Comparison of Induction Field Efficiency Evaluation Method

合集下载

金属材料中英对照词汇

金属材料中英对照词汇

物料科学Material Science物料科学定义Material Science Definition加工性能Machinability强度Strength抗腐蚀及耐用Corrosion & resistance durability金属特性Special metallic features抗敏感及环境保护Allergic, re-cycling & environmental protection化学元素Chemical element元素的原子序数Atom of Elements原子及固体物质Atom and solid material原子的组成、大小、体积和单位图表The size, mass, charge of an atom, and is particles (Pronton,Nentron and Electron)原子的组织图Atom Constitutes周期表Periodic Table原子键结Atom Bonding金属与合金Metal and Alloy铁及非铁金属Ferrous & Non Ferrous Metal金属的特性Features of Metal晶体结构Crystal Pattern晶体结构,定向格子及单位晶格Crystal structure, Space lattice & Unit cellX线结晶分析法X – ray crystal analyics method金属结晶格子Metal space lattice格子常数Lattice constant米勒指数Mill's Index金相及相律Metal Phase and Phase Rule固熔体Solid solution置换型固熔体Substitutional type solid solution插入型固熔体Interstital solid solution金属间化物Intermetallic compound金属变态Transformation变态点Transformation Point磁性变态Magnetic Transformation同素变态Allotropic Transformation合金平衡状态Thermal Equilibrium相律Phase Rule自由度Degree of freedom临界温度Critical temperture共晶Eutectic包晶温度Peritectic Temperature包晶反应Peritectic Reaction包晶合金Peritectic Alloy亚共晶体Hypoeutetic Alloy过共晶体Hyper-ectectic Alloy金属的相融、相融温度、晶体反应及合金在共晶合金、固熔孻共晶合金及偏晶反应的比较Equilibrium Comparision金属塑性Plastic Deformation滑动面Slip Plan畸变Distortion硬化Work Hardening退火Annealing回复柔软Crystal Recovery再结晶Recrystallization金属材料的性能及试验Properties & testing of metal化学性能Chemical Properties物理性能Physical Properties颜色Colour磁性Magnetisum比电阻Specific resistivity & specific resistance比重Specific gravity & specific density比热Specific Heat热膨胀系数Coefficient of thermal expansion导热度Heat conductivity机械性能Mechanical properties屈服强度(降伏强度) (Yield strangth)弹性限度、阳氏弹性系数及屈服点elastic limit, Yeung's module of elasticity to yield point伸长度Elongation断面缩率Reduction of area金属材料的试验方法The Method of Metal inspection不破坏检验Non – destructive inspections渗透探伤法Penetrate inspection磁粉探伤法Magnetic particle inspection放射线探伤法Radiographic inspection超声波探伤法Ultrasonic inspection显微观察法Microscopic inspection破坏的检验Destructive Inspection冲击测试Impact Test疲劳测试Fatigue Test潜变测试Creep Test潜变强度Creeps Strength第壹潜变期Primary Creep第二潜变期Secondary Creep第三潜变期Tertiary Creep主要金属元素之物理性质Physical properties of major Metal Elements工业标准及规格–铁及非铁金属Industrial Standard –Ferrous & Non – ferrous Metal磁力Magnetic简介General软磁Soft Magnetic硬磁Hard Magnetic磁场Magnetic Field磁性感应Magnetic Induction透磁度Magnetic Permeability磁化率Magnetic Susceptibility (Xm)磁力(Magnetic Force)及磁场(Magnetic Field)是因物料里的电子(Electron)活动而产生抗磁体、顺磁体、铁磁体、反铁磁体及亚铁磁体Diamagnetism, Paramagnetic, Ferromagnetism,Antiferromagnetism & Ferrimagnetism抗磁体Diamagnetism磁偶极子Dipole负磁力效应Negative effect顺磁体Paramagnetic正磁化率Positive magnetic susceptibility铁磁体Ferromagnetism转变元素Transition element交换能量Positive energy exchange外价电子Outer valence electrons化学结合Chemical bond自发上磁Spontaneous magnetization磁畴Magnetic domain相反旋转Opposite span比较抗磁体、顺磁体及铁磁体Comparison of Diamagnetism, Paramagnetic & Ferromagnetism反铁磁体Antiferromagnetism亚铁磁体Ferrimagnetism磁矩magnetic moment净磁矩Net magnetic moment钢铁的主要成份The major element of steel钢铁用"碳"之含量来分类Classification of Steel according to Carbon contents铁相Steel Phases钢铁的名称Name of steel纯铁体Ferrite渗碳体Cementitle奥氏体Austenite珠光体及共释钢Pearlite &Eutectoid奥氏体碳钢Austenite Carbon Steel单相金属Single Phase Metal共释变态Eutectoid Transformation珠光体Pearlite亚铁释体Hyppo-Eutectoid初释纯铁体Pro-entectoid ferrite过共释钢Hype-eutectoid珠光体Pearlite粗珠光体Coarse pearlite中珠光体Medium pearlite幼珠光体Fine pearlite磁性变态点Magnetic Transformation钢铁的制造Manufacturing of Steel连续铸造法Continuous casting process电炉Electric furnace均热炉Soaking pit全静钢Kil led steel半静钢Semi-killed steel沸腾钢(未净钢) Rimmed steel钢铁生产流程Steel Production Flow Chart钢材的熔铸、锻造、挤压及延轧The Casting, Fogging, Extrusion, Rolling & Steel熔铸Casting锻造Fogging挤压Extrusion延轧Rolling冲剪Drawing & stamping特殊钢Special Steel简介General特殊钢以原素分类Classification of Special Steel according to Element特殊钢以用途来分类Classification of Special Steel according to End Usage易车(快削)不锈钢Free Cutting Stainless Steel含铅易车钢Leaded Free Cutting Steel含硫易车钢Sulphuric Free Cutting Steel硬化性能Hardenability钢的脆性Brittleness of Steel低温脆性Cold brittleness回火脆性Temper brittleness日工标准下的特殊钢材Specail Steel according to JIS Standard铬钢–日工标准JIS G4104 Chrome steel to JIS G4104铬钼钢钢材–日工标准G4105 62 Chrome Molybdenum steel to JIS G4105镍铬–日工标准G4102 63 Chrome Nickel steel to JIS G4102镍铬钼钢–日工标准G4103 64 Nickel, Chrome & Molybdenum Steel to JIS G4103高锰钢铸–日工标准High manganese steel to JIS standard片及板材Chapter Four-Strip, Steel & Plate冷辘低碳钢片(双单光片)(日工标准JIS G3141) 73 - 95 Cold Rolled (Low carbon) Steel Strip (to JIS G 3141)简介General美材试标准的冷辘低碳钢片Cold Rolled Steel Strip American Standard –American Society for testing and materials (ASTM)日工标准JIS G3141冷辘低碳钢片(双单光片)的编号浅释Decoding of cold rolled(Low carbon)steel strip JIS G3141材料的加工性能Drawing abillity硬度Hardness表面处理Surface finish冷辘钢捆片及张片制作流程图表Production flow chart cold rolled steel coil sheet冷辘钢捆片及张片的电镀和印刷方法Cold rolled steel coil & sheet electro-plating & painting method冷辘(低碳)钢片的分类用、途、工业标准、品质、加热状态及硬度表End usages, industrial standard, quality, condition and hardness of cold rolled steel strip硬度及拉力Hardness & Tensile strength test拉伸测试(顺纹测试) Elongation test杯突测试(厚度: 0.4公厘至1.6公厘,准确至0.1公厘3个试片平均数) Erichsen test (Thickness: 0.4mm to 1.6mm, figure round up to 0.1mm)曲面(假曲率) Camber厚度及阔度公差Tolerance on Thickness & Width平坦度(阔度大于500公厘,标准回火) Flatness (width>500mm, temper: standard)弯度Camber冷辘钢片储存与处理提示General advice on handling &storage of cold rolled steel coil & sheet防止生锈Rust Protection生锈速度表Speed of rusting焊接Welding气焊Gas Welding埋弧焊Submerged-arc Welding电阻焊Resistance Welding冷辘钢片(拉力: 30-32公斤/平方米)在没有表面处理状态下的焊接状况Spot welding conditions for bared (free from paint, oxides etc) Cold rolled mild steel sheets(T/S:30-32 Kgf/ μ m2)时间效应(老化)及拉伸应变Aging & Stretcher Strains日工标准(JIS G3141)冷辘钢片化学成份Chemical composition – cold rolled steel sheet to JIS G3141冷辘钢片的"理论重量"计算方程式Cold Rolled Steel Sheet – Theoretical mass日工标准(JIS G3141)冷辘钢片重量列表Mass of Cold-Rolled Steel Sheet to JIS G3141冷辘钢片订货需知Ordering of cold rolled steel strip/sheet其它日工标准冷轧钢片(用途及编号) JIS standard & application of other cold Rolled Special Steel电镀锌钢片或电解钢片Electro-galvanized Steel Sheet/Electrolytic Zinc Coated Steel Sheet简介General电解/电镀锌大大增强钢片的防锈能力Galvanic Action improving Weather & Corrosion Resistance of the Base Steel Sheet上漆能力Paint Adhesion电镀锌钢片的焊接Welding of Electro-galvanized steel sheet点焊Spot welding滚焊Seam welding电镀锌(电解)钢片Electro-galvanized Steel Sheet生产流程Production Flow Chart常用的镀锌钢片(电解片)的基层金属、用途、日工标准、美材标准及一般厚度Base metal, application, JIS & ASTM standard, and Normal thickness of galvanized steel sheet锌镀层质量Zinc Coating Mass表面处理Surface Treatment冷轧钢片Cold-Rolled Steel Sheet/Strip热轧钢片Hot-Rolled Sheet/Strip电解冷轧钢片厚度公差Thickness Tolerance of Electrolytic Cold-rolled sheet热轧钢片厚度公差Thickness Tolerance of Hot-rolled sheet冷轧或热轧钢片阔度公差Width Tolerance of Cold or Hot-rolled sheet长度公差Length Tolerance理论质量Theoretical Mass锌镀层质量(两个相同锌镀层厚度) Mass Calculation of coating (For equal coating)/MM锌镀层质量(两个不同锌镀层厚度) Mass Calculation of coating (For differential coating)/MM镀锡薄铁片(白铁皮/马口铁) (日工标准JIS G3303)简介General镀锡薄铁片的构造Construction of Electrolytic Tinplate镀锡薄钢片(白铁皮/马日铁)制造过程Production Process of Electrolytic Tinplate锡层质量Mass of Tin Coating (JIS G3303-1987)两面均等锡层Both Side Equally Coated Mass两面不均等锡层Both Side Different Thickness Coated Mass级别、电镀方法、镀层质量及常用称号Grade, Plating type, Designation of Coating Mass & Common Coating Mass镀层质量标记Markings & Designations of Differential Coatings硬度Hardness单相轧压镀锡薄铁片(白铁皮/马口铁) Single-Reduced Tinplate双相辗压镀锡薄钢片(马口铁/白铁皮) Dual-Reduction Tinplate钢的种类Type of Steel表面处理Surface Finish常用尺寸Commonly Used Size电器用硅[硅] 钢片Electrical Steel Sheet简介General软磁材料Soft Magnetic Material滞后回线Narrow Hystersis矫顽磁力Coercive Force硬磁材料Hard Magnetic Material最大能量积Maximum Energy Product硅含量对电器用的低碳钢片的最大好处The Advantage of Using Silicon low Carbon Steel晶粒取向(Grain-Oriented)及非晶粒取向(Non-Oriented) Grain Oriented & Non-Oriented电器用硅[硅] 钢片的最终用途及规格End Usage and Designations of Electrical Steel Strip电器用的硅[硅] 钢片之分类Classification of Silicon Steel Sheet for Electrical Use电器用钢片的绝缘涂层Performance of Surface Insulation of Electrical Steel Sheets晶粒取向电器用硅钢片主要工业标准International Standard –Grain-Oriented Electrical Steel Silicon Steel Sheet for Electrical Use晶粒取向电器用硅钢片Grain-Oriented Electrical Steel晶粒取向,定取向芯钢片及高硼定取向芯钢片之磁力性能及夹层系数(日工标准及美材标准)Magnetic Properties and Lamination Factor of SI-ORIENT-CORE& SI-ORIENT-CORE-HI B Electrical Steel Strip (JIS and AISI Standard)退火Annealing电器用钢片用家需自行应力退火原因Annealing of the Electrical Steel Sheet退火时注意事项Annealing Precautionary碳污染Prevent Carbon Contamination热力应先从工件边缘透入Heat from the Laminated Stacks Edges提防过份氧化No Excessive Oxidation应力退火温度Stress –relieving Annealing Temperature晶粒取向电器用硅[硅] 钢片–高硼(HI-B)定取向芯钢片及定取向芯钢片之机械性能及夹层系数Mechanical Properties and Lamination Factors of SI-ORIENT-CORE-HI-B and SI-ORIENT-CORE Grain Orient Electrical Steel Sheets晶粒取向电器用硅[硅] 钢;片–高硼低硫(LS)定取向钢片之磁力及电力性能Magnetic and Electrical Properties of SI-ORIENT-CORE-HI-B-LS晶粒取向电器用硅[硅] 钢片–高硼低硫(LS) 定取向钢片之机械性能及夹层系数Mechanical Properties and Lamination Factors of SI-ORIENT-CORE-HI-B-LS晶粒取向电器用硅(硅)钢片-高硼(HI-B)定取向芯钢片,定取向芯钢片及高硼低硫(LS)定取向芯钢片之厚度及阔度公差Physical Tolerance of SI-ORIENT-CORE-HI-B, SI-ORIENT-CORE, & SI-CORE-HI-B-LS GrainOriented Electrical Steel Sheets晶粒取向电器用硅(硅)钢片–高硼(HI-B)定取向芯钢片,定取向芯钢片及高硼低硫(LS)定取向芯钢片之标准尺寸及包装Standard Forms and Size of SI-ORIENT-CORE-HI-B,SI-CORE, & SI-ORIENT-CORE-HI-B-LS Grain-Oriented Electrical Steel Sheets绝缘表面Surface Insulation非晶粒取向电力用钢片的电力、磁力、机械性能及夹层系数Lamination Factors of Electrical, Magnetic & Mechanical Non-Grain Oriented Electrical电器及家电外壳用镀层冷辘[低碳] 钢片Coated (Low Carbon) Steel Sheets for Casing,Electricals & Home Appliances镀铝硅钢片Aluminized Silicon Alloy Steel Sheet简介General镀铝硅合金钢片的特色 Feature of Aluminized Silicon Alloy Steel Sheet用途End Usages抗化学品能力Chemical Resistance镀铝(硅)钢片–日工标准(JIS G3314)Hot-aluminum-coated sheets and coils to JIS G 3314镀铝(硅)钢片–美材试标准(ASTM A-463-77)35.7 JIS G3314镀热浸铝片的机械性能Mechanical Properties of JIS G 3314 Hot-Dip Aluminum-coated Sheets and Coils公差Size Tolerance镀铝(硅)钢片及其它种类钢片的抗腐蚀性能比较Comparsion of various resistance of alu mini zed steel & other kinds of steel镀铝(硅)钢片生产流程Aluminum Steel Sheet, Production Flow Chart焊接能力Weldability镀铝钢片的焊接状态(比较冷辘钢片)Tips on welding of Aluminized sheet in comparasion with cold rolled steel strip钢板Steel Plate钢板用途分类及各国钢板的工业标准包括日工标准及美材试标准Type of steel Plate & Related JIS, ASTM and Other Major Industrial Standards钢板生产流程Production Flow Chart钢板订货需知Ordering of Steel Plate不锈钢Stainless Steel不锈钢的定义Definition of Stainless Steel不锈钢之分类,耐腐蚀性及耐热性Classification, Corrosion Resistant & Heat Resistance of Stainless Steel铁铬系不锈钢片Chrome Stainless Steel马氏体不锈钢Martensite Stainless Steel低碳马氏体不锈钢Low Carbon Martensite Stainless Steel含铁体不锈钢Ferrite Stainless Steel镍铬系不锈钢Nickel Chrome Stainless Steel释出硬化不锈钢Precipitation Hardening Stainless Steel铁锰铝不锈钢Fe / Mn / Al / Stainless Steel不锈钢的磁性Magnetic Property & Stainless Steel不锈钢箔、卷片、片及板之厚度分类Classification of Foil, Strip, Sheet & Plate by Thickness表面保护胶纸Surface protection film不锈钢片材常用代号Designation of SUS Steel Special Use Stainless表面处理Surface finish薄卷片及薄片(0.3至2.9mm厚之片)机械性能Mechanical Properties of Thin Stainless Steel(Thickness from 0.3mm to 2.9mm) – strip/sheet不锈钢片机械性能(301, 304, 631, CSP)Mechanical Properties of Spring use Stainless Steel上链发条Wind-up Spring倒后擦发条Pull Back Power Spring圆面("卜竹")发条Convex Spring Strip拉尺发条Measure Tape魔术手环Magic Tape魔术手环尺寸图Drawing of Magic Tap定型发条Constant Torque Spring定型发条及上炼发条的驱动力Spring Force of Constant Torque Spring and Wing-up Spring定型发条的形状及翻动过程Shape and Spring Back of Constant Torque Spring定型发条驱动力公式及代号The Formula and Symbol of Constant Torque Spring边缘处理Edge Finish硬度Hardness高碳钢化学成份及用途High Carbon Tool Steel, Chemical Composition and Usage每公斤发条的长度简易公式The Length of 1 Kg of Spring Steel StripSK-5 & AISI-301 每公斤长的重量/公斤(阔100-200公厘) Weight per one meter long (kg) (Width 100-200mm)SK-5 & AISI-301 每公斤之长度(阔100-200公厘) Length per one kg (Width 100-200mm)SK-5 & AISI-301 每公尺长的重量/公斤(阔2.0-10公厘)Weight per one meter long (kg) (Width 2.0-10mm)SK-5 & AISI-301 每公斤之长度(阔2.0-10公厘)Length per one kg (Width 2.0-10mm)高碳钢片High Carbon Steel Strip分类Classification用组织结构分类Classification According to Grain Structure用含碳量分类–即低碳钢、中碳钢及高碳钢Classification According to Carbon Contains弹簧用碳钢片CarbonSteel Strip For Spring Use冷轧状态Cold Rolled Strip回火状态Annealed Strip淬火及回火状态Hardened & Tempered Strip/ Precision –Quenched Steel Strip贝氏体钢片Bainite Steel Strip弹簧用碳钢片材之边缘处理Edge Finished淬火剂Quenching Media碳钢回火Tempering简介General电镀金属捆片的优点Advantage of Using Plate Metal Strip金属捆片电镀层Plated Layer of Plated Metal Strip镀镍Nickel Plated镀铬Chrome Plated镀黄铜Brass Plated基层金属Base Metal of Plated Metal Strip低碳钢或铁基层金属Iron & Low Carbon as Base Metal不锈钢基层金属Stainless Steel as Base Metal铜基层金属Copper as Base Metal黄铜基层金属Brass as Base Metal轴承合金Bearing Alloy简介General轴承合金–日工标准JIS H 5401Bearing Alloy to JIS H 5401锡基、铅基及锌基轴承合金比较表Comparison of Tin base, Lead base and Zinc base alloy for Bearing purpose易溶合金Fusible Alloy焊接合金Soldering and Brazing Alloy软焊Soldering Alloy软焊合金–日本标准JIS H 4341Soldering Alloy to JIS H 4341硬焊Brazing Alloy其它焊接材料请参阅日工标准目录Other Soldering Material细线材、枝材、棒材Chapter Five Wire, Rod & Bar线材/枝材材质分类及制成品Classification and End Products of Wire/Rod铁线(低碳钢线)日工标准JIS G 3532Low Carbon Steel Wires ( Iron Wire ) to JIS G 3532光线(低碳钢线),火线(退火低碳钢线),铅水线(镀锌低碳钢线)及制造钉用低碳钢线之代号、公差及备注Ordinary Low Carbon Steel Wire, Annealed Low Carbon Steel Wire, Galvanized low Carbon Steel Wire & Low Carbon Steel Wire for nail manufacturing - classification, Symbol of Grade, Tolerance and Remarks.机械性能Mechanical Properites锌包层之重量,铜硫酸盐试验之酸洗次数及测试用卷筒直径Weight of Zinc-Coating, Number of Dippings in Cupric Sulphate Test and Diameters of Mandrel Used for Coiling Test冷冲及冷锻用碳钢线枝Carbon Steel Wire Rods for Cold Heading & Cold Forging (to JIS G3507)级别,代号及化学成份Classification, Symbol of Grade and Chemical Composition直径公差,偏圆度及脱碳层的平均深度Diameter Tolerance, Ovality and Average Decarburized Layer Depth冷拉钢枝材Cold Drawn Carbon Steel Shafting Bar枝材之美工标准,日工标准,用途及化学成份AISI, JIS End Usage and Chemical Composition of Cold Drawn Carbon Steel Shafting Bar冷拉钢板重量表Cold Drawn Steel Bar Weight Table高碳钢线枝High Carbon Steel Wire Rod (to JIS G3506)冷拉高碳钢线Hard Drawn High Carbon Steel Wire(to JIS G3521, ISO-84580-1&2)化学成份分析表Chemical Analysis of Wire Rod线径、公差及机械性能(日本工业标准G 3521)Mechanical Properties (JIS G 3521)琴线(日本标准G3522)Piano Wires ( to G3522)级别,代号,扭曲特性及可用之线材直径Classes, symbols, twisting characteristic and applied Wire Diameters直径,公差及拉力强度Diameter, Tolerance and Tensile Strength裂纹之容许深度及脱碳层Permissible depth of flaw and decarburized layer常用的弹簧不锈钢线-编号,特性,表面处理及化学成份StainlessSpring Wire –National Standard number, Charateristic, Surface finish & Chemical composition弹簧不锈钢线,线径及拉力列表Stainless Spring Steel, Wire diameter and Tensile strength of Spring Wire处理及表面状况Finish & Surface各种不锈钢线在不同处理拉力比较表Tensile Strength of various kinds of Stainless Steel Wire under Different Finish圆径及偏圆度之公差Tolerance of Wire Diameters & Ovality铬镍不锈钢及抗热钢弹簧线材–美国材验学会ASTM A313 – 1987Chromium –Nickel Stainless and Heat-resisting Steel Spring Wire – ASTM A313 – 1987化学成份Chemical Composition机械性能Mechanical Properties305, 316, 321及347之拉力表Tensile Strength Requirements for Types 305, 316, 321 and 347A1S1-302 贰级线材之拉力表Tensile Strength of A1S1-302 Wire日本工业标准–不锈钢的化学成份(先数字后字母排列)JIS – Chemical Composition of Stainless Steel (in order of number & alphabet)美国工业标准–不锈钢及防热钢材的化学成份(先数字后字母排列)AISI –Chemical Composition of Stainless Steel & Heat-Resistant Steel(in order of number & alphabet)易车碳钢Free Cutting Carbon Steels (to JIS G4804 )化学成份Chemical composition圆钢枝,方钢枝及六角钢枝之形状及尺寸之公差Tolerance on Shape and Dimensions for Round Steel Bar, Square Steel Bar, Hexagonal Steel Bar易车(快削)不锈钢Free Cutting Stainless Steel易车(快削)不锈钢种类Type of steel易车(快削)不锈钢拉力表Tensile Strength of Free Cutting Wires枝/棒无芯磨公差表(μ) (μ = 1/100 mm)Rod/Bar Centreless Grind Tolerance易车不锈钢及易车钢之不同尺寸及硬度比较Hardness of Different Types & Size of Free Cutting Steel扁线、半圆线及异形线Flat Wire, Half Round Wire, Shaped Wire and Precision Shaped Fine Wire加工方法Manufacturing Method应用材料Material Used特点Characteristic用途End Usages不锈钢扁线及半圆线常用材料Commonly used materials for Stainless Flat Wire & Half Round Wire扁线公差Flat Wire Tolerance方线公差Square Wire Tolerance。

