最新2015高考数学文理科历年题型分析与试卷分析讲解
2015高考数学解析
2015年数学解析一、2015年全国新课标文、理科数学新课标《考试大纲》和2014年对比,在内容、能力要求、时间、分值(含选修比例)、题型题量等几个方面都没有发生变化。
可以预测2015年的高考试题,以能力立意,多角度、多层次地考查学生的数学能力命题指导思想不变。
紧扣教材,强化主干题型稳定的特点,试题稳中求新,注重能力,体现思想,淡化技巧,注重通法,重视知识交汇,潜能素养。
二、主要对数列、三角函数、统计与概率、立体几何、解析几何、函数与导数等主干知识进行了重点考查,同时覆盖了集合、复数、程序框图、三视图、二项式定理、线性规划、向量等内容,考查内容全面。
三、大题都不止考查一个知识点,而是将几个知识点融合起来,依托不等式、函数图像等内容将知识点的考查和学生的逻辑推理能力综合起来考查,对学生分析问题、解决问题能力的考查有较高要求;四、大量结合生产生活实际,以实际背景命题的趋势不会改变。
五、考点、命题热点及主干知识命题热点一:集合与常用逻辑用语集合这一知识点是高考每年的必考内容,对集合的考查主要有三个方面:一是集合的运算,二是集合间的关系,三是集合语言的运用. 在试卷中一般以选择题的形式出现,属于容易题.集合知识经常与函数、方程、不等式等知识交汇在一起命题,因此应注意相关知识在解题中的应用。
常用逻辑用语也是每年高考的必考内容,重点考查:充分必要条件的推理判断、四种命题及其相互关系、全称命题与特称命题等,在试卷中一般以选择题的形式出现,属于容易题和中档题,这个考点的试题除了考查常用逻辑用语本身的有关概念与方法,还与其他数学知识联系在一起,所以还要注意知识的灵活运用。
命题热点二 : 函数与导数。
函数是高中数学的主线,是高考考查的重点内容,主要考查:函数的定义域与值域、函数的性质、函数与方程、基本初等函数、函数的应用等,在高考试卷中,一般以选择题和填空题的形式考查函数的性质、函数与方程、基本初等函数等,以解答题的形式与导数交汇在一起考查函数的定义域、单调性以及函数与不等式、函数与方程等知识.其中函数与方程思想、数形结合思想等都是考考查的热点.高考对导数的考查主要有以下几个方面:一是考查导数的运算与导数的几何意义,二是考查导数的简单应用,例如求函数的单调区间、极值与最值等,三是考查导数的综合应用。
2015年高考试题评析与指导数学课标卷
2015年数学高考试题评析
(课标卷)
一、整体特点
2015年高考(全国Ⅰ、Ⅱ卷)文理科数学试卷保持了“总体稳定,稳中求新”的命题理念,坚持以能力立意的指导思想,显现了“坚持创新,关注应用,突出思维,文理有别”的特色。
考查基本的数学知识、数学能力、数学素质和学习潜能。
难度合理,区分度较好,有利于高校选拔人才。
是一套体现“知能并重,稳定创新”的优秀试卷。
(一)立足基础,全面考查
主干知识、重要思想方法—— 重点考查。
试卷的主体:函数与导数、不等式与导数、三角与向量、数列、直线和平面、直线和圆锥曲线、概率统计等基础知识以及其中蕴含的思想方法。
非主干知识、新增内容—— 抽样考查。
第22-24题的“几何证明选讲”
、“坐标系与参数方程”、“不等式选讲”等内容难度配备合理,符合
“新增内容不深挖”的基本定位。
呈现形式、设问角度。
设问形式常规学生不陌生,层层递进,给不同层次学生有较好的发挥空间、搭建了“展示”的平台,以平和的心态参加
考试,树立战胜困难的信心。
(三)关注实际,注重素养
命题素材关注数学文化和数学应用,贴近学生生活生产实际,重点测试学生在真实情境中解决问题时所体现的基本素养。
如Ⅰ卷(6)、Ⅱ卷(8);又如Ⅰ卷4、19,Ⅱ卷3、18等试题贴近学生生活生产实际。
二、典型试题评析
(一)空间想象能力考查
Ⅰ卷11、18题,Ⅱ卷6、19题立体几何问题突出考查了空间想象能力,能够正确识图、画图和对图形的想象能力,对图形进行分解、组合的能力,并要求能够熟练进行三种语言的转换。
半球和半个圆柱的组合体
截去部分为正方体的一个角。
2015年普通高等学校招生全国统一考试数学文试题精品解析(新课标Ⅰ卷)
2015年高考新课标Ⅰ卷文数试题解析(精编版)(解析版)一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) (A )310 (B )15(C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( )(A ) 3 (B )6 (C )9 (D )12 【答案】B6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172(B )192 (C )10 (D )128、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )10 (D )12 【答案】C【解析】执行第1次,t =0.01,S=1,n =0,m =12=0.5,S =S -m =0.5,2mm ==0.25,n =1,S =0.5>t =0.01,是,循环, 执行第2次,S =S -m =0.25,2mm ==0.125,n =2,S=0.25>t =0.01,是,循环, 执行第3次,S =S -m =0.125,2mm ==0.0625,n =3,S=0.125>t =0.01,是,循环,执行第4次,S=S-m =0.0625,2mm ==0.03125,n =4,S=0.0625>t =0.01,是,循环,执行第5次,S=S-m =0.03125,2mm ==0.015625,n =5,S=0.03125>t =0.01,是,循环, 执行第6次,S=S-m =0.015625,2mm ==0.0078125,n =6,S=0.015625>t =0.01,是,循环,执行第7次,S=S-m =0.0078125,2mm ==0.00390625,n=7,S=0.0078125>t =0.01,否,输出n =7,故选C.【考点定位】程序框图【名师点睛】本题是已知程序框图计算输出结果问题,对此类问题,按程序框图逐次计算,直到输出时,即可计算出输出结果,是常规题,程序框图还可考查已知输入、输出,不全框图或考查程序框图的意义,处理方法与此题相同.10、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74-(B )54- (C )34- (D )14-11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )812、设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .14、已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = .15、若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .【答案】4【解析】作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z =3x +y 过点A 时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z =3x +y 的最大值为4.