中考数学复习知识点易错部分突破训练:投影与视图(附答案)

合集下载

中考数学常考易错点之视图与投影含答案

中考数学常考易错点之视图与投影含答案

5.3视图与投影易错清单1.由三视图确定小正方体的个数时,因无实物图,导致容易出错.【例1】(2014·宁夏模拟)如图是一个用相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是().A. 2B. 3C. 4D. 5【解析】由俯视图可知,该几何体有一行三列,再由主,左视图可知第一列有1个小立方块;第2列有2个小立方块;第3列有1个小立方块,一共有4个小立方块.【答案】 C【误区纠错】解答此类由视图还原几何体的问题,一般情况下都是由俯视图确定几何体的位置(有几行几列),再由另外两个视图确定第几行第几列处有多少个小正方体,简便的方法是在原俯视图上用标注数字的方法来解答.2.根据视图求几何图形的表面积和体积,因缺乏合理的方法而出错.【例2】(2014·云南模拟)如图所示,是一个几何体的三视图,则这个几何体的侧面积是().A. 18cm2B. 20cm2【解析】根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18(cm2).【答案】 A【误区纠错】由物体的三视图求几何体的侧面积,表面积,体积等,关键是由三视图想象出几何体的形状.名师点拨1.明确常见几何体的展开图,通过几何体的展开与折叠,体会平面图形与立体图形之间的关系.2.三视图是中考必考热点,一般考查由物体确定视图,由视图确定物体较少见,抓住三视图从三个方向观看这个特点,发挥空间想象力,便可做出准确判断.提分策略1.图形的展开与折叠.常见几何体的展开与折叠:①棱柱的平面展开图是由两个相同的多边形和一些长方形组成,按棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图,特别关注正方体的表面展开图;②圆柱的平面展开图是由两个相同的圆形和一个长方形连成的;③圆锥的平面展开图是由一个圆形和一个扇形组成的.【例1】如图给定的是纸盒的外表面,下面能由它折叠而成的是().【解析】将A,B,C,D分别展开,能和原图相对应的即为正确答案.A项展开得到,不能和原图相对应,故本选项错误;B项展开得到,能和原图相对应,故本选项正确;C项展开得到,不能和原图相对应,故本选项错误;D项展开得到,不能和原图相对应,故本选项错误.【答案】 B2.几何体的三视图三个视图是分别从正面、左面、上面三个方向看同一个物体所得到的平面图形,要注意用平行光去看.画三个视图时应注意尺寸的大小,即三个视图的特征:主视图(从正面看)体现物体的长和高,左视图体现物体的高和宽,俯视图体现物体的长和宽.【例2】如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是().A. 3个或4个或5个B. 4个或5个C. 5个或6个D. 6个或7个【解析】本题考查了由三视图判断几何体,主要考查了考生的空间想象能力以及三视图的相关知识.左视图与主视图相同,可判断出底面最少有2个小正方体,最多有4个小正方体,而第二行则只有1个小正方体,则这个几何体的小立方体可能有3个或4个或5个.根据这个思路可判断出该几何体有多少个小立方体.本题最大误区在于:判断不出左视图与主视图相同时最多有多少个小正方体,最少有多少个小正方体.【答案】 A【例3】如图(1),是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得图(2)所示几何体的视图().A. 主视图改变,俯视图改变B. 主视图不变,俯视图不变C. 主视图不变,俯视图改变D. 主视图改变,俯视图不变【解析】此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.只有熟练掌握三种视图的画法,本题才不会出现误判.根据图形可得:图(1)及图(2)的主视图一样,俯视图不一样,即主视图不变,俯视图改变.【答案】 C专项训练一、选择题1.(2014·湖北天门模拟)一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是().(第1题)A. 15个B. 13个C. 11个D. 5个2. (2014·江苏苏州高新区一模)如图是一个几何体的三视图,则这个几何体的侧面积是().(第2题)A. 12πcm2B. 8πcm2C. 6πcm2D. 3πcm23.(2014·云南曲靖模拟)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是().(第3题)A. ①②B. ②③C. ②④D. ③④4. (2014·江苏南京二模)若干桶方便面摆放在桌面上,它的三个视图如图,则这一堆方便面共有().(第4题)A. 7桶B. 8.桶C. 9桶D. 10桶5. (2014·天津塘沽区一模)如图是五棱柱形状的几何体,则它的三视图为().(第5题)6.(2013·山西模拟)如图是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数为().(第6题)A. 2B. 3C. 4D. 67. (2013·广西南丹中学一模)如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是( ).(第7题)A. 2B. 3C. 4D. 58. (2013·河北四模)一个几何体的三视图如下:(第8题)其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( ). A. 2π B.C. 4πD. 8π二、 解答题9. (2014·四川乐山模拟)如图(1),是由一些棱长都为1cm 的小正方体组合成的简单几何体.(第9题(1))(1)该几何体的表面积(含下底面)为 ;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.(第9题(2))参考答与解析1. A 2. B 3. B 4. C 5. A 6. C 7. C 8. C 9. (1)26cm2(2)如图.(第9题)。

九年级数学下册第二十九章《投影与视图》综合知识点(含答案解析)

