中考数学试题分类汇编-正多边形与圆.doc

合集下载

中考数学第15讲正多边形和圆与圆中的计算复习讲义试题

中考数学第15讲正多边形和圆与圆中的计算复习讲义试题

正多边形和圆与圆中的计算时间:2022.4.12 单位:……*** 创编者:十乙州模块一正多边形和圆正多边形的定义:__________________________________________________。

正多边形的相关概念:⑴正多边形的中心:_______________________________________________。

⑵正多边形的半径:_______________________________________________。

⑶正多边形的中心角:_____________________________________________。

⑷正多边形的边心距:_____________________________________________。

正多边形的性质:⑴______________________________________________________________;⑵______________________________________________________________ ______________________________________________________________。

【例1】⑴小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,……,这样一直走下去,他第一次回到出发点A时,一一共走了_________m。

⑵正二百五十边形的一个内角等于_____,它的中心角等于__________。

⑶正六边形的边长a,半径R,边心距r的比a∶R∶r=__________________。

【例2】(中考)如图,有一个圆O和两个正六边形T1、T2。

T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1、T2分别为圆O的内接正六边形和外切正六边形)。

⑴设T1、T2的边长分别为a、b,圆O的半径为r,求r∶a及r∶b的值;⑵求正六边形T1、T2的面积比S1∶S2的值。

中考数学真题专项汇编解析—圆与正多边形

中考数学真题专项汇编解析—圆与正多边形

中考数学真题专项汇编解析—圆与正多边形一.选择题1.(2022·浙江嘉兴·中考真题)如图,在⊙O中,⊙BOC=130°,点A在BAC上,则⊙BAC的度数为()A.55°B.65°C.75°D.130°【答案】B【分析】利用圆周角直接可得答案.【详解】解:⊙BOC=130°,点A在BAC上,165,2BAC BOC故选B【点睛】本题考查的是圆周角定理的应用,掌握“同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.2.(2022·山东滨州·中考真题)如图,在O中,弦,AB CD相交于点P,若48,80A APD∠=︒∠=︒,则B的大小为()A.32︒B.42︒C.52︒D.62︒【答案】A【分析】根据三角形的外角的性质可得C A APD ∠+∠=∠,求得32C ∠=︒,再根据同弧所对的圆周角相等,即可得到答案. 【详解】C A APD ∠+∠=∠,48,80A APD ∠=︒∠=︒,32C ∴∠=︒32B C ∴∠=∠=︒故选:A .【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.3.(2022·江苏连云港·中考真题)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A .23πB .23πC .43π-D .43π【答案】B【分析】阴影部分的面积等于扇形面积减去三角形面积,分别求出扇形面积和等边三角形的面积即可.【详解】解:如图,过点OC 作OD ⊙AB 于点D ,⊙⊙AOB =2×36012︒=60°, ⊙⊙OAB 是等边三角形,⊙⊙AOD =⊙BOD =30°,OA =OB =AB =2,AD =BD =12AB =1,⊙OD⊙阴影部分的面积为260212236023ππ⋅⨯-⨯B . 【点睛】本题考查了扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法是正确解答的关键.4.(2022·湖北武汉·中考真题)如图,在四边形材料ABCD 中,AD BC ∥,90A ∠=︒,9cm AD =,20cm AB =,24cm BC =.现用此材料截出一个面积最大的圆形模板,则此圆的半径是( )A .110cm 13B .8cmC .D .10cm【答案】B【分析】如图所示,延长BA 交CD 延长线于E ,当这个圆为⊙BCE 的内切圆时,此圆的面积最大,据此求解即可.【详解】解:如图所示,延长BA 交CD 延长线于E ,当这个圆为⊙BCE 的内切圆时,此圆的面积最大, ⊙AD BC ∥,⊙BAD =90°, ⊙⊙EAD ⊙⊙EBC ,⊙B =90°, ⊙EA AD EB BC=,即92024EA EA =+, ⊙12cm EA =, ⊙EB =32cm ,⊙40cm EC ,设这个圆的圆心为O ,与EB ,BC ,EC 分别相切于F ,G ,H , ⊙OF =OG =OH ,⊙=EBC EOB COB EOC S S S S ++△△△△,⊙11112222EB BC EB OF BC OG EC OH ⋅=⋅+⋅+⋅, ⊙()2432=243240OF ⨯++⋅, ⊙8cm OF =,⊙此圆的半径为8cm , 故选B .【点睛】本题主要考查了三角形内切圆半径与三角形三边的关系,勾股定理,正确作出辅助线是解题的关键.5.(2022·湖北宜昌·中考真题)如图,四边形ABCD 内接于O ,连接OB ,OD ,BD ,若110C ∠=︒,则OBD ∠=( )A .15︒B .20︒C .25︒D .30【答案】B【分析】根据圆内接四边形的性质求出A ∠,根据圆周角定理可得BOD ∠,再根据OB OD =计算即可.【详解】⊙四边形ABCD 内接于O , ⊙18070A BCD ∠︒-∠︒== ,由圆周角定理得,2140BOD A ∠=∠=︒ , ⊙OB OD =⊙180202BODOBD ODB ︒-∠∠=∠==︒ 故选:B .【点睛】此题考查圆周角定理和圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6.(2022·四川德阳·中考真题)如图,点E 是ABC 的内心,AE 的延长线和ABC 的外接圆相交于点D ,与BC 相交于点G ,则下列结论:⊙BAD CAD ∠=∠;⊙若60BAC ∠=︒,则120∠=︒BEC ;⊙若点G 为BC 的中点,则90BGD ∠=︒;⊙BD DE =.其中一定正确的个数是( )A .1B .2C .3D .4【答案】D【分析】根据点E 是ABC 的内心,可得BAD CAD ∠=∠,故⊙正确;连接BE ,CE ,可得⊙ABC +⊙ACB =2(⊙CBE +⊙BCE ),从而得到⊙CBE +⊙BCE =60°,进而得到⊙BEC =120°,故⊙正确; BAD CAD ∠=∠,得出BD CD =,再由点G 为BC 的中点,则90BGD ∠=︒成立,故⊙正确;根据点E 是ABC 的内心和三角形的外角的性质,可得()12BED BAC ABC ∠=∠+∠,再由圆周角定理可得()12DBE BAC ABC ∠=∠+∠,从而得到⊙DBE =⊙BED ,故⊙正确;即可求解.【详解】解:⊙点E 是ABC 的内心,⊙BAD CAD ∠=∠,故⊙正确;如图,连接BE ,CE ,⊙点E 是ABC 的内心,⊙⊙ABC =2⊙CBE ,⊙ACB =2⊙BCE , ⊙⊙ABC +⊙ACB =2(⊙CBE +⊙BCE ), ⊙⊙BAC =60°,⊙⊙ABC +⊙ACB =120°,⊙⊙CBE +⊙BCE =60°,⊙⊙BEC =120°,故⊙正确; ⊙点E 是ABC 的内心,⊙BAD CAD ∠=∠,⊙BD CD =,⊙点G 为BC 的中点,⊙线段AD 经过圆心O ,⊙90BGD ∠=︒成立,故⊙正确; ⊙点E 是ABC 的内心,⊙11,22BAD CAD BAC ABE CBE ABC ∠=∠=∠∠=∠=∠, ⊙⊙BED =⊙BAD +⊙ABE ,⊙()12BED BAC ABC ∠=∠+∠, ⊙⊙CBD =⊙CAD ,⊙⊙DBE =⊙CBE +⊙CBD =⊙CBE +⊙CAD ,⊙()12DBE BAC ABC ∠=∠+∠,⊙⊙DBE =⊙BED ,⊙BD DE =,故⊙正确; ⊙正确的有4个.故选:D【点睛】本题主要考查了三角形的内心问题,圆周角定理,三角形的内角和等知识,熟练掌握三角形的内心问题,圆周角定理,三角形的内角和等知识是解题的关键.7.(2022·湖南株洲·中考真题)如图所示,等边ABC 的顶点A 在⊙O 上,边AB 、AC与⊙O分别交于点D、E,点F是劣弧DE上一点,且与D、E不重合,连接DF、∠的度数为()EF,则DFEA.115︒B.118︒C.120︒D.125︒【答案】C【分析】根据等边三角形的性质可得60∠=︒,再根据圆内接四边形的对角互补A即可求得答案.【详解】解:ABC是等边三角形,∴∠=︒-∠=︒,故选C.DFE A∴∠=︒,180120A60【点睛】本题考查了等边三角形的性质及圆内接四边形的性质,熟练掌握圆内接四边形的对角互补是解题的关键.8.(2022·甘肃武威·中考真题)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mm B.C.D.4mm【答案】D【分析】如图,连接CF与AD交于点O,易证⊙COD为等边三角形,从而CD=OC=OD=12AD,即可得到答案.【详解】连接CF与AD交于点O,⊙ABCDEF为正六边形,⊙⊙COD= 3606=60°,CO=DO,AO=DO=12AD=4mm,⊙⊙COD为等边三角形,⊙CD=CO=DO=4mm,即正六边形ABCDEF的边长为4mm,故选:D.【点睛】本题考查了正多边形与圆的性质,正确把握正六边形的中心角、半径与边长的关系是解题的关键.9.(2022·湖南邵阳·中考真题)如图,⊙O是等边⊙ABC的外接圆,若AB=3,则⊙O的半径是()A .32B C D .52【答案】C【分析】作直径AD ,连接CD ,如图,利用等边三角形的性质得到⊙B =60°,关键圆周角定理得到⊙ACD =90°,⊙D =⊙B =60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD ,连接CD ,如图,⊙⊙ABC 为等边三角形,⊙⊙B =60°, ⊙AD 为直径,⊙⊙ACD =90°,⊙⊙D =⊙B =60°,则⊙DAC =30°,⊙CD =12AD , ⊙AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,⊙AD ⊙OA =OB =12AD C .【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质、圆周角定理和含30度的直角三角形三边的关系.10.(2022·四川眉山·中考真题)如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿PA ,PB 分别相切于点A ,B ,不倒翁的鼻尖正好是圆心O ,若∠=°,则APBOAB28∠的度数为()A.28︒B.50︒C.56︒D.62︒【答案】C【分析】连OB,由AO=OB得,⊙OAB=⊙OBA=28°,⊙AOB=180°-2⊙OAB=124°;因为P A、PB分别相切于点A、B,则⊙OAP=⊙OBP=90°,利用四边形内角和即可求出⊙APB.【详解】连接OB,⊙OA=OB,⊙⊙OAB=⊙OBA=28°,⊙⊙AOB=124°,⊙P A、PB切⊙O于A、B,⊙OA⊙P A,OP⊙AB,⊙⊙OAP+⊙OBP=180°,⊙⊙APB+⊙AOB=180°;⊙⊙APB=56°.故选:C【点睛】本题考查切线的性质,三角形和四边形的内角和定理,切线长定理,等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.11.(2022·浙江湖州·中考真题)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N 分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连接PM,PN,则所有满足⊙MPN=45°的⊙PMN中,边PM的长的最大值是()B.6C.D.A.【答案】C【分析】根据同弧所对的圆周角等于所对圆心角的一半,过点M、N作以点O为圆心,⊙MON=90°的圆,则点P在所作的圆上,观察圆O所经过的格点,找出到点M距离最大的点即可求出.MN,以O 【详解】作线段MN中点Q,作MN的垂直平分线OQ,并使OQ=12为圆心,OM为半径作圆,如图,MN,所以OQ=MQ=NQ,因为OQ为MN垂直平分线且OQ=12⊙⊙OMQ=⊙ONQ=45°,⊙⊙MON=90°,所以弦MN所对的圆O的圆周角为45°,所以点P在圆O上,PM为圆O的弦,通过图像可知,当点P在P'位置时,恰好过格点且P M'经过圆心O,所以此时P M'最大,等于圆O的直径,⊙BM=4,BN=2,⊙MN==⊙MQ=OQ⊙OM=⊙'==C.P M OM2【点睛】此题考查了圆的相关知识,熟练掌握同弧所对的圆周角相等、直径是圆上最大的弦,会灵活用已知圆心角和弦作圆是解题的关键.12.(2022·四川遂宁·中考真题)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是()A .175π3cm 2B .175π2cm 2C .175πcm 2D .350πcm 2【答案】C【分析】先利用勾股定理计算出AC =25cm ,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则可根据扇形的面积公式计算出圆锥的侧面积.【详解】解:在Rt AOC △中,25AC =cm ,⊙它侧面展开图的面积是127251752ππ⨯⨯⨯=cm 2.故选:C【点睛】本题考查了圆锥的计算,理解圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长是解题的关键. 13.(2022·陕西·中考真题)如图,ABC 内接于⊙,46O C ∠=︒,连接OA ,则OAB ∠=( )A .44︒B .45︒C .54︒D .67︒【答案】A【分析】连接OB ,由2⊙C =⊙AOB ,求出⊙AOB ,再根据OA =OB 即可求出⊙OAB .【详解】连接OB ,如图,⊙⊙C =46°,⊙⊙AOB =2⊙C =92°,⊙⊙OAB +⊙OBA =180°-92°=88°,⊙OA =OB ,⊙⊙OAB =⊙OBA ,⊙⊙OAB =⊙OBA =12×88°=44°,故选:A .【点睛】本题主要考查了圆周角定理,根据圆周角定理的出⊙AOB =2⊙C =92°是解答本题的关键.14.(2022·浙江宁波·中考真题)已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积为( )A .236πcmB .224πcmC .216πcmD .212πcm 【答案】B【分析】利用圆锥侧面积计算公式计算即可:S rl π=侧;【详解】4624S rl πππ==⋅⋅=侧2cm ,故选B .【点睛】本题考查了圆锥侧面积的计算公式,比较简单,直接代入公式计算即可. 15.(2022·甘肃武威·中考真题)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(AB ),点O 是这段弧所在圆的圆心,半径90m OA =,圆心角80AOB ∠=︒,则这段弯路(AB )的长度为( )A .20m πB .30m πC .40m πD .50m π【答案】C 【分析】根据题目中的数据和弧长公式,可以计算出这段弯路(AB )的长度.【详解】解:⊙半径OA =90m ,圆心角⊙AOB =80°,∴这段弯路(AB )的长度为:809040(m)180ππ⨯=,故选C 【点睛】本题考查了弧长的计算,解答本题的关键是明确弧长计算公式.180n r l π=16.(2022·浙江温州·中考真题)如图,,AB AC 是O 的两条弦,⊥OD AB 于点D ,OE AC ⊥于点E ,连结OB ,OC .若130DOE ∠=︒,则BOC ∠的度数为( )A .95︒B .100︒C .105︒D .130︒【答案】B 【分析】根据四边形的内角和等于360°计算可得⊙BAC =50°,再根据圆周角定理得到⊙BOC =2⊙BAC ,进而可以得到答案.【详解】解:⊙OD⊙AB,OE⊙AC,⊙⊙ADO=90°,⊙AEO=90°,⊙⊙DOE=130°,⊙⊙BAC=360°-90°-90°-130°=50°,⊙⊙BOC=2⊙BAC=100°,故选:B.【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17.(2022·山东泰安·中考真题)如图,点I为的ABC内心,连接AI并延长交ABC 的外接圆于点D,点E为弦AC的中点,连接CD,EI,IC,当2IC=,AI CD=,6 ID=时,IE的长为()5A.5B.4.5C.4D.3.5【答案】C【分析】延长ID到M,使DM=ID,连接CM.想办法求出CM,证明IE是⊙ACM 的中位线即可解决问题.【详解】解:延长ID到M,使DM=ID,连接CM.⊙I是⊙ABC的内心,⊙⊙IAC=⊙IAB,⊙ICA=⊙ICB,⊙⊙DIC=⊙IAC+⊙ICA,⊙DCI=⊙BCD+⊙ICB,⊙⊙DIC=⊙DCI,⊙DI=DC=DM,⊙⊙ICM=90°,⊙CM,⊙AI=2CD=10,⊙AI=IM,⊙AE=EC,⊙IE是⊙ACM的中位线,CM=4,故选:C.⊙IE=12【点睛】本题考查三角形的内心、三角形的外接圆、三角形的中位线定理、直角三角形的判定、勾股定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.18.(2022·浙江丽水·中考真题)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m ,高为,则改建后门洞的圆弧长是( )A .5πm 3B .8πm 3C .10πm 3D .5π+2m 3⎛⎫ ⎪⎝⎭【答案】C【分析】利用勾股定理先求得圆弧形的门洞的直径BC ,再利用矩形的性质证得COD ∆是等边三角形,得到60COD ∠=︒,进而求得门洞的圆弧所对的圆心角为36060300︒-︒=︒,利用弧长公式即可求解.【详解】如图,连接AD ,BC ,交于O 点,⊙90BDC ∠=︒ ,⊙BC 是直径,⊙4BC ===, ⊙四边形ABDC 是矩形,⊙122OC OD BC ===,⊙2CD=,⊙OC OD CD==,⊙COD∆是等边三角形,⊙60COD∠=︒,⊙门洞的圆弧所对的圆心角为36060300︒-︒=︒,⊙改建后门洞的圆弧长是11300300410221801803BCπππ︒⨯︒⨯⨯==︒︒(m),故选:C【点睛】本题考查了弧长公式,矩形的性质以及勾股定理的应用,从实际问题转化为数学模型是解题的关键.19.(2022·四川成都·中考真题)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()ABC.3D.【答案】C【分析】连接OB,OC,由⊙O的周长等于6π,可得⊙O的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB,OC,⊙⊙O 的周长等于6π, ⊙⊙O 的半径为:3, ⊙⊙BOC 61=⨯360°=60°, ⊙OB =OC ,⊙⊙OBC 是等边三角形,⊙BC =OB =3,⊙它的内接正六边形ABCDEF 的边长为3,故选:C .【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.20.(2022·四川凉山·中考真题)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角⊙BAC =90°,则扇形部件的面积为( )A .12π米2 B .14π米2C .18π米2D .116π米2【答案】C【分析】连接BC ,先根据圆周角定理可得BC 是O 的直径,从而可得1BC =米,再解直角三角形可得AB AC =【详解】解:如图,连接BC ,90BAC ∠=︒,BC ∴是O 的直径,1BC ∴=米,又AB AC =,45ABC ACB ∴∠=∠=︒,sin AB AC BC ABC ∴==⋅∠,则扇形部件的面积为290123608ππ⨯=(米2),故选:C .【点睛】本题考查了圆周角定理、解直角三角形、扇形的面积公式等知识点,熟练掌握圆周角定理和扇形的面积公式是解题关键. 