【考点定位】简单线性规划解法【名师点睛】对线性规划问题,先作出可行域,在作出目标函数,利用z 的几何意义,结合可行域即可找出取最值的点,通过解方程组即可求出做最优解,代入目标函数,求出最值,要熟悉相关公式,确定目标函数的意义是解决最优化问题的关键,目标函数常有距离型、直线型和斜率型.16、已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(0,66A ,当APF ∆周长最小时,该三角形的面积为 . 【答案】126【解析】设双曲线的左焦点为1F ,由双曲线定义知,1||2||PF a PF =+,∴△APF 的周长为|PA |+|PF |+|AF |=|PA |+12||a PF ++|AF |=|PA |+1||PF +|AF |+2a ,由于2||a AF +是定值,要使△APF 的周长最小,则|PA |+1||PF 最小,即P 、A 、1F 共线,∵(0,66A ,1F (-3,0),∴直线1AF 的方程为1366x =-,即326x =-代入2218y x -=整理得266960y +-=,解得26y =86y =-舍),所以P 点的纵坐标为26,∴11APF AFF PFF S S S ∆∆∆=-=1166662622⨯⨯-⨯⨯126【考点定位】双曲线的定义;直线与双曲线的位置关系;最值问题【名师点睛】解决解析几何问题,先通过已知条件和几何性质确定圆锥曲线的方程,再通过方程研究直线与圆锥曲线的位置关系,解析几何中的计算比较复杂,解决此类问题的关键要熟记圆锥曲线的定义、标准方程、几何性质及直线与圆锥曲线位置关系的常见思路. 三、解答题: 解答应写出文字说明,证明过程或演算步骤.17、(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B =,且2,a 求ABC ∆的面积. 【答案】(I )14(II )1(II )由(1)知22b ac =.因为B =90°,由勾股定理得222a cb +=.故222a c ac +=,得2c a =.所以D ABC 的面积为1.【考点定位】正弦定理;余弦定理;运算求解能力【名师点睛】解三角形问题的主要工具就是正弦定理、余弦定理,在解题过程中要注意边角关系的转化,根据题目需要合理选择合理的变形复方向,本题考查利用正余弦定理解三角形和计算三角形面积,是基础题.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 【答案】(I )见解析(II )3+25(II )设AB =x ,在菱形ABCD 中,由ÐABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ^EC ,所以在Rt D AEC 中,可得EG =32x .由BE ^平面ABCD ,知D EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E-ACD 的体积3116632E ACD V AC GD BE x -=醋?=.故x =2 从而可得AE =EC =ED 6.所以D EAC 的面积为3,D EAD 的面积与D ECD 5. 故三棱锥E-ACD 的侧面积为3+25【考点定位】线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对几何体的体积和表面积问题,常用解法有直接法和等体积法.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.46.6 56.3 6.8 289.8 表中i w i x ,w =1881ii w=∑(I )根据散点图判断,y a bx =+与y c =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费90x =时,年销售量及年利润的预报值时多少? (ii )当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()=()niii nii u u v v u u β==---∑∑,=v u αβ-【答案】(Ⅰ)y c x =+适合作为年销售y 关于年宣传费用x 的回归方程类型(Ⅱ)100.668y x =+(Ⅲ)46.24(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值100.66849y =+,576.60.24966.32z =⨯-=. ……9分(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.66813.620.12z x x x x =+-=-+,x 13.6=6.82,即46.24x =时,z 取得最大值. 故宣传费用为46.24千元时,年利润的预报值最大.……12分【考点定位】非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识【名师点睛】本题考查了非线性拟合及非线性回归方程的求解与应用,是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程,再利用回归方程进行预报预测,注意计算要细心,避免计算错误.20.(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围; (II )12OM ON⋅=,其中O 为坐标原点,求MN .【答案】(I )4747,33骣-琪琪桫(II )2(II )设1122(,),(,)M x y N x y . 将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=,所以1212224(1)7,.11k x x x x k k ++==++21212121224(1)1181k k OM ON x x y y k x x k x x k +?+=++++=++,由题设可得24(1)8=121k k k+++,解得=1k ,所以l 的方程为1y x =+. 故圆心在直线l 上,所以||2MN =.【考点定位】直线与圆的位置关系;设而不求思想;运算求解能力【名师点睛】直线与圆的位置关系问题是高考文科数学考查的重点,解决此类问题有两种思路,思路1:将直线方程与圆方程联立化为关于x 的方程,设出交点坐标,利用根与系数关系,将1212,x x y y 用k 表示出来,再结合题中条件处理,若涉及到弦长用弦长公式计算,若是直线与圆的位置关系,则利用判别式求解;思路2:利用点到直线的距离计算出圆心到直线的距离,与圆的半径比较处理直线与圆的位置关系,利用垂径定理计算弦长问题.21.(本小题满分12分)设函数()2ln xf x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()22lnf x a a a≥+. 试题解析:(I )()f x 的定义域为()0+¥,,()2()=20xaf x ex x¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2xe 单调递增,ax-单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04ab <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点.请考生在(22)、(23)、(24)三题中任选一题作答。
2015江苏卷试卷分析及近三年总结分析
2an1 an1an d 解: (1) an 2 2 (n 1,2,3) 2 (2)1 转化条件,将四项成等比转化为关系式(a33 )2 a22a44
2 化简,变形为多项式.