哲学专业英语词汇

哲学专业英语词汇

哲学专业英语(the course of philosophical English)西方哲学专业词汇Western philosophy西方哲学Ancient Greek-Roman philosophy古希腊罗马哲学Hellenistic philosophy希腊化哲学Medieval philosophy中世纪哲学Renaissance philosophy文艺复兴哲学Modern western philosophy西方近代哲学Contemporary western philosophy西方现代哲学Jewish philosophy犹太哲学马克思主义哲学Philosophy of Marxism中国哲学Chinese Philosophy外国哲学Foreign Philosophy逻辑学Logic伦理学Ethics美学Aesthetics宗教学Science of Religion科学技术哲学Philosophy of Science and Technology 艺术哲学Philosophy of artMetaphysics形而上学Epistemology认识论/知识论Methodology方法论ontology本体论Cosmology宇宙论/宇宙生成论Theory of value/axiology价值论Monism一元论Dualism二元论Pluralism多元论Cognosciblism可知论Agnosticism不可知论Materialism唯物主义Irrationalism非理性主义abstract/concrete抽象/具体Idealism唯心主义Objective /Subjective idealism客/主观唯心主义Scepticism怀疑主义Substance实体macrocosm大宇宙microcosm小宇宙Sensibility/understanding/ reason感性/知性/理性Theism有神论Antitheism 无神论Deism自然神论pantheism泛神论Dialectical materialism辩证唯物主义Historical materialism历史唯物主义Law of identity同一律Law of contradiction排中律Law of excluded middle排中律teleology目的论mechanism机械论dialectics辩证法consciousness意识spirit精神belief信念nature自然reality现实,实在possibility可能性Illusion幻想imagination想象力Mysticism神秘主义Spiritualism唯灵论form形式existence存在appearance现象essence本质prime matter原初质料motion运动Continuity/non-Continuity连续性/间断性time and space时间与空间Past-present-future过去/现在/未来cause and effect原因与结果subject and object主体与客体occasionalism偶因论Ockham’s razor奥康剃刀subjectivity主体性Necessity and contingency必然性与偶然性Universals and individuals个别与一般/共相与殊相/普遍与个别relative and absolute相对与绝对intuition直觉idea观念thought思维perception知觉subsistence潜在knowledge知识opinion意见Nature自然Actuality/reality现实Reality实在Necessity and freedom必然与自由Beginning/first principle/arche(希)本原,始基archetype原型illusion幻象image形像,影像ideology意识形态doctrine of correspondence符合说mind-body problem身心问题representative theory of idea表象说finite and infinite有限与无限humanism人道主义,人文主义Natural theology自然神学substratum基质The infinite/boundless/apeiron无定/无限pneuma普纽玛being存在non-being非存在logos逻各斯mind/nous努斯psyche/pneuma普纽玛atom原子void虚空element元素four roots四根self-knowledge自知Becoming/decay生成/衰亡bisection两分法flying arrow is at rest飞矢不动stadium运动场becoming生成doctrine of effluence流射说Eristic/elenchus论辩术,诡辩术art of midwifery/maieutic method助产术/接生术irony讥讽Virtue is knowledge美德即知识world of idea理念世界Infinite regress argument无穷后退证明Simile of the cave洞穴喻Simile of the line线段喻Simile of the sun太阳喻sense world感性世界,感官世界harmony和谐theory of Participation(sharing)分有说theory of Imitation模仿说copy摹本archetype模型,原型paradigm范式model of universal宇宙模型,世界模型soul of universal宇宙灵魂,世界灵魂Philosopher-king哲学王passion激情Wisdom/courage/temperance/justice智慧/勇敢/节制/正义(four cardinal virtue四主德)Desire/passion欲望/激情artificer工匠,创造者Genus种primary/secondary substance第一、二实体form and matter形式与质料accident偶性potentiality and actuality潜能与现实four causes 四因material cause质料因formal cause形式因efficient cause动力因final cause目的因ether以太Actuality现实/entelechy隐德莱希(完全实现)Good/highest good善/至善Category范畴Peripatetics漫步学派active reason/active intellect主动理性/主动理智mean中道,中庸wisdom智慧Practical wisdom实践智慧intellectual virtue理智德性the liar说谎者argument of the measure of grain谷堆论证argument of the baldhead秃头论证argument of the veiled figure隐藏者论证logos of the universe宇宙理性one太一What-it-is 是什么the third man argument第三者论证Theory of recollection回忆说epoche悬搁判断==judgement of suspensionataraxy静观doctrine of emanation流溢说anthropomorphism神人同形同性论=拟人观pythagoreanism毕达哥拉斯主义transmigration of souls灵魂轮回转世说atomism原子论Mode of cyclical reasoning循环论证Good being nature善即自然sensation was due to action between the unlikes异类相知说doctrine of like knows like同类相知说doctrine of seeds种子说Doctrine of love and strife爱恨说doctrine of image影像说cynicism犬儒主义platonism柏拉图主义theory of idea理念论doctrine of the communion of genera通种论aristotelianism亚里士多德主义syllogism三段论Unmoved mover不动的动者==prime mover purification净化说induction归纳法pyrrhonism皮浪主义Epicureanism伊壁鸠鲁主义canonic准则学Ionian school伊奥尼亚学派Milesian school米利都学派Ephsian school爱菲斯学派Heraclitean school赫拉克利特学派Pythagoreans 毕达哥拉斯学派Eleatic school爱利亚学派privation缺失,匮乏Presocratics前苏格拉底学派Cynics犬儒学派Cyrenaics昔兰尼学派megarian school麦加拉派sophists智者Minor socratics小苏格拉底学派academy学园/柏拉图学园/雅典学园academics学园派peripatetics漫步学派stoics画廊学派/斯多亚学派Epicurean school伊壁鸠鲁学派Christianity基督教Christian philosophy基督教哲学Judaism犹太教Trinity三位一体heresy异端Polytheism多神论eschatology末世论Church fathers教父Providence天意,天命Kingdom of God上帝之国theology神学negative theology否定神学Positive theology肯定神学Patristic philosophy/ Patristics教父哲学/教父学scholasticism经院哲学revealed religion天启宗教,启示宗教Trinity三位一体incarnation道成肉身faith/hope/love信仰/希望/热爱doctrine of redemption救赎论grace神恩,神惠,恩宠omnipotence全能omniscience全知omnipresence全在Argument a posteriori先天证明Argument a priori后天证明fideism信仰主义(僧侣主义)hylozoism物活论Original sin 原罪Justification by faith因信称义Ockham’s razor奥卡姆剃刀nominalism唯名论(extreme/moderate)realism唯实论(extreme/moderate )Augustinism奥古斯丁主义ontological argument本体论证明cosmological argument宇宙论证明teleological argument目的论证明Moral argument道德论证明Supreme good argument至善性证明Faith hope and charity信望爱doctrine of double-truth双重真理论Divine illumination神的光照Theological fatalism神学预定论Thomism托马斯主义Averroism阿威洛伊主义Scotism司各脱主义Rationalism唯理论(materialistic/idealistic )Empiricism经验论(materialistic/idealistic)Social contract theory社会契约论Geographical determinism地理环境决定论Classical German philosophy德国古典哲学Apriorism先天论The reformation宗教改革运动Enlightenment启蒙运动French materialism法国唯物主义Encyclopaedists百科全书派conceptualism概念论Mechanistic materialism机械唯物论learned ignorance有学问的无知maximum极大minimum极小utopia乌托邦universal intellect普遍理智idols假相,偶像theory of four idols四假相说idols of the tribe种族假相idols of the cave洞穴假相idols of the market-place市场假相idols of the theatre剧场假相property and form性质与形式extension广延first principle第一原理Real/nominal essence实在/名义本质blank tablet白板causality因果性causation因果关系cause原因/effect结果experience经验dogma教条Material/Spiritual substance物质/精神实体thinking substance思想实体,思维实体Innate idea天赋观念adventitious ideas外来观念factitious ideas虚幻观念dualism of mind and matter心物二元论Animal sprits精气,元精,动物精神psycho-physical interactionism身心交感论pineal gland松果腺extensive substance广延实体the theory of social contrast社会契约论Association of idea观念的联结(休谟)Cartesianists笛卡儿主义者theory of substance实体论theory of attribute属性论theory of mode样式论(finite/infinite)psycho-physical parallelism心物平行论true idea真观念attribute属性Spinozism斯宾诺莎主义experience经验(external/internal)sensation and reflection感觉与反省abstraction抽象作用abstract idea抽象观念Simple/complex idea简单/复杂观念Immaterialism非物质主义personal identity人格同一性contiguity接近性(休谟)Divine right of kings君权神授说school of continental Rationalism大陆理性派British empirists英国经验派Cambridge platonism 剑桥柏拉图主义Scottish school of common sense苏格兰常识学派Old Hegelians老年黑格尔派Young Hegelians青年黑格尔派Right Hegelians黑格尔右派Left Hegelians黑格尔左派Speculative philosophy 思辨哲学Three tables三表法Table of essence/presence本质表/具有表Table of absence of proximity接近中的缺乏表Table of degree/comparison程度表/比较表Relative/finite substance相对的或有限的实体Absolute/infinite substance绝对的或无限的实体Theory of corpuscles 微粒说Theory of vortex 漩涡说Cartesianism笛卡儿主义cosmotheism宇宙神论(斯宾诺莎)Infinite attribute无限的属性Theory of modes样态论Mode 样态,样式Sensation/reflection感觉/反省External/internal experience外部/内部经验Abstraction抽象作用Psychic force心力(莱布尼兹)Small perception微知觉Principle of continuity连续性原则Idea of substance/modes/relations实体/情状/关系观念real/fantastical ideas实在/幻想观念Intuitive/demonstratic/probable直觉/证明/或然知识primary/secondary/third quality第一/二/三性质real/nominal essence实在/名义本质innate human right天赋人权will of all全体意志monad单子monadology单子论cognition认知Complete notion完满性观念(莱布尼兹)Best of all possible world可能世界中的最佳者sentiment情感——sentimentalismscience of human nature人性科学human nature/humanity人性Per-established harmony前定和谐pre-established harmony预定和谐truth of reason/fact理性真理与事实真理Divine reason 神圣理性theodicy神正论Order of possible coexistence and order of possibilities which cannot coexist可共存之物的秩序与不可共存之物的秩序existence is to be perceived存在就是被感知immaterialism非物质论idea and notion观念与意念impression and ideas印象与观念resemblance类似关系contiguity in time and space接近关系causal relation因果关系determinism of geographical environment地理环境决定论Theory of the omnipotence of education教育万能论Apodictic/assertoric必然的/实然的(康德)Appearance现象(康德)manifold杂多Physico-theological argument自然神论证明critical philosophy批判哲学dogmatism独断论copernican revolution哥白尼的革命pure reason纯粹理性antinomy二律背反thing-in-itself自在之物,物自体appearance现象practical reason实践理性good will善良意志schein幻相moral law道德律finality apart from an end无目的的合目的性Analytic-synthetic分析-综合Sensibility/understanding/reason感性/知性/理性category范畴command律令reflective judgement反思的判断力representation表象Schema图型/schematism图型论,图式论Metaphysical deduction形而上学演绎Metaphysical exposition形而上学阐明Metaphysics of morals道德性而上学Metaphysics of nature自然形而上学transcendental apperception先验统觉Analogies of experience经验的类推architectonic建筑术Autonomy自主性(康德)transcendental idealism先验唯心主义Kantianism康德主义transcendental先验的transcendent超验的transcendental aesthetic先验感性论transcendental analytic先验分析论Transcendental deduction先验演绎Transcendental dialectic先验辩证论Transcendental illusion先验幻象Transcendental logic先验逻辑Transcendental ideal先验的理想Transcendental paralogism先验谬误推理Transcendental reflection先验反思A priori and synthetic judgement 先天综合判断taste鉴赏力Thing-for-itself为我之物A priori先天A posteriori后天A priori judgement先天判断A posteriori judgement 后天判断analytic judgement分析判断synthetical judgement综合判断Quantity of judgement/ category of Quantity判断的量与量的范畴Qualitaty of judgement/ category of Qualitaty判断的质与质的范畴Relation of judgement/ category of relation判断的关系与关系的范畴Mode of judgement/ category of mode 判断的样式与样式的范畴Anthropology 人本学Absolute religion绝对宗教Free spirit自由精神Objective spirit客观精神practical spirit实践精神theoretical spirit理论精神Subjective spirit主观精神Externalization外化objectification对象化Position肯定Negation否定sublation扬弃identical philosophy同一哲学in itself自我for itself自为absolute idea绝对理念absolute spirit 绝对精神philosophy of mind精神哲学subjective/objective spirit主/客观精神these-antithese-synthese正-反-合civil society市民社会alienation异化dialectic辩证法actuality现实Hegelianism黑格尔主义Young Hegellians 青年黑格尔派Natural theology自然神学(理性神学)absolute ego (费希特的)绝对自我animatism 物活论animism 泛灵论,万物有灵论anthropologism 人本主义the Apostles十二使徒asceticism 禁欲主义atomism 原子论,原子学说atonement 赎罪baptism (基督教)洗礼bourgeoisie 资产阶级causationism 因果论Christianity 基督教clherentism 贯通论The Decalogue摩西十戒deism 理神论;自然神论;自然神论(natural religion)Judgment Day 上帝的最后审判日,世界的末日Kant’s nebular hypothesis 康德的星云假说method of exclusion 排除法method of induction 归纳法nativism 先天论,天赋论sense perception 感性知觉sentience 感觉现象;原始感觉theory of reflection 反映论theory of relativity 相对论theory of representation 表象论On nature《论自然》Purification《净化篇》Sophists《智者篇》Phaedo《斐多篇》Parmenides《巴门尼德篇》Republic《国家篇》On the nature of things《物性论》Meditations《沉思集》Bible《圣经》The Apocalypse/Revelations《圣经》中的《启示录》Genesis (《圣经》)(《创世纪》)New-Testament 《新约全书》Confessions《忏悔录》Utopia《乌托邦》New organon《新工具》Advancement of learning《学术的进展》Human nature《论人性》Leviathan《利维坦》Two treatises of civil government《政府论》An essay concerning human understanding《人类理解论》A treatise concerning the principles of human knowledge《人类知识原理》A treatise of human nature《人性论》An inquiry concerning human understanding 《人类理智研究》Dialogues concerning natural religion《自然宗教对话录》The natural history of religion 《宗教的自然史》Enquiries concerning the principles of morals《道德原理研究》Discourse on method《方法谈》Meditations on first philosophy《第一哲学沉思集》The principles of philosophy《哲学原理》Apology for learned ignorance《论有学问的无知》The principles of Descartes philosophy《笛卡尔哲学原理》Organon《工具论》Enneades《九章集》The ethics《伦理学》New essays on human understanding《人类理智新论》City of god 《上帝之城》Theological-political treatise《神学政治论》Essay on theodicy《神正论》On the improvement of understanding《知性改进论》Critique of pure reason《纯粹理性批判》Critique of practical reason 《实践理性批判》Critique of judgement《判断力批判》。

胎膜早破临床实践指南(2020)解读.

胎膜早破临床实践指南(2020)解读.

《胎膜早破临床实践指南(2020)》胎膜早破(prelabor rupture of membranes,PROM)被定义为临产前发生胎膜破裂。

其中,妊娠37 周之前发生的P ROM 被称为未足月胎膜早破(preterm PROM,PPROM)。

2020 年美国妇产科医师学会(American College of Obstetri⁃cians and Gynecologists,ACOG)发布了“胎膜早破临床实践指南(2020)”,是在2018 年版本指南基础上的完善补充,主要更新了以下方面:PROM 的诊断、足月P ROM 的期待疗法、妊娠34~36 + 6 周PPROM 孕妇分娩时机[1]。

旨在为PROM 孕妇的管理提供基于研究和专家意见的建议。

1 背景美国足月 PROM 的发生率约为 8%,而 PPROM 为 2%~ 3%,占早产的 40%~50%[2-3]。

PROM 可显著增加母体、胎儿和新生儿患病风险,但其最佳诊治方法仍然有待深入研究,其管理决策主要取决于孕周以及权衡适时终止妊娠和期待治疗的相关风险。

解读:足月P ROM可由正常的胎膜生理性变薄和子宫收缩引起,通常随后会自发临产和分娩[4-5]。

足月PROM可能发生羊膜腔感染,其风险随胎膜破裂后时间的延长而不断增加。

PPROM可由多种病理机制导致,通常与羊膜腔感染有关,尤其是在孕周较小时。

其他危险因素包括P PROM 病史、子宫颈长度缩短、妊娠中晚期出血、体重指数低、社会经济地位低、吸烟和吸毒等。

PPROM对胎儿的最大威胁是早产儿并发症,其中最常见的是新生儿呼吸窘迫征[6-7]。

不到1%的孕妇在胎儿有成活能力之前发生胎膜破裂,称围存活期胎膜早破(periviable prelabor rupture of mem⁃branes)。

其严重的母体并发症包括:羊膜腔感染、子宫内膜炎、胎盘早剥和胎盘滞留。

2 临床注意事项和建议2.1 PROM 的诊断胎膜破裂通常由常规的临床评估做出诊断:羊水经阴道流出、阴道液pH 测试呈碱性以及显微镜下观察阴道液可见羊齿状结晶(C 级证据)。

心理学专业英语词汇

心理学专业英语词汇

心理现象 mental phenomenon心理过程 mental process心理状态 mental state心理活动 mental activity意识 consciousness心理维度 psychological dimension心理运动 psychomotor内部活动 internal activity普通心理学 general psychology实验心理学 experimental psychology行为科学 behavioral science心身关系 mind-body relation心理机能定位 localization of mental function 心理能动性 mental activism外周论 peripheralism先天理论 nativistic theory强调遗传素质决定人心理的产生与发展。

遗传 heredity目的论 teleology认为生物和人类的活动受一定目的的引导。

活动 activity活动理论 activity theory认知心理学 cognitive psychology认知 cognition相对于情感、意志等心理过程的所有认识过程的总称。

包括知觉、注意、表象、学习记忆、问题解决、思维和言语等心理过程。

认知过程 cognitive process认知结构 cognitive structure元认知 metacognition认知失调 cognitive dissonance认知地图 cognitive map认知技能 cognitive skill认知方式 cognitive style信息 information信息论 information theory信息加工 information processing信息加工心理学 information processing psychology 信息加工理论 information processing theory信息加工模型 information processing model中央处理器模型 central processor model信息储存 information storage信息提取 information retrieval人工智能 artificial intelligence, AI计算机类比 computer analogy计算机模拟 computer simulation计算机模型 computer model唯心主义心理学 idealistic psychology意动心理学 act psychology唯意志论 voluntarism唯灵论 spiritualism强调超自然精神作用。