九年级数学下册第二十九章《投影与视图》综合知识点(含答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图是某个几何体的三视图,则该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥2.如图所示的几何体的主视图是()A.B.C.D.3.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()A.B.C.D.4.下图是一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的最多个数是()A.9 B.8 C.7 D.65.下列说法错误的是()A.高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长B.对角线互相垂直的四边形是菱形C.方程x2=x的根是x1=0,x2=1D.对角线相等的平行四边形是矩形6.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时7.如图是由五个相同的小正方体搭成的一个几何体,它的主视图是()A.B.C.D.8.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m9.如图,水杯的俯视图是()A.B.C.D.10.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.11.如图是由5个相同的正方体搭成的几何体,其左视图是()A .B .C .D .12.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )A .B .C .D . 13.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是( )A .5个B .6个C .7个D .8个14.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是( )A .12πB .6πC .12π+D .6π+二、填空题15.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是__________.16.如图是由一些相同的小正方体构成的立体图形从三个方向看到的图形,那么构成这个立体图形的小正方体有_______个.17.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.18.若要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数为相反数,则x+y =________.19.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是_____m.20.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这对小方块共有____________块.21.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______22.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多可以离开树干多少米才可以不被阳光晒到?____.23.由若干个相同的小正方体搭成的一个几何体从正面和从左面看到的形状图如图所示,则所需的小正方体的个数最多是______个.24.如图为一个长方体,则该几何体主视图的面积为______cm2.25.如图,墙角处有6个棱长为1分米的正方体纸盒,露在外面的面积之和是_____平方分米.26.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题27.如图,画出该物体的三视图28.如图,上午小明在上学路上发现路灯的灯泡B在太阳光下的影子恰好落到点E处,他自己的影子恰好落在另一灯杆CD的底部点C处,晚自习放学时,小明又站在上午同一地方,此时发现灯泡D的灯光下自己的影子恰好落在点E处.请在图中画出表示小明身高的线段(用线段FG表示).29.(1)如图是由10个同样大小棱长为1的小正方体搭成的几何体,请分别画出它的主视图、左视图和俯视图(2)这个组合几何体的表面积为个平方单位(包括底面积)(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最多要个小立方体.30.画图,探究:(1)一个正方体组合图形的主视图、左视图(如图1)所示.①这个几何体可能是(图2)甲、乙中的;②这个几何体最多可由个小正方体构成,请在图3中画出符合最多情况的一个俯视图.(2)如图,已知一平面内的四个点A、B、C、D,根据要求用直尺画图.①画线段AB,射线AD;②找一点M,使M点即在射线AD上,又在直线BC上;③找一点N,使N到A、B、C、D四个点的距离和最短.【参考答案】一、选择题1.B2.C3.C4.A5.B6.A7.B8.A9.A10.A11.A12.D13.D14.B二、填空题15.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键16.7【分析】利用主视图左视图中每列中正方形的个数判断俯视图中正方形的个数然后得出结果【详解】解:主视图从左往右2列正方形的个数依次为33;左视图从左往右2列正方形的个数依次为31;则俯视图中正方形的个17.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB18.-4【解析】【分析】根据正方体相对面上的两个数互为相反数可得xy的值继而可得x+y的值【详解】由题意得x与1相对y与3相对则可得x=-1y=-3∴x+y=-4故答案为:-4【点睛】本题考查了正方体的19.14【分析】设水塔的高为xm根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m20.4或5【解析】如图方块有4或5块21.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭22.8【分析】设小明这个时刻在水平地面上形成的影长为x米利用同一时刻物体的高度与影长成正比得到=解得x=2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x米根据题意得=解得x=23.7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案【详解】由题意得:这个几何体是由2行2列组成所需的小正方体的个数最多的搭配是其中数字表示所在行列的小正方体的个数则故答案为:7【点睛】本题24.20【分析】根据从正面看所得到的图形即可得出这个几何体的主视图的面积【详解】解:该几何体的主视图是一个长为5宽为4的矩形所以该几何体主视图的面积为20cm2故答案为:20【点睛】本题考查了三视图的知25.12【分析】观察图形知道露在外面的面:上面一层是3个下面一层是9个所以一共是3+9=12个由此根据正方形的面积公式S=a×a求出一个正方形的面积再乘12即可【详解】解:1×1×(3+9)=1×12=26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键三、解答题27.28.29.30.【参考解析】一、选择题1.B解析:B【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选B.2.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.3.C解析:C【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,3,2个正方形.【详解】由俯视图中的数字可得:主视图有3列,从左到右分别是1,3,2个正方形.故选:C.【点睛】此题考查几何体的三视图,解题关键在于掌握其定义.4.A解析:A【分析】根据俯视图可看出最底层小正方体的个数及形状,再从左视图看出每一层小正方体可能的数量,并再俯视图中标出个数,即可得出答案.【详解】根据左视图在俯视图中标注小正方形最多时的个数如图所示:1+1+2+2+2+1=9,故选A.【点睛】本题考查根据三视图判断小正方形的个数,根据左视图在俯视图中标注小正方形的个数是关键,需要一定的空间想象力.5.B解析:B【分析】根据中心投影的性质、菱形的判定定理、矩形的判定定理及解一元二次方程的方法对各选项进行判断即可.【详解】A.高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长,正确,不符合题意,B.对角线互相垂直且平分的四边形是菱形,故该选项错误,符合题意,C.方程x2=x的根是x1=0,x2=1,正确,不符合题意,D. 对角线相等的平行四边形是矩形,正确,不符合题意,故选B.【点睛】本题考查中心投影的性质、菱形和矩形的判定及解一元二次方程,熟练掌握相关性质及判定定理是解题关键.6.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选A.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.7.B解析:B【解析】【分析】主视图就是正面看去所得图形,左起第一列为两个小正方形,第二列只有一个小正方形.【详解】解:主视图从左往右,每一列的小正方形数量分别为2、1,故选择B.【点睛】本题考查了主视图的概念.8.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 9.A解析:A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A .10.A解析:A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选A .【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.11.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A .【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.12.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.13.D解析:D【解析】【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【详解】综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.14.B解析:B【解析】【分析】根据三视图确定该几何体是圆柱体,再根据主视图上的数据计算圆柱体的侧面积即可.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1,高是3.所以该几何体的侧面积为2π×1×3=6π.故选:B.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.二、填空题15.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键解析:20π【分析】先由勾股定理求出母线l,再根据圆锥侧面积公式S=πr l计算即可.【详解】圆锥半径:r=8÷2=422345l=+=S=πr l=20π故答案为:20π【点睛】本题考查圆锥侧面积的求法,理解并掌握圆锥侧面积公式是解题关键.16.7【分析】利用主视图左视图中每列中正方形的个数判断俯视图中正方形的个数然后得出结果【详解】解:主视图从左往右2列正方形的个数依次为33;左视图从左往右2列正方形的个数依次为31;则俯视图中正方形的个解析:7【分析】利用主视图、左视图中每列中正方形的个数,判断俯视图中正方形的个数,然后得出结果.【详解】解:主视图从左往右2列正方形的个数依次为3,3;左视图从左往右2列正方形的个数依次为3, 1;则俯视图中正方形的个数如下图示:即小正方体有7个,故答案为:7.【点睛】考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.17.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB解析:2【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得AB EBCD ED=,然后代入数值进行计算即可.【详解】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴AB EB CD ED=∵AB=1.5m,CD=6m,BD=6m,∴1.566EBEB=+解得:EB=2,故答案为2【点睛】此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.18.-4【解析】【分析】根据正方体相对面上的两个数互为相反数可得xy的值继而可得x+y的值【详解】由题意得x与1相对y与3相对则可得x=-1y=-3∴x+y=-4故答案为:-4【点睛】本题考查了正方体的解析:-4【解析】【分析】根据正方体相对面上的两个数互为相反数,可得x、y的值,继而可得x+y的值.【详解】由题意得,x与1相对,y与3相对,则可得x=-1,y=-3,∴x+y=-4.故答案为:-4.【点睛】本题考查了正方体的展开,注意正方体的空间图形,从相对面入手,分析及解答问题.19.14【分析】设水塔的高为xm根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m解析:14.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.【详解】设水塔的高为xm ,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.【点睛】本题考查了平行投影的知识,解题的关键是熟练的掌握投影的性质与运用.20.4或5【解析】如图方块有4或5块解析:4或5【解析】如图方块有4或5块.21.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭解析:5【解析】试题分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个考点:由三视图判断几何体.22.8【分析】设小明这个时刻在水平地面上形成的影长为x 米利用同一时刻物体的高度与影长成正比得到=解得x =2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x 米根据题意得=解得x = 解析:8【分析】设小明这个时刻在水平地面上形成的影长为x 米,利用同一时刻物体的高度与影长成正比得到1.5x =107.5,解得x =2,然后计算两影长的差即可. 【详解】解:设小明这个时刻在水平地面上形成的影长为x 米, 根据题意得1.5x =107.5,解得x =2,小明这个时刻在水平地面上形成的影长为2米,因为10﹣2=8(米),所以他最多离开树干8米才可以不被阳光晒到.故答案为:8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻物体的高度与影长成正比.23.7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案【详解】由题意得:这个几何体是由2行2列组成所需的小正方体的个数最多的搭配是其中数字表示所在行列的小正方体的个数则故答案为:7【点睛】本题解析:7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案.【详解】由题意得:这个几何体是由2行2列组成,所需的小正方体的个数最多的搭配是3121,其中,数字表示所在行列的小正方体的个数,则31217+++=,故答案为:7.【点睛】本题考查了三视图中的主视图和左视图,掌握理解三视图的相关概念是解题关键.24.20【分析】根据从正面看所得到的图形即可得出这个几何体的主视图的面积【详解】解:该几何体的主视图是一个长为5宽为4的矩形所以该几何体主视图的面积为20cm2故答案为:20【点睛】本题考查了三视图的知解析:20【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【详解】解:该几何体的主视图是一个长为5,宽为4的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.25.12【分析】观察图形知道露在外面的面:上面一层是3个下面一层是9个所以一共是3+9=12个由此根据正方形的面积公式S=a×a求出一个正方形的面积再乘12即可【详解】解:1×1×(3+9)=1×12=解析:12【分析】观察图形知道,露在外面的面:上面一层是3个,下面一层是9个,所以一共是3+9=12个,由此根据正方形的面积公式S=a×a,求出一个正方形的面积,再乘12即可.【详解】解:1×1×(3+9)=1×12=12(平方分米);∴露在外面的面积是:12平方分米.故答案为:12.【点睛】本题考查了求表面积,此题关键是正确数出露在外面的面有几个,再根据正方形的面积公式解决问题.26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题27.见详解【分析】根据三视图的画法要求结合所给的几何体画出对应的视图即可.【详解】解:三视图如下:【点睛】本题主要考查了三视图的画法,要注意主视图与左视图的高平齐,左视图与俯视图的宽相等,三视图位置规定:主视图在左上方,它的下方是俯视图,左视图坐落在右边.28.详见解析.【分析】先画出上午太阳光线下的灯泡B的照射光线BE,过点C作BE的平行线,再连接下午时灯光下灯泡D的光线DE,与过点C的光线交于点G,在过点G作地面的垂线GF,即是表示小明身高的线段.【详解】如图所示,线段FG即为所求.【点睛】此题考查投影,投影分为平行投影和中心投影,解题中能正确区分两种投影的区别是解题的关键.29.(1)主视图、左视图和俯视图如图所示,见解析;(2)这个组合几何体的表面积为38平方单位;(3)这样的几何体最多要14个.【分析】(1)根据主视图、左视图、俯视图的定义画出图形即可;(2)根据几何体的露在外面的面个数以及底面,即可得到表面积;(3)根据保持这个几何体的左视图和俯视图不变,几何体的第二排的高度都是2,第三排的高度都是3个,可得这样的几何体最多要:3+3+3+2+2+1=14个小立方体.【详解】解:(1)主视图、左视图和俯视图如图所示:(2)这个组合几何体的表面积为:6×2×3+2=38(平方单位)故答案为:38.(3)这样的几何体最多要3+3+3+2+2+1=14个小立方体.【点睛】此题主要考查了作图——三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.30.(1)①乙;②9;图见解析;(2)①见解析;② 见解析;③见解析;【分析】(1)①结合主视图和左视图对甲、乙逐一判断可得;②当第一层有6个,第二层有2个,第三层有1个时,小正方体个数最多;(2)根据要求用直尺画图即可.【详解】解:(1)①甲图的左视图不合题意,乙图符合题意;故答案为乙;②这个几何体最多可由9个小正方体构成,其俯视图如图所示:故答案为9;(2)①如图所示,线段AB,射线AD即为所求;②如图所示,点M即在射线AD上,又在直线BC上;③如图所示,点N到A、B、C、D四个点的距离和最短.【点睛】本题主要考查了三视图以及基本作图,由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.。

备战中考数学分点透练真题视图与投影(解析版)