(3)矛盾,不存在.
19
三、近三年高考试题的基本特点
1、三角计算题围绕求值,求角问题,以和(差)角公式的运用为主, 题型的变化大致有三类:第一类给出三角式的值(2014年);第二类给 出三角形的边角关系(2015年);第三类条件与向量相关(2013年)。 应 强化对公式的复习,提高对三角(向量)内容内在关系的认识, 加强数学基本能力的训练。控制复习内容的难度要求。
11
16. 如图,在直三棱柱 ABC ABC 1 1 1 中,已知 AC BC, BC CC1 . 设 AB1 的中点为 D ,
BC 1 BC1 E.
求证: (1) DE // 平面AAC 1 1C (2) BC1 AB1
证明:(1)侧面 BB1C1C 是矩形,E 是 B1C 的中点, DE / AC, DE / 平面AA1C1C ;
k 2k 2 C( , ) 2 2 1 2k 1 2k
2 2(1 k 2 ) AB = , k 0 ,不合题意 2 1 2k 5k 2 2 2(3k 2 1) 1 k 2 ) , PC = P ( 2, k (1 2k 2 ) k (1 2k 2 ) 2(3k 2 1) 1 k 2 4 2 (1 k 2 ) = ,解出 k 1 , 1 2k 2 k (1 2k 2 )
3 9 ( a a ) 6 cos 3 3 k k 1 6 2 2 k 0
5
(a
k 0
11
2015年山东省高考数学试卷分析
2015年全国高考数学(山东卷)(文理科)试卷分析山东省高考数学试卷阅卷组山东省教育招生考试院一、试卷综述2015年的山东省高考数学继续推行自主命题形式。
今年的高考数学试题是对新课程改革成效的检验,是新课程改革的重要指标,对今后新课程改革和中学数学教学具有较强的指导作用。
命题遵守《2015年普通高等学校招生全国统一考试大纲(课程标准实验版)》(以下简称《考试大纲》)和《2015年普通高等学校招生全国统一考试(课程标准实验版)山东卷考试说明》(以下简称《考试说明》);遵循“有利于高等学校选拔新生、有利于中学推进素质教育和课程改革、有利于扩大高校办学自主权、有利于考试科学、公平、公正、安全、规范”的命题原则;命题根据山东省高中教学的实际情况,不拘泥于某一版本(山东各地使用人民教育出版社出版的高中教材A版和B版两种教材),考查高中数学的主体内容,重点知识,考查新课标的新增内容,考查考生对数学知识的应用能力,体现了新课程改革的理念。
试卷在考查基础知识、基本能力的基础上,突出了对主要的的数学思想,方法和数学能力的考查。
2015年数学试卷的知识点覆盖面广,各章节知识分配恰当,题目数量稳定、试题难度安排适当,文、理科两份试卷难、中、易的比例分配恰当,题设立意新颖。
试卷具有很高的信度、效度和区分度。
达到了考基础、考能力、考素质、考潜能的考试目标。
命题稳中有变,稳中有新,继续保持了我省高考自主命题的风格,具有浓郁的山东特色。
二试卷特点2.1 试卷的整体结构和知识框架试卷的长度、题目类型比例配置与《考试说明》一致,全卷共三种题型,共21题,其中选择题共10小题,每小题5分,共50分,占总分的33.3%;填空题5个,每题5分,共25分,约占总分的16.7%;解答题6个,前4个题目每题12分,最后两个题每题27分,共75分,约占总分的50.0%,全卷合计150分。
试卷结构注重考查学生的技能,充分发挥考生的主观能动性,更好的反映考生的实际情况,更有利于选拔。
2015年高考理科数学试题分析文档
2015年高考理科数学试题解析刘克江2015年高考已尘埃落定,本人现将理科数学试题简单分析,与大家交流。
由于本人水平有限,分析的不够透彻,准确的地方,希望大家补充,指正。
总体看来今年新课标的高考数学试卷从试题的结构与难度同去年相比有明显变化,这非常符合“创新”的高考指导思想。
坚持对基本知识、数学方法进行考查。
试卷宽角度、多视点、有层次地考查了数学逻辑思维能力。
试卷对课程中新增内容和传统内容进行了合理、科学的考查,真正体现了新课程理念。
新课标全国卷Ⅱ与其他各地高考试卷相比有非常明显的特点:源于教材、传承精髓;梯度明显、力图创新。
今年考试的具体特点如下:一,试题与2013,2014两年试题类型基本保持一致,常考点都保持不变。
如选择题1,考查集合。
2题考查复数的性质及运算。
4题考查数列。
5题考查分段函数。
6题考查三视图.7题考查求圆的方程及弦长。
8题考查的程序框图。
9题考查的立体几何问题。
10题考查的几何与函数相结合的问题。
11题考查的解析几何中双曲线的离心率。
12题的导数的应用。
13题考查的平面向量共线问题。
14题线性规划问题。
15题考查二项式的展开式及项的系数。
16题考查由数列的递推公式求通项公式。
(2014理科第17题第一问也考查由数列的递推公式求通项公式。
)17题考查解三角形。
18题考查概率统计。
19题考查立体几何。
20考查的直线与圆锥曲线相交问题。
21题导数在函数中的应用问题。
22题选做题等。
纵观全卷22题中,其中以上21个问题都是常考点。
只有3题是一道新题。
所以试题题型很平稳,常考点保持不变。
试卷对向量、不等式、概率统计、算法、复数等知识点的考查同样以平和为主,这部分的考察对基本知识的依赖度很高,只需要对基本知识的理解和简单运用即可求解,注重源于课本。
在选考部分,几何选讲、参数方程以及不等式题目基本保持新课标的原有特点,属于较易题目,总体来讲都属于基本题型。
二,试题体现了新课改理念,题型灵活。
2015年江苏高考数学卷分析(总体分析)
2015年高考数学(江苏卷)试题分析一、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分。
必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟。
(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成。
其中填空题14小题,约占70分;解答题6小题,约占90分。
2.附加题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答。
填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤。
(三)试题难易比例必做题部分由容易题、中等题和难题形式组成。
容易题、中等题和难题在试卷中的比例大致为4:4:2。
附加题部分由容易题、中等题和难题形式组成。
容易题、中等题和难题在试卷中的比例大致为5:4:1。
二、试卷概述一卷部分(即文理同卷部分),总体上说,试题的难易程度适中。
填空题(1-14题),与过去7年(08年-14年)相比,前12题相对较容易,第13题与去年的第13题考查的一样,即函数与方程的零点问题,难度高于去年,且易错;第14题较难。
分析如下:1-9题,比较容易。
并且前五道题是最容易拿分且每年必考的集合、统计、复数、算法与概率。
这45分应该是很多考生可以轻而易举拿到的分数。
10-12题,难度适中。
第10题与2012年的第13题相类似,且更加容易,直接考查直线与圆相切,之后用函数思想和基本不等式解决问题;第11题,考查累加法求通项及裂相相消求和;作为数列填空题出在第11题的位置,而且又比较简单,也应该是可以拿分的题目;第12题,考查双曲线的渐近线与平行直线之间的距离问题,知识点较简单,考法比较新颖,与往年这个位置的解析几何相比,难度不大,且运算量较小。
2015年高考数学(新课标全国卷Ⅱ)试卷解读
2015年高考数学(新课标全国卷Ⅱ)试卷解读2015年的高考已经进入了新课标教材的第六个年头.每逢高考结束便是各高中教师分析高考试题,总结复习经验,并为新一届高三学生复习提出建议的时候.下面简单阐述一下本人对本年度数学(新课标全国卷Ⅱ)的理解.一、试卷整体评价1. 知识点覆盖比较全面三角12分,数列10分,函数与导数27分,立体几何22分,解析几何22分,统计与概率17分,集合、复数、算法、向量、线性规划、二项式定理各5分,与2013和2014两年相比,局部略有调整,总体知识主干不变,重点突出.2. 整体难度较2013、2014两年有所下降选择题12个,填空题4个,解答题6个(其中一个为三选一的选修题).选择填空部分难度低于2013年,与2014年基本持平.解答题部分比2013、2014两年均略简单.二、试卷题目特点1. 注重基础知识,贴近教材今年高考试卷的第1~8,13,14题,这10个题目均为基础知识考查题,难度与课后习题A组类似,是教学中知识点的直接考查,而且题目背景极其贴近教材内容.例如:8.下边程序框图的算法思路源于我国数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a、b,分别为14、18,则输出的a=().A.0B.2C.4D.14本题即为必修三教材第36页的算法案例,其作用是求两个数的最大公因数.2. 