八大算法排序

合集下载

八大排序算法

八大排序算法

八大排序算法排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

我们这里说说八大排序就是内部排序。

基本思想:将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。

即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。

要点:设立哨兵,作为临时存储和判断数组边界之用。

直接插入排序示例:如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。

所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

算法的实现:1.void print(int a[], int n ,int i){2. cout<<i <<":";3.for(int j= 0; j<8; j++){4. cout<<a[j] <<" ";5. }6. cout<<endl;7.}8.9.10.void InsertSort(int a[], int n)11.{12.for(int i= 1; i<n; i++){13.if(a[i] < a[i-1]){ //若第i个元素大于i-1元素,直接插入。

小于的话,移动有序表后插入14.int j= i-1;15.int x = a[i]; //复制为哨兵,即存储待排序元素16. a[i] = a[i-1]; //先后移一个元素17.while(x < a[j]){ //查找在有序表的插入位置18. a[j+1] = a[j];19. j--; //元素后移20. }21. a[j+1] = x; //插入到正确位置22. }23. print(a,n,i); //打印每趟排序的结果24. }25.26.}27.28.int main(){29.int a[8] = {3,1,5,7,2,4,9,6};30. InsertSort(a,8);31. print(a,8,8);32.}效率:时间复杂度:O(n^2).其他的插入排序有二分插入排序,2-路插入排序。

