光合作用
光合作用详细
光合作用详细光合作用是植物和一些微生物利用光能将二氧化碳和水转化为有机物质的过程。
这个过程是绿色植物生长和生存的基础,也是地球上所有生命的能量来源之一。
光合作用分为光反应和暗反应两个阶段。
光反应光反应发生在叶绿体的类囊体中,主要包括光能的吸收和利用、光解水释放氧气和产生ATP和NADPH等过程。
首先,叶绿素分子吸收光子能量,激发电子从低能级跃迁到高能级,形成激发态叶绿素。
接着,光系统II(PSII)和光系统I (PSI)中的电子传递链开始运作,光子能量用于克服反应物中的能垒,从而促使电子通过细胞膜中的复合物流动。
这一过程伴随着质子泵出类囊体内部,形成质子梯度,这一过程称为光合电子传递链。
在光反应的最后阶段,PSII中的水裂解酶催化水的分解,释放氧气并产生氢离子和电子。
氧气释放到环境中,而氢离子和电子参与形成ATP和NADPH的最后过程。
ATP和NADPH是植物进行暗反应所需的能量和还原等效物。
暗反应暗反应是光合作用的第二阶段,也称为卡尔文循环或光合糖酵解。
这个过程并不需要光照,但需要光反应阶段产生的ATP和NADPH作为能量和还原当量提供。
暗反应以碳酸盐固定和光合糖酵解为主要反应路径,最终将二氧化碳还原成有机物质。
在暗反应的起始阶段,RuBP羰化酶催化五碳糖RuBP和二氧化碳结合生成不稳定的六碳分子。
接着,这一分子会分解成两个三碳分子3-PGA,并通过磷酸化、还原等一系列反应生成磷酸糖和糖酵解途径所需的其他有机化合物。
最终,这些有机化合物将被合成为葡萄糖等碳水化合物,用于植物生长和能量储存。
光合作用作为生物体内一项极为精细、复杂的生化反应过程,需要多个酶、辅因子、膜蛋白等多种因素协同作用。
在这一过程中,植物充分利用太阳能将无机物质转化为有机物质,使得整个生态系统运作良好,并为地球上的生命提供持续的能量来源。
光合作用
电子传递链的阻断剂: 敌草隆 (DCMU,一种除草剂)阻断PSII的电子传递; 百草枯(Paraquat,一种除草剂)阻断PSI的电子传递。
光合膜上的电子传递与H 3. 光合膜上的电子传递与H+跨膜转运
光合链实际是由PSII、 Cytb6/f复合体和PSI中 的传递体组成,这些传递体绝大部分只有传 递电子的功能,但质体醌(plastoquinone,简 称PQ)既可传递电子,又可传递质子。正是 PQ在电子传递过程中把H+从叶绿体基质转运 到囊腔中,加上PSII光解水在囊腔中产生H+, 产生跨类囊体膜的质子动力(proton motive force, pmf), 又称质子电化学势差,即质子浓 度差(∆pH)和电位差(∆ϕ)。 ∆pH为光合磷酸化 的动力。
EMERSON ENHANCEMENT EFFECT
结论:光反应由两个光系统接力 进行: 一个是是长波长反应(光系统I, photosystem I, PS I); 另一个短波长反应(光系统II, photosystem II, PS II )。
ATP合成酶和PSI 主要分布在非垛 叠区
Cytb6f和PSII 主要分布在垛 叠区
图:四大蛋白复合体在类囊体膜上的分布
1.
PSI、PSII及电子传递链
1. 类囊体膜上的4个蛋白复合体
1) 光系统II(PSII)
A. 三部分组成: D1&D2:
a) 中心色素分子:P680 b) 原初电子受体:pheo c) 原初电子供体:Z(Tyr) d) QA,QB等传递体 LHCII: CP43 & CP47, B559 OEC or MSP: a) 33 kDa, 23 kDa & 16 kDa b) Mn, Cl & Ca
第五节 光合作用a
由于叶绿素的含量 大大超过类胡罗卜 素,而使类胡罗卜 素的颜色被掩盖, 只显示出叶绿素的 绿色
由于叶绿素比类胡 罗卜素更易受到低 温的破坏,秋季低 温使叶绿素大量破 坏,而使类胡罗卜 素的颜色显示出来
四、光合色素的提取和分离
1、实验原理 提取:色素能溶解在无水乙醇(丙酮)中 (注:叶绿体色素不溶于水中) 分离:色素在层析液中溶解度不同,使四种
叶 绿 体 色 素 吸 收 光 谱
400
叶 绿 素 a
叶 绿 素 b
类 胡 萝 卜 素
500
600
波长/nm 700
练一练
1、叶绿体是植物进行光合作用的细胞器,下面有关 叶绿体的叙述正确的是(
A
)
A.叶绿体中的色素都分布在类囊体薄膜上 B.叶绿体中的色素分布在外膜和内膜上
C.光合作用的酶只分布在叶绿体基质中
碳反应的产物又是如何被植物体利用的呢?
