浙江省中考数学一模试卷(I)卷

合集下载

2020-2021学年浙江省中考数学第一次模拟试卷1及答案解析

2020-2021学年浙江省中考数学第一次模拟试卷1及答案解析

浙江省中考数学一模试卷一、选择题:本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分.1.﹣4的相反数()A.4 B.﹣4 C.D.﹣2.如图所示的立体图形的俯视图是()A. B.C. D.3.下列计算(﹣3a3)2的结果中,正确的是()A.﹣6a5 B.6a5C.﹣9a6 D.9a64.如图,BD⊥AB,BD⊥CD,则∠α的度数是()A.50°B.40°C.60°D.45°5.掷两次1元硬币,至少有一次正面(币值一面)朝上的概率是()A.B.C.D.6.甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A.小于8km/h B.大于8km/h C.小于4km/h D.大于4km/h7.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°8.下列分式运算中正确的是()A.B.C.D.9.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.1610.如图,点M是边长为4cm的正方形的边AB的中点,点P是正方形边上的动点,从点M出发沿着逆时针方向在正方形的边上以每秒1cm的速度运动,则当点P逆时针旋转一周时,随着运动时间的增加,△DMP面积达到5cm2的时刻的个数是()A.5 B.4 C.3 D.2二、填空题:本题有6小题,每小题5分,共30分.11.因式分解2x3﹣8x结果是.12.分式方程=的解是.13.为了比较两箱樱桃的个头大小,分别在两箱樱桃中随机抽出若干颗樱桃,统计其质量(单位:g)如下表:从樱桃的大小及匀称角度看,更好的一箱是.表1:甲箱樱桃抽检结果质量8 9 10 11 12颗数0 3 5 3 1表2:乙箱樱桃的抽检结果质量7 9 10 11 12颗数 1 1 5 4 114.如图,四边形ABCD、EFGH、NHMC都是正方形,边长分别为a,b,c;A,B,N,E,F五点在同一直线上,则c= (用含有a,b的代数式表示).15.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为.16.某一计算机的程序是:对于输入的每一个数,先计算这个数的平方的6倍,再减去这个数的4倍,再加上1,若一个数无论经过多少次这样的运算,其运算结果与输入的数相同,则称这个数是这种运算程序的不变数,这个运算程序的不变数是.三、解答题:本题有8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分.17.计算:﹣()﹣1+()0.18.解方程组:.19.函数y=与y=m﹣x的图象的一个交点是A(2,3),其中k、m为常数.(1)求k、m的值,画出函数的草图.(2)根据图象,确定自变量x的取值范围,使一次函数的函数值大于反比例函数的函数值.20.东西走向笔直的高速公路AB一侧有服务区,服务区内有加油站C,一汽车加油时需要从东面沿着与高速公路成30°角的方向开200m,再在服务区内自西向东行驶100m到加油站加油,然后沿着与高速公路成40°角的方向驶回高速公路.求:该汽车加油过程比不加油直接在高速公路上开多行驶的路程(精确到1m,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,).21.如图,在平行四边形ABCD中,过对角线BD中点的直线交AD、BC边于F、E.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,写出EF与BD的关系.(3)若∠A=60°,AB=4,BC=6,四边形BEDF是矩形,求该矩形的面积.22.为了解某校八、九年级学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如下表统计图表.睡眠情况分组表(单位:时)组别睡眠时间xA 4.5≤x<5.5B 5.5≤x<6.5C 6.5≤x<7.5D 7.5≤x<8.5E 8.5≤x<9.5根据图表提供的信息,回答下列问题:(1)求统计图中的a;(2)抽取的样本中,九年级学生睡眠时间在C组的有多少人?(3)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?(4)请从两个不同的角度评价一下八、九年级学生的总体睡眠情况,并给学校提出合理化的建议.23.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.(1)写出这个四边形的一条性质并证明你的结论.(2)若BD=BC,证明:.(3)①若AB=BC=4,AD+DC=6,求的值.②若BD=CD,AB=6,BC=8,求sin∠BCD的值.24.已知某种水果的批发单价与批发量的函数关系如图1所示.(1)请说明图中①、②两段函数图象的实际意义;(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;(3)经调查,某零售店销售该种水果的日最高销量与零售价之间的函数关系如图3所示,假设当日零售价不变,当日进的水果全部销售完,毛利润=销售收入﹣进货成本,请帮助该零售店确定合理的销售价格,使该日获得的毛利润最大,并求出最大毛利润.参考答案与试题解析一、选择题:本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分.1.﹣4的相反数()A.4 B.﹣4 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣4的相反数4.故选:A.2.如图所示的立体图形的俯视图是()A. B.C. D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上边看第一列前边一个小正方形,中间没有小正方形,后边一个小正方形,第二列中间一个小正方形,故选:C.3.下列计算(﹣3a3)2的结果中,正确的是()A.﹣6a5 B.6a5C.﹣9a6 D.9a6【考点】幂的乘方与积的乘方.【分析】依据积的乘方法则和幂的乘方法则求解即可.【解答】解:原式=(﹣3)2×(a3)2=9a6.故选:D.4.如图,BD⊥AB,BD⊥CD,则∠α的度数是()A.50°B.40°C.60°D.45°【考点】平行线的判定与性质;垂线.【分析】先根据题意•得出AB∥CD,由平行线的性质即可得出结论.【解答】解:∵BD⊥AB,BD⊥CD,∴AB∥CD,∴∠α=50°.故选A.5.掷两次1元硬币,至少有一次正面(币值一面)朝上的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有4种等可能的结果数,再找出至少有一次正面(币值一面)朝上的结果数,然后根据概率公式计算.【解答】解:画出树状图如图,一共有等可能的结果数为4中,至少有一次正面朝上的结果数有3种,∴P(至少有一次正面朝上)=,故选C.6.甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A.小于8km/h B.大于8km/h C.小于4km/h D.大于4km/h【考点】一元一次不等式的应用.【分析】设甲的速度为xkm/h,则乙的速度为xkm/h,根据两地相距24km以及二人2小时以内相遇即可得出关于x的一元一次不等式,解不等式即可得出结论.【解答】解:设甲的速度为xkm/h,则乙的速度为xkm/h,由已知得:2×(x+x)>24,解得:x>8.故选B.7.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°【考点】翻折变换(折叠问题).【分析】先求出∠A'=100,再利用圆内接四边形的性质即可.【解答】解:如图,翻折△ACD,点A落在A'处,∴∠A'=∠A=100°,∵四边形A'CBD是⊙O的内接四边形,∴∠A'+∠B=180°,∴∠B=80°,故选B.8.下列分式运算中正确的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:∵==,∴A是正确的,B、C、D是错误的.故选:A.9.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.16【考点】完全平方公式.【分析】先把(x﹣2015)2+(x﹣2017)2=34变形为(x﹣2016+1)2+(x﹣2016﹣1)2=34,把(x ﹣2016)看作一个整体,根据完全平方公式展开,得到关于(x﹣2016)2的方程,解方程即可求解.【解答】解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.10.如图,点M是边长为4cm的正方形的边AB的中点,点P是正方形边上的动点,从点M出发沿着逆时针方向在正方形的边上以每秒1cm的速度运动,则当点P逆时针旋转一周时,随着运动时间的增加,△DMP面积达到5cm2的时刻的个数是()A.5 B.4 C.3 D.2【考点】动点问题的函数图象.【分析】根据△ADM和△ABM的面积,即可判定点P不可能在AB或AD边上,由此不能得出结论.【解答】解:∵正方形ABCD的边长为4,AM=BM,∴△ADM,△ABM的面积为4,△DMP面积达到5cm2,∴点P不可能在AD或AB边上,P只有可能在BC或CD边上,∴当点P逆时针旋转一周时,随着运动时间的增加,△DMP面积达到5cm2的时刻的个数是2次,故选D.二、填空题:本题有6小题,每小题5分,共30分.11.因式分解2x3﹣8x结果是2x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】原式提取2x,再利用平方差公式分解即可.【解答】解:原式=2x(x2﹣4)=2x(x+2)(x﹣2),故答案为:2x(x+2)(x﹣2)12.分式方程=的解是x=2 .【考点】分式方程的解.【分析】观察可得这个分式方程的最简公分母为x(x﹣1),去分母,转化为整式方程求解,结果要检验.【解答】解:两边都乘以x(x﹣1)得:x=2(x﹣1),去括号,得:x=2x﹣2,移项、合并同类项,得:x=2,检验:当x=2时,x(x﹣1)=2≠0,∴原分式方程的解为:x=2,故答案为:x=2.13.为了比较两箱樱桃的个头大小,分别在两箱樱桃中随机抽出若干颗樱桃,统计其质量(单位:g)如下表:从樱桃的大小及匀称角度看,更好的一箱是甲箱.表1:甲箱樱桃抽检结果质量8 9 10 11 12颗数0 3 5 3 1表2:乙箱樱桃的抽检结果质量7 9 10 11 12颗数 1 1 5 4 1【考点】方差.【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差公式进行计算,即可得出答案.【解答】解:∵甲箱的平均数是:(8×0+9×3+10×5+11×3+12×1)÷(3+5+3+1)=,乙箱的平均数是:(7×1+9×1+10×5+11×4+12×1)÷(1+1+5+4+1)=,∴甲的方差是:[3(9﹣)2+5(10﹣)2+3(11﹣)2+(12﹣)2]=116,乙的方差是:[(7﹣)2+(9﹣)2+5(10﹣)2+4(11﹣)2+(12﹣)2]=212,∴更好的一箱是甲箱;故答案为:甲箱.14.如图,四边形ABCD、EFGH、NHMC都是正方形,边长分别为a,b,c;A,B,N,E,F五点在同一直线上,则c= (用含有a,b的代数式表示).【考点】勾股定理;全等三角形的判定.【分析】由三个正方形如图的摆放,易证△CBN≌△NEH,再根据勾股定理即可解答.【解答】解:由三个正方形如图的摆放,因为四边形ABCD、EFGH、NHMC都是正方形,所以∠CNB+∠ENH=90°,又因为∠CNB+∠NCB=90°,∠ENH+∠EHN=90°,所以∠CNB=∠EHN,∠NCB=∠ENH,又因为CN=NH,∴△CBN≌△NEH,所以HE=BN,故在Rt△CBN中,BC2+BN2=CN2,又已知三个正方形的边长分别为a,b,c,则有a2+b2=c2,∴c=.15.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为.【考点】菱形的性质;平移的性质.【分析】首先得出△MEC∽△DAC,则=,进而得出=,即可得出答案.【解答】解:∵ME∥AD,∴△MEC∽△DAC,∴=,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴=,∴=,∴图中阴影部分图形的面积与四边形EMCN的面积之比为:=.故答案为:.16.某一计算机的程序是:对于输入的每一个数,先计算这个数的平方的6倍,再减去这个数的4倍,再加上1,若一个数无论经过多少次这样的运算,其运算结果与输入的数相同,则称这个数是这种运算程序的不变数,这个运算程序的不变数是和.【考点】解一元二次方程﹣因式分解法.【分析】设这个输入的数为x,根据题意可得6x2﹣4x+1=x,整理成一般式后利用因式分解法求解可得.【解答】解:设这个输入的数为x,根据题意可得6x2﹣4x+1=x,即6x2﹣5x+1=0,∴(2x﹣1)(3x﹣1)=0,则2x﹣1=0或3x﹣1=0,解得:x=或x=,故答案为:和.三、解答题:本题有8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分.17.计算:﹣()﹣1+()0.【考点】二次根式的加减法;零指数幂;负整数指数幂.【分析】分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并.【解答】解:原式=3﹣2+1=+1.18.解方程组:.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:方程组整理得:,①+②得:5x=10,即x=2,把x=2代入①得:y=﹣3,则方程组的解为.19.函数y=与y=m﹣x的图象的一个交点是A(2,3),其中k、m为常数.(1)求k、m的值,画出函数的草图.(2)根据图象,确定自变量x的取值范围,使一次函数的函数值大于反比例函数的函数值.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A的坐标代入函数解析式可得k,m,利用特殊点画出草图即可;(2)先列方程组求另一个交点B的坐标,再根据图象交点可得结论.【解答】\解:(1)把x=2,y=3代入解析式得,k=xy=2×3=6,m=x+y=2+3=5,则y=,y=﹣x+5,草图如下:(2)由题意得:,解得:,∴函数y=与y=5﹣x的图象的另一个交点是B(3,2),由图象得:当2<x<3时,一次函数的函数值大于反比例函数的函数值.20.东西走向笔直的高速公路AB一侧有服务区,服务区内有加油站C,一汽车加油时需要从东面沿着与高速公路成30°角的方向开200m,再在服务区内自西向东行驶100m到加油站加油,然后沿着与高速公路成40°角的方向驶回高速公路.求:该汽车加油过程比不加油直接在高速公路上开多行驶的路程(精确到1m,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,).【考点】解直角三角形的应用.【分析】先将梯形分割成直角三角形和矩形,利用锐角三角函数求出AF,BC,AB,即可.【解答】解:过点C作CE⊥AB,过点D作DF⊥AB.∴四边形CDFE是矩形,∴CE=DF,EF=CD=100m,在Rt△ADF中,DF=ADsin30°=100,AF=ADcos30°≈173,在Rt△BCE中,BC=≈156,BE=≈119,∴AB=AF+EF+BE=392m,AD+CD+BC=456m,∴AD+CD+BC﹣AB=64m,答:汽车进加油站加油比不加油多行驶了大约64m.21.如图,在平行四边形ABCD中,过对角线BD中点的直线交AD、BC边于F、E.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,写出EF与BD的关系.(3)若∠A=60°,AB=4,BC=6,四边形BEDF是矩形,求该矩形的面积.【考点】矩形的性质;全等三角形的判定与性质;平行四边形的判定与性质;菱形的判定与性质.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)根据根据菱形的性质作出判断:EF与BD互相垂直平分;(3)根据Rt△ABF的边角关系,求得BF和AF,再根据矩形的性质,求得DF的长,最后计算矩形的面积.【解答】解:(1)∵四边形ABCD是平行四边形,O是BD中点,∴BC∥AD,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,根据菱形的性质可得:EF与BD互相垂直平分;(3)∵四边形BEDF是矩形∴∠AFB=90°又∵∠A=60°,∴∠ABF=30°,∴AF=AB=×4=2,∴Rt△ABF中,BF=2,又∵AD=BC=6,∴DF=6﹣2=4,∴矩形BEDF的面积=BF×DF=2×4=8.22.为了解某校八、九年级学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如下表统计图表.睡眠情况分组表(单位:时)组别睡眠时间xA 4.5≤x<5.5B 5.5≤x<6.5C 6.5≤x<7.5D 7.5≤x<8.5E 8.5≤x<9.5根据图表提供的信息,回答下列问题:(1)求统计图中的a;(2)抽取的样本中,九年级学生睡眠时间在C组的有多少人?(3)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?(4)请从两个不同的角度评价一下八、九年级学生的总体睡眠情况,并给学校提出合理化的建议.【考点】条形统计图;扇形统计图;可能性的大小.【分析】(1)根据扇形统计图可以求得a的值;(2)根据统计图可以求得九年级学生睡眠时间在C组的人数;(3)根据统计图中的数据可以求得该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性;(4)根据统计图中的数据可以解答本题,可以从众数和中位数两方面进行说明.【解答】解:(1)a=1﹣10%﹣25%﹣35%﹣25%=5%,即统计图中a的值是5%;(2)由题意可得,(6+19+17+10+8)×35%=60×35%=21(人),即抽取的样本中,九年级学生睡眠时间在C组的有21人;(3)八年级抽到的学生为睡眠严重不足的可能性为:,九年级抽到的学生为睡眠严重不足的可能性为:5%+25%=30%=0.3,即八年级抽到的学生为睡眠严重不足的可能性为:,九年级抽到的学生为睡眠严重不足的可能性为0.3;(4)从众数看,八年级落在B组,九年级落在C组,但九年级人数比八年级人数多,说明八年级学生严重睡眠不足的人数多,九年级睡眠较好,八年级学生应增加睡眠时间才能更好的学习;从中位数看,八年级和九年级都落在C组,说明八九年级都有超过半数的学生睡眠时间较多,但最好是增加学生睡眠时间,让更多的学生可以更好的学习.23.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.(1)写出这个四边形的一条性质并证明你的结论.(2)若BD=BC,证明:.(3)①若AB=BC=4,AD+DC=6,求的值.②若BD=CD,AB=6,BC=8,求sin∠BCD的值.【考点】四边形综合题.【分析】(1)结论:AB2+BC2=AD2+DC2,根据勾股定理即可证明.(2)如图1中,过点B作AD的垂线BE交DA的延长线于点E,只要证明△BED∽△ABC,即可解决问题.(3)①如图2中,过点B作BF⊥BD交DC的延长线于F.只要证明△DAB≌△CBF,推出DF=AD+CD=6,求出BD、AC即可.②当BD=CD时,如图3中,过点B作MN∥DC,过点C作CN⊥MN,垂足为NM延长BA交MN 于点N,则四边形DCNM是矩形,△ABM∽△BCN,所以===,设AM=6y,BN=8y,BM=6x,CN=8x,通过BD=DC,列出方程求出x、y的关系,求出AB,即可解决问题.【解答】解:(1)结论:AB2+BC2=AD2+DC2.理由:∵∠ABC=∠ADC=90°,∴AB2+BC2=AC2,BC2+DC2=AC2,∴AB2+BC2=AD2+DC2.(2)如图1中,过点B作AD的垂线BE交DA的延长线于点E,∵∠ABC=∠ADC=90°,∴∠ADC+∠ABC=180°,∴四边形ABCD四点共圆,∴∠BDE=∠ACB,∠EAB=∠BCD,∵∠BED=∠ABC=90°,∴△BED∽△ABC,∴==sin∠EAB=sin∠BCD,(3)①如图2中,过点B作BF⊥BD交DC的延长线于F.∵∠ABC=∠DBF=90°,∠BAD+∠BCD+∠ABC+∠ADC=360°,∠ABC+∠ADC=180°,∴∠BAD=180°﹣∠BCD=∠BCF,∵∠BCF=∠BAD,BC=BA,∴△DAB≌△CBF,∴BD=BF,AD=CF,∵∠DBF=90°,∴△BDF是等腰直角三角形,∴BD=DF,∵AD+CD=6,∴CF+CD=DF=6,∴BD=3,AC==4,∴==.②当BD=CD时,如图3中,过点B作MN∥DC,过点C作CN⊥MN,垂足为NM延长BA交MN 于点N,则四边形DCNM是矩形,△ABM∽△BCN,∴===,设AM=6y,BN=8y,BM=6x,CN=8x,在Rt△BDM中,BD==10x,∵BD=DC,∴10x=6x+8y,∴x=2y,在Rt△DABM中,AB==6y,∴sin∠BCD=sin∠MAB===.24.已知某种水果的批发单价与批发量的函数关系如图1所示.(1)请说明图中①、②两段函数图象的实际意义;(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;(3)经调查,某零售店销售该种水果的日最高销量与零售价之间的函数关系如图3所示,假设当日零售价不变,当日进的水果全部销售完,毛利润=销售收入﹣进货成本,请帮助该零售店确定合理的销售价格,使该日获得的毛利润最大,并求出最大毛利润.【考点】二次函数的应用.【分析】(1)直接写出两段函数图象的实际意义:①横坐标为批发量0~70kg,纵坐标为6元/kg;②横坐标为批发量大于70kg,纵坐标为4元/kg;(2)资金金额w=批发量×单价,并画出两个正比例函数图象,两函数图象纵标公共的部分即为同样的资金,根据图形数据写出即可;(3)设出变量,分别计算出两个分段函数日最高销量与零售价之间的函数关系式,根据毛利润=销售收入﹣进货成本计算出毛利润的函数关系式,并求出最值,对比后写出使该日获得的毛利润最大的合理的销售价格,并计算出最大利润.【解答】解:(1)①表示批发量少于70kg时,批发价为6元/kg;②表示批发量达到70kg以上时,批发价为4元/kg;(2)w=,图象如图2所示,当m=70时,6m=6×70=420,4m=4×70=280,∴资金金额在280≤w<420时,以同样的资金可以批发到较多数量的该种水果;(3)设销售价格为x元/kg,日最高销量为ykg,毛利润为w元,当6≤x≤10时,设解析式为:y=kx+b,把(6,80)、(10,60)代入得:,解得:,∴y=﹣5x+110,当70≤y≤80时,w=(﹣5x+110)(x﹣4)=﹣5x2+130x﹣440=﹣5(x﹣13)2+405,y随x的增大而增大,所以当x=8时,有最大利润为:w=﹣5(8﹣13)2+405=280,当60≤y<70时,w=(﹣5x+110)(x﹣6)=﹣5x2+140x﹣660=﹣5(x﹣14)2+320,y随x的增大而增大,所以当x=10时,有最大利润为:w=﹣5(10﹣14)2+320=240,当10<x≤14时,同理求出解析式为:y=﹣10x+160,∴w=(﹣10x+160)(x﹣6)=﹣10x2+220x﹣960=﹣10(x﹣11)2+250,当x=11时,w有最大值为:250,综上所述:当x=8时,有最大利润为280元,则该零售店销售价格定为8元时,该日获得的毛利润最大,最大利润为280元.。

