于( )
9 A.-
4
9
27
B.
C.
D.9
4
4
4.已知四边形 ABCD 的三个顶点 A(0,2),B(-1,-2),C(3,1),且B→C=2A→D,则顶点 D 的坐标
为( ) 7
A.(2, ) 2
答案解析
1.答案为:D. 解析:A 中,两向量的夹角不确定,故 A 错;B 中,若 a⊥b,a⊥c,b 与 c 反方向, 则不成立,故 B 错;C 中,应为A→B=O→B-O→A,故 C 错; D 中,因为 b⊥c,所以 b·c=0,所以(a+c)·b=a·b+c·b=a·b,故 D 正确.
2.答案为:B. 对 A,a 与 b 若其中一个为 0,不合题意,错误.对 B,零向量是 0,正确;对 C,方向相 同且长度相等的向量叫做相等向量,错误;对 D,共线向量所在直线可能平行,也可能重 合,错误.故选 B.
高中数学第四章圆与方程检测试题含解析新人教A版必修2
第四章圆与方程检测试题(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分)1.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是( C )(A)x+y+1=0 (B)x+y-1=0(C)x-y+1=0 (D)x-y-1=0解析:易知点C为(-1,0),因为直线x+y=0的斜率是-1,所以与直线x+y=0垂直直线的斜率为1,所以要求直线方程是y=x+1,即x-y+1=0.2.空间直角坐标系Oxyz中的点P(1,2,3)在xOy平面内射影是Q,则点Q的坐标为( A )(A)(1,2,0) (B)(0,0,3)(C)(1,0,3) (D)(0,2,3)解析:因为空间直角坐标系Oxyz中,点P(1,2,3)在xOy平面内射影是Q,所以点Q的坐标为(1,2,0).3.若方程x2+y2-x+y+m=0表示圆,则实数m的取值范围是( A )(A)m< (B)m>(C)m<0 (D)m≤解析:由题意得1+1-4m>0,得m<.4.圆O1:x2+y2-4x-6y+12=0与圆O2:x2+y2-8x-6y+16=0的位置关系是( D )(A)相交 (B)相离 (C)内含 (D)内切解析:把圆O1:x2+y2-4x-6y+12=0与圆O2:x2+y2-8x-6y+16=0分别化为标准式为(x-2)2+(y-3)2=1和(x-4)2+(y-3)2=9,两圆心间的距离d==2=|r1-r2|,所以两圆的位置关系为内切,故选D.5.若圆x2+y2-2x-4y=0的圆心到直线x-y+a=0的距离为,则a的值为( C )(A)-2或2 (B)或(C)2或0 (D)-2或0解析:圆x2+y2-2x-4y=0的圆心是(1,2).点(1,2)到直线x-y+a=0的距离是=,所以|a-1|=1,所以a=2或a=0.选C.6.若直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则k,b的值分别为( D )(A)-,4 (B),4(C)-,-4 (D),-4解析:直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则直线2x+y+b=0一定过圆(x-2)2+y2=1的圆心(2,0),代入得b=-4,同时直线y=kx与直线2x+y+b=0垂直,可得-2×k=-1,解得k=,故选D.7.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是( A )(A)(x-2)2+(y+1)2=1 (B)(x-2)2+(y+1)2=4(C)(x+4)2+(y-2)2=1 (D)(x+2)2+(y-1)2=1解析:设圆上任意一点坐标为(x1,y1),其与点P所连线段的中点坐标为(x,y),则即代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.故选A.8.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是( A )(A) (B)1 (C) (D)解析:如图所示,当直线l上恰好只存在一个圆与圆C相切时,直线l的斜率最大,此时,点C(4,0)到直线l的距离是2.即=2.解得k=或k=0.所以k的最大值是.9.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( A )(A)x+y-2=0 (B)y-1=0(C)x-y=0 (D)x+3y-4=0解析:欲使两部分的面积之差最大,需直线与OP垂直,因为k OP=1,所以所求的直线方程为y-1=-(x-1),即x+y-2=0.10.过点P(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A,B两点,若|AB|=8,则直线l的方程为( C )(A)5x+12y+20=0(B)5x-12y+20=0(C)5x+12y+20=0或x+4=0(D)5x-12y+20=0或x+4=0解析:x2+y2+2x-4y-20=0可化为(x+1)2+(y-2)2=25,当直线l的斜率不存在时,符合题意;当直线l的斜率存在时,设l的方程为y=k(x+4),由题意得==3,得k=-.所以直线l的方程为y=-(x+4),即5x+12y+20=0,综上,符合条件的直线l的方程为5x+12y+20=0或x+4=0.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.圆x2+y2-4x+6y=0的圆心坐标是,半径是.解析:圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3),半径为.答案:(2,-3)12.如图所示,在单位正方体ABCDA1B1C1D1中,以DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A1C和A1C1的长度分别为, .解析:易得A1(1,0,1),C(0,1,0),C1(0,1,1),所以|A1C|==,|A1C1|==.答案:13.圆x2+y2+Dx+Ey+F=0关于直线l1:x-y+4=0与直线l2:x+3y=0都对称,则D= ,E= .解析:由题设知直线l1,l2的交点为已知圆的圆心.由得所以-=-3,D=6,-=1,E=-2.答案:6 -214.若直线mx+2ny-4=0(m,n∈R)始终平分圆x2+y2-4x-2y-4=0的周长,则m+n的值等于,mn的取值范围是.解析:圆心(2,1),则m×2+2n×1-4=0,即m+n=2,m=2-n,于是mn=(2-n)n=-n2+2n=-(n-1)2+1≤1,故mn的取值范围是(-∞,1].答案:2 (-∞,1]15.若直线y=x+b与曲线x=恰有一个公共点,则实数b的取值范围是.解析:将曲线x=变为x2+y2=1(x≥0).如图所示,当直线y=x+b与曲线x2+y2=1相切时,则满足=1,|b|=,b=±.观察图象,可得当b=-,或-1<b≤1时,直线与曲线x=有且只有一个公共点.答案:(-1,1]∪{-}16.若集合A={(x,y)|x2+y2≤16},B={(x,y)|x2+(y-2)2≤a-1},且A∩B=B,则a的取值范围是.解析:A∩B=B等价于B⊆A.当a>1时,集合A和B中的点的集合分别代表圆x2+y2=16和圆x2+(y-2)2=a-1的内部,如图,容易看出当B对应的圆的半径小于2时符合题意.由0<a-1≤4,得1<a≤5;当a=1时,满足题意;当a<1时,集合B为空集,也满足B⊆A,所以当a≤5时符合题意.答案:(-∞,5]17.已知直线l1:x+y-=0,l2:x+y-4=0,☉C的圆心到l1,l2的距离依次为d1,d2且d2=2d1,☉C与直线l2相切,则直线l1被☉C所截得的弦长为.解析:当圆心C在直线l1:x+y-=0与l2:x+y-4=0之间时,d1+d2=3且d2=2d1,☉C与直线l2相切,此时r=d2=2,d1=1,则直线l1被☉C所截得的弦长为2=2=2;同理,当圆心C不在直线l1:x+y-=0与l2:x+y-4=0之间时,则d2-d1=3且d2=2d1,☉C与直线l2相切,此时r=d2=6,d1=3,则直线l1被☉C所截得的弦长为2=2=6.故直线l1被☉C所截得的弦长为2或6.答案:2或6三、解答题(本大题共5小题,共74分)18.(本小题满分14分)一直线 l 过直线 l1:2x-y=1 和直线 l2:x+2y=3 的交点 P,且与直线 l3:x-y+1=0 垂直.(1)求直线 l 的方程;(2)若直线 l 与圆 C:(x-a)2+y2=8 (a>0)相切,求 a.解:(1)由解得P(1,1),又直线l与直线l3:x-y+1=0垂直,故l的斜率为-1,所以l:y-1=-(x-1),即直线l的方程为x+y-2=0.(2)由题设知C(a,0),半径r=2,因为直线l与圆C:(x-a)2+y2=8(a>0)相切,所以C到直线l的距离为2,所以=2,又a>0,得a=6.19.(本小题满分15分)已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.(1)求直线CD的方程;(2)求圆P的方程.解:(1)直线AB的斜率k=1,AB的中点坐标为(1,2),所以直线CD的方程为y-2=-(x-1),即x+y-3=0.(2)设圆心P(a,b),则由P在CD上得a+b-3=0.①又直径|CD|=4,所以|PA|=2,所以(a+1)2+b2=40,②由①②解得或所以圆心P(-3,6)或P(5,-2),所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.20.(本小题满分15分)已知圆C:x2+y2+4x-4ay+4a2+1=0,直线l:ax+y+2a=0.(1)当a=时,直线l与圆C相交于A,B两点,求弦AB的长;(2)若a>0且直线l与圆C相切,求圆C关于直线l的对称圆C′的方程.解:(1)因为圆C:(x+2)2+(y-2a)2=()2,又a=,所以圆心C为(-2,3),直线l:3x+2y+6=0,圆心C到直线l的距离d==,所以|AB|=2=.(2)将y=-ax-2a代入圆C的方程化简得(1+a2)x2+4(1+2a2)x+16a2+1=0,(*)所以Δ=[4(1+2a2)]2-4(1+a2)(16a2+1)=4(3-a2)=0,因为a>0,所以a=,所以方程(*)的解为x=-,所以切点坐标为(-,),根据圆关于切线对称的性质可知切点为CC′的中点,故圆心C′的坐标为(-5,),所以圆C′的方程为(x+5)2+(y-)2=3.21.(本小题满分15分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.解:(1)由方程x2+y2+2x-4y+3=0知,圆心为(-1,2),半径为.当切线过原点时,设切线方程为y=kx,则=.所以k=2±,即切线方程为y=(2±)x.当切线不过原点时,设切线方程为x+y=a,则=.所以a=-1或a=3,即切线方程为x+y+1=0或x+y-3=0.所以切线方程为y=(2±)x或x+y+1=0或x+y-3=0.(2)设P(x1,y1).因为|PM|2+r2=|PC|2,即|PO|2+r2=|PC|2,所以++2=(x1+1)2+(y1-2)2,即2x1-4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO垂直于直线2x-4y+3=0时,即直线PO的方程为2x+y=0时,|PM|最小,此时P点即为两直线的交点,得P点坐标(-,).22.(本小题满分15分)圆C:x2+y2+2x-3=0内有一点P(-2,1),AB为过点P且倾斜角为α的弦.(1)当α=135°时,求AB的长;(2)当弦AB被点P平分时,写出直线AB的方程;(3)若圆C上的动点M与两个定点O(0,0),R(a,0)(a≠0)的距离之比恒为定值λ(λ≠1),求实数a的值.解:(1)由题意知,圆心C(-1,0),半径r=2,直线AB的方程为x+y+1=0,直线AB过圆心C,所以弦长AB=2r=4.(2)当弦AB被点P平分时,AB⊥PC,k AB·k PC=-1,又k PC=-1, 所以k AB=1,直线AB的方程为x-y+3=0.(3)设M(x0,y0),则满足++2x0-3=0, ①由题意得,=λ,即=λ.整理得+=λ2[-2ax0+a2+], ②由①②得,3-2x0=λ2[3-2x0-2ax0+a2]恒成立,所以又a≠0,λ>0,λ≠1,解之得a=3.。
高中人教a版数学必修4:第2课时 弧度制 word版含解析
第2课时 弧度制1.2.理解弧度制的定义,能够对弧度和角度进行正确的换算.1.我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,即用弧度制度量时,这样的圆心角等于1 rad.2.弧长计算公式:l =|α|·r (α是圆心角的弧度数);扇形面积公式S =12l ·r 或S =12|α|·r 2(α是弧度数且0<α<2π).3一、选择题 1.-315°化为弧度是( )A .-43πB .-5π3C .-7π4D .-76π答案:C解析:-315°×π180=-7π42.在半径为2 cm 的圆中,有一条弧长为π3cm ,它所对的圆心角为( )A.π6B.π3C.π2D.2π3 答案:A解析:设圆心角为θ,则θ=π32=π6.3.与角-π6终边相同的角是( )A.5π6B.π3C.11π6D.2π3 答案:C解析:与角-π6终边相同的角的集合为αα=-π6+2k π,k ∈Z ,当k =1时,α=-π6+2π=11π6,故选C. 4.下列叙述中正确的是( )A .1弧度是1度的圆心角所对的弧B .1弧度是长度为半径的弧C .1弧度是1度的弧与1度的角之和D .1弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 答案:D解析:由弧度的定义,知D 正确.5.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 为( ) A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π}∪{α|0≤α≤π} 答案:D解析:求出集合A 在[-4,4]附近区域内的x 的数值,k =0时,0≤x ≤π;k =1时,4<2π≤x ≤3π;在k =-1时,-2π≤x ≤-π,而-2π<-4,-π>-4,从而求出A ∩B .6.下列终边相同的一组角是( )A .k π+π2与k ·90°,(k ∈Z )B .(2k +1)π与(4k ±1)π,(k ∈Z )C .k π+π6与2k π±π6,(k ∈Z )D.k π3与k π+π3,(k ∈Z ) 答案:B解析:(2k +1)π与(4k ±1)π,k ∈Z ,都表示π的奇数倍. 二、填空题7.在半径为2的圆中,弧长为4的弧所对的圆心角的大小是________rad. 答案:2解析:根据弧度制的定义,知所求圆心角的大小为42=2 rad.8.设集合M =⎩⎨⎧⎭⎬⎫αα=k π2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________.答案:⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π解析:由-π<k π2-π3<π,得-43<k <83.∵k ∈Z ,∴k =-1,0,1,2,∴M ∩N =⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π.9.时钟从6时50分走到10时40分,这时分针旋转了________弧度.答案:-23π3解析:时钟共走了3小时50分钟,分针旋转了-⎝⎛⎭⎫3×2π+56·2π=-23π3三、解答题10.一条铁路在转弯处成圆弧形,圆弧的半径为2 km ,一列火车以30 km/h 的速度通过,求火车经过10 s 后转过的弧度数.解:∵圆弧半径R =2 km =2 000 m ,火车速度v =30 km/h =253m/s ,∴经过10 s 后火车转过的弧长l=253×10=2503(m),∴火车经过10 s 后转过的弧度数|α|=l R =25032 000=124.11.已知角α=2010°.(1)将α改写成θ+2k π(k ∈Z,0≤θ<2π)的形式,并指出α是第几象限角; (2)在区间[-5π,0)上找出与α终边相同的角; (3)在区间[0,5π)上找出与α终边相同的角.解:(1)2 010°=2 010×π180=67π6=5×2π+7π6.又π<7π6<3π2,角α与角7π6的终边相同,故α是第三象限角.(2)与α终边相同的角可以写为r =7π6+2k π(k ∈Z ).又-5π≤r <0,∴k =-3,-2,-1.∴与α终边相同的角为-296π,-176π,-56π.(3)令0≤r =76π+2k π<5π,∴k =0,1,∴与α终边相同的角为76π,196π.能力提升12.如下图所示,在某机械装置中,小正六边形沿着大正六边形的边顺时针方向滚动,小正六边形的边长是大正六边形边长的一半.如果小正六边形沿着大正六边形的边滚动一周后返回出发时的位置,在这个过程中,射线OA 围绕点O 旋转了θ角,其中O 为小正六边形的中心,则θ等于( )A .-4πB .-6πC .-8πD .-10π 答案:B解析:小正六边形沿着大正六边形滚动一条边并且到下一条边上时,射线OA 旋转了π3+2π3=π,则小正六边形沿着大正六边形的边滚动一周后返回出发时的位置时,共旋转了π×6=6π.又射线OA 按顺时针方向旋转,则θ=-6π,故选B.13.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =m π+π6,m ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =n π2-π3,n ∈Z , P =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π2+π6,k ∈Z ,试确定M 、N 、P 之间满足的关系.解:解法一:集合M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6,m ∈Z ; N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =n π2-π3,n ∈Z =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =2m π2-π3或x =2m +12π-π3,m ∈Z=⎩⎨⎧ x ⎪⎪⎭⎬⎫x =m π-π3或x =m π+π6,m ∈Z ; P =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k π2+π6,k ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =2m 2π+π6或x =2m -12π+π6,m ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6或x =m π-π3,m ∈Z . 所以M N =P .解法二:M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6,m ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =6m +16π,m ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =3·(2m )+16π,m ∈Z ;N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =n π2-π3,n ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =3n -26π,n ∈Z ;P =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k π2+π6,k ∈Z =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =3k +16π,k ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =3n -26π,n ∈Z =N .所以M ⊆N =P .。
2019-2020学年人教A版高中数学必修二检测-圆与圆的位置关系-直线与圆的方程的应用-Word版含解析
圆与圆的位置关系 直线与圆的方程的应用 检测题一、题组对点训练对点练一 圆与圆的位置关系1.两圆x2+y2=r2,(x -3)2+(y +1)2=r2外切,则正实数r 的值是________. 解析:由题意得,2r =(3-0)2+(-1-0)2=10,即r =102. 答案:1022.已知圆C :x2+y2-8x +15=0,直线y =kx +2上至少存在一点P ,使得以点P 为圆心,1为半径的圆与圆C 有公共点,则实数k 的最小值是________.解析:将圆C 的方程化为标准方程,得(x -4)2+y2=1,故圆心为C(4,0),半径r =1.又直线y =kx +2上至少存在一点P ,使得以点P 为圆心,1为半径的圆与圆C 有公共点,所以点C 到直线y =kx +2的距离小于或等于2,即|4k -0+2|k2+1≤2,解得-43≤k ≤0,所以实数k 的最小值是-43. 答案:-433.圆O1:x2+y2-4y +3=0和圆O2:x2+y2-16y =0的位置关系是( )A .相离B .相交C .相切D .内含解析:选D 因为r1=1,r2=8,|O1O2|=(0-0)2+(2-8)2=6,则|O1O2|<r2-r1.所以两圆内含.4.若两圆x2+y2=m 和x2+y2+6x -8y -11=0有公共点,则实数m 的取值范围是( )A.(-∞,1) B.(121,+∞)C.[1,121] D.(1,121)解析:选C x2+y2+6x-8y-11=0化成标准方程为(x+3)2+(y-4)2=36.圆心距为d=(0+3)2+(0-4)2=5,若两圆有公共点,则|6-m|≤5≤6+m,∴1≤m≤121.5.求与圆(x-2)2+(y+1)2=4相切于点A(4,-1)且半径为1的圆的方程.解:设所求圆的圆心为P(a,b),则(a-4)2+(b+1)2=1. ①(1)若两圆外切,则有(a-2)2+(b+1)2=1+2=3, ②联立①②,解得a=5,b=-1,所以,所求圆的方程为(x-5)2+(y+1)2=1;(2)若两圆内切,则有(a-2)2+(b+1)2=|2-1|=1, ③联立①③,解得a=3,b=-1,所以,所求圆的方程为(x-3)2+(y+1)2=1.综上所述,所求圆的方程为(x-5)2+(y+1)2=1或(x-3)2+(y+1)2=1.对点练二直线与圆的方程的应用6.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过( )A.1.4米B.3.5米C.3.6米D.2米解析:选B 建立如图所示的平面直角坐标系.如图设蓬顶距地面高度为h ,则A(0.8,h -3.6)所在圆的方程为: x2+(y +3.6)2=3.62,把A(0.8,h -3.6)代入得0.82+h2=3.62.∴h =40.77≈3.5(米).7.某公园有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设在何处?解:所选观景点应使对两景点的视角最大.由平面几何知识知,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点.以小路所在直线为x 轴,B 点在y 轴正半轴上建立平面直角坐标系.由题意,得A(2,2),B(0,22),设圆的方程为(x -a)2+(y -b)2=b2,由A 、B 两点在圆上,得⎩⎪⎨⎪⎧ a =0,b =2或⎩⎪⎨⎪⎧ a =42,b =52,由实际意义知a =0,b =2,∴圆的方程为x2+(y -2)2=2,切点为(0,0),∴观景点应设在B 景点在小路的投影处.8.为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C.现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.解:以O 为坐标原点,过OB ,OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x2+y2=1.因为点B(8,0),C(0,8),所以直线BC 的方程为x 8+y 8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆的切点处时,DE 为最短距离.所以DE 长的最小值为|0+0-8|2-1=(42-1) km. 二、综合过关训练1.半径长为6的圆与x 轴相切,且与圆x2+(y -3)2=1内切,则此圆的方程为( )A .(x -4)2+(y -6)2=6B .(x ±4)2+(y -6)2=6C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b),则b =6(b =-6舍去).再由a2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.2.已知点M 在圆C1:(x +3)2+(y -1)2=4上,点N 在圆C2:(x -1)2+(y +2)2=4上,则|MN|的最大值是( )A .5B .7C .9D .11解析:选C 由题意知圆C1的圆心C1(-3,1),半径长r1=2;圆C2的圆心C2(1,-2),半径长r2=2.因为两圆的圆心距d=[1-(-3)]2+[(-2)-1]2=5>r1+r2=4,所以两圆相离,从而|MN|的最大值为5+2+2=9.故选C.3.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是( )A.(x-5)2+(y-7)2=25B.(x-5)2+(y-7)2=17或(x-5)2+(y+7)2=15C.(x-5)2+(y-7)2=9D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9解析:选D 设动圆圆心为(x,y),若动圆与已知圆外切,则(x-5)2+(y+7)2=4+1,∴(x-5)2+(y+7)2=25;若动圆与已知圆内切,则(x-5)2+(y+7)2=4-1,∴(x-5)2+(y+7)2=9.4.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=( )A.4 B.4 2C.8 D.8 2解析:选C ∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且横、纵坐标相等.设两圆的圆心分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0,∴a+b=10,ab=17.∴(a-b)2=(a+b)2-4ab=100-4×17=32,5.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a =__________.解析:由已知两个圆的方程作差可以得到相应弦的直线方程为y=1a,利用圆心(0,0)到直线的距离d=⎪⎪⎪⎪⎪⎪⎪⎪1a1=22-(3)2=1,解得a=1.答案:16.已知圆C1:x2+y2-2mx+4y+m2-5=0和圆C2:x2+y2+2x=0.(1)当m=1时,判断圆C1和圆C2的位置关系;(2)是否存在实数m,使得圆C1和圆C2内含?若存在,求出实数m的值;若不存在,请说明理由.解:(1)当m=1时,圆C1的方程为(x-1)2+(y+2)2=9,圆心为C1(1,-2),半径长为r1=3,圆C2的方程为(x+1)2+y2=1,圆心为C2(-1,0),半径长为r2=1,两圆的圆心距d=(1+1)2+(-2-0)2=22,又r1+r2=3+1=4,r1-r2=3-1=2,所以r1-r2<d<r1+r2,所以圆C1和圆C2相交.(2)不存在实数m,使得圆C1和圆C2内含.理由如下:圆C1的方程可化为(x-m)2+(y+2)2=9,圆心C1的坐标为(m,-2),半径为3.假设存在实数m,使得圆C1和圆C2内含,即(m+1)2<0,此不等式无解.故不存在实数m,使得圆C1和圆C2内含.7.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解:以台风中心为坐标原点,以东西方向为x轴建立直角坐标系(如图),其中取10 km为单位长度,则受台风影响的圆形区域所对应的圆的方程为x2+y2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为x7+y4=1,即4x+7y-28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|28|42+72=2865,而半径r=3,∴d>r,∴直线与圆相离,即轮船不会受到台风的影响.。