二.填空题21.(2022·江苏宿迁·中考真题)如图,在正六边形ABCDEF 中,AB =6,点M 在边AF 上,且AM =2.若经过点M 的直线l 将正六边形面积平分,则直线l 被正六边形所截的线段长是_____.【答案】【分析】如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊙AF 于P ,由正六边形是轴对称图形可得:,ABCO DEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOMDOHMOFCHOSSSS,OM OH = 可得直线MH 平分正六边形的面积,O 为正六边形的中心,再利用直角三角形的性质可得答案.【详解】解:如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊙AF 于P ,由正六边形是轴对称图形可得:,ABCO DEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOMDOHMOFCHOSSSS,OM OH =⊙直线MH 平分正六边形的面积,O 为正六边形的中心,由正六边形的性质可得:AOF 为等边三角形,60,AFO 而6,AB =6,3,ABAF OF OA AP FP226333,OP2,AM则1,MP2213327,OM247.MHOM故答案为:【点睛】本题考查的是正多边形与圆的知识,掌握“正六边形既是轴对称图形也是中心对称图形”是解本题的关键.22.(2022·湖南衡阳·中考真题)如图,用一个半径为6 cm 的定滑轮拉动重物上升,滑轮旋转了120︒,假设绳索粗细不计,且与轮滑之间没有滑动,则重物上升了_________cm .(结果保留π)【答案】4π【分析】利用题意得到重物上升的高度为定滑轮中120°所对应的弧长,然后根据弧长公式计算即可.【详解】解:根据题意,重物的高度为12064180ππ⨯⨯=(cm ). 故答案为:4π.【点睛】本题考查了弧长公式:180n Rl π⋅⋅=(弧长为l ,圆心角度数为n ,圆的半径为R ).23.(2022·浙江杭州·中考真题)如图是以点O 为圆心,AB 为直径的圆形纸片,点C 在⊙O 上,将该圆形纸片沿直线CO 对折,点B 落在⊙O 上的点D 处(不与点A 重合),连接CB ,CD ,AD .设CD 与直径AB 交于点E .若AD =ED ,则⊙B =_________度;BCAD的值等于_________.【答案】36【分析】由等腰三角形的性质得出⊙DAE=⊙DEA,证出⊙BEC=⊙BCE,由折叠的性质得出⊙ECO=⊙BCO,设⊙ECO=⊙OCB=⊙B=x,证出⊙BCE=⊙ECO+⊙BCO=2x,⊙CEB=2x,由三角形内角和定理可得出答案;证明⊙CEO⊙⊙BEC,由相似三角形的性质得出CE BEEO CE=,设EO=x,EC=OC=OB=a,得出a2=x(x+a),求出OE=a,证明⊙BCE⊙⊙DAE,由相似三角形的性质得出BC ECAD AE=,则可得出答案.【详解】解:⊙AD=DE,⊙⊙DAE=⊙DEA,⊙⊙DEA=⊙BEC,⊙DAE=⊙BCE,⊙⊙BEC=⊙BCE,⊙将该圆形纸片沿直线CO对折,⊙⊙ECO=⊙BCO,又⊙OB=OC,⊙⊙OCB=⊙B,设⊙ECO=⊙OCB=⊙B=x,⊙⊙BCE=⊙ECO+⊙BCO=2x,⊙⊙CEB=2x,⊙⊙BEC+⊙BCE+⊙B=180°,⊙x+2x+2x=180°,⊙x=36°,⊙⊙B=36°;⊙⊙ECO=⊙B,⊙CEO=⊙CEB,⊙⊙CEO⊙⊙BEC,⊙CE BEEO CE=,⊙CE2=EO•BE,设EO=x,EC=OC=OB=a,⊙a2=x(x+a),解得,xa(负值舍去),⊙OEa,⊙AE=OA-OE=aa,⊙⊙AED=⊙BEC,⊙DAE=⊙BCE,⊙⊙BCE⊙⊙DAE,⊙BC ECAD AE=,⊙BCAD==36【点睛】本题是圆的综合题,考查了圆周角定理,折叠的性质,等腰三角形的判定与性质,三角形内角和定理,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.24.(2022·浙江湖州·中考真题)如图,已知AB是⊙O的弦,⊙AOB=120°,OC⊙AB,垂足为C,OC的延长线交⊙O于点D.若⊙APD是AD所对的圆周角,则⊙APD 的度数是______.【答案】30°##30度【分析】根据垂径定理得出⊙AOB=⊙BOD,进而求出⊙AOD=60°,再根据圆周角⊙AOD=30°.定理可得⊙APD=12【详解】⊙OC⊙AB,OD为直径,⊙BD AD,⊙⊙AOB=⊙BOD,⊙⊙AOB=120°,⊙⊙AOD=60°,⊙AOD=30°,⊙⊙APD=12故答案为:30°.【点睛】本题考查了圆周角定理、垂径定理等知识,掌握垂径定理是解答本题的关键.25.(2022·云南·中考真题)某中学开展劳动实习,学生到教具加工厂制作圆锥,他们制作的圆锥,母线长为30cm,底面圆的半径为10 cm,这种圆锥的侧面展开图的圆心角度数是_____. 【答案】120︒【分析】设这种圆锥的侧面展开图的圆心角度数为n ,30210180n =⨯⨯ππ,进行解答即可得.【详解】解: 设这种圆锥的侧面展开图的圆心角度数为n°,30210180n =⨯⨯ππ 120n =︒ 故答案为:120︒. 【点睛】本题考查了圆锥侧面展开图的圆心角,解题的关键是掌握扇形的弧长公式.26.(2022·浙江宁波·中考真题)如图,在⊙ABC 中,AC =2,BC =4,点O 在BC 上,以OB 为半径的圆与AC 相切于点A ,D 是BC 边上的动点,当⊙ACD 为直角三角形时,AD 的长为___________.【答案】32或65【分析】根据切线的性质定理,勾股定理,直角三角形的等面积法解答即可. 【详解】解:连接OA ,⊙当D 点与O 点重合时,⊙CAD 为90°,设圆的半径=r ,⊙OA =r ,OC =4-r ,⊙AC=4,在Rt⊙AOC中,根据勾股定理可得:r2+4=(4-r)2,解得:r=32,即AD=AO=32;⊙当⊙ADC=90°时,过点A作AD⊙BC于点D,⊙12AO•AC=12OC•AD,⊙AD=AO ACOC,⊙AO=32,AC=2,OC=4-r=52,⊙AD=65,综上所述,AD的长为32或65,故答案为:32或65.【点睛】本题主要考查了切线的性质和勾股定理,熟练掌握这些性质定理是解决本题的关键.27.(2022·四川自贡·中考真题)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为____________厘米.【答案】26【分析】令圆O的半径为OB=r,则OC=r-2,根据勾股定理求出OC2+BC2=OB2,进而求出半径.【详解】解:如图,由题意,得OD垂直平分AB,⊙BC=10厘米,令圆O的半径为OB =r ,则OC =r -2,在Rt⊙BOC 中OC 2+BC 2=OB 2,⊙(r -2)2+102=r 2,解得r =26.故答案为:26.【点睛】本题考查垂径定理和勾股定理求线段长,熟练地掌握圆的基本性质是解决问题的关键.28.(2022·浙江温州·中考真题)若扇形的圆心角为120︒,半径为32,则它的弧长为___________. 【答案】π【分析】根据题目中的数据和弧长公式,可以计算出该扇形的弧长. 【详解】解:⊙扇形的圆心角为120°,半径为32,⊙它的弧长为:31202,180ππ⨯=故答案为:π【点睛】本题考查弧长的计算,解答本题的关键是明确弧长的计算公式.180n rl π=29.(2022·新疆·中考真题)如图,⊙O 的半径为2,点A ,B ,C 都在⊙O 上,若30B ∠=︒.则AC 的长为_____(结果用含有π的式子表示)【答案】23π【分析】利用同弧所对的圆心角是圆周角的2倍得到60AOC ∠=︒,再利用弧长公式求解即可.【详解】2AOC B ∠=∠,30B ∠=︒,60AOC ∴∠=︒, ⊙O 的半径为2,60221803AC ππ⨯∴==,故答案为:23π. 【点睛】本题考查了圆周角定理和弧长公式,即180n r l π=,熟练掌握知识点是解题的关键. 30.(2022·四川泸州·中考真题)如图,在Rt ABC △中,90C ∠=︒,6AC =,BC =半径为1的O 在Rt ABC △内平移(O 可以与该三角形的边相切),则点A 到O 上的点的距离的最大值为________.【答案】1【分析】设直线AO 交O 于M 点(M 在O 点右边),当O 与AB 、BC 相切时,AM 即为点A 到O 上的点的最大距离.【详解】设直线AO 交O 于M 点(M 在O 点右边),则点A 到O 上的点的距离的最大值为AM 的长度当O 与AB 、BC 相切时,AM 最长设切点分别为D 、F ,连接OB ,如图⊙90C ∠=︒,6AC =,BC =⊙tan AC BBC==AB ⊙60B ∠=︒⊙O 与AB 、BC 相切 ⊙1302OBD B ∠=∠=︒⊙O 的半径为1⊙1OD OM == ⊙BD⊙AD AB DB =-=⊙OA ⊙1AM OA OM =+=⊙点A 到O 上的点的距离的最大值为1.【点睛】本题考查切线的性质、特殊角度三角函数值、勾股定理,解题的关键是确定点A 到O 上的点的最大距离的图形.31.(2022·浙江嘉兴·中考真题)如图,在廓形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为_______;折痕CD的长为_______.【答案】60°##60度【分析】根据对称性作O关于CD的对称点M,则点D、E、F、B都在以M为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.【详解】作O关于CD的对称点M,则ON=MN连接MD、ME、MF、MO,MO交CD于N⊙将CD沿弦CD折叠⊙点D、E、F、B都在以M为圆心,半径为6的圆上⊙将CD沿弦CD折叠后恰好与OA,OB相切于点E,F.⊙ME⊙OA,MF⊙OB⊙90∠=∠=︒MEO MFO⊙120∠=︒AOB⊙四边形MEOF中36060∠=︒-∠-∠-∠=︒EMF AOB MEO MFO即EF 的度数为60°;⊙90MEO MFO ∠=∠=︒,ME MF =⊙MEO MFO ≅(HL ) ⊙1302EMO FMO FME ∠=∠=∠=︒⊙6cos cos30ME OM EMO ===∠︒⊙MN =⊙MO ⊙DC⊙12DN CD == ⊙CD =故答案为:60°;【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.三.解答题32.(2022·四川成都·中考真题)如图,在Rt ABC △中,90ACB ∠=︒,以BC 为直径作⊙O ,交AB 边于点D ,在CD 上取一点E ,使BE CD =,连接DE ,作射线CE 交AB 边于点F .(1)求证:A ACF ∠=∠;(2)若8AC =,4cos 5ACF ∠=,求BF 及DE 的长.【答案】(1)见解析(2)BF =5,4225DE = 【分析】(1)根据Rt ABC △中,90ACB ∠=︒,得到⊙A +⊙B =⊙ACF +⊙BCF =90°,根据BE CD =,得到⊙B =⊙BCF ,推出⊙A =⊙ACF ;(2)根据⊙B =⊙BCF ,⊙A =⊙ACF ,得到AF =CF ,BF =CF ,推出AF =BF =12 AB ,根据4cos cos 5AC ACF A AB ∠===,AC =8,得到AB =10,得到BF =5,根据6BC ,得到3sin 5BC A AB ==,连接CD ,根据BC 是⊙O 的直径,得到⊙BDC =90°,推出⊙B +⊙BCD =90°,推出⊙A =⊙BCD ,得到3sin 5BD BCD BC ∠==,推出185BD =,得到75DF BF BD =-=,根据⊙FDE =⊙BCE ,⊙B =⊙BCE ,得到⊙FDE =⊙B ,推出DE ⊙BC ,得到⊙FDE ⊙⊙FBC ,推出DE DF BC BF =,得到4225DE =. (1)解:⊙Rt ABC △中,90ACB ∠=︒,⊙⊙A +⊙B =⊙ACF +⊙BCF =90°,⊙BE CD =,⊙⊙B =⊙BCF ,⊙⊙A =⊙ACF ;(2)⊙⊙B =⊙BCF ,⊙A =⊙ACF⊙AF =CF ,BF =CF ,⊙AF =BF =12 AB , ⊙4cos cos 5AC ACF A AB ∠===,AC =8, ⊙AB =10,⊙BF =5,⊙6BC , ⊙3sin 5BC A AB ==, 连接CD ,⊙BC 是⊙O 的直径,⊙⊙BDC =90°,⊙⊙B +⊙BCD =90°,⊙⊙A =⊙BCD , ⊙3sin 5BD BCD BC ∠==, ⊙185BD =, ⊙75DF BF BD =-=,⊙⊙FDE =⊙BCE ,⊙B =⊙BCE ,⊙⊙FDE =⊙B ,⊙DE ⊙BC ,⊙⊙FDE ⊙⊙FBC , ⊙DE DF BC BF=, ⊙4225DE =.【点睛】本题主要考查了圆周角,解直角三角形,勾股定理,相似三角形,解决问题的关键是熟练掌握圆周角定理及推论,运用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性质.33.(2022·山东滨州·中考真题)如图,已知AC为O的直径,直线P A与O相切于点A,直线PD经过O上的点B且CBD CAB∠=∠,连接OP交AB于点M.求证:(1)PD是O的切线;(2)2=⋅AM OM PM【答案】(1)见解析(2)见解析【分析】(1)连接OB,由等边对等角及直径所对的圆周角等于90°即可证明;(2)根据直线P A与O相切于点A,得到90∠=︒,根据余角的性质得到OAPOAM APM∠=∠,继而证明OAM APM,根据相似三角形的性质即可得到结论.(1)连接OB,OA OB OC==,OAB OBA OBC OCB∴∠=∠∠=∠,,AC为O的直径,∴∠=∠+∠,ABC OBA OBC∠=∠,CBD CAB∴∠=∠,OBA CBDCBD OBC OBD∴∠+∠=︒=∠,90∴PD是O的切线;(2)直线P A与O相切于点A,∴∠=︒,OAP90⊙PD是O的切线,∴∠=∠=∠=︒,AMO AMP OAP90∴∠+∠=∠+∠=︒,OAM PAM PAM APM90∴∠=∠,OAM APM∴,OAM APMAM OM∴=,PM AM∴2=⋅.AM OM PM【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,圆周角定理,等腰三角形的性质,熟练掌握知识点是解题的关键.34.(2022·四川泸州·中考真题)如图,点C在以AB为直径的O上,CD平分ACB∠交O于点D,交AB于点E,过点D作O的切线交CO的延长线于点F.(1)求证:FD AB∥;(2)若AC=BC=,求FD的长.【答案】(1)见解析(2)15 8【分析】(1)连接OD,由CD平分⊙ACB,可知AD BD=,得⊙AOD=⊙BOD=90°,由DF是切线可知⊙ODF=90°=⊙AOD,可证结论;(2)过C作CM⊙AB于M,已求出CM、BM、OM的值,再证明⊙DOF⊙⊙MCO,得CM OMOD FD,代入可求.(1)证明:连接OD,如图,⊙CD平分⊙ACB,⊙AD BD=,⊙⊙AOD=⊙BOD=90°,⊙DF是⊙O的切线,⊙⊙ODF=90°⊙⊙ODF=⊙BOD,⊙DF⊙AB.(2)解:过C作CM⊙AB于M,如图,⊙AB 是直径,⊙⊙ACB =90°,⊙AB 2222(25)(5)5BC . ⊙1122AB CM AC BC , 即11525522CM , ⊙CM =2, ⊙2222(5)21BM BC CM , ⊙OM =OB -BM =135122, ⊙DF ⊙AB , ⊙⊙OFD =⊙COM ,又⊙⊙ODF =⊙CMO =90°, ⊙⊙DOF ⊙⊙MCO , ⊙CM OM OD FD, 即32252FD , ⊙FD =158. 【点睛】本题考查了圆的圆心角、弦、弧关系定理、圆周角定理,切线的性质,相似三角形的判定与性质,勾股定理,解题的关键是熟练掌握这些定理,灵活运用相似三角形的性质求解.35.(2022·四川南充·中考真题)如图,AB 为O 的直径,点C 是O 上一点,点D 是O 外一点,BCD BAC ∠=∠,连接OD 交BC 于点E .(1)求证:CD 是O 的切线.(2)若4,sin 5CE OA BAC =∠=,求tan CEO ∠的值.【答案】(1)见解析;(2)3【分析】(1)连接OC ,根据圆周角定理得到⊙ACB =90°,根据OA =OC 推出⊙BCD =⊙ACO ,即可得到⊙BCD +⊙OCB =90°,由此得到结论;(2)过点O 作OF ⊙BC 于F ,设BC =4x ,则AB =5x ,OA =CE =2.5x ,BE =1.5x ,勾股定理求出AC ,根据OF ⊙AC ,得到1BF OB CF OA ==,证得OF 为⊙ABC 的中位线,求出OF 及EF ,即可求出tan CEO ∠的值.(1)证明:连接OC ,⊙AB 为O 的直径,⊙⊙ACB =90°,⊙⊙ACO +⊙OCB =90°,⊙OA =OC ,⊙⊙A =⊙ACO ,⊙BCD BAC ∠=∠,⊙⊙BCD =⊙ACO ,⊙⊙BCD +⊙OCB =90°,⊙OC ⊙CD ,⊙CD 是O 的切线.(2)解:过点O 作OF ⊙BC 于F , ⊙4,sin 5CE OA BAC =∠=,⊙设BC =4x ,则AB =5x ,OA =CE =2.5x ,⊙BE =BC -CE =1.5x ,⊙⊙C =90°,⊙AC 3x =,⊙OA =OB ,OF ⊙AC , ⊙1BF OB CF OA ==, ⊙CF =BF =2x ,EF =CE -CF =0.5x ,⊙OF 为⊙ABC 的中位线,⊙OF =1 1.52AC x =,⊙tan CEO ∠= 1.530.5OF x EF x ==.【点睛】此题考查了圆周角定理,证明直线是圆的切线,锐角三角函数,三角形中位线的判定与性质,平行线分线段成比例,正确引出辅助线是解题的关键. 36.(2022·江苏扬州·中考真题)如图,AB 为O 的弦,OC OA ⊥交AB 于点P ,交过点B 的直线于点C ,且CB CP =.(1)试判断直线BC 与O 的位置关系,并说明理由;(2)若sin 8A OA ==,求CB 的长.【答案】(1)相切,证明见详解(2)6【分析】(1)连接OB ,根据等腰三角形的性质得出A OBA ∠=∠,CPB CBP ∠=∠,从而求出90AOC OBC ∠=∠=︒,再根据切线的判定得出结论;(2)分别作OM AB ⊥交AB 于点M ,ON AB ⊥交AB 于N ,根据sin 8A OA ==求出OP ,AP 的长,利用垂径定理求出AB 的长,进而求出BP 的长,然后在等腰三角形CPB 中求解CB 即可.(1)证明:连接OB ,如图所示:CP CB OA OB ==,,∴A OBA ∠=∠,CPB CBP ∠=∠,APO CPB ∠=∠,APO CBP ∴∠=∠,OC OA ⊥,即90AOP ︒=∠,90A APO OBA CBP OBC ∴∠+∠=︒=∠+∠=∠,OB BC ∴⊥, OB 为半径,经过点O ,∴直线BC 与O 的位置关系是相切.(2)分别作OM AB ⊥交AB 于点M ,ON AB ⊥交AB 于N ,如图所示:AM BM ∴=,CP CB AO CO =⊥,,A APO PCN CPN ∴∠+∠=∠+∠,PN BN =,PCN BCN ∠=∠A PCN BCN ∴∠=∠=∠sin A =,8OA =,sin OM OP A OA AP ∴===4OM AM OP AP ∴====,2AB AM ∴==,111()222PN BN PB AB AP ∴===-=⨯=sin sin BN A BCN CB ∴=∠==,6CB ∴===. 【点睛】本题考查了切线的证明,垂径定理的性质,等腰三角形,勾股定理,三角函数等知识点,熟练掌握相关知识并灵活应用是解决此题的关键,抓住直角三角形边的关系求解线段长度是解题的主线思路.37.(2022·江苏宿迁·中考真题)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A 、B 、C 、D 、M 均为格点.【操作探究】在数学活动课上,佳佳同学在如图⊙的网格中,用无刻度的直尺画了两条互相垂直的线段AB 、CD ,相交于点P 并给出部分说理过程,请你补充完整:解:在网格中取格点E ,构建两个直角三角形,分别是⊙ABC 和⊙CDE . 在Rt ⊙ABC 中,1tan 2BAC ∠=在Rt ⊙CDE 中, ,所以tan tan BAC DCE ∠∠=.所以⊙BAC =⊙DCE .因为⊙ACP + ⊙DCE =⊙ACB =90°,所以⊙ACP +⊙BAC =90°,所以⊙APC =90°,即AB ⊙CD .(1)【拓展应用】如图⊙是以格点O 为圆心,AB 为直径的圆,请你只用无刻度的直尺,在BM 上找出一点P ,使PM =AM ,写出作法,并给出证明:(2)【拓展应用】如图⊙是以格点O 为圆心的圆,请你只用无刻度的直尺,在弦AB 上找出一点P .使2AM =AP ·AB ,写出作法,不用证明.。