CO2
叶绿体
氨基酸 脂质 蛋白质
淀粉
三碳糖
三碳糖 其他代谢 细胞呼吸
蔗糖
五、光合作用的过程:(小结)
H2O
水的光解
O2 2C3 NADPH CO2
叶绿体 中的色素
ATP
多种酶 参加催化
C5 C5的再生 三碳糖
碳反应 Q:请根据图中的内容,说说光合作用的过程。
CO2 吸 收 量
C1
a
光补偿点:光合 作用吸收的CO2 和呼吸放出CO2 相等时的光强度。
b 光饱和点:光合 作用达到最强时 所需的最低的光 强度。
C2:光饱和点
叶绿素a (蓝绿色) 叶绿素
色素
3/4
叶绿素b (黄绿色)
胡萝卜素(橙黄色) 类胡萝卜素 1/4 叶黄素(黄色)
什么是光合作用
什么是光合作用
光合作用是指植物和一些微生物利用太阳光能将二氧化碳和水转化为有机物质(如葡萄糖)和氧气的生化过程。
在光合作用中,植物的叶绿素吸收太阳光,并将其能量转化为生化能量。
这个过程中发生的化学反应称为光合作用。
光合作用是维持地球上生物圈正常运行的关键过程之一。
光合作用发生在植物细胞中的叶绿体中,叶绿体含有许多叶绿素颗粒,这些颗粒能够吸收来自太阳的光能。
当光能被吸收后,叶绿素会激发电子,并使其跃迁到高能态。
随后,这些高能态电子会参与一系列反应,将二氧化碳和水转化为葡萄糖和氧气。
这个过程中消耗的二氧化碳会通过植物的根系吸收来自大气中的二氧化碳,而释放的氧气则通过叶子气孔排放到大气中。
光合作用的产物主要为葡萄糖,葡萄糖是一种重要的能量来源,不仅为植物提供能量,也为其他生物提供能量。
此外,光合作用产生的氧气也是维持地球上生物存活的关键之一,氧气充足的环境有助于维持大气的稳定。
总而言之,光合作用是植物和一些微生物利用太阳光能将二氧化碳和水转化为有机物质和氧气的生化过程。
它是地球上生物圈正常运行的重要过程,也是维持生命存在的基础。
光合作用(讲义)(解析版)
浙教版八年级下册第三章第6节光合作用【知识点分析】一.光合作用的条件与产物1.植物光合作用的产物探究12.操作步骤与结论3.光合作用的场所与作用:光合作用发生在叶肉细胞的叶绿体中。
绿色植物利用光提供的能量,在叶绿体内合成淀粉等有机物,并把光能转化为化学能,储存在有机物中。
4.光合作用的产物探究25.结论:光合作用的产物还有氧气。
二.光合作用的原料1.实验探究是否需要二氧化碳2.结论:光合作用需要二氧化碳。
3.光合作用还需要水的参与。
三.光合作用的原理1.光合作用:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存这能量的有机物,并释放氧气的过程。
2.反应式:3.光合作用的影响:一方面制造有机物并释放氧气,另一方面把光能转化为化学能。
四.光合作用和呼吸作用的关系1.思维导图2.相互关系:植物通过光合作用把二氧化碳和水转化为有机物并释放氧气,动植物均可进行呼吸作用把有机物氧化分解为二氧化碳和水,并释放能量供生命活动利用。
光合作用和呼吸作用既相互对立又相互依赖,他们共同存在于统一的有机体--植物中。
【例题分析】一、选择题1.在做“绿叶在光下制造有机物”的实验过程中,有如图所示的实验环节,(提示:1标准大气压下,酒精的沸点是78℃)以下对该环节的描述不正确...的是()A.大烧杯中装有水,小烧杯中装有酒精B.该环节结束后叶片变成黄白色C.酒精的作用是溶解叶绿素D.持续加热小烧杯中的温度会达到100℃【答案】D【解析】A.酒精能溶解叶绿素,而且酒精是易燃、易挥发的物质,直接加热容易引起燃烧发生危险。
使用水对酒精进行加热,起到控温作用,以免酒精燃烧发生危险。
因此小烧杯中装的是酒精,大烧杯中装的是清水,正确。
B.放在盛有酒精的小烧杯中隔水加热,使叶片中的叶绿素溶解到酒精中,叶片变成黄白色,正确。
C.酒精能溶解叶绿素,而且酒精是易燃、易挥发的物质,正确。
D.大烧杯中的液体是水,该液体的沸点是100℃,这就保证了小烧杯中液体的温度不会超过100℃,因此隔水对酒精进行加热,能起到控温作用,以免酒精燃烧发生危险,错误。
光合作用及其意义
• 第三,使大气中的氧和二氧化碳的含量相对稳定。据估计, 全世界所有生物通过呼吸作用消耗的氧和燃烧各种燃料所 消耗的氧,平均为10000 t/s(吨每秒)。以这样的消耗氧 的速度计算,大气中的氧大约只需二千年就会用完。然而, 这种情况并没有发生。这是因为绿色植物广泛地分布在地 球上,不断地通过光合作用吸收二氧化碳和释放氧,从而 使大气中的氧和二氧化碳的含量保持着相对的稳定。 • 第四,对生物的进化具有重要的作用。在绿色植物出现 以前,地球的大气中并没有氧。只是在距今20亿至30亿年 以前,绿色植物在地球上出现并逐渐占有优势以后,地球 的大气中才逐渐含有氧,从而使地球上其他进行有氧呼吸 的生物得以发生和发展。由于大气中的一部分氧转化成臭 氧(O3)。臭氧在大气上层形成的臭氧层,能够有效地滤去 太阳辐射中对生物具有强烈破坏作用的紫外线,从而使水 生生物开始逐渐能够在陆地上生活。经过长期的生物进化 过程,最后才出现广泛分布在自然界的各种动植物
光合作用简介
• 光合作用(Photosynthesis),即光能合 成作用,是植物、藻类和某些细菌,在可 见光的照射下,经过光反应和暗反应,利 用光合色素,将二氧化碳(或硫化氢)和 水转化为有机物,并释放出氧气(或氢气) 的生化过程。光合作用是一系列复杂的代 谢反应的总和,是生物界赖以生存的基础, 也是地球碳氧循环的重要媒介。
光合作用概念
• 绿色植物利用光提供的能量,在叶绿体中 合成了淀粉等有机物,并且把光能转变成 化学能,储存在有机物中这个过程就是人 们常说的光合作用
光合作用的原料
• 光能合成作用,是植物、藻类和某些细菌, 在可见光的照射下,利用光合色素,将二 氧化碳(或硫化氢)和水转化为有机物, 并释放出氧气(或氢气)的生化过程。 光 合作用原料CO2+H2O 呼吸作用的原料是 氧气,糖类(葡萄糖) 氧气是呼吸作用的 原料,光合作用的产物
光合作用(图文+动画)
一、实验:绿叶中色素的提取和分离
2.分离绿叶中的色素 (1)原理:不同色素在层析液中的 溶解度不同,溶解度 高 的随层析液在滤纸上扩散得快,反之则慢。因而色 素就会随着层析液在滤纸上的扩散而分离开。 (2)方法:纸层析法
一、实验:绿叶中色素的提取和分离
2.分离绿叶中的色素
结论是:叶绿体主要吸收红光和蓝紫光用于光合作用, 放出氧气。
人们对光合作用原理的认识却经历了一个漫长的阶段
一、光合作用探究历程
1、1642年:比利时——海尔蒙特的实验 2、1771年:英——普利斯特利的实验 3、1779年:荷兰——英格豪斯的实验 4、1845年:德——梅耶 5、1864年:德——萨克斯的实验 6、1880年:美——恩吉尔曼的实验 7、20世纪30年代:美——鲁宾和卡门的 实验
第4节 能量之源—光与光合作用
一 捕获光能的色素和结构
.