金属材料及热处理工艺常用基础英语词汇翻译对照1 - 〖表面热处理〗 - 热处理工艺 - 热处理论坛 热处理技术

金属材料及热处理工艺常用基础英语词汇翻译对照1 - 〖表面热处理〗 - 热处理工艺 - 热处理论坛 热处理技术

热处理论坛? 热处理工艺 ? 〖表面热处理〗 ? 金属材料及热处理工艺常用基础英语词汇翻译对照1返回列表发帖热处理新手keweijiani [原创] 金属材料及热处理工艺常用基础英语词汇翻译对照1X 线结晶分析法 X – ray crystal analyics method奥氏体 Austenite奥氏体碳钢 Austenite Carbon Steel奥氏铁孻回火 Austempering半静钢 Semi-killed steel包晶反应 Peritectic Reaction包晶合金 Peritectic Alloy包晶温度 Peritectic Temperature薄卷片及薄片(0.3至2.9mm 厚之片)机械性能 Mechanical Properties of Thin Stainless Steel (Thickness from 0.3mm to2.9mm ) – strip/sheet杯突测试(厚度: 0.4公厘至1.6公厘,准确至0.1公厘 3个试片平均数) Erichsen test (Thickness : 0.4mm to 1.6mm ,figure round up to 0.1mm )贝氏体钢片 Bainite Steel Strip比电阻 Specific resistivity & specific resistance比较抗磁体、顺磁体及铁磁体 Comparison of Diamagnetism , Paramagnetic & Ferromagnetism比热 Specific Heat比重 Specific gravity & specific density边缘处理 Edge Finish扁线、半圆线及异形线 Flat Wire , Half Round Wire , Shaped WirePrecision Shaped Fine Wire扁线公差 Flat Wire Tolerance变态点 Transformation Point表面保护胶纸 Surface protection film表面处理 Surface finish表面处理 Surface Treatment不破坏检验 Non – destructive inspections打印字体大小:1楼跳转到 ?倒序看帖 发表于 16 分钟前 | 只看该作者注册 登录论坛空间百科导航不锈钢基层金属 Stainless Steel as Base Metal不锈钢片、板用途例 Examples of End Usages of Strip, Sheet & Plate不锈钢片材常用代号 Designation of SUS Steel Special Use Stainless不锈钢片机械性能(301, 304, 631, CSP) Mechanical Properties of Spring use Stainless Steel不锈钢应力退火卷片常用规格名词图解 General Specification of Tension Annealed Stainless Steel Strips不锈钢之分类,耐腐蚀性及耐热性 Classification, Corrosion Resistant & Heat Resistance of Stainless Steel材料的加工性能 Drawing abillity插入型固熔体 Interstital solid solution常用尺寸 Commonly Used Size常用的弹簧不锈钢线-编号,特性,表面处理及化学成份 StainlessSpring Wire – National Standard number, Charateristic,Surface finish & Chemical composition常用的镀锌钢片(电解片)的基层金属、用途、日工标准、美材标准及一般厚度 Base metal, application, JIS & ASTM standard,Normal thickness of galvanized steel sheet长度公差 Length Tolerance超耐热钢 Special Heat Resistance Steel超声波探伤法 Ultrasonic inspection冲击测试 Impact Test冲剪 Drawing & stamping初释纯铁体 Pro-entectoid ferrite处理及表面状况 Finish & Surface纯铁体 Ferrite磁场 Magnetic Field磁畴 Magnetic domain磁粉探伤法 Magnetic particle inspection磁化率 Magnetic Susceptibility (Xm)磁矩 magnetic moment磁力 Magnetic磁力 Magnetic Force磁偶极子 Dipole磁性 Magnetisum磁性变态 Magnetic Transformation磁性变态点 Magnetic Transformation磁性感应 Magnetic Induction粗珠光体 Coarse pearlite淬火 Quenching淬火及回火状态 Hardened & Tempered Strip/ Precision – Quenched Steel Strip淬火剂 Quenching Media单相金属 Single Phase Metal单相轧压镀锡薄铁片(白铁皮/马口铁) Single-Reduced Tinplate弹簧不锈钢线,线径及拉力列表 Stainless Spring Steel, Wire diameterTensile strength of Spring Wire弹簧用碳钢片 CarbonSteel Strip For Spring Use弹簧用碳钢片材之边缘处理 Edge Finished弹性限度、阳氏弹性系数及屈服点 elastic limit, Yeung''s module of elasticity to yield point倒后擦发条 Pull Back Power Spring导热度 Heat conductivity低碳钢或铁基层金属 Iron & Low Carbon as Base Metal低碳马氏体不锈钢 Low Carbon Martensite Stainless Steel低温脆性 Cold brittleness低温退火 Low Temperature Annealing第二潜变期 Secondary Creep第三潜变期 Tertiary Creep第壹潜变期 Primary Creep点焊 Spot welding电镀金属钢片 Plate Metal Strip电镀金属捆片的优点 Advantage of Using Plate Metal Strip电镀锌(电解)钢片 Electro-galvanized Steel Sheet电镀锌钢片的焊接 Welding of Electro-galvanized steel sheet电镀锌钢片或电解钢片 Electro-galvanized Steel Sheet/Electrolytic Zinc Coated Steel Sheet电解/电镀锌大大增强钢片的防锈能力 Galvanic Action improving Weather & Corrosion Resistance of the Base Steel Sheet电解冷轧钢片厚度公差 Thickness Tolerance of Electrolytic Cold-rolled sheet电炉 Electric furnace电器及家电外壳用镀层冷辘 [低碳] 钢片 Coated (Low Carbon) Steel Sheets for Casing,Electricals & Home Appliances电器用的硅 [硅] 钢片之分类 Classification of Silicon Steel Sheet for Electrical Use电器用钢片的绝缘涂层 Performance of Surface Insulation of Electrical Steel Sheets电器用钢片用家需自行应力退火原因 Annealing of the Electrical Steel Sheet电器用硅 [硅] 钢片 Electrical Steel Sheet电阻焊 Resistance Welding定型发条 Constant Torque Spring定型发条的形状及翻动过程 ShapeSpring Back of Constant Torque Spring定型发条及上炼发条的驱动力 Spring Force of Constant Torque SpringWing-up Spring定型发条驱动力公式及代号 The FormulaSymbol of Constant Torque Spring镀层质量标记 Markings & Designations of Differential Coatings镀铬 Chrome Plated镀黄铜 Brass Plated镀铝(硅)钢片 – 美材试标准(ASTM A-463-77)35.7 JIS G3314镀热浸铝片的机械性能 Mechanical Properties of JIS G 3314 Hot-Dip Aluminum-coated SheetsCoils镀铝(硅)钢片 – 日工标准(JIS G3314) Hot-aluminum-coated sheetscoils to JIS G 3314镀铝(硅)钢片及其它种类钢片的抗腐蚀性能比较 Comparsion of various resistance of aluminized steel & other kinds of steel 镀铝(硅)钢片生产流程 Aluminum Steel Sheet, Production Flow Chart镀铝硅钢片 Aluminized Silicon Alloy Steel Sheet镀铝硅合金钢片的特色 Feature of Aluminized Silicon Alloy Steel Sheet镀镍 Nickel Plated镀锡薄钢片(白铁皮/马日铁)制造过程 Production Process of Electrolytic Tinplate镀锡薄铁片(白铁皮/马口铁)(日工标准 JIS G3303)镀锡薄铁片的构造 Construction of Electrolytic Tinplate锻造 Fogging断面缩率 Reduction of area发条的分类及材料 Power Spring Strip ClassificationMaterials发条片 Power Spring Strip反铁磁体 Antiferromagnetism方线公差 Square Wire Tolerance防止生锈 Rust Protection放射线探伤法 Radiographic inspection非晶粒取向电力用钢片的电力、磁力、机械性能及夹层系数 Lamination Factors of Electrical, Magnetic & Mechanical Non-Grain Oriented Electrical沸腾钢(未净钢) Rimmed steel分类 Classification负磁力效应 Negative effect钢板 Steel Plate钢板订货需知 Ordering of Steel Plate钢板生产流程 Production Flow Chart钢板用途分类及各国钢板的工业标准包括日工标准及美材试标准 Type of steel Plate & Related JIS, ASTMOther Major Industrial Standards钢材的熔铸、锻造、挤压及延轧 The Casting, Fogging, Extrusion, Rolling & Steel钢的脆性 Brittleness of Steel钢的种类 Type of Steel钢铁的名称 Name of steel钢铁的制造 Manufacturing of Steel钢铁的主要成份 The major element of steel钢铁生产流程 Steel Production Flow Chart钢铁用“碳”之含量来分类 Classification of Steel according to Carbon contents高锰钢铸 – 日工标准 High manganese steel to JIS standard高碳钢化学成份及用途 High Carbon Tool Steel, Chemical CompositionUsage高碳钢片 High Carbon Steel Strip高碳钢片用途 End Usage of High Carbon Steel Strip高碳钢线枝 High Carbon Steel Wire Rod (to JIS G3506)高温回火 High Temperature Tempering格子常数 Lattice constant铬钢 – 日工标准 JIS G4104 Chrome steel to JIS G4104铬镍不锈钢及抗热钢弹簧线材–美国材验学会 ASTM A313 – 1987 Chromium – Nickel StainlessHeat-resisting Steel Spring Wire – ASTM A313 – 1987铬系耐热钢 Chrome Heat Resistance Steel铬钼钢钢材 – 日工标准 G4105 62 Chrome Molybdenum steel to JIS G4105各种不锈钢线在不同处理拉力比较表 Tensile Strength of various kinds of Stainless Steel Wire under Different Finish工业标准及规格 – 铁及非铁金属 Industrial Standard – Ferrous & Non – ferrous Metal公差 Size Tolerance共晶 Eutectic共释变态 Eutectoid Transformation固熔体 Solid solution光辉退火 Bright Annealing光线(低碳钢线),火线(退火低碳钢线),铅水线(镀锌低碳钢线)及制造钉用低碳钢线之代号、公差及备注 Ordinary Low Carbon Steel Wire, Annealed Low Carbon Steel Wire, Galvanized low Carbon Steel Wire & Low Carbon Steel Wire for nail manufacturing - classification, Symbol of Grade, ToleranceRemarks.硅含量对电器用的低碳钢片的最大好处 The Advantage of Using Silicon low Carbon Steel滚焊 Seam welding过共晶体 Hyper-ectectic Alloy过共释钢 Hype-eutectoid含硫易车钢 Sulphuric Free Cutting Steel含铅易车钢 Leaded Free Cutting Steel含铁体不锈钢 Ferrite Stainless Steel焊接 Welding焊接合金 SolderingBrazing Alloy焊接能力 Weldability 镀铝钢片的焊接状态(比较冷辘钢片) Tips on welding of Aluminized sheet in comparasion with cold rolled steel strip合金平衡状态 Thermal Equilibrium厚度及阔度公差 Tolerance on Thickness & Width滑动面 Slip Plan化学成份 Chemical Composition化学结合 Chemical bond化学性能 Chemical Properties化学元素 Chemical element黄铜基层金属 Brass as Base Metal回复柔软 Crystal Recovery回火脆性 Temper brittleness回火有低温回火及高温回火 Low & High Temperature Tempering回火状态 Annealed Strip基层金属 Base Metal of Plated Metal Strip机械性能 Mechanical Properites机械性能 Mechanical properties畸变 Distortion级别、电镀方法、镀层质量及常用称号 Grade, Plating type, Designation of Coating Mass & Common Coating Mass级别,代号,扭曲特性及可用之线材直径 Classes, symbols, twisting characteristicapplied Wire Diameters级别,代号及化学成份 Classification, Symbol of GradeChemical Composition挤压 Extrusion加工方法 Manufacturing Method加工性能 Machinability简介 General交换能量 Positive energy exchange矫顽磁力 Coercive Force金属变态 Transformation金属材料的试验方法 The Method of Metal inspection金属材料的性能及试验 Properties & testing of metal金属的特性 Features of Metal金属的相融、相融温度、晶体反应及合金在共晶合金、固熔孻共晶合金及偏晶反应的比较 Equilibrium Comparision金属间化物 Intermetallic compound金属结晶格子 Metal space lattice金属捆片电镀层 Plated Layer of Plated Metal Strip金属塑性 Plastic Deformation金属特性 Special metallic features金属与合金 MetalAlloy金相及相律 Metal PhasePhase Rule晶粒取向(Grain-Oriented)及非晶粒取向(Non-Oriented)晶粒取向,定取向芯钢片及高硼定取向芯钢片之磁力性能及夹层系数(日工标准及美材标准) Magnetic PropertiesLamination Factor of SI-ORIENT-CORE& SI-ORIENT-CORE-HI B Electrical Steel Strip (JISAISI Standard)晶粒取向电器用硅 [硅] 钢;片 – 高硼低硫(LS)定取向钢片之磁力及电力性能 MagneticElectrical Properties of SI-ORIENT-CORE-HI-B-LS晶粒取向电器用硅 [硅] 钢片 – 高硼(HI-B)定取向芯钢片及定取向芯钢片之机械性能及夹层系数 Mechanical PropertiesLamination Factors of SI-ORIENT-CORE-HI-BSI-ORIENT-CORE Grain Orient Electrical Steel Sheets晶粒取向电器用硅 [硅] 钢片 – 高硼低硫(LS)定取向钢片之机械性能及夹层系数 Mechanical PropertiesLamination Factors of SI-ORIENT-CORE-HI-B-LS晶粒取向电器用硅(硅)钢片 – 高硼(HI-B)定取向芯钢片,定取向芯钢片及高硼低硫(LS)定取向芯钢片之标准尺寸及包装Standard FormsSize of SI-ORIENT-CORE-HI-B,SI-CORE, & SI-ORIENT-CORE-HI-B-LS Grain-晶粒取向电器用硅(硅)钢片-高硼(HI-B)定取向芯钢片,定取向芯钢片及高硼低硫(LS)定取向芯钢片之厚度及阔度公差Physical Tolerance of SI-ORIENT-CORE-HI-B, SI-ORIENT-CORE, & SI-CORE-HI-B-LS Grain晶粒取向电器用硅钢片 Grain-Oriented Electrical Steel晶粒取向电器用硅钢片主要工业标准 International Standard – Grain-Oriented Electrical Steel Silicon Steel Sheet for Electrical Use晶体结构 Crystal Pattern晶体结构,定向格子及单位晶格 Crystal structure, Space lattice & Unit cell净磁矩 Net magnetic moment绝缘表面 Surface Insulation均热炉 Soaking pit抗磁体 Diamagnetism抗腐蚀及耐用 Corrosion & resistance durability抗化学品能力 Chemical Resistance抗敏感及环境保护 Allergic, re-cycling & environmental protection抗热超级合金 Heat Resistance Super Alloy扩散退火 Diffusion Annealing拉尺发条 Measure Tape拉伸测试(顺纹测试) Elongation test冷冲及冷锻用碳钢线枝 Carbon Steel Wire Rods for Cold Heading & Cold Forging (to JIS G3507)冷拉钢板重量表 Cold Drawn Steel Bar Weight Table冷拉钢枝材 Cold Drawn Carbon Steel Shafting Bar冷拉高碳钢线 Hard Drawn High Carbon Steel Wire冷轧钢片 Cold-Rolled Steel Sheet/Strip冷轧高碳钢–日本工业标准 Cold-Rolled (Special Steel) Carbon Steel Strip to JIS G3311冷轧或热轧钢片阔度公差 Width Tolerance of Cold or Hot-rolled sheet冷轧状态 Cold Rolled Strip冷辘(低碳)钢片的分类用、途、工业标准、品质、加热状态及硬度表 End usages, industrial standard, quality,conditionhardness of cold rolled steel strip收藏分享球化退火 Spheroidizing Annealing曲面(假曲率) Camber屈服强度(降伏强度)(Yield strangth)全静钢 Killed steel热力应先从工件边缘透入 Heat from the Laminated Stacks Edges热膨胀系数 Coefficient of thermal expansion热轧钢片 Hot-Rolled Sheet/Strip热轧钢片厚度公差 Thickness Tolerance of Hot-rolled sheet日本工业标准–不锈钢的化学成份(先数字后字母排列) JIS – Chemical Composition of Stainless Steel (in order of number & alphabet)日工标准(JIS G3141)冷辘钢片化学成份 Chemical composition – cold rolled steel sheet to JIS G3141日工标准(JIS G3141)冷辘钢片重量列表 Mass of Cold-Rolled Steel Sheet to JIS G3141日工标准JIS G3141冷辘低碳钢片(双单光片)的编号浅释 Decoding of cold rolled(Low carbon)steel strip JIS G3141日工标准下的特殊钢材 Specail Steel according to JIS Standard熔铸 Casting软磁 Soft Magnetic软磁材料 Soft Magnetic Material软焊 Soldering Alloy软焊合金 – 日本标准 JIS H 4341 Soldering Alloy to JIS H 4341上链发条 Wind-up Spring上漆能力 Paint Adhesion伸长度 Elongation渗碳体 Cementitle渗透探伤法 Penetrate inspection生产流程 Production Flow Chart生锈速度表 Speed of rusting时间淬火 Time Quenching时间效应(老化)及拉伸应变 Aging & Stretcher Strains释出硬化不锈钢 Precipitation Hardening Stainless Steel双相辗压镀锡薄钢片(马口铁/白铁皮) Dual-Reduction Tinplate顺磁体 Paramagnetic碳钢回火 Tempering碳污染 Prevent Carbon Contamination特点 Characteristic特殊钢 Special Steel特殊钢以用途来分类 Classification of Special Steel according to End Usage特殊钢以原素分类 Classification of Special Steel according to Element提防过份氧化 No Excessive Oxidation铁磁体 Ferromagnetism铁铬系不锈钢片 Chrome Stainless Steel铁及非铁金属 Ferrous & Non Ferrous Metal铁锰铝不锈钢 Fe / Mn / Al / Stainless Steel铁线(低碳钢线)日工标准 JIS G 3532 Low Carbon Steel Wires ( Iron Wire ) to JIS G 3532铁相 Steel Phases同素变态 Allotropic Transformation铜基层金属 Copper as Base Metal透磁度 Magnetic Permeability退火 Annealing退火时注意事项 Annealing Precautionary外价电子 Outer valence electrons弯度 Camber完全退火 Full Annealing物理性能 Physical Properties物料科学 Material Science物料科学定义 Material Science Definition锡层质量 Mass of Tin Coating (JIS G3303-1987)锡基、铅基及锌基轴承合金比较表 Comparison of Tin base, Lead baseZinc base alloy for Bearing purpose细线材、枝材、棒材 Chapter Five Wire, Rod & Bar显微观察法 Microscopic inspection线材/枝材材质分类及制成品 ClassificationEnd Products of Wire/Rod线径、公差及机械性能(日本工业标准 G 3521) Mechanical Properties (JIS G 3521)相反旋转 Opposite span相律 Phase Rule锌包层之重量,铜硫酸盐试验之酸洗次数及测试用卷筒直径 Weight of Zinc-Coating, Number of Dippings in Cupric Sulphate TestDiameters of Mandrel Used for Coiling Test锌镀层质量 Zinc Coating Mass锌镀层质量(两个不同锌镀层厚度) Mass Calculation of coating (For differential coating)/MM锌镀层质量(两个相同锌镀层厚度) Mass Calculation of coating (For equal coating)/MM亚共晶体 Hypoeutetic Alloy亚铁磁体 Ferrimagnetism亚铁释体 Hyppo-Eutectoid延轧 Rolling颜色 Colour易车(快削)不锈钢 Free Cutting Stainless Steel易车(快削)不锈钢拉力表 Tensile Strength of Free Cutting Wires易车(快削)不锈钢种类 Type of steel易车不锈钢及易车钢之不同尺寸及硬度比较 Hardness of Different Types & Size of Free Cutting Steel易车碳钢 Free Cutting Carbon Steels (to JIS G4804 )易溶合金 Fusible Alloy应力退火温度 Stress –relieving Annealing Temperature应用材料 Material Used硬磁 Hard Magnetic硬磁材料 Hard Magnetic Material硬度 Hardness硬度及拉力 Hardness & Tensile strength test硬焊 Brazing Alloy硬化 Work Hardening硬化性能 Hardenability用含碳量分类 – 即低碳钢、中碳钢及高碳钢 Classification According to Carbon Contains用途 End Usages用组织结构分类 Classification According to Grain Structure幼珠光体 Fine pearlite元素的原子序数 Atom of Elements原子的组成、大小、体积和单位图表 The size, mass, charge of an atom,is particles (Pronton,NentronElectron)原子的组织图 Atom Constitutes原子及固体物质 Atomsolid material原子键结 Atom Bonding圆钢枝,方钢枝及六角钢枝之形状及尺寸之公差 Tolerance on ShapeDimensions for Round Steel Bar, Square Steel Bar,Hexagonal Steel Bar圆径及偏圆度之公差 Tolerance of Wire Diameters & Ovality圆面(“卜竹”)发条 Convex Spring Strip再结晶 Recrystallization正磁化率 Positive magnetic susceptibility枝/棒无芯磨公差表(μ)(μ = 1/100 mm) Rod/Bar Centreless Grind Tolerance枝材之美工标准,日工标准,用途及化学成份 AISI, JIS End UsageChemical Composition of Cold Drawn Carbon Steel Shafting Bar直径,公差及拉力强度 Diameter, ToleranceTensile Strength直径公差,偏圆度及脱碳层的平均深度 Diameter Tolerance, OvalityAverage Decarburized Layer Depth置换型固熔体 Substitutional type solid solution滞后回线 Narrow Hystersis。

无线电传输在双线圈及四线圈系统中的耦合模理论

无线电传输在双线圈及四线圈系统中的耦合模理论

Transmission of Wireless Power in Two-Coil and Four-Coil Systems using Coupled Mode TheoryManasi Bhutada, Vikaram Singh, ChiragWartyDept. of Electrical and Electronics EngineeringIntelligent Communication LabMumbai, India无线电传输在双线圈及四线圈系统中的耦合模理论电气与电子工程系智能通信实验室印度,孟买姓名:学号:班级:日期:2016年7月2日Abstract—Wireless Power Transfer (WPT) systems are considered as sophisticated alternatives for modern day wired power transmission. Resonance based wireless power delivery is an efficient technique to transfer power over a relatively long distance. This paper presents a summary of a two-coil wireless power transfer system with the design theory, detailed formulations and simulation results using the coupled mode theory (CMT). Further by using the same theory, it explains the four-coil wireless power transfer system and its comparison with the two-coil wireless transfer power system. A four-coil energy transfer system can be optimized to provide maximum efficiency at a given operating distance. Design steps to obtain an efficient power transfer system are presented and a design example is provided. Further, the concept of relay is described and how relay effect can allow more distant and flexible energy transmission is shown.摘要——无线电源传输(WPT)系统被认为是复杂的现代有线输电的替代品。

工作文档jjf1023电学计量名词术语(修改稿9)

工作文档jjf1023电学计量名词术语(修改稿9)

6.1.1 真空磁导率(permeability of vacuum)6.1.2 介电系数,电容率(permittivity)0也称电常数(electric constant)。