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案)

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案)

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.规律型:图形的变化类(共3小题)1.(2023•绥化)在求1+2+3+…+100的值时,发现:1+100=101,2+99=101…,从而得到1+2+3+…+100=101×50=5050.按此方法可解决下面问题.图(1)有1个三角形,记作a1=1;分别连接这个三角形三边中点得到图(2),有5个三角形,记作a2=5;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作a3=9;按此方法继续下去,则a1+a2+a3+…+a n= .(结果用含n的代数式表示)2.(2022•绥化)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为 .3.(2021•绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…依此规律,则第n个图形中三角形个数是 .二.因式分解-运用公式法(共1小题)4.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9= .三.因式分解-分组分解法(共1小题)5.(2023•绥化)因式分解:x2+xy﹣xz﹣yz= .四.实数范围内分解因式(共1小题)6.(2021•绥化)在实数范围内分解因式:ab2﹣2a= .五.分式的混合运算(共1小题)7.(2023•绥化)化简:(﹣)÷= .六.分式的化简求值(共1小题)8.(2021•绥化)当x=+3时,代数式的值是 .七.二次根式有意义的条件(共1小题)9.(2023•绥化)若式子有意义,则x的取值范围是 .八.一元一次方程的应用(共1小题)10.(2022•绥化)在长为2,宽为x(1<x<2)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x的值为 .九.二元一次方程的应用(共1小题)11.(2022•绥化)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元.则有 种购买方案.一十.根与系数的关系(共3小题)12.(2023•绥化)已知一元二次方程x2+x=5x+6的两根为x1与x2,则+的值为 .13.(2022•绥化)设x1与x2为一元二次方程x2+3x+2=0的两根,则(x1﹣x2)2的值为 .14.(2021•绥化)已知m,n是一元二次方程x2﹣3x﹣2=0的两个根,则= .一十一.一元一次不等式的应用(共1小题)15.(2021•绥化)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A种奖品和4个B种奖品共需100元;购买5个A种奖品和2个B种奖品共需130元.学校准备购买A,B两种奖品共20个,且A种奖品的数量不小于B种奖品数量的,则在购买方案中最少费用是 元.一十二.解一元一次不等式组(共1小题)16.(2022•绥化)不等式组的解集为x>2,则m的取值范围为 .一十三.反比例函数系数k的几何意义(共1小题)17.(2021•绥化)如图,在平面直角坐标系中,O为坐标原点,MN垂直于x轴,以MN为对称轴作△ODE的轴对称图形,对称轴MN与线段DE相交于点F,点D的对应点B恰好落在y=(k≠0,x<0)的双曲线上,点O、E的对应点分别是点C、A.若点A为OE 的中点,且S△AEF=1,则k的值为 .一十四.正方形的性质(共1小题)18.(2021•绥化)在边长为4的正方形ABCD中,连接对角线AC、BD,点P是正方形边上或对角线上的一点,若PB=3PC,则PC= .一十五.正多边形和圆(共2小题)19.(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为 度.20.(2021•绥化)边长为4cm的正六边形,它的外接圆与内切圆半径的比值是 .一十六.弧长的计算(共1小题)21.(2021•绥化)一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为 cm.一十七.扇形面积的计算(共1小题)22.(2023•绥化)如图,⊙O的半径为2cm,AB为⊙O的弦,点C为上的一点,将沿弦AB翻折,使点C与圆心O重合,则阴影部分的面积为 .(结果保留π与根号)一十八.圆锥的计算(共1小题)23.(2022•绥化)已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为 .一十九.旋转的性质(共2小题)24.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是 .25.(2023•绥化)已知等腰△ABC,∠A=120°,AB=2.现将△ABC以点B为旋转中心旋转45°,得到△A′BC′,延长C′A′交直线BC于点D.则A′D的长度为 .二十.位似变换(共1小题)26.(2023•绥化)如图,在平面直角坐标系中,△ABC与△AB′C′的相似比为1:2,点A 是位似中心,已知点A(2,0),点C(a,b),∠C=90°.则点C′的坐标为 .(结果用含a,b的式子表示)二十一.特殊角的三角函数值(共1小题)27.(2022•绥化)定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为 .二十二.概率公式(共2小题)28.(2022•绥化)一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为,则这个箱子中黄球的个数为 个.29.(2021•绥化)在单词mathematics(数学)中任意选择一个字母恰好是字母“t”的概率是 .二十三.列表法与树状图法(共1小题)30.(2023•绥化)在4张完全相同的卡片上,分别标出1,2,3,4.从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是 .黑龙江省绥化市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.规律型:图形的变化类(共3小题)1.(2023•绥化)在求1+2+3+…+100的值时,发现:1+100=101,2+99=101…,从而得到1+2+3+…+100=101×50=5050.按此方法可解决下面问题.图(1)有1个三角形,记作a1=1;分别连接这个三角形三边中点得到图(2),有5个三角形,记作a2=5;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作a3=9;按此方法继续下去,则a1+a2+a3+…+a n= 2n2﹣n .(结果用含n的代数式表示)【答案】2n2﹣n.【解答】解:∵图(1)有1个三角形,记作a1=1;图(2)有5个三角形,记作a2=5=1+4=1+4×1;图(3)有9个三角形,记作a3=9=1+4+4=1+4×2;…,∴图(n)中三角形的个数为:a n=1+4(n﹣1)=4n﹣3,∴a1+a2+a3+…+a n=1+5+9+…+(4n﹣3)==2n2﹣n.故答案为:2n2﹣n.2.(2022•绥化)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为 (1+)2022 .【解答】解:由题意可得,P1K1=OP1•tan60°=1×=,P2K2=OP2•tan60°=(1+)×=(1+),P3K3=OP3•tan60°=(1+++3)×=(1+)2,…,P n K n=(1+)n﹣1,∴当n=2023时,P2023K2023=(1+)2022,3.(2021•绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…依此规律,则第n个图形中三角形个数是 n2+n﹣1 .【答案】n2+n﹣1.【解答】解:观察图中三角形的个数与图形的序号的关系,有如下规律:第一个图形:12+0,第二个图形:22+1,第三个图形:32+2,第四个图形:42+3,•,第n个图形:n2+n﹣1.故答案为:n2+n﹣1.二.因式分解-运用公式法(共1小题)4.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9= (m+n﹣3)2 .【答案】(m+n﹣3)2.【解答】解:原式=(m+n)2﹣2•(m+n)•3+32=(m+n﹣3)2.故答案为:(m+n﹣3)2.三.因式分解-分组分解法(共1小题)5.(2023•绥化)因式分解:x2+xy﹣xz﹣yz= (x+y)(x﹣z) .【答案】(x+y)(x﹣z).【解答】解:原式=(x2+xy)﹣z(x+y)=x(x+y)﹣z(x+y)=(x+y)(x﹣z),故答案为:(x+y)(x﹣z).四.实数范围内分解因式(共1小题)6.(2021•绥化)在实数范围内分解因式:ab2﹣2a= a(b+)(b﹣) .【答案】见试题解答内容【解答】解:ab2﹣2a,=a(b2﹣2)﹣﹣(提取公因式)=a(b+)(b﹣).﹣﹣(平方差公式)五.分式的混合运算(共1小题)7.(2023•绥化)化简:(﹣)÷= .【答案】.【解答】解:(﹣)÷=[﹣]•=[﹣]•=•=,故答案为:.六.分式的化简求值(共1小题)8.(2021•绥化)当x=+3时,代数式的值是  .【答案】.【解答】解:原式=[﹣]•=•=,当x=+3时,原式==,故答案为:.七.二次根式有意义的条件(共1小题)9.(2023•绥化)若式子有意义,则x的取值范围是 x≥﹣5且x≠0 .【答案】x≥﹣5且x≠0.【解答】解:由题意得x+5≥0且x≠0,解得x≥﹣5且x≠0,故答案为:x≥﹣5且x≠0.八.一元一次方程的应用(共1小题)10.(2022•绥化)在长为2,宽为x(1<x<2)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x 的值为 1.2或者1.5 .【答案】1.2或者1.5.【解答】解:第一次操作后的两边长分别是x和(2﹣x),第二次操作后的两边长分别是(2x﹣2)和(2﹣x).当2x﹣2>2﹣x时,有2x﹣2=2(2﹣x),解得x=1.5,当2x﹣2<2﹣x时,有2(2x﹣2)=2﹣x,解得x=1.2.故答案为:1.2或者1.5.九.二元一次方程的应用(共1小题)11.(2022•绥化)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元.则有 3 种购买方案.【答案】3.【解答】解:设购买x件甲种奖品,y件乙种奖品,依题意得:4x+3y=48,∴x=12﹣y.又∵x,y均为正整数,∴或或,∴共有3种购买方案.故答案为:3.一十.根与系数的关系(共3小题)12.(2023•绥化)已知一元二次方程x2+x=5x+6的两根为x1与x2,则+的值为 ﹣ .【答案】﹣.【解答】解:一元二次方程x2+x=5x+6整理得,x2﹣4x﹣6=0.根据题意得x1+x2=4,x1x2=﹣6,所以原式===﹣.故答案为:﹣.13.(2022•绥化)设x1与x2为一元二次方程x2+3x+2=0的两根,则(x1﹣x2)2的值为 20 .【答案】20.【解答】解:由题意可知:x1+x2=﹣6,x1x2=4,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=(﹣6)2﹣4×4=36﹣16=20,故答案为:20.14.(2021•绥化)已知m,n是一元二次方程x2﹣3x﹣2=0的两个根,则= ﹣ .【答案】﹣.【解答】解:∵m、n是一元二次方程x2﹣3x﹣2=0的两个根,∴m+n=3,mn=﹣2,∴==﹣.故答案为:﹣.一十一.一元一次不等式的应用(共1小题)15.(2021•绥化)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A种奖品和4个B种奖品共需100元;购买5个A种奖品和2个B种奖品共需130元.学校准备购买A,B两种奖品共20个,且A种奖品的数量不小于B种奖品数量的,则在购买方案中最少费用是 330 元.【答案】330.【解答】解:设A种奖品的单价为x元,B种奖品的单价为y元,依题意得:,解得:.设购买A种奖品m个,则购买B种奖品(20﹣m)个.∵A种奖品的数量不小于B种奖品数量的,∴m≥(20﹣m),∴m≥,又∵m为整数,∴m≥6.设购买总费用为w元,则w=20m+15(20﹣m)=5m+300,∵5>0,∴w随m的增大而增大,∴当m=6时,w取得最小值,最小值=5×6+300=330.故答案为:330.一十二.解一元一次不等式组(共1小题)16.(2022•绥化)不等式组的解集为x>2,则m的取值范围为 m≤2 .【答案】m≤2.【解答】解:由3x﹣6>0,得:x>2,∵不等式组的解集为x>2,∴m≤2,故答案为:m≤2.一十三.反比例函数系数k的几何意义(共1小题)17.(2021•绥化)如图,在平面直角坐标系中,O为坐标原点,MN垂直于x轴,以MN为对称轴作△ODE的轴对称图形,对称轴MN与线段DE相交于点F,点D的对应点B恰好落在y=(k≠0,x<0)的双曲线上,点O、E的对应点分别是点C、A.若点A为OE 的中点,且S△AEF=1,则k的值为 ﹣24 .【答案】见试题解答内容【解答】解:如图,MN交x轴于点G,连接OB,由于Rt△DOE与Rt△BCA关于MN成轴对称,且OA=AE,由对称性可知,AG=GE,OA=AE=EC,∴AG=AC,∵S△AEF=1,∴S△AFG=S△AEF=,∵MN∥BC∥OD,∴△AFG∽△ABC,∴=()2=,∴S△ABC=×16=8,又∵OA=AC,∴S△OAB=S△ABC=4,∴S△OBC=8+4=12,∵点B在反比例函数y=的图象上,∴S△OBC=12=|k|,∵k<0,∴k=﹣24,故答案为:﹣24.一十四.正方形的性质(共1小题)18.(2021•绥化)在边长为4的正方形ABCD中,连接对角线AC、BD,点P是正方形边上或对角线上的一点,若PB=3PC,则PC= 1或或 .【答案】1或或.【解答】解:如图1,∵四边形ABCD是正方形,AB=4,∴AC⊥BD,AC=BD,OB=OD,AB=BC=AD=CD=4,∠ABC=∠BCD=90°,在Rt△ABC中,由勾股定理得:AC===4,∴OB=2,∵PB=3PC,∴设PC=x,则PB=3x,有三种情况:①点P在BC上时,如图2,∵AD=4,PB=3PC,∴PC=1;②点P在AC上时,如图3,在Rt△BPO中,由勾股定理得:BP2=BO2+OP2,(3x)2=(2)2+(2﹣x)2,解得:x=(负数舍去),即PC=;③点P在CD上时,如图4,在Rt△BPC中,由勾股定理得:BC2+PC2=BP2,42+x2=(3x)2,解得:x=(负数舍去),即PC=;综上,PC的长是1或或.故答案为:1或或.一十五.正多边形和圆(共2小题)19.(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为 12 度.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.20.(2021•绥化)边长为4cm的正六边形,它的外接圆与内切圆半径的比值是 【答案】.【解答】解:连接OA,OB,作OG⊥AB于点G,∵正六边形的边长为4cm,∴正六边形的外接圆的半径4cm,内切圆的半径是正六边形的边心距,因而是GO=×4=2,因而正六边形的外接圆的半径与内切圆的半径之比为=.故答案为:.一十六.弧长的计算(共1小题)21.(2021•绥化)一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为 40 cm.【答案】见试题解答内容【解答】解:设弧所在圆的半径为r,由题意得,,解得,r=40cm.故应填40.一十七.扇形面积的计算(共1小题)22.(2023•绥化)如图,⊙O的半径为2cm,AB为⊙O的弦,点C为上的一点,将沿弦AB翻折,使点C与圆心O重合,则阴影部分的面积为 (π﹣)cm2 .(结果保留π与根号)【答案】(π﹣)cm2.【解答】解:如图,连接OA,OC,OC交AB于点M,由折叠性质可得OA=AC,AB⊥OC,∴OA=OC=AC=2cm,∴OM=CM=OC=1cm,∠AOC=60°,∵∠AMO=90°,∴AM===(cm),∴S阴影=S扇形AOC﹣S△AOC=﹣×2×=(π﹣)(cm2),故答案为:(π﹣)cm2.一十八.圆锥的计算(共1小题)23.(2022•绥化)已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为 60πcm2 .【答案】60πcm2.【解答】解:圆锥的高为8cm,母线长为10cm,由勾股定理得,底面半径=6cm,侧面展开图的面积=πrl=π×6×10=60πcm2.故答案为:60πcm2.一十九.旋转的性质(共2小题)24.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是 3+3 .【答案】3+3.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.25.(2023•绥化)已知等腰△ABC,∠A=120°,AB=2.现将△ABC以点B为旋转中心旋转45°,得到△A′BC′,延长C′A′交直线BC于点D.则A′D的长度为 或 .【答案】或.【解答】解:∵将△ABC绕点B旋转45°得到△A′BC′,∴有以下两种情况:①当△ABC绕点B逆时针旋转45°得到△A′BC′,过点B作BE⊥A'D于E,作BD的垂直平分线HF交DB于H,交A'D于F,连接BF,∵△ABC为等腰三角形,∠A=120°,AB=2,∴∠BA'C'=∠A=120°,A'B=AB=2,∠ABC=30°,∴∠DA'B=60°,由旋转的性质得:∠A'BA=45°,∴∠A'BC=∠A'BA+∠ABC=75°,又∵∠A'BC=∠DA'B+∠D,即75°=60°+∠D=15°,在Rt△A'BE中,∠DA'B=60°,A'B=2,∴∠A'BE=30°,∴,由勾股定理得:,∵HF为BD的垂直平分线,∴DF=BF,∴∠D=∠FBD=15°,∴∠EFB=∠D+∠FBD=30°,∴,故:,由勾股定理得:,∴;②当△ABC绕点B顺时针旋转45°得到△A′BC′,过点D作DM⊥A'D于M,作AD的垂直平分线PQ交A'B于Q,由旋转的性质得:∠ABA'=45°,∠BA'C'=∠A=120°,A'B=AB=2,∴∠A'BD=∠ABA'﹣∠ABC=15°,∠BA'D=60°,∵DM⊥A'D,∴∠A'DM=30°,在Rt△A'DM中,∠A'DM=30°,设A'M=x,则A'D=2A'M=2x,由勾股定理得:,∵PQ为BD的垂直平分线,∴BQ=DQ,∴∠A'BD=∠QDB=15°,∴∠DQM=∠A'BD+∠QDB=30°,∴,由勾股定理得:,∵A'M+QM+BQ=A'B,∴,∴,即.综上所述:A′D的长度为或.故答案为:或.二十.位似变换(共1小题)26.(2023•绥化)如图,在平面直角坐标系中,△ABC与△AB′C′的相似比为1:2,点A 是位似中心,已知点A(2,0),点C(a,b),∠C=90°.则点C′的坐标为 (6﹣2a,﹣2b) .(结果用含a,b的式子表示)【答案】(6﹣2a,﹣2b).【解答】解:过C作CM⊥AB于M,过C′⊥AB′于N,则∠ANC′=∠AMC=90°,∵△ABC与△AB′C′的相似比为1:2,∴,∵∠NAC′=∠CAM,∴△ACM∽△AC′N,∴,∵点A(2,0),点C(a,b),∴OA=2,OM=a,CM=b,∴AM=a﹣2,∴,∴AN=2a﹣4,C′N=2b,∴ON=AN﹣OA=2a﹣6,∴点C′的坐标为(6﹣2a,﹣2b),故答案为:(6﹣2a,﹣2b).二十一.特殊角的三角函数值(共1小题)27.(2022•绥化)定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为 .【答案】.【解答】解:sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=×﹣×=﹣=.故答案为:.二十二.概率公式(共2小题)28.(2022•绥化)一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为,则这个箱子中黄球的个数为 15 个.【答案】15.【解答】解:设箱子中黄球的个数为x个,根据题意可得:=,解得:x=15,经检验得:x=15是原方程的根.故答案为:15.29.(2021•绥化)在单词mathematics(数学)中任意选择一个字母恰好是字母“t”的概率是 .【答案】见试题解答内容【解答】解:“mathematics”中共11个字母,其中共2个“t”,任意取出一个字母,有11种情况可能出现,取到字母“t”的可能性有两种,故其概率是;故答案为:.二十三.列表法与树状图法(共1小题)30.(2023•绥化)在4张完全相同的卡片上,分别标出1,2,3,4.从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是 .【答案】.【解答】解:画树状图如下:共有16种等可能的结果,其中第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的结果有8种,∴第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是=,故答案为:.。