备战中考数学分点透练真题视图与投影(解析版)

第二十四讲视图与投影命题点1 三视图的判断类型一常见几何体视图的判断1.(2021•苏州)如图,圆锥的主视图是()A.B.C.D.【答案】A【解答】解:圆锥的主视图是一个等腰三角形,故选:A.2.(2021•温州)直六棱柱如图所示,它的俯视图是()A.B.C.D.【答案】C【解答】解:从上面看这个几何体,看到的图形是一个正六边形,因此选项C中的图形符合题意,故选:C.3.(2021•湘潭)下列几何体中,三视图不含圆的是()A.B.C.D.【答案】C【解答】解:A、圆柱的俯视图是圆,故不符合题意;B、球的三视图都是圆,故不符合题意;C、正方体的三视图都是正方形,故符合题意;D、圆锥的俯视图是圆,故不符合答题,故选:C.类型二组合体不规则几何体视图的判断4.(2021•江西)如图,几何体的主视图是()A.B.C.D.【答案】C【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形,因此选项C中的图形符合题意,故选:C.5.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.【答案】C【解答】解:从左边看,是一列两个矩形.故选:C.6.(2021•聊城)如图所示的几何体,其上半部有一个圆孔,则该几何体的俯视图是()A.B.C.D.【答案】A【解答】解:从上面看该几何体,能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此所看到的图形与选项A中的图形相同,故选:A.7.(2021•本溪)如图,该几何体的左视图是()A.B.C.D.【答案】D【解答】解:从左面看该几何体所得到的图形是一个长方形,被挡住的棱用虚线表示,图形如下:故选:D.8.(2021•福建)如图所示的六角螺栓,其俯视图是()A.B.C.D.【答案】A【解答】解:从上边看,是一个正六边形,六边形内部是一个圆,故选:A.9.(2021•吉林)如图,粮仓可以近似地看作由圆锥和圆柱组成,其主视图是()A.B.C.D.【答案】A【解答】解:粮仓主视图上部视图为等腰三角形,下部视图为矩形.故选:A.类型四小正方体组合体视图的判断10.(2020•北碚区自主招生)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【答案】A【解答】解:从正面看有两层,底层两个正方形,上层左边一个正方形,左齐.故选:A.11.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是()A.B.C.D.【答案】A【解答】解:该几何体的主视图有三层,从上而下第一层主视图为一个正方形,第二层主视图为两个正方形,第三层主视图为三个正方形,且左边是对齐的.故选:A.12.(2021•随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【解答】解:如图所示:故该组合体的三视图中完全相同的是主视图和左视图,故选:A.13.(2021•泰安)如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】B【解答】解:从左边看从左到右第一列是两个小正方形,第二列有4个小正方形,第三列有3个小正方形,故选:B.14.(2021•齐齐哈尔)由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为()A.7个B.8个C.9个D.10个【答案】A【解答】解:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故选:A.命题点2 三视图还原几何体及其相关计算15.(2021•安徽)几何体的三视图如图所示,这个几何体是()A.B.C.D.【答案】C【解答】解:根据该组合体的三视图发现该几何体为.故选:C.16.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°【答案】C【解答】解:由三视图可知,该几何体为圆锥;由三视图数据知圆锥的底面圆的直径为6、半径为3,高为4,则母线长为=5,所以则该几何体的侧面展开图圆心角的度数为π×6÷(π×5)×180°=216°.故选:C.17.(2021•眉山)我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是()A.7.2πB.11.52πC.12πD.13.44π【答案】C【解答】解:观察图形可知:圆锥母线长为:=2(米),所以该整流罩的侧面积为:π×2.4×4+π×(2.4÷2)×2=12π(平方米).答:该整流罩的侧面积是12π平方米.故选:C.18.(2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.【答案】3π【解答】解:由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.故答案为:3π.命题点3 立体图形的展开与折叠类型一常见几何体的展开图19.(2021•扬州)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【答案】A【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选:A.20.(2021•金华)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【答案】D【解答】解:选项A、B、C均可能是该直棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.类型二正方体的展开图21.(2021•自贡)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜【答案】B【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“迎”与“党”相对,面“建”与面“百”相对,“喜”与面“年”相对.故选:B.22.(2021•河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表【答案】A【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.11。

2023年中考数学解答题专项复习:投影与视图(附答案解析)

2023年中考数学解答题专项复习:投影与视图(附答案解析)

第 1 页 共 16 页
2.(2020•丛台区校级一模)如图(1)是一种包装盒的表面展开图,将它围起来可得到一个 几何体的模型.
(1)图(2)是根据 a,h 的取值画出的几何体的主视图和俯视图,请在网格中画出该几 何体的左视图. (2)已知 h=4.求 a 的值和该几何体的表面积.
第 2 页 共 16 页
9.(2021 秋•玄武区期末)如图,是由一些棱长都为 acm 的小正方体组合成的简单几何体.
第 5 页 共 16 页
(1)请在如图的方格中画出该几何体的俯视图和左视图.
(2)该几何体的表面积(含下底面)是
cm2;
(3)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以
再添加
(1)这个几何体的名称是
,其侧面积为

(2)画出它的一种表面展开图;
(3)求出左视图中 AB 的长.
6.(2021•抚顺县模拟)某工厂要加工一批上下底密封纸盒,设计者给出了密封纸盒的三视
图,如图 1.
(1)由三视图可知,密封纸盒的形状是

(2)根据该几何体的三视图,在图 2 中补全它的表面展开图;
(3)请你根据图 1 中数据,计算这个密封纸盒的表面积.(结果保留根号)
第 4 页 共 16 页
7.(2021 秋•三明期末)在平整的地面上,把棱长都为 1 的若干个小正方体摆成如图的几何 体.
(1)请分别在网格中画出从上面,左面看到的形状图(用签字笔将对应的虚线描为实线 即可); (2)如果在这个几何体上再添加一些同样大小的小正方体,若保持从上面看和从左面看 的形状图不变,那么最多可以再添加几个小正方体?在这样的条件下,当添加最多的小 正方体后,求得到的新几何体的体积. 8.(2021 秋•安居区期末)如图所示的是一个用小正方体搭成的几何体的俯视图,小正方形 中的数字表示在该位置的小正方体的个数,请你画出它的主视图与左视图.