6.1.3电动势(electromotive force)6.1.4接触电动势(contact electromotive force)6.1.5感应电(动)势(induced electromotive force)6.1.6导体(conductor)6.1.7绝缘体(insulator)6.1.8半导体(semiconductor)6.1.9超导体(superconductor)6.1.10接触电位(差)(contact potential[difference])6.1.11热电效应(thermoelectric effect)6.1.12塞贝克效应(Seebeek effect)6.1.13珀耳帖效应(Polfier effect)6.1.14汤姆逊效应(Thomson effect)6.1.15约瑟夫森效应(Josephson effect)6.1.16量子化霍尔效应(quantum Hall effect)6.1.17单电子隧道效应(single electron tunnel effect)6.1.18 功率天平(Watt balanc e)6.1.19交流电阻时间常数(time constant of ac resistor)6.1.20介电强度(dielectric strength)6.1.21绝缘电阻(insulation resistance)6.1.22 电流(electric current)6.1.23 电压(voltage)6.1.24 电阻(resistance)6.1.25 电导(conductance)6.1.26 阻抗(impedance)6.1.27 导纳(admittance)6.1.28 电容(capacitance)6.1.29 电感(inductance)6.1.30 电阻率(resistivity)6.1.31 电导率(conductivity)6.1.32 磁导率(permeability)6.1.33 静电场(electrostatic field)6.1.34 电场强度(electric field intensi ty) 6.1.35 电位(electric potential)6.1.36 电荷(electric charge)6.1.37 库伦定律(Coulomb’s law)6.1.38 电位移(electric displacement)6.1.39 拉普拉斯方程(Laplace’s equation) 6.1.40 静电感应(electrostatic induction) 6.1.41 恒定电场(steady electric fiel d) 6.1.42 欧姆定律(Ohm l aw)6.1.43 焦耳定律(Joule’s l aw)6.1.44 安培(ampere)6.1.45 伏特(volt)6.1.46 库仑(couomb)6.1.47 欧姆(ohm)6.1.48 西门子(siemens)6.1.49 法拉(farad)6.1.50 亨利(henry)6.1.51 瓦特(watt)6.1.52 电路(electric circuit)6.1.53 激励(excitation)6.1.54 响应(response)6.1.55 电路元件(electric circuit elements)6.1.56 无源二端元件(passive two-terminal elements)6.1.57 电压源(voltage sources)6.1.58 电流源(current sources)6.1.59 受控源(controlled sources)6.1.60 开路(open circuit)6.1.61 短路(short circui t)6.1.62 理想变压器(ideal transformer)6.1.63 基尔霍夫定律(Kirchhoff’s law)6.1.64 直流(direct current)6.1.65 交流(alternating current)6.1.66 正弦电流(sinusoidal current)6.1.67 频率(frequency)6.1.68 赫兹(hertz)6.1.69 相位(phase)6.1.70 相量(phasor)6.1.71相量图(phasor diagram)6.1.72 谐振(resonance)6.1.73 铁磁谐振电路(ferro- resonance circuit)6.1.74 三相电路(three-phase circuit)6.1.75 三相电源(three-phase sources)6.1.76 三相负载(three-phase loads)6.1.77 相电压(phase voltages)6.1.78 线电压(line voltages)6.1.79 相电流(phase currents)6.1.80 线电流(line currents)6.1.81 对称三相电路(symmetrical three-phase circuit)6.1.82 非对称三相电路(unsymmetrical three-phase circuit)6.1.83 三相电路功率(power of three-phase circuit)6.1.84 非正弦周期电流电路(non-sinusoidal periodic current circuits)6.1.85 基波电流(fundamental current)6.1.86 谐波电流(harmonic current)6.1.87 频谱(frequency spectrum)6.1.88 瞬时值(instantaneous value)6.1.89 平均值(average value)6.1.90有效值(effective value)6.1.91 峰值(peak [value])6.1.92波形因数(wave factor)6.1.93 总谐波畸变率(total harmonic distortion)6.1.94 平均功率(average power)6.1.95视在功率(apparent power)6.1.96无功功率(reactive power)6.1.97 复功率(complex power)6.1.98 谐波功率(harmonic power)6.1.99 畸变功率(distortion power)6.1.100 伏安(volt ampere)6.1.101 乏(var)6.1.102 瓦特小时(watt hour)6.1.103 串联(series connection)6.1.104 并联(parallel connection)6.1.105 星形阻抗与三角形阻抗的变换(transformation between star-connected and delta connected impedances)6.1.106电源的等效变换(equivalent transformation between sources)6.1.107回路法(loop analysis)6.1.108节点法(node analysi s)6.1.109叠加定理(superposition theorem)6.1.110替代定理(substitution theorem)6.1.111 互易定理(reciprocity theorem)6.1.112戴维南定理(Thevenin theorem)6.1.113诺顿定理(Norton theorem)6.1.114 二端口(2-port)6.1.115 特性阻抗(characteristic impedance)6.1.116 输入阻抗(input impedance)6.1.117 输出阻抗(output impedance)6.1.118 传播常数(propagation constant)6.1.119 品质因数(quality factor )6.1.120 阻抗匹配(impedance matching)6.1.121 网络函数(network functions)6.1.123 分布参数电路(distributed parameter circuit)6.1.124 一阶电路(first order circuit)6.1.125 二阶电路(second order circuit)6.1.126 高阶电路(high order circui t)6.1.127 非线性电路(nonlinear electric circuit)6.1.128 端子(terminal)6.1.129 端变量(terminal variable)6.1.130 两端(2T) (2-terminal)6.1.131 三端(3T) (3-terminal)6.1.132 四端(4T) (4-terminal)6.1.133五端(5T) (5-terminal)6.1.134四端对(4TP)(4-terminal pair)6.1.135磁场(magnetic fiel d)6.1.136 磁感应强度(magnetic induction)6.1.137磁通量(magnetic flux)6.1.138 磁导率(permeability)6.1.139 相对磁导率(Reletive permeability) 6.1.140磁矩(Magnetic(area) moment)6.1.141 磁化强度(Magnetizat ion)6.1.142 磁极化强度(magnetic polarization) 6.1.143 磁场强度(magnetic intensity)6.1.144磁偶极矩(magnetic dipole moment)6.1.145 磁通势(magnetomotive force)6.1.146 磁阻(reluc tanc e)6.1.147 磁导(permeanc e)6.1.148 磁化率(magnetic susceptibility)6.1.149 磁共振(magnetic resonance)6.1.150核磁共振(nuclear magnetic resonance)6.1.151霍尔效应(hall effect)6.1.152 波尔磁子(Bohr magneton)6.1.153 质子旋磁比(Proton gyro magnetic ratio)6.1.154 磁通量子(F1ux quantum (F1uxon))6.2 电学计量6.2.1.1直流电压基准(Primary Standard of DC V oltage)6.2.1.2直流电动势基准(Primary Standard of DC Electromotive Force)6.2.1.3直流电阻基准(Primary Standard of DC Resistance)6.2.1.4电容基准(Primary Standard of Capacitance)6.2.1.5电容器损耗因数基准(Primary Standard of Dissipation Factor)6.2.1.6电感基准(Primary Standard of Inductance)6.2.1.7交流电流基准(Primary Standard of AC Current)6.2.1.8交流电压基准(Primary Standard of AC V oltage)6.2.1.9交流功率基准(Primary Standard of AC Power)6.2.1.10工频电能基准(Primary Standard of AC Energy at Industrial Frequency)6.2.1.11磁感应强度基准(Primary Standard of Magnetic Flux Density)6.2.1.12数字阻抗电桥标准(Standard for LCR meter)6.2.1.13数字多用表检定装置(Standard of Multimeter)6.2.1.14超导强磁场标准(Standard of Supper Conducting High Magnetic Fi el d)6.2.1.15非铁磁金属电导率标准(Standard of Conductivity for Nonferrous Metals)6.2.1.16模/数、数/模转换测量标准(Standard of ADC and DAC)6.2.1.17标准电池(standard cell)6.2.1.18固态电压标准(solid state voltage standard)6.2.1.19标准电阻(standard resistor)6.2.1.20计算电容(cross capacitor)6.2.1.21感应分压器(inductive voltage divider)6.2.1.22分流器(shunt)6.2.1.23直流电流比较仪(direct current comparator)6.2.1.25多功能校准源(multifunction calibrator)6.2.1.26数字阻抗电桥(LCR meter)6.2.1.27 电压表(voltmeter)6.2.1.28 电流表(amperometer)6.2.1.29 电阻表(ohnneter)6.2.1.30 功率表(Watt meter)6.2.1.31 电能表(kWh meter)6.2.2电学计量常用测量方法6.2.2.1 直接测量(法)(direct (method of) measurement)6.2.2.3组合测量(法)(combination (method of) measurement)6.2.2.4 比较测量(法)(comparison (method of) measurement)6.2.2.5 零值测量(法)(null (method of) measurement)6.2.2.6 差值测量(法)(differential (method of) measurement)6.2.2.7 替代测量(法)(substitution (method of) measurement)6.2.2.8 不完全替代法(semi-substitution method of measurement)6.2.2.9 内插测量(法)(interpolation (method of) measurement)6.2.2.10 互补测量(法)(complementary (method of) measurement)6.2.2.11 差拍测量(法)(beat (method of) measurement)6.2.2.12 谐振测量(法)(resonance (method of) measurement)6.2.2.13 模数转换(analogue to digital conversion)6.2.2.14 数模转换(digital to analogue conversion)6.2.2.15 静电屏蔽(electrostatic screen)6.2.2.16 磁屏蔽(magnetic screen)6.2.2.17 泄漏电流(leakage current)6.2.2.18 电位屏蔽(potential screen)6.2.2.19 等电位屏蔽(equip—potential screen)6.2.2.20 无定向结构(astatic construction)6.2.2.21交流-直流转换(AC-DC conversion)6.2.2.22交流-直流转换器<AC-DC converter)6.2.2.23交流-直流比较仪(AC-DC comparator)6.2.2.24热电变换器(thermal converter)6.2.2.25 共模电压(common mode voltage)6.2.2.26 串模电压(series mode voltage)6.2.2.27 共模抑制比(common mode rejection ratio ———CMRR)6.2.2.28 串模抑制比(series mode rejection ratio——SMRR)6.2.2.29 非对称输入(asymmetrical input)6.2.2.30 非对称输出(asymmetrical output)6.2.2.31 对称输入(symmetrical input)6.2.2.32 对称输出(symmetrical output)6.2.2.33 差分输入电路(differential input circuit)6.2.2.34 接地输入电路(earthed input circuit 或grounded input)6.2.2.35 接地输出电路(earthed output circuit或grounded output)6.2.2.36 浮置输入电路(floating input circuit)6.2.2.37 浮置输出电路(floating output circuit)6.2.3.1 模拟(测量)仪表(analogue (measuring) instrument)模拟指示仪表(analogue indicating instrument)6.2.3.2 数字(测量)仪表(digital (measuring) instrument)6.2.3.3 热电系仪表(electrothermal instrument)6.2.3.4 双金属系仪表(bimetallic instrument)6.2.3.5 热偶式仪表(thermocouple instrument)6.2.3.6 整流式仪表(rectifier instrument)6.2.3.7 振簧系仪表(vibrating reed instrument)6.2.3.8 多用表、万用表(multimeter)6.2.3.9(测量)电桥((measuring) bridge)6.2.3.10(测量)电位差计((measuring) potentiometer)6.2.3.11 分压器(voltage divider)6.2.3.12 比较仪(comparator)6.2.3.13 指针式仪表(pointer instrument)6.2.3.14 光标式仪表(instrument with optical index)6.2.3.15 动标度仪表(moving-scale instrument)6.2.3.16 影条式仪表(shadow column instrument)6.2.3.17 静电系仪表(electrostatic instrument)6.2.3.18 磁电系仪表((permanent magnet) moving-coil instrument)6.2.3.19 动磁系仪表(moving magnet instrument)6.2.3.20 电磁系仪表(moving-iron instrument)6.2.3.21 电动系仪表(electrodynamic instrument)6.2.3.22 铁磁电动系仪表(ferrodynamic instrument)6.2.3.23 感应系仪表(induction instrument)。

地佐辛注射液使用指南

地佐辛注射液使用指南

注意事项
阿片类过敏者禁用
胆囊患者慎用 脑颅内压高或损伤者慎用 焦亚硫酸钠过敏禁用 支气管哮喘者慎用
用法用量
地佐辛推荐用法用量
静脉自控镇痛
术毕前10min预先注射配置液10ml,术毕后立刻连接PCIA镇痛泵。镇 痛泵推荐配方为地佐辛0.6mg /kg+芬太尼4μ g/kg+0.9%氯化钠溶液稀 释至100ml。 (持续泵注剂量1ml/h,自控剂量1ml/h,锁定时间15min)
【分 类】:阿片受体激动-拮抗剂
喷他佐辛 (1967,镇痛新)
主要激动κ 受体发挥镇痛作用
对μ 受体具有激动和拮抗双重作用,无μ 受体依赖性。 2
绿色镇痛—药物滥用倾向低
麻醉药物
精二药物
吗啡 芬太尼 美沙酮 哌替啶 布桂嗪 可待因
布托啡诺 地佐辛 喷他佐辛 曲马多
在美国未被列入控制药物, 在我国未被列入麻醉药品
全麻诱导前10min静注地佐辛(0.1 mg/kg ) ,可以有 效抑制芬太尼引起的呛咳。
Sun ZT, Yang CY, Cui Z, Zhang J, Han XP. Effect of intravenous dezocine on fentanyl-induced cough during general anesthesia induction: a double-blinded, prospective, randomized, controlled trial. J Anesth. 2011. 25(6): 860-3.
地佐辛独特作用
强效镇痛
快速持久有效 对心功能血压无影响 联合镇痛效果好 安全性高
地佐辛——安全性高,不良反应少

地佐辛注射液使用指南

地佐辛注射液使用指南

地佐辛注射液Ⅱ期临床结果
.
地佐辛独特作用
强效镇痛 快速持久有效 对心功能血压无影响 联合镇痛效果好 安全性高
.
快速起效,持久有效
随机、双盲、平行对照研究,入选60例恶性肿瘤患者,评估各药对 慢性中重度癌痛患者的镇痛疗效及持续时间
地佐辛有效缓解中度以上疼痛;用药15min后即可有效降低 疼痛强度,其镇痛作用持续至给药后6小时
全麻诱导前10min静注地佐辛(0.1 mg/kg ) ,可以有 效抑制芬太尼引起的呛咳。
.
Sun ZT, Yang CY, Cui Z, Zhang J, Han XP. Effect of intravenous dezocine on fentanyl-induced cough during general anesthesia induction: a double-blinded, prospective, randomized, controlled trial. J Anesth. 2011. 25(6): 860-3.
morphine. J Clin Pharmacol. 1986, 26(4):275-280
强效缓解中重度疼痛2
地佐辛Ⅱ期临床双盲对照试验——56例癌痛患者,随机分组,肌注 10mg地佐辛和10mg吗啡(一周),观察其镇痛效果
10mg地佐辛与10mg吗啡用药一周内,对中、重度癌痛有 相似的缓解效果
.
地佐辛独特作用
强效镇痛 快速持久有效 对心功能血压无影响 联合镇痛效果好 安全性高
.
地佐辛联用—镇痛作用强,不良反应低
90例腰椎内固定术患者术后静脉自控镇痛随机分为3组,各30例:地佐辛组(0.8mg/kg )、芬太尼组(16μg/kg) 、联合组(地佐辛0.4mg/kg+芬太尼8μg/kg ) ,评价患者 对术后PCIA的总体满意度,记录恶心呕吐、头晕嗜睡、呼吸抑制、皮肤瘙痒、尿潴留等 不良反应的发生情况

1.喜保福宁-全程吸入优势

1.喜保福宁-全程吸入优势

全程吸入麻醉简化诱导,并能保持麻醉深度的平稳
喜保福宁®血/气分配系数低(0.65)麻醉深度易调控
Yasuda NL. AA 1991 72 316-324
喜保福宁精确维持案例分享
喜保福宁维持方案推荐
喜保福宁+芬太尼
喜保福宁: 维持浓度在1.0~1.5MAC(根据手术刺激的强度调整)*,流量为2升/分钟。 芬太尼: 可根据手术需要,间断静脉应用芬太尼50-100g 维持手术镇痛 七氟烷维持推荐方案二: 喜保福宁+芬太尼+丙泊酚(推注) 喜保福宁: 维持浓度在1.0~1.5MAC(根据手术刺激的强度调整)*,流量为2升/分钟。 芬太尼: 可根据手术需要,间断静脉应用芬太尼50~100g维持手术镇痛 丙泊酚: 手术结束准备缝合前,关闭挥发罐,静脉推注 1~2mg/kg丙泊酚。 *喜保福宁的浓度需根据患者年龄酌情调整
高浓度七氟烷诱导相比丙泊酚对平均动脉压的影响更小
Thwaites A,Edmends S,Smith I.Inhalation induction with sevoflurane:a double-blind comparison with propofol.Br J Anaesth.1997 April:78(4):356-361
喜保福宁®吸入麻醉,恢复优于异丙酚:
Dajun S, Firish J and Paul W. Anjesth Analg 1998; 86:267-73
七氟烷滴定苏醒法-更高质量的苏醒
苏醒质量取决于关闭七氟烷挥发罐 的方式 MAC清醒:50%的受试者对指令产生适当反应时的麻醉药浓度 MAC清醒和MAC比值可用于衡量吸入麻醉患者的苏醒时间, 七氟烷 的MAC清醒是MAC值的40% 在手术开始缝合时先调整挥发罐浓度从1.3MAC至1MAC,再调至 0.4MAC缝合结束后关闭挥发罐浓度,加大氧流量,苏醒过程更平稳。 麻醉环路也限制麻醉恢复的速度,停止麻醉药输送后,可以用吸入 高流量(5升/分钟)的氧气来克服。

间苯三酚在中期妊娠引产的疗效观察

间苯三酚在中期妊娠引产的疗效观察

间苯三酚在中期妊娠引产的疗效观察摘要目的探讨依沙吖啶联合间苯三酚用于中期妊娠引产的疗效。

方法100例中期妊娠引产的患者,随机分为观察组和对照组,各50例。

对照组单独应用羊膜腔内依沙吖啶100 mg注射,观察组羊膜腔内依沙吖啶100 mg注射,待出现规律宫缩后静脉注射间苯三酚80 mg,对两组宫颈扩张程度、引产时间、镇痛效果及产后出血量进行对比。

结果观察组引产时间为(5.29±1.26)h,短于对照组的(8.92±2.27)h,差异有统计学意义(P<0.05);两组产后出血量比较差异无统计学意义(P>0.05)。

观察组镇痛效果及宫颈扩张程度优于对照组,差异有统计学意义(P<0.05)。

结论在中期妊娠引产中应用间苯三酚,能够有效缩短引产时间,镇痛效果好,不增加产后出血量,安全、简便、有效,值得临床推广使用。

关键词间苯三酚;中期妊娠引产;依沙吖啶Observation of curative effect by phloroglucinol in midtrimester induction of labor CUI Shu-hong,LI Yan-ling,TIAN Qian,et al. Dingzhou City People’s Hospital,Baoding 073000,China【Abstract】Objective To investigate curative effect by ethacridine combined with phloroglucinol in midtrimester induction of labor. Methods A total of 100 patients receiving midtrimester induction of labor were randomly divided into observation group and control group,with 50 cases in each group. The control group received 100 mg ethacridine through amnion cavity injection,and the observation group received 100 mg ethacridine through amnion cavity injection,followed by 80 mg phloroglucinol through intravenous injection during regular contractions. Comparison was made on cervical dilatation degree,induction time,analgesic effect and postpartum bleeding volume between the two groups. Results The observation group had shorter induction time as (5.29±1.26)h than (8.92±2.27)h in the control group,and the difference had statistical significance (P<0.05). There was no statistically significant difference of postpartum bleeding volume between the two groups (P>0.05). The observation group had better analgesic effect and cervical dilatation degree than the control group,and their difference had statistical significance (P<0.05). Conclusion Implement of phloroglucinol in midtrimester induction of labor can effectively shorten induction time,along with good analgesic effect and stable postpartum bleeding volume. This method is safe,convenient and efficient,and it is worth clinical promotion and application.【Key words】Phloroglucinol;Midtrimester induction of labor;Ethacridine中期妊娠引產最常用的方法之一是依沙吖啶羊膜腔注射,该方法简便易行、并发症少、成功率高,为中期妊娠引产的首选方法,中期妊娠子宫因受大量孕激素作用,处于不敏感的状态,因宫颈不成熟,对引产药物不敏感,使引产时间延长,增加患者痛苦,发生宫颈裂伤等并发症。