江苏省连云港市2021-2023三年中考数学真题分类汇编-01选择题知识点分类

江苏省连云港市2021-2023三年中考数学真题分类汇编-01选择题知识点分类

江苏省连云港市2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.相反数(共2小题)1.(2023•连云港)﹣6的相反数是( )A.﹣B.C.﹣6D.6 2.(2021•连云港)﹣3的相反数是( )A.B.C.3D.﹣3二.倒数(共1小题)3.(2022•连云港)﹣3的倒数为( )A.﹣B.C.3D.﹣3三.科学记数法—表示较大的数(共3小题)4.(2023•连云港)2023年4月26日,第十二届江苏园艺博览会在我市隆重开幕.会场所在地园博园分为“山海韵”“丝路情”“田园画”三大片区,共占地约2370000平方米.其中数据“2370000”用科学记数法可表示为( )A.2.37×106B.2.37×105C.0.237×107D.237×104 5.(2022•连云港)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为( )A.0.146×108B.1.46×107C.14.6×106D.146×105 6.(2021•连云港)2021年5月18日上午,江苏省人民政府召开新闻发布会,公布了全省最新人口数据,其中连云港市的常住人口约为4600000人.把“4600000”用科学记数法表示为( )A.0.46×107B.4.6×107C.4.6×106D.46×105四.完全平方公式(共1小题)7.(2021•连云港)下列运算正确的是( )A.3a+2b=5ab B.5a2﹣2b2=3C.7a+a=7a2D.(x﹣1)2=x2+1﹣2x五.由实际问题抽象出一元一次方程(共1小题)8.(2023•连云港)元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A.=B.=﹣12C.240(x﹣12)=150x D.240x=150(x+12)六.函数自变量的取值范围(共1小题)9.(2022•连云港)函数y=中自变量x的取值范围是( )A.x≥1B.x≥0C.x≤0D.x≤1七.反比例函数图象上点的坐标特征(共1小题)10.(2021•连云港)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图象经过点(﹣1,1);乙:函数图象经过第四象限;丙:当x>0时,y随x的增大而增大.则这个函数表达式可能是( )A.y=﹣x B.y=C.y=x2D.y=﹣八.认识平面图形(共1小题)11.(2023•连云港)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形;乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O的两条线段与一段圆弧所围成的图形.下列叙述正确的是( )A.只有甲是扇形B.只有乙是扇形C.只有丙是扇形D.只有乙、丙是扇形九.多边形内角与外角(共1小题)12.(2021•连云港)正五边形的内角和是( )A.360°B.540°C.720°D.900°一十.正多边形和圆(共1小题)13.(2021•连云港)如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O 的面积为2π,MN=1,则△AMN周长的最小值是( )A.3B.4C.5D.6一十一.扇形面积的计算(共2小题)14.(2023•连云港)如图,矩形ABCD内接于⊙O,分别以AB、BC、CD、AD为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是( )A.π﹣20B.π﹣20C.20πD.20 15.(2022•连云港)如图,有一个半径为2的圆形时钟,其中每个相邻刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A.π﹣B.π﹣C.π﹣2D.π﹣一十二.轴对称图形(共2小题)16.(2023•连云港)在美术字中,有些汉字可以看成是轴对称图形.下列汉字中,是轴对称图形的是( )A.B.C.D.17.(2022•连云港)下列图案中,是轴对称图形的是( )A.B.C.D.一十三.翻折变换(折叠问题)(共1小题)18.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于( )A.128°B.130°C.132°D.136°一十四.相似三角形的性质(共1小题)19.(2022•连云港)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是( )A.54B.36C.27D.21一十五.相似三角形的判定(共1小题)20.(2022•连云港)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE=DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是( )A.①②③B.①③④C.①④⑤D.②③④一十六.相似三角形的判定与性质(共1小题)21.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是( )A.B.C.D.一十七.由三视图判断几何体(共1小题)22.(2023•连云港)下列水平放置的几何体中,主视图是圆形的是( )A.B.C.D.一十八.众数(共1小题)23.(2022•连云港)在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是( )A.38B.42C.43D.45一十九.几何概率(共1小题)24.(2023•连云港)如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为( )A .B .C .D .江苏省连云港市2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.相反数(共2小题)1.(2023•连云港)﹣6的相反数是( )A.﹣B.C.﹣6D.6【答案】D【解答】解:﹣6的相反数是6.故选:D.2.(2021•连云港)﹣3的相反数是( )A.B.C.3D.﹣3【答案】C【解答】解:∵互为相反数相加等于0,∴﹣3的相反数,3.故选:C.二.倒数(共1小题)3.(2022•连云港)﹣3的倒数为( )A.﹣B.C.3D.﹣3【答案】A【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:A.三.科学记数法—表示较大的数(共3小题)4.(2023•连云港)2023年4月26日,第十二届江苏园艺博览会在我市隆重开幕.会场所在地园博园分为“山海韵”“丝路情”“田园画”三大片区,共占地约2370000平方米.其中数据“2370000”用科学记数法可表示为( )A.2.37×106B.2.37×105C.0.237×107D.237×104【答案】A【解答】解:2370000=2.37×106,故选:A.5.(2022•连云港)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为( )A.0.146×108B.1.46×107C.14.6×106D.146×105【答案】B【解答】解:14600000=1.46×107.故选:B.6.(2021•连云港)2021年5月18日上午,江苏省人民政府召开新闻发布会,公布了全省最新人口数据,其中连云港市的常住人口约为4600000人.把“4600000”用科学记数法表示为( )A.0.46×107B.4.6×107C.4.6×106D.46×105【答案】C【解答】解:4600000=4.6×106.故选:C.四.完全平方公式(共1小题)7.(2021•连云港)下列运算正确的是( )A.3a+2b=5ab B.5a2﹣2b2=3C.7a+a=7a2D.(x﹣1)2=x2+1﹣2x【答案】D【解答】解:A.3a和2b不是同类项,不能合并,A错误,故选项A不符合题意;B.5a2和2b2不是同类项,不能合并,B错误,故选项B不符合题意;C.7a+a=8a,C错误,故选项C不符合题意;D.(x﹣1)2=x2﹣2x+1,D正确,选项D符合题意.故选:D.五.由实际问题抽象出一元一次方程(共1小题)8.(2023•连云港)元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A.=B.=﹣12C.240(x﹣12)=150x D.240x=150(x+12)【答案】D【解答】解:∵慢马先行12天,快马x天可追上慢马,∴快马追上慢马时,慢马行了(x+12)天.根据题意得:240x=150(x+12).故选:D.六.函数自变量的取值范围(共1小题)9.(2022•连云港)函数y=中自变量x的取值范围是( )A.x≥1B.x≥0C.x≤0D.x≤1【答案】A【解答】解:∵x﹣1≥0,∴x≥1.故选:A.七.反比例函数图象上点的坐标特征(共1小题)10.(2021•连云港)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图象经过点(﹣1,1);乙:函数图象经过第四象限;丙:当x>0时,y随x的增大而增大.则这个函数表达式可能是( )A.y=﹣x B.y=C.y=x2D.y=﹣【答案】D【解答】解:把点(﹣1,1)分别代入四个选项中的函数表达式,可得,选项B不符合题意;又函数过第四象限,而y=x2只经过第一、二象限,故选项C不符合题意;对于函数y=﹣x,当x>0时,y随x的增大而减小,与丙给出的特征不符合,故选项A 不符合题意.故选:D.八.认识平面图形(共1小题)11.(2023•连云港)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形;乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O的两条线段与一段圆弧所围成的图形.下列叙述正确的是( )A.只有甲是扇形B.只有乙是扇形C.只有丙是扇形D.只有乙、丙是扇形【答案】B【解答】解:由扇形的定义可知,只有乙是扇形,故选:B.九.多边形内角与外角(共1小题)12.(2021•连云港)正五边形的内角和是( )A.360°B.540°C.720°D.900°【答案】B【解答】解:正五边形的内角和是:(5﹣2)×180°=3×180°=540°,故选:B.一十.正多边形和圆(共1小题)13.(2021•连云港)如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O 的面积为2π,MN=1,则△AMN周长的最小值是( )A.3B.4C.5D.6【答案】B【解答】解:⊙O的面积为2π,则圆的半径为,则BD=2=AC,由正方形的性质,知点C是点A关于BD的对称点,过点C作CA′∥BD,且使CA′=1,连接AA′交BD于点N,取NM=1,连接AM、CM,则点M、N为所求点,理由:∵A′C∥MN,且A′C=MN,则四边形MCA′N为平行四边形,则A′N=CM=AM,故△AMN的周长=AM+AN+MN=AA′+1为最小,则A′A==3,则△AMN的周长的最小值为3+1=4,故选:B.一十一.扇形面积的计算(共2小题)14.(2023•连云港)如图,矩形ABCD内接于⊙O,分别以AB、BC、CD、AD为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是( )A.π﹣20B.π﹣20C.20πD.20【答案】D【解答】解:如图,连接BD,则BD过点O,在Rt△ABD中,AB=4,BC=5,∴BD2=AB2+AD2=41,S阴影部分=S以AD为直径的圆+S以AB为直径的圆+S矩形ABCD﹣S以BD为直径的圆=π×()2+π×()2+4×5﹣π×()2=+20﹣=20,故选:D.15.(2022•连云港)如图,有一个半径为2的圆形时钟,其中每个相邻刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A.π﹣B.π﹣C.π﹣2D.π﹣【答案】B【解答】解:连接OA、OB,过点O作OC⊥AB,由题意可知:∠AOB=60°,∵OA=OB,∴△AOB为等边三角形,∴AB=AO=BO=2∴S扇形AOB==π,∵OC⊥AB,∴∠OCA=90°,AC=1,∴OC=,∴S△AOB==,∴阴影部分的面积为:π﹣;故选:B.一十二.轴对称图形(共2小题)16.(2023•连云港)在美术字中,有些汉字可以看成是轴对称图形.下列汉字中,是轴对称图形的是( )A.B.C.D.【答案】C【解答】解:中沿中间的竖线折叠,直线两旁的部分能完全重合,“中”是轴对称图形,故选:C.17.(2022•连云港)下列图案中,是轴对称图形的是( )A.B.C.D.【答案】A【解答】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C.不是轴对称图形,故此选项不符合题意;D.不是轴对称图形,故此选项不符合题意;故选:A.一十三.翻折变换(折叠问题)(共1小题)18.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于( )A.128°B.130°C.132°D.136°【答案】A【解答】解:如图,在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=64°,∠EGB=∠DEG,由折叠可知∠GEF=∠DEF=64°,∴∠DEG=128°,∴∠EGB=∠DEG=128°,故选:A.一十四.相似三角形的性质(共1小题)19.(2022•连云港)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是( )A.54B.36C.27D.21【答案】C【解答】解:方法一:设2对应的边是x,3对应的边是y,∵△ABC∽△DEF,∴==,∴x=6,y=9,∴△DEF的周长是27;方式二:∵△ABC∽△DEF,∴=,∴=,∴C△DEF=27;故选:C.一十五.相似三角形的判定(共1小题)20.(2022•连云港)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE=DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是( )A.①②③B.①③④C.①④⑤D.②③④【答案】B【解答】解:由折叠性质可得:DG=OG=AG,AE=OE=BE,OC=BC,∠DGF=∠FGO,∠AGE=∠OGE,∠AEG=∠OEG,∠OEC=∠BEC,∴∠FGE=∠FGO+∠OGE=90°,∠GEC=∠OEG+∠OEC=90°,∴∠FGE+∠GEC=180°,∴GF∥CE,故①正确;设AD=2a,AB=2b,则DG=OG=AG=a,AE=OE=BE=b,∴CG=OG+OC=3a,在Rt△CGE中,CG2=GE2+CE2,(3a)2=a2+b2+b2+(2a)2,解得:b=a,∴AB=AD,故②错误;在Rt△COF中,设OF=DF=x,则CF=2b﹣x=2a﹣x,∴x2+(2a)2=(2a﹣x)2,解得:x=a,∴DF=×a=a,2OF=2×a=2a,在Rt△AGE中,GE==a,∴GE=DF,OC=2OF,故③④正确;无法证明∠FCO=∠GCE,∴无法判断△COF∽△CEG,故⑤错误;综上,正确的是①③④,故选:B.一十六.相似三角形的判定与性质(共1小题)21.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是( )A.B.C.D.【答案】A【解答】解:如图,过点C作BD的垂线,交BD的延长线于点E,则∠E=90°,∵BD⊥AB,CE⊥BD,∴AB∥CE,∠ABD=90°,∴△ABD∽△CED,∴==,∵AD=AC,∴=,∴===,则CE=,∵∠ABC=150°,∠ABD=90°,∴∠CBE=60°,∴BE=CE=,∴BD=BE=,∴S△BCD=•BD•CE=×=.故选:A.一十七.由三视图判断几何体(共1小题)22.(2023•连云港)下列水平放置的几何体中,主视图是圆形的是( )A.B.C.D.【答案】C【解答】解:A.主视图是三角形,故此选项不符合题意;B.主视图是梯形,故此选项不合题意;C.主视图是圆,故此选项符合题意;D.主视图是矩形,故此选项不合题意;故选:C.一十八.众数(共1小题)23.(2022•连云港)在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是( )A.38B.42C.43D.45【答案】D【解答】解:∵45出现了3次,出现的次数最多,∴这组数据的众数为45;故选:D.一十九.几何概率(共1小题)24.(2023•连云港)如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为( )A.B.C.D.【答案】B【解答】解:设16个相同的小正方形的边长为a,则4个相同的大正方形的边长为1.5a,∴点P落在阴影部分的概率为=,故选:B.。