常用算法举例范文

常用算法举例范文

常用算法举例范文在计算机科学中,算法是解决问题的一系列有序步骤,它能够帮助我们解决各种各样的问题。

以下是一些常用的算法及其举例:1.排序算法:-冒泡排序:通过比较相邻元素并交换位置来将最大的元素逐渐移动到数组的末尾。

-快速排序:选择一个基准元素,将数组分为两部分,左边的元素小于基准,右边的元素大于基准,然后递归地对两部分进行快速排序。

-归并排序:将数组划分为两个子数组,对每个子数组分别进行归并排序,然后将两个有序子数组合并成一个有序数组。

2.查找算法:-二分查找:对于有序数组,通过与中间元素进行比较,将查找范围缩小一半,直到找到目标元素或确定不存在。

-哈希查找:通过将关键字映射到数组的索引位置来进行查找,可以在常数时间内找到目标元素。

3.图算法:-广度优先(BFS):从起始节点开始,逐层遍历图中的节点,直到找到目标节点。

-深度优先(DFS):从起始节点开始,沿着一条路径一直向下,直到找到目标节点或无法继续为止。

4.动态规划算法:-背包问题:给定一组物品和一个容量限制,选择一些物品放入背包中,使得总价值最大。

-最长公共子序列(LCS):给定两个字符串,找到它们的最长公共子序列的长度。

5.数学算法:-欧几里得算法:计算两个整数的最大公约数。

-快速幂算法:计算一个数的幂运算,通过将指数进行二进制拆分来减少计算次数。

6.字符串处理算法:-KMP算法:通过利用已匹配字符的信息来避免不必要的回溯,实现高效的字符串匹配。

- Boyer-Moore算法:利用模式串中的信息来进行快速的字符串匹配。

7.图像处理算法:-图像平滑算法:通过对图像进行滤波处理,去除图像中的噪声,使其更加平滑。

-图像边缘检测算法:通过检测图像中的边缘信息,突出物体的轮廓。

8.机器学习算法:-K均值聚类算法:将数据集划分为K个簇,使得同一个簇内的数据点之间的距离最小化。

-支持向量机(SVM):将数据集映射到高维空间,并通过找到最优的超平面来实现分类。

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

排序算法十大经典方法

排序算法十大经典方法

排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。

以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。

2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。

3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。

4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。

5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。

6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。

7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。

8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。

9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。

10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。

以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。

世界十大经典算法

世界十大经典算法

世界十大经典算法世界十大经典算法算法是计算机科学中非常重要的概念,它是一种解决问题的方法和步骤的描述。

以下是世界上广泛应用且被业界认可的十大经典算法: 1. 二分查找算法(Binary Search Algorithm):在有序数组中查找目标元素的算法。

通过将目标元素与数组中间元素进行比较,可以将搜索范围缩小一半,从而提高搜索效率。

2. 快速排序算法(Quick Sort Algorithm):一种基于分治法的排序算法。

它通过选择一个基准元素,将数组分为两个子数组,其中一个子数组的元素都小于等于基准元素,另一个子数组的元素都大于等于基准元素,然后递归地对子数组进行排序。

3. 归并排序算法(Merge Sort Algorithm):一种基于分治法的排序算法。

它将数组分成两个子数组,然后递归地对子数组进行排序,并将排序好的子数组合并成一个有序的数组。

4. 广度优先搜索算法(Breadth-First Search Algorithm):用于图遍历的一种算法。

它从图的某个顶点开始,逐层遍历其邻接顶点,直到遍历完所有顶点。

广度优先搜索常用于寻找最短路径或解决迷宫等问题。

5. 深度优先搜索算法(Depth-First Search Algorithm):用于图遍历的一种算法。

它从图的某个顶点开始,沿着一条路径一直向下遍历,直到无法继续为止,然后回溯到上一个没有遍历完的邻接顶点,继续遍历其他路径。

深度优先搜索常用于生成迷宫、图的连通性问题等。

6. Dijkstra算法(Dijkstra's Algorithm):用于求解单源最短路径问题的一种算法。

它根据权重赋值给每条边,计算出从源节点到其他节点的最短路径。

7. 动态规划算法(Dynamic Programming Algorithm):一种基于分治法的优化算法。

动态规划在问题可分解为重叠子问题时,通过保存子问题的解,避免重复计算,从而提高算法效率。

十大经典排序法

十大经典排序法

十大经典排序法
1. 冒泡排序(Bubble Sort):通过不断比较相邻元素并交换位置来排序,每一轮将最大的元素冒泡到最后。

2. 选择排序(Selection Sort):通过找到当前未排序部分的最小元素,将其放置到已排序部分的末尾,逐步构建有序序列。

3. 插入排序(Insertion Sort):将未排序元素逐个插入到已排序部分的正确位置,从而逐步构建有序序列。

4. 希尔排序(Shell Sort):是插入排序的改进版本,通过比较相隔一定间隔的元素进行排序,逐渐缩小间隔直至为1。

5. 归并排序(Merge Sort):采用分治策略,将待排序序列不断拆分为子序列,然后将子序列排序并合并得到最终有序序列。

6. 快速排序(Quick Sort):也是采用分治策略,通过选择一个基准元素将序列划分为左右两部分,分别对两部分进行排序。

7. 堆排序(Heap Sort):利用二叉堆的性质来进行排序,将待排序元素构建成最大(最小)堆,然后依次取出堆顶元素并调整堆结构。

8. 计数排序(Counting Sort):适用于元素值范围较小的情况,通过统计元素出现的次数,然后根据统计结果得到有序序列。

9. 桶排序(Bucket Sort):将元素根据大小分配到不同的桶中,每个桶内部再分别进行排序,最后将各个桶中的元素合并得到有序序列。

10. 基数排序(Radix Sort):将待排序元素按照位数进行排序,先按个位排序,再按十位排序,依此类推,直到最高位排序完成。

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】必学十大经典排序算法0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。

非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。

0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。

不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。

时间复杂度:对排序数据的总的操作次数。

反映当n变化时,操作次数呈现什么规律。

空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。

1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。

走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述比较相邻的元素。

如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;针对所有的元素重复以上的步骤,除了最后一个;重复步骤1~3,直到排序完成。

1.2 动图演示1.3 代码实现1.unction bubbleSort(arr) {2. varlen = arr.length;3. for(vari = 0; i arr[j+1]) {// 相邻元素两两对比6. vartemp = arr[j+1];// 元素交换7. arr[j+1] = arr[j];8. arr[j] = temp;9. }10. }11. }12. returnarr;13.}2、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。

8种排序算法

8种排序算法

J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
2. 堆的定义: N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])
堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
(6)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。
2. 排序过程:
【示例】:
初始关键字 [49 38 65 97 76 13 27 49]
第一趟排序后 13 [38 65 97 76 49 27 49]
第二趟排序后 13 27 [65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
其次,说一下稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。