无损检测专业英语对照表

无损检测专业英语对照表

外语英语英文专业词汇术语翻译:无损检测(non-destructive )A.C magnetic saturation 交流磁饱和Absorbed dose 吸收剂量Absorbed dose rate 吸收剂量率Acceptanc limits 验收范围Acceptance level 验收水平Acceptance standard 验收标准Accumulation test 累积检测Acoustic emission count(emission count)声发射计数(发射计数)Acoustic emission transducer 声发射换能器(声发射传感器)Acoustic emission(AE) 声发射Acoustic holography 声全息术Acoustic impedance 声阻抗Acoustic impedance matching 声阻抗匹配Acoustic impedance method 声阻法Acoustic wave 声波Acoustical lens 声透镜Acoustic—ultrasonic 声-超声(AU)Activation 活化Activity 活度Adequate shielding 安全屏蔽Ampere turns 安匝数Amplitude 幅度Angle beam method 斜射法Angle of incidence 入射角Angle of reflection 反射角Angle of spread 指向角Angle of squint 偏向角Angle probe 斜探头Angstrom unit 埃(A)Area amplitude response curve 面积幅度曲线Area of interest 评定区Arliflcial disconlinuity 人工不连续性Artifact 假缺陷Artificial defect 人工缺陷Artificial discontinuity 标准人工缺陷A-scan A型扫描A-scope; A-scan A型显示Attenuation coefficient 衰减系数Attenuator 衰减器Audible leak indicator 音响泄漏指示器Automatic testing 自动检测Autoradiography 自射线照片Avaluation 评定Barium concrete 钡混凝土Barn 靶Base fog 片基灰雾Bath 槽液Bayard- Alpert ionization gage B- A型电离计Beam 声束Beam ratio 光束比Beam angle 束张角Beam axis 声束轴线Beam index 声束入射点Beam path location 声程定位Beam path; path length 声程Beam spread 声束扩散Betatron 电子感应加速器Bimetallic strip gage 双金属片计Bipolar field 双极磁场Black light filter 黑光滤波器Black light; ultraviolet radiation 黑光Blackbody 黑体Blackbody equivalent temperature 黑体等效温度Bleakney mass spectrometer 波利克尼质谱仪Bleedout 渗出Bottom echo 底面回波Bottom surface 底面Boundary echo(first) 边界一次回波Bremsstrahlung 轫致辐射Broad-beam condition 宽射束Brush application 刷涂B-scan presenfation B型扫描显示B-scope; B-scan B型显示C- scan C型扫描Calibration,instrument 设备校准Capillary action 毛细管作用Carrier fluid 载液Carry over of penetrate 渗透剂移转Cassette 暗合Cathode 阴极Central conductor 中心导体Central conductor method 中心导体法Characteristic curve 特性曲线Characteristic curve of film 胶片特性曲线Characteristic radiation 特征辐射Chemical fog 化学灰雾Cine-radiography 射线(活动)电影摄影术Cintact pads 接触垫Circumferential coils 圆环线圈Circumferential field 周向磁场Circumferential magnetization method 周向磁化法Clean 清理Clean- up 清除Clearing time 定透时间Coercive force 矫顽力Coherence 相干性Coherence length 相干长度(谐波列长度)Coi1,test 测试线圈Coil size 线圈大小Coil spacing 线圈间距Coil technique 线圈技术Coil method 线圈法Coilreference 线圈参考Coincidence discrimination 符合鉴别Cold-cathode ionization gage 冷阴极电离计Collimator 准直器Collimation 准直Collimator 准直器Combined colour comtrast and fluorescent penetrant 着色荧光渗透剂Compressed air drying 压缩空气干燥Compressional wave 压缩波Compton scatter 康普顿散射Continuous emission 连续发射Continuous linear array 连续线阵Continuous method 连续法Continuous spectrum 连续谱Continuous wave 连续波Contract stretch 对比度宽限Contrast 对比度Contrast agent 对比剂Contrast aid 反差剂Contrast sensitivity 对比灵敏度Control echo 监视回波Control echo 参考回波Couplant 耦合剂Coupling 耦合Coupling losses 耦合损失Cracking 裂解Creeping wave 爬波Critical angle 临界角Cross section 横截面Cross talk 串音Cross-drilled hole 横孔Crystal 晶片C-scope; C-scan C型显示Curie point 居里点Curie temperature 居里温度Curie(Ci) 居里Current flow method 通电法Current induction method 电流感应法Current magnetization method 电流磁化法Cut-off level 截止电平Dead zone 盲区Decay curve 衰变曲线Decibel(dB) 分贝Defect 缺陷Defect resolution 缺陷分辨力Defect detection sensitivity 缺陷检出灵敏度Defect resolution 缺陷分辨力Definition 清晰度Definition,image definition 清晰度,图像清晰度Demagnetization 退磁Demagnetization factor 退磁因子Demagnetizer 退磁装置Densitometer 黑度计Density 黑度(底片)Density comparison strip 黑度比较片Detecting medium 检验介质Detergent remover 洗净液Developer 显像剂Developer station 显像工位Developer,agueons 水性显象剂Developer,dry 干显象剂Developer,liquid film 液膜显象剂Developer,nonaqueous (sus- pendible)非水(可悬浮)显象剂Developing time 显像时间Development 显影Diffraction mottle 衍射斑Diffuse indications 松散指示Diffusion 扩散Digital image acquisition system 数字图像识别系统Dilatational wave 膨胀波Dip and drain station 浸渍和流滴工位Direct contact magnetization 直接接触磁化Direct exposure imaging 直接曝光成像Direct contact method 直接接触法Directivity 指向性Discontinuity 不连续性Distance- gain- size-German AVG 距离- 增益- 尺寸(DGS德文为AVG)Distance marker; time marker 距离刻度Dose equivalent 剂量当量Dose rate meter 剂量率计Dosemeter 剂量计Double crystal probe 双晶片探头Double probe technique 双探头法Double transceiver technique 双发双收法Double traverse technique 二次波法Dragout 带出Drain time 滴落时间Drain time 流滴时间Drift 漂移Dry method 干法Dry powder 干粉Dry technique 干粉技术Dry developer 干显像剂Dry developing cabinet 干显像柜Dry method 干粉法Drying oven 干燥箱Drying station 干燥工位Drying time 干燥时间D-scope; D-scan D型显示Dual search unit 双探头Dual-focus tube 双焦点管Duplex-wire image quality indicator 双线像质指示器Duration 持续时间Dwell time 停留时间Dye penetrant 着色渗透剂Dynamic leak test 动态泄漏检测Dynamic leakage measurement 动态泄漏测量Dynamic range 动态范围Dynamic radiography 动态射线透照术Echo 回波Echo frequency 回波频率Echo height 回波高度Echo indication 回波指示Echo transmittance of sound pressure 往复透过率Echo width 回波宽度Eddy current 涡流Eddy current flaw detector 涡流探伤仪Eddy current testiog 涡流检测Edge 端面Edge effect 边缘效应Edge echo 棱边回波Edge effect 边缘效应Effective depth penetration (EDP)有效穿透深度Effective focus size 有效焦点尺寸Effective magnetic permeability 有效磁导率Effective permeability 有效磁导率Effective reflection surface of flaw 缺陷有效反射面Effective resistance 有效电阻Elastic medium 弹性介质Electric displacement 电位移Electrical center 电中心Electrode 电极Electromagnet 电磁铁Electro-magnetic acoustic transducer 电磁声换能器Electromagnetic induction 电磁感应Electromagnetic radiation 电磁辐射Electromagnetic testing 电磁检测Electro-mechanical coupling factor 机电耦合系数Electron radiography 电子辐射照相术Electron volt 电子伏恃Electronic noise 电子噪声Electrostatic spraying 静电喷涂Emulsification 乳化Emulsification time 乳化时间Emulsifier 乳化剂Encircling coils 环绕式线圈End effect 端部效应Energizing cycle 激励周期Equalizing filter 均衡滤波器Equivalent 当量Equivalent I.Q. I. Sensitivity 象质指示器当量灵敏度Equivalent nitrogen pressure 等效氮压Equivalent penetrameter sensifivty 透度计当量灵敏度Equivalent method 当量法Erasabl optical medium 可探光学介质Etching 浸蚀Evaluation 评定Evaluation threshold 评价阈值Event count 事件计数Event count rate 事件计数率Examination area 检测范围Examination region 检验区域Exhaust pressure/discharge pressure 排气压力Exhaust tubulation 排气管道Expanded time-base sweep 时基线展宽Exposure 曝光Exposure table 曝光表格Exposure chart 曝光曲线Exposure fog 曝光灰雾Exposure,radiographic exposure 曝光,射线照相曝光Extended source 扩展源Facility scattered neutrons 条件散射中子False indication 假指示Family 族Far field 远场Feed-through coil 穿过式线圈Field,resultant magnetic 复合磁场Fill factor 填充系数Film speed 胶片速度Film badge 胶片襟章剂量计Film base 片基Film contrast 胶片对比度Film gamma 胶片γ值Film processing 胶片冲洗加工Film speed 胶片感光度Film unsharpness 胶片不清晰度Film viewing screen 观察屏Filter 滤波器/滤光板Final test 复探Flat-bottomed hole 平底孔Flat-bottomed hole equivalent 平底孔当量Flaw 伤Flaw characterization 伤特性Flaw echo 缺陷回波Flexural wave 弯曲波Floating threshold 浮动阀值Fluorescence 荧光Fluorescent examination method 荧光检验法Fluorescent magnetic particle inspection 荧光磁粉检验Fluorescent dry deposit penetrant 干沉积荧光渗透剂Fluorescent light 荧光Fluorescent magnetic powder 荧光磁粉Fluorescent penetrant 荧光渗透剂Fluorescent screen 荧光屏Fluoroscopy 荧光检查法Flux leakage field 磁通泄漏场Flux lines 磁通线Focal spot 焦点Focal distance 焦距Focus length 焦点长度Focus size 焦点尺寸Focus width 焦点宽度Focus(electron) 电子焦点Focused beam 聚焦声束Focusing probe 聚焦探头Focus-to-film distance(f.f.d) 焦点-胶片距离(焦距)Fog 底片灰雾Fog density 灰雾密度Footcandle 英尺烛光Freguency 频率Frequency constant 频率常数Fringe 干涉带Front distance 前沿距离Front distance of flaw 缺陷前沿距离Full- wave direct current(FWDC)全波直流Fundamental frequency 基频Furring 毛状迹痕Gage pressure 表压Gain 增益Gamma radiography γ射线透照术Gamma ray source γ射线源Gamma ray source container γ射线源容器Gamma rays γ射线Gamma-ray radiographic equipment γ射线透照装置Gap scanning 间隙扫查Gas 气体Gate 闸门Gating technique 选通技术Gauss 高斯Geiger-Muller counter 盖革.弥勒计数器Geometric unsharpness 几何不清晰度Gray(Gy) 戈瑞Grazing incidence 掠入射Grazing angle 掠射角Group velocity 群速度Half life 半衰期Half- wave current (HW)半波电流Half-value layer(HVL) 半值层Half-value method 半波高度法Halogen 卤素Halogen leak detector 卤素检漏仪Hard X-rays 硬X射线Hard-faced probe 硬膜探头Harmonic analysis 谐波分析Harmonic distortion 谐波畸变Harmonics 谐频Head wave 头波Helium bombing 氦轰击法Helium drift 氦漂移Helium leak detector 氦检漏仪Hermetically tight seal 气密密封High vacuum 高真空High energy X-rays 高能X射线Holography (optical) 光全息照相Holography,acoustic 声全息Hydrophilic emulsifier 亲水性乳化剂Hydrophilic remover 亲水性洗净剂Hydrostatic text 流体静力检测Hysteresis 磁滞Hysteresis 磁滞IACS IACSID coil ID线圈Image definition 图像清晰度Image contrast 图像对比度Image enhancement 图像增强Image magnification 图像放大Image quality 图像质量Image quality indicator sensitivity 像质指示器灵敏度Image quality indicator(IQI)/image quality indication 像质指示器Imaging line scanner 图像线扫描器Immersion probe 液浸探头Immersion rinse 浸没清洗Immersion testing 液浸法Immersion time 浸没时间Impedance 阻抗Impedance plane diagram 阻抗平面图Imperfection 不完整性Impulse eddy current testing 脉冲涡流检测Incremental permeability 增量磁导率Indicated defect area 缺陷指示面积Indicated defect length 缺陷指示长度Indication 指示Indirect exposure 间接曝光Indirect magnetization 间接磁化Indirect magnetization method 间接磁化法Indirect scan 间接扫查Induced field 感应磁场Induced current method 感应电流法Infrared imaging system 红外成象系统Infrared sensing device 红外扫描器Inherent fluorescence 固有荧光Inherent filtration 固有滤波Initial permeability 起始磁导率Initial pulse 始脉冲Initial pulse width 始波宽度Inserted coil 插入式线圈Inside coil 内部线圈Inside- out testing 外泄检测Inspection 检查Inspection medium 检查介质Inspection frequency/ test frequency 检测频率Intensifying factor 增感系数Intensifying screen 增感屏Interal,arrival time (Δtij)/arrival time interval(Δtij)到达时间差(Δtij) Interface boundary 界面Interface echo 界面回波Interface trigger 界面触发Interference 干涉Interpretation 解释Ion pump 离子泵Ion source 离子源Ionization chamber 电离室Ionization potential 电离电位Ionization vacuum gage 电离真空计Ionography 电离射线透照术Irradiance,E 辐射通量密度,E Isolation 隔离检测Isotope 同位素K value K值Kaiser effect 凯塞(Kaiser)效应Kilo volt kv 千伏特Kiloelectron volt keV千电子伏特Krypton 85 氪85L/D ratio L/D比Lamb wave 兰姆波Latent image 潜象Lateral scan 左右扫查Lateral scan with oblique angle 斜平行扫查Latitude (of an emulsion) 胶片宽容度Lead screen 铅屏Leak 泄漏孔Leak artifact 泄漏器Leak detector 检漏仪Leak testtion 泄漏检测Leakage field 泄漏磁场Leakage rate 泄漏率Leechs 磁吸盘Lift-off effect 提离效应Light intensity 光强度Limiting resolution 极限分辨率Line scanner 线扫描器Line focus 线焦点Line pair pattern 线对检测图Line pairs per millimetre 每毫米线对数Linear (electron) accelerator(LINAC) 电子直线加速器Linear attenuation coefficient 线衰减系数Linear scan 线扫查Linearity (time or distance)线性(时间或距离)Linearity,anplitude 幅度线性Lines of force 磁力线Lipophilic emulsifier 亲油性乳化剂Lipophilic remover 亲油性洗净剂Liquid penetrant examination 液体渗透检验Liquid film developer 液膜显像剂Local magnetization 局部磁化Local magnetization method 局部磁化法Local scan 局部扫查Localizing cone 定域喇叭筒Location 定位Location accuracy 定位精度Location computed 定位,计算Location marker 定位标记Location upon delta-T 时差定位Location,clusfer 定位,群集Location,continuous AE signal 定位,连续AE信号Longitudinal field 纵向磁场Longitudinal magnetization method 纵向磁化法Longitudinal resolution 纵向分辨率Longitudinal wave 纵波Longitudinal wave probe 纵波探头Longitudinal wave technique 纵波法Loss of back reflection 背面反射损失Loss of back reflection 底面反射损失Love wave 乐甫波Low energy gamma radiation 低能γ辐射Low-enerugy photon radiation 低能光子辐射Luminance 亮度Luminosity 流明Lusec 流西克Maga or million electron volts MeV兆电子伏特Magnetic history 磁化史Magnetic hysteresis 磁性滞后Magnetic particle field indication 磁粉磁场指示器Magnetic particle inspection flaw indications 磁粉检验的伤显示Magnetic circuit 磁路Magnetic domain 磁畴Magnetic field distribution 磁场分布Magnetic field indicator 磁场指示器Magnetic field meter 磁场计Magnetic field strength 磁场强度(H)Magnetic field/field,magnetic 磁场Magnetic flux 磁通Magnetic flux density 磁通密度Magnetic force 磁化力Magnetic leakage field 漏磁场Magnetic leakage flux 漏磁通Magnetic moment 磁矩Magnetic particle 磁粉Magnetic particle indication 磁痕Magnetic particle testing/magnetic particle examination 磁粉检测Magnetic permeability 磁导率Magnetic permeability 磁导率Magnetic pole 磁极Magnetic saturataion 磁饱和Magnetic saturation 磁饱和Magnetic slorage meclium 磁储介质Magnetic writing 磁写Magnetizing 磁化Magnetizing current 磁化电流Magnetizing coil 磁化线圈Magnetostrictive effect 磁致伸缩效应Magnetostrictive transducer 磁致伸缩换能器Main beam 主声束Manual testing 手动检测Markers 时标MA-scope; MA-scan MA型显示Masking 遮蔽Mass attcnuation coefficient 质量吸收系数Mass number 质量数Mass spectrometer (M.S.)质谱仪Mass spectrometer leak detector 质谱检漏仪Mass spectrum 质谱Master/slave discrimination 主从鉴别MDTD 最小可测温度差Mean free path 平均自由程Medium vacuum 中真空Mega or million volt MV兆伏特Micro focus X - ray tube 微焦点X 光管Microfocus radiography 微焦点射线透照术Micrometre 微米Micron of mercury 微米汞柱Microtron 电子回旋加速器Milliampere 毫安(mA)Millimetre of mercury 毫米汞柱Minifocus x- ray tube 小焦点调射线管Minimum detectable leakage rate 最小可探泄漏率Minimum resolvable temperature difference (MRTD)最小可分辨温度差(MRDT)Mode 波型Mode conversion 波型转换Mode transformation 波型转换Moderator 慢化器Modulation transfer function (MTF)调制转换功能(MTF)Modulation analysis 调制分析Molecular flow 分子流Molecular leak 分子泄漏Monitor 监控器Monochromatic 单色波Movement unsharpness 移动不清晰度Moving beam radiography 可动射束射线透照术Multiaspect magnetization method 多向磁化法Multidirectional magnetization 多向磁化Multifrequency eddy current testiog 多频涡流检测Multiple back reflections 多次背面反射Multiple reflections 多次反射Multiple back reflections 多次底面反射Multiple echo method 多次反射法Multiple probe technique 多探头法Multiple triangular array 多三角形阵列Narrow beam condition 窄射束NC NCNear field 近场Near field length 近场长度Near surface defect 近表面缺陷Net density 净黑度Net density 净(光学)密度Neutron 中子Neutron radiograhy 中子射线透照Neutron radiography 中子射线透照术Newton (N)牛顿Nier mass spectrometer 尼尔质谱仪Noise 噪声Noise 噪声Noise equivalent temperature difference (NETD)噪声当量温度差(NETD)Nominal angle 标称角度Nominal frequency 标称频率Non-aqueous liquid developer 非水性液体显像剂Noncondensable gas 非冷凝气体Nondcstructivc Examination(NDE)无损试验Nondestructive Evaluation(NDE)无损评价Nondestructive Inspection(NDI)无损检验Nondestructive Testing(NDT)无损检测Nonerasble optical data 可固定光学数据Nonferromugnetic material 非铁磁性材料Nonrelevant indication 非相关指示Non-screen-type film 非增感型胶片Normal incidence 垂直入射(亦见直射声束)Normal permeability 标准磁导率Normal beam method; straight beam method 垂直法Normal probe 直探头Normalized reactance 归一化电抗Normalized resistance 归一化电阻Nuclear activity 核活性Nuclide 核素Object plane resolution 物体平面分辨率Object scattered neutrons 物体散射中子Object beam 物体光束Object beam angle 物体光束角Object-film distance 被检体-胶片距离Object一film distance 物体- 胶片距离Over development 显影过度Over emulsfication 过乳化Overall magnetization 整体磁化Overload recovery time 过载恢复时间Overwashing 过洗Oxidation fog 氧化灰雾P PPair production 偶生成Pair production 电子对产生Pair production 电子偶的产生Palladium barrier leak detector 钯屏检漏仪Panoramic exposure 全景曝光Parallel scan 平行扫查Paramagnetic material 顺磁性材料Parasitic echo 干扰回波Partial pressure 分压Particle content 磁悬液浓度Particle velocity 质点(振动)速度Pascal (Pa)帕斯卡(帕)Pascal cubic metres per second 帕立方米每秒(Pa•m3/s )Path length 光程长Path length difference 光程长度差Pattern 探伤图形Peak current 峰值电流Penetrameter 透度计Penetrameter sensitivity 透度计灵敏度Penetrant 渗透剂Penetrant comparator 渗透对比试块Penetrant flaw detection 渗透探伤Penetrant removal 渗透剂去除Penetrant station 渗透工位Penetrant,water- washable 水洗型渗透剂Penetration 穿透深度Penetration time 渗透时间Permanent magnet 永久磁铁Permeability coefficient 透气系数Permeability,a-c 交流磁导率Permeability,d-c 直流磁导率Phantom echo 幻象回波Phase analysis 相位分析Phase angle 相位角Phase controlled circuit breaker 断电相位控制器Phase detection 相位检测Phase hologram 相位全息Phase sensitive detector 相敏检波器Phase shift 相位移Phase velocity 相速度Phase-sensitive system 相敏系统Phillips ionization gage 菲利浦电离计Phosphor 荧光物质Photo fluorography 荧光照相术Photoelectric absorption 光电吸收Photographic emulsion 照相乳剂Photographic fog 照相灰雾Photostimulable luminescence 光敏发光Piezoelectric effect 压电效应Piezoelectric material 压电材料Piezoelectric stiffness constant 压电劲度常数Piezoelectric stress constant 压电应力常数Piezoelectric transducer 压电换能器Piezoelectric voltage constant 压电电压常数Pirani gage 皮拉尼计Pirani gage 皮拉尼计Pitch and catch technique 一发一收法Pixel 象素Pixel size 象素尺寸Pixel,disply size 象素显示尺寸Planar array 平面阵(列)Plane wave 平面波Plate wave 板波Plate wave technique 板波法Point source 点源Post emulsification 后乳化Post emulsifiable penetrant 后乳化渗透剂Post-cleaning 后清除Post-cleaning 后清洗Powder 粉未Powder blower 喷粉器Powder blower 磁粉喷枪Pre-cleaning 预清理Pressure difference 压力差Pressure dye test 压力着色检测Pressure probe 压力探头Pressure testing 压力检测Pressure- evacuation test 压力抽空检测Pressure mark 压痕Pressure,design 设计压力Pre-test 初探Primary coil 一次线圈Primary radiation 初级辐射Probe gas 探头气体Probe test 探头检测Probe backing 探头背衬Probe coil 点式线圈Probe coil 探头式线圈Probe coil clearance 探头线圈间隙Probe index 探头入射点Probe to weld distance 探头-焊缝距离Probe/ search unit 探头Process control radiograph 工艺过程控制的射线照相Processing capacity 处理能力Processing speed 处理速度Prods 触头Projective radiography 投影射线透照术Proportioning probe 比例探头Protective material 防护材料Proton radiography 质子射线透照Pulse 脉冲波Pulse 脉冲Pulse echo method 脉冲回波法Pulse repetition rate 脉冲重复率Pulse amplitude 脉冲幅度Pulse echo method 脉冲反射法Pulse energy 脉冲能量Pulse envelope 脉冲包络Pulse length 脉冲长度Pulse repetition frequency 脉冲重复频率Pulse tuning 脉冲调谐Pump- out tubulation 抽气管道Pump-down time 抽气时间Q factor Q值Quadruple traverse technique 四次波法Quality (of a beam of radiation) 射线束的质Quality factor 品质因数Quenching 阻塞Quenching of fluorescence 荧光的猝灭Quick break 快速断间Rad(rad) 拉德Radiance,L 面辐射率,LRadiant existence,M 幅射照度MRadiant flux;radiant power,ψe辐射通量、辐射功率、ψe Radiation 辐射Radiation does 辐射剂量Radio frequency (r- f)display 射频显示Radio- frequency mass spectrometer 射频质谱仪Radio frequency(r-f) display 射频显示Radiograph 射线底片Radiographic contrast 射线照片对比度Radiographic equivalence factor 射线照相等效系数Radiographic exposure 射线照相曝光量Radiographic inspection 射线检测Radiographic inspection 射线照相检验Radiographic quality 射线照相质量Radiographic sensitivity 射线照相灵敏度Radiographic contrast 射线底片对比度Radiographic equivalence factor 射线透照等效因子Radiographic inspection 射线透照检查Radiographic quality 射线透照质量Radiographic sensitivity 射线透照灵敏度Radiography 射线照相术Radiological examination 射线检验Radiology 射线学Radiometer 辐射计Radiometry 辐射测量术Radioscopy 射线检查法Range 量程Rayleigh wave 瑞利波Rayleigh scattering 瑞利散射Real image 实时图像Real-time radioscopy 实时射线检查法Rearm delay time 重新准备延时时间Rearm delay time 重新进入工作状态延迟时间Reciprocity failure 倒易律失效Reciprocity law 倒易律Recording medium 记录介质Recovery time 恢复时间Rectified alternating current 脉动直流电Reference block 参考试块Reference beam 参考光束Reference block 对比试块Reference block method 对比试块法Reference coil 参考线圈Reference line method 基准线法Reference standard 参考标准Reflection 反射Reflection coefficient 反射系数Reflection density 反射密度Reflector 反射体Refraction 折射Refractive index 折射率Refrence beam angle 参考光束角Reicnlbation 网纹Reject; suppression 抑制Rejection level 拒收水平Relative permeability 相对磁导率Relevant indication 相关指示Reluctance 磁阻Rem(rem) 雷姆Remote controlled testing 机械化检测Replenisers 补充剂Representative quality indicator 代表性质量指示器Residual magnetic field/field,residual magnetic 剩磁场Residual technique 剩磁技术Residual magnetic method 剩磁法Residual magnetism 剩磁Resistance (to flow)气阻Resolution 分辨力Resonance method 共振法Response factor 响应系数Response time 响应时间Resultant field 复合磁场Resultant magnetic field 合成磁场Resultant magnetization method 组合磁化法Retentivity 顽磁性Reversal 反转现象Ring-down count 振铃计数Ring-down count rate 振铃计数率Rinse 清洗Rise time 上升时间Rise-time discrimination 上升时间鉴别Rod-anode tube 棒阳极管Roentgen(R) 伦琴Roof angle 屋顶角Rotational magnetic field 旋转磁场Rotational magnetic field method 旋转磁场法Rotational scan 转动扫查Roughing 低真空Roughing line 低真空管道Roughing pump 低真空泵S SSafelight 安全灯Sampling probe 取样探头Saturation 饱和Saturation,magnetic 磁饱和Saturation level 饱和电平Scan on grid lines 格子线扫查Scan pitch 扫查间距Scanning 扫查Scanning index 扫查标记Scanning directly on the weld 焊缝上扫查Scanning path 扫查轨迹Scanning sensitivity 扫查灵敏度Scanning speed 扫查速度Scanning zone 扫查区域Scattared energy 散射能量Scatter unsharpness 散射不清晰度Scattered neutrons 散射中子Scattered radiation 散射辐射Scattering 散射Schlieren system 施利伦系统Scintillation counter 闪烁计数器Scintillator and scintillating crystals 闪烁器和闪烁晶体Screen 屏Screen unsharpness 荧光增感屏不清晰度Screen-type film 荧光增感型胶片SE probe SE探头Search-gas 探测气体Second critical angle 第二临界角Secondary radiation 二次射线Secondary coil 二次线圈Secondary radiation 次级辐射Selectivity 选择性Semi-conductor detector 半导体探测器Sensitirity va1ue 灵敏度值Sensitivity 灵敏度Sensitivity of leak test 泄漏检测灵敏度Sensitivity control 灵敏度控制Shear wave 切变波Shear wave probe 横波探头Shear wave technique 横波法Shim 薄垫片Shot 冲击通电Side lobe 副瓣Side wall 侧面Sievert(Sv) 希(沃特)Signal 信号Signal gradient 信号梯度Signal over load point 信号过载点Signal overload level 信号过载电平Signal to noise ratio 信噪比Single crystal probe 单晶片探头Single probe technique 单探头法Single traverse technique 一次波法Sizing technique 定量法Skin depth 集肤深度Skin effect 集肤效应Skip distance 跨距Skip point 跨距点Sky shine(air scatter) 空中散射效应Sniffing probe 嗅吸探头Soft X-rays 软X射线Soft-faced probe 软膜探头Solarization 负感作用Solenoid 螺线管Soluble developer 可溶显像剂Solvent remover 溶剂去除剂Solvent cleaners 溶剂清除剂Solvent developer 溶剂显像剂Solvent remover 溶剂洗净剂Solvent-removal penetrant 溶剂去除型渗透剂Sorption 吸着Sound diffraction 声绕射Sound insulating layer 隔声层Sound intensity 声强Sound intensity level 声强级Sound pressure 声压Sound scattering 声散射Sound transparent layer 透声层Sound velocity 声速Source 源Source data label 放射源数据标签Source location 源定位Source size 源尺寸Source-film distance 射线源-胶片距离Spacial frequency 空间频率Spark coil leak detector 电火花线圈检漏仪Specific activity 放射性比度Specified sensitivity 规定灵敏度Standard 标准Standard 标准试样Standard leak rate 标准泄漏率Standard leak 标准泄漏孔Standard tast block 标准试块Standardization instrument 设备标准化Standing wave; stationary wave 驻波Step wedge 阶梯楔块Step- wadge calibration film 阶梯楔块校准底片Step- wadge comparison film 阶梯楔块比较底片Step wedge 阶梯楔块Step-wedge calibration film 阶梯-楔块校准片Step-wedge comparison film 阶梯-楔块比较片Stereo-radiography 立体射线透照术Subject contrast 被检体对比度Subsurface discontinuity 近表面不连续性Suppression 抑制Surface echo 表面回波Surface field 表面磁场Surface noise 表面噪声Surface wave 表面波Surface wave probe 表面波探头Surface wave technique 表面波法Surge magnetization 脉动磁化Surplus sensitivity 灵敏度余量Suspension 磁悬液Sweep 扫描Sweep range 扫描范围Sweep speed 扫描速度Swept gain 扫描增益Swivel scan 环绕扫查System exanlillatien threshold 系统检验阈值System inclacel artifacts 系统感生物System noise 系统噪声Tackground,target 目标本底Tandem scan 串列扫查Target 耙Target 靶Television fluoroscopy 电视X射线荧光检查Temperature envelope 温度范围Tenth-value-layer(TVL) 十分之一值层Test coil 检测线圈Test quality level 检测质量水平Test ring 试环Test block 试块Test frequency 试验频率Test piece 试片Test range 探测范围Test surface 探测面Testing,ulrasonic 超声检测Thermal neutrons 热中子Thermocouple gage 热电偶计Thermogram 热谱图Thermography,infrared 红外热成象Thermoluminescent dosemeter(TLD) 热释光剂量计Thickness sensitivity 厚度灵敏度Third critiical angle 第三临界角Thixotropic penetrant 摇溶渗透剂Thormal resolution 热分辨率Threading bar 穿棒Three way sort 三档分选Threshold setting 门限设置Threshold fog 阈值灰雾Threshold level 阀值Threshotd tcnet 门限电平Throttling 节流Through transmission technique 穿透技术Through penetration technique 贯穿渗透法Through transmission technique; transmission technique 穿透法Through-coil technique 穿过式线圈技术Throughput 通气量Tight 密封Total reflection 全反射Totel image unsharpness 总的图像不清晰度Tracer probe leak location 示踪探头泄漏定位Tracer gas 示踪气体Transducer 换能器/传感器Transition flow 过渡流Translucent base media 半透明载体介质Transmission 透射Transmission densitomefer 发射密度计Transmission coefficient 透射系数Transmission point 透射点Transmission technique 透射技术Transmittance,τ透射率τTransmitted film density 检测底片黑度Transmitted pulse 发射脉冲Transverse resolution 横向分辨率Transverse wave 横波Traveling echo 游动回波Travering scan; depth scan 前后扫查Triangular array 正三角形阵列Trigger/alarm condition 触发/报警状态Trigger/alarm level 触发/报警标准Triple traverse technique 三次波法True continuous technique 准确连续法技术Trueattenuation 真实衰减Tube current 管电流Tube head 管头Tube shield 管罩Tube shutter 管子光闸Tube window 管窗Tube-shift radiography 管子移位射线透照术Two-way sort 两档分选Ultra- high vacuum 超高真空Ultrasonic leak detector 超声波检漏仪Ultrasonic noise level 超声噪声电平Ultrasonic cleaning 超声波清洗Ultrasonic field 超声场Ultrasonic flaw detection 超声探伤Ultrasonic flaw detector 超声探伤仪Ultrasonic microscope 超声显微镜Ultrasonic spectroscopy 超声频谱Ultrasonic testing system 超声检测系统Ultrasonic thickness gauge 超声测厚仪Ultraviolet radiation 紫外辐射Under development 显影不足Unsharpness 不清晰Useful density range 有效光学密度范围UV-A A类紫外辐射UV-A filter A类紫外辐射滤片Vacuum 真空Vacuum cassette 真空暗盒Vacuum testing 真空检测Vacuum cassette 真空暗合Van de Graaff generator 范德格喇夫起电机Vapor pressure 蒸汽压Vapour degreasing 蒸汽除油Variable angle probe 可变角探头Vee path V型行程Vehicle 载体Vertical linearity 垂直线性Vertical location 垂直定位Visible light 可见光Vitua limage 虚假图像Voltage threshold 电压阈值Voltage threshold 阈值电压Wash station 水洗工位Water break test 水膜破坏试验Water column coupling method 水柱耦合法Water column probe 水柱耦合探头Water path; water distance 水程Water tolerance 水容限Water-washable penetrant 可水洗型渗透剂Wave 波Wave guide acoustic emission 声发射波导杆Wave train 波列Wave from 波形Wave front 波前Wave length 波长Wave node 波节Wave train 波列Wedge 斜楔Wet slurry technique 湿软磁膏技术Wet technique 湿法技术Wet method 湿粉法Wetting action 润湿作用Wetting action 润湿作用Wetting agents 润湿剂Wheel type probe; wheel search unit 轮式探头White light 白光White X-rays 连续X射线Wobble 摆动Wobble effect 抖动效应Working sensitivity 探伤灵敏度Wrap around 残响波干扰Xeroradiography 静电射线透照术X-radiation X射线X-ray controller X射线控制器X-ray detection apparatus X射线探伤装置X-ray film 射线胶片X-ray paper X射线感光纸X-ray tube X射线管X-ray tube diaphragm X射线管光阑Yoke 磁轭Yoke magnetization method 磁轭磁化法Zigzag scan 锯齿扫查。