中考数学专题13 圆与正多边形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

中考数学专题13 圆与正多边形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题13.圆与正多边形一、单选题1.(2021·四川成都市·中考真题)如图,正六边形ABCDEF 的边长为6,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为( )A .4πB .6πC .8πD .12π2.(2021·云南中考真题)如图,等边ABC 的三个顶点都在O 上,AD 是O 的直径.若3OA =,则劣弧BD 的长是( )A .2πB .πC .32πD .2π3.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在4.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A ,B 两点,他测得“图上”圆的半径为10厘米,16AB =厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为( ).A .1.0厘米/分B .0.8厘米分C .12厘米/分D .1.4厘米/分5.(2021·山东聊城市·中考真题)如图,A ,B ,C 是半径为1的⊙O 上的三个点,若AB ,∠CAB =30°,则∠ABC 的度数为( )A .95°B .100°C .105°D .110°6.(2021·山东泰安市·中考真题)如图,四边形ABCD 是O 的内接四边形,90B ∠=︒,120BCD ∠=︒,2AB =,1CD =,则AD 的长为( )A .2-B .3C .4D .27.(2021·四川广元市·中考真题)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90︒的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )A .4πB .4C .12D .18.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD ∠的度数为( )A .15︒B .22.5︒C .30D .45︒9.(2021·四川广元市·中考真题)如图,在边长为2的正方形ABCD 中,AE 是以BC 为直径的半圆的切线,则图中阴影部分的面积为( )A .32π+B .2π-C .1D .52π-10.(2021·湖北荆州市·中考真题)如图,在菱形ABCD 中,60D ∠=︒,2AB =,以B 为圆心、BC 长为半径画AC ,点P 为菱形内一点,连接PA ,PB ,PC .当BPC △为等腰直角三角形时,图中阴影部分的面积为( )A .23πB .23πC .2πD .2π 11.(2021·浙江衢州市·中考真题)已知扇形的半径为6,圆心角为150︒.则它的面积是( ) A .32π B .3π C .5π D .15π12.(2021·江苏连云港市·中考真题)如图,正方形ABCD 内接于O ,线段MN 在对角线BD 上运动,若O 的面积为2π,1MN =,则AMN 周长的最小值是( )A .3B .4C .5D .613.(2021·湖南怀化市·中考真题)以下说法错误的是( )A .多边形的内角大于任何一个外角B .任意多边形的外角和是360︒C .正六边形是中心对称图形D .圆内接四边形的对角互补14.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-15.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为 A .70° B .90° C .40° D .60°16.(2021·四川泸州市·中考真题)如图,⊙O 的直径AB =8,AM ,BN 是它的两条切线,DE 与⊙O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,BD ,OC 相交于点F ,若CD =10,则BF 的长是ABCD17.(2021·四川遂宁市·中考真题)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ,垂足为点F ,若⊙O的半径为CDF =15°, 则阴影部分的面积为( ) A.16π- B.16π- C.20π- D.20π-18.(2021·浙江中考真题)如图,已知点O 是ABC 的外心,∠40A =︒,连结BO ,CO ,则BOC ∠的度数是( ).A .60︒B .70︒C .80︒D .90︒19.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅20.(2021·重庆中考真题)如图,四边形ABCD 内接于☉O ,若∠A =80°,则∠C 的度数是( ) A .80° B .100° C .110° D .120°21.(2021·浙江金华市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,以该三角形的三条边为边向形外作正方形,正方形的顶点,,,,,E F G H M N 都在同一个圆上.记该圆面积为1S ,ABC 面积为2S ,则12S S 的值是( )A .52πB .3πC .5πD .112π 22.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°23.(2021·浙江绍兴市·中考真题)如图,正方形ABCD 内接于O ,点P 在AB 上,则P ∠的度数为( ) A .30 B .45︒ C .60︒ D .90︒24.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm25.(2021·浙江嘉兴市·中考真题)已知平面内有O 和点A ,B ,若O 半径为2cm ,线段3cm OA =,2cm OB =,则直线AB 与O 的位置关系为( )A .相离B .相交C .相切D .相交或相切26.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( ) A .163π B .643π C .16π D .64π27.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .1928.(2020·广西贵港市·中考真题)如图,动点M 在边长为2的正方形ABCD 内,且AM BM ⊥,P 是CD 边上的一个动点,E 是AD 边的中点,则线段PE PM +的最小值为( )A 1B 1CD 129.(2020·四川广安市·中考真题)如图,点A ,B ,C ,D 四点均在圆O 上,∠AOD=68°,AO//DC ,则∠B 的度数为( )A .40°B .60°C .56°D .68°30.(2019·广西玉林市·中考真题)如图,在Rt ABC ∆中,90︒∠=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8二、填空题目31.(2021·青海中考真题)点P 是非圆上一点,若点P 到O 上的点的最小距离是4cm ,最大距离是9cm ,则O 的半径是______.32.(2021·北京中考真题)如图,,PA PB 是O 的切线,,A B 是切点.若50P ∠=︒,则AOB ∠=______________.33.(2021·山东聊城市·中考真题)用一块弧长16πcm 的扇形铁片,做一个高为6cm 的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm 234.(2021·四川广元市·中考真题)如图,在44⨯的正方形网格图中,已知点A 、B 、C 、D 、O 均在格点上,其中A 、B 、D 又在O 上,点E 是线段CD 与O 的交点.则BAE ∠的正切值为________.35.(2021·四川资阳市·中考真题)如图,在矩形ABCD 中,2cm,AB AD ==,以点B 为圆心,AB长为半径画弧,交CD 于点E ,则图中阴影部分的面积为_______2cm .36.(2021·江苏宿迁市·中考真题)如图,在Rt △ABC 中,∠ABC =90°,∠A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则∠ABE =__________.37.(2021·江苏宿迁市·中考真题)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.38.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .39.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.40.(2021·湖南中考真题)如图,方老师用一张半径为18cm 的扇形纸板,做了一个圆锥形帽子(接缝忽略不计).如果圆锥形帽子的半径是10cm ,那么这张扇形纸板的面积是______2cm (结果用含π的式子表示).41.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.42.(2021·重庆中考真题)如图,矩形ABCD 的对角线AC ,BD 交于点O ,分别以点A ,C 为圆心,AO 长为半径画弧,分别交AB ,CD 于点E ,F .若BD =4,∠CAB =36°,则图中阴影部分的面积为___________.(结果保留π).43.(2021·浙江宁波市·中考真题)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,,AC BD 分别与O 相切于点C ,D ,延长,AC BD 交于点P .若120P ∠=︒,O 的半径为6cm ,则图中CD 的长为________cm .(结果保留π)44.(2021·山东泰安市·中考真题)若ABC 为直角三角形,4AC BC ==,以BC 为直径画半圆如图所示,则阴影部分的面积为________.45.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.46.(2021·浙江温州市·中考真题)如图,O 与OAB 的边AB 相切,切点为B .将OAB 绕点B 按顺时针方向旋转得到O A B '''△,使点O '落在O 上,边A B '交线段AO 于点C .若25A '∠=︒,则OCB ∠=______度.47.(2021·甘肃武威市·中考真题)如图,从一块直径为4dm 的圆形铁皮上剪出一个圆心角为90︒的扇形,则此扇形的面积为_____2dm .48.(2021·四川凉山彝族自治州·中考真题)如图,等边三角形ABC 的边长为4,C P 为AB 边上一动点,过点P 作C 的切线PQ ,切点为Q ,则PQ 的最小值为________.49.(2021·四川凉山彝族自治州·中考真题)如图,将ABC 绕点C 顺时针旋转120︒得到''A B C .已知3,2AC BC ==,则线段AB 扫过的图形(阴影部分)的面积为__________________.50.(2021·重庆中考真题)如图,在菱形ABCD 中,对角线12AC =,16BD =,分别以点A ,B ,C ,D 为圆心,12AB 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为__________.(结果保留π) 51.(2021·湖南常德市·中考真题)如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=80°,则∠BCD 的度数是_____.52.(2020·贵州黔西南布依族苗族自治州·中考真题)如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为_____.53.(2020·广西中考真题)如图,在Rt ABC 中,AB =AC =4,点E ,F 分别是AB ,AC 的中点,点P 是扇形AEF 的EF 上任意一点,连接BP ,CP ,则12BP +CP 的最小值是_____. 54.(2020·江苏盐城市·中考真题)如图,在O 中,点A 在BC 上,100,BOC ∠=︒则BAC ∠=______三、解答题55.(2021·甘肃武威市·中考真题)如图,内接于是的直径的延长线上一点,.过圆心作的平行线交的延长线于点.(1)求证:是的切线;(2)若,求的半径及的值;56.(2021·四川资阳市·中考真题)如图,在中,,以为直径的交于点D ,交的延长线于点E ,交于点F .(1)求证:是的切线;(2)若,求的长.57.(2021·四川凉山彝族自治州·中考真题)如图,在中,,AE 平分交BC 于点E ,点D 在AB 上,.是的外接圆,交AC 于点F .(1)求证:BC 是的切线;(2)若的半径为5,,求.ABC ,O D O AB DCB OAC ∠=∠O BC DC E CD O 4,6CD CE ==O tan OCB∠ABC AB AC =AB O BC DE AC ⊥BA AC DE O tan 36,4AC E ==AF C Rt AB 90C ∠=︒BAC ∠ DE AE ⊥O Rt ADE △O O 8AC =ADES58.(2021·四川泸州市·中考真题)如图,ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC, (1)求证:;(2)若,于点,,,求的值59.(2021·江苏连云港市·中考真题)如图,中,,以点C 为圆心,为半径作,D 为上一点,连接、,,平分.(1)求证:是的切线;(2)延长、相交于点E ,若,求的值.60.(2021·云南中考真题)如图,是的直径,点C 是上异于A 、B 的点,连接、,点D 在的延长线上,且,点E 在的延长线上,且. (1)求证:是的切线:(2)若,求的长.ACF B ∠=∠AB BC =AD BC ⊥D 4FC =2FA =ADAE Rt ABC 90ABC ∠=︒CB C C AD CD AB AD =AC BAD ∠AD C AD BC 2EDCABCSS=tan BAC∠AB O O AC BC BA DCA ABC ∠=∠DC BE DC ⊥DC O 2,33OA BE OD ==DA61.(2021·四川南充市·中考真题)如图,A ,B 是上两点,且,连接OB 并延长到点C ,使,连接AC .(1)求证:AC 是的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交于点F ,G ,,求GF 的长.62.(2021·浙江金华市·中考真题)在扇形中,半径,点P 在OA 上,连结PB ,将沿PB 折叠得到.(1)如图1,若,且与所在的圆相切于点B .①求的度数.②求AP 的长.(2)如图2,与相交于点D ,若点D 为的中点,且,求的长.O AB OA =BC OB =O O 4OA=AOB 6OA =OBP O BP '75O ∠=︒BO 'AB APO ∠'BO 'AB AB //PD OBAB63.(2021·四川广元市·中考真题)如图,在Rt 中,,是的平分线,以为直径的交边于点E ,连接,过点D 作,交于点F .(1)求证:是的切线;(2)若,,求线段的长.64.(2021·江苏宿迁市·中考真题)如图,在Rt △AOB 中,∠AOB =90°,以点O 为圆心,OA 为半径的圆交AB 于点C ,点D 在边OB 上,且CD= BD .(1)判断直线CD 与圆O 的位置关系,并说明理由; (2)已知AB =40,求的半径.ABC 90ACB ∠=︒AD BAC ∠AD O AB CE //DF CE AB DF O 5BD =3sin 5B ∠=DF 24tan 7DOC ∠=,O65.(2021·湖北随州市·中考真题)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;(2)①如图1,是边长为的正内任意一点,点为的中心,设点到各边距离分别为,,,连接,,,由等面积法,易知,可得_____;(结果用含的式子表示) ②如图2,是边长为的正五边形内任意一点,设点到五边形各边距离分别为,,,,,参照①的探索过程,试用含的式子表示的值.(参考数据:,) (3)①如图3,已知的半径为2,点为外一点,,切于点,弦,连接,则图中阴影部分的面积为______;(结果保留)②如图4,现有六边形花坛,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形,其中点在的延长线上,且要保证改造前后花坛的面积不变,试确定点的位置,并说明理由.P a ABC O ABC P ABC 1h 2h 3h AP BP CP ()123123ABC OAB h h h S a S ++==△△123h h h ++=a P a ABCDE P ABCDE 1h 2h 3h 4h 5h a 12345h h h h h ++++8tan 3611≈°11tan 548≈°O A O 4OA =AB O B //BC OA AC πABCDEF ABCDG G AFG66.(2021·湖北随州市·中考真题)如图,是以为直径的上一点,过点的切线交的延长线于点,过点作交的延长线于点,垂足为点.(1)求证:;(2)若的直径为9,.①求线段的长;②求线段的长.67.(2021·河北中考真题)如图,的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为(为1~12的整数),过点作的切线交延长线于点.(1)通过计算比较直径和劣弧长度哪个更长;(2)连接,则和有什么特殊位置关系?请简要说明理由;(3)求切线长的值.D AB O D DE AB E B BC DE ⊥AD CF AB BC =OAB 1sin 3A =BFBE O n A n 7A O 111A A P 711A A 711A A 711A A 1PA 7PA68.(2021·山东菏泽市·中考真题)如图,在中,是直径,弦,垂足为,为上一点,为弦延长线上一点,连接并延长交直径的延长线于点,连接交于点,若.(1)求证:是的切线;(2)若的半径为8,,求的长.69.(2020·内蒙古呼和浩特市·中考真题)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段.如图,圆内接正五边形,圆心为O,与交于点H,、与分别交于点M 、N.根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)(1)求证:是等腰三角形且底角等于36°,并直接说出的形状;(2)求证:,且其比值;(3)由对称性知,由(1)(2)可知也是一个黄金分割数,据此求的值.O AB CD AB⊥H E BC F DC FE AB G AE CD PFE FP=FE O O3sin5F=BG0.618≈ABCDE OA BE AC AD BEABM BAN BM BNBN BE=k=AO BE⊥MNBMsin18︒70.(2019·山西中考真题)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则. 如图1,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切分于点F ,设⊙O 的半径为R ,⊙I 的半径为r ,外心O (三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离OI =d ,则有d 2=R 2﹣2Rr .下面是该定理的证明过程(部分):延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN. ∵∠D=∠N ,∠DMI=∠NAI(同弧所对的圆周角相等), ∴△MDI ∽△ANI ,∴,∴①, 如图2,在图1(隐去MD ,AN)的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF , ∵DE 是⊙O 的直径,∴∠DBE=90°,∵⊙I 与AB 相切于点F ,∴∠AFI=90°,∴∠DBE=∠IFA , ∵∠BAD=∠E(同弧所对圆周角相等),∴△AIF ∽△EDB , ∴,∴②, 任务:(1)观察发现:, (用含R ,d 的代数式表示);(2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为 cm.222OI R Rr =-IM IDIA IN=IA ID IM IN ⋅=⋅IA IF DE BD=IA BD DE IF ⋅=⋅IM R d =+IN=祝你考试成功!祝你考试成功!。

2023年中考数学一轮专题练习 ——正多边形和圆(含解析)

2023年中考数学一轮专题练习 ——正多边形和圆(含解析)

2023年中考数学一轮专题练习 ——正多边形和圆一、单选题(本大题共8小题)1. (上海市2022年)有一个正n 边形旋转90后与自身重合,则n 为( ) A .6B .9C .12D .15 2. (湖南省邵阳市2022年)如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A.32 B .C D .523. (四川省雅安市2022年)如图,已知⊙O 的周长等于6π,则该圆内接正六边形ABCDEF 的边心距OG 为( )A .3B .32CD .34. (四川省南充市2022年)如图,在正五边形ABCDE 中,以AB 为边向内作正ABF ,则下列结论错误的是( )A .AE AF =B .EAF CBF ∠=∠C .F EAF ∠=∠D .CE ∠=∠ 5. (四川省内江市2022年)如图,正六边形ABCDEF 内接于⊙O ,半径为6,则这个正六边形的边心距OM 和BC 的长分别为( )A .4,3πB .πC .43πD .32π6. (四川省成都市2022年)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )AB .C .3D .7. (广西玉林市2022年)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A .4B .C .2D .08. (河南省2022年)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A .)1-B .(1,-C .()1-D .( 二、填空题(本大题共5小题)9. (辽宁省营口市2022年)如图,在正六边形ABCDEF 中,连接,AC CF ,则ACF ∠= 度.10. (江苏省宿迁市2022年)如图,在正六边形ABCDEF 中,AB =6,点M 在边AF 上,且AM =2.若经过点M 的直线l 将正六边形面积平分,则直线l 被正六边形所截的线段长是 .11. (吉林省长春市2022年)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC 和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若27AB =厘米,则这个正六边形的周长为 厘米.12. (吉林省2022年)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为 度.(写出一个即可)13. (黑龙江省绥化市2022年)如图,正六边形ABCDEF 和正五边形AHIJK 内接于O ,且有公共顶点A ,则BOH ∠的度数为 度.三、解答题(本大题共1小题)14. (浙江省金华市2022年)如图1,正五边形ABCDE 内接于⊙O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接,,AM MN NA .(1)求ABC ∠的度数.(2)AMN 是正三角形吗?请说明理由.(3)从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值.参考答案1. 【答案】C【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90是30的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.2. 【答案】C【分析】作直径AD,连接CD,如图,利用等边三角形的性质得到∠B=60°,关键圆周角定理得到∠ACD=90°,∠D=∠B=60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD,连接CD,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD∴OA =OB =12AD 故选:C .3. 【答案】C【分析】 利用圆的周长先求出圆的半径,正六边形的边长等于圆的半径,正六边形一条边与圆心构成等边三角形,根据边心距即为等边三角形的高用勾股定理求出OG .【详解】∵圆O 的周长为6π,设圆的半径为R ,∴26R ππ=∴R =3连接OC 和OD ,则OC=OD=3∵六边形ABCDEF 是正六边形,∴∠COD =360606︒=︒, ∴△OCD 是等边三角形,OG 垂直平分CD , ∴OC =OD =CD ,1322CG CD ==∴OG =故选 C4. 【答案】C【分析】利用正多边形各边长度相等,各角度数相等,即可逐项判断.【详解】解:∵多边形ABCDE 是正五边形,∴该多边形内角和为:5218540(0)-⨯︒=︒,AB AE =, ∴5401085C E EAB ABC ︒∠=∠=∠=∠==︒,故D 选项正确; ∵ABF 是正三角形,∴60FAB FBA F ∠=∠=∠=︒,AB AF FB ==,∴1086048EAF EAB FAB ∠=∠-∠=︒-︒=︒,1086048CBF ABC FBA ∠=∠-∠=︒-︒=︒, ∴EAF CBF ∠=∠,故B 选项正确;∵AB AE =,AB AF FB ==,∴AE AF =,故A 选项正确;∵60F ∠=︒,48EAF ∠=︒,∴F EAF ∠≠∠,故C 选项错误,故选:C .5. 【答案】D【分析】连接OC 、OB ,证出BOC ∆是等边三角形,根据勾股定理求出OM ,再由弧长公式求出弧BC 的长即可.【详解】解:连接OC 、OB ,六边形ABCDEF 为正六边形,360606BOC ︒∴∠==︒, OB OC =,BOC ∴∆为等边三角形,6BC OB ∴==,OM BC ⊥,132BM BC ∴==,OM ∴==BC 的长为6062180ππ⨯==. 故选:D .6. 【答案】C【分析】连接OB ,OC ,由⊙O 的周长等于6π,可得⊙O 的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB ,OC ,∵⊙O 的周长等于6π,∴⊙O 的半径为:3,∵∠BOC 61=⨯360°=60°, ∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3,故选:C .7. 【答案】B【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.解:∵2022÷3=674,2022÷1=2022,∴67461122,20226337÷=⋅⋅⋅⋅⋅÷=,∴经过2022秒后,红跳棋落在点A 处,黑跳棋落在点E 处,连接AE ,过点F 作FG ⊥AE 于点G ,如图所示:在正六边形ABCDEF 中,2,120AF EF AFE ==∠=︒, ∴1,302AG AE FAE FEA =∠=∠=︒, ∴112FG AF ==,∴AG =∴AE =故选B .8. 【答案】B【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,∴AP =1, AO =2,∠OPA =90°,∴OP =∴A(1第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1,∵将△OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,9. 【答案】30【分析】连接BE ,交CF 与点O ,连接OA ,先求出360606AOF ︒∠==︒,再根据等腰三角形等边对等角的性质,三角形外角的性质求解即可.【详解】连接BE ,交CF 与点O ,连接OA ,在正六边形ABCDEF 中,360606AOF ︒∴∠==︒, OA OC =OAC OCA ∴∠=∠2AOF OAC ACF ACF ∠=∠+∠=∠30ACF =∴∠︒,故答案为:30.10. 【答案】【分析】如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P ,由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH = 可得直线MH 平分正六边形的面积,O 为正六边形的中心,再利用直角三角形的性质可得答案.【详解】解:如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P , 由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH =∴直线MH 平分正六边形的面积,O 为正六边形的中心,由正六边形的性质可得:AOF 为等边三角形,60,AFO 而6,AB =6,3,ABAF OF OA AP FP 226333,OP2,AM 则1,MP22OM13327,MH OM247.故答案为:11. 【答案】54【分析】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,再证明△FMN、△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形即可求解.【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,∵六边形MNGHPO是正六边形,∴∠GNM=∠NMO=120°,∴∠FNM=∠FNM=60°,∴△FMN是等边三角形,同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,∴MO=BM,NG=AN,OP=PD,GH=HE,∴NG+MN+MO=AN+MN+BM=AB,GH+PH+OP=HE+PH+PD=DE,∵等边△ABC≌等边△DEF,∴AB=DE,∵AB=27cm,∴DE=27cm,∴正六边形MNGHPO的周长为:NG+MN+MO+GH+PH+OP=AB+DE=54cm,故答案为:54.12. 【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】 解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒, 0360α︒<<︒,∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).13. 【答案】12【分析】连接AO ,求出正六边形和正五边形的中心角即可作答.【详解】连接AO ,如图,∵多边形ABCDEF 是正六边形,∴∠AOB =360°÷6=60°,∵多边形AHIJK 是正五边形,∴∠AOH =360°÷5=72°,∴∠BOH =∠AOH -∠AOB =72°-60°=12°,故答案为:12.14. 【答案】(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:∵正五边形ABCDE .∴BC CD DE AE AB ====, ∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,∵ON OF =,∴ON OF FN ==,∴OFN △是正三角形,∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,∴AMN 是正三角形;(3)∵AMN 是正三角形,∴2120A N A N M O =∠=︒∠.∵2AD AE =,∴272144AOD ∠=⨯︒=︒,∵DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==.。