人教版初中数学投影与视图知识点总复习附答案

人教版初中数学投影与视图知识点总复习附答案

人教版初中数学投影与视图知识点总复习附答案一、选择题1.如图中的几何体是由一个圆柱和个长方体构成的,该几何体的俯视图是()A.B.C.D.【答案】 D【分析】【剖析】依据从上面看获得的图形是俯视图,可得答案.【详解】解:从上面看是一个圆形,圆形内部是一个虚线的正方形.应选: D.【点睛】本题考察了简单组合体的三视图,从上面看获得的图形是俯视图.2.如图是某几何体的三视图及有关数据,则该几何体的表面积是()A.8 2 2B.11C.9 2 2D.12【答案】 D【分析】【剖析】先依据几何体的三视图可得:该几何体由圆锥和圆柱构成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高 =4,而后依据圆锥的侧面积等于它睁开后的扇形的面积,即 S= 1LR,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等2于睁开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积 +圆柱的侧面积+圆柱的底面积.【详解】依据几何体的三视图可得:该几何体由圆锥和圆柱构成,圆锥的底面直径=2,圆锥的母线长为 3,∴圆锥的侧面积 = 1?2π ?1?3=3,π2圆柱的侧面积 =2π?1?4=8π,2π +8π +π =12.π圆柱的底面积 =π?1=π,∴该几何体的表面积 =3应选 D.【点睛】本题考察了圆锥的侧面积的计算方法:圆锥的侧面积等于它睁开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考察了看三视图和求圆柱的侧面积的能力.3.图 2 是图 1 中长方体的三视图,若用S 表示面积, S主 x2 3x , S左 x2 x ,则S俯()A.x24x 3B.x23x 2C.x22x 1D.2x24x 【答案】 A【分析】【剖析】直接利用已知视图的边长联合其面积得出另一边长,即可得出俯视图的边进步而得出答案.【详解】解:∵ S 主x23x x( x 3) ,S左x2x x( x 1) ,∴主视图的长x 3 ,左视图的长x 1 ,则俯视图的两边长分别为:x 3 、 x1,S 俯( x 3)( x1) x24x 3 ,应选: A.【点睛】本题主要考察了已知三视图求边长,正确得出俯视图的边长是解题重点.4.小亮领来n 盒粉笔,齐整地摆在讲桌上,其三视图如图,则n 的值是 ( )A.7B.8C.9D.10【答案】 A【分析】【剖析】【详解】解:由俯视图可得最基层有 4 盒,由正视图和左视图可得第二层有 2 盒,第三层有 1 盒,共有 7 盒,则 n 的值是 7.应选 A.【点睛】本题考察由三视图判断几何体.5.如图,一个几何体由 5 个大小同样、棱长为 1 的小正方体搭成,以下对于这个几何体的说法正确的选项是 ( )A.以前方看到的形状图的面积为5B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3D.三种视图的面积都是 4【答案】 B【分析】A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故 A 错误;B. 从左侧看第一层是两个小正方形,第二层左侧一个小正方形,左视图的面积是3,故 B 正确;C. 从上面看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故 C错误;D.左视图的面积是3,故 D 错误;应选 B.点睛:本题考察了简单组合体的三视图,从正面看获得的图形是主视图,从左侧看获得的图形是左视图,从上面看获得的图形是俯视图.6.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】 D【分析】【剖析】找到从左面看到的图形即可.【详解】从左面上看是 D 项的图形 .应选 D.【点睛】本题考察三视图的知识,左视图是从物体左面看到的视图.7.以下图的几何体的俯视图为()A.B.C.D.【答案】 D【分析】【剖析】【详解】从上往下看,易得一个正六边形和圆.应选 D.8.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出同样的姿势,才能穿墙而过,不然会被墙推入水池.近似地,有一块几何体恰巧能以右图中两个不一样形状的“姿势”分别穿过这两个空洞,则该几何体为 ()A.B.C.D.【答案】 C【分析】试题剖析:经过图示可知,要想经过圆,则能够是圆柱、圆锥、球,而能经过三角形的只能是圆锥,综合可知只有圆锥切合条件.应选 C9.以下图,该几何体的主视图为()A.B.C.D.【答案】 B【分析】【剖析】找到从正面看所获得的图形即可.【详解】从正面看两个矩形,中间的线为虚线,应选: B.【点睛】考察了三视图的知识,主视图是从物体的正面看获得的视图.10.在同一时辰的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子同样长D.两人的影子长度不确立【答案】 D【分析】【剖析】在同一路灯下因为地点不确立,依据中心投影的特色判断得出答案即可.【详解】在同一路灯下因为地点不一样,影长也不一样,因此没法判断谁的影子长.应选 D.【点睛】本题综合考察了平行投影和中心投影的特色和规律.平行投影的特色是:在同一时辰,不同物体的物高和影长成比率.中心投影的特色是:① 等高的物体垂直地面搁置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.② 等长的物体平行于地面搁置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体自己的长度还短.11.如图是由 7 个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该地点小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】C【分析】【剖析】由已知条件可知,左视图有 2 列,每列小正方形数量分别为 3 ,1.据此可作出判断.【详解】解:从左面看可获得从左到右分别是3,1个正方形.应选 C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数同样,且每列小正方形数量为俯视图中相应行中正方形数字中的最大数字.12.发展工业是强国之梦的重要措施,以下图部件的左视图是()A.B.C.D.【答案】 D【分析】【剖析】依据从左侧看获得的图形是左视图,可得答案.【详解】以下图部件的左视图是.应选 D.【点睛】本题考察了简单组合体的三视图,从左侧看获得的图形是左视图,注意看到的线画实线.13.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】 C【分析】【剖析】由主视图和左视图确立是柱体,锥体仍是球体,再由俯视图确立详细形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图剖析可知为六棱柱,应选 C.【点睛】本题考察学生对三视图掌握程度和灵巧运用能力,同时也表现了对空间想象能力方面的考察.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所获得的图形.14.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该地点的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】 B【分析】【剖析】【详解】解:依据题意画主视图以下:应选 B.考点:由三视图判断几何体;简单组合体的三视图.15.如图是由 5 个同样的正方体搭成的几何体,其左视图是()A.B.C.D.【答案】 A【分析】【剖析】依据三视图的定义即可判断.【详解】2 个小正方形,第二层左侧有 1 个小正方形.应选A.依据立体图可知该左视图是基层有【点睛】本题考察三视图,解题的重点是依据立体图的形状作出三视图,本题属于基础题型.16.如图是一个几何体的三视图(图中尺寸单位:cm ),依据图中所示数据求得这个几何体的侧面积是()A.12cm2B.12π cm2C.6πcm2D.8πcm2【答案】C【分析】【剖析】依据三视图确立该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确立该几何体是圆柱体,底面半径是2÷2= 1cm,高是 3cm .因此该几何体的侧面积为2π× 1×3=6π(cm 2).应选 C.【点睛】本题主要考察了由三视图确立几何体和求圆柱体的侧面积,重点是依据三视图确立该几何体是圆柱体.17.以下图是由6个大小同样的小正方体构成的几何体,它的左视图是()A.B.C.D.【答案】 B【分析】【剖析】依据三视图的意义进行剖析,要注意察看方向是从左侧看.【详解】解:从物体左面看,是左侧1个正方形,中间 2 个正方形,右侧1个正方形.应选 B.【点睛】查核知识点:简单组合体的三视图.18.由 6 个同样的立方体搭成的几何体以下图,则它的从正面看到的图形是( )A.B.C.D.【答案】 C【分析】【剖析】.察看立体图形的各个面,与选项中的图形对比较即可获得答案【详解】察看立体图形的各个面,与选项中的图形对比较即可获得答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】本题考察了从不一样方向察看物体和几何体,有优秀的空间想象力和抽象思想能力是解决本题的重点 .19.某个几何体的三视图以下图,该几何体是( )A.B.C.D.【答案】 D【分析】【剖析】依据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.应选 D.【点睛】考察了由三视图判断几何体的知识,解题的重点是拥有较强的空间想象能力,难度不大.人教版初中数学投影与视图知识点总复习附答案20.一个几何体的三视图以下图,此中主视图与左视图都是边长为这个几何体的侧面睁开图的面积为()4 的等边三角形,则A.6B.8C.10D.12【答案】 B【分析】【剖析】依据三视图获得这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,而后依据圆锥的侧面睁开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,因此这个几何体的侧面睁开图的面积= 14 4 8.2应选: B.【点睛】本题考察了圆锥的计算:圆锥的侧面睁开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考察了三视图.。

初中数学中考二轮复习重难突破专题13 视图(含答案)

初中数学中考二轮复习重难突破专题13 视图(含答案)

专题13 视图重点分析中考视图与投影仍是考查重点内容,尤其视图与投影与实际生活有关系的应用问题。

在中考的难度不大,分数约占3-6分左右。

难点解读难点一:投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光下形成的物体的投影叫做中心投影,点光叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光近的物体的影子短,离点光远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.难点二:视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.难点三:几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥三棱柱2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.真题演练1.如图是由5个相同的小立方块搭成的几何体,则下面四个平面图形中不是这个几何体的三视图的是( )A. B. C. D.【答案】D【解析】几何体三视图分别为左视图,俯视图,和主视图,根据左视图是从左面看到的图形,主视图是从正面看到的图形,俯视图是从上面的看到的图形,逐项判断即可.【详解】从正面看,从左到右小正方形的个数一次是,,,主视图如下:从左面看,从左往右小正方形的个数为,,左视图如下:从上面看,从左往右小正方形的个数为,,,俯视图如下:综上可以到的几何体的三视图故选:D.【点拨】本题考查了几何体的三视图和学生的空间想象能力,细心观察图中几何体每个正方形的位置是解题关键.2. 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A. B. C. D.【答案】C【解析】【详解】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.3.如图所示的几何体,该几何体的俯视图是()A. B. C. D.【答案】D【解析】根据俯视图的定义即可判断.【详解】解:从上往下看得到的图形是,故选:D.【点拨】本题主要考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是( )A. B.C. D.【答案】B【解析】根据主视图的意义和画法可以得出答案.【详解】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.【点拨】本题考查了简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.5.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A. B. C. D.【答案】C【解析】俯视图是从上面看,注意所有的看到的棱都应表现在俯视图中.解:如图所示:它的俯视图是:.故选:C.【点拨】此题主要考查了三视图的知识,关键是树立空间观念,掌握三视图的几种看法.6.如图所示正三棱柱的主视图是()A. B. C. D.【答案】B【解析】找到从正面看所得到的图形即可解:如图所示正三棱柱的主视图是平行排列的两个矩形,故选:B.【点拨】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是( )A. 主视图B. 左视图C. 俯视图D. 主视图和左视图【答案】C【解析】根据三视图的意义,可得答案.【详解】若把正方体A向右平移到正方体P前面,主视图与左视图均与原来的一样,没有发生变化,只有俯视图发生了变化,故选C.【点拨】本题考查了简单组合体的三视图,利用三视图的定义是解题关键.8.如图所示几何体的左视图是( )A.B.C.D.【答案】C【解析】根据从左面看得到的图形是左视图,可得答案.解:如图所示,几何体的左视图是:故选:C.【点拨】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.9.甲和乙两个几何体都是由大小相同的小立方块搭成,它们的俯视图如图,小正方形中数字表示该位置上的小立方块个数()A.甲和乙左视图相同,主视图相同B.甲和乙左视图不相同,主视图不相同C.甲和乙左视图相同,主视图不相同D.甲和乙左视图不相同,主视图相同【答案】D【解析】根据俯视图,即可判断左视图和主视图的形状.【详解】由甲俯视图知,其左视图为,由乙俯视图知,其左视图为,故它们的左视图不相同,但它们两个的主视图相同,都是.故选:D.【点拨】本题考查了三视图的知识,关键是根据俯视图及题意确定几何体的形状,从而可确定其左视图和主视图.10.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为()A.7个B.8个C.9个D.10个【答案】A【解析】根据几何体主视图,在俯视图上表上数字,即可得出搭成该几何体的小正方体最多的个数.解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故选:A.【点拨】此题考查了由三视图判断几何体,在俯视图上表示出正确的数字是解本题的关键.11.如图,该几何体的左视图是()A.B.C.D.【答案】D【解析】画出从左面看到的图形即可.解:该几何体的左视图是一个长方形,并且有一条隐藏的线用虚线表示,如图所示:,故选:D.【点拨】本题考查三视图,具备空间想象能力是解题的关键,注意看不见的线要用虚线画出.12.一个几何体的三视图如图所示,则这个几何体的侧面积是()A.B.C.D.【答案】A【解析】根据三视图可知此几何体为圆锥,那么侧面积=底面周长母线2.解:此几何体为圆锥,圆锥母线长为9 cm,直径为6cm,侧面积,故选:A.【点拨】本题考查由三视图判断几何体,圆锥的有关计算,熟知圆锥的侧面积公式是解题关键.13.一个儿何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是()A.B.C.D.【答案】B【解析】主视图的列数与俯视图的列数相同,且每列小正方形的数目为俯视图中该列小正方数字中最大数字,从而可得出结论.【详解】由已知条件可知:主视图有3列,每列小正方形的数目分别为4,2,3,根据此可画出图形如下:故选:B.【点拨】本题考查了从不同方向观察物体和几何图像,是培养学生观察能力.。