常见八种算法详解 -回复

常见八种算法详解 -回复

常见八种算法详解-回复“常见八种算法详解”算法是计算机科学中的重要概念,是解决问题的方法和步骤的描述。

常见八种算法是指八种常用的计算机算法,包括贪心算法、动态规划算法、分治算法、回溯算法、递归算法、穷举算法、分支限界算法和排序算法。

下面将逐一详细介绍这八种算法的原理和应用。

一、贪心算法贪心算法是一种寻找局部最优解的方法,在每一步选择中都采取在当前状态下最好或最优的选择,从而希望最后得到的结果是全局最好或最优的。

贪心算法的核心思想是利用局部最优解构建全局最优解。

其典型应用包括霍夫曼编码、最小生成树算法和最短路径算法等。

二、动态规划算法动态规划算法是一种将问题分解成相互重叠的子问题并解决子问题的优化问题。

动态规划算法的核心思想是通过存储已计算结果来避免重复计算,以达到减少计算时间的目的。

其典型应用包括背包问题、最长公共子序列和矩阵连乘等。

三、分治算法分治算法是一种将问题分解成相互独立且同样类型的子问题,然后递归地解决这些子问题的方法。

分治算法的核心思想是将原问题分解成多个相似的子问题,然后将子问题的解合并成原问题的解。

其典型应用包括归并排序、快速排序和二分查找等。

四、回溯算法回溯算法是一种通过穷举所有可能的解来求解问题的方法。

回溯算法的核心思想是在每一步都尝试所有可能的选项,并根据问题的约束条件和限制条件进行搜索和剪枝,以找到问题的解。

其典型应用包括八皇后问题、0-1背包问题和图的着色问题等。

五、递归算法递归算法是一种通过调用自身来解决问题的方法。

递归算法的核心思想是将大问题转化为相同类型的小问题,然后逐层向下求解小问题,直到达到问题的结束条件。

其典型应用包括计算斐波那契数列、求解阶乘和合并排序等。

六、穷举算法穷举算法是一种通过列举所有可能的解来求解问题的方法。

穷举算法的核心思想是遍历问题的解空间,找到符合问题要求的解。

穷举算法通常适用于问题的解空间较小的情况。

其典型应用包括全排列问题、子集和问题和图的哈密顿回路问题等。

数据结构与算法(12):排序

数据结构与算法(12):排序

int[] data = new int[] {10,30,20,60,40,50};
mergesort(data);
for(int i:data) {
System.out.println(i);
}
}
public static void mergesort(int[] arr){
sort(arr, 0, arr.length-1);
例例如,假设有这样一一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步⻓长 为5开始进行行行排序,我们可以通过将这列列表放在有5列列的表中来更更好地描述算法,这样他们就应该 看起来是这样:
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
坏的情况下,移动次数为n(n − 1)/2
冒泡排序的时间复杂度为O(n2)。冒泡排序不不需要辅助存储单元,其空间复杂度为O(1)。如果关
键字相等,则冒泡排序不不交换数据元素,他是一一种稳定的排序方方法。
时间复杂度:最好O(n);最坏O(n2);平均O(n2) 空间复杂度:O(1)
稳定性:稳定
二二、选择排序(Selection Sort)
排好序时,元素的移动次数为0。当每一一趟都需要移动数据元素时,总的移动次数为n − 1
选择排序的时间复杂度为O(n2)。选择排序不不需要辅助的存储单元,其空间复杂度为O(1)。选择
排序在排序过程中需要在不不相邻的数据元素之间进行行行交换,它是一一种不不稳定的排序方方法。
时间复杂度:O(n2) 空间复杂度:O(1)
地方方增量量和差值都是delta temp = arr[j-delta]; arr[j-delta] = arr[j]; arr[j] = temp;

数据结构——排序——8种常用排序算法稳定性分析

数据结构——排序——8种常用排序算法稳定性分析

数据结构——排序——8种常⽤排序算法稳定性分析⾸先,排序算法的稳定性⼤家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。

在简单形式化⼀下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。

其次,说⼀下稳定性的好处。

排序算法如果是稳定的,那么从⼀个键上排序,然后再从另⼀个键上排序,第⼀个键排序的结果可以为第⼆个键排序所⽤。

基数排序就是这样,先按低位排序,逐次按⾼位排序,低位相同的元素其顺序再⾼位也相同时是不会改变的。

另外,如果排序算法稳定,对基于⽐较的排序算法⽽⾔,元素交换的次数可能会少⼀些(个⼈感觉,没有证实)。

回到主题,现在分析⼀下常见的排序算法的稳定性,每个都给出简单的理由。

(1)冒泡排序冒泡排序就是把⼩的元素往前调或者把⼤的元素往后调。

⽐较是相邻的两个元素⽐较,交换也发⽣在这两个元素之间。

所以,如果两个元素相等,我想你是不会再⽆聊地把他们俩交换⼀下的;如果两个相等的元素没有相邻,那么即使通过前⾯的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是⼀种稳定排序算法。