整理题型,重视基本方法试卷第9,11,12,15,16,17,20(1),21题,这8个题目体现了教师和学生对经典题型和方法的掌握情况.例如:9.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为().A. 36?仔B. 64?仔C.144?仔D. 256?仔该题是立体几何中关于多面体外接球的经典补形题型之一.对于墙角类型具有三垂直的三棱锥的补形动作为以三垂直的顶点为顶点,三条互相垂直的棱分别为长宽高构造长方体或正方体,此长方体或正方体的体对角线即为其外接球直径.(1)证明:直线OM的斜率与l的斜率的乘积为定值;甚至连今年的压轴题21题导数,都是对典型题型和基本方法的考查.例如:21.设函数f (x)=emx+x2-mx.(1)证明:f (x)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[-1,1],都有|f (x1)-f (x2)|≤e-1,求m的取值范围.(1)是平日练习中利用导数处理函数单调性的方法.(2)的条件即是f (x)在[-1,1]的最大值与最小值的差小于等于e-1.结合(1)的结论很快就可以解决(2).这些题目所考查的手法都应该是老师带领学生在高三复习阶段反复练习的重点,可见高考题目对经典题型和基本方法多么重视.3.重视数学能力培养(1)空间想象能力自从在立体几何中引入空间直角坐标系以来,立体几何从特别注意考查学生空间想象能力的方向转变成了计算题,使得学生在平时的训练中多重视计算,空间想象力越来越弱.但今年的选择题9和解答题19(1)改变了我们以上看法.与球有关的问题大多需要学生有良好的空间想象力,手绘直观图,并在大脑中产生球的图形,再加上点C在球面上运动的最值问题,使得选择题9更具特色.例如:19. 如右上图,长方体ABCD-A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由).该题打破了以往高考试题中立体几何解答题第一问证明的模式,要求学生绘制直观图中的截面,这是新课标高考的首次尝试.两个题目的难度虽不大,但考查学生空间想象力的目的达到了,也改变了教师带领学生复习立体几何的常规,最重要的是将立体几何学科的特点凸显出来.(2)数据处理能力例如:3.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是().A.逐年比较:2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量显减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关18.某公司为了解用户对其产品的满意度,从两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).数据处理能力体现在会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.2014年的第19题也考查了对大量数据的处理和预测的内容.连续两年出现统计类的问题提示我们应该将统计中的数据处理问题和基本操作方法整理到复习的方案中.4.突出数学知识的应用和创新试卷中第3,10,18,19,20(2)题给我留下了非常深刻的印象,这些题目使得我们重新思考学习数学知识的意义,掌握数学知识的作用.让我们看到了数学不仅仅是抽象的推理、论证、计算,它有很强的应用价值,它来源于我们的生活,并能很好地指导我们的生活;它富于探索,富于挑战,富于创新,使得数学具有了神秘的色彩,它吸引着一代又一代无数的天才前赴后继,为攀登数学的高峰不懈地努力着.。
2015年全国统一高考数学试卷(完整版+答案解析)(新课标ⅱ)
2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体=V C﹣AOB===36,故积最大,设球O的半径为R,此时V O﹣ABCR=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tan x,AP==,此时f(x)=+tan x,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tan x=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tan x,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为8.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y =ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,P(∁A),P(∁B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(∁A)=(0.01+0.02+0.03)×10=0.6得P(∁B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a 的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;﹣S (2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC计算即可.△AEF【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
2015年全国高考新课标卷Ⅱ(理科)答案及考点分析
2015年普通高等学校招生全国统一考试理科数学答案和解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A【解析】试题分析:由已知得}12|{<<-=x x B ,故}0,1{-=B A ,故选A . 考点:集合的运算.2.若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B【解析】试题分析:由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .考点:复数的运算.3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】D【解析】试题分析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D . 考点:正、负相关.4.等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84 【答案】B【解析】试题分析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42,故选B 考点:等比数列通项公式和性质. 5.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .12 【答案】C【解析】试题分析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .考点:分段函数.6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】D【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图.CBADD 1C 1B 1A 17.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C【解析】试题分析:由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,即AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±-,所以MN =,故选C .考点:圆的方程.8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 【答案】B【解析】试题分析:程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B . 考点:程序框图.9.已知A ,B 是球O 的球面上两点,∠AOB =90,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π 【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C .考点:外接球表面积和椎体的体积.BOAC10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )DPCx【答案】B【解析】试题分析:由已知得,当P 在BC 边上运动时,即40π≤≤x 时,x x PB PA tan 4tan 2++=+;当P 在CD 边上运动时,即2,434πππ≠≤≤x x 时,1)1tan 1(1)1tan 1(22++++-=+xx PB PA ,当2π=x 时,22=+PB PA ;当点P 在AD 边上运动时,即ππ≤≤x 43时,x x PB PA tan 4tan 2-+=+,从点P 的运动过程可以看出,轨迹关于直线2π=x 对称,且)2()4(ππf f >,且轨迹非线性,故选B 。