正常苗
白化苗
正常幼 苗能进 行光合 作用制 造有机
养料
白化苗 不能进 行光合 作用, 无法制 造有机
养料
说明色素与光合作用有关
一、实验:绿叶中色素的提取和分离
1.提取绿叶中的色素
(1)原理:绿叶中的色素能够溶解在有机溶剂 无水乙醇 中。
(2)步骤 取材:称取5g新鲜绿叶
在以花叶冷水(该叶片白色部分叶肉细胞无叶绿体)为材料发现 叶片曝光一半的白色部分,经碘液处理后不变蓝 这样的结果意味着什么?能不能说明光合作用的场所就是叶绿体呢?
能说明光合作用的进行与叶绿体有关, 但不能直接证明叶绿体就是光合作用的场所
怎样才能直接证明光合作用的 场所是不是叶绿体呢?
6.恩吉尔曼的实验
8. 20世纪40年代 卡尔文
光合作用
• 2)叶肉 • 叶肉有大量叶肉细胞组成。叶肉细胞内含有许 多个叶绿体。叶绿体中含有的绿色色素叫做叶 绿素,叶片呈现绿色,就是因为含有这种色素, 叶绿素只有在光下才能形成。叶绿体是制造有 机物的条件。 • 叶肉大体分为上下两层: • 栅栏组织——接近上表皮,细胞呈圆柱形,排 列的比较整齐,有些像栅栏,细胞里面含有的 叶绿体比较多。(排列整齐而不紧密这样有利 于光线透过栅栏组织,是海绵组织也能够进行 光合作用) • 海绵组织——接近下表皮,细胞形状不规则, 排列的比较疏松,有的像海绵,细胞里面含有 的叶绿体较少。(下表皮气孔较多,海绵组织 排列疏松,可以使空气到达栅栏组织,是栅栏 组织进行光合作用)
• 叶上面的的绿色比下面深的原因就是因为 接近上表皮的栅栏组织细胞排列紧密,含 有的叶绿体较多,叶绿素也多;而接近下 表皮的海绵组织细胞排列输送,含叶绿体 较少,叶绿素也少。所以也上面的颜色比 下面的神 • 秋天落叶反面朝上的多的原因就是因为接 近上表皮的栅栏组织数量较多,叶绿体也 较多,所以产生的有机物也较多;而接近 下表皮的海面组织的情况则与其相反,所 以上面比下面重,秋天的落叶反面朝上的 也就较多。
光能 叶绿体
•
(4)光合作用的意义:
• 光合作用制造的这些有机物不仅供植物体 本身需要,也是动物(包括人类)的食物 来源。(地球上的一切食物来源都来自于 光能)
• 动、植物和人的呼吸及燃料燃烧所消耗的 氧气都是光合作用产生的 • 通过光合作用,可以把太阳光的光能转化 为化学能贮存在有机物中,这些能量是动、 植物和人生命活动所需能量的来源。 • 煤炭、石油等燃料中的能量是古代植物通 过光合作用贮藏起来的。
• (5)光合作用原理在农业生产中的应用:
• 延长光照有效时间,即延长光合作用有效 时间,是植物体内积累更多的有机物,农 作物产量也可以得到提高。采用地膜覆盖、 大棚的方法来延长光合作用有效时间。
光合作用
BC段:表明随着光照强度不断加强,光合作用强度不断加强,到 C点以上不再加强了,C点所示光照强度称为光饱和点。限制C点 以后光合作用强度不再增加的内部因素是色素含量、酶的数量和 最大活性,外部因素是CO2浓度等除光照强度之外的环境因素。 (2)应用 阴生植物的B点前移,C点较低,如图中虚线所示,间作套种 农作物的种类搭配,林带树种的配置,可合理利用光能;适当提 高光照强度可增加大棚作物产量。
.色素提取液呈淡绿色的原因分析
(1)研磨不充分,色素未能充分提取出来。 (2)称取绿叶过少或加入无水乙醇过多,色素溶液浓度小。 (3)未加碳酸钙或加入过少,色素分子部分被破坏。
实验成功的关键:
①叶片要新鲜、颜色要深绿,含有较多色素。 ②研磨要迅速、充分。叶绿素不稳定,易被活细胞内的叶绿 素酶水解。充分研磨使叶绿体完全破裂,提取较多的色素。 ③滤液细线不仅要求细、直,而且要求含有较多的色素,所 以要求待滤液干后再画2~3次。 ④滤液细线不能触及层析液、否则色素溶解到层析液中,滤 纸条上得不到色素带。 其他注意问题: ⑴关键词与试剂对应关系不能颠倒。 提取色素——无水乙醇 分离色素——层析液 ⑵用丙酮或其他有机溶剂代替无水乙醇提取色素,但丙酮有 毒,研磨时需采取措施防止挥发;也可用汽油代替层析液进 行层析;可用其他绿色叶片代替菠菜,但不能用大白菜等不 含叶绿素的材料。
注意: 1、不能让滤液细线 触及层析液 2、加盖
4.观察结果
滤纸条上色素带有四条,如图:
思考:由实验结 果你还能得到什 么结论?