2019-2020学年高中数学(人教版必修2)阶段质量检测(二) Word版含答案
阶段质量检测(二)(A卷学业水平达标)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.下列说法不正确的是( )A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内D.过一条直线有且只有一个平面与已知平面垂直答案:D2.(浙江高考)设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α则m⊥αC.若m⊥β,n⊥β,n⊥α则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案:C3.如图在四面体中,若直线EF和GH相交,则它们的交点一定( )A.在直线DB上B.在直线AB上C.在直线CB上D.都不对答案:A4.如图所示,在正方体ABCDA1B1C1D1中,若E是A1C1的中点,则直线CE垂直于( )A.AC B.BDC.A1D D.A1D1答案:B5.给定下列四个命题:①若两个平面有无数个公共点,则这两个平面重合;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为正确的命题的是( )A.①和②B.②和③C.③和④D.②和④6.正方体AC1中,E,F分别是DD1,BD的中点,则直线AD1与EF所成角的余弦值是( )A.12B.32C.63D.62答案:C7.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角ACDB的余弦值为( )A.12B.13C.33D.23答案:C8.设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列三个说法:①若α⊥γ,β⊥γ,则α∥β;②若α∥β,l⊂α,则l∥β;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中正确的说法个数是( )A.3 B.2C.1 D.0答案:B9.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC答案:D10.已知平面α⊥平面β,α∩β=l,在l上取线段AB=4,AC,BD分别在平面α和平面β内,且AC⊥AB,DB⊥AB,AC=3,BD=12,则CD的长度为( )A.13 B.151 C.12 3 D.15答案:A二、填空题(共4小题,每小题5分,共20分)11.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为答案:BM⊥PC(其他合理即可)12.设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个说法:①若a⊥b,a⊥α,b⊄α,则b∥α;②若a∥α,α⊥β,则a⊥β;③若a⊥β,α⊥β,则a∥α或a⊂α;④若a⊥b,a⊥α,b⊥β,则α⊥β.其中正确的个数为________.答案:313.在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=3,则异面直线AD与BC所成角的大小为________.答案:60°14.将正方形ABCD沿对角线BD折成直二面角ABDC,有如下三个结论.①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;说法正确的命题序号是________.答案:①②三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分10分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,(1)证明:CD⊥平面PAC;(2)若E为AD的中点,求证:CE∥平面PAB.证明:(1)∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD.又CD⊥PC,PA∩PC=P,∴CD⊥平面PAC.(2)∵AD∥BC,AB⊥BC,AB=BC=1,∴∠BAC=45°,∠CAD=45°,AC= 2.∵CD⊥平面PAC,∴CD⊥CA,∴AD=2.又∵E为AD的中点,∴AE=BC=1,∴AE綊BC,∴四边形ABCE是平行四边形,又∵AB⊂平面PAB,CE⊄平面PAB,∴CE∥平面PAB.16.(本小题满分12分)(山东高考)如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形.所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.法二:延长AD,BC交于点F,连接EF. 因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因此∠AFB=30°,所以AB=12 AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.17.(本小题满分12分)如图,在三棱柱ABCA1B1C1中,AB⊥平面BB1C1C,BB1=2BC,D,E,F分别是CC1,A1C1,B1C1的中点,G在BB1上,且BG=3GB1.求证:(1)B1D⊥平面ABD;(2)平面GEF∥平面ABD.证明:(1)取BB1的中点为M,连接MD,如图所示.因为BB1=2BC,且四边形BB1C1C为平行四边形,所以四边形CDMB和四边形DMB1C1均为菱形.故∠CDB=∠BDM,∠MDB1=∠B1DC1,所以∠BDM+∠MDB1=90°,即BD⊥B1D.又AB⊥平面BB1C1C,B1D⊂平面BB1C1C,所以AB⊥B1D.又AB∩BD=B,所以B1D⊥平面ABD.又F为B1C1的中点,所以GF∥MC1.又MB綊C1D,所以四边形BMC1D为平行四边形,所以MC1∥BD,故GF∥BD.又BD⊂平面ABD,所以GF∥平面ABD.又EF∥A1B1,A1B1∥AB,AB⊂平面ABD,所以EF∥平面ABD.又EF∩GF=F,故平面GEF∥平面ABD.18.(本小题满分12分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE =EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.证明:(1)设AC与BD交于点G.∵EF∥AG,且EF=1,AG=12AC=1,∴四边形AGEF为平行四边形.所以AF∥EG. ∵EG⊂平面BDE,AF⊄平面BDE,∴AF∥平面BDE.(2)连接FG.∵EF∥CG,EF=CG=1,且CE=1,∴四边形CEFG为菱形.∴CF⊥EG.∵四边形ABCD为正方形,∴BD⊥AC.又∵平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF.∴CF⊥BD.又BD∩EG=G,∴CF⊥平面BDE.(1)AO 与A ′C ′所成角的度数; (2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角的度数. 解:(1)∵A ′C ′∥AC ,∴AO 与A ′C ′所成的角就是∠OAC . ∵OC ⊥OB ,AB ⊥平面BC ′,∴OC ⊥AB .又AB ∩BO =B ,∴OC ⊥平面ABO . 又OA ⊂平面ABO ,∴OC ⊥OA . 在Rt △AOC 中,OC =22,AC =2, sin ∠OAC =OC AC =12,∴∠OAC =30°. 即AO 与A ′C ′所成角的度数为30°. (2)如图所示,作OE ⊥BC 于E ,连接AE . ∵平面BC ′⊥平面ABCD ,∴OE ⊥平面ABCD ,∠OAE 为OA 与平面ABCD 所成的角. 在Rt △OAE 中,OE =12,AE =12+⎝ ⎛⎭⎪⎫122=52, ∴tan ∠OAE =OE AE =55.(3)∵OC ⊥OA ,OC ⊥OB ,OA ∩OB =O , ∴OC ⊥平面AOB .又∵OC ⊂平面AOC ,∴平面AOB ⊥平面AOC . 即平面AOB 与平面AOC 所成角的度数为90°.M ,N 分别是边AD ,CD 上的点,且2AM =MD ,2CN =ND ,如图①,将△ABD 沿对角线BD 折叠,使得平面ABD ⊥平面BCD ,并连接AC ,MN (如图②).(1)证明:MN ∥平面ABC ; (2)证明:AD ⊥BC ;(3)若BC =1,求三棱锥A BCD 的体积. 解:(1)证明:在△ACD 中, ∵2AM =MD,2CN =ND , ∴MN ∥AC ,又∵MN ⊄平面ABC ,AC ⊂平面ABC , ∴MN ∥平面ABC .(2)证明:在△ABD 中,AB =AD ,∠A =90°, ∴∠ABD =45°.∵在平面四边形ABCD 中,∠B =135°, ∴BC ⊥BD .又∵平面ABD ⊥平面BCD ,且BC ⊂平面BCD ,平面ABD ∩平面BCD =BD , ∴BC ⊥平面ABD ,又AD ⊂平面ABD , ∴AD ⊥BC . (3)在△BCD 中,∵BC =1,∠CBD =90°,∠BCD =60°, ∴BD = 3.在△ABD 中,∵∠A =90°,AB =AD , ∴AB =AD =62, ∴S △ABD =12AB ·AD =34,由(2)知BC ⊥平面ABD , ∴V A BCD =V C ABD =13×34×1=14.(B卷能力素养提升)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.空间两个角α,β的两边分别对应平行,且α=60°,则β为( )A.60°B.120°C.30°D.60°或120°解析:选D 由等角定理可知β=60°或120°.2.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是( ) A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:选D 若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB 与CD平行;若不共面,则直线AB与CD是异面直线.3.如图,正方体ABCDA1B1C1D1中,①DA1与BC1平行;②DD1与BC1垂直;③BC1与AC所成角为60°.以上三个结论中,正确结论的序号是( )A.①B.②C.③D.②③解析:选C ①错,应为DA1⊥BC1;②错,两直线所成角为45°;③正确,将BC1平移至AD1,由于三角形AD1C为等边三角形,故两异面直线所成角为60°,即正确命题序号为③,故选C.4.已知l是直线,α、β是两个不同的平面,下列命题中的真命题( )A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l∥α,α∥β,则l∥βD.若l⊥α,l∥β,则α⊥β解析:选D 对于A,若l∥α,l∥β,则α∥β或α与β相交,所以A错;对于B,若α⊥β,l∥α,则l∥β或l⊥β或l⊂β或l与β相交,所以B错;对于C,若l∥α,α∥β,则l∥β或l⊂β,所以C错;对于D,若l⊥α,l∥β,则α⊥β,由面面垂直的判定可知选项D正确.5.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )A.AC⊥BDB.AC∥截面PQMNC.AC=BD解析:选C ∵MN∥PQ,由线面平行的性质定理可得MN∥AC,从而AC∥截面PQMN,B正确;同理可得MQ∥BD,故AC⊥BD,A正确;又∠PMQ=45°,故D正确.6.α,β,γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是( )A.①或②B.②或③C.①或③D.只有②解析:选C 若填入①,则由a∥γ,b⊂β,b⊂γ,b=β∩γ,又a⊂β,则a∥b;若填入③,则由a⊂γ,a=α∩β,则a是三个平面α、β、γ的交线,又b∥β,b⊂γ,则b∥a;若填入②,不能推出a∥b,可以举出反例,例如使β∥γ,b⊂γ,画一草图可知,此时能有a∥γ,b∥β,但不一定a∥b,有可能异面.从而A、B、D都不正确,只有C正确.7.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c,若a∥b,则c与a,b的位置关系是( )A.c与a,b都异面B.c与a,b都相交C.c至少与a,b中的一条相交D.c与a,b都平行解析:选D 如图,以三棱柱为模型.∵a∥b,a⊄γ,b⊂γ,∴a∥γ.又∵a⊂β,β∩γ=c,∴a∥c.∴a∥b∥c.8.如下图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是( )A.平行B.相交且垂直C.异面D.相交成60°解析:选D 还原几何体,如图.可知D点与B点重合,△ABC是正三角形,所以选D.成的角为( )A .30°B .45°C .60°D .90°解析:选A 如图,二面角αl β为45°,AB ⊂β,且与棱l 成45°角,过A 作AO ⊥α于O ,作AH ⊥l 于H .连接OH 、OB ,则∠AHO 为二面角αl β的平面角,∠ABO 为AB 与平面α所成角.不妨设AH =2,在Rt △AOH 中,易得AO =1;在Rt △ABH 中,易得AB =2.故在Rt △ABO 中,sin ∠ABO =AO AB =12, ∴∠ABO =30°,为所求线面角.10.如图(1)所示,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为H ,如图(2)所示,那么,在四面体A EFH 中必有( )A .AH ⊥△EFH 所在平面B .AG ⊥△EFH 所在平面C .HF ⊥△AEF 所在平面D .HG ⊥△EFH 所在平面解析:选A 折成的四面体中有AH ⊥EH ,AH ⊥FH ,∴AH ⊥平面HEF .故选A. 二、填空题(共4小题,每小题5分,共20分)11.如图,直四棱柱ABCD A 1B 1C 1D 1的底面是边长为1的正方形,侧棱长AA 1=2,则异面直线A 1B 1与BD 1的夹角大小等于________.解析:∵A 1B 1∥AB ,∴AB 与BD 1所成的角即是A 1B 1与BD 1所成的角.连接AD 1, 可知AB ⊥AD 1,在Rt △BAD 1中,AB =1,AD 1=3,∴tan ∠ABD 1=AD1AB=3, ∴∠ABD 1=60°,故A 1B 1与BD 1的夹角为60°. 答案:60°12.如图,在正三棱柱ABC A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为________.解析:取AC ,A 1C 1的中点E ,E 1,连接BE ,B 1E 1,EE 1,由题意知平面BEE 1B 1⊥平面AC 1,过D 作DF ⊥EE 1于F ,连接AF ,则DF ⊥平面AC 1.∴∠DAF 即为AD 与平面AC 1所成的角.可求得AD =2,DF =32,∴sin ∠DAF =DF AD =64. 答案:6413.设a ,b ,c 是空间中的三条直线,下面给出五个命题: ①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ∥c ;③若a 与b 相交,b 与c 相交,则a 与c 相交;④若a ⊂平面α,b ⊂平面β,则a ,b 一定是异面直线; ⑤若a ,b 与c 成等角,则a ∥b .上述命题中正确的命题是________(只填序号). 解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确;a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④不正确;当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 答案:①14.给出下列命题:①若平面α上的直线a 与平面β上的直线b 为异面直线,直线c 是α与β的交线,那么c 至多与a ,b 中一条相交;②若直线a 与b 异面,直线b 与c 异面,则直线a 与c 异面; ③一定存在平面α同时和异面直线a ,b 都平行. 其中正确的命题为________.(写出所有正确命题的序号)解析:①中,异面直线a ,b 可以都与c 相交,故不正确;②中,直线异面不具有传递性,故不正确;③中,过直线b 上一点P 作a ′∥a ,则a ′、b 确定一平面,则与该平面平行的任一平面(平面内不包含直线a 、b )都与异面直线a 、b 平行,故正确.答案:③三、解答题(共6小题,共70分,解答时应写出文字说明,证明过程或演算过程) 15.(本小题满分10分)如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别为CC 1,AA 1的中点,画出平面BED 1F 与平面ABCD 的交线.解:在平面AA 1D 1D 内,延长D 1F ,∵D 1F 与DA 不平行,∴D 1F 与DA 必相交于一点,设为P ,则P ∈D 1F ,P ∈DA .又∵D 1F ⊂平面BED 1F ,AD ⊂平面ABCD ,∴P ∈平面BED 1F ,P ∈平面ABCD .又B 为平面ABCD 与平面BED 1F 的公共点,连接PB ,∴PB 即为平面BED 1F 与平面ABCD 的交线.如图所示.16.(本小题满分12分)在右图的几何体中,面ABC ∥面DEFG, ∠BAC =∠EDG=120°,四边形ABED 是矩形,四边形ADGC 是直角梯形,∠ADG =90°,四边形DEFG是梯形, EF ∥DG ,AB =AC =AD =EF =1,DG =2.(1)求证:FG ⊥面ADF ; (2)求四面体 CDFG 的体积.解:(1)连接DF 、AF ,作DG 的中点H , 连接FH ,EH ,∵EF ∥DH ,EF =DH =ED =1, ∴四边形DEFH 是菱形,∴EH ⊥DF , 又∵EF ∥HG, EF =HG , ∴四边形EFGH 是平行四边形, ∴FG ∥EH ,∴FG ⊥DF ,由已知条件可知AD ⊥DG ,AD ⊥ED , 所以AD ⊥面EDGF ,所以AD ⊥FG .又∵⎩⎪⎨⎪⎧FG⊥AD,FG⊥DF,AD ⊂面ADF ,DF ⊂面ADF ,AD∩DF=D ,∴FG ⊥面ADF .(2)因为DH ∥AC 且DH =AC , 所以四边形ADHC 为平行四边形, 所以CH ∥AD ,CH =AD =1,由(1)知AD ⊥面EDGF , 所以CH ⊥面DEFG .由已知,可知在三角形DEF 中,ED =EF =1,∠DEF =60°,所以,△DEF 为正三角形,DF =1,∠FDG =60°, S △DEG =12·DF ·DG ·sin∠FDG =32. 四面体CDFG =13·S △DFG ·CH=13×32×1=36. 17.(本小题满分12分)如图所示,在四棱锥P ABCD 中,PA ⊥平面ABCD ,AD ⊥AB ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 的中点,N 为线段PB 的中点,G在线段BM 上,且BGGM=2.(1)求证:AB ⊥PD ; (2)求证:GN ∥平面PCD . 证明:(1)因为PA ⊥平面ABCD , 所以PA ⊥AB .又因为AD ⊥AB ,AD ∩PA =A ,所以AB ⊥平面PAD .又PD ⊂平面PAD ,所以AB ⊥PD .(2)因为△ABC 是正三角形,且M 是AC 的中点,所以BM ⊥AC . 在直角三角形AMD 中,∠MAD =30°, 所以MD =12AD .在直角三角形ABD 中,∠ABD =30°, 所以AD =12BD ,所以MD =14BD .又因为BGGM=2,所以BG =GD .又N 为线段PB 的中点,所以GN ∥PD . 又GN ⊄平面PCD ,PD ⊂平面PCD , 所以GN ∥平面PCD .18.(本小题满分12分)(浙江高考)如图,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.解:(1)证明:设E为BC的中点,连接AE,A1E,DE,由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.又因为A1E,BC⊂平面A1BC,A1E∩BC=E,故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以四边形AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A1F⊥DE,垂足为F,连接BF.因为A1E⊥平面ABC,所以BC⊥A1E.因为BC⊥AE,AE∩A1E=E,所以BC⊥平面AA1DE.所以BC⊥A1F.又因为DE∩BC=E,所以A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB= 2.由A1E⊥平面ABC,得A1A=A1B=4,A1E=14.由DE=BB1=4,DA1=EA=2,∠DA1E=90°,得A1F=72.所以sin∠A1BF=78.19.(本小题满分12分)如图,在三棱柱ABCA1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.解:(1)证明:在三棱柱ABCA1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连接EG,FG.因为E,F,G分别是A1C1,BC,AB的中点,所以FG∥AC,且FG=12AC,EC1=12A1C1.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形,所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)因为AA1=AC=2,BC=1,AB⊥BC,所以AB=AC2-BC2= 3.所以三棱锥EABC的体积V=13S△ABC·AA1=13×12×3×1×2=33.20.(本小题满分12分)如图所示,在棱长为2的正方体ABCDA1B1C1D1中,E,F分别为DD1、DB的中点.(1)求证:EF∥平面ABC1D1;(2)求三棱锥VB1EFC的体积;(3)求二面角ECFB1的大小.解:(1)证明:连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,则EF为中位线,∴EF∥D1B,而D1B⊂面ABC1D1,EF⊄面ABC1D1,∴EF∥面ABC1D1.(2)等腰直角三角形BCD中,F为BD中点,∴CF⊥BD.①∵ABCDA1B1C1D1是正方体,∴DD1⊥面ABCD,又CF⊂面ABCD,∴DD1⊥CF.②综合①②,且DD1∩BD=D,DD1,BD⊂面BDD1B1,∴CF ⊥平面EFB 1即CF 为高,CF =BF = 2. ∵EF =12BD 1=3,B 1F =BF2+BB21=2+22=6, B 1E =B1D21+D1E2=12+2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, ∴S △B 1EF =12EF ·B 1F =322,∴VB 1EFC =VC B 1EF =13·S △B 1EF ·CF=13×322×2=1. (3)∵CF ⊥平面BDD 1B 1,∴二面角E CF B 1的平面角为∠EFB 1. 由(2)知∠EFB 1=90°∴二面角E CF B 1的大小为90°.。
2020高中数学 1.4.3正切函数的性质与图象课时作业(含解析)新人教A版必修4