2015年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C.D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数,则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=i,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1B.C.D.2【考点】A8:复数的模.【专题】11:计算题;5N:数系的扩充和复数.【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.【点评】本题考查复数的运算,考查学生的计算能力,比较基础.2.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【考点】GP:两角和与差的三角函数.【专题】56:三角函数的求值.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.【点评】本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n【考点】2J:命题的否定.【专题】5L:简易逻辑.【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.【点评】本题主要考查椎体的体积的计算,比较基础.7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.【考点】96:平行向量(共线).【专题】5A:平面向量及应用.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【考点】HA:余弦函数的单调性.【专题】57:三角函数的图像与性质.【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos (πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.8【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8【考点】L!:由三视图求面积、体积.【专题】5Q:立体几何.【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】2:创新题型;53:导数的综合应用.【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g (0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D.【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数,则a=1.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解.【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴ln(+x)(﹣x)=0,∴lna=0,∴a=1.故答案为:1.【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.【点评】本题考查椭圆的简单性质的应用,圆的方程的求法,考查计算能力.15.(5分)若x,y满足约束条件.则的最大值为3.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),k OA==3,即的最大值为3.故答案为:3.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及直线的斜率,利用数形结合的数学思想是解决此类问题的基本方法.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【考点】HT:三角形中的几何计算.【专题】15:综合题;2:创新题型;58:解三角形.【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).【点评】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.三、解答题:17.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【考点】8E:数列的求和;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【考点】LM:异面直线及其所成的角;LY:平面与平面垂直.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF==,从而EG2+FG2=EF2,则EG⊥FG,(或由tan∠EGB•tan∠FGD=•=•=1,可得∠EGB+∠FGD=90°,则EG⊥FG)AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.【点评】本题考查空间直线和平面的位置关系和空间角的求法,主要考查面面垂直的判定定理和异面直线所成的角的求法:向量法,考查运算能力,属于中档题.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i ﹣)(w i ﹣)(y i ﹣)46.6563 6.8289.8 1.61469108.8表中w i =i ,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.【考点】BK:线性回归方程.【专题】5I:概率与统计.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.【点评】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【考点】KH:直线与圆锥曲线的综合.【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】2:创新题型;53:导数的综合应用.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:a<时,函数h(x)有一个零点.当时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【考点】N9:圆的切线的判定定理的证明.【专题】5B:直线与圆.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x 值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【考点】Q4:简单曲线的极坐标方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f(x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2015年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (文科)解析版