变频环境下异步电机实际转速快速计算方法

变频环境下异步电机实际转速快速计算方法

变频环境下异步电机实际转速快速计算方法1 引言异步电动机的效率优化策略有恒功率因数控制、转差频率控制以及定子电流控制等方法,都属于通过控制电机变频过程实现电机近似效率最优的控制,给电机带来能效提升的同时,也给电机内部机械或电气量的高精准性控制目标提出了挑战[1-4],电机频率和转速的精确映射目标便是其一。

在工程实际中,应用电机供电频率和电机转速之间的线性映射关系,通过成比例的改变电机供电频率达到所需转速输出的目的。

但是由于异步电动机转差率的存在,而且转差率可变,使频率和转速的映射关系并非完全线性[5],频率对电机实际转速的控制很难达到期望的效果。

文献[1-3]所述方法虽然能使电机较精确地输出预期转速,但是需要对电机内部的参变量进行很多复杂的运算和控制。

研究表明,异步电动机的转差率和负载相关,负载越大转差率越大,额定状态下,转差率等于额定转差率[6]。

而且,转差率是异步电动机在变频调速过程中不可避免的一个参量,所以变频过程本身也是影响电机转差率的因素。

研究电机转差率模型,分析异步电动机转差率同负载和频率之间的关系,并进行一定程度的量化表征,是实现异步电动机输出转速精确预测的基础。

通过对某型号4极异步电动机变频调速控制过程和实测数据进行分析,确定电机转差率同供电频率和带负载率的相关性,利用统计学方法将其关系拟合成一条简单而有效的经验曲线,并在实验设备上加以验证,实现对电机转差率的量化和“可观可控”,并最终实现给定频率下电机实际输出转速的精确预测。

2 异步电动机变频调速控制思想开环控制异步电动机变频调速系统流程图,如图1所示。

图中:Un和U—变频器的额定电压和变频器的输出电压;fn和f—电网的额定频率和变频器的输出频率;n和T—变频器输出频率为f时对应的电机输出转速和转矩;R,L和C—电机内部的等效电阻、电感和电容。

转差率S反映异步电动机工作过程中的转速降落,一定程度上影响电机转子损耗和电机的工作效率,也是影响电机实际转速的众多因素中较难确定的一个,有必要对其进行分析和量化。

高频加热铜圈方法

高频加热铜圈方法

高频加热铜圈方法English:One common method for high-frequency heating of copper coils is induction heating. Induction heating uses the principle of electromagnetic induction to generate heat within the copper coil. The process involves passing an alternating current through a coil, which creates a changing magnetic field that induces eddy currents within the copper. These eddy currents flow against the resistance of the copper, converting electrical energy into heat. The heat generated is concentrated within the coil, allowing for efficient and localized heating of the copper.Induction heating offers several advantages for high-frequency heating of copper coils. First, it allows for fast and precise heating, with the ability to reach high temperatures quickly. This is particularly useful for applications where rapid heating or controlled temperature is required. Additionally, induction heating provides uniform heating throughout the coil, ensuring consistent heat distribution without hotspots or cold spots.To implement induction heating for copper coils, a high-frequency power supply is typically used. This power supply generates an alternating current at a high frequency, typically in the radio frequency range. The high-frequency current is then delivered to the copper coil using a specially designed coupling device, such as an induction coil or a resonant coupling network. The coupling device ensures efficient transfer of energy from the power supply to the copper coil, maximizing the heating efficiency.In industrial applications, induction heating of copper coils can be used for various purposes. For example, it can be used for annealing or heat treatment of copper coils to improve their mechanical properties. Induction heating can also be used for brazing or soldering operations, where copper coils need to be joined to other components. Additionally, induction heating can be applied in induction melting processes, where copper coils are melted down to be used as raw material for further processing.Overall, induction heating is a reliable and efficient method for high-frequency heating of copper coils. It provides fast, precise, anduniform heating, making it suitable for various industrial applications involving copper coils.中文翻译:高频加热铜圈的一种常见方法是感应加热。

高效能双线圈音圈电机的设计与分析

高效能双线圈音圈电机的设计与分析

上海工程技术大学学报JOURNAL OF SHANGHAI UNIVERSITY OF ENGINEERING SCIENCE Vol.34No.3 Sept.2020第34卷第3期2020年9月文章编号:1009-444X(2020)03-0209-06高效能双线圈音圈电机的设计与分析吴迪,朱姿娜(上海工程技术大学机械与汽车工程学院%上海201620)摘要:针对圆筒型音圈电机轴向充磁永磁体利用率低的缺点,提出应用双层H<t<ch永磁阵列和双线圈的方式对音圈电机结构进行改进.通过有限元法分析音圈电机中永磁体充磁角度、气隙宽度及永磁体厚度等结构参数对永磁体气隙磁通密度的影响.根据仿真结果对音圈电机的磁路结构和线圈结构进行改进,改进后的音圈电机在保证推力的同时可使磁体利用率提高53%,证明提出结构具有高效性.关键词:音圈电机;H<t<ch永磁阵列;充磁角度;磁体利用率中图分类号:TM359文献标志码:ADesign and Analysis of High-Efficiency Double-Coil Voice Coil MotorWU Dt%ZHUZtna(School of Mechanical and Automotive Engineering,Shanghai Universty of Engineering Science,Shanghai201620,China)Abstract:Aiming at the shortcomings of low utilization rate of the axial magnetized permanent magnets for the cylindrical voice coil motor,a double-layer Halbach permanent magnet array and a double-coil me7hodwereproposed7oimprove7hes7ruc7ureof7hemo7or.Theinfluenceofs7ruc7uralparame7erssuch as magnetizing angle,air gap width and permanent magnet thickness on the air gap magnetic flux density of the permanent magnet in the voice coil motor were analyzed by finite element method.According to thesimulationresults,the magneticcircuitstructureandcoilstructureofthevoicecoil motor wereimproved.Theimprovedvoicecoilmotorcanincreasethemagnetutilizationrateby53%whileensuring thethrust,whichshowsthattheproposedstructurehashighe f iciency.Key words:voice coil motor;Halbach permanent magnet array;magnetization angle;magnet utilization rate近年来,随着精密制造技术的发展,音圈电机因体积小、结构简单、高频响应、高精度以及换向方便等优点而广泛应用于半导体制造设备、光学电子显微镜、振动平台和主动减振系统等高精密运动系统中音圈电机是一种特殊的直线电机,对其进行结构设计时应尽量满足以下两点[4]:1)以最少的永磁体及导磁材料,设计具有高磁通密度的均匀气隙磁场,提高工作效率,产生尽可能大的推力;2)在收稿日期:2020-05-12基金项目:国家自然科学基金资助项目(51705305)上海工程技术大学研究生科研创新资助项目(19KY0121)作者简介:吴迪(1995-),男,在读硕士,研究方向为电磁驱动器设计与控制.E-mail:S j21537@通信作者:朱姿娜"987-),女,副教授,博士,研究方向为磁力耦合驱动、机构优化设计、机器人.E-mail:zhuzina@・210・上海工程技术大学学报第34卷满足推力要求的前提下,尽量减小音圈电机的体积和运动部分的质量,使其具有更高的加速度和快速响应能力.在不同的音圈电机设计中,为提高电机的有效输出力及动态性能,采用的技术方法主要包括选择不同磁体安装方式、磁路结构设计以及对线圈结构进行改进等'(刘华等囚研究了双磁体差动音圈电机的工作特性,主要对电机气隙磁场强度和线圈长度对结构参数的影响进行分析,归纳总结出双磁体差动音圈电机的一般设计步骤.寇宝泉等「刀对Halbach结构进行研究,得出在电机磁路设计中Halbach型永磁排列可以提供较大的气隙磁通密度正弦度•罗辞勇等⑻提出线圈前移式音圈电机结构,通过仿真分析和试验验证了这种方法可以有效解决直线型音圈电机平均出力小和出力密度不高的问题•以上研究可以看出,目前在对音圈电机结构的设计中,主要是分别对磁路结构和线圈结构进行局部的改进优化,而同时对磁路结构和线圈结构进行改进的研究不多•本文以圆筒型音圈电机为研究对象,研究设计一种应用双层Hlach特殊阵列结构磁体的直线型音圈电机,同时对音圈数量进行调整,通过采用双层线圈的形式提升音圈电机磁体的利用率,并使用有限元软件Ansoft分析结构参数对电机推力的影响•!音圈电机数学模型音圈电机是一种特殊形式的直线电机,其结构组成如图1所示,主要由永磁体、磁轭、线圈和线圈支架4个部分组成.其中,线圈绕组嵌放在线圈支架上作为电机初级,永磁体和磁轭作为电机次级•轴向充磁的圆柱永磁体在其与磁轭的气隙空间产生磁场,并作用于载流线圈,产生轴向电磁力.图1音圈电机结构Fig.1Structure of voice coil motor音圈电机的工作原理是根据安培力原理,即通电线圈在磁场中受到安培力的作用,该安培力即为电机的推力,随线圈中电流方向和大小的变化,线圈做往返直线运动•安培力可以表示为!二"/(1)式中:!为安培力,N;*为电流,A;#为磁场强度,T$为导体长度,m;I为整个导体长度的变化量•音圈电机工作时须克服动子的静摩擦力才能做直线运动•在实际应用中,电机做加减速直线运动须克服动子部分惯性力+,公式为F m二ma,(2)dt式中:m为动子部分总质量Pg;a为动子运动加速度, m/s2$为动子运动速度,m/s;t为动子运动时间,s.电机动子运动时存在动摩擦力E,与电机运动方向相反,设动摩擦系数为4电机电磁推力为E,电机的力平衡方程为F c,kv(3)F二F m.F c,m.k-(4)dt根据式(1)和式(4)可知,在对音圈电机进行设计时,可以通过改变气隙磁场强度、线圈电流大小以及线圈在磁场中的长度来提升电磁推力.同时音圈电机动子部分质量、运动速度和时间也影响电机推力.2音圈电机结构设计2.1Halbach永磁阵列磁路结构普通音圈电机的磁路结构大都采用单磁体轴向充磁,如图2(a)所示•这种充磁方式的优点是结构简单、加工容易,但永磁体充磁方向单一,仅磁极附近磁通密度强,永磁体利用率不高•Halbach永磁阵列磁路结构是一种特殊的磁路排布结构,目标是用最少量的永磁体产生最强的磁场,充磁角度偏转的Halbach永磁阵列结构示意图如图2(b)所示•相比音圈电机中的轴向充磁,此结构具有多磁极、磁通密度强的优点•普通轴向充磁与充磁角度偏转的Halbach永磁阵列磁感线分布对比如图3所示.从图3(a)可以看出,单磁体轴向充磁的方式仅磁极两侧磁感线分布密集,磁极中间部分磁感线分布稀疏•从图3(b)可以看出,Halbach永磁阵列具有特殊的单边聚磁效应,磁体下部分磁感线分布明显高于磁体上部分,并且整个磁体下部分磁感线分布都很密集,这样的排布方式有利于提升永磁体的利用率•第3期吴 迪,等:高效能双线圈音圈电机的设计与分析・211・图2 单磁体与单层Halbach 永磁阵列充磁对比Fig. 2 Comparison of magnetization between single magnetand single layer Halbach permanent magnet array0.002 20.001 5-0.005 1^/(Wb-m _1)0.004 80.002 90.004 20.003 50.000 90.000 2-0.000 5-0.001 1-0.001 8-0.002 4-0.003 1-0.003 8-0.004 4A / (Wb-m _1)10.004 90.004 20.003 40.002 70.002 0!0.001 30.000 50.000 2-0.000 9-0.001 7-0.002 4-0.003 1-0.003 8-0.004 6-0.005 3-0.006 0(b)单层Halbach 永磁阵列充磁图3 单磁体与单层Halbach 永磁阵列磁感线分布对比Fig. 3 Comparison of magnetic induction linedistribution between single magnet and single layer Halbach permanent magnet array 本文考虑将2个Halbach 永磁阵列中磁通密度较强的一侧叠加形成高磁通密度磁场,并对Halbach 永磁阵列充磁角度进行研究,对典型的充磁角度为45°和90°的Hlach 永磁阵列进行对比 分析.具体的研究方法为设定磁体总长度和厚度相 等,对比分析充磁角度分别为45°和90°时的气隙磁通密度%种充磁角度结构示意图如图4所示. 仿真得到的气隙磁通密度曲线对比如图5所示.从 图5可以看出,充磁角度为45°和90°的Hlach永磁阵列磁通密度分布趋势大致相同,但充磁角度 为45°的磁体结构磁通密度曲线峰值明显高于充磁角度为90°的磁体结构,并且在峰值附近气隙磁通密度波动平缓,因此产生的安培力相对稳定,有 利于音圈电机出力的平稳性•充磁角度为45°的双层Halbach 永磁阵列的磁感线分布如图6所示.从图6磁感线分布可以看出,与图3(b)中单层Hlach 永磁阵列磁感线的分布不同,图6中磁感线分布集中 且磁通密度强•因此将充磁角度为45°的双层Halbach 永磁阵列作为进一步研究的对象.permanent magnet array with different magnetization angles图5充磁角度为45°和90°的双层Halbach 永磁阵列气隙磁通密度曲线对比Fig. 5 Comparison of air gap magnetic flux density curvesof double-layer Halbach permanent magnet array withmagnetization angles of 45° and90°・212・上海工程技术大学学报第34卷/(Wb-m_1)Y.0.0090I0.0076■0.00630.00490.00350.00210.0007-0.0007-0.0020-0.0034-0.0048.-0.0062.-0.0076.-0.0090■-0.0103mm 050100图6充磁角度为45°时双层Halbach永磁阵列磁感线分布图Fig.6Magnetic induction lines distribution ofdouble-layer Halbach permanent magnet arraywith magnetization angle of45°为进一步研究结构参数对电机性能的影响,采用有限元仿真对电机主要结构参数进行研究,主要研究气隙宽度和磁体厚度对磁通密度的影响•首先分析气隙宽度对磁通密度的影响,分别仿真气隙宽度为2、4、6和8mm时气隙磁通密度沿电机轴向的分布,如图7所示.从图中可以看出,随着气隙宽度的增大,磁通密度逐渐减小,且4种不同尺寸气隙磁通密度沿轴向分布趋势相同•气隙宽度为2mm时磁通密度最强,但是由于气隙宽度过小不利于线圈的装配和散热,因此选定气隙宽度为4mm作为进一步研究的对象.气隙宽度确定4mm 后对磁体厚度进行研究,分别研究磁体厚度为5、7、%和11mm时磁通密度的分布•仿真得到不同磁体厚度时磁通密度沿电机轴向的分布情况,如图8所示.通过图8可知,随着磁体厚度的增大,气隙磁通密度也增大,但随着磁体厚度的增大气隙磁通密度增量相对有所减缓,因此,为节约成本并提升永磁体的利用率,选择磁体厚度为5mm.2.2线圈结构音圈电机中永磁材料的费用在制造成本中比重很大,考虑音圈电机的制造成本,选择合适的线圈设计结构以减少永磁材料的体积十分必要•目前音圈电机大都采用单音圈结构,具有结构简单且响应速度快的优点,但是单音圈结构电流负载受限,制约音圈电机推力的提升•针对该问题,结合式(1)一0—气隙宽度为2mm…。

实验室间辐射检测能力比对

实验室间辐射检测能力比对

工频电场
强度 / ( V / m)
工频磁感应
强度 / μT
电场强度 /
( V / m)
0. 16
<1
0. 0511
1. 42
/
0. 0478 ~ 0. 0529
0. 12
0. 12 ~ 0. 13
α 表面污染水平 /
β 表面污染水平 /
118
0. 33
0. 34
0. 15
124
115 ~ 127
0. 12
号更换为 NBM550 / EHP-50F, 实验室 A 的电场强度测量仪器型号变更为 NBM550 / EF-0691。 上述均经过计量院检定或校准合格使用。
1. 3 检测方法
次数。
α、 β 表面污染 [5] : 参见 JJG 478 -2016 计算方式, 表面活
项目类别
电离辐射
度响应 R = R q ×S×ε, 测点处的净计数 D i = N i
面源效率, s -1 ·Bq -1 , ε( α) = 0. 51, ε( β) = 0. 62; N ci 为被测
对象处于关机状态时或环境对照点测点处的仪器示值或表面污
染仪器本底。
《 交流输变电工程电磁环境监测方法》 ( 试
工频磁感应强度 行) HJ681-2013
∑N
n
ci
表示。
Rn
其中: R 为表面活度响应; R q 为表面发射率响应, 来源于
第 49 卷第 13 期
2021 年 7 月
Vol. 49 No. 13
Jul. 2021
广 州 化 工
Guangzhou Chemical Industry
实验室间辐射检测能力比对