2020高中数学 1.4.3正切函数的性质与图象课时作业(含解析)新人教A 版必修4一、选择题1.函数f (x )=tan ωx (ω>0)的图象上的相邻两支曲线截直线y =1所得线段长为π4,则f (π12)的值是( )A .0 B.33C .1D. 3解析:正切函数图象上的相邻两支曲线之间的距离为周期T ,从而πω=π4,所以ω=4,从而f (π12)=tan(4×π12)=tan π3= 3.答案:D2.函数y =3tan(12x +π3)的一个对称中心是( )A .(π6,0)B .(2π3,-33)C .(-2π3,0)D .(0,0)解析:由x 2+π3=kπ2得x =kπ-2π3(k ∈Z),k =0时,x =-23π.答案:C3.函数f (x )=tan2xtan x 的定义域为( )A .{x |x ∈R 且x ≠kπ4,k ∈Z}B .{x |x ∈R 且x ≠kπ+π2,k ∈Z}C .{x |x ∈R 且x ≠kπ+π4,k ∈Z}D .{x |x ∈R 且x ≠kπ-π4,k ∈Z}解析:由tan x ≠0,得x ≠kπ,又x ≠kπ+π2,2x ≠kπ+π2,∴x ≠kπ且x ≠kπ+π2且x ≠kπ2+π4,∴x ≠kπ4,k ∈Z. 答案:A4.已知函数y =tan ωx 在(-π2,π2)内是减函数,则( )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-1解析:方法一:因为函数y =tan ωx 在(-π2,π2)内是单调函数,所以最小正周期T ≥π,即π|ω|≥π,所以0<|ω|≤1. 又函数y =tan ωx 在(-π2,π2)内是减函数,所以ω<0. 综上,-1≤ω<0.方法二:分别在各选项给出的区间上取特殊值来进行验证.如取ω=1时,不符合题意,排除A 、C ;取ω=-2时,π4∈(-π2,π2),此时ωx =-π2,但-π2的正切值不存在,不符合题意,所以排除D.故选B.答案:B5.与函数y =tan(2x +π4)的图象不相交的直线是( ) A .x =π2B .y =π2C .x =π8D .y =π8解析:∵y =tan x 的图象与x =kπ+π2,k ∈Z 不相交,∴2x +π4=kπ+π2(k ∈Z).∴x =kπ2+π8(k ∈Z).当k =0时,x =π8.答案:C 二、填空题6.函数y =1tan x (x ∈[-π4,π4]且x ≠0)的值域为________.解析:∵x ∈[-π4,π4]且x ≠0,∴-1≤tan x <0或0<tan x ≤1,∴1tan x ≤-1或1tan x≥1,∴y =1tan x的值域为(-∞,-1]∪[1,+∞).答案:(-∞,-1]∪[1,+∞)7.不通过求值,比较tan135°与tan138°的大小:tan135°________tan138°.(填“<”或“>”)解析:∵90°<135°<138°<270°,又∵y =tan x 在x ∈(90°,270°)上是增函数, ∴tan135°<tan138°. 答案:<8.已知正切函数y =A tan(ωx +φ)(A >0,ω>0,|φ|<π2)的图象与x 轴相交的两相邻点的坐标为(π6,0)和(5π6,0),且过(0,-3)点,则它的表达式为________.解析:T =5π6-π6=2π3,∴ω=πT =32.所以⎩⎪⎨⎪⎧32×π6+φ=0,-3=A ·tan 32×0+φ,∴⎩⎪⎨⎪⎧A =3,φ=-π4.答案:y =3tan(32x -π4)三、解答题9.利用函数图象解不等式-1≤tan x ≤33. 解:作出函数y =tan x ,x ∈(-π2,π2)的图象,如图所示.观察图象可得:在(-π2,π2)内,自变量x 应满足-π4≤x ≤π6,由正切函数的周期性可知,不等式的解集为{x |-π4+kπ≤x ≤π6+kπ,k ∈Z}. 10.求函数y =tan(3x -π3)的定义域、值域,并指出它的周期性、奇偶性、单调性. 解:令t =3x -π3,则y =tan t .∵y =tan t 的定义域为t ≠kπ+π2,k ∈Z ,∴3x -π3≠kπ+π2,k ∈Z ,即x ≠kπ3+5π18,k ∈Z.∴所求定义域为{x |x ≠kπ3+5π18,k ∈Z}.∵y =tan t 的值域为R , ∴y =tan(3x -π3)的值域为R.y =tan(3x -π3)的周期为T =π3.∵tan(-3x -π3)≠tan(3x -π3),也不等于-tan(3x -π3),∴y =tan(3x -π3)是非奇非偶函数.由kπ-π2<3x -π3<kπ+π2,k ∈Z ,得 kπ3-π18<x <kπ3+5π18,k ∈Z.∴函数在区间(kπ3-π18,kπ3+5π18)(k ∈Z)上是增函数.。
高中数学 模块综合检测2(含解析)新人教A版选择性必修第二册-新人教A版高二选择性必修第二册数学试题
模块综合检测(二)(满分:150分 时间:120分钟)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=ln x 2x ,则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =( ) A .-2-ln 2B .-2+ln 2C .2-ln 2D .2+ln 2A [由题意,函数f (x )=ln x 2x , 则f ′(x )=1x ·2x -(2x )′ln x (2x )2=2x -12⎝ ⎛⎭⎪⎫1-12ln x 2x , 则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =-f ′⎝ ⎛⎭⎪⎫12=-2+ln 22×12=-2-ln 2,故选A.] 2.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4C .2D .4C [∵T 13=4T 9,∴a 1a 2…a 9a 10a 11a 12a 13=4a 1a 2…a 9,∴a 10a 11a 12a 13=4.又∵a 10·a 13=a 11·a 12=a 8·a 15,∴(a 8·a 15)2=4,∴a 8a 15=±2.又∵{a n }为递减数列,∴q >0,∴a 8a 15=2.]3.已知公差不为0的等差数列{a n }的前23项的和等于前8项的和.若a 8+a k =0,则k =( )A .22B .23C .24D .25C [等差数列的前n 项和S n 可看做关于n 的二次函数(图象过原点).由S 23=S 8,得S n 的图象关于n =312对称,所以S 15=S 16,即a 16=0,所以a 8+a 24=2a 16=0,所以k =24.]4.已知函数f (x )=(x +a )e x 的图象在x =1和x =-1处的切线相互垂直,则a =( )A .-1B .0C .1D .2A [因为f ′(x )=(x +a +1)e x ,所以f ′(1)=(a +2)e ,f ′(-1)=a e -1=a e ,由题意有f (1)f ′(-1)=-1,所以a =-1,选A.]5.设S n 是公差不为0的等差数列{a n }的前n 项和,S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=( )A .15B .19C .21D .30B [由S 3=a 22得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列可得S 22=S 1·S 4,又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,故(2a 2-d )2=(a 2-d )(4a 2+2d ),化简得3d 2=2a 2d ,又d ≠0,∴a 2=3,d =2,a 1=1,∴a n =1+2(n -1)=2n -1,∴a 10=19.]6.若函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,则实数a 的取值X 围是( )A .(-2,+∞)B .⎝ ⎛⎭⎪⎫12,+∞ C .⎝ ⎛⎭⎪⎫-12,+∞ D .(2,+∞)D [因为函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,所以函数f (x )=ax -ln x 的图象上存在斜率为2的切线,故k =f ′(x )=a -1x =2有解,所以a =2+1x ,x >0有解,因为y =2+1x ,x >0的值域为(2,+∞).所以a ∈(2,+∞).]7.已知等差数列{}a n 的前n 项为S n ,且a 1+a 5=-14,S 9=-27,则使得S n 取最小值时的n 为( )A .1B .6C .7D .6或7B [由等差数列{a n }的性质,可得a 1+a 5=2a 3=-14⇒a 3=-7,又S 9=9(a 1+a 9)2=-27⇒a 1+a 9=-6⇒a 5=-3,所以d =a 5-a 35-3=2,所以数列{a n }的通项公式为a n =a 3+(n -3)d =-7+(n -3)×2=2n -13,令a n ≤0⇒2n -13≤0,解得n ≤132,所以数列的前6项为负数,从第7项开始为正数,所以使得S n 取最小值时的n 为6,故选B.]8.若方底无盖水箱的容积为256,则最省材料时,它的高为( )A .4B .6C .4.5D .8A [设底面边长为x ,高为h ,则V (x )=x 2·h =256,∴h =256x 2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值.∴h =25682=4.]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.设数列{}a n 是等差数列,S n 是其前n 项和,a 1>0,且S 6=S 9,则( )A .d <0B .a 8=0C .S 5>S 6D .S 7或S 8为S n 的最大值ABD [根据题意可得a 7+a 8+a 9=0⇒3a 8=0⇒a 8=0,∵数列{}a n 是等差数列,a 1>0,∴公差d <0,所以数列{}a n 是单调递减数列, 对于A 、B ,d <0,a 8=0,显然成立;对于C ,由a 6>0,则S 5<S 6,故C 不正确;对于D ,由a 8=0,则S 7=S 8,又数列为递减数列,则S 7或S 8为S n 的最大值,故D 正确.故选ABD.]10.如图是y =f (x )导数的图象,对于下列四个判断,其中正确的判断是( )A .f (x )在(-2,-1)上是增函数B .当x =-1时,f (x )取得极小值C .f (x )在(-1,2)上是增函数,在(2,4)上是减函数D .当x =3时,f (x )取得极小值BC [根据图象知当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数单调递减; 当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数单调递增.故A 错误;故当x =-1时,f (x )取得极小值,B 正确;C 正确;当x =3时,f (x )不是取得极小值,D 错误.故选BC.]11.已知等比数列{}a n 的公比q =-23,等差数列{}b n 的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10AD [∵等比数列{}a n 的公比q =-23,∴a 9和a 10异号,∴a 9a 10<0 ,故A 正确;但不能确定a 9和a 10的大小关系,故B 不正确;∵a 9和a 10异号,且a 9>b 9且a 10>b 10,∴b 9和b 10中至少有一个数是负数, 又∵b 1=12>0 ,∴d <0,∴b 9>b 10 ,故D 正确,∴b 10一定是负数,即b 10<0 ,故C 不正确. 故选AD.]12.已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A .x 2f (x 1)<x 1f (x 2)B .x 1+f (x 1)<x 2+f (x 2)C .f (x 1)-f (x 2)x 1-x 2<0 D .当ln x >-1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1)AD [设g (x )=f (x )x =ln x ,函数单调递增,则g (x 2)>g (x 1),即f (x 2)x 2>f (x 1)x 1,∴x 1f (x 2)>x 2f (x 1),A 正确; 设h (x )=f (x )+x ∴h ′(x )=ln x +2不是恒大于零,B 错误;f (x )=x ln x ,∴f ′(x )=ln x +1不是恒小于零,C 错误;ln x >-1,故f ′(x )=ln x +1>0,函数单调递增.故(x 2-x 1)(f (x 2)-f (x 1))=x 1f (x 1)+x 2f (x 2)-x 2f (x 1)-x 1f (x 2)>0,即x 1f (x 1)+x 2f (x 2)>x 2f (x 1)+x 1f (x 2).f (x 2)x 2=ln x 2>f (x 1)x 1=ln x 1,∴x 1f (x 2)>x 2f (x 1),即x 1f (x 1)+x 2f (x 2)>2x 2f (x 1),D 正确.故选AD.]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.数列{a n }的前n 项和为S n ,若a n +1=11-a n(n ∈N *),a 1=2,则S 50=________. 25[因为a n +1=11-a n (n ∈N *),a 1=2,所以a 2=11-a 1=-1,a 3=11-a 2=12,a 4=11-a 3=2,∴数列{a n }是以3为周期的周期数列,且前三项和S 3=2-1+12=32, ∴S 50=16S 3+2-1=25.]14.将边长为1 m 的正三角形薄铁皮,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =(梯形的周长)2梯形的面积,则s 的最小值是________. 3233[设AD =x (0<x <1),则DE =AD =x ,∴梯形的周长为x+2(1-x )+1=3-x .又S △ADE =34x 2,∴梯形的面积为34-34x 2,∴s =433×x 2-6x +91-x 2(0<x <1), 则s ′=-833×(3x -1)(x -3)(1-x 2)2. 令s ′=0,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′<0,s 为减函数;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′>0,s 为增函数.故当x =13时,s 取得极小值,也是最小值,此时s 的最小值为3233.]15.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.32[由S 2=3a 2+2,S 4=3a 4+2相减可得a 3+a 4=3a 4-3a 2,同除以a 2可得2q 2-q -3=0,解得q =32或q =-1.因为q >0,所以q =32.]16.已知函数f (x )是定义在R 上的偶函数,当x >0时,xf ′(x )>f (x ),若f (2)=0,则2f (3)________3f (2)(填“>”“<”)不等式x ·f (x )>0的解集为________.(本题第一空2分,第二空3分)> (-2,0)∪(2,+∞)[由题意,令g (x )=f (x )x ,∵x >0时,g ′(x )=xf ′(x )-f (x )x 2>0.∴g (x )在(0,+∞)单调递增,∵f (x )x 在(0,+∞)上单调递增,∴f (3)3>f (2)2即2f (3)>3f (2).又∵f (-x )=f (x ),∴g (-x )=-g (x ),则g (x )是奇函数,且g (x )在(-∞,0)上递增,又g (2)=f (2)2=0,∴当0<x <2时,g (x )<0,当x >2时,g (x )>0;根据函数的奇偶性,可得当-2<x <0时,g (x )>0,当x <-2时,g (x )<0. ∴不等式x ·f (x )>0的解集为{x |-2<x <0或x >2}.]四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在等差数列{}a n 中,已知a 1=1,a 3=-5.(1)求数列{}a n 的通项公式;(2)若数列{}a n 的前k 项和S k =-25,求k 的值.[解](1)由题意,设等差数列{}a n 的公差为d ,则a n =a 1+()n -1d ,因为a 1=1,a 3=-5,可得1+2d =-5,解得d =-3,所以数列{}a n 的通项公式为a n =1+()n -1×()-3=4-3n .(2)由(1)可知a n =4-3n ,所以S n =n [1+(4-3n )]2=-32n 2+52n ,又由S k =-25,可得-32k 2+52k =-25,即3k 2-5k -50=0,解得k =5或k =-103,又因为k ∈N *,所以k =5.18.(本小题满分12分)已知函数f (x )=a ln x +12x 2.(1)求f (x )的单调区间;(2)函数g (x )=23x 3-16(x >0),求证:a =1时f (x )的图象不在g (x )的图象的上方.[解](1)f ′(x )=a x +x (x >0),若a ≥0,则f ′(x )>0,f (x )在 (0,+∞)上单调递增;若a <0,令f ′(x )=0,解得x =±-a ,由f ′(x )=(x --a )(x +-a )x >0,得x >-a ,由f ′(x )<0,得0<x <-a .从而f (x )的单调递增区间为(-a ,+∞),单调递减区间为(0,-a ). (2)证明:令φ(x )=f (x )-g (x ),当a =1时,φ(x )=ln x +12x 2-23x 3+16(x >0),则φ′(x )=1x +x -2x 2=1+x 2-2x 3x =(1-x )(2x 2+x +1)x. 令φ′(x )=0,解得x =1.当0<x <1时,φ′(x )>0,φ(x )单调递增;当x >1时,φ′(x )<0,φ(x )单调递减.∴当x =1时,φ(x )取得最大值φ(1)=12-23+16=0,∴φ(x )≤0,即f (x )≤g (x ).故a =1时f (x )的图象不在g (x )的图象的上方.19.(本小题满分12分)已知数列{}a n 的前n 项和为S n ,且2S n =3a n -1.(1)求数列{}a n 的通项公式;(2)若数列{}b n 满足b n =log 3a n +1,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .[解](1)由2S n =3a n -1()n ∈N +得,2S n -1=3a n -1-1()n ≥2.两式相减并整理得,a n =3a n -1()n ≥2.令n =1,由2S n =3a n -1()n ∈N +得,a 1=1.故{}a n 是以1为首项,公比为3的等比数列,因此a n =3n -1()n ∈N +.(2)由b n =log 3a n +1,结合a n =3n -1得,b n =n .则1b n b n +1=1n ()n +1=1n -1n +1 故T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+1n -1n +1=n n +1. 20.(本小题满分12分)某旅游景点预计2019年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧ 35-2x (x ∈N *,且1≤x ≤6),160x (x ∈N *,且7≤x ≤12).(1)写出2019年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)问2019年第几个月旅游消费总额最大?最大月旅游消费总额为多少元?[解](1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x )=-3x 2+40x ,验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x 个月旅游消费总额(单位:万元)为g (x )=⎩⎨⎧ (-3x 2+40x )(35-2x )(x ∈N *,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N *,且7≤x ≤12),即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x (x ∈N *,且1≤x ≤6),-480x +6 400(x ∈N *,且7≤x ≤12). (i)当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去).当1≤x <5时,g ′(x )>0,当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125.(ii)当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数,∴当x =7时,g (x )max =g (7)=3 040.综上,2019年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.21.(本小题满分12分)已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0,且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列.(1)求数列{a n b n }的通项公式;(2)求数列{a n b n }的前n 项和T n .[解](1)∵a n =3n -1,∴a 1=1,a 2=3,a 3=9.∵在等差数列{b n }中,b 1+b 2+b 3=15,∴3b 2=15,则b 2=5.设等差数列{b n }的公差为d ,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,∴(1+5-d )(9+5+d )=64,解得d =-10或d =2.∵b n >0,∴d =-10应舍去,∴d =2,∴b 1=3,∴b n =2n +1.故a n b n=(2n+1)·3n-1.(2)由(1)知T n=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①3T n=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②①-②,得-2T n=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)×3n =3+2×(3+32+33+…+3n-1)-(2n+1)×3n=3+2×3-3n1-3-(2n+1)×3n=3n-(2n+1)×3n=-2n·3n.∴T n=n·3n.22.(本小题满分12分)设函数f (x)=x3-6x+5,x∈R.(1)求f (x)的极值点;(2)若关于x的方程f (x)=a有3个不同实根,某某数a的取值X围;(3)已知当x∈(1,+∞)时,f (x)≥k(x-1)恒成立,某某数k的取值X围.[解](1)f ′(x)=3(x2-2),令f ′(x)=0,得x1=-2,x2= 2.当x∈(-∞,-2)∪(2,+∞)时,f ′(x)>0,当x∈(-2,2) 时,f ′(x)<0,因此x1=-2,x2=2分别为f (x)的极大值点、极小值点.(2)由(1)的分析可知y=f (x)图象的大致形状及走向如图所示.要使直线y=a 与y=f (x)的图象有3个不同交点需5-42=f (2)<a<f (-2)=5+4 2.则方程f (x)=a有3个不同实根时,所某某数a的取值X围为(5-42,5+42).(3)法一:f (x)≥k(x-1),即(x-1)(x2+x-5)≥k(x-1),因为x>1,所以k≤x2+x-5在(1,+∞)上恒成立,令g(x)=x2+x-5,由二次函数的性质得g(x)在(1,+∞)上是增函数,所以g(x)>g(1)=-3,所以所求k的取值X围是为(-∞,-3].法二:直线y=k(x-1)过定点(1,0)且f (1)=0,曲线f (x)在点(1,0)处切线斜率f ′(1)=-3,由(2)中图知要使x∈(1,+∞)时,f (x)≥k(x-1)恒成立需k≤-3.故实数k的取值X围为(-∞,-3].。
高中数学人教A版选修4-1学业分层测评2 平行线分线段成比例定理 Word版含解析
学业分层测评(二)(建议用时:45分钟)[学业达标]一、选择题1.如图1-2-16,梯形ABCD中,AD∥BC,E是DC延长线上一点,AE分别交BD于G,交BC于F.下列结论:①ECCD=EFAF;②FGAG=BGGD;③AEAG=BDDG;④AF CD=AEDE.其中正确的个数是()图1-2-16 A.1B.2 C.3D.4 【解析】∵BC∥AD,∴ECCD=EFAF,AFAE=CDDE,故①④正确.∵BF∥AD,∴FGAG=BGGD,故②正确.【答案】 C2.如图1-2-17,E是▱ABCD的边AB延长线上的一点,且DCBE=32,则ADBF=()图1-2-17A.32 B.23C.52 D.25【解析】∵CD∥AB,∴CDBE=FDEF=32,又AD∥BC,∴BFAD=EFED.由FDEF=32,得FD+EFEF=3+22,即EDEF=52,∴ADBF=EDEF=52.故选C.【答案】 C3.如图1-2-18,平行四边形ABCD中,N是AB延长线上一点,则BCBM-ABBN为()【导学号:07370009】图1-2-18A.12B.1C.32 D.23【解析】∵AD∥BM,∴ABBN=DMMN.又∵DC∥AN,∴DMMN=MCBM,∴DM+MNMN=MC+BMBM,∴DNMN=BCBM,∴BCBM-ABBN=DNMN-DMMN=MNMN=1.【答案】 B4.如图1-2-19,AD是△ABC的中线,E是CA边的三等分点,BE交AD于点F ,则AF ∶FD 为( )图1-2-19A .2∶1B .3∶1C .4∶1D .5∶1【解析】 过D 作DG ∥AC 交BE 于G , 如图,因为D 是BC 的中点, 所以DG =12EC , 又AE =2EC ,故AF ∶FD =AE ∶DG =2EC ∶12EC =4∶1. 【答案】 C5.如图1-2-20,将一块边长为12的正方形纸ABCD 的顶点A ,折叠至边上的点E ,使DE =5,折痕为PQ ,则线段PM 和MQ 的比是( )图1-2-20A .5∶12B .5∶13C .5∶19D .5∶21【解析】 如图,作MN ∥AD 交DC 于点N , ∴DN NE =AM ME . 又∵AM =ME , ∴DN =NE =12DE =52, ∴NC =NE +EC =52+7=192. ∵PD ∥MN ∥QC ,∴PMMQ=DNNC=52192=519.【答案】 C二、填空题6.(2016·乌鲁木齐)如图1-2-21,在△ABC中,点D,E分别在AB,AC上,DE∥BC,AD=CE,若AB∶AC=3∶2,BC=10,则DE的长为__________.图1-2-21【解析】∵DE∥BC,∴AD∶AE=AB∶AC=3∶2.∵AD=CE,∴CE∶AE=3∶2.∵AE∶AC=2∶5,∴DE∶BC=2∶5.∵BC=10,∴DE∶10=2∶5,解得DE=4.【答案】 47.如图1-2-22,已知B在AC上,D在BE上,且AB∶BC=2∶1,ED∶DB=2∶1,则AD∶DF=________.图1-2-22【解析】如图,过D作DG∥AC交FC于G.则DGBC=EDEB=23,∴DG=23BC.又BC=13AC,∴DG=29AC.∵DG∥AC,∴DFAF=DGAC=29,∴DF=29AF.从而AD=79AF,∴AD∶DF=7∶2.【答案】7∶28.如图1-2-23,在梯形ABCD中,AD∥BC,BD与AC相交于O,过O的直线分别交AB,CD于E,F,且EF∥BC,若AD=12,BC=20,则EF=________.图1-2-23【解析】∵AD∥EF∥BC,∴EOAD=BEAB=CFCD=FOAD,∴EO=FO,而EOBC=AEAB=AB-BEAB,EOAD=BEAB,BC=20,AD=12,∴EO20=1-BEAB=1-EO12,∴EO=7.5,∴EF=15.【答案】15三、解答题9.线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P.如图1-2-24,当OA=OB,且D为OA中点时,求APPC的值.图1-2-24 【解】过D作DE∥CO交AC于E,因为D为OA中点,所以AE=CE=12AC,DECO=12,因为点C为OB中点,所以BC=CO,DEBC=12,所以PEPC=DEBC=12,所以PC=23CE=13AC,所以APPC=AC-PCPC=23AC13AC=2.10.如图1-2-25,AB⊥BD于B,CD⊥BD于D,连接AD,BC交于点E,EF⊥BD于F,求证:1AB+1CD=1EF. 【导学号:07370010】图1-2-25【证明】∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥EF∥CD,∴EFAB=DFBD,EFCD=BFBD,∴EFAB+EFCD=DFBD+BFBD=DF+BFBD=BDBD=1,∴1AB+1CD=1EF.[能力提升]1.如图1-2-26,已知△ABC中,AE∶EB=1∶3,BD∶DC=2∶1,AD与CE相交于F,则EFFC+AFFD的值为()图1-2-26A.12B.1C.32D.2【解析】过点D作DG∥AB交EC于点G,则DG BE=CD BC=CGEC=13.而AEBE=13,即AEBE=DGBE,所以AE=DG,从而有AF=FD,EF=FG=CG,故EFFC+AFFD=EF2EF+AFAF=12+1=32.【答案】 C2.如图1-2-27,已知P,Q分别在BC和AC上,BPCP=25,CQQA=34,则ARRP=()图1-2-27 A.3∶14 B.14∶3 C.17∶3 D.17∶14 【解析】过点P作PM∥AC,交BQ于M,则ARRP=AQPM.∵PM∥AC且BPCP=25,∴QCPM=BCBP=72.又∵CQQA=34,∴AQPM=QCPM·AQQC=72×43=143,即ARRP=143.【答案】 B3.如图1-2-28所示,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为__________.图1-2-28【解析】如图,延长AD,BC交于点O,作OH⊥AB 于点H.∴xx+h1=23,得x=2h1,x+h1x+h1+h2=34,得h1=h2.∴S梯形ABFE =12×(3+4)×h2=72h1,S梯形EFCD=12×(2+3)×h1=52h1,∴S梯形ABFE ∶S梯形EFCD=7∶5.【答案】7∶54.某同学的身高为1.6 m,由路灯下向前步行4 m,发现自己的影子长为2 m,求这个路灯的高.【解】如图所示,AB表示同学的身高,PB表示该同学的影长,CD表示路灯的高,则AB=1.6 m,PB=2 m,BD=4 m.∵AB∥CD,∴PBPD=ABCD,∴CD=AB×PDPB=1.6×(2+4)2=4.8(m),即路灯的高为4.8 m.。