2024年中考数学第一次模拟考试(浙江卷)(全解全析)

2024年中考数学第一次模拟考试(浙江卷)(全解全析)

2024年中考第一次模拟考试(浙江卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.设x 是用字母表示的有理数,则下列各式中一定大于零的是( )【答案】D【分析】本题考查了非负数的性质,三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).根据含绝对值、平方的数都是非负数,它们的值都大于等于0,由此可解此题. 【详解】解:当0x <时,2x +与2x 都小于0, 当0x =时,x =,而不论x 取何值,20x ≥,22x +必大于0.故选:D .A .235m n mn +=B .220a b ba −+=C .22423x x x +=D .()33a b a b +=+【答案】B【分析】本题考查整式的加法运算,根据合并同类项法则判定A 、B 、C ;根据去括号法则判定D 即可. 【详解】解:A. 23m n +没有同类项不能合并;故本选项不符合题意;B. 220a b ba −+=故该选项正确,符合题意;C. 22223x x x +=,故该选项不正确,不符合题意;D.()333a b a b+=+故该选项不正确,不符合题意;故选:B .3.2023年9月23日第19届杭州亚运会开幕,有最高2640000人同时收看直播,数字2640000用科学记数法可以表示为( ) A .42.6410⨯ B .52.6410⨯ C .62.6410⨯ D .72.6410⨯【答案】C【分析】本题考查用科学记数法表示较大的数,用科学记数法表示较大的数时,一般形式为10na ⨯,确定a与n 的值是解题的关键. 【详解】解:2640000,共有7位数字,2的后面有6位,∴62640000 2.6410=⨯,故选:C .4.由6个同样的立方体摆出从正面看是的几何体,下面摆法正确的是( )A .B .C .D .【答案】B【分析】根据主视图:从正面看得到几何体的图像,逐个判断即可得到答案. 【详解】解:A A 不符合题意;B 选项图形主视图得到两行三列,且第一列由两个,其余的一个,故B 符合题意;C 选项图形主视图得到两行三列,且第一二列都是两个,故C 不符合题意;D 选项图形主视图得到两行四列,故D 不符合题意; 故选:B .【点睛】本题考查主视图:从正面看得到几何体的图像叫几何体的主视图.A .1−B .0C .1D .2【答案】D【分析】根据分子、分母的取值范围进行判断即可.【详解】解:∵222x ≥+,211x +≥,且2221x x +≠+,∴2221x x ++的值不可能是1−、0、1;当0x =时,分式2221x x ++的值等于2,故选:D .【点睛】本题考查了分式的求值,正确得出分子、分母的取值范围是解题的关键.6.如图,BC 是O 的切线,点B 是切点,连接CO 交O 于点D ,延长CO 交O 于点A ,连接AB ,若30C ∠=︒,2OD =,则AB 的长为( )【答案】C【分析】此题重点考查切线的性质定理、等边三角形的判定与性质、勾股定理等知识.连接OB 、DB ,由AD 是O 的直径,得90ABD Ð=°,24AD OD ==,由切线的性质得90OBC ∠=︒,而30C ∠=︒,则60BOC ∠=︒,所以BOD ∆是等边三角形,则2BD OD ==,所以AB ==【详解】解:连接OB 、DB ,则2OB OD ==,AD 是O 的直径,90ABD ∴∠=︒,24AD OD ==, BC 与O 相切于点B , BC OB ∴⊥, 90OBC ∴∠=︒, 30C ∠=︒, 60BOC ∴∠=︒,BOD ∴是等边三角形,2BD OD ∴==,AB ∴故选:C .【答案】A【分析】本题考查了概率公式,直接利用概率公式求解.【详解】解:因为与10号座位相邻得有2个座位(9号和11号),所以小亮从其余的票中任意抽取一张,取得的一张恰与小明邻座的概率为219.故选:A .8.已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别是1M 和2M ,若存在实数m ,使得121M M −=,则称函数1y 和2y 符合“特定规律”,以下函数1y 和2y 符合“特定规律”的是( )【答案】B【分析】本题主要考查一元二次方程根的判别式、二次函数的性质.根据题中所给定义及一元二次方程根的判别式可直接进行排除选项. 【详解】解:当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得121M M −=,A 、有22270m m −+=,24456520b ac ∆=−=−=−<,所以不存在实数m ,故不符合题意;B 、有2290m m +−=,24436400b ac ∆=−=+=>,所以存在实数m ,故符合题意;C 、有22270m m ++=,24456520b ac ∆=−=−=−<,所以不存在实数m ,故不符合题意;D 、有2270m m ++=,24428240b ac ∆=−=−=−<,所以不存在实数m ,故不符合题意;故选:B .PE OA ,【答案】B【分析】过P 作PM OB ⊥于M ,再判定四边形PFOE 为平行四边形,再根据勾股定理求出边和高,最后求出面积.【详解】解:过P 作PM OB ⊥于M ,由作图得:OP 平分AOB ∠, ∴1302POB AOP AOB ∠=∠=∠=︒,∴13cm 2PM OP ==,∴OM =∵PE OA ,PF OB ∥,∴四边形PFOE 为平行四边形,30EPO POA ∠=∠=︒, ∴POE OPE ∠=∠, ∴OE PE =, 设OE PE x ==,在Rt PEM 中,222PE MP EM −=,即:()2223x x−=,解得:x =∴)·3cm OEPF S OE PM ===四边形.故选:B .【点睛】本题考查了基本作图,掌握平行四边形的判定定理,勾股定理及平行四边形的面积公式是解题的关键.【答案】A【分析】本题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的性质,余角性质,三角函数,过点Q 作QN AB ⊥于N ,连接Q B F 、、,先证明ENQ CBE ≌,得到EB QN BN BG CG ====,设EB QN BN BG CG a =====,则2AB BC CD AD a ====,AN a =,再证明CBE CDP ≌、PAM QNM ≌,得到PA a =,12AM a =,32BM a =,利用三角函数即可求解,正确作出辅助线是解题的关键.【详解】解:过点Q 作QN AB ⊥于N ,连接Q B F 、、,则90QNE QNM ∠=∠=︒,∵四边形ABCD 、四边形BEFG 、四边形CPQE 是正方形,∴EC EQ =,CB CD =,90GBE CEQ BCD PCE A ∠=∠=∠=∠=∠=︒, ∵点Q B F 、、三点共线, ∴45QBN EBF ∠=∠=︒,∴EBF BQN 、都是等腰直角三角形, ∴QN BN =,∵90BCE BEC ∠+∠=︒,90QEN BEC ∠+∠=︒, ∴BCE QEN ∠=∠,在ENQ △和CBE △中,90ENQ QEN BCE EQ CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS ENQ CBE ≌,∴EN CB =,QN EB =, ∵QN BN =, ∴2EN CB EB ==,∴EB QN BN BG CG ====,设EB QN BN BG CG a =====,则2AB BC CD AD a ====,2AN a a a =−=, ∵90DCP BCP ∠+∠=︒,90BCE BCP ∠+∠=︒, ∴DCP BCE ∠=∠,在CBE △和CDP △中,90CBE D CB CDBCE DCP ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴()ASA CBE CDP ≌,∴BE DP a ==, ∴2PA a a a =−=, ∴PA QN =,在PAM △和QNM △中,90PMA QMN A QNM PA QN ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴()AAS PAM QNM ≌,∴1122AM MN AN a ===, ∴13222BM a a a=−=, 在Rt PAM 中,112tan tan 2aAM APM PA a α∠====, 在Rt BCM △中,332tan tan 24aBM BCM BC a β∠===, ∵tan tan n αβ=, ∴1324n =⨯, ∴23n =,故选:A .第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)【答案】2【分析】根据平方差公式计算即可.【详解】解:原式21312=−=−=.故答案为:2.【点睛】本题考查了二次根式的混合运算,熟记平方差公式是解题的关键.12.如图,在ABC 中,AB AC =.过点C 作ACB ∠的平分线交AB 于点D ,过点A 作AE DC ∥,交BC 延长线于点E .若36E ∠=︒,则B ∠= ︒.【答案】72【分析】本题考查平行线及角平分线的定义,等腰三角形的性质.先利用平行线的性质求出36E BCD ∠=∠=︒,再利用角平分线的定义和等边对等角计算. 【详解】解:36E ∠=︒,AE DC ∥,36E BCD ∴∠=∠=︒,CD 平分ACB ∠,72ACB ∴∠=︒;AB AC =, 72B ACB ∴∠=∠=︒.故答案为:72.【答案】120,4x x ==/124,0x x ==【分析】本题考查了求抛物线解析式,一元二次方程的解,通过表格数据求出a b c 、、然后代入方程23ax bx c ++=即可求解.【详解】解:由表格可知抛物线经过()()()0,33,01,0;;,抛物线解析式为:2y ax bx c =++,将()()()0,33,01,0;;代入2y ax bx c =++可得:39300c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:143a b c =⎧⎪=−⎨⎪=⎩,2343x x +−∴=移项可得:240x x −=因式分解可得:()40x x −=解得:120,4x x ==.14.如图,P 为直径AB上的一点,点M 和N 在O 上,且30APM NPB ∠∠︒==.若2cm OP =,16cm AB =,则PN PM =+ cm .【答案】【分析】本题考查了垂径定理,含30度的直角三角形三边的关系和勾股定理.延长NP 交O 于Q ,作OH NQ ⊥于H ,连接MQ ON ,,如图,由APM NPB ∠=∠,APQ NPB ∠=∠得到APM APQ ∠=∠,利用圆的对称性得到点M 与点Q 关于AB 对称,则PM PQ =,所以PN PM PQ PN NQ +=+=,在Rt OPH 中利用含30度的直角三角形三边的关系得到1cm OH =,则在Rt OHN 中可勾股定理计算出NH =,然后根据垂径定理得到NH QH =,2NQ NH ==,即可得到PN PM +的值. 【详解】解:延长NP 交O 于Q ,作OH NQ ⊥于H ,连接MQ ON ,,如图,∵APM NPB ∠=∠, 而APQ NPB ∠=∠, ∴APM APQ ∠=∠,∴点M 与点Q 关于AB 对称, ∴PM PQ =,∴PN PM PQ PN NQ +=+=, 在Rt OPH 中,∵2cm 30OP OPH =∠=︒,, ∴1cm OH =, 在Rt OHN 中, ∵1cm OH =,18cm 2ON AB ==,∴NH ,∵OH NQ ⊥, ∴NH QN =,∴2NQ NH ==,故答案为:15.如图1是一款重型订书机,其结构示意图如图2所示.其主体部分为矩形EFGH ,由支撑杆CD 垂直固定于底座AB 上,且可以绕点D 旋转.压杆MN 与伸缩片PG 连接,点M 在HG 上,MN 可绕点M 旋转,PG ⊥HG ,DF =8cm ,GF =2cm ,不使用时,EF ∥AB ,G 是PF 中点,且点D 在NM 的延长线上,则MG = cm ,使用时如图3,按压MN 使得MN ∥AB ,此时点F 落在AB 上,若CD =2cm ,则压杆MN 到底座AB 的距离为 cm .【答案】 4【分析】本题主要考查解直角三角形的应用,正确做出辅助线是解题的关键.如图2,延长NM ,则NM 过点D ,由三角形中位线定理可得MG 的长度,如图3,过点P 作PK AB ⊥于K ,可得PFK CDF MPF ∠=∠=∠在Rt CDF △中,CF ==,知tan CFCDF CD ∠==,故tan MPF ∠=可得PG =,PF PG GF =+=,由CDF KFP ∽,得=,即可得压杆MN 到底座AB的距离为. 【详解】解:如图2,延长NM ,则NM 过点D ,四边形EFGH 是矩形,HG EF ∴∥,即MG DF ∥,G 是PF中点,MG ∴是PDF △的中位线,1184cm 22MG DF ∴==⨯=,如图3,过点P 作PK AB ⊥于K ,MN AB ∥,,PK AM MPF PFK ∴⊥∠=∠, 90DFP DCF ∠=∠=︒,90CDF DFC PFK DFC ∴∠+∠=∠+∠=︒, PFK CDF MPF ∴∠=∠=∠,在Rt CDF △中,CF ==知tan CFCDF CD ∠==∴tan MPF ∠MGPG =4PG ∴=解得PG =,∴PF PG GF =+=,,90CDF PFK DCF PKF ∠=∠∠=︒=∠,∴CDF KFP ∽,得=,解得PK =,∴压杆MN 到底座AB的距离为, 故答案为:4,.【答案】3【分析】设小正方形在线段DE 上的一个顶点为M ,CD 与GH 相交于点P ,由大正方形与小正方形的面积之比为5,可推出AD =,设EM a =,AE b =,则AD =,利用勾股定理和多项式的因式分解推出a b =;延长BF 交CD 于点N ,利用平行线分线段成比例定理可证N 是CD 的中点以及14FN PN FP BF BG GF ===,设PN x =,则4BG x =,证BFG DEP ≌得4PD BG x ==,同理得EG FP =,由此可推出2PC x =;由CP BG ∥,得CP PHBG GH =,可求得PH 与PG 的长,最后由2EF PG EG =−求出a 的值即可.