实验 变相
棉线 层析液
色素滴
滤纸
胡萝卜素 叶黄素 叶绿素a 叶绿素b
色素的种类
颜色
含量
溶解 度
扩散 速度
吸收光 的颜色
初一生物光合作用知识点归纳
初一生物光合作用知识点归纳光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。
下面是分享的初一生物光合作用知识点归纳,希望对你有所帮助!1、光合作用概念:绿色植物利用光提供的能量,在叶绿体中合成了淀粉等有机物,并且把光能转变成化学能,储存在有机物中,这个过程叫光合作用。
2、光合作用实质:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物(如淀粉),并且释放出氧气的过程。
3、光合作用意义:绿色植物通过光合作用制造的有机物,不仅满足了自身生长、发育、繁殖的需要,而且为生物圈中的其他生物提供了基本的食物来源、氧气来源、能量来源。
4、绿色植物对有机物的利用:用来构建之物体;为植物的生命活动提供能量。
5、呼吸作用的概念:细胞利用氧,将有机物分解成二氧化碳和水,并且将储存在有机物中的能量释放出来,供给生命活动的需要,这个过程叫呼吸作用。
6、呼吸作用意义:第1页共5页呼吸作用释放出来的能量,一部分是植物进行各项生命活动(如:细胞分裂、吸收无机盐、运输有机物等)不可缺少的动力,一部分转变成热散发出去。
总结:光合作用给植物提供能量,让绿色植物生存下来。
植物通过它制造呼吸,以供氧气来维持生命。
高一生物光合作用知识光和光合作用一、捕获光能的色素叶绿体中的色素有4种,他们可以归纳为两大类:叶绿素(约占3/4):叶绿素a(蓝绿色) 叶绿素b(黄绿色)类胡萝卜素(约占1/4):胡萝卜素(橙黄色) 叶黄素(黄色)叶绿素主要吸收红光和蓝紫光,类胡萝卜素主要吸收蓝紫光。
白光下光合作用最强,其次是红光和蓝紫光,绿光下最弱。
因为叶绿素对绿光吸收最少,绿光被反射出来,所以叶片呈绿色。
二、实验——绿叶中色素的提取和分离1 实验原理:绿叶中的色素都能溶解在层析液(有机溶剂如无水乙醇和丙酮)中,且他们在层析液中的溶解度不同,溶解度高的随层析液在滤纸上扩散得快,绿叶中的色素随着层析液在滤纸上的扩散而分离开。
光合作用
②区别:(见下表)
项目 光反应 暗反应
实质 光能→ 化学能,释放O2 同化CO2形成(CH2O)(酶促反应)
1.2 英文描述
Photosynthesis is the conversion of energy from the Sun to chemical energy (sugars) by green plants. The "fuel" for ecosystems is energy from the Sun. Sunlight is captured by green plants during photosynthesis and stored as chemical energy in carbohydrate molecules. The energy then passes through the ecosystem from species to species when herbivores eat plants and carnivores eat the herbivores. And these interactions form food chains.
4.1.4 细胞色素b6/f复合体(cyt b6/f complex)
可能以二聚体形成存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。
4.1.5 光系统Ⅰ(PSI)
能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区和基质类囊体膜中。由集光复合体Ⅰ和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。
光合作用名词解释
一、名词解释1 .光反应( ligh t reaction )与暗反应( dark reaction) :光合作用中需要光的反应过程,是一系列光化学反应过程,包括水的光解、电子传递及同化力的形成;暗反应是指光合作用中不需要光的反应过程,是一系列酶促反应过程,包括CO2的固定、还原及碳水化合物的形成。
2 . C3途径( C3pat hway)与C4途径( C4pathway) :以RuBP为二氧化碳受体,二氧化碳固定后的最初产物为PGA的光合途径,即为C3途径;以P EP为二氧化碳受体,二氧化碳固定后的最初产物为四碳双羧酸的光合途径,即为C4途径。
3 .光系统( photosystem, PS ) :由不同的中心色素和一些天线色素、电子供体和电子受体组成的蛋白色素复合体,其中PSⅠ的中心色素为叶绿素a P700 , PSⅡ的中心色素为叶绿素aP680。
4 .反应中心( reaction cen ter ) :由中心色素、原初电子供体及原初电子受体组成的具有电荷分离功能的色素蛋白复合体结构。
5 .光合“午休”现象( midday depression ) :光合作用在中午时下降的现象。
6 .原初反应(primary reaction) :包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。
7 .磷光现象( phosphorescence phenomenon ) :当去掉光源后,叶绿素溶液还能继续辐射出极微弱的红光,它是由三线态回到基态时所产生的光。