来曲唑联合尿促性素在多囊卵巢综合征不孕患者中的促排卵作用分析

来曲唑联合尿促性素在多囊卵巢综合征不孕患者中的促排卵作用分析

China &Foreign Medical Treatment中外医疗DOI院10.16662/ki.1674-0742.2022.08.103来曲唑联合尿促性素在多囊卵巢综合征不孕患者中的促排卵作用分析黄华丹袁黎中用袁赖五娘福建省龙岩市第三医院妇科门诊袁福建龙岩364000[摘要]目的分析多囊卵巢综合征(PCOS)不孕患者采取来曲唑联合尿促性素治疗对促排卵作用遥方法方便选取该院2017年11月要2020年5月门诊治疗的PCOS 不孕患者135例袁依据随机数字表法分为观察组和对照组袁对照组渊n=67冤采取单用来曲唑治疗袁观察组渊n=68冤实施来曲唑联合尿促性素治疗袁对比两组患者促排卵效果尧妊娠结局尧不良反应发生率遥结果观察组早期流产率5.88%袁对照组4.48%曰观察组不良反应发生率7.35%袁对照组4.48%曰观察组多胎妊娠率10.71%袁对照组18.75%曰观察组单胎妊娠率89.25%袁对照组81.25%袁两组比较差异无统计学意义渊P跃0.05冤遥观察组子宫内膜厚度渊11.03依1.51冤mm袁对照组渊9.12依1.70冤mm曰观察组妊娠率41.17%袁对照组23.88%曰观察组卵泡数渊1.66依0.83冤个袁对照组渊1.25依0.61冤个袁两组比较差异有统计学意义渊P约0.05冤曰观察组排卵率91.17%袁高于对照组68.66%袁差异有统计学意义(字2=10.697袁P约0.05)遥结论对于PCOS不孕患者中通过采取来曲唑联合尿促性素治疗可有效提升排卵率及妊娠率袁同时妊娠安全性较高袁值得临床应用与推广遥[关键词]多囊卵巢综合征曰来曲唑曰尿促性素曰排卵曰妊娠率曰卵泡数曰妊娠结局曰不良反应[中图分类号]R711[文献标识码]A [文章编号]1674-074圆渊圆园22冤03渊b冤原园103-04Analysis of Ovulation Induction Effect of Letrozole Combined with Urinary Gonadotropin in Infertile Patients with Polycystic Ovary Syn鄄dromeHUANG Huadan,LI Zhongyong,LAI WuniangOutpatient Department of Gynecology,Third Hospital of Longyan City,Longyan,Fujian Province,364000China [Abstract]Objective To analyze the effect of letrozole combined with urinary gonadotropin on ovulation induction in infertile patients with polycystic ovary syndrome (PCOS).Methods A total of 135infertile patients with PCOS treated in the hospital from November 2017to May 2020were conveniently selected and divided into an observationgroup and a control group according to the random number table method.The control group (n=67)was treated with letrozole alone,and the observation group (n=68)were treated with letrozole combined with urinary gonadotropin,and the ovulation induction effect,pregnancy outcome,and incidence of adverse reactions were compared betweenthe two groups.Results The early miscarriage rate was 5.88%in the observation group and 4.48%in the control group;the incidence of adverse reactions was 7.35%in the observation group and 4.48%in the control group;the multiple pregnancy rate was 10.71%in the observation group and 18.75%in the control group;the singleton preg鄄nancy rate was 89.25%in the observation group and 81.25%in the control group,the difference between two groups was not statistically significant between two groups(P跃0.05).The endometrial thickness of the observation group was (11.03依1.51)mm,and the control group was (9.12依1.70)mm;the pregnancy rate was 41.17%in the observation group and 23.88%in the control group;the number of follicles in the observation group was (1.66依0.83),and the number in the control group was (1.25依0.61),and the difference between the two groups was statistically significant (P约0.05).The ovulation rate was 91.17%in the observation group higher than the 68.66%in the control group,and the difference was statistically significant (字2=10.697,P约0.05).Conclusion For PCOS infertility patients,letrozolecombined with gonadotropin therapy can effectively improve the ovulation rate and pregnancy rate,and the pregnan鄄cy safety is high,which is worthy of clinical application and promotion.[Key words]Polycystic ovary syndrome;Letrozole;Urinary gonadotropin;Ovulation;Pregnancy rate;Follicle num鄄ber;Pregnancy outcome;Adverse reactions[作者简介]黄华丹渊1974-冤袁女袁本科袁副主任医师袁研究方向为妇科遥103中外医疗China &Foreign Medical Treatment临床上袁多囊卵巢综合征(PCOS)是妇科内分泌病中比较常见的疾病之一袁该病不但特异性高袁同时存在持续无排卵尧卵巢多囊改变尧雄激素过量为特征多样化的临床症状袁主要表现月经失调尧不孕尧痤疮尧多毛尧肥胖尧胰岛素抵抗尧黑棘皮症等症遥多囊卵巢综合征(PCOS)是引起育龄期女性因排卵障碍导致不孕的一个重要原因[1]遥目前临床上对PCOS 以药物为首选的治疗方式袁对有生育要求的育龄妇女在生活方式调整下尧药物及促排卵药物的治疗袁从而使患者的排卵情况得到改善袁继而提高妊娠率袁促进患者生活质量的改善[2]遥临床上的促排卵药物有很多袁如来曲唑尧克罗米芬尧尿促性素等袁其中克罗米芬为一线药物袁但是存在不良反应较多袁如妊娠率低尧流产率高等情况袁影响其临床应用[3]遥有研究指出袁对于生育期的PCOS 不孕患者采取来曲唑联合尿促性素治疗效果显著袁不但排卵率高袁且妊娠率也较高袁同时不良反应较少袁医患认可度较高[4]遥鉴于此袁该研究方便选取2017年11月要2020年5月135例PCOS 患者作为研究对象袁对其中的68例患者采用来曲唑+尿促性素治疗袁获得满意临床效果遥现报道如下遥1资料与方法1.1一般资料方便选取该院门诊治疗的PCOS 不孕患者135例袁依据随机数字表法分为观察组和对照组遥观察组68例袁平均年龄(29.53依3.25)岁曰平均不孕时间(2.97依0.68)年曰平均体质指数(23.04依1.30)kg/m 2遥对照组67例袁平均年龄(30.12依3.27)岁曰平均不孕时间(3.03依0.67)年曰平均体质指数(22.68依1.19)kg/m 2遥该研究经过该院伦理委员会批准袁患者及家属自愿参加研究并签署同意书遥两组患者一般资料比较袁差异无统计学意义渊P跃0.05冤袁具有可比性遥纳入标准院该研究经实验室检查尧影像超声等检查确诊为PCOS 不孕症曰已婚要求生育女性曰对该次研究内容知情曰性生活正常且没有避孕袁同时伴侣精液质量正常遥排除标准院精神疾病者曰所用药物过敏者曰输卵管堵塞者曰恶性肿瘤者曰免疫系统疾病严重者曰肾脏功能不全者曰血液系统疾病者曰近30d 进行激素治疗者遥1.2方法对照组院来曲唑遥于月经第5天开始口服来曲唑(国药准字H19991001)5mg袁1次/d袁连续治疗5d遥观察组院来曲唑+尿促性素遥于月经第5天开始口服来曲唑(国药准字H19991001)5mg袁1次/d袁连续治疗5d遥月经第8/10天肌内注射75IU 尿促性素(国药准字H20033042)袁1次/d袁连续治疗5d遥1.3观察指标淤妊娠结局[5]院排卵率尧妊娠率渊单胎妊娠率尧多胎妊娠率冤尧早期流产率遥于不良反应[6]院卵巢过度刺激综合征(OHSS)尧下腹坠胀感尧恶心遥盂促排卵效果[7]院成熟卵泡数尧子宫内膜厚度遥1.4统计方法采用SPSS 18.0统计学软件进行数据处理袁符合正态分布的计量资料以渊x依s 冤表示袁采用t 检验曰计数资料以[n (%)]表示袁采用字2检验袁P约0.05为差异有统计学意义遥2结果2.1两组妊娠结局比较两组早期流产率尧多胎妊娠率尧单胎妊娠率比较袁差异无统计学意义渊P跃0.05冤曰观察组妊娠率尧排卵率均高于对照组妊娠率尧排卵率袁差异有统计学意义(P约0.05)遥见表1遥其中袁观察组中多胎妊娠3例渊10.71%冤袁单胎妊娠25例渊89.28%冤曰对照组中多肪妊娠3例渊18.75%冤袁单胎妊娠13例渊81.25%冤遥表1两组妊娠结局比较[n (%)]Table 1Comparison of pregnancy outcomes between the twogroups [n (%)]2.2两组不良反应比较观察组不良反应发生率为7.35%袁对照组不良反应发生率为4.48%袁观察组不良反应发生率略高于对照组袁但两组不良反应发生率对比袁差异无统计学意义(P跃0.05)遥见表2遥表2两组不良反应比较[n (%)]Table 2Comparison of adverse reactions between the twogroups [n (%)]2.3两组促排卵效果比较观察组子宫内膜厚度尧成熟卵泡数均高于对照观察组对照组字2值P 值组别6867例数4(5.88)3(4.48)0.001>0.05早期流产率28(41.17)16(23.88)4.595<0.0562(91.17)46(68.66)10.697<0.05妊娠率排卵率观察组对照组字2值P 值组别6867例数2(2.94)1(1.49)OHSS1(1.47)1(1.49)下腹坠胀感2(2.94)1(1.49)5渊7.35冤3渊4.48冤0.118>0.05恶心合计104China &Foreign Medical Treatment中外医疗组袁差异有统计学意义(P约0.05)遥见表3遥表3两组促排卵效果对比渊x依s 冤Table 3Comparison of ovulation induction effects between thetwo groups 渊x依s 冤3讨论现阶段袁在人们生活压力的增加下袁PCOS 的发病率显著增加袁成为育龄期妇女不孕的重要原因袁对女性身心健康产生严重不利影响[8-9]遥多囊卵巢综合症被认为是稀发排卵或无排卵尧多囊卵巢尧高雄激素或胰岛素抵抗等特征综合发生的内分泌紊乱性症候群袁当发生该病后会出现月经稀发尧慢性无排卵尧不孕等病症袁由于患者持续无排卵袁会导致子宫内膜过度增生袁从而诱发子宫内膜癌的风险袁并且多囊卵巢综合征是不孕症的重要影响因素袁如果形成多囊卵巢综合征不孕症袁会给患者带来较大的困扰遥鉴于此袁临床上针对多囊卵巢综合征不孕症患者的治疗袁首先考虑不同症状和生育要求袁根据这些综合制订针对性的治疗方案袁将有利于提升疾病的治疗效果袁达成治疗目的遥目前袁临床对于多囊卵巢综合征(PCOS)不孕患者主要是调整生活方式尧促排卵药物治疗提升排卵率及妊娠率[10-11]遥其中药物是该疾病的主要治疗手段袁利用促排卵药物来改善患者的内分泌情况袁调节排卵功能袁从而发挥治疗作用遥在药物治疗方案中袁来曲唑尧尿促性素效果得到广大医患的普遍认可[12]遥该研究结果中袁观察组排卵率及妊娠率优于对照组袁且两组不良反应发生率对比袁差异无统计学意义渊P跃0.05冤遥表明来曲唑联合尿促性素在治疗PCOS 不孕中可促进排卵率及妊娠率的提高袁且安全性较高遥该研究主要分析原因院女性正常情况下内分泌的调节主要依赖于下丘脑-垂体-卵巢轴袁当该调节机制失衡袁则会引发多囊卵巢综合征的发生遥因垂体对促性腺激素释放激素敏感性的增加袁会分泌过量的黄体生成素渊LH冤袁LH 刺激卵泡间质袁从而产生大量的雄激素袁当卵巢内的高雄激素水平提升袁会抑制卵泡成熟袁造成过多的卵泡停留在早卵泡期袁无法形成优势卵泡袁导致无排卵或稀发排卵的发生遥而在卵巢中的小卵泡会继续分泌雌二醇袁雄烯二酮又会在组织中转化为雌酮袁从而引发高雌酮血症遥如果体内雌二醇尧雌酮的水平维持在较高水平袁会作用于垂体及下丘脑袁从而与LH 形成正反馈袁促进LH 的增加袁导致LH 高表达袁失去周期性袁无法诱导排卵遥当持续无排卵发生袁会形成恶性循环袁诱使卵巢发生多囊样改变袁形成多囊卵巢综合症袁进一步引起排卵障碍型不孕发生遥因此袁治疗该疾病患者袁需要考虑从激素的分泌调节入手遥来曲唑属于第三代选择性芳香化酶抑制剂袁在促排卵药物中具有明显的优势遥该药物能够通过对体内芳香化酶进行抑制袁继而降低雌激素水平袁使雌激素抑制垂体和下丘脑负反馈作用解除袁使促卵泡激素渊FSH冤分泌袁利于排卵和卵泡发育曰同时此药还会阻止雄激素转化为雌激素袁让雄激素聚集在卵巢内袁促使卵泡敏感使卵泡刺激素性能提升袁促进卵泡生长袁促排卵[13]遥且该药物有较短的半衰期袁不会对雌激素受体消耗袁不会将垂体释放的FSH 一直升高袁进而不会出现卵泡多个生长袁可使单个优势卵泡排卵袁继而使OHSS 以及多胎妊娠发生率降低袁同时不会对子宫内膜生长产生影响[14]遥而尿促性素属于多囊卵巢综合征患者常用的促排卵药物袁该药物主要具有促卵泡成熟素的作用袁但对于促黄体生成素的作用微小袁在使用过程中通过促进卵泡发育及成熟袁使体内分泌大量雌激素袁诱使子宫内膜增生袁结合绒促性素实现对排卵作用的增强效果袁对于垂体促性腺激素分泌不足的患者袁或者下丘脑促性腺激素释放激素分泌不足的无排卵患者袁通过使用尿促性素袁将有利于改善症状袁便于提升临床妊娠率和排卵率[15]遥该研究将两种药物联合使用袁目的在于更好地调节子宫内膜发育袁充分利用两种药物均可促进子宫内膜生长的作用遥在单独使用来曲唑时袁如果出现促进卵泡增长不明显的现象袁此时无优势卵泡生长袁窦卵泡经历卵泡初期后进行尿促性素的使用袁能够更好地降低多卵泡发育情况袁减少多胎妊娠的发生风险遥这充分证实了两种药物联合使用相比单独来曲唑用药的优势袁在用药效果和安全性上均得到了较大改善遥在纪宁等[16]的研究中袁以124例PCOS 作为研究对象袁利用计算机产生随机数字分为联合组和参照组袁参照组患者采取单一尿促性素治疗袁联合组采取尿促性素+来曲唑治疗袁结果显示袁联合组妊娠率为32.26%袁参照组妊娠率为14.52%袁联合组妊娠率显著高于参照组袁表示联合用药可提升妊娠率遥在该研究结果中袁观察组排卵率为91.17%袁妊娠率为观察组渊n=68冤对照组渊n=67冤t 值P 值组别11.03依1.519.12依1.706.904<0.05 1.66依0.831.25依0.613.266<0.05子宫内膜厚度(mm)成熟卵泡数(个)105中外医疗China &Foreign Medical Treatment41.17%袁对照组排卵率为68.66%袁妊娠率为23.88%袁观察组同对照组相比袁观察组排卵率尧妊娠率更高渊P约0.05冤遥该研究结果表示来曲唑+尿促性素可将妊娠率提升遥同上述研究结果相近袁从而说明了两种药物联合应用在PCOS 不孕患者治疗中可提高妊娠率遥在李玉梅等[17]研究中袁纳入的研究对象为96例PCOS 不孕患者中袁随机数字表法分为两组袁各48例袁对照组采取来曲唑治疗袁而试验组采取来曲唑联合尿促性素治疗袁结果显示袁研究组子宫内膜厚度(9.85依2.39)mm尧成熟卵泡数(5.26依1.32)个较对照组(8.52依2.14)mm尧(3.11依1.20)个高袁表示联合用药可增加子宫内膜厚度和成熟卵泡数遥在该研究结果中袁观察组子宫内膜厚度(11.03依1.51)mm尧成熟卵泡数(1.66依0.83)个较对照组(9.12依1.70)mm尧(1.25依0.61)个高袁观察组优于对照组渊P约0.05冤袁说明PCOS 不孕患者采取来曲唑+尿促性素治疗效果显著遥同时两次研究结果相近袁进一步说明了来曲唑+尿促性素联合用药效果确切[18]遥综上所述袁来曲唑+尿促性素治疗PCOS 不孕症可促进卵泡发育袁提升排卵率和妊娠率袁使妊娠结局明显改善袁同时安全性较高袁具有较高的临床应用价值袁值得进一步在临床中推广应用遥[1]焦守凤,刘桂娟,李娜.来曲唑尧克罗米芬单用或联合应用对多囊卵巢综合征不孕症患者尿促性素用量及排卵效果的影响[J].中国计划生育和妇产科,2018,10(8):75-78.[2]王秀朵,邵志君,王秀玲.克罗米芬联合来曲唑治疗多囊卵巢综合征不孕症患者的临床效果[J].山东医学高等专科学校学报,2020,42(1):34-35.[3]员相冰,郝娟,胡萌萌,等.不同促排卵方案对多囊卵巢综合征不孕症患者治疗效果的临床研究[J].医学研究杂志,2018,47(4):106-109.[4]倪金莲,彭璇.多囊卵巢综合征性不孕患者采用不同促排卵方案的临床效果[J].中国妇幼保健,2019,34(22):5252-5254.[5]郭金莲,王秀美,吴洁.不同促排卵方案治疗多囊卵巢综合征并不孕症临床研究[J].中国药业,2021,30(8):43-46.[6]刘生英.来曲唑辅助治疗多囊卵巢综合征所致不孕症的疗效分析[J].实用妇科内分泌电子杂志,2018,5(14):2-3.[7]王雪,王丽婷,王成祥,等.女性体质指数对夫精人工授精妊娠结局影响的回顾性分析[J].中国妇幼保健,2019,34(15):3545-3548.[8]毛会,席稳燕.CC 抵抗的PCOS 患者LE 促排卵不同时期添加HMG 对助孕结局的影响[J].中国生育健康杂志,2020,31(5):473-475,487.[9]商娜.二甲双胍联合达英-35治疗多囊卵巢综合征不孕症的临床效果分析[J].中国疗养医学,2016,25(6):654-656.[10]樊燕飞.达英-35联合二甲双胍对多囊卵巢综合征患者胰岛素抵抗状态及排卵功能的影响[J].当代医学,2021,27(12):177-178.[11]刘冬.来曲唑联合Hp-HMG 对多囊卵巢综合征所致不孕症患者治疗效果研究[J].中国妇幼保健,2019,34(16):3766-3768.[12]林巧玲,曾玲.来曲唑联合尿促性素对多囊卵巢综合征不孕患者的临床疗效及对排卵质量及妊娠结局的影响[J].吉林医学,2021,42(3):607-608.[13]宋燕.来曲唑联合尿促性素对多囊卵巢综合征患者促排卵效果及临床妊娠的影响[J].中国医药科学,2019,9(16):75-78.[14]余会丽,张峰.克罗米酚尧尿促性素尧来曲唑分别治疗多囊卵巢综合征不孕患者的效果观察[J].临床研究,2018,26(4):77-78.[15]邱昱,余晓完.来曲唑对比克罗米芬治疗多囊卵巢综合征性不孕症的疗效[J].吉林医学,2020,41(7):1735-1737.[16]纪宁,陈小芳.来曲唑联合尿促性素治疗多囊卵巢综合征不孕症患者的临床疗效评价[J].特别健康,2019(14):33.[17]李玉梅,郭靖.来曲唑与尿促性素对多囊卵巢综合征不孕患者排卵质量的影响[J].中国合理用药探索,2019,16(5):68-70.[18]唐亭亭,阳翎,禹虹,等.不同促排卵方案治疗多囊卵巢综合征的疗效分析[J].医学临床研究,2017,34(2):402-404.渊收稿日期院2021-12-15冤[参考文献]106。

文献收集法 英文

文献收集法 英文

文献收集法英文
文献收集法英文为:Literature collection method
例句
1.本文采用文献收集法、比较分析法、田野调查法、归纳演绎法等研究方法,对旅游目的地型森林公园经营管理问题进行了深入、系统的研究。

The paper adopts methods of literature collection, comparison and analysis, interview and field investigation, in addition to induction and deductive method, making deep and systematic study to the operation and administration issues of tourism destination-type forest park.
2.全文撰写当中主要应用了文献法、数据收集法、求平均法、对比分析法等研究方法。

This paper utilized methods of documentary analysis, data collection, averaging and comparative analysis.
3在研究过程中,收集和整理资料的方法主要是深度访谈法、观察法、文献法以及实物收集法。