【详解】解:设小正方形在线段DE 上的一个顶点为M ,CD 与GH 相交于点P , ∵大正方形与小正方形的面积之比为5,∴ADEM =∴AD ,设EM a =,AE b =,则AD =,由勾股定理得:222AE DE AD +=,∴())222b a b ++=,∴222240b ab a +−=,∴2220b ab a +−=,∴()()20b a b a −+=,∵20b a +≠, ∴0b a −=, ∴b a =,∴AE EM DM CF a ====, 延长BF 交CD 于点N ,∵BN DE ∥,CF FM =, ∴DN CN =, ∴1122FN DM a ==,∵PN BG ∥,∴11224aFN PN FP BF BG GF a ====, 设PN x =,则4BG x =, ∵BN DE ∥,AB CD ∥,∴BFG DEF ∠=∠,BGF DPE ∠=∠, ∵DE BF =, ∴()AAS BFG DEP ≌,∴4PD BG x ==, 同理可得:EG FP =, ∴3DN x CN ==, ∴2PC x =, ∵CP BG ∥,∴CP PH BG GH =,即24x x =∴PH PG == ∵14FP FG =,即4FG FP =,∴EG FP ==,∴2EF PG EG =−===,∴a =,∴3AD =, 故答案为:3.【点睛】本题主要考查了平行线分线段成比例定理,正方形的性质,全等三角形的判定与性质,勾股定理,因式分解等知识,灵活运用平行线分线段成比例定理和勾股定理求出线段之间的关系是解答本题的关键. 三、解答题(本大题共8个小题,共72分.解答应写出文字说明,证明过程或演算步骤)(2)解不等式:3(2)2(2)−>+x x .【答案】(1)3(2)10x >【分析】本题考查了实数的运算以及解一元一次不等式;(1)分别根据零指数幂的定义,绝对值的性质以及二次根式的性质,计算即可; (2)不等式去括号,移项,合并同类项,化系数为1即可.【详解】(1)原式12=+-3= (2)3(2)2(2)−>+x x , 去括号,得3642−>+x x , 移项,得3246−>+x x , 合并同类项,得10x >.【答案】错误步骤的序号为①,解法见详解.【分析】本题考查检查解分式方程;错误步骤的序号为①,解方程去分母转化为整式方程,()2322(1)x x x +−−=−−,进而解这个整式方程,最后检验,即可求解.【详解】解:错误步骤的序号为①, 231222x x x x +−−=−−去分母得:()()23221x x x +−−=−−去括号得:23241x x x +−+=−+ 移项得:22134x x x −+=−−…③, 合并同类项得:6x =−…④, 检验:当6x =−时,20x −≠, ∴6x =−是原分式方程的解.19.(8分)某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.名学生两次知识竞赛的获奖情况统计表参与奖 优秀奖 卓越奖 第一次 竞 赛人 数1010 10 平均分 8287 95根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“〇”圈出代表小松同学的点; (2)直接写出m ,n 的值;(3)请判断第几次竞赛中初三年级全体学生的成绩水平较高,并说明理由. 【答案】(1)见解析 (2)88m =,90n = (3)二,理由见解析【分析】本题考查统计图分析,涉及中位数、加权平均数、众数,(1)根据这30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图可得横坐标是89,纵坐标是90的点即代表小松同学的点;(2)根据平均数和中位数的定义可得m 和n 的值; (3)根据平均数,众数和中位数进行决策即可. 【详解】(1)解:(1)如图所示.(2)8210871095108830m ⨯+⨯+⨯==,∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为: 90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98, ∴第一和第二个数是30名学生成绩中第15和第16个数, ∴9090902n +==,∴88m =,90n =;(3)可以推断出第二次竞赛中初三年级全体学生的成绩水平较高, 理由是:第二次竞赛学生成绩的平均数、中位数、众数都高于第一次竞赛. 答:二,第二次竞赛学生成绩的平均数、中位数、众数都高于第一次竞赛.20.(8分)某校九年级学生在数学社团课上进行了项目化学习研究,某小组研究如下:【答案】任务1:剪掉的正方形的边长为9cm .任务2:当剪掉的正方形的边长为10cm 时,长方形盒子的侧面积最大为2800cm .【分析】此题主要考查了一元二次方程和二次函数的应用,找到关键描述语,找到等量关系准确地列出方程和函数关系式是解决问题的关键.任务1:假设剪掉的正方形的边长为cm x ,根据长方形盒子的底面积为2484cm ,得方程()2402484x −=,解所列方程并检验可得;任务2:侧面积有最大值,设剪掉的正方形边长为cm a ,盒子的侧面积为2cm y ,利用长方形盒子的侧面积为:()4024y a a =−⨯⨯得出即可.【详解】解:任务1:设剪掉的正方形的边长为cm x ,则()2402484x −=,即40222x −=±,解得131x =(不合题意,舍去),29x =,答:剪掉的正方形的边长为9cm . 任务2:侧面积有最大值. 理由如下:设剪掉的小正方形的边长为cm a ,盒子的侧面积为2cm y , 则y 与x 的函数关系为:()4024y a a =−⨯⨯,即28160y a a =−+,即()2810800y a =−−+,∴10a =时,800y =最大.即当剪掉的正方形的边长为10cm 时,长方形盒子的侧面积最大为2800cm .21.(10分)为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高AB 为2cm,150ABC ∠=︒,支架BC 为18cm ,面板长DE 为24cm,CD 为6cm .(厚度忽略不计)(1)求支点C 离桌面l 的高度;(计算结果保留根号)(2)小吉通过查阅资料,当面板DE 绕点C 转动时,面板与桌面的夹角α满足3070α︒≤≤︒时,能保护视力.当α从30︒变化到70︒的过程中,问面板上端E 离桌面l 的高度是增加了还是减少了?增加或减少了多少?(精确到0.1cm ,参考数据:sin700.94︒≈,cos700.34,tan70 2.75︒≈︒≈)【答案】(1)支点C 离桌面l 的高度()2cm;(2)面板上端E 离桌面l 的高度是增加了,增加了约7.9cm【分析】(1)作,CH l BF l ⊥∥,先在Rt CFB 求出CF 的长,再计算CF AB +即可得答案; (2)分别求出70ECG ∠=︒时 和30ECG ∠=︒时,EG 的长,相减即可. 【详解】(1)解:如下图,作,CH l BF l ⊥∥,150ABC ∠=︒,1509060CBF ∴∠=︒−︒=︒,18BC =,sin 601818CF ∴=︒⨯==2CH CF FH CF AB ∴=+=+=∴支点C 离桌面l 的高度()2cm;(2)24,6DE CD ==Q ,24618CE ∴=−=,当70ECG ∠=︒时,sin7018EG =︒⨯, 当30ECG ∠=︒时,sin3018EG =︒⨯,()()sin 7018sin301818sin 70sin30180.940.5180.447.9︒⨯−︒⨯=⨯︒−︒≈⨯−≈⨯≈,∴面板上端E 离桌面l 的高度是增加了,增加了约7.9cm .【点睛】本题考查了解直角三角形的应用,解题的关键是作辅助线,构造直角三角形.CF 的值; 32CBF =△,求m 的值. 上一点,且满足GAC EBC ∠=∠,设CE x GB y ==,,试探究【答案】(2)1m = (3)933xy x −=+()03x ≤≤【分析】本题考查了相似三角形的判定与性质、正方形的性质等知识点,掌握相似三角形判定定理的内容是解题关键.(1)证CEF ABF △∽△可得CE CFAB AF =,结合AF AC CF =−即可求解; (2)由CE m ED =可得1AF A CF CE B m m ==+,进一步可得21CBF BC S m S m =+△△A ,据此即可求解;(3)由(1)可得CF =,证ACG BCF ∽得CG ACCF BC ==【详解】(1)解:由题意得:,3AB CE AB BC ==∥∴,CEF ABF AC =V V ∽∴CE CFAB AF =即:13解得:CF =(2)解:∵CEm ED =,∴1C CD E m m =+ ∴1C AB E mm =+由(1)可得:1AF A CF CE B mm ==+∴1CBF BF S mS m =+△△A ∴21CBF BC S mS m =+△△A∵1922ABC S AB BC =⨯⨯=V ,32CBF S =△ ∴31292132m m ==+ 解得:1m =(3)解:由(1)得:CE CFAB AF =即:3x解得:CF =∵GAC EBC ∠=∠,ACG BCF ∠=∠ ∴ACG BCF ∽∴CG ACCF BC ==即:3yCF −=∴=整理得:933xy x −=+∵0y ≥∴930x −≥,3x ≤ 又0x ≥ ∴03x ≤≤ 故:933xy x −=+()03x ≤≤轴正半轴上一点,E 交x 轴于【答案】(1)120 (2)2 (3)2AQ = (4)【分析】本题主要考查了垂径定理在圆中的应用,最后一问由“共顶点,等线段”联想到旋转,是此题的突破口,同时,要注意顶角为120︒的等腰三角形腰和底边比是固定值.(1)由已知得到CD 垂直平分AE ,故得到CA AE =,证明ACE △为等边三角形即可得到答案;(2)由于直径AB CD ⊥,根据垂径定理可以得到O 是CD 的中点,要求OG 最大值即求PD 最大值,当PD 为直径时,有最大值,即可得到答案;(3)根据垂径定理得到AC AD =,证明ACQ AQC ∠=∠,由(1)得4AC AE ==,即可得到答案;(4)将ACP △绕A 点顺时针旋转120︒至ADM △,得到ACP ADM ≌△△,证明PD PC PD DM PM +=+=,过A 作AG PM ⊥于G ,则2PM PG =,根据勾股定理证明. 【详解】(1)解:连接AC ,CE , (1,0)A −、(1,0)E ,1OA OE ∴==,OC AE ⊥,AC CE ∴=, AE CE =, AC CE AE =∴=, 60CAE ∴∠=︒,2120BEC CAB ∴∠=∠=︒,∴BC 的度数为120︒;(2)解:由题可知,AB 为E 直径,且AB CD ⊥, 由垂径定理可得,CO OD =, 连接PD ,G 是PC 的中点,1,2OG PD OG PD ∴=∥,当D E P 、、三点共线时,此时DP 取得最大值,且24DP AB AE ===,OG ∴的最大值为2;(3)解:连接,AC BC ,AB CD ⊥,∴AC AD =,ACD CPA ∴∠=∠,CQ Q 平分DCP ∠,DCQ PCQ ∴∠=∠,ACD DCQ CPA PCQ ∴∠+∠=∠+∠, ACQ AQC ∴∠=∠, AQ AC ∴=,60,1CAO AO ∠=︒=, 2AC ∴=,2AQ ∴=;(4)证明:由题可得,直径AB CD ⊥,AB ∴垂直平分CD ,如图4,连接AC ,AD ,则AC AD =,由(1)得,120DAC ∠=︒将ACP △绕A 点顺时针旋转120︒至ADM △,ACP ADM ∴≌△△,ACP ADM ∴∠=∠,PC DM =,四边形ACPD 为圆内接四边形,180ACP ADP ∴∠+∠=︒, 180ADM ADP ∴∠+∠=︒, M ∴、D 、P 三点共线,PD PC PD DM PM ∴+=+=,过A 作AG PM ⊥于G ,则2PM PG =,30APM ACD ∠=∠=︒,在Rt APG 中,30APM ∠=︒, 设AG x =,则2AP x =,PG ∴=,2PM PG ∴==,PM ∴,PC PD ∴+=,PC PDPA +∴=24.(12分)如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C ,点Q 在第一象限的拋物线上,连接AB AQ BQ 、、,BQ 与y 轴交于点N .AI在平面内,若BME AOM ≌,且四边形将BPH 绕点【答案】(1)2433y x x =−−+;(2)①(2E −,2)−;②11BP的最小值为【分析】(1)将点B 、C 的坐标代入抛物线,利用待定系数法求得解析式;(2)①由Q 坐标求出BQ 解析式,然后根据四边形ANEM 是平行四边形和BME AOM ≌得出4BM OA ==,再分类讨论求得M 和E 的坐标;②求出AM 解析式,交点为P ,再求出H 坐标,然后由两点间距离公式求出BP 和BH 长度,因为旋转不改变长度,所以1BP 长度不变,当H 旋转到x 轴上时,此时1OH 最短,所以此时1OH 等于BO BH −,然后带入计算即可.【详解】(1)解:①∵抛物线24y ax bx =++交x 轴于点()6,0B −和点()2,0C , ∴将B 、C 坐标代入有366404240a b a b −+=⎧⎨++=⎩,解得1343a b ⎧=−⎪⎪⎨⎪=−⎪⎩ ∴抛物线的表达式为214433y x x =−−+;(2)解:∵抛物线的表达式为214433y x x =−−+,∴4OA =,设直线BQ 的解析式为1y kx b =+∵ 0()6,B −,71,3Q ⎛⎫ ⎪⎝⎭, ∴ 117360k b k b ⎧+=⎪⎨⎪−+=⎩,解得1132k b ⎧=⎪⎨⎪=⎩ ∴直线BQ 的解析式为1+23y x =∵N 为BQ 与y 轴交点, ∴()0,2N ,∴2AN =,∵四边形ANEM 是平行四边形∴∥AN EM 且2EM AN ==,且点E 在点M 下方, ∵BME AOM ≌且M 在x 轴上 ∴4BM OA ==, ∵(6B −,0)∴(2M −,0)或(10−,0) 若M 为(2−,0),∵90BME AOM ︒∠=∠=,故(2E −,2)−若M 为(10−,0),∵2OM ME ==,此时10OM =,(矛盾,舍去) 综上(2E −,2)−;②11BP +最小值为如图,设AM 的解析式为y kx b =+∵抛物线24y ax bx =++交y 轴于点A , ∴点A 的坐标为(0,4)将点(0A ,4)、(2M −,0)的坐标代入y kx b =+得:420b k b =⎧⎨−+=⎩,解得24k b =⎧⎨=⎩ ∴AM 的解析式为24y x =+ AM 与BQ 相交于点P∴24123y x y x =+⎧⎪⎨=+⎪⎩,解得6585x y ⎧=−⎪⎪⎨⎪=⎪⎩ 所以点P 的坐标为68()55−,设直线BE 的解析式为y mx n =+将点B 、E 的坐标代入直线BE 的解析式得:2260m n m n −+=−⎧⎨−+=⎩,解得123m n ⎧=−⎪⎨⎪=−⎩所以直线BE 的解析式为132y x =−−BE 与AM 相交于点H∴24132y x y x =+⎧⎪⎨=−−⎪⎩,解得14585x y ⎧=−⎪⎪⎨⎪=−⎪⎩, ∴点H 的坐标为14855⎛⎫−− ⎪⎝⎭, ∴BP=5= BH=,∴1BP =,当H 旋转到x 轴上时,此时1OH 最短,∴1OH BO BH =−=6,BP==∴11BP+的最小值故11【点睛】本题考查了抛物线的综合运用,利用待定系数法求函数的解析式,找出相关点坐标,逐步分析求解是解题的关键.。