这种发光现象称为磷光现象。
8 .荧光现象( fluorescence phenomenon ) :叶绿素溶液在透射光下呈绿色,在反射光下呈红色,这种现象称为荧光现象。
9 .红降( red drop) :当光波大于685nm时,虽然仍被叶绿素大量吸收,但量子效率急剧下降,称为红降。
又称量子产额或光合效率。
指吸收一个光量子后放出( quantum efficiency) :量子效率10 .的氧分子数目或固定二氧化碳的分子数目。
光合作用
光合作用的基本原理
3、光和单位
所谓的“光合单位”,就是指存在于类囊体膜上能进行完整光反应的最小结构单 它是天线色素系统和反应中心的总称。
反应中心色素分子(reaction center pigment)是一种特殊性质的叶绿素a分子,它不仅能捕 获光能,还具有光化学活性,能将光能转换成电能。其余的叶绿素分子和辅助色素分子 一起称为聚(集)光色素(light harvesting pigment)或天线色素(antenna pigment),它们的 作用好象是收音机的“天线”,起着吸收和传递光能的作用。
3RuBP+3CO2+3H2O→PGA + 6H+
光合作用的基本原理
(2)还原阶段(reduction phase) 指利用同化力将3-磷酸甘油酸还原为甘油醛-3磷酸(GAP)的反应过程。当CO2被还原为GAP时,光合作用的贮能过程便 基本完成。
(3)再生阶段(regeneration phase) 指由甘油醛-3-磷酸重新形成核酮糖-1,-5-二 磷酸的过程。
原初反应使光系统的反应中心发生电荷分离,产生的高能电子推动着光合 膜上的电子传递。电子传递的结果,一方面引起水的裂解放氧以及NADP+ 的还原;另一方面建立了跨膜的质子动力势,启动了光合磷酸化,形成 ATP。这样就把电能转化为活跃的化学能 。
1、电子和质子的传递 电子质子传递过程中的重要单位有 PSⅡ复合体 、质体醌(PQ)、Cyt b6/f 复合体、质蓝素(PC)、 PSⅠ复合体、铁氧还蛋白(Fd)和铁氧还 蛋白-NADP+还原酶(FNR)。
光合作用的基本原理
光合色素:在光合作用的反应中吸收光能的色素,主要有三种类型:叶绿素、 类胡萝卜素和藻胆素。高等植物中含有前两类,藻胆素仅存在于藻类中。
植物生理第三章
(二)原初反应的过程 —光能的吸收、传递和光化学反应
1.天线色素接受光能,以诱导共振方式 将能量传递到光合反应中心。
能量传递效率: Chla,b几乎100%传给反应中心色素, 类胡萝卜素 约90%传给反应中心色素。
42
2.光合反应中心发生光化学反应
hυ ┋ D P A → D P* A → D P+ A- → D+ P A①特殊叶绿素a ②高能电子脱离,
9
外被膜
被膜 (envelop)
内被膜 选择透性
叶绿体
(Chloroplast)
膜—光合色素、光合链——原初反应、 电子传递和光合磷酸化(光合膜 ) (thylacoid) 类囊体 腔—光合放O2 间质(stroma)——光合碳循环酶(Rubisco), CO2固定(同化); DNA,RNA,核糖体70S——部 分遗传自主
醛基(CHO)
14
1.叶绿素的结构:
②双羧酸尾部:
1个羧基在副环(V)上 以酯键与甲基结合 --甲基酯化; 另一个羧基(丙酸) 在IV环上与植醇 (叶绿醇)结合- -植醇基酯化; 非极性,亲脂,插 入类囊体的疏水区, 起定位作用。
15
2.叶绿素的作用:
收集和传递光能 (大部分Chl a和全部Chl b) 将光能转换为电能(少数特殊Chl a)
2.类胡萝卜素
强吸收区: 400-500 (蓝紫); 不吸收区: 500以上
25
(二)光能的吸收和释放
物质吸收光子,其原子中的e 重新排列,分子从基态(最 低、最稳定)跃迁到激发态 (高能、不稳定)
Chl+ hγ= Chl* 处于激发态的分子,趋 于释放能量回到基态
26
高中生物必修一第五章第四节光合作用(共47张PPT)
图一
图二
1、图二曲线和图一曲线有何不同,A、B、C三点的含义是什么?
A
AB
B
B点之后
光饱和点
光补偿点
阳生 阴生
若图中两条曲线分别代表阴生植物和阳生植物,请把 它们区分出来。
B 和 B′点都表示 CO2 饱和点。
应用:“正其行,通其风”,增施农家肥
3.温度对光合作用速率的影响
应 增大昼夜温差:
用
白天调到光合作用最适温度,夜晚适当降温,以降低作物细胞 呼吸,减少有机物的消耗,保证有机物的积累,促进作物生长。
水对光合速率的影响
夏季中午温度高 蒸腾作用强 叶片缺水
气孔关闭
结论: 植物可以更新空气
二、1779年英格豪斯(荷兰)实验
黑暗
光下
①普利斯特利的实验只有在阳光照射下才能成功。 ②植物体只有绿叶才能更新空气。
一段时间后
结论:植物可 以更新空气
一段时间后
三、1785年,人们才明确绿叶在光下放出的是 氧气,吸收的是二氧化碳。
四、德国科学家梅耶根据能量转化与守恒定律 明确指出,植物在进行光合作用时,把光能转 换成化学能储存起来。
ch光合作用中c3c5atph的含量变化h减少atp减少c3含量上升c5含量下降ch2o合成量减少光照强弱co2供应丌变光照丌变减少co2供应含量上升ch2o合成量减少h相对增加atp相对增加条件c3c5h和atpch2o合成量光照减弱co2供应不变光照增强co2供应不变光照不变增加co2供应光照不变减少co2供应减少减少增加增加增加增加增加增加增加增加减少减少减少减少减少减少增加增加减少减少减少减少增加增加减少减少减少减少增加增加增加增加hatp变化同步c3c5变化相反变化发生在短时间内后又建立新平衡