辽宁省2019年、2020年中考数学试题分类汇编(11)——圆(含答案)

辽宁省2019年、2020年中考数学试题分类汇编(11)——圆(含答案)

2019年、2020年辽宁省数学中考试题分类(11)——圆一.圆周角定理(共4小题)1.(2020•阜新)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为()A.57°B.52°C.38°D.26°2.(2020•营口)如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是()A.110°B.130°C.140°D.160°3.(2019•营口)如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°̂的中点,BD交OC于4.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是AC点E,∠AOC=100°,∠OCD=35°,那么∠OED=.二.三角形的外接圆与外心(共3小题)5.(2020•鞍山)如图,⊙O是△ABC的外接圆,半径为2cm,若BC=2cm,则∠A的度数为()A.30°B.25°C.15°D.10°̂的长为.6.(2020•锦州)如图,⊙O是△ABC的外接圆,∠ABC=30°,AC=6,则AC7.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.三.直线与圆的位置关系(共2小题)8.(2020•丹东)如图,已知△ABC,以AB为直径的⊙O交AC于点D,连接BD,∠CBD的平分线交⊙O于点E,交AC于点F,且AF=AB.(1)判断BC所在直线与⊙O的位置关系,并说明理由;(2)若tan∠FBC=13,DF=2,求⊙O的半径.9.(2019•抚顺)如图,在△ABC中,∠ACB=90°,CA=CB,点O在△ABC的内部,⊙O 经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作▱GDEC.(1)判断DE与⊙O的位置关系,并说明理由.(2)若点B是DBĈ的中点,⊙O的半径为2,求BĈ的长.四.切线的性质(共6小题)10.(2019•阜新)如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.25°B.30°C.35°D.40°11.(2020•大连)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=512,BC=1,求PD的长.12.(2020•鞍山)如图,AB是⊙O的直径,点C,点D在⊙O上,AĈ=CD̂,AD与BC相交于点E,AF与⊙O相切于点A,与BC延长线相交于点F.(1)求证:AE=AF.(2)若EF=12,sin∠ABF=35,求⊙O的半径.13.(2019•营口)如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,以AE为直径的⊙O与边CD相切于点F,连接BF交⊙O于点G,连接EG.(1)求证:CD=AD+CE.(2)若AD=4CE,求tan∠EGF的值.14.(2019•沈阳)如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4√5,CD=4,则⊙O的半径是.15.(2019•大连)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.五.切线的判定与性质(共11小题)16.(2020•葫芦岛)如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.17.(2020•沈阳)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.18.(2020•营口)如图,△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)求证:AB为⊙O的切线;(2)若tan A=34,AD=2,求BO的长.19.(2020•辽阳)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.20.(2019•朝阳)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB 交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,DH=√5,求⊙O的半径.21.(2019•鞍山)如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE =∠DCE.(1)求证:DF是⊙O的切线.(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.22.(2019•盘锦)如图,△ABC内接于⊙O,AD与BC是⊙O的直径,延长线段AC至点G,使AG=AD,连接DG交⊙O于点E,EF∥AB交AG于点F.(1)求证:EF与⊙O相切.(2)若EF=2√3,AC=4,求扇形OAC的面积.̂=BN̂,弦MN交AB 23.(2019•锦州)如图,M,N是以AB为直径的⊙O上的点,且AN于点C,BM平分∠ABD,MF⊥BD于点F.(1)求证:MF是⊙O的切线;(2)若CN=3,BN=4,求CM的长.24.(2019•葫芦岛)如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O 交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;(2)若cos∠CAD=35,AF=6,MD=2,求FC的长.25.(2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=2√3,求阴影部分的面积.26.(2019•本溪)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=12,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.六.正多边形和圆(共3小题)27.(2020•阜新)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i∁i D i E i,则正六边形OA i B i∁i D i E i(i=2020)的顶点∁i的坐标是()A.(1,−√3)B.(1,√3)C.(1,﹣2)D.(2,1)28.(2020•葫芦岛)如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EF A的度数是.29.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.七.弧长的计算(共4小题)30.(2020•盘锦)如图,在△ABC 中,AB =BC ,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,点E 为线段OB 上的一点,OE :EB =1:√3,连接DE 并延长交CB 的延长线于点F ,连接OF 交⊙O 于点G ,若BF =2√3,则BĜ的长是( )A .π3B .π2C .2π3D .3π431.(2020•沈阳)如图,在矩形ABCD 中,AB =√3,BC =2,以点A 为圆心,AD 长为半径画弧交边BC 于点E ,连接AE ,则DÊ的长为( )A .4π3B .πC .2π3D .π332.(2019•鞍山)如图,AC 是⊙O 的直径,B ,D 是⊙O 上的点,若⊙O 的半径为3,∠ADB =30°,则BĈ的长为 .33.(2019•铁岭)如图,点A ,B ,C 在⊙O 上,∠A =60°,∠C =70°,OB =9,则AB̂的长为 .八.扇形面积的计算(共2小题)34.(2020•朝阳)如图,点A ,B ,C 是⊙O 上的点,连接AB ,AC ,BC ,且∠ACB =15°,过点O 作OD ∥AB 交⊙O 于点D ,连接AD ,BD ,已知⊙O 半径为2,则图中阴影面积为 .35.(2019•抚顺)如图,直线l 1的解析式是y =√33x ,直线l 2的解析式是y =√3x ,点A 1在l 1上,A 1的横坐标为32,作A 1B 1⊥l 1交l 2于点B 1,点B 2在l 2上,以B 1A 1,B 1B 2为邻边在直线l 1,l 2间作菱形A 1B 1B 2C 1,分别以点A 1,B 2为圆心,以A 1B 1为半径画弧得扇形B 1A 1C 1和扇形B 1B 2C 1,记扇形B 1A 1C 1与扇形B 1B 2C 1重叠部分的面积为S 1;延长B 2C 1交l 1于点A 2,点B 3在l 2上,以B 2A 2,B 2B 3为邻边在l 1,l 2间作菱形A 2B 2B 3C 2,分别以点A 2,B 3为圆心,以A 2B 2为半径画弧得扇形B 2A 2C 2和扇形B 2B 3C 2,记扇形B 2A 2C 2与扇形B 2B 3C 2重叠部分的面积为S 2………按照此规律继续作下去,则S n = .(用含有正整数n 的式子表示)九.圆锥的计算(共2小题)36.(2020•营口)一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为.37.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为.一十.圆的综合题(共2小题)38.(2020•盘锦)如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD,过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当AFBF =25,CE=4时,直接写出CG的长.39.(2019•丹东)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O 与边BC相切于点E,与边AC相交于点G,且AĜ=EĜ,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD=6,求图形中阴影部分的面积.2019年、2020年辽宁省数学中考试题分类(11)——圆参考答案与试题解析一.圆周角定理(共4小题)1.【解答】解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=38°,∴∠BAC=90°﹣∠ABC=52°,∴∠BDC=∠BAC=52°.故选:B.2.【解答】解:如图,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣40°=50°,∵∠B+∠ADC=180°,∴∠ADC=180°﹣50°=130°.故选:B.3.【解答】解:连接AC,如图,∵BC是⊙O的直径,∴∠BAC=90°,∵∠ACB=∠ADB=70°,∴∠ABC=90°﹣70°=20°.故选:A.4.【解答】解:连接OB.∵AB̂=BĈ,∴∠AOB=∠BOC=50°,∴∠BDC=12∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.二.三角形的外接圆与外心(共3小题)5.【解答】解:连接OB和OC,∵圆O半径为2,BC=2,∴OB=OC=BC,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=12∠BOC=30°,故选:A .6.【解答】解:连接OC ,OA .∵∠AOC =2∠ABC ,∠ABC =30°,∴∠AOC =60°,∵OA =OC ,∴△AOC 是等边三角形,∴OA =OC =AC =6,∴AC ̂的长=60⋅π⋅6180=2π, 故答案为2π.7.【解答】解:∵OD ⊥AC ,∴AD =DC ,∵BO =CO ,∴AB =2OD =2×2=4,∵BC 是⊙O 的直径,∴∠BAC =90°,∵OE ⊥BC ,∴∠BOE =∠COE =90°,∴BÊ=EC ̂, ∴∠BAE =∠CAE =12∠BAC =12×90°=45°, ∵EA ⊥BD ,∴∠ABD =∠ADB =45°,∴AD =AB =4,∴DC =AD =4,∴AC=8,∴BC=√AB2+AC2=√42+82=4√5.故答案为:4√5.三.直线与圆的位置关系(共2小题)8.【解答】解:(1)BC所在直线与⊙O相切;理由:∵AB为⊙O的直径,∴∠ADB=90°,∵AB=AF,∴∠ABF=∠AFB,∵BF平分∠DBC,∴∠DBF=∠CBF,∴∠ABD+∠DBF=∠CBF+∠C,∴∠ABD=∠C,∵∠A+∠ABD=90°,∴∠A+∠C=90°,∴∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)∵BF平分∠DBC,∴∠DBF=∠CBF,∴tan∠FBC=tan∠DBF=DFBD=13,∵DF=2,∴BD=6,设AB=AF=x,∴AD=x﹣2,∵AB2=AD2+BD2,∴x2=(x﹣2)2+62,解得:x=10,∴AB=10,∴⊙O 的半径为5.9.【解答】解:(1)DE 是⊙O 的切线; 理由:连接OD ,∵∠ACB =90°,CA =CB ,∴∠ABC =45°,∴∠COD =2∠ABC =90°,∵四边形GDEC 是平行四边形,∴DE ∥CG ,∴∠EDO +∠COD =180°,∴∠EDO =90°,∴OD ⊥DE ,∴DE 是⊙O 的切线;(2)连接OB ,∵点B 是DBĈ的中点, ∴BĈ=BD ̂, ∴∠BOC =∠BOD ,∵∠BOC +∠BOD +∠COD =360°,∴∠COB =∠BOD =135°,∴BC ̂的长=135⋅π×2180=32π.四.切线的性质(共6小题)10.【解答】解:如图:连接OB,∵∠A=25°,∴∠COB=2∠A=2×25°=50°,∵BC与⊙O相切于点B,∴∠OBC=90°,∴∠C=90°﹣∠BOC=90°﹣50°=40°.故选:D.11.【解答】(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,又∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD 是⊙O 的切线,∴OD ⊥DP ,∴∠ODP =90°,又∵AD̂=CD ̂, ∴OD ⊥AC ,AE =EC ,∴∠DEC =90°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ECP =90°,∴四边形DECP 为矩形,∴DP =EC ,∵tan ∠CAB =512,BC =1,∴CB AC =1AC =512,∴AC =125, ∴EC =12AC =65,∴DP =65.12.【解答】(1)证明:∵AF 与⊙O 相切于点A , ∴F A ⊥AB ,∴∠F AB =90°,∴∠F +∠B =90°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAE +∠CEA =90°,∵AĈ=CD ̂, ∴∠CAE =∠D ,∴∠D +∠CEA =90°,∵∠D =∠B ,∴∠B +∠CEA =90°,∴∠F =∠CEA ,∴AE =AF .(2)解:∵AE =AF ,∠ACB =90°,∴CF =CE =12EF =6,∵∠ABF =∠D =∠CAE ,∴sin ∠ABF =sin ∠CAE =35,∴CE AE =6AE =35, ∴AE =10,∴AC =√AE 2−CE 2=√102−62=8,∵sin ∠ABC =AC AB =8AB =35, ∴AB =403, ∴OA =12AB =203. 即⊙O 的半径为203.13.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵AE ⊥BC ,∴AD ⊥OA ,∵AO 是⊙O 的半径,∴AD 是⊙O 的切线,又∵DF 是⊙O 的切线,∴AD =DF ,同理可得CE =CF ,∵CD =DF +CF ,∴CD =AD +CE .(2)解:连接OD ,AF 相交于点M ,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵AD=4CE,∴设CE=t,则AD=4t,∴BE=3t,AB=CD=5t,∴在Rt△ABE中,AE=√(5t)2−(3t)2=4t,∴OA=OE=2t,∵DA,DF是⊙O的两条切线,∴∠ODA=∠ODF,∵DA=DF,∠ODA=∠ODF,∴AF⊥OD,∴在Rt△OAD中,tan∠ODA=AOAD=2t4t=12,∵∠OAD=∠AMD=90°,∴∠EAF=∠ODA,∵EF̂=EF̂,∴∠EGF=∠EAF,∴∠ODA=∠EGF,∴tan∠EGF=1 2.14.【解答】(1)证明:连接OC,∵MN为⊙O的切线,∴OC⊥MN,∵BD⊥MN,∴OC∥BD,∴∠CBD=∠BCO.又∵OC=OB,∴∠BCO =∠ABC ,∴∠CBD =∠ABC .;(2)解:连接AC ,在Rt △BCD 中,BC =4√5,CD =4,∴BD =√BC 2−CD 2=8,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACB =∠CDB =90°,∵∠ABC =∠CBD ,∴△ABC ∽△CBD ,∴AB BC =CB BD ,即4√5=4√58, ∴AB =10,∴⊙O 的半径是5,故答案为5.15.【解答】(1)证明:作DF ⊥BC 于F ,连接DB ,∵AP 是⊙O 的切线,∴∠P AC =90°,即∠P +∠ACP =90°,∵AC 是⊙O 的直径,∴∠ADC =90°,即∠PCA +∠DAC =90°,∴∠P =∠DAC =∠DBC ,∵∠APC =∠BCP ,∴∠DBC =∠DCB ,∴DB =DC , ∵DF ⊥BC ,∴DF 是BC 的垂直平分线,∴DF 经过点O ,∵OD =OC ,∴∠ODC =∠OCD ,∵∠BDC =2∠ODC ,∴∠BAC =∠BDC =2∠ODC =2∠OCD ;(2)解:∵DF 经过点O ,DF ⊥BC ,∴FC =12BC =3,在△DEC 和△CFD 中,{∠DCE =∠FDC∠DEC =∠CFD DC =CD,∴△DEC ≌△CFD (AAS )∴DE =FC =3,∵∠ADC =90°,DE ⊥AC ,∴DE 2=AE •EC ,则EC =DE 2AE =92, ∴AC =2+92=132,∴⊙O 的半径为134.五.切线的判定与性质(共11小题)16.【解答】(1)证明:连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AC是直径,∴∠ADC=90°,∵∠EDA=∠ACD,∴∠ADO+∠ODC=∠EDA+∠ADO=90°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵sin∠ACB=AB AC,∴AB=sin45°⋅AC=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵sin∠ADF=AF AD,∴AF=sin45°⋅AD=3√2,∴DF=AF=3√2,在Rt△ABF中,BF2=AB2−AF2=(5√2)2−(3√2)2=32,∴BF=4√2,∴BD=BF+DF=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°﹣∠DBC,∠CBH=90°﹣∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD=CH,BD=BH,∵AD=6,CD=8,∴DH=CD+CH=14,在Rt△BDH中,∵BD2=DH2﹣BH2,BD=BH,则BD2=98.