(2)选择排序选择排序是给每个位置选择当前元素最⼩的,⽐如给第⼀个位置选择最⼩的,在剩余元素⾥⾯给第⼆个元素选择第⼆⼩的,依次类推,直到第n-1个元素,第n个元素不⽤选择了,因为只剩下它⼀个最⼤的元素了。

那么,在⼀趟选择,如果当前元素⽐⼀个元素⼩,⽽该⼩的元素⼜出现在⼀个和当前元素相等的元素后⾯,那么交换后稳定性就被破坏了。

⽐较拗⼝,举个例⼦,序列5 8 5 2 9,我们知道第⼀遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是⼀个稳定的排序算法。

(3)插⼊排序插⼊排序是在⼀个已经有序的⼩序列的基础上,⼀次插⼊⼀个元素。

当然,刚开始这个有序的⼩序列只有1个元素,就是第⼀个元素。

八大排序详解

八大排序详解

八大排序详解八大排序算法包括插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序和基数排序。

1. 插入排序:这是一种简单直观的排序算法,其工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

在插入过程中,如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面,因此插入排序是稳定的。

2. 希尔排序:也称递减增量排序算法,是插入排序的一种更高效的改进版本。

3. 选择排序:它的工作原理是首先在未排序序列中找到最小(或最大)元素,存放到排序序列的起始位置,然后再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

4. 冒泡排序:这种排序算法会重复地遍历待排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

5. 归并排序:归并排序是一种采用分治法的排序算法。

它将待排序的序列分成若干个子序列,每个子序列单独进行排序,然后将已排序的子序列进行合并,得到最终的排序结果。

6. 快速排序:快速排序采用分治法进行排序。

在每一步中,它选择一个“基准”元素,并将数组分为两部分,其中一部分的所有元素都比基准元素小,另一部分的所有元素都比基准元素大。

然后,对这两部分独立地进行快速排序。

7. 堆排序:堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆是一种特殊的树形数据结构,它的每个父节点都大于或等于(小于或等于)其子节点(通常称为大顶堆或小顶堆)。

8. 基数排序:基数排序是一种非比较整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。

以上就是八大排序算法的详解,这些算法各有特点和使用场景,可以根据实际情况选择合适的算法。

计算机经典算法

计算机经典算法

计算机经典算法计算机经典算法如下:算法一:快速排序法快速排序是由东尼·霍尔所发展的一种排序算法。

在平均状况下,排序n个项目要Ο(nlogn)次比较。

在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。

事实上,快速排序通常明显比其他Ο(nlogn)算法更快,因为它的内部循环(innerloop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divideandconquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法二:堆排序算法堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。

堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的平均时间复杂度为Ο(nlogn)。

算法三:归并排序归并排序(Mergesort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。

该算法是采用分治法(DivideandConquer)的一个非常典型的应用。

算法四:二分查找算法二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。

搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。

如果在某一步骤数组为空,则代表找不到。

这种搜索算法每一次比较都使搜索范围缩小一半。

折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn)。

算法五:BFPRT(线性查找算法)BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。

该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂度,五位算法作者做了精妙的处理。

算法六:DFS(深度优先搜索)深度优先搜索算法(Depth-First-Search),是搜索算法的一种。

15种排序算法

15种排序算法

15种排序算法
1. 冒泡排序 - 依次比较相邻元素的大小,将较大的数向后移动,直到没有交换
2. 选择排序 - 选择最小的元素,放到数组的起始位置,再从剩余元
素中选择最小的,以此类推
3. 插入排序 - 将一个元素插入已经排好序的序列中,从后向前比较
并移动元素
4. 希尔排序 - 将数组拆分成若干个子序列进行插入排序,缩小增量,直到增量为1
5. 归并排序 - 将数组分成两部分,分别排序,然后合并两个有序数