2023年浙江省杭州市萧山区中考数学一模试卷(含解析)

2023年浙江省杭州市萧山区中考数学一模试卷(含解析)

2023年浙江省杭州市萧山区中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列式子:①2+(−2);②2−(−2);③2×(−2);④2÷(−2)中,其计算结果最大的是( )A. ①B. ②C. ③D. ④2. 已知a2=3,则实数a的值为( )A. 9B. 3C. 3D. ±33.如图,AB//CD,∠A=52°,∠C−∠B=6°,则∠B的度数为( )A. 46°B. 49°C. 55°D. 58°4. 一组数据:1,3,3,5,若添加一个数据3,则发生变化的统计量是( )A. 平均数B. 中位数C. 众数D. 方差5. 植树节,某校需完成一定的植树任务,其中九年级共种了任务数的一半,八年级种了剩,七年级共种了a棵树苗.则该校植树的任务数为棵.( )下任务数的23A. 6aB. 5aC. 4aD. 3a6.如图,AD是△ABC的高线,则下列结论正确的是( )A. 若BD>CD,则∠B>∠CB. 若AC>BC,则AD>BCC. 若BD=CD,则AB=ACD. 若AD=BC,则∠B=∠C7. 如图,边长为a的大正方形剪去4个边长为x的小正方形,做成一个无盖纸盒.若无盖纸盒的底面积与表面积之比为3:5,则根据题意可知a,x满足的关系式为( )A. a−2xa+2x =35B. a+2xa−2x=35C. a−xa+x=25D. a+xa−x=258. 已知y−m与x−1成正比例,且当x=−2时,y=3.若y关于x的函数图象经过二、三、四象限,则m的取值范围为( )A. −32<m<0 B. −34<m<0 C. m<−32D. m<−349. 已知二次函数y=(ax−1)(x−a)(a为不等于零的常数),命题①:点(12,5)不在该函数图象上;命题②:该函数图象的对称轴在y轴左侧;命题③:该函数图象与y轴的交点位于原点的上方;命题④:该函数有最小值,且最小值不大于零.如果这四个命题中只有一个命题是假命题,则这个假命题是( )A. 命题①B. 命题②C. 命题③D. 命题④10.如图,在⊙O中,直径AB与弦CD相交于点E,连结弦BC,BD,AD.若∠ABC=2∠ABD,给出下列结论:①BC=BE;②2AD2=AE⋅AB,则下列判断正确的是( )A. ①,②都对B. ①,②都错C. ①对,②错D. ①错,②对第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)11. |2023|=______ .12. 计算:1a −3a=______ .13. 一个仅装有球的不透明布袋里共有3个球(只有编号不同),编号分别为1,2,3.从中任意摸出一个球,摸出的球编号为奇数的概率是______ .14. 已知△ABC中,∠ACB=Rt∠,AC=BC=5.若点P在△ABC内部及边上运动,且满足∠P AB≥∠PBA,则所有满足条件的点P形成的区域的面积为______ .15. 已知点P(x1,y1)Q(x2,y2)在反比例函数y=6x图象上.(1)若x1x2=2,则y1y2=______ .(2)若x1=x2+2,y1=3y2,则当自变量x>x1+x2时,函数y的取值范围是______ .16.如图,矩形ABCD中,BC=9,点E为BC上一点,将△ABE沿着AE翻折得到△AFE,连结CF.若∠FEC=2∠FCE,且CF=6,则BE的长为______ ,AB的长为______ .三、解答题(本大题共7小题,共66.0分。

最新浙江省中考数学第一次模拟考试试卷附解析

最新浙江省中考数学第一次模拟考试试卷附解析

浙江省中考数学第一次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列说法错误的是()A.太阳光所形成的投影为平行投影B.在一天的不同时刻,同一棵树所形成的影子长度不可能一样C.在一天中,不论太阳怎样变化,两棵相邻平行树的影子都是平行的D.影子的长短不仅和太阳的位置有关,还和物体本身的长度有关2.如图,在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°,现A、B两地要同时开工,若干天后公路准确对接,则B地所修公路的走向应该是()A.北偏西52°B.南偏东52°C.西偏北52°D.北偏西38°3.已知扇形的半径为3 cm,弧长为 4πcm,则圆心角为()A.120°B. 240°C. 270°D. 320°4.化简4的结果的是()A.-2 B.2 C.2±D.165.下列命题为真命题的是()A.三角形的中位线把三角形的面积分成相等的两部分B.对角线相等且相互平分的四边形是正方形C.关于某直线对称的两个三角形是全等三角形D.一组对边平行,另一组对边相等的四边形一定是等腰梯形6.如图所示,小明在A处,小红在B处,小李在C处,AB=10 m,BC=8 m,下列说法正确的是()A.小红在小明东偏北35°处B.小红在小明南偏西55°处C.小明在小红南偏西55°的距离为10 m处D.小明在小李北偏东35°的距离为18 m处7.下列说法中,正确的个数是()①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的;④一组数据的标准差越大,则这组数据的方差一定越大.A.1个B.2个C.3个D.4个8.某班共有学生 49 人. 一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半. 若设该班男生人数为 x(人),女生入数为 y(人),则下列方程组中,能正确计算出 x,y 的是()A.492(1)x yy x-=⎧⎨=-⎩B.492(1)x yy x+=⎧⎨=+⎩C.492(1)x yy x-=⎧⎨=+⎩D.492(1)x yy x+=⎧⎨=-⎩9.火车票上的车次号有两个意义:(1)数字越小表示车速越快,如 1~98次为特快列车,101~198次直快列车,301~398次为普快列车,401~498次为普客列车;(2)奇数与偶数表示不同的行驶方向,例如:奇数表示从北京开出,偶数表示开往北京. 根据以上规定,杭州开往北京的某一直快列车的车次号可能是()A. 20 B.119 C.120 D.319二、填空题10.已知线段a=4 cm,c = 9 cm,线段b是a、c的比例中项,则 b= cm.11.已知正方形的面积为4,则正方形的边长为 ,对角线长为 .12.如图,正方形ABCD的边长为5,沿对角线所在的直线l向右平移至与正方形EFGH重合.已知四边形EPC0的面积为1,则AE的长为.13.如图,四边形的四条边AB、BC、CD和DA,它们的长分别是2、 5 .5、4,其中∠B =90°,那么四边形ABCD的面积为 .14.已知一个样本中,50个数据分别落在5个组内,第一,二,三,五的数据个数分别为2,8,15,5,则第四组的频数为,频率为.15.将l00个数据分成8个组,如下表:组号l234b678频数1114121313x1210组的频数为.16.已知直线y x k=-+与直线322ky x-=-的交点在第二象限内,求k的取值范围.17.已知点A(12-,a)、B(3,b)在函数y=-2x+3的图象上,则a 与b 的大小关系是 . 18.元旦联欢会上,七(4)的50名同学围坐在一起做击鼓传花的游戏,其中26 名男生和 24 名女生的座位是随意安排的,若花在每个同学手中的停留时间相同,则花落在男生手中的机会是手中的机会是 ,落在女生的机会是 .19.从A 村到B 村有三种不同的路径,再从 B 村到C 村又有两种不同的路径.因此若从A 村经B 村去C 村,则A 村到C 村有 种可能路径.20.小英站在一个路口观察过往车辆,统计半小时内各种车辆通过的数量,并制成了统计图(如图).请你写出从图中获得的两条信息:(1) ;(2) .三、解答题21.使用计算器求下列三角函数的值(精确到0.0001). (1) sin54°10′;( 2) cos24°12′16" ;(3) tan59°25′19"22.2008年某县中小学生约32万人,为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,某县教研室体育组搞了一个随机调查,调查内容是:“每天锻炼是否超过1 小时及锻炼未超过1小时的原因”,他们随机调查了720名学生,所得的数据制成了如下的扇形统计图和频数分布直方图:270︒超过1小时未超过1小时不喜欢没时间 其它 原因锻炼未超过1小时人数频数分布直方图人数根据图示,请你回答以下问题:(1)“没时间”的人数是 ,并补全频数分布直方图;(2)按此调查,可以估全县中小学生每天锻炼未超过1小时约有 万人;(3)如果计划2010年该县中小学生每天锻炼未超过1小时的人数降到3.84万人,求2008年至2010年锻炼未超过1小时人数的年平均降低.....的百分率是多少?23.将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成):注:30~40为时速大于等于30千米而小于40千米,其它类同. (1)请你把表中的数据填写完整; (2)补全频数分布直方图;(3)如果此地汽车时速不低于60千米即为违章,则违章车辆共有多少辆?24.解方程:⑴5432-=x ⑵()33132-=+x x25.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例关系. 当x=20时,y=1600,当x=30时,y=2000. (1)求y 与x 之间的函数解析式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?数据段 频 数 频 率 30~40 10 0.0540~50 3650~60 0.39 60~7070~80 200.10 总 计126.如图,在△ABC中,∠BAC=60°,AE是△ABC中与∠BAC相邻的外角的平分线,且AE∥BC,则△ABC是等边三角形吗?为什么?27.甲、乙两工程队分别承担一条2千米公路的维修工作,甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路时,每天维修x千米;维修后1千米公路时,每天维修y千米(x≠y).⑴求甲、乙两队完成任务需要的时间(用含x、y的代数式表示);⑵问甲、乙两队哪队先完成任务?28.探索发现:两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算,例如(7x+2+6x2)÷(2x+1)•,•仿照672÷21计算如下:因此(7x+2+6x2)÷(2x+1)=3x+2,阅读上述材料后,试判断x3-x2-5x-3能否被x+1•整除,说明理由.29.用如图的大正方形纸片 3 张,小正方形纸片2 张,长方形纸片5 张,将它们拼成一个大长方形,并运用面积的关系,将多项式22++分解因式.352a ab b22a ab b a b a b++=++352(32)()30.图中 3×3 方格是从月历表中取下的,正中方格的日期是n,请用适当的代数式填入各个空格,表示所填入空格的日期,然后比较两条对角线的五个日期数之和,你发现了什么规律?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.B5.C6.C7.B8.D9.C二、填空题10.611.2,12..6+ 514.20,0.415.1516.11k-<<17.a>b18.13 25,122519.620.(2)过往车辆中,自行车比小汽车多 (1)半小时内通过各种车辆共70辆;答案不唯一,如:三、解答题21.(1) sin54°10′≈0. 8107;cos24°12′16"≈0. 9121;tan59°25′19"≈1. 6924 22.(1)400,补图略 (2)24 (3)60%23.解:(1)如表:(2)如图:(3)如果此地汽车时速不低于60千米即为违章,则违章车辆共有76辆.24.⑴223-;⑵334-. 25.(1)y=40x+800;(2)56元26.△ABC 是等边三角形.说明三个内角都是60°27.(1)甲、乙两队完成任务需要的时间分别为y x +4与xyyx +; (2) y x +4-xyy x +=0)()(2<+--y x xy y x (x ≠y ),∴甲队先完成 28.能,商式为322--x x .29.22352(32)()a ab b a b a b ++=++30.两条对角线上的三个日期数之和都等于3n。