中考数学《投影与视图》复习题附参考答案

中考数学《投影与视图》复习题附参考答案

投影与视图【基础知识回顾】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的其中照射光线叫做投影所在的平面叫做2、平行投影:太阳光可以近似地看作是光线,像这样的光线所形成的投影称为平行投影3、中心投影:由同一点(点光源)发出的光线形成的投影叫做,如物体在、、等照射下所形成的投影就是中心投影【名师提醒:1、中心投影的光线平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物高成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】二、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图。

其中,从看到的图形称为主视图,从看到的图形称为左视图,从看到的图形称为俯视图2、三种视图的位置及作用⑴画三视图时,首先确定的位置,然后在主视图的下面画出,在主视图的右边画出⑵主视图反映物体的和,左视图反映物体的和俯视图反映物体的和。

【名师提醒:1、在画几何体的视图时,看得见部分的轮廓线通常画成线,看不见部分的轮廓线通常画成线2、在画几何体的三视图时要注意主俯对正,主左平齐,左俯相等】三、立体图形的展开与折叠:1、许多立体图形是由平面图形围成的,将它们适当展开即为平面展开图,同一个立体图形按不同的方式展开,会得到不同的平面展开图2、常见几何体的展开图:⑴正方体的展开图是⑵n边形的直棱柱展开图是两个n边形和一个⑶圆柱的展开图是一个和两个⑷圆锥的展开图是一个与一个【名师提醒:有时会出现根据物体三视图中标注的数据求原几何体的表面积,体积等题目,这时要注意先根据三种视图还原几何体的形状,然后想象有关尺寸在几何体展开图中标注的是哪些部分,最后再根据公式进行计算】【重点考点例析】考点一:简单几何体的三视图例1 (2017•锦州)下列几何体中,主视图和左视图不同的是()A.B.C.D.思路分析:分别分析四种几何体的主视图和左视图,找出主视图和左视图不同的几何体.解:A、圆柱的主视图与左视图都是长方形,不合题意,故本选项错误;B、正方体的主视图与左视图相同,都是正方形,不合题意,故本选项错误;C、正三棱柱的主视图是长方形,长方形中有一条杠,左视图是矩形,符合题意,故本选项正确;D、球的主视图和左视图相同,都是圆,且有一条水平的直径,不合题意,故本选项错误.故选:C.点评:本题考查了简单几何体的三视图,要求同学们掌握主视图是从物体的正面看到的视图,左视图是从物体的左面看得到的视图.对应训练1.(2017•黄石)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④考点二:简单组合体的三视图例2 (2017•湛江)如图是由6个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.思路分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解:从物体左面看,是左边2个正方形,右边1个正方形.故选A.点评:本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.对应训练2.(2017•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()圆柱正方体正三棱柱球A.B.C.D.考点三:由三视图判断几何体例3(2017•扬州)某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥思路分析:如图所示,根据三视图的知识可使用排除法来解答.解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.点评:本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.例4 (2017•自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()碗A.8 B.9 C.10 D.11思路分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:易得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少共有9个碗.故选B.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.对应训练3.(2017•云南)图为某个几何体的三视图,则该几何体是()A.B.C.D.4.(2017•玉林)某几何体的三视图如图所示,则组成该几何体共用了()小方块.A.12块B.9块C.7块D.6块4.C考点四:几何体的相关计算例5(2017•贺州)如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为()A.2cm3B.3cm3C.6cm3D.8cm3思路分析:根据三视图我们可以得出这个几何体是个长方体,它的体积应该是1×1×3=3cm3.解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3.点评:本题考查了由三视图判断几何体及长方体的体积公式,本题要先判断出几何体的形状,然后根据其体积公式进行计算.对应训练5.(2017•宁夏)如图是某几何体的三视图,其侧面积()A.6 B.4πC.6πD.12π【聚焦中考】1.(2017•烟台)下列水平放置的几何体中,俯视图不是圆的是()A.B.C.D.2.(2017•淄博)下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A.B.C.D.3.(2017•莱芜)下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个4.(2017•滨州)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是()A.B.C.D.5.(2017•潍坊)如图是常用的一种圆顶螺杆,它的俯视图正确的是()A.B.C.D.6.(2017•青岛)如图所示的几何体的俯视图是()A.B.C.D.7.(2017•济南)图中三视图所对应的直观图是()A.B.C.D.8.(2017•威海)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变9.(2017•聊城)如图是由几个相同的小立方块组成的三视图,小立方块的个数是()A.3个B.4个C.5个D.6个9.B10.(2017•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm210.C11.(2017•济宁)三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.【备考真题过关】一、选择题1.(2017•成都)如图所示的几何体的俯视图可能是()A.B.C.D.2.(2017•昆明)下面几何体的左视图是()A.B.C.D.3.(2017•安徽)如图所示的几何体为圆台,其主(正)视图正确的是()A.B.C.D.4.(2017•本溪)如图放置的圆柱体的左视图为()A.B.C.D.5.(2017•舟山)如图,由三个小立方体搭成的几何体的俯视图是()A.B.C.D.6.(2017•义乌)如图几何体的主视图是()A.B.C.D.7.(2017•株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是()A .B .C .D .8.(2017•营口)如图,下列水平放置的几何体中,主视图是三角形的是()A .B .C . D.9.(2017•宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A .B .C .D .10.(2017•新疆)下列几何体中,主视图相同的是( )A .①②B .①③C .①④D .②④11.(2017•桂林)下列物体的主视图、俯视图和左视图不全是圆的是( )A .橄榄球B .兵乓球C .篮球D .排球12.(2017•广东)下列四个几何体中,俯视图为四边形的是( )A .B .C .D .13.(2017•天津)如图是由3个相同的正方体组成的一个立体图形,它的三视图是( )A .B .C .D .正方体 圆柱 圆锥 球14.(2017•泰州)由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.15.(2017•遂宁)如图所示的是三通管的立体图,则这个几何体的俯视图是()A.B.C.D.16.(2017•南平)如图是由六个棱长为1的正方体组成的一个几何体,其主视图的面积是()A.3 B.4 C.5 D.6 17.(2017•宿迁)如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是()A.3 B.4 C.5 D.618.(2017•十堰)用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.19.(2017•黔东南州)如图是有几个相同的小正方体组成的一个几何体.它的左视图是()A.B.C.D.20.(2017•盘锦)如图下面几何体的左视图是()A.B.C.D.21.(2017•茂名)如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A.B.C.D.22.(2017•荆门)过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.23.(2017•江西)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()A.B.C.D.24.(2017•大庆)图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是()A.B.C.D.25.(2017•遵义)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.26.(2017•铁岭)如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()A.B.C. D27.(2017•黑龙江)由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4 B.5 C.6 D.728.(2017•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个29.(2017•孝感)如图,由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是()A.B.C.D.30.(2017•曲靖)如图是某几何体的三视图,则该几何体的侧面展开图是()A.B.C.D.31.(2017•乐山)一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π31.D32.(2017•杭州)如图是某几何体的三视图,则该几何体的体积是()A.183B.543C.1083D.2163二、填空题33.(2017•南通)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是.34.(2017•绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.35.(2017•无锡)如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.。