2019-2020学年高中数学人教版必修三阶段质量检测(二) Word版含答案
阶段质量检测(二) (A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6. 10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12. 答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43,s 2乙=17(100+225+100+225+625+225+100)=228.57,∴s 2甲<s 2乙,故甲车间产品比较稳定.16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M=0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2, b ^=--+--+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a×0.5,解得a=0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是( )A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是( )A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是( )A.总体B.个体C .样本D .样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是( )A .1,2,…,106B .0,1,2,…,105C .00,01,…,105D .000,001,…,105解析:选D 由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定; ③乙队几乎每场都进球;④甲队的表现时好时坏. A .1个 B .2个 C .3个D .4个解析:选D 因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s 甲=3,s 乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是( )A .①B .②C .③D .①②③④解析:选D 运用计算公式x =1n (x 1+x 2+…+x n ),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n ,则n ×(0.1+0.12)×1=11,所以n =50,故所求的城市数为50×0.18=9. 答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几?解:(2)(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲82 81 79 78 95 88 93 84乙92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41,∵x 甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x2i =280,∑i =17x i y i =3 487,(1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17xiyi -7x - y-∑i =17x2i -7x 2=3 487-7×6×79.86280-7×62≈4.75.a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15.(2)∵0.000 2×(1 500-1 000)=0.1,0.000 4×(2 000-1 500)=0.2,0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-+0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25,所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).。
人教A版高中数学必修4:终结性评价笔试试题(2)【含答案解析】
数学必修4终结性评价笔试试题(二)本试卷分选择题和非选择题两部分,共4页.满分为150分.考试用时120分钟.注意事项:1.考生应在开始答题之前将自己的姓名、考生好和座位号填写在答题卷指定的位置上.2.应在答题卷上作答,答在试卷上的答案无效.3.选择题每小题选出答案后,应将对应题目的答案标号填涂在答题卷指定的位置上. 4.非选择题的答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.本次考试不允许使用函数计算器.6.考生必须保持答题卷的整洁,考试结束后,将答题卷交回.第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.13sin15cos152-的值是 ( )A 2B 2-CD 2.cos330=( )A2B .12-C .D .3.已知cos tan 0θθ<,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角D.第一或第四象限角4.已知sin 5α=,则44sin cos αα-的值为( ) A .15-B .35-C .15D .355.函数()sin 2cos 2f x x x =-的最小正周期是( ) A.π2B.πC.2πD.4π6.已知向量(56)=-,a ,(65)=,b ,则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向7.已知||=||=|-|=1,则|+|的值为 ( ) A.1 B.2 C.3 D.38.若a 是非零向量,且a ·b =a ·c ,则 ( ) A.b =c B.b ⊥c C.a ⊥(b -c ) D.b =c 或a ⊥(b -c )9.若A 、B 、C 是锐角三角形ABC 的三内角,向量(sin ,cos )A A =p ,(sin ,cos )B B =-q ,则p 与q 夹角为( ) A .锐角B .直角C .钝角D .不能确定10.已知3sin()45x π-=,则sin 2x 的值为 ( )A .1925B .1625C .1425D .725第二部分 非选择题(共100分)二、填空题 :本大题共4小题,每小题5分,共20分.将最简答案填在题后横线上。
第四章 数列 章末检测试卷一(第四章)(含解析)高中数学人教A版选择性必修第二册
章末检测试卷一(第四章)[时间:120分钟分值:150分]一、单项选择题(本题共8小题,每小题5分,共40分)1.已知数列1,3,5,7,…,2n―1,则35是这个数列的第( )A.20项B.21项C.22项D.23项2.设等差数列{a n}的前n项和为S n,若a4=8,S3=18,则S5等于( )A.34B.35C.36D.383.已知等比数列{a n}的各项均为正数,若log3a1+log3a2+…+log3a12=12,则a6a7等于( )A.1B.3C.6D.94.等差数列{a n}的前n项和为S n.若a1011+a1012+a1013+a1014=8,则S2024等于( )A.8096B.4048C.4046D.20245.已知圆O的半径为5,|OP|=3,过点P的2024条弦的长度组成一个等差数列{a n},圆O的最短弦长为a1,最长弦长为a2024,则其公差为( )A.12 023B.22 023C.31 011D.15056.已知等差数列{a n}的前n项和为S n,若a6+a7>0,a6+a8<0,则S n最大时n的值为( )A.4B.5C.6D.77.已知数列{a n}中的项都是整数,且满足a n+1={a n2,a n为偶数,3a n+1,a n为奇数,若a8=1,a1的所有可能取值构成集合M,则M中的元素的个数是( )A.7B.6C.5D.48.若数列{a n}的前n项和为S n,b n=S nn,则称数列{b n}是数列{a n}的“均值数列”.已知数列{b n}是数列{a n}的“均值数列”且通项公式为b n=n,设数列{1a n a n+1}的前n项和为T n,若T n<12m2-m-1对一切n∈N*恒成立,则实数m的取值范围为( )A.(-1,3)B.[-1,3]C.(-∞,-1)∪(3,+∞)D.(-∞,-1]∪[3,+∞)二、多项选择题(本题共3小题,每小题6分,共18分.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知数列{a n }的通项公式为a n =(n +2)·(67)n,则下列说法正确的是( )A.a 1是数列{a n }的最小项B.a 4是数列{a n }的最大项C.a 5是数列{a n }的最大项D.当n ≥5时,数列{a n }为递减数列10.设d ,S n 分别为等差数列{a n }的公差与前n 项和,若S 10=S 20,则下列说法中正确的是( )A.当n =15时,S n 取最大值B.当n =30时,S n =0C.当d >0时,a 10+a 22>0D.当d <0时,|a 10|>|a 22|11.已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n=3n +39n +3,则使得a n b n 为整数的正整数n的值为( )A.2 B.3C.4D.14三、填空题(本题共3小题,每小题5分,共15分)12.已知数列{a n }的前n 项和为S n ,a 1=1,a n +a n +1=4×3n -1,则S 2 024= .13.在等差数列{a n }中,前m (m 为奇数)项和为135,其中偶数项之和为63,且a m -a 1=14,则a 100的值为 .14.已知函数f (x )=(x +1)3+1,正项等比数列{a n }满足a 1 013=110,则2 025Σk =1f (lg a k )= . 四、解答题(本题共5小题,共77分)15.(13分)在数列{a n }中,a 1=1,a n +1=3a n .(1)求{a n }的通项公式;(6分)(2)数列{b n }是等差数列,S n 为{b n }的前n 项和,若b 1=a 1+a 2+a 3,b 3=a 3,求S n .(7分)16.(15分)已知等差数列{a n }中,a 5-a 2=6,且a 1,a 6,a 21依次成等比数列.(1)求数列{a n }的通项公式;(6分)(2)设b n =1a n a n +1,数列{b n }的前n 项和为S n ,若S n =335,求n 的值.(9分)17.(15分)在数列{a n }中,前n 项和S n =1+ka n (k ≠0,k ≠1).(1)证明:数列{a n }为等比数列;(5分)(2)求数列{a n }的通项公式;(4分)(3)当k =-1时,求a 21+a 22+…+a 2n .(6分)18.(17分)某公司计划今年年初用196万元引进一条永磁电机生产线,第一年需要安装、人工等费用24万元,从第二年起,包括人工、维修等费用每年所需费用比上一年增加8万元,该生产线每年年产值保持在100万元.(1)引进该生产线几年后总盈利最大,最大是多少万元?(8分)(2)引进该生产线几年后平均盈利最多,最多是多少万元?(9分)19.(17分)在如图所示的三角形数阵中,第n 行有n 个数,a ij 表示第i 行第j 个数,例如,a 43表示第4行第3个数.该数阵中每一行的第一个数从上到下构成以m 为公差的等差数列,从第三行起每一行的数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 41=12a 32+2,a 22a 21=m .(1)求m 及a 53;(7分)(2)记T n =a 11+a 22+a 33+…+a nn ,求T n .(10分)答案精析1.D [已知数列1,3,5,7,…,2n ―1,则该数列的通项公式为a n =2n ―1,若2n ―1=35=45,即2n -1=45,解得n =23,则35是这个数列的第23项.]2.B [因为{a n }是等差数列,设其公差为d ,因为S 3=a 1+a 2+a 3=3a 2=18,则a 2=6,所以2d =a 4-a 2=2,则d =1,所以a 5=9,S 5=S 3+a 4+a 5=18+8+9=35.]3.D [因为等比数列{a n }的各项均为正数,且log 3a 1+log 3a 2+…+log 3a 12=12,即log 3(a 1·a 2·…·a 12)=12,所以a 1·a 2·…·a 12=312,所以(a 6a 7)6=312,所以a 6a 7=32=9.]4.B [由等差数列的性质可得a 1 011+a 1 012+a 1 013+a 1 014=2(a 1 012+a 1 013)=8,所以a 1 012+a 1 013=4,所以S 2 024=2 024(a 1+a 2 024)2=2 024(a 1 012+a 1 013)2=4 048,故B 正确.]5.B [由题意,知最长弦长为直径,即a 2 024=10,最短弦长和最长弦长垂直,由弦长公式得a 1=252―32=8,所以d =a 2 024―a 12 024―1=22 023.]6.C [∵等差数列{a n }的前n 项和为S n ,a 6+a 7>0,a 6+a 8<0,∴a 6+a 8=2a 7<0,∴a 6>0,a 7<0,∴S n 最大时n 的值为6.]7.B [a n +1={a n2,a n 为偶数,3a n +1,a n 为奇数,若a 8=1,可得a 7=2,a 6=4,所以a 5=8或a 5=1.①若a 5=8,则a 4=16,a 3=32或a 3=5,当a 3=32时,a 2=64,a 1=128或a 1=21;当a 3=5时,a 2=10,a 1=20或a 1=3; ②若a 5=1,则a 4=2,a 3=4,a 2=8或a 2=1,当a 2=8时,a 1=16;当a 2=1时,a 1=2,故当a 8=1时,a 1的所有可能的取值集合M ={2,3,16,20,21,128},即集合M 中含有6个元素.]8.D [由题意,得数列{a n }的前n 项和为S n ,由“均值数列”的定义可得S nn =n ,所以S n =n 2,当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,a 1=1也满足a n =2n -1,所以a n =2n -1,所以1a n a n +1=1(2n ―1)(2n +1)=12(12n ―1―12n +1),所以T n =12(1―13+13―15+…+12n ―1―12n +1)=12(1―12n +1)<12,又T n <12m 2-m -1对一切n ∈N *恒成立,所以12m 2-m -1≥12,整理得m 2-2m -3≥0,解得m ≤-1或m ≥3.即实数m 的取值范围为(-∞,-1]∪[3,+∞).]9.BCD [假设第n 项为{a n }的最大项,则{a n ≥a n―1,a n ≥a n +1,即{(n +2)·(67)n≥(n +1)·(67)n―1,(n +2)·(67)n≥(n +3)·(67)n +1,所以{n ≤5,n ≥4,又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574,故B ,C 正确;当n ≥5时,数列{a n }为递减数列,故A 错误,D 正确.]10.BC [因为S 10=S 20,所以10a 1+10×92d =20a 1+20×192d ,解得a 1=-292d.所以S n =-292dn +n (n ―1)2d =d 2n 2-15nd =d 2[(n -15)2-225].对于选项A ,因为d 的正负不确定,S n 不一定有最大值,故A 错误;对于选项B ,S 30=30a 1+30×292d =30×(―292d )+15×29d =0,故B 正确;对于选项C ,a 10+a 22=2a 16=2(a 1+15d )=2(―292d +15d )=d >0,故C 正确;对于选项D ,a 10=a 1+9d =-292d +182d =-112d ,a 22=a 1+21d =-292d +422d =132d ,因为d <0,所以|a 10|=-112d ,|a 22|=-132d ,|a 10|<|a 22|,故D 错误.]11.ACD [由题意可得S 2n―1T 2n―1=(2n ―1)(a 1+a 2n―1)2(2n ―1)(b 1+b 2n―1)2=(2n ―1)a n (2n ―1)b n =a n b n ,则a n b n =S 2n―1T 2n―1=3(2n ―1)+39(2n ―1)+3=3n +18n +1=3+15n +1,由于a nb n 为整数,则n +1为15的正约数,则n +1的可能取值有3,5,15,因此,正整数n 的可能取值有2,4,14.]12.32 024―12解析 根据题意,可得a 1+a 2=4×30=4,a 3+a 4=4×32,…,a 2 023+a 2 024=4×32 022,所以S 2 024=4×30+4×32+…+4×32 022=4×(30+32+…+32 022)=4×1―(32)1 0121―32=32 024―12.13.101解析 ∵在前m 项中偶数项之和为S 偶=63,∴奇数项之和为S 奇=135-63=72,设等差数列{a n }的公差为d ,则S 奇-S 偶=2a 1+(m ―1)d2=72-63=9.又a m =a 1+d (m -1),∴a 1+a m2=9,∵a m -a 1=14,∴a 1=2,a m =16.∵m (a 1+a m )2=135,∴m =15,∴d =a m ―a 1m ―1=1,∴a 100=a 1+99d =101.14.2 025解析 函数f (x )=(x +1)3+1的图象可看成由y =x 3的图象向左平移1个单位长度,再向上平移1个单位长度得到,因为y =x 3的对称中心为(0,0),所以f (x )=(x +1)3+1的对称中心为(-1,1),所以f (x )+f (-2-x )=2,因为正项等比数列{a n }满足a 1 013=110,所以a 1·a 2 025=a 2·a 2 024=…=a 21 013=1100,所以lg a 1+lg a 2 025=lg a 2+lg a 2 024=...=2lg a 1 013=-2,所以f (lg a 1)+f (lg a 2 025)=f (lg a 2)+f (lg a 2 024)= (2)2 025Σk =1f (lg a k )=f (lg a 1)+f (lg a 2)+f (lg a 3)+…+f (lg a 2 025),①2 025Σk =1f (lg a k )=f (lg a 2 025)+f (lg a 2 024)+f (lg a 2 023)+…+f (lg a 1),②则①②相加得22 025Σk =1f (lg a k )=[f (lg a 1)+f (lg a 2 025)]+[f (lg a 2)+f (lg a 2 024)]+…+[f (lg a 2 025)+f (lg a 1)]=2 025×2,所以2 025Σk =1f (lg a k )=2 025.15.解 (1)因为a 1=1,a n +1=3a n ,所以数列{a n }是首项为1,公比为3的等比数列,所以a n =3n -1.(2)由(1)得,b 1=a 1+a 2+a 3=1+3+9=13,b 3=9,则b 3-b 1=2d =-4,解得d =-2,所以S n =13n +n (n ―1)2×(-2)=-n 2+14n.16.解 (1)设数列{a n }的公差为d ,因为a 5-a 2=6,所以3d =6,解得d =2.因为a 1,a 6,a 21依次成等比数列,所以a 26=a 1a 21,即(a 1+5×2)2=a 1(a 1+20×2),解得a 1=5,所以a n =2n +3.(2)由(1)知b n =1a n a n +1=1(2n +3)(2n +5),所以b n =12(12n +3―12n +5),所以S n =12[(15―17)+(17―19)+…+(12n +3―12n +5)]=n5(2n +5),由n5(2n +5)=335,得n =15.17.(1)证明 因为S n =1+ka n ,①S n -1=1+ka n -1(n ≥2),②由①-②,得S n -S n -1=ka n -ka n -1(n ≥2),所以a n =kk ―1a n -1.当n =1时,S 1=a 1=1+ka 1,所以a 1=11―k .所以{a n }是首项为11―k ,公比为kk ―1的等比数列.(2)解 因为a 1=11―k ,q =kk ―1,所以a n =11―k ·(k k ―1)n―1=-k n―1(k ―1)n .(3)解 因为在数列{a n }中,a 1=11―k ,公比q =kk ―1,所以数列{a 2n }是首项为(1k ―1)2,公比为(k k ―1)2的等比数列.当k =-1时,等比数列{a 2n }的首项为14,公比为14,所以a 21+a 22+…+a 2n=14×[1―(14)n ]1―14=13×[1―(14)n ].18.解 (1)设引进设备n 年后总盈利为f (n )万元,设除去设备引进费用,第n 年的成本为a n ,构成一等差数列,前n 年成本之和为[24n +n (n ―1)2×8]万元,所以f (n )=100n -[24n +4n (n -1)+196]=-4n 2+80n -196=-4(n ―10)2+204,n ∈N *,所以当n =10时,f (n )max =204(万元),即引进生产线10年后总盈利最大,为204万元.(2)设n 年后平均盈利为g (n )万元,则g (n )=f (n )n=-4n -196n +80,n ∈N *,因为g (n )=-4(n +49n)+80,当n ∈N *时,n +49n ≥2n·49n=14,当且仅当n =49n ,即n =7时取等号,故当n =7时,g(n)max=g(7)=24(万元),即引进生产线7年后平均盈利最多,为24万元.19.解 (1)由已知得a31=a11+(3-1)×m=2m+2,a32=a31×m=(2m+2)×m=2m2+2m,a41=a11+(4-1)×m=3m+2,a32+2,∵a41=12(2m2+2m)+2,∴3m+2=12即m2-2m=0.又m>0,∴m=2,∴a51=a11+4×2=10,∴a53=a51×22=40.(2)由(1)得a n1=a11+(n-1)×2=2n.当n≥3时,a nn=a n1·2n-1=n·2n.(*)又a21=a11+2=4,a22=ma21=2×4=8.a11=2,a22=8符合(*)式,∴a nn=n·2n.∵T n=a11+a22+a33+…+a nn,∴T n=1×21+2×22+3×23+4×24+…+n·2n,①2T n=1×22+2×23+3×24+…+(n-1)·2n+n·2n+1,②由①-②得,-T n=21+22+23+24+…+2n-n·2n+1-n·2n+1=2×(1―2n)1―2=2n+1-2-n·2n+1=(1-n)·2n+1-2,∴T n=(n-1)·2n+1+2.。
高中数学 阶段质量检测(一)(含解析)新人教A版必修4-新人教A版高一必修4数学试题
阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若角α的终边经过点P (-1,3),则tan α的值为( ) A .-13 B .-3C .-1010 D.31010解析:选B 由定义,若角α的终边经过点P (-1,3),∴tan α=-3.故选B. 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎪⎫α+π2=( )A .-63 B .-12C.12 D.63解析:选A ∵sin ⎝ ⎛⎭⎪⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3.已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( ) A.π3 B .1C.2π3D .3 解析:选B 弧长l =3r -2r =r ,则圆心角α=lr=1.4.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:选C f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4, 当k =-1时,则其中一条对称轴为x =-π4.5.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫x +π2B .y =cos ⎝⎛⎭⎪⎫x +π2C .y =cos ⎝ ⎛⎭⎪⎫2x +π2D .y =sin ⎝⎛⎭⎪⎫2x +π2 解析:选D 周期为π,排除A ,B ;y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为增函数,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为减函数,所以选D.6.函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( )A.⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7.已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为( )A.12 B .-12C.32 D .-32 解析:选C ∵⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4-α=π,∴3π4-α=π-⎝ ⎛⎭⎪⎫π4+α,∴sin ⎝⎛⎭⎪⎫3π4-α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4+α=32.8.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度解析:选B 函数y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos π2-2x -π6=cos ⎝ ⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos2x -π3.故选B.9.函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32 B .2C .0 D.34解析:选A f (x )=1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54,∵-π6≤x ≤π6,∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数. A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6 B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6 C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3 D .f (x )=cos ⎝⎛⎭⎪⎫2x -π6解析:选B 依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.11.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎪⎫2x -π4 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 D .y =2sin ⎝⎛⎭⎪⎫2x -3π4 解析:选C 由图象可知A =2,因为π8-⎝ ⎛⎭⎪⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝ ⎛⎭⎪⎫-π8·2+φ=2,即sin ⎝⎛⎭⎪⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x +3π4. 12.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,且f ⎝ ⎛⎭⎪⎫-14=-a ,那么f ⎝ ⎛⎭⎪⎫94等于( )A .aB .2aC .3aD .4a解析:选A 由f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,得f (x +1)=f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12=f (x ),即1是f (x )的周期.而f (x )为奇函数,则f ⎝ ⎛⎭⎪⎫94=f ⎝ ⎛⎭⎪⎫14=-f ⎝ ⎛⎭⎪⎫-14=a .二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32,所以cos α-sin α=-1+32.答案:-1+3214.函数f (sin x )=cos 2x ,那么f ⎝ ⎛⎭⎪⎫12的值为________. 解析:令sin x =12,得x =2k π+π6或x =2k π+5π6,k ∈Z ,所以f ⎝ ⎛⎭⎪⎫12=cos π3=12. 答案:1215.定义运算a *b 为a *b =⎩⎪⎨⎪⎧aa ≤b ,b a >b ,例如1*2=1,则函数f (x )=sin x *cos x的值域为________.解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎢⎡⎦⎥⎤-1,22.答案:⎣⎢⎡⎦⎥⎤-1,22 16.给出下列4个命题:①函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝ ⎛⎭⎪⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝ ⎛⎭⎪⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).解析:函数y =sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期为π2,故①正确. 对于②,当x =7π12时,2sin ⎝⎛⎭⎪⎫3×7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确. 对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝ ⎛⎭⎪⎫23,3长度73>2π3,显然④错误.答案:①②③三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知tan α+1tan α=52,求2sin 2(3π-α)-3cos π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2的值.解:tan α+1tan α=52,即2tan 2α-5tan α+2=0,解得tan α=12或tan α=2.2sin 2(3π-α)-3cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2 =2sin 2α-3sin αcos α+2 =2sin 2α-3sin αcos αsin 2α+cos 2α+2 =2tan 2α-3tan αtan 2α+1+2. 当tan α=12时,原式=2×⎝ ⎛⎭⎪⎫122-3×12⎝ ⎛⎭⎪⎫122+1+2=-45+2=65;当tan α=2时,原式=2×22-3×222+1+2=25+2=125. 18.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的单调递增区间. 解:(1)f ⎝⎛⎭⎪⎫5π4=2sin ⎝⎛⎭⎪⎫13×5π4-π6=2sin π4= 2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎪⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象; (2)写出f (x )的值域、最小正周期、对称轴,单调区间.解:(1)列表如下:x -π4 π4 3π4 5π4 7π4 x +π4π2 π3π2 2πsin ⎝ ⎛⎭⎪⎫x +π40 10 -13sin ⎝⎛⎭⎪⎫x +π4 0 3 0 -3 0描点画图如图所示.(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤π4+2k π,5π4+2k π(k ∈Z ).20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎪⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎪⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎪⎫πx +π6的单调递增区间为⎣⎢⎡⎦⎥⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎪⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z .21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3. (1)求函数f (x )的解析式;(2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎢⎡⎦⎥⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,某某数m 的取值X 围.解:(1)由题意,A =3,T =2⎝⎛⎭⎪⎫7π12-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝ ⎛⎭⎪⎫2x +π3=m -16在⎣⎢⎡⎦⎥⎤-π3,π6上有两个根.因为x ∈⎣⎢⎡⎦⎥⎤-π3,π6,所以2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.所以m -16∈⎣⎢⎡⎭⎪⎫32,1.所以m ∈[33+1,7).22.(12分)已知函数f (x )=sin(ωx +φ)-b (ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2.若将f (x )的图象先向右平移π6个单位长度,再向上平移3个单位长度,所得图象对应的函数g (x )为奇函数.(1)求f (x )的解析式;(2)求f (x )的对称轴及单调区间;(3)若对任意x ∈⎣⎢⎡⎦⎥⎤0,π3,f 2(x )-(2+m )f (x )+2+m ≤0恒成立,某某数m 的取值X 围.解:(1)因为2πω=2×π2,所以ω=2,所以f (x )=sin(2x +φ)-b .又因为函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ-b +3为奇函数,且0<φ<π,所以φ=π3,b =3,故f (x )=sin ⎝⎛⎭⎪⎫2x +π3- 3. (2)令2x +π3=π2+k π,k ∈Z ,得对称轴为直线x =π12+k π2,k ∈Z .令2x +π3∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,得单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,k ∈Z ,令2x +π3∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z ,得单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z .(3)因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以-3≤f (x )≤1-3,所以-1-3≤f (x )-1≤- 3.因为f 2(x )-(2+m )f (x )+2+m ≤0恒成立, 整理可得m ≤1f x -1+f (x )-1.由-1-3≤f (x )-1≤-3,得-1-332≤1f x -1+f (x )-1≤-433, 故m ≤-1-332,即实数m 的取值X 围是⎝ ⎛⎦⎥⎤-∞,-1-332.。
2020年高中数学第四章圆与方程章末检测新人教A版必修2
1.1.1 集合的含义与表示章末检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.空间两点A (3,-2,5),B (6,0,-1)之间的距离为( ) A .6 B .7 C .8 D .9 解析:|AB |=-2+-2-2++2=49=7.答案:B2.方程x 2+y 2-4x +4y +10-k =0表示圆,则k 的取值范围是( ) A .k <2 B .k >2 C .k ≥2D .k ≤2解析:若方程表示圆,则(-4)2+42-4(10-k )>0, 解得k >2. 答案:B3.将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0D .x -y +3=0解析:因为圆心是(1,2),所以将圆心坐标代入各选项验证知选C. 答案:C4.直线4x -3y -2=0与圆x 2+y 2-2ax +4y +a 2-12=0总有两个交点,则a 应满足( ) A .-3<a <7 B .-6<a <4 C .-7<a <3D .-21<a <19解析:x 2+y 2-2ax +4y +a 2-12=0, 配方得(x -a )2+(y +2)2=16, 圆心为(a ,-2),半径r =4. 若直线与圆总有两个交点, 则|4a +6-2|5<4,∴|4a +4|<20,∴|a +1|<5.∴-6<a <4. 答案:B5.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( ) A .1或3 B .1或5 C .3或5 D .1或2解析:当k =3时,两直线平行;当k ≠3时,由两直线平行,斜率相等,得3-k 4-k=k -3,解得k =5. 答案:C6.直线l :y =k ⎝ ⎛⎭⎪⎫x +12与圆C :x 2+y 2=1的位置关系为( )A .相交或相切B .相交或相离C .相切D .相交解析:解法一 因为直线y =k ⎝ ⎛⎭⎪⎫x +12经过点⎝ ⎛⎭⎪⎫-12,0, 而点⎝ ⎛⎭⎪⎫-12,0在圆x 2+y 2=1内,所以直线和圆相交.解法二 圆C 的圆心(0,0)到直线y =k ⎝ ⎛⎭⎪⎫x +12的距离为d =⎪⎪⎪⎪⎪⎪12k k 2+1,因为d 2=14k 2k 2+1<14<1,所以直线与圆相交. 答案:D7.当点P 在圆x 2+y 2=1上运动时,它与定点Q (3,0)连线的中点M 的轨迹方程是( ) A .(x +3)2+y 2=4 B .(x -3)2+y 2=1 C .(2x -3)2+4y 2=1D .(2x +3)2+4y 2=1解析:设M (x ,y ),则P (2x -3,2y ). 因为点P 在圆x 2+y 2=1上, 故有(2x -3)2+4y 2=1. 答案:C8.已知直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E ,F 两点,则△EOF (O 是原点)的面积为( )A.32B.34 C .2 5 D.655解析:该圆的圆心为A (2,-3),半径长r =3,圆心到直线的距离d =|2+6-3|1+4=5,弦长为2r 2-d 2=29-5=4.因为原点到直线的距离为|0-0-3|1+4=35,所以S =12×4×35=655.答案:D9.设A (1,1,-2),B (3,2,8),C (0,1,0),则线段AB 的中点P 到点C 的距离为( )A.132 B.534 C.532 D.532解析:利用中点公式,得P ⎝ ⎛⎭⎪⎫2,32,3,由两点间距离公式计算知|PC |=-2+⎝ ⎛⎭⎪⎫32-12+-2=4+14+9=532. 答案:D10.若过定点M (-1,0)且斜率为k 的直线与圆x 2+4x +y 2-5=0在第一象限内的部分有交点,则k 的取值范围是( ) A .0<k < 5 B .-5<k <0 C .0<k <13D .0<k <5解析:圆x 2+4x +y 2-5=0可变形为(x +2)2+y 2=9,如图所示.当x =0时,y =±5,结合图形可得A (0,5), ∵k AM =51=5, ∴k ∈(0,5). 答案:A11.动圆x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0的圆心的轨迹方程是( ) A .2x -y -1=0 B .2x -y -1=0(x ≠1) C .x -2y -1=0(x ≠1)D .x -2y -1=0解析:圆心为(2m +1,m ),r =|m |(m ≠0). 不妨设圆心坐标为(x ,y ),则x =2m +1,y =m ,∴x -2y -1=0. 又∵m ≠0,∴x ≠1,故选C. 答案:C12.过点P (2,3)向圆x 2+y 2=1作两条切线PA 、PB ,则弦AB 所在直线的方程为( ) A .2x -3y -1=0 B .2x +3y -1=0 C .3x +2y -1=0D .3x -2y -1=0解析:圆x 2+y 2=1的圆心为坐标原点O ,以OP 为直径的圆的方程为(x -1)2+⎝ ⎛⎭⎪⎫y -322=134.显然这两个圆是相交的,由⎩⎪⎨⎪⎧x 2+y 2=1,x -2+⎝ ⎛⎭⎪⎫y -322=134,得2x +3y -1=0,这就是弦AB 所在直线的方程. 答案:B二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.圆心为点(2,-3),且被直线2x +3y -8=0截得的弦长为43的圆的标准方程为____________.解析:∵圆心(2,-3)到直线距离d =|4-9-8|4+9=1313=13,∴R 2=d 2+(23)2=13+12=25, ∴R =5.答案:(x -2)2+(y +3)2=2514.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于点A 、B ,弦AB 的中点为(0,1),则直线l 的方程为____________.解析:依题意得圆心坐标为(-1,2),且直线l 与由圆心与点(0,1)确定的直线相互垂直,因此直线l 的斜率等于1,又该直线l 经过点(0, 1),所以直线的方程是y -1=x ,即x -y +1=0.答案:x -y +1=015.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐标是________.解析:设M (0,y,0),由1+y 2+4=1+(-3-y )2+1,可得y =-1,故M (0,-1,0). 答案:(0,-1,0)16.点P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的距离的最小值为________. 解析:点P 到直线3x -4y -10=0距离的最小值为圆心到直线的距离减半径.d min =1032+42-1=105-1=1. 答案:1三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知圆M :x 2+y 2-2mx +4y +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0相交于A 、B 两点,且这两点平分圆N 的圆周,求圆M 的圆心坐标. 解析:由圆M 和圆N 的方程易知两圆的圆心分别为M (m ,-2),N (-1,-1). 两圆方程相减得直线AB 的方程为 2(m +1)x -2y -m 2-1=0. ∵A 、B 两点平分圆N 的圆周,∴AB 为圆N 的直径,直线AB 过点N (-1,-1). ∴2(m +1)×(-1)-2×(-1)-m 2-1=0. 解得m =-1.故圆M 的圆心为M (-1,-2).18.(本小题满分12分)已知圆C :(x -1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C于A ,B 两点.(1)当直线l 经过圆心C 时,求直线l 的方程; (2)当弦AB 被点P 平分时,写出直线l 的方程.解析:(1)已知圆C :(x -1)2+y 2=9的圆心为C (1,0),因为直线l 过点P ,C ,所以直线l 的斜率为2,直线l 的方程为y =2(x -1),即2x -y -2=0.(2)当弦AB 被点P 平分时,直线l 垂直于PC ,直线l 的方程为y -2=-12(x -2),即x +2y-6=0.19.(本小题满分12分)已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0(m ∈R). (1)判断直线l 与圆C 的位置关系;(2)设直线l 与圆C 交于A ,B 两点,若直线l 的倾斜角为120°,求弦AB 的长. 解析:(1)直线l 可变形为y -1=m (x -1),因此直线l 过定点D (1,1),又12+-2=1<5,所以点D 在圆C 内,则直线l 与圆C 必相交. (2)由题意知m ≠0,所以直线l 的斜率k =m , 又k =tan 120°=-3,即 m =- 3.此时,圆心C (0,1)到直线l :3x +y -3-1=0的距离d =|-3|32+12=32,又圆C 的半径r =5, 所以|AB |=2r 2-d 2=25-⎝⎛⎭⎪⎫322=17. 20.(本小题满分12分)已知圆C 的方程为:x 2+y 2-4mx -2y +8m -7=0,(m ∈R). (1)试求m 的值,使圆C 的面积最小;(2)求与满足(1)中条件的圆C 相切,且过点(4,-3)的直线方程. 解析:配方得圆的方程为(x -2m )2+(y -1)2=4(m -1)2+4. (1)当m =1时,圆的半径最小,此时圆的面积最小. (2)当m =1时,圆的方程为(x -2)2+(y -1)2=4. 当斜率存在时设所求直线方程为y +3=k (x -4), 即kx -y -4k -3=0.由直线与圆相切,所以|2k -1-4k -3|k 2+1=2,解得k =-34.所以切线方程为y +3=-34(x -4),即3x +4y =0.又过(4,-3)点,且与x 轴垂直的直线x =4,也与圆相切. 所以所求直线方程为3x +4y =0及x =4.21.(本小题满分13分)如图所示,圆O 1和圆O 2的半径长都等于1,|O 1O 2|=4.过动点P 分别作圆O 1,圆O 2的切线PM ,PN (M ,N 为切点),使得|PM |=2|PN |.试建立平面直角坐标系,并求动点P 的轨迹方程. 解析:以O1O 2的中点O 为原点,O 1O 2所在的直线为x 轴,O 1O 2的垂直平分线为y 轴,建立如图所示的平面直角坐标系.则O 1(-2,0),O 2(2,0).由已知|PM |=2|PN |,得|PM |2=2|PN |2. 因为两圆的半径长均为1, 所以|PO 1|2-1=2(|PO 2|2-1).设P (x ,y ),则(x +2)2+y 2-1=2[(x -2)2+y 2-1], 即(x -6)2+y 2=33,所以所求动点P 的轨迹方程为(x -6)2+y 2=33.22.(本小题满分13分)已知:以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程.解析:(1)证明:∵圆C 过原点O ,∴r 2=OC 2=t 2+4t2.设圆C 的方程是(x -t )2+⎝ ⎛⎭⎪⎫y -2t 2=t2+4t2.令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t .∴S △OAB =12OA ×OB =12×⎪⎪⎪⎪⎪⎪4t ×|2t |=4,即△OAB 的面积为定值.(2)∵OM =ON ,CM =CN ,∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴直线OC 的方程是y =12x .∴2t =12t .解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 点到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时C点到直线y=-2x+4的距离d=95>5,圆C与直线y=-2x+4不相交,∴t=-2不符合题意,舍去.∴圆C的方程为(x-2)2+(y-1)2=5.。
高中数学 阶段质量检测(四)圆与方程 新人教A版必修2