2024年浙江省宁波市部分学校中考数学一模模拟试题(解析版)

2024年浙江省宁波市部分学校中考数学一模模拟试题(解析版)

2024年浙江省宁波市部分学校中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. )A.B. C. D. 【答案】A【解析】 【分析】直接利用相反数的定义:两数只有符号不同,即可得出答案.的相反数是故选:A .【点睛】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2. 下列计算正确的是( )A. -3+2=-5B. (-3)×(-5)=-15C. -(-22)=-4D. -(-3)2=-9【答案】D【解析】【分析】根据有理数的加减运算与乘方运算及乘法的运算法则逐一计算可得.【详解】A. -3+2=-1,故错误;B. (-3)×(-5)=15,故错误;C. -(-22)=4,故错误;D. -(-3)2=-9,正确,故选D.【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的加减运算与乘方运算及乘法的运算法则.3. 第19届亚运会将于2023年9月23日在杭州举行,其体育场及田径比赛场地——杭州奥体中心体育场,俗称“大莲花”,总建筑面积约216000平方米,将数据216000用科学记数法表示为( )A. 321610×B. 421.610×C. 52.1610×D. 60.21610× 【答案】C【分析】根据科学记数法定义处理:把一个绝对值大于1的数表示成10n a ×,其中110a ≤<,n 等于原数整数位数减1.【详解】解:根据科学记数法定义,5216000 2.1610=×;故选:C .【点睛】本题考查科学记数法,掌握科学记数法的定义是解题的关键.4. 如图,矩形ABCD 中,对角线AC BD 、交于点O ,若608AOB BD ∠=°=,,则AB =( )A. B. 4 C. 3 D. 5【答案】B【解析】 【分析】本题考查了矩形对角线相等且互相平分的性质及等边三角形的判定方法,先由矩形的性质得出OA OB =,结合题意证明AO B 是等边三角形即可.【详解】解:由矩形对角线相等且互相平分可得132AOBO BD ===, 即OAB 为等腰三角形,又60AOB ∠=°,∴OAB 为等边三角形.故4AB BO ==, ∴4DC AB ==.故选:B .5. 为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表: 每天使用零花钱(单位:元)510 15 20 25人数 2 5 8 9 6 则这30名同学每天使用的零花钱的众数和中位数分别是( )A. 20、15B. 20、17.5C. 20、20D. 15、15【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【详解】20出现了9次,出现的次数最多,所以这30名同学每天使用的零花钱的众数为20元;30个数据中,第15个和第16个数分别为15、20,它们的平均数为17.5,所以这30名同学每天使用的零花钱的中位数为17.5元.故选B.【点睛】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错6. 如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A. 3B. 4C. D.【答案】C【解析】 【分析】连接OB ,OD ,OP ,过O 作OM AB ⊥,交AB 于点M ,过O 作ON CD ⊥,交CD 于点N ,首先利用勾股定理求得OM 的长,然后判定四边形OMPN 是正方形,求得正方形的对角线的长即可求得OM 的长.【详解】解:连接OB ,OD ,OP ,过O 作OM AB ⊥,交AB 于点M ,过O 作ON CD ⊥,交CD 于点N .∵AB =CD =8,∴BM =DN =4,由垂径定理,勾股定理得:OM =ON =3,∵AB ,CD 是互相垂直的两条弦,∴∠DPB =90°∵OM AB ⊥,ON CD ⊥,∴∠OMP =∠ONP =90°∴四边形MONP 是正方形,∴OP =故选C .【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线.7. 已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作 PQ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交 PQ于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A. ∠COM=∠CODB. 若OM=MN ,则∠AOB=20°C. MN ∥CDD. MN=3CD【答案】D【解析】 【分析】由作图知CM=CD=DN ,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN ,∴∠COM=∠COD ,故A 选项正确;∵OM=ON=MN ,∴△OMN 是等边三角形,∴∠MON=60°,∵CM=CD=DN ,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B 选项正确; ∵∠MOA=∠AOB=∠BON ,∴∠OCD=∠OCM=180-COD 2°∠ , ∴∠MCD=180-COD °∠,又∠CMN=12∠AON=∠COD , ∴∠MCD+∠CMN=180°,∴MN ∥CD ,故C 选项正确;∵MC+CD+DN >MN ,且CM=CD=DN ,∴3CD >MN ,故D 选项错误;故选D .【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.8. 设a ,b ,m 均为实数,( )A. 若a b >,则a m b m +>−B. 若a b =,则ma mb =C. 若a m b m +>−,则a b >D. 若ma mb =,则a b =【答案】B【解析】【分析】根据等式的性质和不等式的性质可直接进行排除选项.【详解】解:A 、若a b >,则a m +不一定大于b m −,故错误;B 、若a b =,则ma mb =,故正确;C 、若a m b m +>−,则a 不一定大于b ,故错误;D 、若ma mb =,0m ≠,则a b =;若ma mb =,0m =,则a b 或a b =,故错误;故选:B .【点睛】本题考查了等式的性质和不等式的性质.解题的关键是掌握等式的性质和不等式的性质,注意等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9. 已知(),2024A m ,(),2024B m n +是抛物线()22040y x h =−−+上的两点,则正数n =( ) A. 2B. 4C. 8D. 16【答案】C【解析】 【分析】本题考查二次函数的性质,根据函数图像上的点满足函数解析式列式求解即可得到答案;【详解】解:∵(),2024A m ,(),2024B m n +是抛物线()22040y x h =−−+上的两点, ∴2()20402024m h −−+=,2()20402024m n h −+−+=,∴2()16m h −=,2()16m n h +−=,∴4m h −=±,4m n h +−=±,即:44m h m n h −= +−=− 或44m h m n h −=− +−=, 解得:8n =或8n =−,∵n 取正数,故:8n =,故选:C .10. 如图,已知ABC ,O 为AC 上一点,以OB 为半径的圆经过点A ,且与BC 、OC 交于点E 、D ,设C α∠=,A β∠=,则(( )A. 若70αβ+=°,则弧DE 的度数为20°B. 若70αβ+=°,则弧DE 的度数为40°C. 若70αβ−=°,则弧DE 的度数为20°D. 若70αβ−=°,则弧DE 的度数为40°【答案】B【解析】【分析】本题考查了圆周角定理和三角形的外角性质,能灵活运用定理进行推理和计算是解此题的关键.连接BD ,根据圆周角定理求出90ABD ,求出90ADBβ∠=°−,再根据三角形外角性质得出1902x βα°−=+,求出 DE 的度数是1802()αβ°−+,再逐个判断即可. 详解】解:连接BD ,设 DE的度数是x , 则12DBC x ∠=, AC 过O ,90ABD ∴∠=°,A β∠= ,90ADB β∴∠=°−,C α∠= ,ADB C DBC ∠=∠+∠,1902x βα∴°−=+, 解得:1802()x αβ=°−+, 即 DE的度数是1802()αβ°−+, A .当70αβ+=°时, DE 度数是18014040°−°=°,故本选项不符合题意;B .当70αβ+=°时, DE 的度数是18014040°−°=°,故本选项符合题意;C .当70αβ−=°,即70αβ=°+时, DE的度数是1802(70)404βββ°−°++=°−或【的180(70)2502ααα°−+−°=°−,故本选项不符合题意;D .当70αβ−=°时, DE的度数是404β°−或2502α°−,故本选项不符合题意; 故选:B二、填空题:本大题有6个小题,每小题3分,共18分.11. 不等式30x −>的解集是______.【答案】3x >##3x <【解析】【分析】本题考查了一元一次不等式得解法,熟练掌握一元一次不等式的解法是解题的关键;根据一元一次不等式的解法直接解答即可.【详解】移项,得: 3x >.所以,不等式30x −>的解集是:3x >.故答案为:3x >.12. 在平面直角坐标系中,将点()23A −,向右平移3个单位长度后,那么平移后对应的点A ′的坐标是__________.【答案】()13,【解析】【分析】此题考查了点的坐标变化和平移之间的联系,根据平移时,点的坐标变化规律“左减右加”进行计算即可.【详解】根据题意,从点A 平移到点A ′,横坐标是231−+=,故点A ′的坐标是()13, 故答案为:()13,. 13. 为了弘扬中华传统文化,营造书香校园文化氛围,某学校举行中华传统文化知识大赛活动,该学校从三名女生和两名男生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是_________. 【答案】35【解析】【分析】画出树状图,再根据概率公式列式进行计算即可得解.【详解】解:画树状图如下,统计可得,共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是:123205= ;故答案为35. 【点睛】本题考查了应用列表法与树状图法求概率,准确分析是解题的关键.14. 如图,直线y x m =−+与()40y nx n n =+≠的交点的横坐标为2−,则关于x 的不等式4x m nx n −+>+的解集是_________.【答案】<2x −【解析】【分析】本题考查了一次函数的图象和性质以及与一元一次不等式的关系.满足关于x 的不等式4x m nx n −+>+就是直线4y nx n =+位于直线y x m =−+的下方的图象,据此求得自变量的取值范围,进而求解即可.【详解】解:∵直线y x m =−+与4y nx n =+的交点的横坐标为2−, ∴关于x 的不等式4x m nx n −+>+的解集为<2x −,故答案为:<2x −.15. 若关于x 的方程2230x kx k −+−=的一个实数根13x ≥,另一个实数根20x ≤,则关于x 的二次函数223y x kx k =−+−图象的顶点到x 轴距离h 的取值范围是______. 【答案】81925h ≤≤ 【解析】【分析】本题考查的是二次函数的图象与性质,由题意得:3x =时,0y ≤,0x =时,0y ≤,可以确定k 的取值范围;二次函数顶点的纵坐标为23k k −+−,在k 的取值范围内计算出23k k −+−的取值范围,即可得到顶点到x 轴距离h 的取值范围.【详解】解:由题意得:3x =时,0y ≤,0x =时,0y ≤,即:963030k k k −+−≤ −≤ , 解得:635k ≤≤, 二次函数()222233y x kx k x k k k =−+−=−−+−,顶点的纵坐标为:23k k −+−, 22111324k k k −+−=−−− , 又10−<, 当635k ≤≤时,在65k =时,23k k −+−取得最大值,即:当65k =时,2668135525 −+−=− , 在3k =时,取得最小值,即:当3k =时,23339−+−=−,即:图象的顶点到x 轴的距离h 的最小值是81812525−=,图象的顶点到x 轴的距离h 的最大值是99−=,∴h 的取值范围是81925h ≤≤, 故答案:81925h ≤≤. 16. 如图,在正方形ABCD 中,4AB =,32EC =,以点E 为直角顶点作等腰直角三角形DEF (D E F ,,为顺时针排列),连接AF ,则BF 的长为 ____________________,AF 的最大值为 ____________________.【答案】 ①.②. 4+##4+ 【解析】 【分析】本题主要考查了一点到圆上一点的最值问题,相似三角形的性质与判定,勾股定理,等腰直角三角形的性质,正方形的性质等等,正确作出辅助线构造相似三角形从而确定点F 的运动轨迹是解题的关键.为如图所示,连接BD ,先证明BDF CDE =∠∠,DFBD DE CD ==,进而证明BDF CDE ∽得到BF =,则点F 在以点B 故当A B F 、、三等共线,AF 最大,据此可得答案.