∴BD=7√2.17.【解答】证明:(1)如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,∴∠BDO+∠ADC=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A=∠ADC,∴CD=AC;(2)∵DC=DB,∴∠DCB=∠DBC,∴∠DCB=∠DBC=∠BDO,∵∠DCB+∠DBC+∠BDO+∠ODC=180°,∴∠DCB=∠DBC=∠BDO=30°,∴DC =√3OD =√3,故答案为:√3. 18.【解答】 (1)证明:过O 作OH ⊥AB 于H ,∵∠ACB =90°,∴OC ⊥BC ,∵BO 为△ABC 的角平分线,OH ⊥AB ,∴OH =OC ,即OH 为⊙O 的半径,∵OH ⊥AB ,∴AB 为⊙O 的切线;(2)解:设⊙O 的半径为3x ,则OH =OD =OC =3x ,在Rt △AOH 中,∵tan A =34,∴OH AH =34, ∴3xAH =34, ∴AH =4x ,∴AO =√OH 2+AH 2=√(3x)2+(4x)2=5x ,∵AD =2,∴AO =OD +AD =3x +2,∴3x +2=5x ,∴x =1,∴OA =3x +2=5,OH =OD =OC =3x =3,∴AC =OA +OC =5+3=8,在Rt △ABC 中,∵tan A =BCAC ,∴BC =AC •tan A =8×34=6, ∴OB =√OC 2+BC 2=√32+62=3√5.19.【解答】(1)证明:连接AE,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠AEB,∵AE=AB,∴∠AEB=∠ABC,∴∠DAE=∠ABC,∴△AED≌△BAC(SAS),∴∠DEA=∠CAB,∵∠CAB=90°,∴∠DEA=90°,∴DE⊥AE,∵AE是⊙A的半径,∴DE与⊙A相切;(2)解:∵∠ABC=60°,AB=AE=4,∴△ABE是等边三角形,∴AE=BE,∠EAB=60°,∵∠CAB=90°,∴∠CAE=90°﹣∠EAB=90°﹣60°=30°,∠ACB=90°﹣∠B=90°﹣60°=30°,∴∠CAE=∠ACB,∴AE=CE,∴CE=BE,∴S△ABC=12AB•AC=12×4×4√3=8√3,∴S△ACE=12S△ABC=12×8√3=4√3,∵∠CAE=30°,AE=4,∴S扇形AEF=30π×AE2360=30π×42360=4π3,∴S阴影=S△ACE﹣S扇形AEF=4√3−4π3.20.【解答】(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DF A=∠DEC,∵AD是⊙O的直径,∴∠DF A=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AH ,∵AD 是⊙O 的直径,∴∠AHD =∠DF A =90°,∴∠DFB =90°,∵AD =AB ,DH =√5,∴DB =2DH =2√5,在Rt △ADF 和Rt △BDF 中,∵DF 2=AD 2﹣AF 2,DF 2=BD 2﹣BF 2,∴AD 2﹣AF 2=DB 2﹣BF 2,∴AD 2﹣(AD ﹣BF )2=DB 2﹣BF 2,∴AD 2−(AD −2)2=(2√5)2−22,∴AD =5.∴⊙O 的半径为52. 21.【解答】解:(1)∵∠ACB =90°,点B ,D 在⊙O 上, ∴BD 是⊙O 的直径,∠BCE =∠BDE ,∵∠FDE =∠DCE ,∠BCE +∠DCE =∠ACB =90°,∴∠BDE +∠FDE =90°,即∠BDF =90°,∴DF ⊥BD ,又∵BD 是⊙O 的直径,∴DF 是⊙O 的切线.(2)如图,∵∠ACB =90°,∠A =30°,BC =4,∴AB=2BC=2×4=8,∴AC=√AB2−BC2=√82−42=4√3,∵点D是AC的中点,∴AD=CD=12AC=2√3,∵BD是⊙O的直径,∴∠DEB=90°,∴∠DEA=180°﹣∠DEB=90°,∴DE=12AD=12×2√3=√3,在Rt△BCD中,BD=√BC2+CD2=√42+(2√3)2=2√7,在Rt△BED中,BE=√BD2−DE2=√(2√7)2−(√3)2=5,∵∠FDE=∠DCE,∠DCE=∠DBE,∴∠FDE=∠DBE,∵∠DEF=∠BED=90°,∴△FDE∽△DBE,∴DFBD =DEBE,即2√7=√35,∴DF=2√21 5.22.【解答】(1)证明:如图1,连接OE,∵OD=OE,∴∠D=∠OED,∵AD=AG,∴∠D=∠G,∴∠OED=∠G,∴OE∥AG,∵BC是⊙O的直径,∴∠BAC=90°,∵EF∥AB,∴∠BAF+∠AFE=180°,∴∠AFE=90°,∵OE∥AG,∴∠OEF=180°﹣∠AFE=90°,∴OE⊥EF,∴EF与⊙O相切;(2)解:如图2,连接OE,过点O作OH⊥AC于点H,∵AC=4,∴CH=12AC=2,∵∠OHF=∠HFE=∠OEF=90°,∴四边形OEFH是矩形,∴OH=EF=2√3,在Rt△OHC中,OC=√CH2+OH2=√22+(2√3)2=4,∵OA=AC=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴S扇形OAC=60π⋅42360=83π.23.【解答】证明:(1)连接OM,∵OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABD,∴∠OBM=∠MBF,∴∠OMB=∠MBF,∴OM∥BF,∵MF⊥BD,∴OM⊥MF,即∠OMF=90°,∴MF是⊙O的切线;(2)如图,连接AN,ON̂=BN̂,∵AN∴AN=BN=4̂=BN̂,∵AB是直径,AN∴∠ANB=90°,ON⊥AB∴AB=√AN2+BN2=4√2∴AO=BO=ON=2√2∴OC=√CN2−ON2=√9−8=1∴AC=2√2+1,BC=2√2−1∵∠A=∠NMB,∠ANC=∠MBC∴△ACN∽△MCB∴ACCM = CNBC∴AC•BC=CM•CN ∴7=3•CM∴CM=7 324.【解答】(1)证明:连接OF,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠CAD+∠DCA=90°,∵EC=EF,∴∠DCA=∠EFC,∵OA=OF,∴∠CAD=∠OF A,∴∠EFC+∠OF A=90°,∴∠EFO=90°,∴EF⊥OF,∵OF是半径,∴EF是⊙O的切线;(2)连接MF,∵AM是直径,∴∠AFM=90°,在Rt△AFM中,cos∠CAD=AFAM=35,∵AF=6,∴6AM =35,∴AM=10,∵MD=2,∴AD=8,在Rt△ADC中,cos∠CAD=ADAC=35,∴8AC =35,∴AC=40 3,∴FC=403−6=22325.【解答】(1)证明:连接OA,过O作OF⊥AE于F,∴∠AFO=90°,∴∠EAO+∠AOF=90°,∵OA=OE,∴∠EOF=∠AOF=12∠AOE,∵∠EDA=12∠AOE,∴∠EDA=∠AOF,∵∠EAC=∠EDA,∴∠EAC=∠AOF,∴∠EAO+∠EAC=90°,∵∠EAC+∠EAO=∠CAO,∴∠CAO=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵CE=AE=2√3,∴∠C=∠EAC,∵∠EAC+∠C=∠AEO,∴∠AEO=2∠EAC,∵OA=OE,∴∠AEO=∠EAO,∴∠EAO=2∠EAC,∵∠EAO+∠EAC=90°,∴∠EAC=30°,∠EAO=60°,∴△OAE是等边三角形,∴OA=AE,∠EOA=60°,∴OA=2√3,∴S扇形AOE=60⋅π×(2√3)2360=2π,在Rt△OAF中,OF=OA•sin∠EAO=2√3×√32=3,∴S△AOE=12AE•OF=12×2√3×3=3√3,∴阴影部分的面积=2π﹣3√3.26.【解答】(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP ≌△CBP (SAS ),∴∠CDP =∠CBP ,∵∠BCD =90°,∴∠CBP +∠BEC =90°,∵OD =OE ,∴∠ODE =∠OED ,∠OED =∠BEC ,∴∠BEC =∠OED =∠ODE ,∴∠CDP +∠ODE =90°,∴∠ODP =90°,∴DP 是⊙O 的切线;(2)∵∠CDP =∠CBE ,∴tan ∠CBE =tan ∠CDP =CE BC =12,∴CE =12×4=2, ∴DE =2,∵∠EDF =90°,∴EF 是⊙O 的直径,∴∠F +∠DEF =90°,∴∠F =∠CDP ,在Rt △DEF 中,DE DF =12, ∴DF =4,∴EF =√DE 2+DF 2=√42+22=2√5,∴OE=√5,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴PEPD =PDPF=DEDF,设PE=x,则PD=2x,∴x(x+2√5)=(2x)2,解得x=23√5,∴OP=OE+EP=√5+2√53=5√53.六.正多边形和圆(共3小题)27.【解答】解:由题意旋转8次应该循环,∵2020÷8=252…4,∴∁i的坐标与C4的坐标相同,∵C(﹣1,√3),点C与C4关于原点对称,∴C4(1,−√3),∴顶点∁i的坐标是(1,−√3),故选:A.28.【解答】解:∵正五边形ABCDE,∴∠EAB=(5−2)×180°5=108°,∵△ABF是等边三角形,∴∠F AB=60°,∴∠EAF=108°﹣60°=48°,∵AE=AF,∴∠AEF=∠AFE=12×(180°﹣48°)=66°,故答案为:66°.29.【解答】解:∵正六边形ABCDEF内接于⊙O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴OA =OB =AB =2,∴扇形AOB 的面积=60⋅π×22360=2π3, 故答案为:2π3.七.弧长的计算(共4小题)30.【解答】解:连接OD 、BD ,∵在△ABC 中,AB =BC ,∠ABC =90°, ∴∠A =∠C =45°,∵AB 是直径,∴∠ADB =90°,∵OA =OB ,∴OD ⊥AB ,∴∠AOD =90°,∴∠AOD =∠ABC ,∴OD ∥FC ,∴△DOE ∽△FBE ,∴BF OD =BE OE ,∵OB =OD ,OE :EB =1:√3, ∴tan ∠BOF =BF OB =√3,∴∠BOF =60°,∴BF =2√3,∴OB =2,∴BG ̂的长=60π×2180=23π, 故选:C .31.【解答】解:∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴AE =AD =2,∵AB =√3,∴cos ∠BAE =AB AE =√32, ∴∠BAE =30°,∴∠EAD =60°,∴DÊ的长=60⋅π×2180=2π3, 故选:C .32.【解答】解:由圆周角定理得,∠AOB =2∠ADB =60°, ∴∠BOC =180°﹣60°=120°,∴BC ̂的长=120π×3180=2π, 故答案为:2π.33.【解答】解:连接OA ,∵OA =OC ,∴∠OAC =∠C =70°,∴∠OAB =∠OAC ﹣∠BAC =70°﹣60°=10°,∵OA =OB ,∴∠OBA =∠OAB =10°,∴∠AOB =180°﹣10°﹣10°=160°,则AB ̂的长=160π×9180=8π, 故答案为:8π.八.扇形面积的计算(共2小题)34.【解答】解:∵∠ACB =15°,∴∠AOB =30°,∵OD ∥AB ,∴S △ABD =S △ABO ,∴S 阴影=S 扇形AOB =30π×22360=π3. 故答案为:π3. 35.【解答】解:过A 1作A 1D ⊥x 轴于D ,连接B 1C 1,B 2C 2,B 3C 3,B 4C 4, ∵点A 1在l 1上,A 1的横坐标为32,点A 1(32,√32), ∴OD =32,A 1D =√32,∴OA 1=√A 1D 2+OD 2=(√32)2+(32)2=√3, ∴在Rt △A 1OD 中,A 1D =12OA 1, ∴∠A 1OD =30°,∵直线l 2的解析式是y =√3x ,∴∠B 1OD =60°,∴∠A 1OB 1=30°,∴A 1B 1=OA 1•tan ∠A 1OB 1=1,∵A 1B 1⊥l 1交l 2于点B 1,∴∠A 1B 1O =60°,∴∠A 1B 1B 2=120°,∴∠B 1A 1C 1=60°,∵四边形A 1B 1B 2C 1是菱形,∴△A 1B 1C 1是等边三角形,∴S 1=2(S扇形B 1A 1C 1−S △B 1A 1C 1)=2×(60⋅π×12360−√34×12)=π3−√32,∵A 1C 1∥B 1B 2,∴∠A 2A 1C 1=∠A 1OB 1=30°,∴A 2C 1=12,A 2B 2=A 2C 1+B 2C 1=32,∠A 2B 2O =60°,同理,S 2=2(S扇形B 2A 2C 2−S △B 2A 2C 2)=2×[60⋅π×(32)2360−√34×(32)2]=(π3−√32)×(32)2, S 3=(π3−√32)×(32)4, …∴S n =(π3−√32)×(32)2(n ﹣1)=(π3−√32)×(32)2n ﹣2. 故答案为:(π3−√32)×(32)2n ﹣2.九.圆锥的计算(共2小题)36.【解答】解:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl =π×3×5=15π,故答案为:15π37.【解答】解:设该圆锥的底面半径为r ,根据题意得2πr =216⋅π⋅5180,解得r =3. 故答案为3.一十.圆的综合题(共2小题)38.【解答】(1)证明:∵EF ⊥AB ,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC.(2)①证明:连接OA,AC.∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线.②解:过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF ∥AC ,∴EC BE =AF BF =25, ∵CE =4,∴BE =10,∵BC ⊥AD ,∴AĈ=CD ̂, ∴∠CAE =∠ABC ,∵∠AEC =∠AEB =90°,∴△AEB ∽△CEA ,∴AE CE =EB EA ,∴AE 2=4×10,∵AE >0,∴AE =2√10,∴AH =AE =2√10,∵∠G =∠G ,∠CHG =∠AEG =90°,∴△GHC ∽△GEA ,∴GH GE =HC EA =GC GA , ∴y x+4=2√10=2√10+y , 解得x =283.39.【解答】解:(1)证明:①如图1,连接OE ,∵⊙O 与BC 相切于点E ,∴∠OEB =90°,∵∠ACB =90°,∴∠ACB=∠OEB,∴AC∥OE,∴∠GOE=∠AGO,̂=EĜ,∵AG∴∠AOG=∠GOE,∴∠AOG=∠AGO,∴AO=AG;②由①知,AO=AG,∵AO=OG,∴∠AO=OG=AG,∴△AOG是等边三角形,∴∠AGO=∠AOG=∠A=60°,∴∠BOF=∠AOG=60°,由①知,∠GOE=∠AOG=60°,∴∠EOB=180°﹣∠AOG﹣∠GOE=180°﹣60°﹣60°=60°,∴∠FOB=∠EOB,∵OF=OE,OB=OB,∴△OFB≌△OEB(SAS),∴∠OFB=∠OEB=90°,∴OF⊥BF,∵OF是⊙O的半径,∴BF是⊙O的切线;(2)如图2,连接GE,∵∠A=60°,∴∠ABC=90°﹣∠A=30°,∴OB=2BE,设⊙O的半径为r,∵OB=OD+BD,∴6+r=2r,∴r=6,∴AG=OA=6,AB=2r+BD=18,∴AC=12AB=9,∴CG=AC﹣AG=3,由(1)知,∠EOB=60°,∵OG=OE,∴△OGE是等边三角形,∴GE=OE=6,根据勾股定理得,CE=√GE2−CG2=√62−32=3√3,∴S阴影=S梯形GCEO﹣S扇形OGE=12(6+3)×3√3−60π⋅62360=27√32−6π.。

全国中考数学试题分类汇编

全国中考数学试题分类汇编

2009年全国中考数学试题分类汇编 24正多边形与圆试题及答案一、选择1.( 2009年哈尔滨)圆锥的底面半径为 8,母线长为9,则该圆锥的侧面积为().A . 36 nB . 48 nC . 72 nD . 144 n2. (2009年台州市)如图,O O 的内接多边形周长为 3 , O O 的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是()3. (2009年郴州市)如图已知扇形 AOB 的半径为6cm ,圆心角的度数为120°若将此扇形 围成一个圆锥,则围成的圆锥的侧面积为( )6.( 2009东营)将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材 料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ()(A ) 10cm(B ) 30cm(C ) 40cm(D ) 300cmB . 6 n cm 2 2C . 9 n cm2D . 124(2009成都)若一个圆锥的底面圆的周长是 圆心角的度数是(A )40 °(B )80 °(C )4 n cm 母线长是6cm ,则该圆锥的侧面展开图的(D )150 °5. (2009年广西钦州)如图,有一长为 翻滚(顺时针方向),木板上的顶点 4cm ,宽为3cm 的面上一小木块挡住,使木板边沿的路径长为( )A . 10cm A 2C 与桌面成30。

角,则点A 翻滚到A 2位置时,共走过 C . 4.5 n cmB . 3. 5 n cm D . 2. 5 n cm7. (2009丽水市)下述美妙的图案中,是由正三角形.正方形.正六边形.正八边形中的三种镶嵌而成的为()8 (2009烟台市)现有四种地面砖,它们的形状分别是:正三角形•正方形•正六边形•正八边形,且它们的边长都相等•同时选择其中两种地面砖密铺地面,选择的方式有()A • 2种B • 3种C. 4种D • 5种9. (2009年淄博市)如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为()A • 120o C. 180oB.约1560 D .约208010.若用半径为9, 圆心角为120。

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

中考一轮复习 数学专题14 圆与正多边形(学生版)

中考一轮复习 数学专题14 圆与正多边形(学生版)