初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析1.一个几何体的三个视图如图所示,这个几何体是()A.圆柱B.球C.圆锥D.正方体【答案】A.【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.因此,由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆形可得为圆柱体.故选A.【考点】由三视图判断几何体.2.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是.【答案】3.【解析】根据从上面看得到的图形是俯视图,可得俯视图,根据矩形的面积公式,可得答案:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.【考点】简单组合体的三视图.3.如图的几何体是由4个完全相同的正方体组成的,这个几何体的左视图是()A B C D【答案】C.【解析】由几何体可知左视图由两列组成,从左至右小正方形的个数分别为2个、1个,故选C.【考点】三视图.4.下列几何体中,同一个几何体的主视图与俯视图不同的是()A.圆柱B.正方体C.圆锥D.球【答案】C【解析】A、主视图是矩形,俯视图是矩形,主视图与俯视图相同,故本选项错误;B、主视图是正方形,俯视图是正方形,主视图与俯视图相同,故本选项错误;C、主视图是三角形,俯视图是圆及圆心,主视图与俯视图不相同,故本选项正确;D、主视图是圆,俯视图是圆,主视图与俯视图相同,故本选项错误.【考点】三视图5.右图是一个由4个相同的正方体组成的立体图形,它的三视图是()【答案】A.【解析】从正面看可得从左往右2列正方形的个数依次为1,2;从左面看可得到从左往右2列正方形的个数依次为2,1;从上面看可得从上到下2行正方形的个数依次为1,2,故选A.【考点】简单组合体的三视图.6.如图,由三个小立方块搭成的俯视图是()【答案】A.【解析】从上面看可得到两个相邻的正方形.故选A.【考点】简单组合体的三视图.7.下列几何体的主视图是三角形的是()A.B.C.D.【答案】B.【解析】找到从正面看所得到的图形即可:A、主视图为矩形,错误;B、主视图为三角形,正确;C、主视图为圆,错误;D、主视图为正方形,错误.故选B.【考点】简单几何体的三视图.8.下图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【答案】B.【解析】由几何体的三视图得,几何体是高为10,外径为8。

中考数学 投影与视图(含中考真题解析)

中考数学 投影与视图(含中考真题解析)

投影与视图☞解读考点☞2年中考1.(北海)一个几何体的三视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.球 D.以上都不正确【答案】A.【解析】试题分析:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.考点:由三视图判断几何体.2.(南宁)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A. B. C. D.【答案】B.考点:简单组合体的三视图.3.(柳州)如图是小李书桌上放的一本书,则这本书的俯视图是()A. B. C. D.【答案】A.【解析】试题分析:根据俯视图的概念可知,几何体的俯视图是A图形,故选A.考点:简单几何体的三视图.4.(桂林)下列四个物体的俯视图与右边给出视图一致的是()A.B.C.D.【答案】C.【解析】试题分析:几何体的俯视图为,故选C.考点:由三视图判断几何体.5.(梧州)如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A.B.C.D.【答案】D.考点:1.几何体的展开图;2.简单几何体的三视图.6.(扬州)如图所示的物体的左视图为()A. B. C. D.【答案】A.【解析】试题分析:从左面看易得第一层有1个矩形,第二层最左边有一个正方形.故选A.考点:简单组合体的三视图.7.(攀枝花)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.【答案】C.考点:简单几何体的三视图.8.(达州)一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.【答案】D.【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.9.(德阳)某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A.200πcm3 B.500πcm3 C.1000πcm3 D.2000πcm3【答案】B.考点:由三视图判断几何体.10.(南充)如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A.B. C.D.【答案】A.【解析】试题分析:根据主视图的定义,可得它的主视图为:,故选A.考点:简单几何体的三视图.11.(襄阳)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.9【答案】A.考点:由三视图判断几何体.12.(齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A.5或6或7 B.6或7 C.6或7或8 D.7或8或9【答案】C.【解析】试题分析:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.故选C.考点:由三视图判断几何体.13.(连云港)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为.【答案】8π.考点:1.由三视图判断几何体;2.几何体的展开图.14.(随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm3.【答案】24.【解析】试题分析:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为3×2×4=24cm3.故答案为:24.考点:由三视图判断几何体.15.(牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是个.【答案】7.【解析】试题分析:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为:7.考点:由三视图判断几何体.16.(西宁)写出一个在三视图中俯视图与主视图完全相同的几何体.【答案】球或正方体(答案不唯一).考点:1.简单几何体的三视图;2.开放型.17.(青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.【答案】19,48.【解析】试题分析∵亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×23=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+8)=48,故答案为:19,48.考点:由三视图判断几何体.三、解答题18.(镇江)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB 方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.【答案】(1)作图见试题解析;(2)1.5m/s.试题解析:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴CE OEAM OM=,EG OEBM OM=,∴CE EGAM BM=,即234 1.213.24x xx x=--,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.考点:1.相似三角形的应用;2.中心投影.19.(兰州)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1)平行;(2)7.考点:1.相似三角形的应用;2.平行投影.20.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.1.(绍兴)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】B.考点:简单组合体的三视图.2.(吉林)用4个完全相同的小正方体组成如图所示的立方体图形,它的俯视图是()A.B.C.D.【答案】A【解析】试题分析:从上面看可得到一个有2个小正方形组成的长方形.故选A.考点:三视图3.(衡阳)左图所示的图形是由七个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()【答案】B.【解析】试卷分析:针对三视图的概念,把右图的三视图画出来对号入座即可知B选项不是这个立体图形的三视图.故选B.考点:简单几何体的三视图.4.(十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是()A .B .C .D .正方体 长方体 球 圆锥【答案】B .考点:简单几何体的三视图.5.(宁夏)如图是一个几何体的三视图,则这个几何体的侧面积是( )A 2cmB .2cmC .26cm πD .23cm π 【答案】A . 【解析】试题分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.因此,∵半径为1cm ,高为3cm ,∴根据勾cm .∴侧面积=()2112r l 21cm 22ππ⋅⋅=⨯⨯.故选A .考点:1.由三视图判断几何体;2.圆锥的计算国3.勾股定理.6.(湖州) 如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是【答案】3.【解析】试题分析:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.考点:简单组合体的三视图。

2023年中考数学复习考点一遍过——投影与视图附答案

2023年中考数学复习考点一遍过——投影与视图附答案

2023年中考数学复习考点一遍过——投影与视图附答案一、单选题(每题3分,共30分)1.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.2.如图是一个立体图形的正视图、左视图和俯视图,那么这个立体图形是()A.圆锥B.三棱锥C.四棱锥D.五棱锥3.如图所示的几何体,其主视图是()A.B.C.D.4.如图是由5个完全相同的小正方体摆成的几何体,则这个几何体俯视图是()A.B.C.D.5.如图是一个由5个相同的正方体组成的立体图形,从其正面看,得到的平面图形是()A.B.C.D.6.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20cm光源,到屏幕的距离为40cm,且幻灯片中图形的高度为8cm,则屏幕上图形的高度为()A.8cm B.12cm C.16cm D.24cm7.如图所示是由5个完全相同的小正方体搭成的几何体,如果将小正方体B放到小正方体A的正上方,则它的()A.左视图会发生改变,其他视图不变B.俯视图会发生改变,其他视图不变C.主视图会发生改变,其他视图不变D.三种视图都会发生改变8.如图是由5个相同的正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.9.如图,甲、乙、丙三个几何体均由四个大小相同的正方体组合而成,则下列说法错误的是()A.甲与乙的主视图不同,左视图与俯视图都相同B.甲与丙的主视图不相同,左视图与俯视图都不相同C.甲与丙的主视图与俯视图相同,左视图不相同D.甲、乙和丙的俯视图都相同10.如图,图2是图1长方体的三视图,若用S表示面积,S主视图=a2,S左视图=2a2+a,则S俯视图=()A.a2+a B.2a2C.a2+2a+1D.2a2+a二、填空题(每空3分,共15分)11.台灯照射文具盒所形成的影子属于投影.(填“平行”或“中心”)12.已知同一时刻物体的高与影子的长成正比例.身高1.68m的小明的影子长为0.84m,这时测得一棵树的影长为4m,则这棵树的高为m.13.如图是一个几何体的三视图,则该几何体的体积为.14.如图,是用若干个边长为1的小正方体堆积而成的几何体,该几何体的左视图的面积为。

(易错题精选)初中数学投影与视图易错题汇编附解析

(易错题精选)初中数学投影与视图易错题汇编附解析

(易错题精选)初中数学投影与视图易错题汇编附解析一、选择题1.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.故选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B【解析】【分析】【详解】解:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .()822π+B .11πC .()922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S =12LR ,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π, 圆柱的侧面积=2π•1•4=8π, 圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D .【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.4.如图,小明用由5个相同的小立方体搭成的立体图形研究几何体的三视图的变化情况.若由图1变到图2,不变化的是( )A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【答案】B【解析】【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【详解】主视图都是第一层三个正方形,第二层左边一个正方形,故主视图不变;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图底层的正方形位置发生了变化.∴不改变的是主视图和左视图.故选:B.【点睛】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.5.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是故选C.【点睛】考点:三视图.6.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等【答案】D【解析】【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.故选:D.【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.7.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A.从前面看到的形状图的面积为5 B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3 D.三种视图的面积都是4【答案】B【解析】A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A错误;B. 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是3,故B 正确;C. 从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故C错误;D.左视图的面积是3,故D错误;故选B.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.8.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.9.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.10.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.11.下图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B. C.D.【答案】B【解析】【分析】根据三视图的意义进行分析,要注意观察方向是从左边看.【详解】解:从物体左面看,是左边1个正方形,中间2个正方形,右边1个正方形.故选B.【点睛】考核知识点:简单组合体的三视图.12.一个几何体的三视图如图所示,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为()A.6πB.8πC.10πD.12π【答案】B【解析】【分析】根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=14482ππ⨯⨯=.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.13.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!14.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.15.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.16.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.17.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.【答案】C【解析】【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C.【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.18.如图是某几何体得三视图,则这个几何体是()A.球B.圆锥C.圆柱D.三棱体【答案】B【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选B.19.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.20.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.。