2015年普通高等学校招生全国统一考试全国新课标 II 卷文 科 数 学一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A考点:集合运算.2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4【答案】D【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .2【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6D.15【答案】D【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15 ,故选D.考点:三视图7. 已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.3 4D.3 【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B. 2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图.9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1C.12 1D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x=+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数()32f x ax x =-的图像过点(-1,4),则a = .【答案】-2 【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式14. 若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z =2x +y 的最大值为 .【答案】8考点:线性规划15. 已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为 .【答案】2214x y -=考点:双曲线几何性质16. 已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = . 【答案】8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由2808a a a ∆=-=⇒=.考点:导数的几何意义.三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(I )求sin sin BC∠∠ ;(II )若60BAC ∠=,求B ∠.【答案】(I )12;30.考点:解三角形试题解析:(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(II)根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I)见试题解析(II)A地区的用户的满意度等级为不满意的概率大.考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体1111ABCD A B C D -中AB =16,BC =10,18AA =,点E ,F 分别在1111,A B D C 上,11 4.A E D F ==过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由); (II )求平面α把该长方体分成的两部分体积的比值. 【答案】(I )见试题解析(II )97 或79考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆()2222:10x y C a b a b +=>> ,点(在C 上.(I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )2222184x y +=(II )见试题解析考点:直线与椭圆21. (本小题满分12分)已知()()ln 1f x x a x =+-. (I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 【答案】(I )0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(II )()0,1. 【解析】考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O是等腰三角形AB C内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.(I)证明EF BC;(II)若AG等于圆O半径,且AE MN【答案】(I)见试题解析;(II考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.【答案】(I )()30,0,2⎫⎪⎪⎭;(II )4. 【解析】试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解考点:参数方程、直角坐标及极坐标方程的互化.24. (本小题满分10分)选修4-5:不等式证明选讲设,,,a b c d 均为正数,且a b c d +=+.证明:(I )若ab cd > ,+>;(II )>是a b c d -<-的充要条件. 【答案】【解析】试题分析:(I )由a b c d +=+及ab cd >,可证明22>,开方即得>(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明. 试题解析:解:(I )因为22a b c d =++=++考点:不等式证明.。
2015年高考全国卷1数学(文理)试卷分析和复习策略
2015 年一般高等学校招生全国一致考试全国 1 卷数学试卷解析一.整体解读试卷紧扣考试说明,从考生熟悉的基础知识下手,宽角度、多视点、有层次地察看了学生的数学理性思想能力、对数学本质的理解能力及数学涵养和潜能的区分度,达到了“考基础、考能力、考素质、考潜能”的考试目标。
试卷所涉及的知识内容限制在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,表现了“重点知识重点察看”的原则。
1、回归教材,重视基础2015 年新课标卷依照了察看基础知识为主体的原则,特别是考试说明中的大部分知识点,选择题、填空题察看了复数、三角函数、简单逻辑、概率、解析几何、向量、框图、二项式定理(理科)、线性规划等知识点,大部分属于老例题型,是学生在平时训练中常有的种类。
同时,在立体几何、导数等题目进步行了一些微创新,与我国古代《九章算术》中的闻名题目相联系,这些题目的设计回归教材和中学授课本质。
2、合适设置题目难度与区分度与从前新课标卷相比较,今年的选填难度依旧设置在选择题和填空题的最后两道。
特别以选择题第 12 题和填空题第16 道为代表。
有的同学平时此种类的题目见的较少,需要在考场紧张的状态下独自解决,这察看了同学在压力状态下解析问题,解决问题的能力。
对此,我们从前给出的建议是,不要在这类类的题目开销过多的时间,从而压缩了后边解答题部分的答题时间,同时也影响考试情绪。
3、布局合理,察看全面,重视数学方法和数学思想的察看在解答题部分,文、理两科试卷均对高中数学中的重点内容时行了察看。
包括数列、立体几何、概率统计、解析几何、导数五大版块和三选一问题。
以知识为载体,立意于能力,让数方法和数学思统方式贯穿于整个试题的解答过程之中。
4、命题察看的沿续性2015 年新课标卷,在力求创新基础上,也有一些不变的东西。
比方2015 年新课标 1 卷理科选择题第7 题与 2014 年新课标 1 卷文科第 6 题的命题方式基本完好一致。
2015年高考数学全国卷特色试题解析与简评
试题评析 2
f′(x)是 奇 函 数 f(x)(x∈R)的 导 函 数 ,f(-1) =0,当 x>0 时,xf′(x)-f(x)<0,则 使 得 f(x)>0成立的x 的取值范围是( ).
(A)(- ∞ ,-1)∪ (0,1) (B)(-1,0)∪ (1,+ ∞ ) (C)(- ∞ ,-1)∪ (-1,0) (D)(0,1)∪ (1,+ ∞ ) 解析:令 δ(x)=fx(x)(x≠0),由 题 意 知 δ(x)是 偶 函 数 .由δ(-x)=δ(x),得δ′(-x)= -δ′(x),即导函数δ′(x)是 奇 函 数.由δ′(x)= xf′(xx)2-f(x)结合已知条件可知,当x>0 时, δ′(x)<0,所 以δ(x)在 (0,+ ∞)上 单 调 递 减. 又δ(x)为 偶 函 数 ,由 对 称 性 知δ(x)在 (- ∞ ,0) 上 单 调 递 增 .再 由 f(-1)=0,得δ(-1)=δ(1) =0,所以当 x∈ (0,1)时,δ(x)>0,f(x)>0, 当 x∈ (- ∞ ,-1)时 ,δ(x)<0,f(x)>0.所 以 不等式f(x)>0 的 解 集 是 (- ∞,-1)∪ (0, 1).故选 A. 简评:本题把 函 数 的 奇 偶 性 与 导 数 应 用 融
- 槡3)cos 15°+ 2sin 15°= 2 (2 - 槡3)·
槡 槡 1+co2s 30°+2 1-co2s30°=槡6-槡2,可 得
槡6-槡2<AB<槡6+槡2.因 此 ,建 立 这 个 目 标 函
数看 似 直 接 一 些,但 后 续 的 计 算 与 转 化 需 要 更
多的三角变换.