The method of collecting and collating information include depth interviews, observation, literature, law and in-kind collection method.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Comparison of Induction Motor Field Efficiency Evaluation MethodsJohn S.Hsu,Senior Member,IEEE,John D.Kueck,Senior Member,IEEE,Mitchell Olszewski, Don A.Casada,Pedro J.Otaduy,and Leon M.Tolbert,Member,IEEEAbstract—Unlike testing motor efficiency in a laboratory, certain methods given in IEEE Standard112cannot be used for motor efficiency evaluations in thefield.For example,it is difficult to load a motor in thefield with a dynamometer when the motor is already coupled to driven equipment.The motor efficiencyfield evaluation faces a different environment from that for which IEEE Standard112is chiefly written.Afield evaluation method consists of one or several basic methods.This paper separates and compares the basic methods according to their physical natures.Their intrusivenesses and accuracies are also discussed.This paper is useful forfield engineers to select or to establish a proper efficiency evaluation method by understanding the theories and error sources of the methods.Index Terms—Accuracy,comparison,efficiency,field evalua-tion,IEEE Standard112,induction motors,methods.I.I NTRODUCTIONM OTOR-DRIVEN systems use two-thirds of the total electricity consumed by industry.Historically,energy efficiency improvements in these systems have been important for economic reasons only.However,these improvements have now assumed an environmental role in meeting the U.S. commitment to reduce greenhouse emissions.There have been many articles concerning energy effi-ciency of induction motors[1]–[19].In general,an energy efficiency improvement program includes development of a motor management plan that focuses on development of a plant motor inventory and an evaluation of motor performance for large or critical motors.The evaluation of motors focuses on the operating efficiency and motor load to identify energy efficiency gains and possible reliability improvements.This requires a reliable method for assessing motor performance in thefield.The majority of motors in thefield are induction motors for which IEEE Standard112[10]would be applicable. However,field evaluation of operating efficiency introduces anPaper IPCSD97–60,presented at the1996Industry Applications Society Annual Meeting,San Diego,CA,October6–10,and approved for publication in the IEEE T RANSACTIONS ON I NDUSTRY A PPLICATIONS by the Electric Machines Committee of the IEEE Industry Applications Society.This work was prepared by the Oak Ridge National Laboratory,Oak Ridge,TN37831-8038,managed by Lockheed Martin Energy Research Corporation for the U.S. Department of Energy under Contract DE-AC05-96OR22464.Manuscript released for publication September5,1997.The authors are with Oak Ridge National Laboratory,Oak Ridge,TN37831 USA(e-mail:hsujs@;kueckjd@;olszewskim@; casadada@;otaduypj@;tolbertlm@).Publisher Item Identifier S0093-9994(98)01201-8.environment for which IEEE Standard112is not applicable. For example,IEEE Standard112requires that induction motor tests be performed with a voltage unbalance not exceeding 0.5%(note that this is significantly smaller than the NEMA MG-1permissible limit of1%[14]for successful operation of motors).However,field conditions may exceed this limit by a significant measure.Thus,when evaluating motor performance in thefield,it is important to use a technique that can accommodatefield conditions and yield results of sufficient accuracy for the evaluation needs.There are many methods pertinent tofield efficiency eval-uation in the literature,and new methods are appearing every year.The reader is encouraged to refer to a survey,“As-sessment of methods for estimating motor efficiency and load underfield conditions”by Kueck et al.[1]for a rather complete list of references of efficiency estimation available, either commercially or in the literature.This survey was prepared for the U.S.Department of Energy,Bonneville Power Administration,and the Pacific Gas and Electric Company and is available from the Bonneville Power Administration Printing Office.Afield evaluation method can consist of a single basic method or can be built using a combination of different basic methods.This paper separates and compares the basic methods according to their theoretical basis and error sources.This may helpfield engineers select or establish an efficiency evaluation method suited to their need.The basic methods are as follows:•nameplate method;•slip method;•current method;•statistical method;•equivalent circuit method;•segregated loss method;•airgap torque method;•shaft torque method.An example illustrating a combination of different basic methods is a modified version of the slip method established in conjunction with nameplate information and built-in statistical data.If applied properly,this combined effort normally im-proves the accuracy of the efficiency evaluation for a targeted group of motors.Regardless of how complex the combination is,the nature of each basic method affects the overall accuracy of the combination.ernment work not protected by U.S.copyright.All methods calculate efficiency according to the definition of:EfficiencyShaft output powerElectrical input power to drive systemHSU et al.:INDUCTION MOTOR FIELD EFFICIENCY EV ALUATION METHODS119 The worst situation for afield efficiency evaluation usingthe nameplate method is that having a less than10-hp low-speed rewound motor that was not repaired according to EASAStandards.The motor has data stamped on the nameplatethat is not given according to IEEE Standard112MethodB and is operated under a polluted supply(voltage unbalanceor harmonic distortion).The efficiency can easily be off tenpercentage points from the nameplate efficiency.However,thebottom line is that a nameplate method is better than nofieldevaluation at all.B.Slip MethodThis method presumes that the percentage of load is closelyproportional to the percentage of the ratio of measured slip tofull-load slip.The shaft output power is,thus,approximatedusing the followingrelationship:Measured SlipRated SlipRated Output PowerC.This means that the nameplate slip can be20% inaccurate when the motor is operating in thefield,thus introducing significant inaccuracies in(2).The no-load speed of induction motors is always close to the synchronous speed.Subsequently,the projection of a light load through the basic slip method is relatively more accurate than the projection of a heavy load.C.Current MethodThis method presumes that the percentage of load is closely proportional to the percentage of the ratio of measured cur-rent to full-load current.The shaft output power is,thus,approximated using the followingrelationship:Rated OutputPoweris themeasured current.Fig.2(a)shows a circle diagram of an induction motor.For small integral horsepower motors the no-load current maynot be greatly reduced from the full-load current.Fig.2(b)shows a source of error when(3)is used to assess the shaftoutput power;the assumed load-versus-current curve used by(3)is further apart from the actual curve at light loads.This isopposite to what the basic slip method is relatively good for.The load is normally overestimated.The expression of shaft output power defined by(4)requiresthat the no-loadcurrent be known.This may increase theintrusiveness substantially when a no-load test isrequired:Rated Output Power120IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL.34,NO.1,JANUARY/FEBRUARY1998D.Statistical MethodEmpirical equations are set up to use minimal numbersof measured data for input power and efficiency estimations.Usually,application of this method is restricted to the groupof motors for which empirical equations were derived.If the statistical results are not used for the group of motorsthat the empirical equations are based on,significant errors inthe efficiency estimation are likely.The statistical results can be quite different for the samevariable.A good example is the stray load loss estimation.NEMA MG1[14],paragraph20.52,states that,if stray loadloss is not measured,the value of stray load loss at rated loadshall be assumed to be1.2%of the rated output for motorsrated less than2500hp and0.9%for motors rated2500hpand greater.IEEE Standard112[10,Sec.5.4.4],gives differentassumed stray load loss values for motors rated less than2500hp.They are as follows:1)1–125hp1.5%;3)501–2499hpHSU et al.:INDUCTION MOTOR FIELD EFFICIENCY EV ALUATION METHODS 121components are known accurately,as shown below,efficiency may be obtained from the measurement of the motor’s speed.Two low-intrusion approaches can be followed to determine the values of the augmented seven components in the equiv-alent circuit.Both rely on the motor’s nameplate data and NEMA standards.The first approach requires the measurement of stator resistance()at rated load temperature.The second approachestimates using generic relationships based on the number of poles,horsepower rating,and rated line voltage of the motor.The second approach does not require any measurements specific to the motor of interest;all motors with the same nameplate data will be found to have the same equivalent circuit.Consequently,their efficiency in the field will be estimated differently only if their speed is different.Another example of the equivalent circuit method for field efficiency evaluations is “Ontario Hydro’s Simplified Method F1.”It is described in [1].F.Segregated Loss MethodThe segregated loss method estimates the magnitudes of the five losses,namely,stator copper loss,rotor copper loss,core loss,stray-load loss,and friction and windage loss.The shaft output power is the input power minus the losses.Some of the methods in this category are quite complicated and intrusive,while others rely on empirical factors to estimate the losses.There are quite a number of available methods that are based on the evaluations of the five losses.One good example is the IEEE Standard 112Method E.A literal interpretation of Method E is not a useful field test for efficiency.Its addi-tional removed-rotor and reverse-rotation tests used to directly measure the fundamental-frequency and high-frequency stray-load losses are not practical for field efficiency evaluation.Therefore,attention will be restricted to Method E1.Even a literal interpretation of Method E1would be impractical for field use,because it requires a variable load and a variable-voltage power supply.Method E1specifies an assumed value for stray-load losses at rated load.The repeatability of Method E1is improved by requiring the adjustment of all resistance and slip measurements to a specified temperature.However,in many available methods,the principle of segregating motor losses into five losses remains the same as that used in Method E1.Statistical methods are always used in conjunction with the segregated loss method to simplify the procedures required by Method E1.Once the voltage,current,power,and speed data have been collected,the algorithms provided in IEEE Standard 112are used to calculate the individual component losses.Commercial devices are available for measuring the effi-ciency of installed motors based on a modified version of IEEE Standard 112Method E1.These also require a measurement of power in,winding resistance,and speed.There are also various empirical methods that use approximations of the various losses to develop an overall loss estimate.G.Airgap Torque MethodThe airgap torque method uses the product of airgap torque and rotor speed as the airgap mechanical power for efficiencyevaluation.The more sophisticated airgap torque method de-veloped at ORNL uses current and voltage waveforms as input data.The waveform data acquired can also be used for defect detections [7]on cracked rotor bars,stator turn-to-turn shorts,and for evaluation of harmonic contents of voltage and current.The efficiency is calculated as follows.The input power of a three-phase induction motor is the average summation of products of the instantaneous phasevoltages and phasecurrentsperiodN(6)whereis half of the line-to-line resistance value.The efficiencyyieldsFriction windage loss stray loss122IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL.34,NO.1,JANUARY/FEBRUARY 1998TABLE IIT ESTED F UNDAMENTAL F REQUENCY P OSITIVE-AND N EGATIVE -S EQUENCEC OMPONENTS OF V OLTAGE AND C URRENTS OF A 50-HPM OTOR U NDER AN U NBALANCED SUPPLYcurrents indicate that the negative sequence impedance is not a constant.It goes up when the negative-sequence current goes down.For a small negative-sequence current,a higher negative-sequence impedance occurs.This is caused by the nonsaturated tips of the rotor teeth.The tested data clearly show that the no-load negative-sequence current of 4.2A is significantly smaller than the negative-sequence current of 13.7A at full load.The no-load loss does not cover most of the negative-sequence losses when the motor is loaded.In Method E,the input power is used as the base to subtract various losses for the output power.The load-dependent negative-sequence losses that are not included in the no-load loss increase the input power.Subsequently,the output power is evaluated to be higher.On the contrary,the airgap torque method uses the airgap torque power,not the input power,as the starting point of loss subtraction for the output power evaluation.The losses associated with negative-sequence cur-rents are calculated for each load.The airgap torque method recognizes the sign difference between the torque and the corresponding input power.For example,the input power of the fundamental negative-sequence voltage and currents is positive,but the airgap torque is negative.After the airgap torque power is found,one subtracts the estimated stray-load loss and the no-load airgap torque power that includes the friction and windage loss and the core loss to find the output power.For three-phase four-lead motors,two line voltages and three line currents need to be measured for airgap torque calculations [2].For three-phase three-lead motors,waveforms of two line voltages and two line currents are required.H.Shaft Torque MethodRegardless of how sophisticated a method is,it remains difficult to assess all the stray-load losses accurately in the field.The most straightforward method is to measure the output power directly from the shaft,without any need to calculate losses.The shaft torque method offers the most accurate field efficiency evaluation method.It is also highly intrusive.A custom-built torque coupling may be used to replace the existing coupling.Torque signals can be obtained through slip ser and telemetry technologies may also be used without going through slip rings for signal noise reductions.Many different ways have been proposed (see the reference section of [1]).The accuracy of this method depends ontheFig.5.Efficiency anticipated potential accuracies versus basic elements for loads between full and half load.(Additional equipment accuracy tolerances need to be added to those shown in this figure.)quality of the torque sensors,the signal noise,and the shaft alignment of the motor and its load.Downtime is required for preparing and replacing the shaft torque coupling.III.A CCURACY C ONSIDERATIONA.Accuracies of Basic MethodsAlthough more rigid accuracy evaluation of field efficiency measurement is needed,accuracy estimation of measured efficiency presently is based on experience.For NEMA frame motors,the nameplate efficiency is com-monly stamped according to Method B of IEEE Standard 112.Bonnett [9]suggests that,with the use of existing technologies,it is unreasonable to expect accuracies of efficiency for the following items better than the following:•accuracy ofcalculations:0.5points ofefficiency;•testaccuracy:1.5points of efficiency,in Bonnett’s opinion,isthe simple summation of the three factors that he considered.It is not the square root of the sum of accuracy squares,which is a commonly used method.For various basic methods,the best accuracy is provided by the torque gauge method.It may have an accuracyof10%for loads between half and full.The best accuracy is provided by the torque gauge method.It has an accuracyofHSU et al.:INDUCTION MOTOR FIELD EFFICIENCY EV ALUATION METHODS123the application range.Intuition tells us that a well-targeted sample range for a small application range normally gives high accuracy.For example,empirical equations obtained from data of one specific sample motor can be very accurate when they are applied to the same specific motor.The accuracy becomes extremely poor when the one sample conclusion is applied to a totally different motor.This is the reason the empirical method is not included in Fig.5.B.Measurement Consideration1)Instruments:IEEE Standard112[10]requires high-accuracy instruments,with individual errors of less than±0.5% of full scale,including both amplitude and phase-angle effects. There are indications that revisions to the standard will require even greater accuracy.Forfield measurements,instrument accuracy is an impor-tant issue.When either temporary portable instruments or permanently installed instruments that are not intended for precision metering are used,such accuracies can be extremely difficult to achieve.Portable monitoring instruments typically consist of clamp-on current transformers or Hall-effect pickups and some means of voltage transduction.Some clamp-on style probes are available with manufacturer-specified ampli-tude accuracies approaching0.5%,but,even for these high-accuracy clamp-on probes,there are practical considerations that can considerably reduce actual accuracies.The practical accuracy,for power monitoring purposes,is dependent upon both phase angle and amplitude.The phase-angle shift of transformers is typically dependent upon current amplitude. If compensation for phase-angle shift is not provided,the associated error(for power/power factor consideration pur-poses)can be significantly greater than amplitude errors.For example,a phase-angle shift of1.5[1].2)Measurement Duration:Particularly for measurements done in thefield,it is important to recognize that the load of many machinesfluctuates significantly,both over the long term(for instance,from changing plant conditions),as well as the short term(for example,loadfluctuations from belt drives).In order to ensure that data accurately reflects the true average load,it is usually necessary to collect either several samples and develop a statistically valid measure or to acquire a relatively long sample of data(long can range from a few seconds to minutes,depending on the nature of the load).Belt-driven devices,in particular,can cause relatively large load fluctuations(as much as10%or more)at belt passing speed. Thus,a single short-duration sample(for example,a few cycles in length)may grossly misrepresent the actual average load condition.3)Importance of Errors:The importance of a particular error source is entirely dependent upon what is done with the measurement result.For example,if speed measurement is made in a laboratory,and the speed is used,along with torque,to calculate shaft power,an error of0.05%in speed corresponds to an error of0.05%in calculated shaft power and, ultimately,to an error of0.05%in calculated efficiency.On the other hand,if an error of0.05%in speed(slightly less than 1r/min for a four-pole motor),is made in afield measurement, the consequences can be entirely different.If motor efficiency, not actual power,is the subject of interest and efficiency is estimated from either vendor curves of efficiency versus load or from motor models,the effect of the speed error will be very minor,as long as the actual motor operation is between half load and full load.This is simply an inherent result of the typicallyflat efficiency-versus-load profile for motors operated in this zone.However,if the interest is in estimating power rather than motor efficiency,a1-r/min error would translate into roughly a5%error in power estimate for a four-pole motor with a rated load speed of1780r/min.For lightly loaded conditions(less than25%power),errors from all sources tend to be magnified.Any phase-shift error in transducers is much more important at low power factors[1]. Also,because the slope of the motor efficiency-versus-load curve is very steep at light load conditions,even very minor errors in speed can translate into large efficiency estimate errors if speed is the only available measurement and motor performance curves or models are used.The accumulated equipment accuracies,especially when low-grade instrumentation is used,have to be added to the accuracy estimations.A common method for estimating ac-cumulated accuracies is to use the square root of the sum of their squares.IV.S AMPLES OF F IELD E FFICIENCY E V ALUATION R ESULTS Efficiencies obtained from seven different induction motor field evaluation methods[1](i.e.,shaft torque,current,slip, Stanford–Wilke(a statistical method),Ontario Hydro Modified (O.H.M.),Nameplate Equivalent Circuit(N.E.C.),and airgap torque)are plotted against percentage of load in Fig.6.The shaded curve is the actual efficiency obtained from the shaft torque method.The slip and current methods show greater than20%discrepancies from the true efficiency.This indicates that certain statistical elements in these two methods are not suitable to be used for the test motors.It should be noted that, with proper statistical data,the slip and current methods may still be possible to give better results than the two packages used in this test.124IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL.34,NO.1,JANUARY/FEBRUARY1998Fig.6.Samples offield efficiency evaluation results.Legend of curves is given in lower right-hand corner.A sophisticated version of the airgap torque method[2], which uses only one statistical value(IEEE Standard112 stray-load loss percentage),but requires an uncoupled no-load test,gives consistently accurate results.It is suitable forfield efficiency evaluations of a wide range of motors.The Nameplate Equivalent Circuit Method,which has a very low level of intrusiveness(only a measurement of speed is required),but relies on statistical data heavily,gives good results for loads above50%.It is suitable for a targeted group of motors.V.C ONCLUSIONS1)Afield efficiency evaluation method can be built ondifferent basic methods,such as equivalent circuit with empirical parameters.This combined approach normallyimproves the accuracy and reduces intrusiveness of efficiency evaluation for a targeted group of motors.Regardless how complex the combination is,the nature of each basic method affects the combination.2)This paper compares the physical natures(i.e.,theoreti-cal bases and error sources)of basic methods contained in various availablefield efficiency evaluation methods.3)The basic methods are nameplate method,slip method,current method,statistical method,segregated loss method,equivalent circuit method,airgap torque method,and shaft torque method.4)The intrusiveness or cost and accuracy are the majorconsiderations for selecting afield efficiency evaluation ers want a lower intrusive method under a given accuracy requirement.5)The least intrusive and least accurate method is thenameplate method.The most intrusive and most accurate basic method is the shaft torque method.Accuracy evaluation in this paper is based on published opinions rather than on rigorous statistical exercises.6)The average load factor of motors operating in thefieldis around75%.Reexamination of the chosen method and the measurements should be conducted when the differ-ence between the evaluated efficiency and the nameplate efficiency is greater than ten percentage points.7)The sophisticated version of the airgap torque methodcan have a certain advantage over the segregated loss method when the unbalance and harmonic content of the supply system are not negligible.8)The shaft torque method does not rely on any assumedloss,such as the stray-load loss,but is very intrusive.9)Statistical approaches can be very effective.A goodexample is the Nameplate Equivalent Circuit Method.For a targeted group of motors,it provides a significant improvement in accuracy over the slip method,with no increase in intrusiveness.10)Statistical approaches can also be damaging when theyare not used for the targeted group of motors.A goodexample is the poor result of slip and current methodsshown in Fig.6.11)We hope that this paper may helpfield engineers toselect or to establish a proper efficiency evaluationmethod by understanding the different basic methods,their theoretical foundations,and error sources.A CKNOWLEDGMENTThe authors would like to thank the Oak Ridge National Laboratory(ORNL)for the support staff and facilities provided for the research work.The authors would like to express their appreciation to P.Scheihing,DOE Program Manager,and D.Adams,ORNL Group Manager,for their support in this research.The selected use of information and data given in the survey,“Assessment of Available Methods for Evaluating In-Service Motor Efficiency”by J.D.Kueck,J.R.Gray, R.C.Driver,J.S.Hsu,P.J.Otaduy,and L.M.Tolbert is gratefully acknowledged.This survey was prepared for the U.S.Department of Energy,Bonneville Power Administration, and the Pacific Gas and Electric Company.HSU et al.:INDUCTION MOTOR FIELD EFFICIENCY EV ALUATION METHODS125 The submitted manuscript has been authored by a contrac-tor of the ernment under Contract No.DE-AC05-96OR22464.Accordingly,the ernment retains anonexclusive,royalty-free license to publish or reproduce thepublished form of this contribution,or allow others to do so,for ernment purposes.R EFERENCES[1]J.D.Kueck,M.Olszewski,D.A.Casada,J.S.Hsu,P.J.Otaduy,and L.M.Tolbert,“Assessment of methods for estimating motor efficiency andload underfield conditions,”Lockheed Martin Energy Research Corp.,Oak Ridge,TN,Rep.ORNL/TM-13165,Jan.1996.[2]J.S.Hsu and P.L.Sorenson,“Field assessment of induction motorefficiency through air-gap torque,”IEEE Trans.Energy Conversion,vol.11,pp.489–494,Sept.1996.[3]High Efficiency Motor Selection Handbook,Bonneville Power Admin-istration(BPA),Portland,OR,1990,p.21.[4]W.D.Biesemeyer and J.Jowett,“Facts andfiction of HV AC motormeasuring for energy savings,”Arizona Department of Commerce,Energy Office,Phoenix,AZ,Biesemeyer#116,1994.[5]P.L.Alger,The Nature of Induction Machines.New York:Gordonand Breach,1965.[6]J.S.Hsu,H.H.Woodson,and W.F.Weldon,“Possible errors inmeasurement of air-gap torque pulsations of induction motors,”IEEETrans.Energy Conversion,vol.7,pp.202–208,Mar.1992.[7]J.S.Hsu,“Monitoring of defects in induction motors through air-gaptorque observation,”IEEE Trans.Ind.Applicat.,vol.31,pp.1016–1021,Sept./Oct.1995.[8] C.L.Becnel et al.,“Determining motor efficiency byfield testing,”IEEE Trans.Ind.Applicat.,vol.IA-23,pp.440–443,May/June1987.[9] A.H.Bonnett,“An update on ac induction motor efficiency,”IEEETrans.Ind.Applicat.,vol.30,pp.1362–1372,Sept./Oct.1994.[10]IEEE Standard Test Procedure for Polyphase Induction Motors andGenerators,IEEE Standard112-1991,1991.[11]H.E.Jordan and A.Gattozzi,“Efficiency Testing of Induction Ma-chines,”in Conf.Rec.IEEE-IAS Annu.Meeting,Cleveland,OH,Sept.30–Oct.5,1979,pp.284–289.[12]R.E.Oesterlei,“Motor efficiency test methods—Apple and oranges?,”Power Transmission Design,vol.22,no.5,pp.41–43,May1980.[13]P.G.Cummings,W.D.Bowers,and W.J.Martiny,“Induction motorefficiency test methods,”IEEE Trans.Ind.Applicat.,vol.IA-17,pp.253–272,May/June1981.[14]NEMA Standards Publication No.MG1,National Electrical Manufac-turers Association(NEMA),Washington,D.C.,1993.[15]Motor Master,Version2.1.,98504-3165.K,Washington State EnergyOffice,Olympia,WA.[16]R.L.Nailen,“Canfield tests prove motor efficiency?,”in Conf.Rec.IEEE I&CPS Tech.Conf.,Baltimore,MD,May2–5,1988,pp.110–116.[17]J.S.Hsu,P.J.Otaduy,and J.D.Kueck,“Efficiency and reliabilityassessments of retrofitted high-efficiency motors,”in Conf.Rec.IEEE-IAS Annu.Meeting,Lake Buena Vista,FL,Oct.8–12,1995,pp.2745–2751.[18]J.S.Hsu and B.P.Scoggins,“Field test of motor efficiency and loadchanges through air-gap torque,”IEEE Trans.Energy Conversion,vol.10,pp.471–477,Sept.1995.[19]“Understanding AC motor efficiency,”Electrical Apparatus ServiceAssociation,St.Louis,MO.John S.Hsu(M’64–SM’89)received the B.S.de-gree from Tsing-Hua University,Beijing,China,andthe Ph.D.degree from Bristol University,Bristol,U.K.He was with the Emerson Electric Company,Westinghouse Electric Corporation,and later withthe University of Texas,Austin,prior to joiningOak Ridge National Laboratory,Oak Ridge,TN,where he is currently a Senior Staff Engineer.Hehas published approximately40refereed papers andmore than100technical publications.He holds eight patents in the areas of rotating machines and powerelectronics.John D.Kueck(S’72–M’72–SM’96)earned theB.S.degree in physics from Purdue University,WestLafayette,IN,and the M.S.degree in electrical engi-neering power systems from Ohio State University,Columbus.He is presently a Development Engineer with OakRidge National Laboratory,Oak Ridge,TN,wherehe is involved with the Nuclear Plant Aging Re-search Program and the Motor Challenge Program.He has authored several papers on the subjects ofelectrical power systems reliability and componentdegradation.Mitchell Olszewski received the B.S.and M.S.degrees from Rutgers University,New Brunswick,NJ,and the Ph.D.degree from the University ofCalifornia,Berkeley,all in mechanical engineering.He is currently the Program Manager for Mo-tor Challenge Program activities at the Oak RidgeNational Laboratory,Oak Ridge,TN.These activ-ities include tool and training development,assess-ment of motor usage in industry,and validation ofthe economic and energy performance of showcasedemonstrationprojects.Don Casada received the B.S.degree in nuclearengineering and the Master of Mechanical Engineer-ing degree from North Carolina State University,Raleigh.He is currently a Senior Development Associatewith Oak Ridge National Laboratory,Oak Ridge,TN,where he is responsible for activities relatedto motor,motor-driven device,and process systemanalysis and diagnostic development.He has beenat Oak Ridge for ten years.Prior to this,he was withCarolina Power and Light Company for14years. Mr.Casada is a Registered Professional Engineer in the State of NorthCarolina.Pedro J.Otaduy was born in Euskadi,Spain.He re-ceived the B.S.and M.S.degrees in power engineer-ing from Basque University,Bilbao,Spain,and theM.S.and Ph.D.degrees from the Nuclear Engineer-ing Department,University of Florida,Gainesville.He joined the Oak Ridge National Laboratory,Oak Ridge,TN,as an E.P.Wigner Fellow and hasbeen a Member of the Research Staff for17years.He has taught and published in a variety of sub-jects,including nuclear reactor stability,supervisorycontrol,wavelets,and artificialintelligence.Leon M.Tolbert(S’88–M’91)received the B.E.E.and M.S.degrees in electrical engineering in1989and1991,respectively,from the Georgia Institute ofTechnology,Atlanta,where he is currently workingtoward the Ph.D.degree in electrical engineering.He is currently a Research and Design Engineerin the Power Electronic Center,Oak Ridge NationalLaboratory,Oak Ridge,TN.Mr.Tolbert is a Registered Professional Engineerin the State of Tennessee.。

相关文档
最新文档