6. 快速排序 - 选取一个基准元素,将小于基准元素的放在左边,大
于基准元素的放在右边,然后分别对左右两边再递归快速排序
7. 堆排序 - 将数组建立一个最大/小堆,然后依次取出堆顶元素,再
将剩余元素重建堆
8. 计数排序 - 计算每个元素的出现次数,然后计算出每个元素应该
在排序后的序列中的位置
9. 桶排序 - 将元素分配到各个桶中,然后对每个桶进行排序,再依
次将各个桶中的元素输出到序列中
10. 基数排序 - 从低位到高位依次将元素排序,相同位上的元素按照
相同方式进行排序
11. 合并排序 - 将多个有序数组合并成一个有序数组,采用分治的思

12. 鸡尾酒排序 - 进行双向冒泡排序,先将最大的元素放到最后,再
将最小的元素放到前面,如此交替进行
13. 地精排序 - 选取一个随机数作为划分元素,将小于该随机数的元
素放在左边,大于该随机数的元素放在右边,然后对左右两边递归排

14. 跳跃表排序 - 利用跳跃表结构,快速查找元素并插入有序序列中
15. 非递归归并排序 - 利用非递归的方式实现归并排序,将序列分解成多个子序列,依次合并子序列。

计算机10大经典算法

计算机10大经典算法

计算机10大经典算法1. 排序算法排序算法是计算机领域中最基础和常用的算法之一。

其目的是将一组数据按照特定的顺序进行排列。

最常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。

冒泡排序(Bubble Sort)是一种简单但效率较低的排序算法。

其基本思想是通过相邻元素的比较和交换,逐步将待排序的元素移动到正确的位置。

插入排序(Insertion Sort)的核心思想是将待排序的元素插入到已排序序列中的适当位置,从而得到一个新的有序序列。

选择排序(Selection Sort)是一种简单直观的排序算法。

其原理是每次从待排序序列中选择最小(或最大)的元素,放到已排序序列的末尾。

快速排序(Quick Sort)是一种高效的排序算法。

它采用分治法的思想,将待排序序列分割成两个子序列,并递归地进行排序。

归并排序(Merge Sort)是一种稳定的排序算法。

它的核心思想是将待排序序列划分成若干个子序列,分别进行排序,最后再合并这些有序子序列。

2. 搜索算法搜索算法用于在给定的数据集合中查找特定的元素或满足特定条件的元素。

其中最著名的搜索算法为二分查找算法。

二分查找(Binary Search)是一种高效的搜索算法,适用于有序的数据集合。

它通过将待查找区间逐步缩小,直到找到目标元素。

3. 图形算法图形算法主要用于处理具有图形结构的问题,如网络分析、路径搜索等。

其中最常用的图形算法包括广度优先搜索算法和迪杰斯特拉算法。

广度优先搜索(Breadth-First Search,BFS)是一种基于图的搜索算法。

它以广度为优先级,逐层遍历图中的节点,用于查找最短路径、连通性分析等问题。

迪杰斯特拉算法(Dijkstra's Algorithm)用于解决带权有向图中单源最短路径问题。

它采用贪心策略,逐步确定从起点到其他节点的最短路径。

4. 动态规划算法动态规划算法常用于解决具有重叠子问题和最优子结构性质的问题。

排序的几种算法

排序的几种算法

排序的几种算法
一、冒泡排序
冒泡排序就是重复“从序列右边开始比较相邻两个数字的大小,再根据结果交换两个数字的位置”这一操作的算法。

在这个过程中,数字会像泡泡一样,慢慢从右往左“浮”到序列的顶端,所以这个算法才被称为“冒泡排序”。

二、选择排序
选择排序就是重复“从待排序的数据中寻找最小值,将其与序列最左边的数字进行交换”这一操作的算法。

在序列中寻找最小值时使用的是线性查找。

三、插入排序
插入排序是一种从序列左端开始依次对数据进行排序的算法。

在排序过程中,左侧的数据陆续归位,而右侧留下的就是还未被排序的数据。

插入排序的思路就是从右侧的未排序区域内取出一个数据,然后将它插入到已排序区域内合适的位置上。

四、堆排序
堆排序的特点是利用了数据结构中的堆。

五、归并排序
归并排序算法会把序列分成长度相同的两个子序列,当无法继续往下分时(也就是每个子序列中只有一个数据时),就对子序列进行归并。

归并指的是把两个排好序的子序列合并成一个有序序列。

该操作会一直重复执行,直到所有子序列都归并为一个整体为止。

总的运行时间为O,这与前面讲到的堆排序相同。

排序算法有多少种

排序算法有多少种

排序算法有多少种排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。

排序就是把集合中的元素按照一定的次序排序在一起。

一般来说有升序排列和降序排列2种排序,在算法中有8中基本排序:(1)冒泡排序;(2)选择排序;(3)插入排序;(4)希尔排序;(5)归并排序;(6)快速排序;(7)基数排序;(8)堆排序;(9)计数排序;(10)桶排序。