光合作用意思
光合作用意思
什么是光合作用
光合作用是植物、藻类和一些细菌利用光能将二氧化碳和水转化为能量丰富的
有机物质的过程。
这是一种非常重要的生物化学反应,它不仅是植物生长与发育的基础,也是整个生态系统中能量转化的重要环节。
光合作用的过程
光合作用主要包括两个阶段:光反应和暗反应。
光反应
在光反应中,光合作用通过叶绿体内的叶绿体色素(如叶绿素)吸收太阳光能,将其转化为化学能。
光合作用发生在叶绿体周围的膜结构上,这些膜包含了许多蛋白质复合物,能够将光能转化为化学能。
暗反应
暗反应发生在光合作用的第二阶段,其主要目的是将光能转化为有机物质。
在
这个过程中,植物利用光合酶和其他辅助酶,将二氧化碳和水转化为葡萄糖等有机物质,同时释放氧气。
光合作用的意义
光合作用是地球上绝大多数生物的能量来源。
植物通过光合作用将太阳能转化
为化学能,供给自身生长发育所需的能量,也为其他生物提供食物来源。
此外,光合作用也是地球上氧气的主要来源,维持着大气中氧气和二氧化碳的平衡。
总之,光合作用对于地球生态系统的平衡和维持起着至关重要的作用,并且是
生物圈中一个不可或缺的环节。
光合作用资料
光合作用
光合作用是植物和某些微生物利用光能将水和二氧化碳转化为有机物质的生物化学过程。
它是生物界中最重要的能量转化过程之一,也是维持地球生态平衡的重要一环。
光合作用的过程复杂而精巧,涉及多个生物分子和酶的协同作用。
光合作用的基本原理
光合作用的主要过程可以分为光反应和暗反应两个阶段。
在光反应过程中,植物叶绿体中的叶绿素分子吸收光能,激发电子从水分子中脱离,生成氧气和高能电子供应给暗反应。
暗反应中,CO2和高能电子在反应中生成碳水化合物,这一过程需要ATP和NADPH等光合色素提供的能量。
光合作用的意义
光合作用不仅为植物提供了生长所需的碳水化合物和能量,也为其他生物提供了基础食物来源。
此外,光合作用还能释放氧气,有助于维持地球大气中氧气和二氧化碳的平衡,维持地球生态环境的稳定。
光合作用与生态平衡
绝大多数陆生生物都依赖于光合作用为生存提供食物和氧气。
光合作用不仅影响生物圈内各种生物的生存状况,也直接影响着地球气候和大气成分。
因此,保护植物和生态系统是维持地球生态平衡的重要策略之一。
结语
光合作用是一个复杂而精妙的生物化学过程,它为地球上的生物提供了生存所需的能量和物质基础。
人类应当充分认识到光合作用的重要性,积极保护植物和生态系统,共同努力维持地球生态平衡的稳定。
通过重视光合作用,我们将为地球生态环境的可持续发展贡献力量。
高中生物光合作用
叶绿体结构模式图
基 粒 (色素) 功能: 叶绿素a 吸收 (蓝绿色) 叶绿素 传递 (含量占3/4) 转化 叶绿素b 光能, (黄绿色) 用于 光合 作用.
光合作用的过程
O2 H2O
叶绿体 中的色 素
水在光下分解
[H] 供氢
2c3
多种酶
固 定
光能
还
co2
C5
ATP 酶 ADP+Pi
供能
原
参加催化
(CH2O)
1771年: 1864年:
1880年:
20世纪30 年代::
什么是光合作用?
光合作用是指绿色植物通过叶绿体,
利用光能,把二氧化碳和水转化成
储存着能量的有机物,并且释放出氧
的过程。
1、光合作用的场所
叶绿体中的色素
叶绿体
类胡萝卜素
(含量占1/4)
胡萝卜素 (橙黄色)
叶黄素 (黄色)
外 膜
内 膜
基 质
2C3 多种酶 参加催化
CO2
C5
(CH2O)
光照停止、CO2 不变 CO2浓度
C3 ↑ C5 ↓
光照不变、CO2浓度减低
C3 ↓ C5 ↑
4、矿质元素
N: 膜结构、ATP、叶绿素、酶和蛋白质的组成元素;(DNA 、RNA的组成元素) P: 膜结构、ATP、NADP、(DNA 、RNA的组成元素) 叶绿素的组成成分及其合成酶的活化剂 Mg、Fe:
C、O2和ATP
D、[H]和H2O
当光能被色素吸收并传递给特殊 的叶绿素a后,这种转化就开始了。
㈡光能转化为活跃的化学能
光能被色素吸收并传递给特殊的叶绿素 a,这些叶绿素a被激发,失去一对电子。 这一对电子经一系列物质(D物质)的传递, 最后传递到NADP+(辅酶Ⅱ),得到一对电子 的NADP+从溶液中得到一个H+成为NADPH(还 原型辅酶Ⅱ)。
光合作用
总之,不同碳代谢类型之间的划分不是绝对的,它们在一定条件下可以互相
转化,这也反映了植物光合碳代谢途径的多样性、复杂性以及在进化过程中植物 表现出的对生态环境的适应性。
→ → → → → → →
◎光合作用的机理—碳同化
碳同化
·光合作用的产物: 单糖(葡萄糖和果糖) 光 合 产 物
糖类
双糖(蔗糖) 多糖(淀粉)
荧光、磷光 ·荧光和磷光现象: 荧光现象—叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象。
磷光现象—当叶绿素溶液停止光照后,还能继续辐射出微弱红光的现象。
以热能形式散失
光能 Chl
(基态)
Chl*
(激发态)
以光能形式散失
传递给其他分子 发生光化学反应
Chl
·叶绿素分子的激发是光能转变为化学能的第一步。
成有机物的过程。
第一节 光合作用的重要性 第二节 叶绿体及其色素 第三节 光合作用的机理 第四节 影响光和作用的因素 第五节 植物对光能的利用
◎ 光合作用的重要性
◎光合作用的重要性
·光合作用(photosynthesis):绿色植物吸收光能,同化CO2和H2O, 制造有机物并释放O2的过程。
光能
红、橙、黄、绿、青、蓝、紫7色连续的太阳光光谱。 ·太阳光的光谱 叶绿素溶液 部分光被吸收