例4 (全国新课标 卷 Ⅱ 第 16 题)设 Sn 是
AB
=
BDsin∠ADB sin∠A
2015年高考数学试卷真题附详细解析
2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)(2015•真题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•真题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•真题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•真题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∂n0∈N*,f(n0)∉N*且f(n0)>n0D.∂n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•真题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•真题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•真题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinx B.f(sin2x)=x2+xC.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|8.(5分)(2015•真题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•真题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•真题)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•真题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•真题)若a=log43,则2a+2﹣a=.13.(4分)(2015•真题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•真题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•真题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•真题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•真题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•真题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•真题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•真题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∂n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC 通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),析:由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
2015高考数学试卷分析
表格 12015年高考新课标Ⅰ数学考情分析(注:分值=5分×题量为选择、填空题 +12/10分为简答题)2015年高考新课标Ⅰ数学考情分析一.结构分析与以往相比,2015年新课标Ⅰ数学试卷在题型结构上无任何变动。
从表1不难发现,文、理科之间的考点分布情况相似,大部分模块的分值分布情况相对较“稳”,变动不大,符合历年高考考情。
但“稳中亦有变”,2015年的试卷中,变化较大的是一些知识点的考法及其难易程度。
二.考点变化1.选择题表格 2表格2为文、理科选择题知识点分布及其难易程度的对比,可以发现12道选择题中5道题文理科试卷均包含。
文理科区别比较大的部分包括:低档题中,文科考察集合部分的知识,理科考察了命题部分的知识,但在难易程度上两题接近;平面向量部分,理科的难易程度明显难于文科;函数部分,文科的两道题(第10,12题)一个考察分段函数的性质,一个考察对称函数的联系,难度前者居中,后者偏难,但对比理科第12题则难度略逊一筹。
此类考察形式,符合2011年以来新课标1卷的考情。
纵向对比前4年与今年,试卷中基础知识的考察比例呈递增趋势,表现在试卷第10、11题及文科第12题,考察难度均有所下降;此外,第6题考察空间几何体的体积问题中引用古代数学名著《九章算术》中的知识,是今年试题的一大亮点,即增加了试题的厚度又考察了学生的理解能力与对实际问题的解决能力。
2.填空题参考表格3不难发现,文理科试卷填空题考察的侧重点区分较大,表现在:文科题考察了数列问题与圆锥曲线问题;理科题考察了圆与椭圆的综合问题与解三角形问题,且难度相对较高。
纵向对比,2015年试题填空题部分比2014年难度有所增加。
3.简答题简答题部分,文科第17题考察解三角形问题,难度适中;18题考察空间几何问题,难度适中; 20题考察直线与圆问题,难度适中;21题考察函数与导数问题,难度偏高。
理科第17题考察数列问题,难度适中;18题考察空间几何问题,难度适中;20题考察圆锥曲线问题,难度偏高;21题考察函数与导数问题,难度偏高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国卷Ⅰ(理科)高考数学学科分析(一)高考数学知识点汇总(略)(二)高考数学考纲提炼考点1:集合(集合的交、并、补运算)考点2:常用逻辑用语(命题的否定、充分必要条件)考点3:函数(函数的基本性质、函数的图象)考点4:函数的应用(函数的零点)考点5:导数及其应用(利用导数研究函数的单调性、利用导数研究曲线上某点的切线方程)考点6:不等式(简单线性规划)考点7:数列(数列求通项、数列求和、等差等比数列的性质)考点8:平面向量(平行向量与共线向量、垂直向量、向量的夹角)考点9:数系的扩充与复数(复数的化简计算、复数求模)考点10:统计与统计案例(线性回归方程)考点11:概率(n次重复试验中恰好发生k次的概率)考点12:计数原理(二项式定理的应用)考点13:算法初步与框图考点14:三角函数及其恒等变换考点15:三角函数(余弦函数的单调性、三角形中的几何计算)考点16:圆锥曲线与方程(椭圆的标准方程、双曲线的简单性质、直线与圆锥曲线的综合问题)考点17:空间几何体(由三视图求面积和体积、棱柱/棱锥/棱台的体积、异面直线技巧所成的角)考点18:几何证明选讲(圆的切线判定定理的证明)考点19:坐标系与参数方程(简单曲线的极坐标方程)考点20:不等式选讲(绝对值不等式的解法)(三)学科重难点分析1. 三角函数在历年高考中,三角函数重点考查的知识点有:与三角函数的性质有关问题(如单调性、奇偶性、周期性、极值点、对称性);与三角函数图象有关问题;与简单三角变换有关的问题(如三角求值、化简等);与解三角形有关的问题。
在题型的设计上,客观题以“考查基础知识,基本技能”为主基调,但对解题的合理性、灵活性会有较高的要求。
往往通过每个知识点的和谐组合,使得各层次的考生思维取向有所差异,从而导致解题速度、运算量也不一样。
解答题的设计难度在中等偏易水平,主要以三角知识为背景材料,考查学生运用数学知识综合分析、解决问题的能力。
《新课标考试大纲》降低了对三角变换的考查要求,加强了对三角函数的图象与性质的考查要求;突出了三角知识的工具性;突出三角与代数、向量、几何的综合与联系;强化运用数学思维方法的意识以提高分析问题与解决问题的能力。