插入排序插入排序算法是基于某序列已经有序排列的情况下,通过一次插入一个元素的方式按照原有排序方式增加元素。

这种比较是从该有序序列的最末端开始执行,即要插入序列中的元素最先和有序序列中最大的元素比较,若其大于该最大元素,则可直接插入最大元素的后面即可,否则再向前一位比较查找直至找到应该插入的位置为止。

插入排序的基本思想是,每次将1个待排序的记录按其关键字大小插入到前面已经排好序的子序列中,寻找最适当的位置,直至全部记录插入完毕。

执行过程中,若遇到和插入元素相等的位置,则将要插人的元素放在该相等元素的后面,因此插入该元素后并未改变原序列的前后顺序。

我们认为插入排序也是一种稳定的排序方法。

插入排序分直接插入排序、折半插入排序和希尔排序3类。

冒泡排序冒泡排序算法是把较小的元素往前调或者把较大的元素往后调。

这种方法主要是通过对相邻两个元素进行大小的比较,根据比较结果和算法规则对该二元素的位置进行交换,这样逐个依次进行比较和交换,就能达到排序目的。

冒泡排序的基本思想是,首先将第1个和第2个记录的关键字比较大小,如果是逆序的,就将这两个记录进行交换,再对第2个和第3个记录的关键字进行比较,依次类推,重复进行上述计算,直至完成第(n一1)个和第n个记录的关键字之间的比较,此后,再按照上述过程进行第2次、第3次排序,直至整个序列有序为止。

排序过程中要特别注意的是,当相邻两个元素大小一致时,这一步操作就不需要交换位置,因此也说明冒泡排序是一种严格的稳定排序算法,它不改变序列中相同元素之间的相对位置关系。

Java常用排序算法程序员必须掌握的8大排序算法

Java常用排序算法程序员必须掌握的8大排序算法

分类:1)插入排序(直接插入排序、希尔排序)2)交换排序(冒泡排序、快速排序)3)选择排序(直接选择排序、堆排序)4)归并排序5)分配排序(基数排序)所需辅助空间最多:归并排序所需辅助空间最少:堆排序平均速度最快:快速排序不稳定:快速排序,希尔排序,堆排序。

先来看看8种排序之间的关系:1.直接插入排序(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。

如此反复循环,直到全部排好顺序。

(2)实例(3)用java实现12345678911121314151617181920package com.njue;publicclass insertSort {public insertSort(){inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,2 5,53,51};int temp=0;for(int i=1;i<a.length;i++){int j=i-1;temp=a[i];for(;j>=0&&temp<a[j];j--){a[j+1]=a[j]; //将大于temp的值整体后移一个单位}a[j+1]=temp;}for(int i=0;i<a.length;i++){System.out.println(a[i]);}2. 希尔排序(最小增量排序)(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差 d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。

当增量减到1时,进行直接插入排序后,排序完成。

(2)实例:(3)用java实现123456789101112131415161718192122232425262728293031publicclass shellSort { publicshellSort(){int a[]={1,54,6,3,78,34,12,45,56,100}; double d1=a.length;int temp=0;while(true){d1= Math.ceil(d1/2);int d=(int) d1;for(int x=0;x<d;x++){for(int i=x+d;i<a.length;i+=d){int j=i-d;temp=a[i];for(;j>=0&&temp<a[j];j-=d){a[j+d]=a[j];}a[j+d]=temp;}}if(d==1){break;}for(int i=0;i<a.length;i++){System.out.println(a[i]);}}3.简单选择排序(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

计算机十大经典算法

计算机十大经典算法

计算机十大经典算法计算机科学领域有许多经典的算法,这些算法在解决各种问题时起到了重要的作用。

本文将介绍十大经典算法,分别是:二分查找算法、冒泡排序算法、选择排序算法、插入排序算法、快速排序算法、归并排序算法、堆排序算法、动态规划算法、贪心算法和图的深度优先搜索算法。