新初中数学投影与视图知识点总复习附答案解析

新初中数学投影与视图知识点总复习附答案解析

新初中数学投影与视图知识点总复习附答案解析一、选择题1.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.2.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为()A.πB3πC 3D.31)π【答案】C【解析】【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3正三角形.求出半径,可得该几何体的体积. 【详解】 解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形. ∴正三角形的边长:32sin 60=o , 设圆锥的底面圆半径为r ,高为h,∴r=1,h=3∴底面圆面积:2=S r ππ=底,∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.3.如图是一个正六棱柱的茶叶盒,其俯视图为( )A .B .C .D .【答案】B【解析】【分析】【详解】解:正六棱柱的俯视图为正六边形.故选B .考点:简单几何体的三视图.4.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .()822π+B .11πC .()922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S =12LR ,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π, 圆柱的侧面积=2π•1•4=8π, 圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D .【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.5.下面是一个几何体的俯视图,那么这个几何体是( )A .B .C .D .【答案】B【解析】【分析】根据各个选项中的几何体的俯视图即可解答.【详解】解:由图可知,选项B 中的图形是和题目中的俯视图看到的一样,故选:B .【点睛】本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.6.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.7.如图是空心圆柱,则空心圆柱在正面的视图,正确的是( )A.B.C.D.【答案】C【解析】【分析】找出从几何体的正面看所得到的视图即可.【详解】解:从几何体的正面看可得:.故选:C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.8.如图是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c2【答案】D【解析】【分析】由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2故选:D.【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.9.如图所示,该几何体的主视图为()A.B.C.D.【答案】B【解析】【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选:B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.10.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.11.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.12.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.90πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长=2251213+=(cm)所以这个圆锥的侧面积=12513652ππ⨯⨯=g(cm2),故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.13.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.14.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A.B.C.D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.15.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.【答案】A【解析】【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.16.如图是由几个相同的小方块搭成的几何体,关于它的三视图,下列说法正确的()A.主视图面积最大B.左视图面积最大C.俯视图面积最大D.三个视图面积一样大【答案】A【解析】【分析】可先假设小正方形的边长为1,再把从主视图、左视图、俯视图的面积分别算出来,再进行比较,从而得到正确答案.【详解】假设小正方形的边长是1,主视图是第一层三个小正方形,第二层两个小正方形,所以主视图的面积是5;左视图是第一层两个小正方形,第二层一个小正方形,所以主视图的面积是3;俯视图是第一层左边1个小正方形,中间一个小正方形,第二层左边一个小正方形,右边一个小正方形,所以主视图的面积是4;因此,主视图的面积最大.故答案为A.【点睛】本题主要考查了空间几何体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.17.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有( )A .8B .7C .6D .5【答案】B【解析】【分析】 易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为437+=个.故选:B【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.18.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A .60πB .70πC .90πD .160π【答案】B【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒, ∴该几何体的体积为()22431070ππ-⋅=.故选B.考点:由三视图求体积.19.如图是某几何体得三视图,则这个几何体是()A.球B.圆锥C.圆柱D.三棱体【答案】B【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选B.20.如图所示的几何体的俯视图为()A.B.C.D.【答案】D【解析】【分析】【详解】从上往下看,易得一个正六边形和圆.故选D.。

(易错题精选)初中数学投影与视图知识点总复习附答案

(易错题精选)初中数学投影与视图知识点总复习附答案

(易错题精选)初中数学投影与视图知识点总复习附答案一、选择题1.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!2.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为()A .πB .3πC .3πD .(31)π+【答案】C【解析】【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3正三角形.求出半径,可得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.∴正三角形的边长:32sin 60=o , 设圆锥的底面圆半径为r ,高为h,∴r=1,h=3∴底面圆面积:2=S r ππ=底,∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.3.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为( )A .B .C .D .【答案】A【解析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.4.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体A.10:2B.9:2C.10:1D.9:1【解析】【分析】由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.【详解】解:这个几何体由10个小正方体组成;∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.故选:C .【点睛】本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.6.一个几何体的三视图如图所示,则这个几何体的表面积是( )A .25cmB .28cmC .29cmD .210cm【答案】D【解析】【分析】 由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的表面积公式即可求其表面积.【详解】由题意推知几何体是长方体,长、宽、高分别1cm 、1cm 、2cm ,所以其面积为:()()2211121210cm⨯⨯+⨯+⨯=,故选D .【点睛】本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.7.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.8.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B.C.D.【答案】C【解析】试题分析:如图中几何体的俯视图是.故选C.考点:简单组合体的三视图.9.如果一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是圆且中间有一点,那么这个几何体的表面积是()A.8πB.12πC.3D.8【答案】B【解析】【分析】解:由图片中的三视图可以看出这个几何体应该是圆锥,且其底面圆半径为1,母线长为2,因此它的表面积=π×2×4+π×22=12π.故选B.考点:1.由三视图判断几何体;2.圆锥的计算.10.如图所示的几何体的俯视图为()A.B.C.D.【答案】D【解析】【分析】【详解】从上往下看,易得一个正六边形和圆.故选D.11.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本12.如图所示的几何体,它的左视图是()A.B.C.D.【答案】D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.13.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.14.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选C.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.15.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【答案】B【解析】试题解析:该几何体是三棱柱.如图:22-=,543⨯=,326全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于136.故选B.16.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.3个B.5个C.7个D.9个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数即可.【详解】由主视图和左视图可确定所需正方体个数最少时的俯视图(数字为该位置小正方体的个数)为:.所以搭成这个几何体的小正方体最少有5个.故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是解决问题的关键.17.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.18.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【答案】B【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.19.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.20.如图所示的几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.。

(易错题精选)初中数学投影与视图单元汇编及答案解析

(易错题精选)初中数学投影与视图单元汇编及答案解析

(易错题精选)初中数学投影与视图单元汇编及答案解析一、选择题1.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【答案】D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.2.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【答案】B【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.故选B.点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.3.如图是某几何体的三视图及相关数据,则该几何体的表面积是()A .()822π+B .11πC .()922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S =12LR ,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π, 圆柱的侧面积=2π•1•4=8π, 圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D .【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.4.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .棱锥D .球【答案】A【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A.【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.5.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.6.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B .点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.7.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.8.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A .B .C .D .【答案】B【解析】 试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.9.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为( )A .πB .3πC .3πD .(31)π+【答案】C【解析】【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3正三角形.求出半径,可得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.∴正三角形的边长:32=, 设圆锥的底面圆半径为r ,高为h,∴r=1,h=3∴底面圆面积:2=S r ππ=底,∴该物体的体积:113h=3333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.10.如图是空心圆柱,则空心圆柱在正面的视图,正确的是( )A.B.C.D.【答案】C【解析】【分析】找出从几何体的正面看所得到的视图即可.【详解】解:从几何体的正面看可得:.故选:C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.11.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.12.如图是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c2【答案】D【解析】【分析】由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2故选:D.【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.13.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.14.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.【答案】B【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.15.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!16.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选C.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.17.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【答案】B【解析】试题解析:该几何体是三棱柱.如图:由勾股定理22543-=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于136.故选B.18.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.8 B.7 C.6 D.5【答案】B【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为437+=个.故选:B【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.19.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.20.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个【答案】B【解析】【分析】根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数.【详解】解:综合三视图,第一行第1列有1个,第一行第2列没有;第二行第1列没有,第二行第2列和第三行第2列有3个或4个,一共有:4或5个.故选:B.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.。

初中九年级数学中考专项训练五投影与视图(含答案)WORD

初中九年级数学中考专项训练五投影与视图(含答案)WORD

初中九年级数学中考专项训练五投影与视图(含答案)WORD以下是为大家整理的初中九年级数学中考专项训练五投影与视图(含答案)woRD的相关范文,本文关键词为初中,九年级,数学,中考,专项,训练,投影,视图,答案,wo,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在中考初中中查看更多范文。