【详解】解:如图所示,连接BD ,∵四边形ABCD 是正方形,∴45CDB ∠=°,BD =,∵DEF 是以点E 为直角顶点的等腰直角三角形,∴45EDF CDB ∠∠°==,DF =,∴45BDF CDE BDE ∠=∠=°−∠,∴DFBD DE CD ==,∴BDF CDE ∽,∴BFBD CE CD==∴BF =,∴点F 在以点B 为半径的圆上运动, ∴当A B F 、、三等共线时,AF 最大,∴AF 的最大值为4+;4+三、解答题:本大题有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. 先化简,再求值: 21424a a ++−,其中2a =+.小明解答过程如下,请指出其中错误步骤的序号,并写出正确的解答过程.原式=()()222114424a a a a ⋅−+⋅−+−……① 24a =−+……②2a =+……③当2a =+时,原式=【答案】小明的解答中步骤①开始出现错误,正确解答见解析【解析】【分析】此题考查了分式的化简求值,先利用分式的加法法则计算,得到化简结果,再把字母的值代入计算即可.【详解】小明的解答中步骤①开始出现错误,正确解答如下:21424a a ++− ()()()()242222a a a a a −++−+− ()()222a a a +=+− 12a =−当2a =+时,原式==18. 已知二次函数2y ax c =+,当0x =时,3y =,=1x −时,5y =.(1)求a ,c 的值.(2)当3x =−时,求函数y 的值.【答案】(1)2,3a c == (2)21【解析】分析】本题考查求二次函数解析式,求函数值;(1)待定系数法求函数解析式即可;(2)将3x =−代入解析式,求出函数y 的值即可.【小问1详解】解:由题意,得:35c a c = += ,解得:32c a = =, ∴2,3a c ==; 【小问2详解】由(1)知:2,3a c ==, ∴223y x =+, ∴当3x =−时,()223329321y =×−+=×+=.19. 某学校计划组织学生开展课外活动,活动备选地点分别为美术馆A 、纪念馆B 、科技馆C 、博物馆D .为了解全校学生最喜欢的活动地点,随机调查了部分学生(每人仅选一个)请根据以上信息,解答下列问题:(1)在本次抽样调查中,共调查了多少名学生?(2)求出m 的值,并将条形统计图补充完整.(3)若该校有1200名学生,估计该校学生最喜欢的活动地点为B 的人数.【答案】(1)50 (2)108°;图见解析(3)240名【解析】【分析】本题考查了条形统计图、扇形统计图以及利用样本估计总体等知识,属于常考题型,从统计图中得出解题所需要的信息是解题的关键.(1)用选择A 的人数除以其所占比例即可求出调查的人数;(2)用360°乘以选择D 的占比即可求出m 的值;先求出选择C 的人数,进而可补全统计图;【(3)利用样本估计总体的思想求解.【小问1详解】解:本次共调查的学生有2040%50÷=(名); 故答案为:50;【小问2详解】解:D 类活动对应扇形的圆心角为1536010850°×=°, 故108m =.C 对应人数为()502010155−++=(名),补全条形图如下:【小问3详解】 解:10120024050×=(名), 答:估计该校最喜欢的活动地点为“B ”的学生人数大约为240名.20. 如图,在ABC 中,90BAC ∠=°,点D 是BC 中点,,AE BC CE AD ∥∥.(1)求证:四边形ADCE 是菱形;(2)若606B AB ∠=°=,,求四边形ADCE 的面积.【答案】(1)见解析 (2)【解析】【分析】(1)先证四边形ADCE 是平行四边形,再由直角三角形斜边上的中线性质得12AD BC CD ==,即可得出结论; (2)由已知得212BC AB ==,再由勾股定理得AC 的长,然后由菱形的性质和三角形面积关系得2ACD ABC ADCES S S == 菱形,即可求解.【小问1详解】证明:∵,AE BC CE AD ∥∥,∴四边形ADCE 是平行四边形,∵90BAC ∠=°,点D 是BC 的中点, ∴12AD BC CD ==, ∴平行四边形ADCE 是菱形;【小问2详解】解:∵9060BAC B ∠=°∠=°,,∴30BCA ∠=°,∴212BC AB ==,∴AC =,∵四边形ADCE 是菱形,点D 是BC 的中点,∴112622ACD ABC ADCE S S S AB AC ===×=××= 菱形 【点睛】本题考查了菱形的判定与性质、含30度直角三角形的性质、直角三角形斜边上的中线性质、勾股定理等知识,熟练掌握含30度直角三角形的性质、直角三角形斜边上的中线性质,证明四边形ADCE 为菱形是解题的关键.21. 设函数11k y x=,函数22y k x b =+(12,k k ,b 是常数,1200k k ≠≠,). (1)若函数1y 和函数2y 的图像交于点()2,6A ,点()4,2B n −,①求b ,n 的值.②当12y y >时,直接写出x 的取值范围.(2)若点()8,C m 在函数1y 的图像上,点C 先向下平移1个单位,再向左平移3个单位,得点D ,点D 恰好落在函数1y 的图像上,求m 的值.【答案】(1)①9,5b n == ②02x <<或>4x (2)53m =−【解析】 【分析】(1)①采用待定系数法即可求出.②采用数形结合的方法,求出两个解析式的交点,结合图像即可求出.(2)结合题意,表示出点D 的坐标,然后将C ,D 两点代入到1y 中即可求出.【小问1详解】①把点()2,6A 代入到11k y x=中,得 162k = 112k =112y x∴= 把()4,2B n −代入到112y x=中,得 1224n −=5n ∴= ()4,3B ∴再把()2,6A 和()4,3B 代入到22y k x b =+中,得 222643k b k b += += 解得:2329k b =− =2392y x ∴=−+ 综上:9,5b n ==.②如图所示:12392y x y x = =−+解得:121224,63x x y y == == (2,6),(4,3)A B ∴结合图像,当12y y >时,x 的取值范围是:02x <<或>4x .【小问2详解】根据题意,()8, C m(5,1)D m ∴−把点C ,D 代入到1y 中,得11815k m k m = =− 解得:140353k m =− =−综上:53m =−. 【点睛】本题主要考查了待定系数法,坐标的平移,反比例函数和一次函数的图像和性质,巧妙的运用数形结合的方法是解题的关键.22. 某河流的一段如图1所示,现要估算河的宽度(即河两岸相对的两点A ,B 间的距离),可以按如下步骤操作:①先在河的对岸选定一个目标作为点A ,使AB BC ⊥;②再在河的这一边选定点B 和点C ,使AB BC ⊥;③再选定点E ,然后用视线确定BC 和AE 的交点D .(1)用皮尺测得174m BC =,60m DC =,50m EC =,求河的宽度AB ;(精确到0.1米) (2)请用所学过的知识设计一种测量旗杆高度AB 的方案.要求:①画出示意图,所测长度用a ,b ,c 等表示;②不要求写操作步骤;③结合所测数据直接用含a ,b , c 等字母的式子表示出旗杆高度AB .【答案】(1)95m (2)方案见解析,ac AB b =【解析】【分析】本题主要考查了相似三角形的应用——测量河宽和旗杆高.熟练掌握相似三角形的判断和性质,是解决问题的关键.(1)证明AB CE ,得到ABD ECD ∽△△,得到=AB BD CE CD,即得95AB =; (2)将标杆竖立在地面适当的位置,使点C 、D 、A 三点共线,测出CE b =,CB c =.根据AB ,DE 都垂直BC ,得到DE AB ∥,得到CDE CAB △≌△,得到AB CB DE CE =,旗杆的高ac AB b =. 小问1详解】∵AB BC ⊥,CE BC ⊥,∴AB CE ,∴ABD ECD ∽△△, ∴=AB BD CE CD, 即17460=5060AB −, ∴95AB =,答:河宽AB 为95m ;【小问2详解】(方法不唯一)如图.①将标杆DE a =竖立在一个适当的位置,使点C 和标杆的顶点D ,旗杆的顶点A 三点在一条直线上; ②测出CE b =,CB c =;【③计算旗杆的高度:∵DE BC ⊥,AB BC ⊥,∴DE AB ∥,∴CDE CAB △≌△, ∴AB CB DE CE=, 即ac AB b =, 故旗杆的高ac AB b=.23. 已知二次函数2y x bx c =++的图象经过点()2,c . (1)若该二次函数图象与x 轴的一个交点是()10−,. ①求二次函数的表达式:②当2t x t ≤≤−时,函数最大值为M ,最小值为N .若3M N −=,求t 的值; (2)对于该二次函数图象上的两点()()1123A x y B y ,,,,当11m x m +≤≤时,始终有12y y ≥.求m 的取值范围.【答案】(1)①2=23y x x −−;②t 的值为1− (2)2m ≤−或3m ≥.【解析】【分析】(1)①利用待定系数法求二次函数解析式;②利用配方法得到()214y x =−−,则抛物线的对称轴为直线1x =,顶点坐标为()14−,,再利用2t x t ≤≤−得1t ≤,所以21t −≥,根据二次函数的性质,当2t x t ≤≤−时,1x =时,函数有最小值4−,当x t =或2t t =−时,函数有最大值,即223M t t =−−,则()22343t t −−−−=,然后解方程即可; (2)先利用二次函数2y x bx c =++的图象经过点()2c ,得到2b =−,则可求出抛物线的对称轴为直线1x =,根据二次函数的性质,点A 到对称轴的距离大于或等于B 点到对称轴的距离,即1131x −≥−,解得11x ≤−或13x ≥,然后利用11m x m +≤≤得到11m +≤−或3m ≥,从而得到m 的范围.【小问1详解】解:①把()()210c −,,,分别代入2y x bx c =++ 得4210b c c b c ++= −+=, 解得23b c =− =− , ∴抛物线解析式为2=23y x x −−; ②∵()222314y x x x =−−=−−,∴抛物线的对称轴为直线1x =,顶点坐标为()14−,, ∵2t x t ≤≤−, ∴2t t ≤−, 解得1t ≤,∴21t −≥, ∴当2t x t ≤≤−时,1x =时,函数有最小值-4,即N =-4, 当x t =或2t t =−时,函数有最大值,即223M t t =−−, ∵3M N −=,∴()22343t t −−−−= t 2-2t -3-(-4)=3,解得11t =+,21t =−∴t 的值为1【小问2详解】 ∵二次函数2y x bx c =++的图象经过点(()2c ,, ∴42b c c ++=, 解得2b =−, ∴22y x x c =−+,抛物线的对称轴为直线1x =, ∵()()1123A x y B y ,,,在抛物线上,且12y y ≥, ∴点A 到对称轴的距离大于或等于B 点到对称轴的距离,∴1131x −≥−,∴11x ≤−或13x ≥,∵11m x m +≤≤,∴11m +≤−或3m ≥,解得2m ≤−或3m ≥.【点睛】本题考查了用待定系数法求二次函数的解析式,二次函数的最值,一元二次方程和不等式组解法,熟练掌握二次函数的图象及性质是解题的关键.24. 如图,△ABC 是圆O 的内接三角形,连结BO 并延长交AC 于点D ,设∠ACB =α,∠BAC =m α.(1)若α=30°,求∠ABD 的度数;(2)若∠ADB =n α+90°,求证m +n =1;(3)若弧AB 长是⊙O 周长的14,2∠ADB =5∠CBD ,求ABD BCDS S . 【答案】(1)60° (2)见解析(3【解析】【分析】(1)连接OA ,由∠ACB =α=30°,得∠AOB =2∠ACB =60°,根据OA =OB ,即得△AOB 是等边三角形,故∠ABD =60°;(2)延长BD 交⊙O 于E ,连接CE ,用两种方法表示∠ACE ,列方程变形即可得证明;(3)过D 作DM ⊥BC 于M ,作DN ⊥AB 于N ,由弧AB 长是⊙O 周长的14,可得∠AOB =90°,从而可证△AOB 、△DCM 、△BDN2∠ADB =5∠CBD ,可得∠CBD =30°,∠BAC =60°,设MD =MC =t ,在Rt △DCM中,CD = ,在Rt △BDM 中,BD =2DM =2t ,在Rt △BDN 中,DN =,在Rt △ADN中,AD =,即可得ABDBCDS AD S CD == . 【小问1详解】连接OA ,如图:∵∠ACB =α=30°,∴∠AOB =2∠ACB =60°,∵OA =OB ,∴△AOB 是等边三角形,∴∠ABD =60°;【小问2详解】延长BD 交⊙O 于E ,连接CE ,如图:∵BE 为⊙O 直径,∴∠BCE =90°,即∠ACE =90°﹣α,△CDE 中,∠E =∠A =m α,∠EDC =∠ADB =n α+90°,∴∠DCE =180°﹣∠E ﹣∠EDC =90°﹣m α﹣n α,即∠ACE =90°﹣m α﹣n α,∴90°﹣α=90°﹣m α﹣n α,∴m +n =1;【小问3详解】过D 作DM ⊥BC 于M ,作DN ⊥AB 于N ,如图:∵弧AB 长是⊙O 周长的14, ∴∠AOB =90°, ∴△AOB 是等腰直角三角形,∠ABO =45°,∠ACB =12∠AOB =45°,∴△DCM 、△BDN 是等腰直角三角形,∵2∠ADB =5∠CBD ,∴2(∠CBD +∠ACB )=5∠CBD ,∴2∠ACB =3∠CBD ,∴∠CBD =30°,∴∠BAC =180°﹣∠ACB ﹣∠CBD ﹣∠ABO =60°,设MD =MC =t ,在Rt △DCM 中,CDMD=t ,在Rt △BDM 中,BD =2DM =2t ,在Rt △BDN 中,DNt , 在Rt △ADN 中,AD =sin DN BAC ∠=sin 60DN °t , ∴ABD BCD S S =AD CD. 【点睛】本题考查圆的性质及综合应用,涉及等边三角形的判定及性质、等腰直角三角形的判定与性质、解直角三角形、勾股定理等知识,解题的关键是用含t 的代数式表示CD 和AD 的长度.。