一、二分查找算法二分查找算法是一种在有序数组中查找目标元素的算法。

该算法的基本思想是将数组分为两部分,然后判断目标元素在哪一部分中,继续在该部分中进行二分查找,直到找到目标元素或者确定目标元素不存在。

二、冒泡排序算法冒泡排序算法是一种简单的排序算法,它重复地遍历要排序的数组,每次比较相邻的两个元素,如果它们的顺序错误就交换它们,直到没有任何一对元素需要交换为止。

三、选择排序算法选择排序算法是一种简单的排序算法,它每次从待排序的数组中选择最小的元素,并将其放到已排序数组的末尾,直到所有元素都排序完成。

四、插入排序算法插入排序算法是一种简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

五、快速排序算法快速排序算法是一种高效的排序算法,它的基本思想是通过一趟排序将待排序的数组分割成两部分,其中一部分的所有元素都比另一部分的所有元素小,然后再按此方法对两部分进行快速排序,整个过程递归进行,直到整个数组有序。

六、归并排序算法归并排序算法是一种稳定的排序算法,它的基本思想是将待排序的数组不断地划分为更小的数组,直到每个小数组只有一个元素,然后将这些小数组两两合并,直到合并成一个有序的数组。

七、堆排序算法堆排序算法是一种利用堆的数据结构进行排序的算法,它的基本思想是将待排序的数组构造成一个大顶堆或小顶堆,然后依次取出堆顶元素并调整堆,直到所有元素都被取出,最后得到一个有序的数组。

八、动态规划算法动态规划算法是一种解决多阶段决策过程最优化的算法,它的基本思想是将原问题拆分成多个子问题,通过求解子问题的最优解来求解原问题的最优解。

数据结构之——八大排序算法

数据结构之——八大排序算法

数据结构之——⼋⼤排序算法排序算法⼩汇总 冒泡排序⼀般将前⾯作为有序区(初始⽆元素),后⾯作为⽆序区(初始元素都在⽆序区⾥),在遍历过程中把当前⽆序区最⼩的数像泡泡⼀样,让其往上飘,然后在⽆序区继续执⾏此操作,直到⽆序区不再有元素。

这块是对⽼式冒泡排序的⼀种优化,因为当某次冒泡结束后,可能数组已经变得有序,继续进⾏冒泡排序会增加很多⽆⽤的⽐较次数,提⾼时间复杂度。

所以我们增加了⼀个标识变量flag,将其初始化为1,外层循环还是和⽼式的⼀样从0到末尾,内存循环我们改为从最后⾯向前⾯i(外层循环所处的位置)处遍历找最⼩的,如果在内存没有出现交换,说明⽆序区的元素已经变得有序,所以不需要交换,即整个数组已经变得有序。

(感谢@站在远处看童年在评论区的指正)#include<iostream>using namespace std;void sort(int k[] ,int n){int flag = 1;int temp;for(int i = 0; i < n-1 && flag; i++){flag = 0;for(int j = n-1; j > i; j--){/*下⾯这⾥和i没关系,注意看这块,从下往上travel,两两⽐较,如果不合适就调换,如果上来后⼀次都没调换,说明下⾯已经按顺序拍好了,上⾯也是按顺序排好的,所以完美!*/if(k[j-1] > k[j]){temp = k[j-1];k[j-1] = k[j];k[j] = temp;flag = 1;}}}}int main(){int k[3] = {0,9,6};sort(k,3);for(int i =0; i < 3; i++)printf("%d ",k[i]);}快速排序(Quicksort),基于分治算法思想,是对冒泡排序的⼀种改进。

快速排序由C. A. R. Hoare在1960年提出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。

本文将依次介绍上述八大排序算法。

算法一:插入排序
插入排序示意图
插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

算法步骤:
1)将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。

2)从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。

(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。


算法二:希尔排序
希尔排序示意图
希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。

但希尔排序是非稳定排序算法。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:
●插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率
●但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位
希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

算法步骤:
1)选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
2)按增量序列个数k,对序列进行k趟排序;
3)每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m的子序列,分别对各子表进行直接插入排序。

仅增量因子为1时,整个序列作为一个表来处理,表长度即为整个序列的长度。

算法三:选择排序
选择排序示意图
选择排序(Selection sort)也是一种简单直观的排序算法。

算法步骤:
1)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
2)再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