阶段质量检测(四) 圆与方程(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( ) A. 2 B .2 C .2 2D .4解析:选B 由题意,得圆心为(-1,0),半径r =3,弦心距d =|-1+0-1|12+12=2,所以所求的弦长为2r 2-d 2=2,选B.2.若点P (1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0D .2x -y -1=0解析:选D 由题意,知圆的标准方程为(x -3)2+y 2=9,圆心为A (3,0).因为点P (1,1)为弦MN 的中点,所以AP ⊥MN .又AP 的斜率k =1-01-3=-12,所以直线MN 的斜率为2,所以弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0.3.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.4.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.5.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|-32+42=a 2+7-1,解得a =±3. 6.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A .14米B .15米 C.51米 D .251米解析:选D如图,以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x 轴,以过圆弧形拱桥的顶点的竖直直线为y 轴,建立平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B , 则由已知可得A (6,-2), 设圆的半径长为r ,则C (0,-r ), 即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10, 所以圆的方程为x 2+(y +10)2=100,当水面下降1米后,水面弦的端点为A ′,B ′,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得x 0=51, ∴水面宽度|A ′B ′|=251米.7.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0D .4x +y -3=0解析:选A 设点P (3,1),圆心C (1,0).已知切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径.故四边形PACB 的外接圆圆心坐标为⎝ ⎛⎭⎪⎫2,12,半径长为123-12+1-02=52.故此圆的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54.① 圆C 的方程为(x -1)2+y 2=1.②①-②得2x +y -3=0,此即为直线AB 的方程.8.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1 B. 2C .2D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB的面积为12×22×12=1.故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中的横线上)9.圆心在直线x =2上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程为________________.解析:由题意知圆心坐标为(2,-3),半径r =2-02+-3+22=5,∴圆C的方程为(x -2)2+(y +3)2=5.答案:(x -2)2+(y +3)2=510.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1). 答案:(5,4,1)11.圆O :x 2+y 2-2x -2y +1=0上的动点Q 到直线l :3x +4y +8=0的距离的最大值是________.解析:∵圆O 的标准方程为(x -1)2+(y -1)2=1,圆心(1,1)到直线l 的距离为|3×1+4×1+8|32+42=3>1,∴动点Q 到直线l 的距离的最大值为3+1=4. 答案:412.已知过点(1,1)的直线l 与圆C :x 2+y 2-4y +2=0相切,则圆C 的半径为________,直线l 的方程为________.解析:圆C 的标准方程为x 2+(y -2)2=2, 则圆C 的半径为2,圆心坐标为(0,2).点(1,1)在圆C 上,则直线l 的斜率k =-12-10-1=1,则直线l 的方程为y =x ,即x -y =0. 答案: 2 x -y =013.已知圆C :(x -1)2+y 2=25与直线l :mx +y +m +2=0,若圆C 关于直线l 对称,则m =________;当m =________时,圆C 被直线l 截得的弦长最短.解析:当圆C 关于l 对称时,圆心(1,0)在直线mx +y +m +2=0上,得m =-1.直线l :m (x +1)+y +2=0恒过圆C 内的点M (-1,-2),当圆心到直线l 的距离最大,即MC ⊥l 时,圆C 被直线l 截得的弦长最短,k MC =-2-0-1-1=1,由(-m )×1=-1,得m =1.答案:-1 114.已知点M (2,1)及圆x 2+y 2=4,则过M 点的圆的切线方程为________,若直线ax -y +4=0与该圆相交于A ,B 两点,且|AB |=23,则a =________.解析:若过M 点的圆的切线斜率不存在,则切线方程为x =2,经验证满足条件.若切线斜率存在,可设切线方程为y =k (x -2)+1,由圆心到切线的距离等于半径得|-2k +1|k 2+1=2,解得k =-34,故切线方程为y =-34(x -2)+1,即3x +4y -10=0.综上,过M 点的圆的切线方程为x =2或3x +4y -10=0. 由4a 2+1=4-32得a =±15.答案:x =2或3x +4y -10=0 ±1515.已知两圆C 1:x 2+y 2-2ax +4y +a 2-5=0和C 2:x 2+y 2+2x -2ay +a 2-3=0,则两圆圆心的最短距离为________,此时两圆的位置关系是________.(填“外离、相交、外切、内切、内含”中的一个)解析:将圆C 1:x 2+y 2-2ax +4y +a 2-5=0化为标准方程得(x -a )2+(y +2)2=9,圆心为C 1(a ,-2),半径为r 1=3,将圆C 2:x 2+y 2+2x -2ay +a 2-3=0化为标准方程得(x +1)2+(y -a )2=4,圆心为C 2(-1,a ),半径为r 2=2.两圆的圆心距d =a +12+-2-a2=2a 2+6a +5=2⎝ ⎛⎭⎪⎫a +322+12,所以当a =-32时,d min =22,此时22<|3-2|,所以两圆内含.答案:22内含 三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知正四棱锥P ABCD 的底面边长为4,侧棱长为3,G 是PD 的中点,求|BG |.解:∵正四棱锥P ABCD 的底面边长为4,侧棱长为3,∴正四棱锥的高为1.以正四棱锥的底面中心为原点,平行于AB ,BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥的顶点B ,D ,P 的坐标分别为B (2,2,0),D (-2,-2,0),P (0,0,1).∴G 点的坐标为G ⎝ ⎛⎭⎪⎫-1,-1,12∴|BG |=32+32+14=732.17.(本小题满分15分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B .(1)求以OP 为直径的圆的方程; (2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3), 半径为12|OP |= 124-02+6-02=13,∴以OP 为直径的圆的方程为(x -2)2+(y -3)2=13. (2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线, ∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,x -22+y -32=13,得直线AB 的方程为4x +6y -1=0.18.(本小题满分15分)已知圆过点A (1,-2),B (-1,4). (1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小, 即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径.则所求圆的方程为x 2+(y -1)2=10.(2)法一:直线AB 的斜率k =4--2-1-1=-3,则线段AB 的垂直平分线的方程是y -1=13x ,即x -3y +3=0.由⎩⎪⎨⎪⎧x -3y +3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =2,即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20. ∴所求圆的方程是(x -3)2+(y -2)2=20. 法二:设圆的方程为(x -a )2+(y -b )2=R 2. 则⎩⎪⎨⎪⎧1-a 2+-2-b 2=R 2,-1-a 2+4-b 2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.19.(本小题满分15分)已知圆x 2+y 2-4ax +2ay +20a -20=0. (1)求证:对任意实数a ,该圆恒过一定点; (2)若该圆与圆x 2+y 2=4相切,求a 的值.解:(1)证明:圆的方程可整理为(x 2+y 2-20)+a (-4x +2y +20)=0, 此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系.由⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0得⎩⎪⎨⎪⎧x =4,y =-2.∴已知圆恒过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2. ①当两圆外切时,d =r 1+r 2, 即2+5a -22=5a 2,解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|5a -22-2|=5a 2,解得a =1-55或a =1+55(舍去). 综上所述,a =1±55. 20.(本小题满分15分)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点M ,使得四边形OAMB 为菱形?若存在,求出此时直线l 的斜率;若不存在,说明理由.解:(1)设圆O 的半径长为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)法一:因为直线l :y =kx +3与圆O 相交于A ,B 两点, 所以圆心(0,0)到直线l 的距离d =|3|1+k2<2,解得k >52或k <-52. 假设存在点M ,使得四边形OAMB 为菱形,则OM 与AB 互相垂直且平分, 所以原点O 到直线l :y =kx +3的距离d =12|OM |=1.所以|3|1+k2=1,解得k 2=8,即k =±22,经验证满足条件. 所以存在点M ,使得四边形OAMB 为菱形. 法二:设直线OM 与AB 交于点C (x 0,y 0).因为直线l 斜率为k ,显然k ≠0,所以直线OM 方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx 0+3,y =-1k x 0,解得⎩⎪⎨⎪⎧x 0=-3kk 2+1,y 0=3k 2+1.所以点M 的坐标为⎝ ⎛⎭⎪⎫-6k k 2+1,6k 2+1.因为点M 在圆上,所以⎝⎛⎭⎪⎫-6k k 2+12+⎝ ⎛⎭⎪⎫6k 2+12=4,解得k =±22,经验证均满足条件. 所以存在点M ,使得四边形OAMB 为菱形.。
高中数学 阶段质量检测(二)数列(含解析)新人教A版必修5-新人教A版高二必修5数学试题
阶段质量检测(二) 数 列(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.等差数列-2,0,2,…的第15项为( ) A .11 2 B .122C .13 2 D .14 2 解析:选C ∵a 1=-2,d =2, ∴a n =-2+(n -1)×2=2n -2 2. ∴a 15=152-22=13 2.2.等差数列{}a n 中,a 1+a 5=10,a 4=7,则数列{}a n 的公差为( ) A .1 B .2 C .3 D .4解析:选B ∵a 1+a 5=2a 3=10, ∴a 3=5,∴d =a 4-a 3=7-5=2.3.已知在递增的等比数列{a n }中,a 2=6,a 1+1,a 2+2,a 3成等差数列,则该数列的前6项和S 6=( )A .93B .189 C.18916D .378解析:选B 设数列的公比为q ,由题意可知q >1,且2(a 2+2)=a 1+1+a 3,即2×(6+2)=6q+1+6q ,整理可得2q 2-5q +2=0,则q =2或q =12(舍去).∴a 1=62=3,该数列的前6项和S 6=3×1-261-2=189.故选B.4.记等差数列{}a n 的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d =( ) A .2 B .3 C .6 D .7 解析:选B S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d =16-4=12, ∴d =3.5.已知数列{}a n 的前n 项和S n =n 2-2n +2,则数列{}a n 的通项公式为( )A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2n -3.又当n =1时,a 1的值不适合n ≥2时的通项公式,故选C.6.已知等比数列的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,则数列lg a 1,2lg a 2,22lga 3,23lg a 4,…,2n -1lg a n ,…的前n 项和S n 等于( )A .n ·2nB .(n -1)·2n -1-1C .(n -1)·2n+1 D .2n+1解析:选C ∵等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,∴a 2n =102n,即a n =10n,∴2n -1lg a n =2n -1lg 10n =n ·2n -1,∴S n =1+2×2+3×22+…+n ·2n -1,①2S n =1×2+2×22+3×23+…+n ·2n,② ∴①-②得-S n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )·2n-1,∴S n =(n -1)·2n+1.7.数列{a n }满足a 1=1,且a n +1=a 1+a n +n (n ∈N *),则1a 1+1a 2+…+1a 2 019=( )A.4 0382 020B.4 0362 019C.4 0322 017D.4 0342 018解析:选A ∵a n +1-a n =n +1,a n -a n -1=n -1+1,…,a 2-a 1=1+1, ∴a n +1-a 1=1+n n 2+n ,即a n +1=nn +12+n +1,∴a n =n n -12+n =n n +12,1a n =2⎝ ⎛⎭⎪⎫1n -1n +1,1a 1+1a 2+…+1a 2 019=2⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫12 019-12 020=2×⎝ ⎛⎭⎪⎫1-12 020=4 0382 020.故选A.8.设{}a n 是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值解析:选C 由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0. 由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9 =2(a 7+a 8)<0,即S 9<S 5.9.已知数列{}a n 中,a 1=1,前n 项和为S n ,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,则1S 1+1S 2+1S 3+…+1S n等于( )A.n (n +1)2B.2n (n +1)C.n 2(n +1)D.2nn +1解析:选D 由已知得a n -a n +1+1=0, 即a n +1-a n =1.∴数列{}a n 是首项为1,公差为1的等差数列. ∴S n =n +n (n -1)2×1=12n 2+12n ,∴1S n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1∴1S 1+1S 2+1S 3+…+1S n=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =2⎝⎛⎭⎪⎫1-1n +1=2nn +1. 10.等比数列{}a n 的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{}b n ,那么162是新数列{}b n 的( )A .第5项B .第12项C .第13项D .第6项解析:选C 162是数列{}a n 的第5项,则它是新数列{}b n 的第5+(5-1)×2=13项. 11.设数列{}a n 是以2为首项,1为公差的等差数列,{}b n 是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10等于( )A .1 033B .1 034C .2 057D .2 058解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1,因此ab 1+ab 2+…+ab 10=(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10=1-2101-2+10=1 033.12.已知数列{a n }的通项公式为a n =1n +1n +n n +1(n ∈N *),其前n 项和为S n ,则在数列S 1,S 2,…,S 2 018中,有理数项的项数为( )A .42B .43C .44D .45 解析:选 B 1a n=(n +1)n +n n +1=n +1n ·(n +1+n )=n +1n⎝ ⎛⎭⎪⎫1n +1-n , a n =n +1-n n +1n =1n -1n +1,S n =a 1+a 2+a 3+…+a n =1-12+12-13+…+1n -1n +1=1-1n +1, 问题等价于在2,3,4,…,2 019中有多少个数可以开方,设2≤x 2≤2 019且x ∈N ,因为442=1 936,452=2 025,所以2≤x ≤44且x ∈N ,共有43个.故选B.二、填空题13.数列{}a n 满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14.∴a 5=14+a 1=14+1=15. 答案:1514.一件家用电器,现价2 000元,实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为0.8%,并按复利计息,那么每期应付款________________元(参考数据:1.00811≈1.092,1.00812≈1.100,1.0811≈2.332,1.0812≈2.518).解析:设每期应付款x 元,第n 期付款后欠款A n 元, 则A 1=2 000(1+0.008)-x =2 000×1.008-x ,A 2=(2 000×1.008-x )×1.008-x =2 000×1.0082-1.008x -x ,…, A 12=2 000×1.00812-(1.00811+1.00810+…+1)x ,因为A 12=0,所以2 000×1.00812-(1.00811+1.00810+…+1)x =0, 解得x = 2 000×1.008121+1.008+…+1.00811=2 000×1.008121.00812-11.008-1≈176, 即每期应付款176元. 答案:17615.数列{}a n 满足递推公式a n =3a n -1+3n-1(n ≥2),又a 1=5,则使得⎩⎨⎧⎭⎬⎫a n +λ3n为等差数列的实数λ=______.解析:a 1=5,a 2=23,a 3=95,令b n =a n +λ3n,则b 1=5+λ3,b 2=23+λ9,b 3=95+λ27,∵b 1+b 3=2b 2,∴λ=-12.答案:-1216.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x 、y ∈R,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值X 围为________.解析:依题意得f (n +1)=f (n )·f (1),即a n +1=a n ·a 1=12a n ,所以数列{a n }是以12为首项,12为公比的等比数列,所以S n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-12n ,所以S n ∈⎣⎢⎡⎭⎪⎫12,1.答案:⎣⎢⎡⎭⎪⎫12,1 三、解答题17.(本小题10分)等比数列{}a n 中,已知a 1=2,a 4=16, (1)求数列{}a n 的通项公式;(2)若a 3,a 5分别为等差数列{}b n 的第3项和第5项,试求数列{}b n 的通项公式及前n 项和S n .解:(1)设{}a n 的公比为q ,由已知得16=2q 3,解得q =2,∴a n =2n. (2)由(1)得a 3=8,a 5=32, 则b 3=8,b 5=32. 设{}b n 的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28, 所以数列{}b n 的前n 项和S n =n (-16+12n -28)2=6n 2-22n .18.(本小题12分)数列{}a n 的前n 项和为S n ,数列{}b n 中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,=a n -1.(1)求证:数列{}是等比数列; (2)求数列{}b n 的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n , ① ∴a 1+S 1=1,得a 1=12.又a n +1+S n +1=n +1, ②①②两式相减得2(a n +1-1)=a n -1, 即a n +1-1a n -1=12,也即+1=12, 故数列{}是等比数列. (2)∵c 1=a 1-1=-12,∴=-12n ,a n =+1=1-12n ,a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12,符合上式,∴b n =12n .19.(本小题12分)X 先生2018年年底购买了一辆1.6 L 排量的小轿车,为积极响应政府发展森林碳汇(指森林植物吸收大气中的二氧化碳并将其固定在植被或土壤中)的号召,买车的同时出资1万元向中国绿色碳汇基金会购买了2亩荒山用于植树造林.科学研究表明:轿车每行驶3 000公里就要排放1吨二氧化碳,林木每生长1立方米,平均可吸收1.8吨二氧化碳.(1)X 先生估计第一年(即2019年)会用车1.2万公里,以后逐年会增加1 000公里,则该轿车使用10年共要排放二氧化碳多少吨?(2)若种植的林木第一年(即2019年)生长了1立方米,以后每年以10%的生长速度递增,问林木至少生长多少年,吸收的二氧化碳的量超过轿车10年排出的二氧化碳的量(参考数据:1.114≈3.797 5,1.115≈4.177 2,1.116≈4.595 0)?解:(1)设第n 年小轿车排出的二氧化碳的吨数为a n (n ∈N *), 则a 1=12 0003 000=4,a 2=13 0003 000=133,a 3=14 0003 000=143,…,显然其构成首项为a 1=4,公差为d =a 2-a 1=13的等差数列,所以S 10=10×4+10×92×13=55,即该轿车使用10年共排放二氧化碳55吨. (2)记第n 年林木吸收二氧化碳的吨数为b n (n ∈N *),则b 1=1×1.8,b 2=1×(1+10%)×1.8,b 3=1×(1+10%)2×1.8,…, 其构成首项为b 1=1.8,公比为q =1.1的等比数列, 记其前n 项和为T n , 由题意,有T n =1.8×1-1.1n1-1.1=18×(1.1n-1)≥55,解得n ≥15.所以林木至少生长15年,其吸收的二氧化碳的量超过轿车10年排出的二氧化碳的量. 20.(本小题12分)在数列{}a n 中,a 1=1,a n +1=2a n +2n.(1)设b n =a n2n -1.证明:数列{}b n 是等差数列;(2)求数列{}a n 的前n 项和S n .解:(1)证明:由已知a n +1=2a n +2n,得b n +1=a n +12n=2a n +2n2n=a n2n -1+1=b n +1,∴b n +1-b n =1,又b 1=a 1=1.∴{}b n 是首项为1,公差为1的等差数列. (2)由(1)知,b n =n ,a n2n -1=b n =n .∴a n =n ·2n -1.∴S n =1+2·21+3·22+…+n ·2n -1,两边乘以2得: 2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n,两式相减得:-S n =1+21+22+…+2n -1-n ·2n=2n-1-n ·2n=(1-n )2n-1,∴S n =(n -1)·2n+1.21.(本小题12分)已知等差数列{}a n 的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列.(1)求数列{}a n 的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.解:(1)因为数列{}a n 是等差数列, 所以a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d .依题意,有⎩⎪⎨⎪⎧S 5=70,a 27=a 2a 22.即⎩⎪⎨⎪⎧5a 1+10d =70,(a 1+6d )2=(a 1+d )(a 1+21d ). 解得a 1=6,d =4.所以数列{}a n 的通项公式为a n =4n +2(n ∈N *).(2)证明:由(1)可得S n =2n 2+4n . 所以1S n=12n 2+4n =12n (n +2)=14⎝ ⎛⎭⎪⎫1n -1n +2.所以T n =1S 1+1S 2+1S 3+…+1S n -1+1S n=14⎝ ⎛⎭⎪⎫1-13+14⎝ ⎛⎭⎪⎫12-14+14⎝ ⎛⎭⎪⎫13-15+…+14×⎝ ⎛⎭⎪⎫1n -1-1n +1+14⎝ ⎛⎭⎪⎫1n -1n +2=14⎝⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2.因为T n -38=-14⎝ ⎛⎭⎪⎫1n +1+1n +2<0所以T n <38.因为T n +1-T n =14⎝ ⎛⎭⎪⎫1n +1-1n +3>0, 所以数列{}T n 是递增数列, 所以T n ≥T 1=16.所以16≤T n <38.22.(本小题12分)(2018·某某高考)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.解:(1)由a 4+2是a 3,a 5的等差中项, 得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28, 解得a 4=8.由a 3+a 5=20,得8⎝⎛⎭⎪⎫q +1q =20,解得q =2或q =12.因为q >1,所以q =2.(2)设=(b n +1-b n )a n ,数列{}的前n 项和为S n .由=⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,解得=4n -1.由(1)可得a n =2n -1,所以b n +1-b n =(4n -1)×⎝ ⎛⎭⎪⎫12n -1,故b n -b n -1=(4n -5)×⎝ ⎛⎭⎪⎫12n -2,n ≥2, b n -b 1=(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)=(4n -5)×⎝ ⎛⎭⎪⎫12n -2+(4n -9)×⎝ ⎛⎭⎪⎫12n -3+…+7×12+3.设T n =3+7×12+11×⎝ ⎛⎭⎪⎫122+…+(4n -5)×⎝ ⎛⎭⎪⎫12n -2,n ≥2.则12T n =3×12+7×⎝ ⎛⎭⎪⎫122+…+(4n -9)×⎝ ⎛⎭⎪⎫12n -2+(4n -5)×⎝ ⎛⎭⎪⎫12n -1,所以12T n =3+4×12+4×⎝ ⎛⎭⎪⎫122+…+4×⎝ ⎛⎭⎪⎫12n -2-(4n -5)×⎝ ⎛⎭⎪⎫12n -1, 所以T n =14-(4n +3)×⎝ ⎛⎭⎪⎫12n -2,n ≥2.又b 1=1,所以b n =15-(4n +3)×⎝ ⎛⎭⎪⎫12n -2.。