浙江省2022数学中考一模试卷(I)卷

浙江省2022数学中考一模试卷(I)卷

浙江省2022数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) 5的相反数的倒数是()A .B . 5C .D .2. (2分) (2019九上·灵石期中) 沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是()A .B .C .D .3. (2分) (2020八上·大新期中) 如图,直线∥ ,∠1=100°,∠2=125°,则∠A的度数为()A . 25°B . 30°C . 35°D . 45°4. (2分) (2020八上·松江期末) 下列函数中,y随x的增大而减小的是()A .B .C .D .5. (2分) (2019八下·江城期末) 已知a= ,b= -2,则a,b的关系是()A . ab=1B . ab=-1C . a=bD . a+b=06. (2分) (2018八上·南宁期中) 如图,在射线OA,OB上分别截取OA1=OB1 ,连接A1B1 ,在B1A1 , B1B 上分别截取B1A2=B1B2 ,连接A2B2 ,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=()A .B .C .D .7. (2分) (2021八下·曾都期末) 将直线向上平移2个单位长度后得到直线,则下列关于直线的说法正确的是()A . 与轴交于B . 与轴交于C . 经过第一、二、四象限D . 随的增大而减小8. (2分) (2018八上·惠山期中) 如图,在等腰三角形ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF的值等于()A .B . 3C .D . 69. (2分) (2020九上·禹州期中) 如图,已知是⊙O的直径,是弦,若,则等于()A . 16°B . 24°C . 34°D . 46°10. (2分)(2020·启东模拟) 二次函数y1=ax2+bx+c(a,b,c为常数)的图象如图所示,若y1+y2=2,则下列关于函数y2的图象与性质描述正确的是()A . 函数y2的图象开口向上B . 函数y2的图象与x轴没有公共点C . 当x>2时,y2随x的增大而减小D . 当x=1时,函数y2的值小于0二、填空题 (共3题;共4分)11. (1分) (2017八上·武汉期中) 若一个正多边形的内角和是其外角和的倍,则这个多边形的边数是.12. (1分)设函数y=x+5与y= 的的两个交点的横坐标为a、b,则是.13. (2分)(2021·吉林模拟) 如图,在 ABCD中,BC=13,过点A作AE⊥DC于点E,AE=12,EC=10,则AB=三、解答题 (共11题;共70分)14. (5分) (2019八下·兴平期末) 解不等式组:,并把解集在数轴上表示出来.15. (5分) (2018八上·三河期末) 计算题:分式与分式方程(1)计算:x÷(x﹣1)•(2)解方程: =1.16. (5分) (2020八上·平罗期末) 按要求用尺规作图(要求:不写作法,但要保留作图痕迹.)已知:,求作:的角平分线 .17. (2分)如图,已知:∠1=∠2, AB=AC, 请你自己添加一个适当的条件,并用“SAS”证明△ABD≌△ACE。

浙江省2021-2022学年中考数学一模考试试卷(I)卷

浙江省2021-2022学年中考数学一模考试试卷(I)卷

浙江省2021-2022学年中考数学一模考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(下列各题的四个选项中只有一个符合题意.共12小题,每 (共12题;共33分)1. (3分) (2017八下·新洲期末) 化简的结果是()A . –2B . 2C . ±2D . 42. (3分)下列标志图中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (3分) (2021七下·昆山月考) 下列各式能用平方差公式计算的是A .B .C .D .4. (2分)如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A .B .C .D .5. (3分) (2019九上·武汉月考) 下列一元二次方程没有实数根的是()A . .B . .C . .D . .6. (3分)下列说法中正确的是A . “打开电视,正在播放《新闻联播》”是必然事件B . 想了解某种饮料中含色素的情况,宜采用抽样调查C . 数据1,1,2,2,3的众数是3D . 一组数据的波动越大,方差越小7. (2分) (2017七上·姜堰期末) 如图,在A、B 两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长12千米,另一条公路BC长是5千米,且BC 的走向是北偏西42°,则A地到公路BC的距离是()A . 5千米B . 12千米C . 13千米D . 17千米8. (3分) (2018八上·大石桥期末) 某开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完成;②乙队单独完成此项工程要比规定工期多用5天;③ ,剩下的工程由乙队单独做,也正好如期完工.小亮设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是()A . 甲先做了4天B . 甲乙合作了4天C . 甲先做了工程的D . 甲乙合作了工程的9. (3分)(2020·和平模拟) 如图,已知l1∥l2∥l3∥l4 ,相邻两条平行直线间的距离相等.若等腰直角的三个顶点分别在三条平行直线上,则∠α的正弦值是()A .B .C .D .10. (2分)(2021·永嘉模拟) 一个盒子中装有标号为1,3,5,8的四个小球,这些球除标号外都相同,从中随机摸出一个小球,则摸出的小球标号大于2的概率为()A .B .C .D . 111. (3分)如图,已知在△ABC中,AB=AC,给出下列条件,不能使BD=CE的是()A . BD和CE分别为AC和AB边上的中线B . BD和CE分别为∠ABC和∠ACB的平分线C . BD和CE分别为AC和AB边上的高D . ∠ABD=∠BCE12. (3分) (2018九上·仁寿期中) 如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB 于E,PD⊥AC于D,设BP=x,则PD+PE=()A .B .C .D .二、填空题 (共5题;共15分)13. (3分) (2020七下·玄武期中) 因式分解: ________.14. (3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是________.15. (3分) (2021九上·建湖月考) 化简求值: ________.(其中x满足).16. (3分)如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为________.17. (3分) (2019七上·简阳期末) 小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入…12345…输出……那么,当输入数据是8时,输出的数据是________三、解答题(本题4个小题,每小题6分,共24分) (共4题;共20分)18. (6分)(2019·香洲模拟) 计算:﹣(π﹣2019)0+2﹣1 .19. (2分)(2020·和平模拟) 解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为________.20. (6分) (2019九上·台州期中) 某学习小组在研究函数y= x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.x…﹣4﹣3.5﹣3﹣2﹣10123 3.54…y…﹣﹣0﹣﹣﹣…(1)请补全函数图象;(2)方程 x3﹣2x=﹣2实数根的个数为________;(3)观察图象,写出该函数的两条性质.21. (6分)从中随机抽取一张,再从剩下的牌中随机抽取另一张. 请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽出一对6的概率.四、(本题7分) (共2题;共14分)22. (7.0分)如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN 的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第________秒时,直线MN恰好与直线CD垂直.(直接写出结果)23. (7.0分)(2019·阜新) 为丰富学生的文体生活,育红学校准备成立“声乐、演讲、舞蹈、足球、篮球”五个社团,要求每个学生都参加一个社团且每人只能参加一个社团.为了了解即将参加每个社团的大致人数,学校对部分学生进行了抽样调查在整理调查数据的过程中,绘制出如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生一共有多少人?(2)将条形统计图补充完整.(3)若全校有学生1500人,请你估计全校有意参加“声乐”社团的学生人数.(4)从被抽查的学生中随意选出1人,该学生恰好选择参加“演讲”社团的概率是多少?五、(本题8分) (共1题;共8分)24. (8分)(2018·红桥模拟) 如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.(1)求证:FD是⊙O的一条切线;(2)若AB=10,AC=8,求DF的长.六、(本题10分) (共1题;共10分)25. (10分) (2016九上·自贡期中) 已知二次函数y=﹣(a+b)x2﹣2cx+a﹣b中,a、b、c是△ABC的三边.(1)当抛物线与x轴只有一个交点时,判断△ABC是什么形状;(2)当x=﹣时,该函数有最大值,判断△ABC是什么形状.七、(本题13分) (共1题;共13分)26. (13.0分) (2021八上·溧水期末) 如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉.经测量,∠EDC=90°,DC=6m,CE=10 m,BD=14 m,AB=16m,AE=2m.(1)求DE的长;(2)求四边形ABDE的面积.参考答案一、选择题(下列各题的四个选项中只有一个符合题意.共12小题,每 (共12题;共33分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共5题;共15分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题(本题4个小题,每小题6分,共24分) (共4题;共20分)答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、答案:19-4、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、考点:解析:四、(本题7分) (共2题;共14分)答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、答案:23-3、答案:23-4、考点:解析:五、(本题8分) (共1题;共8分)答案:24-1、答案:24-2、考点:解析:六、(本题10分) (共1题;共10分)答案:25-1、答案:25-2、考点:解析:七、(本题13分) (共1题;共13分)答案:26-1、答案:26-2、考点:解析:。

浙江省2021-2022学年中考数学一模试卷(I)卷

浙江省2021-2022学年中考数学一模试卷(I)卷

浙江省2021-2022学年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2020七上·慈溪期中) -2的绝对值为()A .B . 2C .D . --22. (2分)(2020·鞍山) 如图,该几何体是由5个相同的小正方体搭成的,则这个几何体的主视图是()A .B .C .D .3. (2分) (2019七下·句容期中) 下列计算正确的是()A .B .C .D .4. (2分)如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,则∠C=()A . 40°B . 60°C . 80°D . 100°5. (2分) (2018七下·昆明期末) 不等式组的解集在数轴上表示正确的是()A .B .C .D .6. (2分) (2020八上·山东月考) 以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是()A .B .C .D .7. (2分)(2020·北京模拟) 化简的结果是A .B .C .D .8. (2分) (2019八上·秀洲月考) 下列各数中可以用来证明命题“任何奇数都是3的倍数”是假命题的反例是()A . 9B . 15C . 5D . 69. (2分) (2016九上·盐城开学考) 火车提速后,从盐城到南京的火车运行速度提高了25%,运行时间缩短了1h.已知盐城到南京的铁路全长约460km.设火车原来的速度为xkm/h,则下面所列方程正确的是()A . ﹣ =1B . ﹣ =1C . ﹣ =1D . ﹣ =110. (2分)在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A . 1 个B . 2 个C . 3 个D . 4个11. (2分) (2020九下·深圳期中) 如图,在已知的中,按以下步骤作图:①分别以、为圆心,以大于为半径作弧,两弧相交于两点、;②作直线交于点,连接;若,,则的度数为()A . 90°B . 95°C . 100°D . 105°12. (2分) (2020八下·温州月考) 关于x的一元二次方程kx²-2x+1-x²=0有两个实数根,则k的非负整数解有几个()A . 0个B . 1个C . 2个D . 3个13. (2分)如图,在平面直角坐标系中,以P (4,6)为位似中心,把△A BC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为().A . (4,2)B . (4,4)C . (4,5)D . (5,4)14. (2分) 2013年“中国好声音”全国巡演重庆站在奥体中心举行,童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家。