专项训练五投影与视图一、选择题1.(20XX·南宁中考)把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是()2.在阳光的照射下,一个矩形框的影子的形状不可能是()A.线段b.平行四边形c.等腰梯形D.矩形3.(20XX·衢州中考)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()4.(20XX·贺州中考)一个几何体的三视图如图所示,则这个几何体是()A.三棱锥b.三棱柱c.圆柱D.长方体5.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④b.④①③②c.④②③①D.④③②①6.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长b.变短c.先变长后变短D.先变短后变长7.(20XX·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()8.(20XX·宁夏中考)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3个b.4个c.5个D.6个二、填空题-1-9.(20XX·盐城中考)如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为________.第9题图第11题图10.写出一个在三视图中俯视图与主视图完全相同的几何体:________.11.(随州中考)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是________cm3.12.如图,电灯p在横杆Ab的正上方,Ab在灯光下的影子为cD,Ab∥cD,Ab=1.5m,cD=4.5m,点p到cD的距离为2.7m,则Ab与cD间的距离是________m.第12题图第13题图第14题图13.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为________.14.(20XX·北京中考)如图,小军、小珠之间的距离为 2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为________m.三、解答题15.画出如图所示立体图的三视图.16.(20XX·淄博中考)由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中画出一种该几何体的主视图,使该主视图是轴对称图形.17.如图是一个包装纸盒的三视图(单位:cm).(1)该包装纸盒的几何形状是_____________;-2-(2)画出该纸盒的平面展开图;(3)计算制作一个纸盒所需纸板的面积(精确到个位).18.某数学兴趣小组,利用树影测量树高,如图①,已测出树Ab的影长Ac为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高Ab(结果保留整数);(2)因水土流失,此时树Ab沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长(结果保留整数,用图②解答).19.∥如图,王华晚上由路灯A下的b处走到c处时,测得影子cD的长为1米,继续往前走3米到达e处时,测得影子eF的长为2米,已知王华的身高是1.5米,那么路灯A的高度Ab是多少?-3-参考答案与解析1.A2.c3.c4.b5.b6.D7.b8.c9.510.球(答案不唯一)11.2412.1.813.5 cD14.3解析:如图,∥cD∥Ab∥mn,∥∥cDe∥∥Abe,∥mnF∥∥AbF,∥=AbDemnFn1.81.81.51.5,=,即=,=,∥Ab=3m.beAbFbAb1.8+bDAb1.5+2.7-bD15.解:图略.16.解:答案不唯一,如图所示.17.解:(1)正六棱柱(2)图略;13(3)×5×?5×?×6×2+5×5×6≈280(cm2).22??答:制作一个纸盒所需纸板的面积约为280cm2.18.解:(1)Ab=Ac·tan30°=12×答:树高Ab 约为7米;3=43≈7(米).3(2)如图,当树与地面成60°角时,影长Ac1最大,此时,Ac1=2Ab1=2Ab≈14米.答:树的最大影长约为14米.王华的身高路灯的高度cD19.解:=,当王华在cg处时,Rt∥Dcg∥Rt∥DbA,则=bD王华的影长路灯的影长cgeFehcDeF;当王华在eh处时,Rt∥Feh∥Rt∥FbA,则=.∥cg=eh,∥=.设bc =AbbFAbbDbF12y米,则bD=(y+1)米,bF=(y+5)米,∥=,解得y =3,∥bD=4米.设Ab=xy+1y+5cDcg11.5米,由=,得=,解得x=6.bDAb4x答:路灯A的高度Ab是6米.-4-最后,小编希望文章对您有所帮助,如果有不周到的地方请多谅解,更多相关的文章正在创作中,希望您定期关注。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学复习知识点易错部分突破训练:投影与视图(附答案)
1.有一透明实物如图,它的主视图是()
A.B.C.D.
2.如图,小明从左面看在水平讲台上放置的圆柱形水杯和长方体形粉笔盒看到的是()
A.B.C.D.
3.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()
A.主视图B.俯视图C.左视图D.一样大
4.如图,是由27个相同的小立方块搭成的几何体,它的三个视图是3×3的正方形,若拿掉若干个小立方块(几何体不倒掉),其三个视图仍都为3×3的正方形,则最多能拿掉小立方块的个数为()
A.10B.12C.15D.18
5.由若干个小立方块所搭成的物体的主视图、左视图如图所示,它的俯视图不可能的是()
A.B.C.D.
6.如图是用小正方体搭成的几何体的主视图和俯视图,俯视图上的数字表示小正方体的个数,则搭这个几何体最多要()个小正方体.
A.3B.4
C.5D.6
7.已知几个相同的小正方体所搭成的几何体的俯视图及左视图如图3所示,则构成该几何体的小正方体个数最多是()
A.5个B.7个C.8个D.9个
8.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,该几何体至少是()个小立方块搭成的
A.8B.7C.6D.5
9.下列说法正确的是()
①平行四边形既是中心对称图形,又是轴对称图形;②同一物体的三视图中,俯视图与
左视图的宽相等;③线段的正投影是一条线段;④主视图是正三角形的圆锥的侧面展开图一定是半圆;⑤图形平移的方向总是水平的,图形旋转后的效果总是不同的.
A.①③B.②④C.③⑤D.②⑤
10.下列命题中,真命题有()
①正方形的平行投影一定是菱形;②平行四边形的平行投影一定是平行四边形;③三角
形的平行投影一定是三角形.
A.0个B.1个C.2个D.3个
11.如图,一人在两等高的路灯之间走动,GB为人AB在路灯EF照射下的影子,BH为人AB在路灯CD照射下的影子.当人从点C走向点E时两段影子之和GH的变化趋势是()
A.先变长后变短B.先变短后变长
C.不变D.先变短后变长再变短
12.如图,是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()
A.0.64πm2B.2.56πm2C.1.44πm2D.5.76πm2
13.如图,是一个四棱锥及它的三视图,其中,图是它的主视图,图是它的左视图,图是它的俯视图.
14.如图是一个组合几何体,右边是它的两种视图,根据图中的尺寸,这个几何体的表面积是(结果保留π).
15.用小正方体搭一个几何体,其主视图和左视图如图所示,那么搭成这样的几何体至少需要个小正方体,最多需要个小正方体.
16.n个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图所示.那么n的最大值与最小值的和是.
17.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.
18.一个几何体的三视图如图所示,则这个几何体的表面积为.
19.用若干个体积为1的正方体搭成一个几何体,该几何体正视(从正面看)与俯视(从上面垂直向下看)都是如图所示的图形,则这个几何体的最大体积是.
20.如图是一个几何体的三视图,根据图中标注的数据可求出这个几何体的体积为.
21.如图所示,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是个.
22.如图,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为平方米.(不计墙的厚度)
23.如图是一颗骰子的三种不同的放置方法.
(1)根据图中三种放置方法,推出“?”处的点数.
(2)求这三个骰子下底面上点数和.
24.由7个相同的小立方块搭成的几何体如图所示,
(1)请画出它的三视图?
(2)请计算它的表面积?(棱长为1)
25.一个几何体由几块相同的小正方体叠成,它的三视图如下图所示.请回答下列问题:(1)填空:①该物体有层高;②该物体由个小正方体搭成;
(2)该物体的最高部分位于俯视图的什么地方?(注:在俯视图上标注,并有相应的文字说明)
26.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图:(1)请你画出这个几何体的其中两种左视图;
(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.
27.已知一个几何体的三视图如图所示,描述该几何体的形状,并根据图中数据计算它的表面积.(结果精确到1cm2)
28.如图是一个正三棱柱的主视图和俯视图:
(1)你请作出它的主、左视图;
(2)若AC=2,AA'=3,求左视图的面积.
29.有一个顶部是圆锥,底部是圆柱的粮囤模型,如图是它的主视图:(1)画出该粮囤模式的俯视图;
(2)若每相邻两个格点之间的距离均表示1米,请计算:
①在粮囤顶部铺上油毡,需要多少平方米油毡(油毡接缝重合部分不计)?
②若粮食最多只能装至与圆柱同样高,则最多可以存放多少立方米粮食?(结果保留π
和根号).
30.用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:
(1)求a,b,c的值;
(2)这个几何体最少有几个小立方体搭成,最多有几个小立方体搭成;
(3)当d=2,e=1,f=2时画出这个几何体的左视图.
31.根据要求完成下列题目:
(1)图中有块小正方体;
(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;
(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在图方格中所画的图一致,若这样的几何体最少要m个小正方体,最多要n个小正方体,则m+n的值为.
32.在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,如图,在一个路口,一辆长为10m的大巴车遇红灯后停在距交通信号灯20m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾xm,若大巴车车顶高于小张的水平视线0.8m,红灯下沿高于小张的水平视线3.2m,若小张能看到整个红灯,求出x的最小值.
参考答案
1.解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.
2.解:圆柱的左视图是长方形,长方体的左视图是长方形,所以它们的左视图是:
故选:D.
3.解:如图,该几何体正视图是由5个小正方形组成,
左视图是由3个小正方形组成,
俯视图是由5个小正方形组成,
故三种视图面积最小的是左视图.
故选:C.
4.解:根据题意,拿掉若干个小立方块后,三个视图仍都为3×3的正方形,则最多能拿掉小立方块的个数为6+6=12个.
故选:B.
5.解:综合主视图和左视图,第一行第1列必有一个立方体,各选项中,只有B没有.故选:B.
6.解:结合主视图和俯视图可知,上层最多有2个,最少1个,下层一定有3个,。

相关文档
最新文档