2020_2021学年高中数学第二章平面向量2.3.1平面向量基本定理训练含解析新人教A版必修4
第二章 平面向量2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理 [A 组 学业达标]1.若k 1a +k 2b =0,则k 1=k 2=0,那么下面关于向量a ,b 的判断正确的是( )A .a 与b 一定共线B .a 与b 一定不共线C .a 与b 垂直D .a 与b 中至少有一个为0解析:由平面向量基本定理可知,当a ,b 不共线时,k 1=k 2=0. 答案:B2.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包括边界).若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅲ部分,则实数a ,b 满足 ( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0解析:取第Ⅲ部分内一点画图易得a >0,b <0. 答案:B3.如果e 1,e 2是平面α内两个不共线的向量,那么在下列各命题中不正确的有( )①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内的任一向量a ,使a =λe 1+μe 2的实数λ,μ有无数多对;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若实数λ,μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④D .②解析:由平面向量基本定理可知,①④是正确的;对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2 =0时,这样的λ有无数个.故选B. 答案:B4.在△ABC 中,点D 在BC 边上,且BD →=2DC →,设AB →=a ,AC →=b ,则AD →可用基底a ,b 表示为 ( )A.12(a +b ) B.23a +13b C.13a +23b D.13(a +b ) 解析:∵BD →=2DC →,∴BD →=23BC →.∴AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →=13a +23b .答案:C5.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,试用m ,n 表示p ,p =________.解析:设p =x m +y n ,则3a +2b =x (2a -3b )+y (4a -2b )=(2x +4y )a +(-3x -2y )b ,得⎩⎪⎨⎪⎧2x +4y =3,-3x -2y =2,解得⎩⎨⎧x =-74,y =138.所以p =-74m +138n .答案:-74m +138n6.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y =________.解析:∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,∴x -y =3.答案:37.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2=________.解析:易知DE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,所以λ1+λ2=12.答案:128.在梯形ABCD 中,AB ∥CD ,M ,N 分别是DA ,BC 的中点,且DC AB=k (k ≠1).设AD →=e 1,AB →=e 2,选择基底{e 1,e 2},试写出下列向量在此基底下的分解式:DC →,BC →,MN →. 解析:如图,∵AB →=e 2,且DC AB=k ,∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD →=-e 2+k e 2+e 1=e 1+(k -1)e 2. ∵MN →+NB →+BA →+AM →=0,∴MN →=-NB →-BA →-AM →=BN →+AB →-AM →=12BC →+e 2-12AD →=12[e 1+(k -1)e 2]+e 2-12e 1=k +12e 2. 9.在△ABC 中,点M 是BC 的中点,点N 在AC 上且AN →=2NC →,AM 交BN 于P 点,求AP与AM 的比值.解析:设BM →=a ,CN →=b ,则AM →=AC →+CM →=-a -3b ,BN →=2a +b . ∵A ,P ,M 和B ,P ,N 分别共线, ∴存在实数λ,μ使AP →=λAM →=-λa -3λb , BP →=μBN →=2μa +μb .∴BA →=BP →-AP →=(λ+2μ)a +(3λ+μ)b . 又∵BA →=BC →+CA →=2a +3b ,由平面向量基本定理得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎨⎧λ=45,μ=35,则AP →=45AM →.∴AP 与AM 的比值为45.[B 组 能力提升]10.若OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→(λ≠-1),则OP →=( )A .a +λbB .λa +bC .λa +(1+λ)bD.a +λb 1+λ解析:∵P 1P →=λPP 2→,∴OP →-OP 1→=λ(OP 2→-OP →),(1+λ)OP →=λOP 2→+OP 1→,∴OP →=a +λb1+λ.答案:D11.如图,在△ABC 中,D ,E 分别为AB ,AC 的中点,CD 与BE 交于点F ,设AB →=a ,AC →=b ,AF →=m a +n b ,则m +n =( )A .1 B.43 C.23D.56解析:AF →=mAB →+nAC →=mAB →+2nAE →, 由B ,F ,E 三点共线,得m +2n =1,① AF →=mAB →+nAC →=2mAD →+nAC →, 由C ,F ,D 三点共线,得2m +n =1,② ①+②得3(m +n )=2,m +n =23.答案:C12.设G 为△ABC 的重心,O 为坐标原点,OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示OG →,则OG →=________.解析:OG →=OC →+CG →=OC →+13(CA →+CB →)=OC →+13(OA →-OC →+OB →-OC →)=13(a +b +c ).答案:13(a +b +c )13.在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)解析:如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.答案:-23e 1+512e 214.已知△ABC 内一点P 满足AP →=λAB →+μAC →,若△P AB 的面积与△ABC 的面积之比为1∶3,△P AC 的面积与△ABC 的面积之比为1∶4,求实数λ,μ的值.解析:如图,过点P 作PM ∥AC ,PN ∥AB ,则AP →=AM →+AN →,所以AM →=λAB →,AN →=μAC →.作PG ⊥AC 于点G ,BH ⊥AC 于点H . 因为S △P AC S △ABC =14,所以PG BH =14.又因为△PNG ∽△BAH ,所以PG BH =PN AB =14,即AM AB =14,所以λ=14,同理μ=13. 15.如图,已知三点O ,A ,B 不共线,且OC →=2OA →,OD →=3OB →,设OA →=a ,OB →=b .(1)试用a ,b 表示向量OE →;(2)设线段AB ,OE ,CD 的中点分别为L ,M ,N ,试证明:L ,M ,N 三点共线.解析:(1)∵B ,E ,C 三点共线, ∴OE →=xOC →+(1-x )OB →=2x a +(1-x )b .①同理,∵A ,E ,D 三点共线,∴OE →=y a +3(1-y )b .②比较①②,得⎩⎪⎨⎪⎧2x =y ,1-x =3(1-y ),解得x =25,y =45,∴OE →=45a +35b .(2)证明:∵OL →=a +b 2,OM →=12OE →=4a +3b 10,ON →=12(OC →+OD →)=2a +3b 2,∴MN →=ON →-OM→=6a +12b 10,ML →=OL →-OM →=a +2b10, ∴MN →=6ML →,又MN →与ML →有公共点M , ∴L ,M ,N 三点共线.。
高中数学人教A版必修4习题:第二章平面向量2.4.1含解析
2.4 平面向量的数量积2.4.1 平面向量数量积的物理背景及其含义课时过关·能力提升基础巩固1在△ABC 中,AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ <0,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.等边三角形解析:∵AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |cos A<0, ∴cos A<0.∴A 是钝角.∴△ABC 是钝角三角形. 答案:C2已知非零向量a ,b ,若a +2b 与a -2b 互相垂直,则|a ||b |等于( ) A .14B.4C.12D.2解析:因为a +2b 与a -2b 垂直,所以(a +2b )·(a -2b )=0,所以|a |2-4|b |2=0,即|a |2=4|b |2,所以|a |=2|b |. 答案:D3已知两个不共线的单位向量e 1,e 2的夹角为θ,则下列结论不一定正确的是( ) A .e 1在e 2方向上的投影为cos θ B .e 1·e 2=1C .e 12=e 22D .(e 1+e 2)⊥(e 1-e 2) 答案:B4若非零向量a ,b 满足|a +b |=|a -b |,则a 与b 所成角的大小为( ) A .30°B .45°C .90°D .120°解析:由|a +b |=|a -b |,得(a +b )2=(a -b )2,即a ·b =0,∴a ⊥b . 答案:C5已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2√3,则a 与b 的夹角为( )A .π6B.π4C .π3D.π2解析:设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=2√31×4=√32.又0≤θ≤π,∴θ=π6. 答案:A6在△ABC 中,M 是BC 的中点,AM=3,点P 在AM 上,且满足AP ⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ ,则PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )的值为( ) A.-4 B.-2C.2D.4解析:如图.∵AP⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ , ∴|AP ⃗⃗⃗⃗⃗ |=2|PM ⃗⃗⃗⃗⃗⃗ |. 又AM=3,∴|AP⃗⃗⃗⃗⃗ |=2,|PM ⃗⃗⃗⃗⃗⃗ |=1. 又PB⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ , ∴PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=PA ⃗⃗⃗⃗⃗ ·(2PM ⃗⃗⃗⃗⃗⃗ )=PA ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =−|AP ⃗⃗⃗⃗⃗ |2=−4. 答案:A7已知向量a ,b 的夹角为60°,|a |=2,|b |=3,则|2a -b |= . 解析:a ·b =|a ||b |cos60°=3,则|2a -b |2=4a 2-4a ·b +b 2=13,所以|2a -b |=√13. 答案:√138已知|b |=5,a ·b =12,则向量a 在b 方向上的投影为 .解析:向量a 在b 方向上的投影为|a |·a ·b |a ||b |=a ·b |b |=125. 答案:1259已知|a |=10,|b |=12,a 与b 的夹角为120°,求: (1)a ·b ; (2)(3a )·(15b); (3)(3b -2a )·(4a +b ). 解(1)a ·b =|a ||b |cos θ=10×12×cos120°=-60.(2)(3a )·(15b)=35(a ·b )=35×(−60)=−36. (3)(3b -2a )·(4a +b ) =12b ·a +3b 2-8a 2-2a ·b =10a ·b +3|b |2-8|a |2=10×(-60)+3×122-8×102=-968.10已知|a |=5,|b |=4,a 与b 的夹角为60°,试问:当k 为何值时,向量k a -b 与a +2b 垂直? 分析可利用两个非零向量垂直的等价条件即数量积为零进行求解. 解∵(k a -b )⊥(a +2b ),∴(k a -b )·(a +2b )=0, 即k a 2+(2k-1)a ·b -2b 2=0,即k ×52+(2k-1)×5×4×cos60°-2×42=0,∴k =1415. ∴当k =1415时,向量k a -b 与a +2b 垂直.能力提升1设a ,b ,c 是三个向量,有下列命题: ①若a ·b=a ·c ,且a ≠0,则b=c ; ②若a ·b=0,则a=0或b=0; ③a ·0=0;④(3a+2b )·(3a-2b )=9|a|2-4|b|2. 其中正确的有( ) A.1个B.2个C.3个D.4个解析:①中,a ·b -a ·c =a ·(b -c )=0,又a ≠0,则b =c 或a ⊥(b -c ),即①不正确;②中,a ·b=0⇔a ⊥b 或a=0或b=0,即②不正确;③中,a ·0=0,即③不正确;④中,左边=9a 2-6a ·b +6b ·a -4b 2=9|a |2-4|b |2=右边,即④正确. 答案:A2定义:|a ×b |=|a ||b |sin θ,其中θ为向量a 与b 的夹角,若|a |=2,|b |=5,a ·b =-6,则|a ×b |等于( ) A .8 B .-8C .8或-8D .6解析:cos θ=a ·b |a ||b |=-62×5=−35. ∵θ∈[0,π],∴sin θ=45. ∴|a ×b |=2×5×45=8. 答案:A3如图,过点M (1,0)的直线与函数y=sin πx (0≤x ≤2)的图象交于A ,B 两点,则OM ⃗⃗⃗⃗⃗⃗ ·(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )等于( ) A .1B .2C .3D .4解析:∵OM ⃗⃗⃗⃗⃗⃗ =(1,0),OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =2OM ⃗⃗⃗⃗⃗⃗ ,∴OM ⃗⃗⃗⃗⃗⃗ ·(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )=2. 答案:B4已知非零向量a ,b 满足a ⊥b ,则函数f (x )=(x a +b )2(x ∈R )( ) A.既是奇函数又是偶函数 B.是非奇非偶函数C.是奇函数D.是偶函数解析:∵a ⊥b ,∴a ·b =0,∴f (x )=x 2|a |2+2x a ·b +|b |2=|a |2x 2+|b |2,定义域是R ,f (-x )=|a |2(-x )2+|b |2=|a |2x 2+|b |2=f (x ),∴f (x )是偶函数. 答案:D5已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3,以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为 . 解析:a ·b =1×2×cos π3=1.平行四边形的两条对角线的长分别是|a +b |和|a -b |,|a +b |=√(a +b )2=√a 2+2a ·b +b 2=√7,|a -b |=√(a -b )2=√a 2-2a ·b +b 2=√3,则此平行四边形的两条对角线中较短的一条的长度为√3. 答案:√3 ★6如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为点P ,且AP=3,则AP ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ = .解析:设AC 与BD 交于点O ,则AC⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ . 则AP ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ ·2AO ⃗⃗⃗⃗⃗ =2AP ⃗⃗⃗⃗⃗ ·(AP ⃗⃗⃗⃗⃗ +PO ⃗⃗⃗⃗⃗ )=2(AP ⃗⃗⃗⃗⃗ 2−AP ⃗⃗⃗⃗⃗ ·PO ⃗⃗⃗⃗⃗ ).∵AP ⊥BD ,∴AP ⊥PO ,AP ⃗⃗⃗⃗⃗ ·PO ⃗⃗⃗⃗⃗ =0, 又AP=3,∴|AP⃗⃗⃗⃗⃗ |=3, ∴AP⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =2AP ⃗⃗⃗⃗⃗ 2=2×32=18. 答案:187如图,已知两个长度为1的平面向量OA ⃗⃗⃗⃗⃗ 和OB ⃗⃗⃗⃗⃗ ,它们的夹角为2π3,点C 是以O 为圆心的劣弧AB 的中点.求:(1)|OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |的值; (2)AB⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ 的值. 解(1)因为OA ⃗⃗⃗⃗⃗ 和OB ⃗⃗⃗⃗⃗ 的长度为1,夹角为2π3,所以OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =|OA ⃗⃗⃗⃗⃗ ||OB ⃗⃗⃗⃗⃗ |cos 2π3=−12, 所以|OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |=√(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )2=√OA ⃗⃗⃗⃗⃗ 2+2OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ 2=1.(2)因为点C 是以O 为圆心的劣弧AB 的中点, 所以∠AOC=∠BOC =π3, 所以OA⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =12, 所以AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )·(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ +OA ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ =12−(-12)−12+1=32.★8设平面内两向量a 与b 互相垂直,且|a |=2,|b |=1,又k 与t 是两个不同时为零的实数.(1)若x =a +(t-3)b 与y =-k a +t b 垂直,求k 关于t 的函数关系式k=f (t ); (2)求函数k=f (t )的最小值.分析由x ⊥y ,得x ·y =0,即得到函数关系式k=f (t ),从而利用函数的性质求最小值. 解(1)因为a ⊥b ,所以a ·b =0. 又x ⊥y , 所以x ·y =0,即[a +(t-3)b ]·(-k a +t b )=0,-k a 2-k (t-3)a ·b +t a ·b +t (t-3)b 2=0. 因为|a |=2,|b |=1, 所以-4k+t 2-3t=0, 即k =14(t2−3t).(2)由(1)知,k =14(t2−3t)=14(t -32)2−916, 即函数k=f (t )的最小值为−916.。
高中数学人教A版必修4示范教案:第二章第三节平面向量的基本定理及坐标表示(第二课时) Word版含解析
第二章第三节平面向量的基本定理及坐标表示第二课时整体设计教学分析1.前面学习了平面向量的坐标表示,实际是平面向量的代数表示.在引入了平面向量的坐标表示后可使向量完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.2.本小节主要是运用向量线性运算的交换律、结合律、分配律,推导两个向量的和的坐标、差的坐标以及数乘的坐标运算.推导的关键是灵活运用向量线性运算的交换律、结合律和分配律.3.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,一个自然的想法是向量的某些关系,特别是向量的平行、垂直,是否也能通过坐标来研究呢?前面已经找出两个向量共线的条件(如果存在实数λ,使得a =λb ,那么a 与b 共线),本节则进一步地把向量共线的条件转化为坐标表示.这种转化是比较容易的,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示.要注意的是,向量的共线与向量的平行是一致的. 三维目标1.通过经历探究活动,使学生掌握平面向量的和、差、实数与向量的积的坐标表示方法.理解并掌握平面向量的坐标运算以及向量共线的坐标表示.2.引入平面向量的坐标可使向量运算完全代数化,平面向量的坐标成了数与形结合的载体.3.在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识. 重点难点教学重点:平面向量的坐标运算.教学难点:对平面向量共线的坐标表示的理解. 课时安排1课时教学过程导入新课思路1.向量具有代数特征,与平面直角坐标系紧密相联.那么我们在学习直线和圆的方程以及点、直线、平面之间的位置关系时,直线与直线的平行是一种重要的关系.关于x 、y 的二元一次方程Ax +By +C =0(A 、B 不同时为零)何时所体现的两条直线平行?向量的共线用代数运算如何体现?思路2.对于平面内的任意向量a ,过定点O 作向量OA →=a ,则点A 的位置被向量a 的大小和方向所唯一确定.如果以定点O 为原点建立平面直角坐标系,那么点A 的位置可通过其坐标来反映,从而向量a 也可以用坐标来表示,这样我们就可以通过坐标来研究向量问题了.事实上,向量的坐标表示,实际是向量的代数表示.引入向量的坐标表示可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢? 推进新课新知探究 提出问题①我们研究了平面向量的坐标表示,现在已知a =(x 1,y 1),b =(x 2,y 2),你能得出a +b ,a -b ,λa 的坐标表示吗?②如图1,已知A (x 1,y 1),B (x 2,y 2),怎样表示AB 的坐标?你能在图中标出坐标为(x 2-x 1,y 2-y 1)的P 点吗?标出点P 后,你能总结出什么结论?活动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:图1a +b =(x 1i +y 1j )+(x 2i +y 2j )=(x 1+x 2)i +(y 1+y 2)j , 即a +b =(x 1+x 2,y 1+y 2). 同理a -b =(x 1-x 2,y 1-y 2).又λa =λ(x 1i +y 1j )=λx 1i +λy 1j .∴λa =(λx 1,λy 1).教师和学生一起总结,把上述结论用文字叙述分别为:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.教师再引导学生找出点与向量的关系:将向量AB →平移,使得点A 与坐标原点O 重合,则平移后的B 点位置就是P 点.向量AB →的坐标与以原点为始点,点P 为终点的向量坐标是相同的,这样就建立了向量的坐标与点的坐标之间的联系.学生通过平移也可以发现:向量AB →的模与向量OP →的模是相等的. 由此,我们可以得出平面内两点间的距离公式: |AB →|=|OP →|=(x 1-x 2)2+(y 1-y 2)2.教师对总结完全的同学进行表扬,并鼓励学生,只要善于开动脑筋,勇于创新,展开思维的翅膀,就一定能获得意想不到的收获.讨论结果:①能. ②AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1).结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标. 提出问题①如何用坐标表示两个共线向量?②若a =(x 1,y 1),b =(x 2,y 2),那么11x y =22x y是向量a 、b 共线的什么条件?活动:教师引导学生类比直线平行的特点来推导向量共线时的关系.此处教师要对探究困难的学生给以必要的点拨:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.我们知道,a 、b 共线,当且仅当存在实数λ,使a =λb .如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),即⎩⎪⎨⎪⎧x 1=λx 2,y 1=λy 2.消去λ后得x 1y 2-x 2y 1=0. 这就是说,当且仅当x 1y 2-x 2y 1=0时向量a 、b (b ≠0)共线.又我们知道x 1y 2-x 2y 1=0与x 1y 2=x 2y 1是等价的,但这与y 1x 1=y 2x 2是不等价的.因为当x 1=x 2=0时,x 1y 2-x 2y 1=0成立,但y 1x 1与y 2x 2均无意义.因此y 1x 1=y 2x 2是向量a 、b 共线的充分不必要条件.由此也看出向量的应用更具一般性,更简捷、实用,让学生仔细体会这点.讨论结果:①x 1y 2-x 2y 1=0时,向量a 、b (b ≠0)共线. ②充分不必要条件. 提出问题a 与非零向量b 为共线向量的充要条件是有且只有一个实数λ使得a =λb ,那么这个充要条件如何用坐标来表示呢?活动:教师引导推证:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠a ,由a =λb ,(x 1,y 1)=λ(x 2,y 2)⇒⎩⎪⎨⎪⎧x 1=λx 2,y 1=λy 2,消去λ,得x 1y 2-x 2y 1=0.讨论结果:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0. 教师应向学生特别提醒感悟:(1)消去λ时不能两式相除,∵y 1、y 2有可能为0,而b ≠0, ∴x 2、y 2中至少有一个不为0.(2)充要条件不能写成y 1x 1=y 2x 2(∵x 1、x 2有可能为0).