3)重复第二步,直到所有元素均排序完毕。

算法四:冒泡排序
冒泡排序示意图
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

算法步骤:
1)比较相邻的元素。

如果第一个比第二个大,就交换他们两个。

2)对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。

这步做完后,最后的元素会是最大的数。

3)针对所有的元素重复以上的步骤,除了最后一个。

4)持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

算法五:归并排序
归并排序示意图
归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。

该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:
1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
2.设定两个指针,最初位置分别为两个已经排序序列的起始位置
3.比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
4.重复步骤3直到某一指针达到序列尾
5.将另一序列剩下的所有元素直接复制到合并序列尾
详细介绍:归并排序
算法六:快速排序
快速排序示意图
快速排序是由东尼·霍尔所发展的一种排序算法。

在平均状况下,排序n个项目要Ο(n log n)次比较。

在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。

事实上,快速排序通常明显比其他Ο(n log n)算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:
1.从数列中挑出一个元素,称为“基准”(pivot),
2.重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。

在这个分区退出之后,该基准就处于数列的中间位置。

这个称为分区(partition)操作。

3.递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。

虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

详细介绍:快速排序
算法七:堆排序
堆排序示意图
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。

堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的平均时间复杂度为Ο(nlogn)。

算法步骤:
1)创建一个堆H[0..n-1]
2)把堆首(最大值)和堆尾互换
3)把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置
4)重复步骤2,直到堆的尺寸为1
详细介绍:堆排序
算法八:基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。

由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

说基数排序之前,我们简单介绍桶排序:
算法思想:是将阵列分到有限数量的桶子里。

每个桶子再个别排序(有可能再使用别的排序算法或是以递回方式继续使用桶排序进行排序)。

桶排序是鸽巢排序的一种归纳结果。

当要被排序的阵列内的数值是均匀分配的时候,桶排序使用线性时间(Θ(n))。

但桶排序并不是比较排序,他不受到O(n log n)下限的影响。

简单来说,就是把数据分组,放在一个个的桶中,然后对每个桶里面的在进行排序。

例如要对大小为[1..1000]范围内的n个整数A[1..n]排序
首先,可以把桶设为大小为10的范围,具体而言,设集合B[1]存储[1..10]的整数,集合B[2]存储(10..20]的整数,……集合B[i]存储((i-1)*10,i*10]的整数,i=1,2,..100。

总共有100个桶。

然后,对A[1..n]从头到尾扫描一遍,把每个A[i]放入对应的桶B[j]中。

再对这100个桶中每个桶里的数字排序,这时可用冒泡,选择,乃至快排,一般来说任何排序法都可以。

最后,依次输出每个桶里面的数字,且每个桶中的数字从小到大输出,这样就得到所有数字排好序的一个序列了。

假设有n个数字,有m个桶,如果数字是平均分布的,则每个桶里面平均有n/m个数字。

如果
对每个桶中的数字采用快速排序,那么整个算法的复杂度是
O(n+m*n/m*log(n/m))=O(n+nlogn–nlogm)
从上式看出,当m接近n的时候,桶排序复杂度接近O(n)
当然,以上复杂度的计算是基于输入的n个数字是平均分布这个假设的。

这个假设是很强的,实际应用中效果并没有这么好。

如果所有的数字都落在同一个桶中,那就退化成一般的排序了。

前面说的几大排序算法,大部分时间复杂度都是O(n2),也有部分排序算法时间复杂度是O(nlogn)。

而桶式排序却能实现O(n)的时间复杂度。

但桶排序的缺点是:
1)首先是空间复杂度比较高,需要的额外开销大。

排序有两个数组的空间开销,一个存放待排序数组,一个就是所谓的桶,比如待排序值是从0到m-1,那就需要m个桶,这个桶数组就要至少m个空间。

2)其次待排序的元素都要在一定的范围内等等。

总结
各种排序的稳定性,时间复杂度、空间复杂度、稳定性总结如下图:
关于时间复杂度:
(1)平方阶(O(n2))排序
各类简单排序:直接插入、直接选择和冒泡排序;
(2)线性对数阶(O(nlog2n))排序
快速排序、堆排序和归并排序;
(3)O(n1+§))排序,§是介于0和1之间的常数。

希尔排序
(4)线性阶(O(n))排序
基数排序,此外还有桶、箱排序。

关于稳定性:
稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

相关文档
最新文档