2.数列在全国卷的考试大纲中,数列的要求不高,在解答题中与三角函数二选一进行考查,所处的位置是解答题的第一题,较广东卷难度降低。
在历年的高考中,数列重点考查的知识有:等差中项、等比中项以及等差、等比中项的推广;等差等比数列的判定方法、通项的求法、前n项和的求法等。
在题型的设计上,客观题以考查数列的性质为主,对灵活应用性质的要求较高,难度属中档,解答题中一般有两个小问,第一小问是以求数列的通项为主,第二问是求数列的前n项和或者是证明不等式。
对学生的逻辑思维能力以及逻辑严密性的考查较为突出。
3.立体几何认识空间图形,培养和发展学生的空间想象能力、逻辑思维能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修课的基本要求,也是高考对立体几何考察的重点。
《立体几何初步》教材的编写从学习描述简单的立体图形的结构入手,学习如何在平面上表示这些立体图形,采用直观认识、操作确认、度量计算、思辩论证等方法认识和探索几何图形的基本性质,培养空间想象能力和逻辑思维能力,遵循了学生认识现实世界的规律,充分体现了沿着知识的形成过程学习数学的理念。
在题型设计上,立体几何的客观题考查主要是围绕组合体的三视图结合几何体的表面积、体积进行考查,难度属中档或者中档偏难;解答题中的设计一般会有两小题,第一小题考查主要是以证明线面之间关系(平行或者垂直)为主,第二小题以考查线面或者面面直角夹角为主,注重空间向量的考查和应用,难度中等或偏难。
4.圆锥曲线圆锥曲线在历年的高考中占的比例都比较大,涉及到的题型有选择题、填空题以及解答题。
考查的内容包含圆锥曲线的定义、标准方程、几何性质、轨迹的求法、直线与圆锥曲线的位置关系等,难度较大,对考生的计算能力、灵活应用知识能力考查尤为突出,对常用的数学思想方法如分类讨论、数形结合等考查也较高。
在题型设计上,圆锥曲线的客观题考查主要考查曲线的标准方程、简单的几何性质为主,对数形结合的思想方法情有独钟,对计算能力要求较高;解答题中一般会有两小题,第一小题是以求标准方程为主,第二小题是考查直线与圆锥曲线之间的关系为主,注重对学生的思维能力的考查,计算能力的考查以及对常用的思想方法考查。
属于难题。
5.函数与导数函数与导数专题,是中学数学中最重要的主干知识,其观点及其思想方法,贯穿整个高中数学教学的全过程,是历年来高考考查力度最大的主干知识。
《考纲》对本专题的考查内容及要求除了理科多了“能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数”及“①.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。
②.了解微积分的基本定理的含义。
”外,其余要求文理两科相同。
因此,从《考纲》要求来讲,理科要求高于文科要求。
历年来高考对本专题考查涉及到所有题型(选择,填空,解答)。
除了单独考查函数与导数的题目外,往往在每个题目上涉及函数与其他内容的综合考查。
在解答题方面,函数与导数往往作为压轴题出现。
因此本专题的高考复习必须给予足够的重视。
(四)如何学好高中数学1.养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。
高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。
学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。
良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2.及时了解、掌握常用的数学思想和方法学好高中数学,需要我们从数学思想与方法高度来掌握它。
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。
在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。
高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3.逐步形成“以我为主”的学习模式数学不是*老师教会的,而是在老师的引导下,*自己主动的思维活动去获取的。
学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。
学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。
对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
(五)高考考查题型及知识模块比例汇总题型选择题(12题)填空题(4题)解答题(6题)总分值60分20分70分百分比40% 13.33% 46.67%知识板块代数排列组合与概率统计算法与程序框图三角函数平面解析几何立体几何高等数学总分值54 22 5 15 22 22 10百分比31.76% 12.94% 2.94% 8.82% 12.94% 12.94% 17.65% (六)历年高考数学专题分类及其考查形式与赋分知识专题考查方向考查形式考查分值集合与常用逻辑用语集合的运算、命题、充要条件等选择题5分左右函数函数的三要素、函数的基本性质、函数的图象、抽象函数等选择题、填空题5分左右导数导数的应用、函数的图象与性质、恒成立问题等选择题、填空题、解答题17分左右三角函数与三角形三角函数求值、三角函数图象、三角函数的性质、三角恒等变换等选择题、填空题、解答题15分左右平面向量平行向量和共线向量、垂直向量、数量积、向量之间的夹角等选择题、填空题5分左右数列数列求和、数列求通项、数列常用性质、数列证明等选择题、填空题、解答题12分左右不等式简单的线性规划、最优解等选择题、填空题5分左右圆锥曲线标准方程、几何性质、直线与曲线的关系等选择题、填空题、解答题22分左右立体几何三视图、体积、表面积、线面关系、面面关系、线线角、线面角、面面角等选择题、填空题、解答题22分左右排列组合与二项式定理排列数的计算、二项式定理应用、二项式系数等选择题、填空题、解答题10分左右概率与统计概率的计算、随机变量的期望/方差线性回归方程等选择题、填空题、解答题12分左右算法程序框图选择题5分左右复数模的计算、化简等选择题5分左右高等数学几何证明选讲/坐标系与参数方程/不等式选讲解答题10分全国卷Ⅰ(文科)高考数学学科分析(一)高考数学知识点汇总(略)(二)高考数学考纲提炼考点1:集合(集合的运算)考点2:常用逻辑用语(命题的否定)考点3:函数(函数的图象、函数的基本性质)考点4:函数的应用(函数的零点、根的存在性及根的个数判断)考点5:导数及其应用(利用导数研究函数的单调性、利用导数研究曲线上某点的切线方程等)考点6:不等式(简单线性规划)考点7:数列(等差等比数列求和以及常用性质)考点8:平面向量(平行向量与共线向量、垂直向量、坐标运算)考点9:数系的扩充与复数(复数运算、复数求模)考点10:统计与统计案例(线性回归方程)考点11:概率(列举法求概率、古典概型及概率计算公式)考点12:算法初步与框图(程序框图)考点13:三角函数及其恒等变换(两角和与差的正弦函数)考点14:三角函数(余弦函数的单调性、三角形中的几何计算、符号的判定)考点15:圆锥曲线与方程(椭圆的标准方程、双曲线的简单性质、直线与圆锥曲线的综合问题)考点16:推理与证明(简单的合情推理)考点16:空间几何体(由三视图求面积和体积、棱柱/棱锥/棱台的体积、异面直线技巧所成的角)考点17:几何证明选讲(圆的切线判定定理的证明)考点18:坐标系与参数方程(简单曲线的极坐标方程)考点19:不等式选讲(绝对值不等式的解法)(三)学科重难点分析1. 三角函数在历年高考中,三角函数重点考查的知识点有:与三角函数的性质有关问题(如单调性、奇偶性、周期性、极值点、对称性);与三角函数图象有关问题;与简单三角变换有关的问题(如三角求值、化简等);与解三角形有关的问题。
在题型的设计上,客观题以“考查基础知识,基本技能”为主基调,但对解题的合理性、灵活性会有较高的要求。