(3)从而向量共线的充要条件有两种形式:a ∥b (b ≠0)⇔⎩⎪⎨⎪⎧a =λb ,x 1y 2-x 2y 1=0.应用示例思路1例1已知a =(2,1),b =(-3,4),求a +b ,a -b,3a +4b 的坐标.活动:本例是向量代数运算的简单应用,让学生根据向量的线性运算进行向量的和、差及数乘的坐标运算,再根据向量的线性运算律和向量的坐标概念得出结论.若已知表示向量的有向线段的始点和终点坐标,那么终点的坐标减去始点的坐标就是此向量的坐标,从而使得向量的坐标与点的坐标可以相互转化.可由学生自己完成.解:a +b =(2,1)+(-3,4)=(-1,5); a -b =(2,1)-(-3,4)=(5,-3);3a +4b =3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).变式训练已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2) 答案:D,试求顶点D 的坐标.图2活动:本例的目的仍然是让学生熟悉平面向量的坐标运算.这里给出了两种方法:方法一利用“两个向量相等,则它们的坐标相等”,解题过程中应用了方程思想;方法二利用向量加法的平行四边形法则求得向量OD →的坐标,进而得到点D 的坐标.解题过程中,关键是充分利用图形中各线段的位置关系(主要是平行关系),数形结合地思考,将顶点D 的坐标表示为已知点的坐标.解:方法一:如图2,设顶点D 的坐标为(x ,y ). ∵AB →=(-1-(-2),3-1)=(1,2),DC →=(3-x,4-y ). 由AB →=DC →,得(1,2)=(3-x,4-y ). ∴⎩⎪⎨⎪⎧1=3-x ,2=4-y . ∴⎩⎪⎨⎪⎧x =2,y =2. ∴顶点D 的坐标为(2,2).方法二:如图2,由向量加法的平行四边形法则,可知BD →=BA →+AD →=BA →+BC →=(-2-(-1),1-3)+(3-(-1),4-3)=(3,-1), 而OD →=OB →+BD →=(-1,3)+(3,-1)=(2,2), ∴顶点D 的坐标为(2,2).图31时,仿例2得:D 1=(2,2)B 时,仿例2得:D 2=(4,6)ACB 时,仿例2得:D 3=(-(1,3),C (2,5),试判断A 、B 活动:教师引导学生利用向量的共线来判断.首先要探究三个点组合成两个向量,然后根据两个向量共线的充要条件来判断这两个向量是否共线从而来判断这三点是否共线.教师引导学生进一步理解并熟练地运用向量共线的坐标形式来判断向量之间的关系.让学生通过观察图象领悟先猜后证的思维方式.解:在平面直角坐标系中作出A 、B 、C 三点,观察图形,我们猜想A 、B 、C 三点共线.下面给出证明.∵AB →=(1-(-1),3-(-1))=(2,4),AC →=(2-(-1),5-(-1))=(3,6), 又2×6-3×4=0, ∴AB →∥AC →,且直线AB 、直线AC 有公共点A , ∴A 、B 、C 三点共线.点评:本例的解答给出了判断三点共线的一种常用方法,其实质是从同一点出发的两个向.例1设点P 是线段P 1P 2上的一点,P 1、P 2的坐标分别是(x 1,y 1)、(x 2,y 2). (1)当点P 是线段P 1P 2的中点时,求点P 的坐标;(2)当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标.活动:教师充分让学生思考,并提出这一结论可以推广吗?即当P 1PPP 2=λ时,点P 的坐标是什么?师生共同讨论,一起探究,可按照求中点坐标的解题思路类比推广,有的学生可能提出如下推理方法:设P (x ,y ),由P 1P →=λPP 2→,知(x -x 1,y -y 1)=λ(x 2-x ,y 2-y ),即⎩⎪⎨⎪⎧x -x 1=λ(x 2-x )y -y 1=λ(y 2-y )⇒⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy21+λ.这就是线段的定比分点公式,教师要给予充分肯定,鼓励学生的这种积极探索,这是学习数学的重要品质.时间允许的话,可以探索λ的取值符号对P 点位置的影响,也可鼓励学生课后探索.解:(1)如图4,由向量的线性运算可知图4OP →=12(OP 1→+OP 2→)=(x 1+x 22,y 1+y 22),所以点P 的坐标是(x 1+x 22,y 1+y 22).(2)如图5,当点P 是线段P 1P 2的一个三等分点时,有两种情况,即P 1P PP 2=12或P 1PPP 2=2.如果P 1P PP 2=12(图5(1)),那么图5OP →=OP 1→+P 1P →=OP 1→+13P 1P 2→=OP 1→+13(OP 2→-OP 1→)=23OP 1→+13OP 2→ =(2x 1+x 23,2y 1+y 23),即点P 的坐标是(2x 1+x 23,2y 1+y 23).同理,如果P 1PPP 2=2(图5(2)),那么点P 的坐标是(x 1+2x 23,y 1+2y 23).点评:本例实际上给出了线段的中点坐标公式和线段的三等分点坐标公式.例2已知点A (1,2),B (4,5),O 为坐标原点,OP =OA +tAB .若点P 在第二象限,求实数t 的取值范围.活动:教师引导学生利用向量的坐标运算以及向量的相等,把已知条件转化为含参数的方程(组)或不等式(组)再进行求解.教师以提问的方式来了解学生组织步骤的能力,或者让学生到黑板上去板书解题过程,并对思路清晰过程正确的同学进行表扬,同时也要对组织步骤不完全的同学给予提示和鼓励.教师要让学生明白“化归”思想的利用.不等式求变量取值范围的基本观点是:将已知条件转化为关于变量的不等式(组),那么变量的取值范围就是这个不等式(组)的解集.解:由已知AB →=(4,5)-(1,2)=(3,3). ∴OP →=(1,2)+t (3,3)=(3t +1,3t +2).若点P 在第二象限,则⎩⎪⎨⎪⎧3t +1<03t +2>0⇒-23<t <-13.故t 的取值范围是(-23,-13).点评:此题通过向量的坐标运算,将点P 的坐标用t 表示,由点P 在第二象限可得到一个关于t 的不等式组,这个不等式组的解集就是t 的取值范围.知能训练课本本节练习. 解答:1.(1)a +b =(3,6),a -b =(-7,2);(2)a +b =(1,11),a -b =(7,-5); (3)a +b =(0,0),a -b =(4,6);(4)a +b =(3,4),a -b =(3,-4). 2.-2a +4b =(-6,-8),4a +3b =(12,5).3.(1)AB →=(3,4),BA →=(-3,-4);(2)AB →=(9,-1),BA →=(-9,1); (3)AB →=(0,2),BA →=(0,-2);(4)AB →=(5,0),BA →=(-5,0). 4.AB ∥CD .证明:AB →=(1,-1),CD →=(1,-1),所以AB →=CD →.所以AB ∥CD .点评:本题有两个要求:一是判断,二是证明.通过作图发现规律,提出猜想,然后再证明结论是一个让学生经历数学化的过程.5.(1)(3,2);(2)(1,4);(3)(4,-5).6.(103,1)或(143,-1).7.解:设P (x ,y ),由点P 在线段AB 的延长线上,且|AP →|=32|PB →|,得(x -2,y -3)=32(x -4,y +3),即⎩⎪⎨⎪⎧ 2x -4=3x -12,2y -6=3y +9.解之,得⎩⎪⎨⎪⎧x =8,y =-15.所以点P 的坐标为(8,-15).点评:本题希望通过向量方法求解,培养学生应用向量的意识. 课堂小结1.先由学生回顾本节都学习了哪些数学知识:平面向量的和、差、数乘的坐标运算,两个向量共线的坐标表示.2.教师与学生一起总结本节学习的数学方法,定义法、归纳、整理、概括的思想,强调在今后的学习中,要善于培养自己不断探索、善于发现、勇于创新的科学态度和求实开拓的精神,为将来的发展打下良好基础.作业课本习题2.3 A 组5、6.设计感想1.本节课中向量的坐标表示及运算实际上是向量的代数运算.这对学生来说学习并不困难,可大胆让学生自己探究.本教案设计流程符合新课改精神.教师在引导学生探究时,始终抓住向量具有几何与代数的双重属性这一特征和向量具有数与形紧密结合的特点.让学生在了解向量知识网络结构基础上,进一步熟悉向量的坐标表示以及运算法则、运算律,能熟练向量代数化的重要作用和实际生活中的应用,并加强数学应用意识,提高分析问题、解决问题的能力.2.平面向量的坐标运算包括向量的代数运算与几何运算.相比较而言,学生对向量的代数运算要容易接受一些,但对向量的几何运算往往感到比较困难,无从下手.向量的几何运算主要包括向量加减法的几何运算,向量平行与垂直的充要条件及定比分点的向量式等.3.通过平面向量坐标的加、减代数运算,结合图形,不但可以建立向量的坐标与点的坐标之间的联系,而且教师可在这两题的基础上稍作推广,就可通过求向量的模而得到直角坐标系内的两点间的距离公式甚至可以推出中点坐标公式.它们在处理平面几何的有关问题时,往往有其独到之处,教师可让学有余力的学生课下继续探讨,以提高学生的思维发散能力.备课资料一、求点P 分有向线段所成的比的几种求法(1)定义法:根据已知条件直接找到使P 1P →=λPP 2→的实数λ的值.例1已知点A (-2,-3),点B (4,1),延长AB 到P ,使|AP →|=3|PB →|,求点P 的坐标.解:因为点在AB 的延长线上,P 为AB →的外分点,所以AP →=λPB →,λ<0,又根据|AP →|=3|PB →|,可知λ=-3,由分点坐标公式易得P 点的坐标为(7,3).(2)公式法:依据定比分点坐标公式. x =x 1+λx 21+λ,y =y 1+λy 21+λ,结合已知条件求解λ.例2已知两点P 1(3,2),P 2(-8,3),求点P (12,y )分P 1P 2→所成的比λ及y 的值.解:由线段的定比分点坐标公式,得⎩⎪⎨⎪⎧12=3+λ(-8)1+λ,y =2+λ×31+λ,解得⎩⎨⎧λ=517,y =4922.二、备用习题1.已知a =(3,-1),b =(-1,2),则-3a -2b 等于( ) A .(7,1) B .(-7,-1) C .(-7,1) D .(7,-1) 答案:B2.已知A (1,1),B (-1,0),C (0,1),D (x ,y ),若AB →和CD →是相反向量,则D 点的坐标是( ) A .(-2,0) B .(2,2)C .(2,0)D .(-2,-2) 答案:B3.若点A (-1,-1),B (1,3),C (x,5)共线,则使AB →=λBC →的实数λ的值为( ) A .1 B .-2 C .0 D .2 答案:D4.若A (2,3),B (x,4),C (3,y ),且AB →=2AC →,则x =________,y =________.答案:4 725.已知ABCD 中,AD →=(3,7),AB →=(-2,1),则CO →的坐标(O 为对角线的交点)为________.答案:(-12,-4)6.向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),当k 为何值时,A 、B 、C 三点共线?答案:解:∵OA →=(k,12),OB →=(4,5),OC →=(10,k ), ∴AB →=OB →-OA →=(4-k ,-7),BC →=OC →-OB →=(6,k -5). ∵AB →∥BC →,∴(4-k )(k -5)+7×6=0. ∴k 2-9k -22=0. 解得k =11或k =-2.7.已知点A (2,3),B (5,4),C (7,10),若AP →=AB →+λAC →(λ∈R ),试问:当λ为何值时,点P 在第一与第三象限的角平分线上?当λ在什么范围内取值时,点P 在第三象限内?答案:解:∵AB →=(3,1),AC →=(5,7), ∴AB →+λAC →=(3+5λ,1+7λ),而AP →=AB →+λAC →(已知), ∴OP →=OA →+AP →=(2,3)+(3+5λ,1+7λ)=(5+5λ,4+7λ).(1)若点P 在第一与第三象限的角平分线上,则5+5λ=4+7λ⇒λ=12;(2)若点P 在第三象限内,则⎩⎪⎨⎪⎧5+5λ<04+7λ<0⇒λ∈(-∞,-1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段质量检测(二)(A 卷 学业水平达标) (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.在五边形ABCDE 中(如图),AB +BC -DC =( )A .ACB .ADC .BD D .BE答案:B2.(全国大纲卷)已知向量m =(λ+1,1), n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ) A .-4 B .-3 C .-2 D .-1 答案:B3.若|a |=2,|b |=2,且(a -b )⊥a ,则a 与b 的夹角是( ) A.π6 B.π4 C.π3 D.π2 答案:B4.在△ABC 中,D 为BC 边的中点,已知AB =a ,AC =b ,则下列向量中与AD 同向的是( )A.a +b |a +b |B.a |a |+b |b |C.a -b |a -b |D.a |a |-a |b |答案:A5.已知边长为1的正三角形ABC 中,BC ·CA +CA ·AB +AB ·BC 的值为( )A.12 B .-12C.32 D .-32答案:D6.已知平面内不共线的四点O ,A ,B ,C 满足OB =13OA +23OC ,则|AB |∶|BC |=( )A .1∶3B .3∶1C .1∶2D .2∶1答案:D7.P 是△ABC 所在平面上一点,若PA ·PB =PB ·PC =PC ·PA ,则P 是△ABC 的( )A .内心B .外心C .垂心D .重心 答案:C8.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2 C. 2 D.22答案:C9.在直角梯形ABCD 中,AB ∥CD ,AD ⊥AB ,∠B =45°,AB =2CD =2,M 为腰BC 的中点,则MA ·MD =( )A .1B .2C .3D .4 答案:B10.如图,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA +PB )·PC 的最小值是( )A.92 B .9 C .-92 D .-9 答案:C二、填空题(本大题共4小题,每小题5分,共20分)11.在直角坐标系xOy 中,AB =(2,1),AC =(3,k ),若三角形ABC 是直角三角形,则k 的值为________.答案:-6或-112.在边长为2的菱形ABCD 中,∠BAD =60°,E 为CD 的中点,则AE ·BD =________. 答案:113.如图,OM ∥AB ,点P 在由射线OM ,线段OB 及AB 的延长线围成的区域(不含边界)内运动,且OP =x OA +y OB ,则x 的取值范围是______.当x =-12时,y 的取值范围是________.答案:(-∞,0) ⎝ ⎛⎭⎪⎫12,3214.在平面直角坐标系中,若O 为坐标原点,则A ,B ,C 三点在同一直线上的等价条件为存在唯一实数λ,使得OC =λOA +(1-λ)OB 成立,此时称实数λ为“向量OC 关于OA 和OB 的终点共线分解系数”.若已知P 1(3,1),P 2(-1,3),且向量3OP 与向量a =(1,1)垂直,则“向量3OP 关于1OP 和2OP 的终点共线分解系数”为________.答案:-1三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R. (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |. 解:(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x ) =1×(2x +3)+x (-x )=0.整理得x 2-2x -3=0,解得x =-1或x =3. (2)若a ∥b ,则有1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2.当x =0时,a =(1,0),b =(3,0), ∴a -b =(-2,0),|a -b |=2;当x =-2时,a =(1,-2),b =(-1,2), ∴a -b =(2,-4), ∴|a -b |=4+16=2 5. 综上所述,|a -b |为2或2 5.16.(本小题满分12分)如图,平行四边形ABCD 中,AB =a ,AD =b ,H ,M 分别是AD ,DC 的中点,BF =13BC .(1)以a ,b 为基底表示向量AM 与HF ;(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求AM ·HF . 解:(1)∵M 为DC 的中点, ∴DM =12DC ,又DC =AB ,∴AM =AD +DM =AD +12AB =12a +b ,∵H 为AD 的中点,BF =13BC ,BC =AD ,∴AH =12AD ,BF =13AD ,∴HF =HA +AB +BF =-12AD +AB +13AD=AB -16AD =a -16b .(2)由已知得a ·b =3×4×cos 120°=-6,AM ·HF =⎝ ⎛⎭⎪⎫12a +b ·⎝ ⎛⎭⎪⎫a -16b=12a 2+⎝ ⎛⎭⎪⎫1-112a ·b -16b 2 =12×32+1112×(-6)-16×42 =-113.17.(本小题满分12分)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB -t OC )·OC =0,求t 的值. 解:(1)由题设知AB =(3,5),AC =(-1,1), 则AB +AC =(2,6),AB -AC =(4,4). 所以|AB +AC |=210,|AB -AC |=4 2. 故所求的两条对角线长分别为42,210. (2)由题设知OC =(-2,-1),AB -t OC =(3+2t,5+t ).由(AB -t OC )·OC =0, 得(3+2t,5+t )·(-2,-1)=0, 即(3+2t )×(-2)+(5+t )×(-1)=0, 从而5t =-11,所以t =-115.18.(本小题满分14分)已知e 1,e 2是平面内两个不共线的非零向量,AB =2e 1+e 2,BE =-e 1+λe 2,EC =-2e 1+e 2,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若e 1=(2,1),e 2=(2,-2),求BC 的坐标;(3)已知D (3,5),在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.解:(1)AE =AB +BE =(2e 1+e 2)+(-e 1+λe 2)=e 1+(1+λ)e 2. ∵A ,E ,C 三点共线,∴存在实数k ,使得AE =k EC ,即e 1+(1+λ)e 2=k (-2e 1+e 2),得(1+2k )e 1=(k -1-λ)e 2. ∵e 1,e 2是平面内两个不共线的非零向量, ∴⎩⎨⎧1+2k =0,λ=k -1,解得k =-12,λ=-32.(2)BC =BE +EC =-3e 1-12e 2=(-6,-3)+(-1,1)=(-7,-2).(3)∵A ,B ,C ,D 四点按逆时针顺序构成平行四边形, ∴AD =BC .设A (x ,y ),则AD =(3-x,5-y ), ∵BC =(-7,-2),∴⎩⎨⎧ 3-x =-7,5-y =-2,解得⎩⎨⎧x =10,y =7,即点A 的坐标为(10,7).(B 卷 能力素养提升)(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.化简AC -BD +CD -AB 得( ) A .AB B .DA C .BC D .0解析:选DAC -BD +CD -AB=AC +CD -(AB +BD )=AD -AD =0.2.已知向量a 与b 的夹角为π3,|a |=2,则a 在b 方向上的投影为( )A. 3B. 2C.22 D.32解析:选C a 在b 方向上的投影为|a |·cos 〈a ,b 〉=2cos π3=22.选C.3.向量BA =(4,-3),BC =(2,-4),则△ABC 的形状为( )A .等腰非直角三角形B .等边三角形C .直角非等腰三角形D .等腰直角三角形 解析:选CAC =BC -BA =(2,-4)-(4,-3)=(-2,-1),而AC ·BC =(-2,-1)·(2,-4)=0,所以AC ⊥BC ,又|AC |≠|BC |,所以△ABC 是直角非等腰三角形.故选C.4.若OF 1=(2,2),OF 2=(-2,3)分别表示F 1,F 2,则|F 1+F 2|为( ) A .(0,5) B .25 C .2 2D .5解析:选D ∵F 1+F 2=(0,5),∴|F 1+F 2|=02+52=5. 5.若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( ) A .4 B .3 C .2D .0解析:选D 由a ∥b 及a ⊥c ,得b ⊥c ,则c ·(a +2b )=c ·a +2c ·b =0.6.(广东高考)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ) A.14 B.12 C .1D .2解析:选C 可得a +λb =(1+λ,2),由(a +λb )∥c 得(1+λ)×4-3×2=0,∴λ=12.7.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( ) A. 3 B .2 3 C .4D .12解析:选B 因为|a |=2,|b |=1, ∴a ·b =2×1×cos 60°=1.∴|a +2b |=a 2+4×a ·b +4b 2=2 3.8.如图,非零向量OA =a ,|a |=2,OB =b ,a ·b =1,且BC ⊥OA ,C 为垂足,若OC =λa ,则λ为( )A.12B.13C.14D .2解析:选C 设a 与b 的夹角为θ.∵|OC |就是OB 在OA 上的投影|b |cos θ,∴|OC |=|b | cos θ=a ·b |a |=λ|a |,即λ=a ·b |a |2=14,故选C.9.若e 1,e 2是平面内夹角为60°的两个单位向量,则向量a =2e 1+e 2与b =-3e 1+2e 2的夹角为( )A .30°B .60°C .90°D .120°解析:选D e 1·e 2=|e 1||e 2|cos 60°=12,a ·b =(2e 1+e 2)·(-3e 1+2e 2)=-72,|a |=2e 1+e 22=4+4e 1·e 2+1=7,|b |=-3e 1+2e 22=9-12e 1·e 2+4=7,所以a ,b 的夹角的余弦值为cos 〈a ,b 〉=a ·b |a ||b |=-727×7=-12,所以〈a ,b 〉=120°.故选D. 10.在△ABC 中,已知向量AB 与AC 满足AB|AB |+AC|AC |·BC =0且AB|AB |·AC|AC |=12,则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:选D 非零向量AB 与AC 满足⎝ ⎛⎭⎪⎫AB |AB |+AC | AC |·BC =0,即∠A 的平分线垂直于BC ,∴AB =AC .又cos A =AB|AB |·AC |AC |=12,∴∠A =π3,所以△ABC为等边三角形,选D.二、填空题(本大题共4小题,每小题5分,共20分)11.若向量AB=(3,-1),n=(2,1),且n·AC=7,那么n·BC=________.解析:n·BC=n·(AC-AB)=n·AC-n·AB=7-5=2.答案:212.已知a,b的夹角为θ,|a|=2,|b|=1,则a·b的取值范围为________.解析:∵a·b=|a||b|cos θ=2cos θ,又∵θ∈[0,π],∴cos θ∈[-1,1],即a·b∈[-2,2].答案:[-2,2]13.如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则AP·AC=________.解析:设AC∩BD=O,则AC=2(AB+BO),AP·AC=AP·2(AB+BO)=2AP·AB+2AP·BO=2AP·AB=2AP·(AP+PB)=2|AP|2=18.答案:1814.关于平面向量a,b,c,有下列三个命题:①若a·b=a·c,则b=c;②若a=(1,k),b=(-2,6),a∥b,则k=-3;③非零向量a和b满足|a|=|b|=|a-b|,则a与a+b的夹角为60°,其中真命题的序号为________.(写出所有真命题的序号)解析:①a·b=a·c⇔a·(b-c)=0,表明a与b-c向量垂直,不一定有b=c,所以①不正确;对于②,当a∥b时,1×6+2k=0,则k=-3,所以②正确;结合平行四边形法则知,若|a|=|b|=|a-b|,则|a|,|b|,|a-b|可构成一正三角形,那么a+b与a的夹角为30°,而非60°,所以③错误.答案:②三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)已知OA=a,OB=b,对于任意点M关于A点的对称点为S,S 点关于B点的对称点为N.(1)用a,b表示向量MN;(2)设|a |=1,|b |=2,|MN |∈[23,27],求a 与b 的夹角θ的取值范围. 解:(1)依题意,知A 为MS 的中点,B 为NS 的中点. ∴SN =2SB ,SM =2SA .∴MN =SN -SM =2(SB -SA )=2AB =2(OB -OA )=2(b -a ). (2)∵|MN |∈[23,27],∴MN 2∈[12,28],∴12≤4(b -a )2≤28. ∴3≤4+1-2a ·b ≤7,∴-1≤a ·b ≤1.∵cos θ=a ·b |a ||b |=a ·b 2,∴-12≤cos θ≤12.∵0≤θ≤π,∴π3≤θ≤2π3,即θ的取值范围为⎣⎢⎡⎦⎥⎤π3,2π3.16.(本小题满分12分)已知在梯形ABCD 中,AB ∥CD ,∠CDA =∠DAB =90°,CD =DA =12AB .求证:AC ⊥BC .证明:以A 为原点,AB 所在直线为x 轴,建立直角坐标系,如图,设AD =1,则A (0,0),B (2,0),C (1,1),D (0,1). ∴BC =(-1,1),AC =(1,1),BC ·AC =-1×1+1×1=0,∴BC ⊥AC ,∴BC ⊥AC .17.(本小题满分12分)设函数f (x )=a ·b ,其中向量a =(m ,cos 2x ),b =(1+sin 2x ,1),x∈R ,且y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,2.求实数m 的值.解:f (x )=a ·b =m (1+sin 2x )+cos 2x , 由已知得f ⎝ ⎛⎭⎪⎫π4=m ⎝ ⎛⎭⎪⎫1+sin π2+cos π2=2,解得m =1.。