在光谱上出现黑线或暗带,即为吸收光谱。
叶绿素a和b吸收光谱主要在蓝紫光区、红光区;
胡萝卜素和叶黄素在蓝紫光区(不吸收红、黄光,故呈橙红色和黄色);
藻胆素吸收光谱主要在绿光区、橙光区。
·高等植物进行光合作用最有效的光是红光和蓝紫光。
①PSⅠ产生的电子,经过传递, 只引起ATP的形成; ②降低了能位; ③电子传递是闭合的回路; ④不放氧,也无NADP+还原反应。 ADP+Pi→ATP
光合作用名词解释生理学
光合作用名词解释生理学
光合作用是指绿色植物、一些藻类和细菌通过叶绿体利用光能将二氧化碳和水
转化为有机物质的过程。
光合作用是维持生态系统中生物多样性和能量流动的重要机制之一。
光合作用的基本过程
1.吸收光能:叶绿素是主要的光合色素,负责吸收光能。
当叶绿素分
子吸收光子时,激发了其分子中的电子,使其进入激发态。
2.水的光解:通过光合作用,光合生物体将水分子进行光解,产生氧
气和氢离子。
这一反应释放的氧气是生态系统中其他生物生存所需的氧气来源。
3.固定二氧化碳:光合作用通过将二氧化碳转化为有机物质(如葡萄
糖)来固定碳元素。
这一过程发生在叶绿体中的Calvin循环中。
4.产生ATP和NADPH:光合作用还产生了一些重要的能量分子ATP
和还原型辅酶NADPH。
这些能量分子在合成有机物质的过程中起着关键作用。
光合作用的类型
光合作用可以分为两种主要类型:光合作用I类型和光合作用II类型。
这两种类型的光合作用分别负责不同过程,其中光合作用II类型主要负责产生NADPH,
而光合作用I类型主要负责产生ATP。
光合作用的影响
光合作用在植物生长发育、能量转换、生态平衡等方面起着至关重要的作用。
光合作用还是地球上生物体存活的基础,维持了地球生态系统的持续运行。
结语
光合作用作为一种重要的生理过程,不仅形成了植物生长发育的基础,还影响
着整个生态系统中的能量流动和物质循环。
通过了解光合作用的基本过程和机制,我们能够更好地理解植物的生长规律以及生态系统的平衡机制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节光合作用一、教学目标:1、了解绿色植物的光合作用及其重要意义。
2、了解光合作用的条件是光和叶绿体,了解光合作用的原料是二氧化碳和水,了解光合作用的产物是有机物和氧气。
3、了解二氧化碳的重要性质和用途。
4、了解光合作用与呼吸作用的区别和联系。
二、教学重难点:重点:光合作用、二氧化碳的性质难点:光合作用、二氧化碳的性质教学用具;演示实验教学课时:3课时三、教学过程:引入:出示两张图片,思考:你知道这些水果中的有机物都来自哪里?猜一猜:可能来自土壤,也可能来自光合作用。
水果中的有机物质到底有没有从土壤中直接得来呢?让我们用实验来证实.探究:植物中的淀粉是否来自土壤?A烧杯是土壤浸出液,B烧杯是稀米汤(对照)现象:滴入碘酒后A烧杯不变蓝色,B烧杯变蓝色结论:植物中的淀粉不是来自土壤。
思考:既然植物中的淀粉不是来自土壤,那么植物中的淀粉等有机物到底是不是来自光合作用呢?谈谈对光合作用的认识新课教学:一、光合作用的过程1、概念:绿色植物在阳光的作用下,利用二氧化碳和水等物质制造有机物,并释放氧气的过程叫光合作用。
问:光合作用在物质方面发生了什么变化?物质:无机物——有机物问:光合作用在能量方面又发生了什么变化呢?能量:光能——化学能,而且贮藏在有机物中。
让我们先见一个实验,看看能说明什么问题?【实验】证明植物光合作用制造淀粉的实验问题1:为什么天竺葵要在暗处放置一昼夜?利用呼吸作用来分解原来储存的淀粉,消除淀粉对实验的影响。
2、为什么要用铝箔纸在叶片的相同位置从上下盖严?为了设置对比,证明绿叶光合作用需要光。
3、为什么要水浴加热?酒精易燃,不能直接加热。
4、酒精中漂洗的作用是什么?使叶绿素褪去【实验现象】被光照射到的叶片部位产生了蓝色,被铝箔纸遮光的叶片部分没有变蓝。
【实验结论】说明光合作用的产物之一是淀粉,也说明光合作用发生的条件之一是光。
【思考】怎样证明植物光合作用会产生氧气?--如图2-48所示,收集水生绿色植物产生的气体,再用带火星的木条来试验。
需要设置对比实验,这样才能说明气体是绿色植物产生的,而不是由水直接产生的。
【探究】光合作用需要二氧化碳吗?1、这个实验有几个变量?--3个:阳光、二氧化碳(主要的变量)、植物的叶片。
2、如何防止植物吸入空气中的二氧化碳?--用生石灰吸收空气中的二氧化碳。
3、需要对照实验吗?--需要。
为了控制变量。
4、改进建议:水不是由外界空气直接提供的。
水应该是由根部吸收后运输到叶片的。
【探究结论】光合作用需要二氧化碳。
【补充】教师出示并简单介绍光合作用吸收二氧化碳的实验装置。
指出实验中氢氧化钠溶液的作用,以及实验的简单过程。
问:甲、乙两套实验装置有什么主要区别?(要求回答:甲装置的槽里放的是氢氧化钠溶液,乙装置的槽里放的是清水。
)问:随着时间的延长,甲、乙两套实验装置的空间内,空气成分会发生什么变化?(要求回答:甲装置内空气中的二氧化碳量比乙装置内二氧化碳量大大减少。
)教师展示该实验的结果,指出:摘自甲装置内的叶片,经酒精脱色和碘液处理,未被染成蓝色。
而摘自乙装置的叶片被染成蓝色。
问:对实验结果进行分析可以得出什么结论呢?(在学生回答的基础上,教师最后概括。
)结论:必须有二氧化碳参加,绿叶在光下才能制造淀粉。
光合作用的原料:二氧化碳。
(板书)教师指出:经科学家实验证明,没有水参加,绿叶在光下也不能制造淀粉。
结论:光合作用的原料还有水。