2024年浙江省部分学校九年级中考一模考试数学试题

2024年浙江省部分学校九年级中考一模考试数学试题

数学姓名:座位号:考生须知:1.本试卷满分120分,考试时间 120 分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.参考公式:二次函数yy=aaaa²+bbaa+cc(aa≠0)图象的顶点坐标公式:�−bb2aa,4aacc−bb24aa�.试题卷一、选择题:本大题有10个小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -1.2-0.8= . ( )A. -2B. -0.4C. 0.4D. 22. 西泠印社现有 25 000 余件社藏文物及资料,这些珍宝是西泠印社作为“天下第一名社”的重要根基.数据25 000 可用科学记数法表示为 ( ) AA.25×10³ B. 2.5×10⁴CC.2.5×10⁵ D. 2.5⁴3. 已知某几何体的三视图如左下图所示,则该几何体可能是 ( )4. 下列计算正确的是 ( )AA.mm³+mm⁴=mm²+mm⁵BB.mm⁴⋅mm³=mm¹²CC.mm⁴÷mm⁴=mm DD.(mm⁴)²=mm⁸5. 如图,BC 是半圆O 的直径,∠BAD=128°,则∠C 的度数是 ( )A. 52°B. 60°C. 62°D. 68°6. 在爱心助农活动中,某平台共进行了 7 场直播,每场直播销售的番薯(单位:kg)为260,300,340,350,400,400,400.因供不应求,故加了一场直播,销售量为 350 kg.分析加场前后的数据,受影响的统计量是 ( )A. 平均数B. 中位数C. 众数D. 方差7. 如图,AB∥CD,AD∥BC,AF 平分∠DAB 交 BC 于点E,则图中与∠EEAABB相等的角的个数是( )A. 1B. 2C. 3D. 48. 无理数aa−√2(aa⟩1且为正整数)的整数部分是b,小数部分是c,则下列关系式中一定成立的是( )A. c-b<0B. a-b>0C. a=b+cD. a-c=29. 如图,反比例函数yy=kk xx的图象与一次函数y=ax+b的图象相交于点A(2,m²),B(m,-6),!则不等式kk aa<aaaa+bb的解是 ( )A. -3<x<0或x>2B. x<-3或0<x<2C. -2<x<0或x>2D. -3<x<0 或x>310. 如图,点D,E,F 分别在△ABC 的边上,AADD BBDD=13,DDEEBBCC,EEEEAABB M 是DF 的中点,连结 CM并延长交AB 于点 N,则MMMM CCMM的值是 ( )A.15B.29C.16D.17二、填空题:本大题有6个小题,每小题4分,共24分.11. 计算:�8−�2=¯,80−2−1=¯.12. 每年的6月5日是世界环境日,2023 年我国确定的环境日主题为“建设人与自然和谐共生的现代化”.某校调查小组为了解该校学生对世界环境日的了解程度,随机抽取部分学生进行了问卷调查,并将调查结果分为 A.不了解;B.大致了解;C.了解较多;D.非常了解四组进行整理,绘制了如左下图所示的条形统计图,请你写出一条从条形统计图中获取的信息: .13. 在直角坐标系中,把点 A 先向右平移1个单位,再向下平移 3 个单位得到点 B.若点 B 的横坐标和纵坐标互为相反数,则点 A 的横坐标和纵坐标的和是 .14. 已知点AA(−2,yy₁),BB(−1,yy₂),CC(1,yy₃)均在二次函数yy=3(aa+1)²−7的图象上,则y₁,y₂,y₃的大小关系是 .(用“>”连接)15. 如图,在Rt△ABC 中,.∠AACCBB=90°,,以其三边为边在 AB 的同侧作三个正方形,点 F 在 GH上,CG与EF 交于点P,CM 与 BE 交于点 Q.若EEFF=1,HHEE=3,,则四边形 PCQE 的面积是- 2 -16. 图1是一个瓷碗的截面图,碗体DEC 呈抛物线状(碗体厚度不计),碗口宽(CCDD=12ccmm,此时面汤的最大深度.EEFF=8ccmm.(1)当面汤的深度.EEEE=4ccmm时,汤面的直径.PPPP=cc mm.(2)如图2,把瓷碗绕点 B 缓缓倾斜倒出部分面汤,当∠AABBMM=45°时停止,此时碗中液面宽度CCHH=cc mm.三、解答题:本大题有 8个小题,共66 分.解答应写出文字说明、证明过程或演算步骤.17. (本题满分 6 分)(1)计算:1tan60∘−|−√3|. (2)解不等式: 2aa−3>4aa−5.18. (本题满分6 分)先化简代数式aa2−6aa+92aa⋅aa39−aa2,然后从0,1,3中取一个合适的数作为 x的值代入,求出代数式的值.- 3 -19. (本题满分6分)悦悦有一个削笔器,通过调节5个档位,这个削笔器可以削出粗细不等的笔尖,削普通铅笔通常选择第①,②,③档,削彩色铅笔通常选择第③,④,⑤档.(1)任意选择一档削铅笔,恰好选到第②档的概率是多少?(2)按照通常选择的方案,求悦悦削一支普通铅笔和一支彩色铅笔,恰好选择了同一档的概率是多少.(请列表或画树状图分析)20. (本题满分 8 分)如图,△AABBCC是⊙O 的内接正三角形,半径为 1,连结OA,OC.(1)求阴影部分的面积.(2)求△AABBCC的面积.- 4 -21. (本题满分8分)学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分成绩所占比例如下图,三名同学的成绩如下表.请解答下列问题:三名同学的成绩统计表姓名组成部分 总评成绩内容 表达 风度 印象小明 8 7 8 8 x 小亮 7 8 8 9 7.85 小田 79777.8(1)求图中表示“内容”的扇形的圆心角度数. (2)求表中 x 的值.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理? 如果不合理,如何调整?- 5 -22. (本题满分 10分)在一堂“折纸与数学”的实践探究课上,每个小组分到若干张 A4 纸进行折纸.下面给出了“遥遥领先”小组利用半张A4 纸(矩形ABCD 的长:宽=2√2:1)折特殊三角形的方法,我们一起来探究其中的数学原理.(1)折法一:如图1,将矩形ABCD 的顶点D 与BC 边上的任意一点G 重合对折,折痕为EF.求证:△EEEEFF是等腰三角形.(2)在折法一的条件下,若 E 是 AD 的中点,求:ssss ss∠EEFFEE的值.(3)折法二:如图 2,先折出一个正方形CDHF,折痕为 CH,再将点 D 折到BF 上并让折痕过点F,折痕为EF,点 D 的对应点为点 G.求证:.EEHH=BBFF.- 6 -23. (本题满分 10分)已知关于 x 的二次函数.yy=(aaaa−1)(aa−4).(1)写出函数图象一定经过的两个定点的坐标.(2)若二次函数yy=(aaaa−1)(aa−4)图象的顶点在第二象限,求a 的取值范围.(3)若当1<aa<3时,y 随着x的增大而减小,求a 的取值范围.24. (本题满分12分)如图,在⊙O中,AB 是一条不过圆心O 的弦,C,D是⌢AABB的三等分点,直径CE 交AB 于点F,连结 BD 交CF 于点G,连结 AC,DC,过点 C 的切线交 AB 的延长线于点 H.(1)求证:EEFF=CCFF.(2)求证:四边形 BDCH 是平行四边形.(3)若⊙O 的半径为 5,(OOEE=3,求△AACCHH的周长.8参考答案1. A2. B3. D4. D5. A6. D7. D8. B9. A 10. D11. √2 1212. B 组所占百分比为38%(答案不唯一) 13. 2 14. y ₂>y ₁>y ₂15. 6 【解析】 ∵四边 形 ABEF、四边 形 ACGH 、四边形BCMN 都是正方形,∴AB=AF,AC=AH=HF+FG=4,∠CAH=∠BAF =90°, ∴∠FAH=∠BAC=90°-∠CAF,∴△FAH≌.△BAC(SAS), ∴BC=HF=3.∵∠H=∠G=∠AFE=∠MCB=∠ABE=90°, ∴∠HFA+∠GFP=∠GFP+∠GPF=90°,∠AB C+∠CBQ=∠CBQ+∠CQB=90°, ∴∠HFA=∠GPF,∠ABC=∠CQB, ∴△AFH∽△FPG∽△BQC.∴BBBB AAAA =BBBB AAAA =BBBB AAAA ,PPPP AAAA =AAPP AAAA =AAPPΛΛAA. ∵AH=4,HF=3,∠H=90°, ∴AF=5,∴FFPP =34,EEPP =54,CCPP =94,BBPP =154, ∴CCPP =FFCC −FFPP =134,PPEE =EEEE −EEPP =154,EEPP =BBEE −BBPP =54, ∴SS nn nnBBPPBBnnnn =SS PP BBBB +SS PP nnBB=12PPCC ⋅CCPP +12PPEE ⋅EEPP =12×134×94+12×154×54=6. 16. (1)6 √2 (2)15√22【解析】(1)以F 为原点,直线AB 为x 轴,直线 EF 为y 轴,建立平面直角坐标系,如图.设点 E 的坐标为(0,c), 则抛物线的表达式为 yy =aaaa ²+cc ,则点C 的坐标为(6,8+c),点Q 的坐标为(x ₀,4+c), 将点C ,Q 的坐标代入抛物线表达式,得�8+cc =36aa +cc ,4+cc =aaaaee2+cc ,解得 �aa =29,aa oo =3√2,即抛物线的表达式为 yy =29aa 2+cc ,ccss cc cccc ee 0PPPP =2aa BB =6√2.(2)将瓷碗绕点 B 缓缓倾斜倒出部分面汤,当∠ABM=45°时停止,所以旋转前 CH 与水平方向的夹角为45°, 设直线CH 的表达式为y=x+b,将点 C 的坐标代入上式,得8+c=6+b,b=c+2,直线 CH 的表达式为.y=x+2+c.②联立①②并整理得, 2aa ²−9aa −18=0, 则 aa 1+aa 2=92,aa 1aa 2=−9,则 (aa 1−aa 1)2=(aa 1+aa 2)2−4aa 1aa 2=2254,则 |aa 1−aa 2|=152,则 CCHH =√2|aa 1−aa 2|=15√22. 17. (1)0 (2)x<1 18. 解:原式 =−xx 3−3xx 22xx+6当x=1|时,原式 =14.19.(1) 15(2) 19(图表略)20. 解:(1)∵△ABC 是⊙O 的内接正三角形,∴∠ABC=60°, ∴∠AOC=120°,∴SS 可逆=120ππ×12360=ππ3.(2)如图,连结 BO 并延长交 AC 于点E,∵OA=OC,OB=OB,AB=BC,∴△OAB≌.△OCB(SSS),∴BE⊥AC.∵OA=OC=1,∠AOC=120°,∴∠AOE=∠COE=60°,∠AEO=90°,∴OOEE =12, ∴BBEE =32,AAEE =EECC =√32即 AACC =√3,∴SS AABBBB =12AACC ⋅BBEE =12×√3×32=3√34.21. 解:(1)108°(2)7.6(3)不合理,“内容”和“表达”的比例互换.(言之有理即可)22. 解:(1)证明:由折叠的性质得∠DEF=∠.GEF. ∵AD∥BC, ∴∠DEF=∠EFB, ∴∠GEF=∠EFB, ∴△EFG 是等腰三角形.(2)如图,过点 E 作EH ⊥.BC 于点 H. ∵矩形ABCD 的长: 宽 =2√2:1, ∴令 AADD =2√2,则 CD=1, ∴EH=CD=1.∵E 是AD 的中点,∴AAEE =DDEE =√2, ∴FFEE =DDEE =√2, ∴sin ∠EEFFEE =nnAAnnPP =1√2=√22.(3)证明:令. AADD =2√2,则CD=1. ∵四边形CDHF 是正方形,∴DDEE =√2.由折叠的性质得 DDEE =FFEE =√2. 由(1)可知 FFEE =FFEE =√2,∵EF 是折痕,点D ,G 是折叠中的对应点,∴FFEE =DDEE =√2,∴EEHH =DDEE −DDHH =√2−1,BBFF =BBCC −CCEE −FFEE =√2−1,∴EH=BG. 23. 解:(1)(4,0),(0,4)(2)化简二次函数得 yy =aaaa ²−(4aa +1)aa +4,顶点坐标为 �4aa +12aa ,−(4aa−1)24aa�. ∵顶点在第二象限,∴4aa+12aa<0,−(4aa−1)24aa >0.由 −(4aa−1)24aa>0可知a<0,解4aa +12aa <0可得 aa >−14,∴−14<aa <0. (3)由(2)可得二次函数图象的对称轴为直线 aa =2+12cc①若a>0,要使当1<x<3时,y 随着x 的增大而减小该满足 2+12aa ≥3,解得 aa ≤12,②若a<0,要使当1<x<3时,y 随着x 的增大而减!该满足 2+12aa ≤1,解得 aa ≥−12.∴−12≤aa <0或 0<aa ≤12. 24. 解:(1)证明:连结 BC,如图.∵C,D 是 AABB �的三等分点,∴AADD�=DDCC �=BBCC �, ∴∠ABD=∠DBC.∵CE 为⊙O 的直径,CE 交 BD 于点G, CCDD �=CCBB �,∴∠FGB=∠CGB=90°. ∵GB=GB,∴△FGB≌.△CGB(ASA), ∴FG=CG.(2)证明:∵CH 是⊙O 的切线,OC 是半径,∴∠ECH=90°. ∵∠CGB=90°, ∴BD∥CH.∵AADD�=BBCC �, ∴∠ABD=∠BDC, ∴AH∥CD,即 BH∥CD, ∴四边形 BDCH 是平行四边形.(3)如图,过点 C 作CM⊥AH 于点M,连结 DF. ∵⊙O 的半径为5,OF=3, ∴FG=GC=1,OG=4, ∴DDFF =FFBB =√52−42=3,∴BD=CH=6,∴EEHH=√CCEE2+CCHH2=2√10.由(2)可得∠H=∠BDC,∵∠BDC=∠BAC,∴∠BAC=∠H,∴AC=CH=6.∵∠FCH=∠CMH=90°,∠H=∠H,∴△FCH∽△CMH,即2√106=6MMHH,∴MMHH=9√105,∴AAHH=18√105,∴△AACCHH的周长为AACC+CCHH+AAHH=12+18√105.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省中考数学一模试卷(I)卷
一、选择题 (共10题;共20分)
1. (2分)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(毫米2),这个数用科学记数法表示为()
A . 7×10-6
B . 0.7×10-6
C . 7×10-7
D . 70×10-8
2. (2分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()
A . 1
B . 2
C . 3
D . 4
3. (2分)二次函数y=ax2+bx+c的图象如图所示,已知A(﹣1,y),B(﹣4,y2)和C(﹣5,y3)都在此图象上,下列关系式正确的是()
A . y1<y3<y2
B . y1>y2>y3
C . y3<y2=y1
D . y1=y3<y2
5. (2分)下列二次根式中,最简二次根式是()
A .
B .
C .
D .
6. (2分)如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2 ,则图中阴影部分的面积为()
A . 2cm2
B . 4cm2
C . 6cm2
D . 8cm2
7. (2分)如图,四边形ABCD是平行四边形,点E在CD边上,连接AE交BD于点F,则下列结论错误的是()
A .
B .
C .
D .
8. (2分)如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是()
A . y=(x+1)2-1
B . y=(x+1)2+1
C . y=(x-1)2+1
D . y=(x-1)2-1
9. (2分)如图,在平行四边形ABCD中,O1、O2、O3分别是对角线BD上的三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于点F,则AD:DF等于()
A . 19:2
B . 9:1
C . 8:1
D . 7:1
10. (2分)在▱ABCD中,如果∠A+∠C=140°,那么∠C等于()
A . 20°
B . 40°
C . 60°
D . 70°
二、填空题 (共8题;共9分)
11. (1分)在函数y=中,自变量x的取值范围是________.
12. (1分)不等式组的解是________.
13. (1分)如图,在反比例函数(x>0)的图象上,有点P1、P2、P3、P4 ,它们的横坐标依次是1、2、3、4,分别过这些点作x轴与y轴的垂线,若图中所构成的阴影部分的面积从左到右依次为S1、S2、S3 ,则S1+S2+S3=________.
14. (1分)某林场第一年造林200亩,第一年到第三年共造林728亩,设每年增长率为x,则应列出的方程是________ .
15. (1分)如图,在圆心角为135°的扇形OAB中,半径OA=2cm,点C,D为的三等分点,连接OC,OD,AC,CD,BD,则图中阴影部分的面积为________cm2 .
16. (1分)一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π)
17. (1分)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是________.
18. (2分)观察下面的一列数:,-,,-……请你找出其中排
列的规律,并按此规律填空:第9个数是________,第14个数是________.
三、解答题: (共8题;共72分)
19. (5分)计算:.
20. (11分)为迎接2011年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息,解答下列问题:
(1)请将表示成绩类别为“中”的条形统计图补充完整;
(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是________度;
(3)学校九年级共有1000人参加了这次数学考试,估算该校九年级共有多少名学生的数学成绩可以达到优秀?
21. (10分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.
22. (11分)如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6,AE= ,求⊙O的半径;
(3)在第(2)小题的条件下,则图中阴影部分的面积为________.
23. (5分)阅读理解题:下面利用45°角的正切,求tan22.5°的值,方法如下:
解:构造Rt△ABC,其中∠C=90°,∠B=45°,如图.
延长CB到D,使BD=AB,连接AD,则∠D= ∠ABC=22.5°.
设AC=a,则BC=a,AB=BD= a.
又∵CD=BD+CB=(1+ )atan22.5°=tan∠D= ﹣1
请你仿照此法求tan15°的值.
24. (10分)如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,AD=2,BC=BD=3,AC=4.
(1)求证:AC⊥BD;
(2)若OA、OC为方程x2﹣mx+3.84=0的二根,求△AOB的面积.
25. (10分)等腰三角形的周长为30cm.
(1)若底边长为xcm,腰长为ycm,写出y与x的关系式,并注明自变量的取值范围.(2)若腰长为xcm,底边长为ycm,写出y与x的关系式,并注明自变量的取值范围26. (10分)一次函数y=kx+4的图象经过点A(-3,-2).
(1)求这个一次函数的关系式;
(2)判断点B(-5,3)是否在这个函数的图象上.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
二、填空题 (共8题;共9分)
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
三、解答题: (共8题;共72分)
18-1、
19-1、
19-2、
19-3、
20-1、
20-2、
21-1、
21-2、21-3、
22-1、
23-1、
23-2、24-1、24-2、
25-1、25-2、。

相关文档
最新文档