(板书)【补充】问:银边天竺葵的叶片边缘为什么是白色的?(要求回答:叶片边缘的细胞里不含叶绿素。
)启发思考:将经过光照的银边天竺葵的叶片用酒精脱色和碘液处理后,叶片的颜色会发生什么变化?教师出示该实验的结果,指出叶片中部原是绿色的部分被碘液染成了蓝色,而白色的边缘部分未被染成蓝色。
问:对实验结果进行分析可以得出什么结论呢?(在学生回答的基础上,教师最后概括。
)结论:绿叶有叶绿素的部分经光照才能产生淀粉。
光合作用的条件:光、叶绿素。
(板书)启发思考:光合作用为什么需要光?教师对有关能量的问题作出形象的解释之后,指出:植物进行各种生命活动都需要能量。
绿叶进行光合作用时,就是依靠阳光提供的能量,把二氧化碳和水等原料转变成淀粉等有机物。
同时释放出氧气。
2.光合作用的表达式二氧化碳 + 水 —— 有机物(淀粉)+氧气 1)场所:叶绿体(厂房)2)条件:太阳光(动力)3)原料:二氧化碳、水4)产物:有机物(淀粉)、氧气5)物质转变:无机物转为有机物。
6)能量转变:太阳能转变为化学能3、光合作用的实质:物质方面的转化:简单的无机物制成复杂的有机物,并释放出氧气;能量方面的转化:光能转化为化学能。
4、光合作用的意义:【问】人和动物也能像绿色植物那样,把从外界摄入到体内的各种无机物在体内转化成有机物吗?(不能)【问】那么,我们人和动物体内的各种有机物是哪来的呢?(从食物中获得的)【问】人和动物吃的植物性、动物性食物中的有机物又是从哪来的呢?(在学生回答的基础上教师最后概括。
)食物中的各种有机物,都是直接或间接由绿色植物通过光合作用制成的。
不仅如此,自然界中的各种有机物,包括我们比较熟悉的棉、麻、糖、橡胶等,也光 叶绿体都是绿色植物通过光合作用给我们提供的。
据科学家估计,整个地球上的绿色植物光合作用一年所制造的有机物,若折算成葡萄糖可达4500亿吨左右。
概括出意义之一:(一)光合作用是一切生物和人类的物质来源。
(板书)绿色植物可以直接利用光能来进行重要的生命活动——光合作用。
【问】人和动物体是否也能直接利用光能来进行各种生命活动呢?(不能)【问】那么,我们人体或动物进行生命活动所需要的能量是由谁提供的呢?(是食物中贮藏的能量)【问】食物中贮藏的能量又是哪来的呢?(直接或间接来源于绿色植物的光合作用,来源于太阳光能。
)教师指出:不仅植物性、动物性食物中贮藏的能量来源于绿色植物的光合作用,来源于光能。
我们用的柴草、煤、石油、天然气等能源物质,也都是现在或过去的绿色植物通光合作用所贮藏的太阳能。
据估计,地球上绿色植物一年进行光合作用所提供的能量,若折算成电能,可达1700万亿度。
现在整个地球上人类一年所消耗的能量仅占绿色植物光合作用所提供能量的10%左右。
概括出意义之二:(二)光合作用是一切生物和人类的能量来源。
(板书)【问】人和动物以及其他生物在呼吸时,吸进的气体和呼出的气体成分有什么不同?在学生回答的基础上,教师指出:生物呼吸时消耗了很多氧气,产生了很多二氧化碳。
自然界中的燃烧同样要消耗很多氧气而产生很多二氧化碳。
据科学家估计,全世界生物的呼吸和燃烧所消耗的氧气,每秒钟可达l万吨左右。
照这样的速度,大气中的氧气在3000年左右就会被用完。
但是我们生活中并没有明显感到环境中氧气不足和二氧化碳过多,这是什么原因呢?这还要归功于绿色植物的光合作用。
据估计,l公顷阔叶林,在生长季节其光合作用每天能吸收二氧化碳 1吨,释放出氧气0.73吨。
地球上绿色植物进行光合作用一年所释放出的氧气,可以达到4800亿吨左右!概括出意义之三:(三)光合作用是一切生物和人类获得氧气的来源。
(板书)综上所述,光合作用是生物界食物的来源、能量的来源、氧气的来源。
绿色植物的光合作用是地球上一切生物的生存、繁荣和发展的根本保障。
小结:光合作用的意义:是氧气、物质和能量的来源。
补充[科学史话] 前面为2课时第3课时引入:二氧化碳在呼吸作用和光合作用中都出现,那么,二氧化碳有哪些性质呢?三、二氧化碳一、物理性质出示:一瓶二氧化碳气体,并将它正放在桌面上,让学生指出它有哪些性质?――无色、无味气体,密度比空气大。
演示:将一瓶充满二氧化碳气体的塑料瓶迅速加入一定量的水,旋紧瓶盖,振荡,观察什么现象?――能溶解于水补充:二氧化碳的固态形式叫干冰。
二、化学性质演示:二氧化碳灭蜡烛火焰实验。
――既说明了二氧化碳密度比空气大,也说明了二氧化碳不支持燃烧。
演示:向上述实验中的水中滴入紫色石蕊试液,观察现象?――二氧化碳能溶解于水,并能与水发生反应,生成碳酸H2O+CO2=H2CO3碳酸不稳定,加热易分解H2CO3=H2O+CO2↑演示:向澄清石灰水中通入二氧化碳,观察现象?――二氧化碳能使澄清石灰水变浑浊,可用此反应检验二氧化碳气体的存在。
CO2+Ca(OH)2=CaCO3↓+H2O【补充】二氧化碳的制取方法:石灰石(或大理石)与稀盐酸反应【讨论】二氧化碳的用途:1、化工原料;2、人工降雨; 3、人造云雾;4、致冷剂;5、光合作用--气态肥;6、灭火剂。
光合作用和呼吸作用:1、呼吸作用(意义、过程、验证呼吸作用产物的实验等)2、光合作用(意义、过程、探究光合作用产物的实验等)设疑:植物既能发生光合作用,又能发生呼吸作用,它们之间有何联系与区别?学生活动:看图2-51:光合作用与呼吸作用,并填表区别:产物,所放出的能量是光合作用储存在有机物中的能量。
因此,没有光合作用,呼吸作用就没有基础。
光合作用对原料的吸收利用和对产物的输导,所需要的能量又是呼吸作用所释放出来的。
所以,没有呼吸作用,光合作用也无法进行。
思考:植物在进行光合作用的同时有无呼吸作用?全课小结:课后练习:。