专题14 圆与正多边形一、单选题1.(2022·贵州铜仁)如图,,OA OB 是O 的两条半径,点C 在O 上,若80AOB ∠=︒,则C ∠的度数为( )A .30B .40︒C .50︒D .60︒2.(2022·四川雅安)如图,已知⊙O 的周长等于6π,则该圆内接正六边形ABCDEF 的边心距OG 为( )A .B .32CD .33.(2022·四川广元)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若⊙CAB =65°,则⊙ADC 的度数为( )A .25°B .35°C .45°D .65°4.(2022·浙江嘉兴)如图,在⊙O 中,⊙BOC =130°,点A 在BAC 上,则⊙BAC 的度数为( ) 本号资料皆*来@源于微信:数学A .55°B .65°C .75°D .130°5.(2022·浙江宁波)已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为()A.236πcm B.224πcm C.216πcm D.212πcm6.(2021·广西桂林)如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,BC,则⊙C的度数是()A.60°B.90°C.120°D.150°7.(2021·内蒙古呼伦贝尔)一个正多边形的中心角为30,这个正多边形的边数是()A.8B.12C.3D.68.(2021·吉林)如图,四边形ABCD内接于O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若120B∠=︒,则APC∠的度数可能为()A.30B.45︒C.50︒D.65︒9.(2021·广西贺州)如图,在边长为2的等边ABC中,D是BC边上的中点,以点A为圆心,AD为半径作圆与AB,AC分别交于E,F两点,则图中阴影部分的面积为()A.π6B.π3C.π2D.2π310.(2021·吉林长春)如图,AB 是O 的直径,BC 是O 的切线,若35BAC ∠=︒,则ACB ∠的大小为( )A .35︒B .45︒C .55︒D .65︒11.(2021·湖南长沙)如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为( )A .27︒B .108︒C .116︒D .128︒12.(2020·广西)如图,AB 是⊙O 的弦,AC 与⊙O 相切于点A ,连接OA ,OB ,若⊙O =130°,则⊙BAC 的度数是( )A .60°B .65°C .70°D .75°13.(2020·重庆)如图,AB 是O 的切线,A 切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A .40°B .50°C .60°D .70°14.(2020·四川巴中)如图,在O 中,点、、A B C 在圆上,45,ACB AB ︒∠==O 的半径OA 的长是( )AB .2C .D .315.(2020·四川广安)如图,点A ,B ,C ,D 四点均在圆O 上,⊙AOD =68°,AO //DC ,则⊙B 的度数为( )A .40°B .60°C .56°D .68°16.(2020·广西柳州)如图,点A 、B 、C 在⊙O 上,若⊙BOC =70°,则⊙A 的度数为( )A .35°B .40°C .55°D .70°17.(2020·辽宁鞍山)如图,⊙O 是∆ABC 的外接圆,半径为2cm ,若2cm BC =,则A ∠的度数为( )A .30°B .25°C .15°D .10°18.(2020·江苏镇江)如图,AB 是半圆的直径,C 、D 是半圆上的两点,⊙ADC =106°,则⊙CAB 等于( )A .10°B .14°C .16°D .26°19.(2020·四川雅安)如图,ABC 内接于圆,90ACB ∠=︒,过点C 的切线交AB 的延长线于点28P P ∠=︒,.则∠=CAB ( )A .62︒B .31︒C .28︒D .56︒20.(2020·山东淄博)如图,放置在直线l 上的扇形OAB .由图⊙滚动(无滑动)到图⊙,再由图⊙滚动到图⊙.若半径OA =2,⊙AOB =45°,则点O 所经过的最短路径的长是( )A .2π+2B .3πC .52πD .52π+221.(2021·贵州黔西)图1是一把扇形书法纸扇,图2是其完全打开后的示意图,外侧两竹条OA 和OB 的夹角为150︒,OA 的长为30cm ,贴纸部分的宽AC 为18cm ,则CD 的长为( )A .5πcmB .10πcmC .20πcmD .25πcm22.(2021·山东青岛)如图,AB 是O 的直径,点E ,C 在O 上,点A 是EC 的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为( )A .29.5︒B .31.5︒C .58.5︒D .63︒23.(2021·四川内江)如图,O 是ABC ∆的外接圆,60BAC ∠=︒,若O 的半径OC 为2,则弦BC 的长为( )A .4B .C .3 D24.(2021·山东滨州)如图,O 是ABC 的外接圆,CD 是O 的直径.若10CD =,弦6AC =,则cos ABC ∠的值为( )A .45B .35C .43D .3425.(2021·辽宁鞍山)如图,AB 为O 的直径,C ,D 为O 上的两点,若54ABD ∠︒=,则C ∠的度数为( )A .34︒B .36︒C .46︒D .54︒26.(2021·江苏镇江)如图,⊙BAC =36°,点O 在边AB 上,⊙O 与边AC 相切于点D ,交边AB 于点E ,F ,连接FD ,则⊙AFD 等于( )A .27°B .29°C .35°D .37°27.(2021·湖南湘潭)如图,BC 为⊙O 的直径,弦AD BC ⊥于点E ,直线l 切⊙O 于点C ,延长OD 交l 于点F ,若2AE =,22.5ABC ∠=︒,则CF 的长度为( )A .2B .C .D .428.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A .2cmB .3cmC .4cmD .5cm29.(2022·广西河池)如图,AB 是⊙O 的直径,P A 与⊙O 相切于点A ,⊙ABC =25°,OC 的延长线交P A 于点P ,则⊙P 的度数是( )A .25°B .35°C .40°D .50°30.(2022·内蒙古包头)如图,,AB CD 是O 的两条直径,E 是劣弧BC 的中点,连接BC ,DE .若22ABC ∠=︒,则CDE ∠的度数为( )A .22︒B .32︒C .34︒D .44︒31.(2022·辽宁锦州)如图,线段AB 是半圆O 的直径。

2013年全国各地中考数学试卷分类汇编:正多边形与圆

2013年全国各地中考数学试卷分类汇编:正多边形与圆

正多边形与圆一.选择题1.(2013山东滨州,7,3分)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为A .6,错误!未找到引用源。

B .错误!未找到引用源。

,3C .6,3D .错误!未找到引用源。

,【答案】:B .【解析】∵正方形的边长为6,∴AB=3,又∵∠AOB=45°,∴OB=3,∴错误!未找到引用源。

,故选B .【方法指导】本题考查了正多边形和圆,重点是了解有关概念并熟悉如何构造特殊的直角三角形,比较重要.由正方形的边长、外接圆半径、内切圆半径正好组成一个直角三角形,从而求得它们的长度.第34章 正多边形与圆2.(2013浙江台州,9,4分)如图,已知边长为2的正三形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在点A 下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为( )A .3B .错误!未找到引用源。

C .4D .错误!未找到引用源。

【答案】:B .【解析】在正三形ABC 中,边长为2,易得o 旋转一周的过程中,若DE 的值最小,则E 点位于y 轴的正半轴上,在正六边形中易得OE=2,此时DE=AO-AD-OE=6-错误!未找到引用源。

-2=4-错误!未找到引用源。

【方法指导】本题考查等边三角形和正六边形的计算,在动态问题中,抓住旋转过程中DE 最小的特殊时刻解决问题。

3.(2013江西南昌,11,3分)如图,正六边形ABCDEF 中,AB=2,点P 是ED 的中点,连接AP ,则AP 的长为( ).A .2错误!未找到引用源。

B .4C .13yD.错误!未找到引用源。

【答案】C【解析】连接AE、BE,由正六边形的性质知,△ABE、△APE为直角三角形,错误!未找到引用源。

,所以错误!未找到引用源。

【方法指导】本题考查了正六边形的有关计算,运用正六边形的性质将正六边形转化为直角三角形或等边三角形是解题的关键。

河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类

河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类

河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类一.一元一次方程的应用(共1小题)1.(2022•河北)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是( )A.依题意3×120=x﹣120B.依题意20x+3×120=(20+1)x+120C.该象的重量是5040斤D.每块条形石的重量是260斤二.函数的图象(共1小题)2.(2022•河北)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m 个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是( )A.B.C.D.三.动点问题的函数图象(共1小题)3.(2023•河北)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A →M.若移动时间为x,两个机器人之间距离为y.则y与x关系的图象大致是( )A.B.C.D.四.二次函数图象与系数的关系(共1小题)4.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( )A.2B.m2C.4D.2m2五.三角形三边关系(共1小题)5.(2022•河北)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是( )A.1B.2C.7D.8六.等腰三角形的性质(共2小题)6.(2023•河北)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC为等腰三角形时,对角线AC的长为( )A.2B.3C.4D.5 7.(2023•河北)在△ABC和△A'B'C′中,∠B=∠B'=30°,AB=A'B'=6,AC=A'C′=4,已知∠C=n°,则∠C′=( )A.30°B.n°C.n°或180°﹣n°D.30°或150°七.等腰直角三角形(共1小题)8.(2022•河北)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=,则正确的是( )A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整八.平行四边形的判定(共1小题)9.(2022•河北)依据所标数据,下列一定为平行四边形的是( )A.B.C.D.九.平行四边形的判定与性质(共1小题)10.(2021•河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是一十.菱形的性质(共1小题)11.(2023•河北)如图,直线l1∥l2,菱形ABCD和等边△EFG在l1,l2之间,点A,F分别在l1,l2上,点B,D、E、G在同一直线上.若∠α=50°,∠ADE=146°,则∠β=( )A.42°B.43°C.44°D.45°一十一.正多边形和圆(共2小题)12.(2023•河北)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是( )A.a<b B.a=bC.a>b D.a,b大小无法比较13.(2021•河北)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边形ABCDEF的值是( )A.20B.30C.40D.随点O位置而变化一十二.弧长的计算(共1小题)14.(2022•河北)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是( )A.11πcm B.πcm C.7πcm D.πcm一十三.作图—复杂作图(共2小题)15.(2023•河北)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC=AO;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是( )A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等16.(2021•河北)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是( )A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对一十四.翻折变换(折叠问题)(共1小题)17.(2022•河北)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的( )A.中线B.中位线C.高线D.角平分线一十五.相似三角形的应用(共1小题)18.(2021•河北)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=( )A.1cm B.2cm C.3cm D.4cm一十六.条形统计图(共1小题)19.(2021•河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )A.蓝B.粉C.黄D.红一十七.众数(共1小题)20.(2022•河北)五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是( )A.只有平均数B.只有中位数C.只有众数D.中位数和众数河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类参考答案与试题解析一.一元一次方程的应用(共1小题)1.(2022•河北)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是( )A.依题意3×120=x﹣120B.依题意20x+3×120=(20+1)x+120C.该象的重量是5040斤D.每块条形石的重量是260斤【答案】B【解答】解:由题意得出等量关系为:20块等重的条形石的重量+3个搬运工的体重和=21块等重的条形石的重量+1个搬运工的体重,∵已知搬运工体重均为120斤,设每块条形石的重量是x斤,∴20x+3×120=(20+1)x+120,∴A选项不正确,B选项正确;由题意:大象的体重为20×240+360=5160斤,∴C选项不正确;由题意可知:一块条形石的重量=2个搬运工的体重,∴每块条形石的重量是240斤,∴D选项不正确;综上,正确的选项为:B.故选:B.二.函数的图象(共1小题)2.(2022•河北)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m 个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是( )A.B.C.D.【答案】C【解答】解:∵一个人完成需12天,∴一人一天的工作量为,∵m个人共同完成需n天,∴一人一天的工作量为,∵每人每天完成的工作量相同,∴mn=12.∴n=,∴n是m的反比例函数,∴选取6组数对(m,n),在坐标系中进行描点,则正确的是:C.故选:C.三.动点问题的函数图象(共1小题)3.(2023•河北)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A →M.若移动时间为x,两个机器人之间距离为y.则y与x关系的图象大致是( )A.B.C.D.【答案】D【解答】解:由题意可得:机器人(看成点)分别从M,N两点同时出发,设圆的半径为R,∴两个机器人最初的距离是AM+CN+2R,∵两个人机器人速度相同,∴同时到达点A,C,∴两个机器人之间的距离y越来越小,故排除A、C;当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是半径R,保持不变,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,故排除B;故选:D.四.二次函数图象与系数的关系(共1小题)4.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( )A.2B.m2C.4D.2m2【答案】A【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴x=0,抛物线y=﹣x2+m2x的对称轴x=,∴这两个函数图象对称轴之间的距离==2.故选:A.五.三角形三边关系(共1小题)5.(2022•河北)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是( )A.1B.2C.7D.8【答案】C【解答】解:∵平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形,∴1+d+1+1>5且1+5+1+1>d,∴d的取值范围为:2<d<8,∴则d可能是7.故选:C.六.等腰三角形的性质(共2小题)6.(2023•河北)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC为等腰三角形时,对角线AC的长为( )A.2B.3C.4D.5【答案】B【解答】解:∵△ABC为等腰三角形,∴AB=AC或AC=BC,当AC=BC=4时,AD+CD=AC=4,此时不满足三角形三边关系定理,当AC=AB=3时.满足三角形三边关系定理,∴AC=3.故选:B.7.(2023•河北)在△ABC和△A'B'C′中,∠B=∠B'=30°,AB=A'B'=6,AC=A'C′=4,已知∠C=n°,则∠C′=( )A.30°B.n°C.n°或180°﹣n°D.30°或150°【答案】C【解答】解:当BC=B′C′时,△ABC≌△A′B′C′(SSS),∴∠C′=∠C=n°,当BC≠B′C′时,如图,∵A′C′=A′C″,∴∠A′C″C′=∠C′=n°,∴∠A′C″B′=180°﹣n°,∴∠C′=n°或180°﹣n°,故选:C.七.等腰直角三角形(共1小题)8.(2022•河北)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=,则正确的是( )A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整【答案】B【解答】解:由题意知,当CA⊥BA或CA>BC时,能作出唯一一个△ABC,①当CA⊥BA时,∵∠B=45°,BC=2,∴AC=BC•sin45°=2×=,即此时d=,②当CA=BC时,∵∠B=45°,BC=2,∴此时AC=2,即d≥2,综上,当d=或d≥2时能作出唯一一个△ABC,故选:B.八.平行四边形的判定(共1小题)9.(2022•河北)依据所标数据,下列一定为平行四边形的是( )A.B.C.D.【答案】D【解答】解:A、80°+110°≠180°,故A选项不符合条件;B、只有一组对边平行不能确定是平行四边形,故B选项不符合题意;C、不能判断出任何一组对边是平行的,故C选项不符合题意;D、有一组对边平行且相等的四边形是平行四边形,故D选项符合题意;故选:D.九.平行四边形的判定与性质(共1小题)10.(2021•河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是【答案】A【解答】解:方案甲中,连接AC,如图所示:∵四边形ABCD是平行四边形,O为BD的中点,∴OB=OD,OA=OC,∵BN=NO,OM=MD,∴NO=OM,∴四边形ANCM为平行四边形,方案甲正确;方案乙中:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN⊥BD,CM⊥BD,∴AN∥CM,∠ANB=∠CMD,在△ABN和△CDM中,,∴△ABN≌△CDM(AAS),∴AN=CM,又∵AN∥CM,∴四边形ANCM为平行四边形,方案乙正确;方案丙中:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN平分∠BAD,CM平分∠BCD,∴∠BAN=∠DCM,在△ABN和△CDM中,,∴△ABN≌△CDM(ASA),∴AN=CM,∠ANB=∠CMD,∴∠ANM=∠CMN,∴AN∥CM,∴四边形ANCM为平行四边形,方案丙正确;故选:A.一十.菱形的性质(共1小题)11.(2023•河北)如图,直线l1∥l2,菱形ABCD和等边△EFG在l1,l2之间,点A,F分别在l1,l2上,点B,D、E、G在同一直线上.若∠α=50°,∠ADE=146°,则∠β=( )A.42°B.43°C.44°D.45°【答案】C【解答】解:如图,延长BG,∵∠ADE=146°,∴∠ADB=180°﹣∠ADE=34°,∵∠α=∠ADB+∠AHD,∴∠AHD=∠α﹣∠ADB=50°﹣34°,=16°,∵l1∥l2,∴∠GIF=∠AHD=16°,∵∠EGF=∠β+∠GIF,∵△EFG是等边三角形,∴∠EGF=60°,∴∠β=∠EGF﹣∠GIF=60°﹣16°=44°,故选:C.一十一.正多边形和圆(共2小题)12.(2023•河北)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是( )A.a<b B.a=bC.a>b D.a,b大小无法比较【答案】A【解答】解:连接P4P5,P5P6.∵点P1~P8是⊙O的八等分点,∴P3P4=P4P5=P5P6=P6P7,P1P7=P1P3=P4P6,∴b﹣a=P3P4+P7P6﹣P1P3,∵P5P4+P5P6>P4P6,∴P3P4+P7P6>P1P3,∴b﹣a>0,∴a<b,故选:A.13.(2021•河北)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边形ABCDEF的值是( )A.20B.30C.40D.随点O位置而变化【答案】B【解答】解:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,∵∠FED=120°,FE=ED,∴∠EFD=∠FDE,∴∠EDF=(180°﹣∠FED)=30°,∵正六边形ABCDEF的每个角为120°.∴∠CDF=120°﹣∠EDF=90°.同理∠AFD=∠FAC=∠ACD=90°,∴四边形AFDC为矩形,∵S△AFO=FO×AF,S△CDO=OD×CD,在正六边形ABCDEF中,AF=CD,∴S△AFO+S△CDO=FO×AF+OD×CD=(FO+OD)×AF=FD×AF=10,∴FD×AF=20,DM=cos30°DE=x,DF=2DM=x,EM=sin30°DE=,∴S正六边形ABCDEF=S矩形AFDC+S△EFD+S△ABC =AF×FD+2S△EFD=x•x+2×x•x=x2+x2=x2=(AF×FD)=30,故选:B.一十二.弧长的计算(共1小题)14.(2022•河北)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是( )A.11πcm B.πcm C.7πcm D.πcm【答案】A【解答】解:OA⊥PA,OB⊥PB,OA,OB交于点O,如图,∴∠OAP=∠OBP=90°,∵∠P=40°,∴∠AOB=140°,∴优弧AMB对应的圆心角为360°﹣140°=220°,∴优弧AMB的长是:=11π(cm),故选:A.一十三.作图—复杂作图(共2小题)15.(2023•河北)综合实践课上,嘉嘉画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC=AO;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是( )A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等【答案】C【解答】解:由作图得:DO=BO,AO=CO,∴四边形ABCD为平行四边形,故选:C.16.(2021•河北)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是( )A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【答案】D【解答】解:如图,连接EM,EN,MF.NF.∵MN垂直平分AB,EF垂直平分AP,由“垂径定理的逆定理”可知,MN和EF都是⊙O 的直径,∴OM=ON,OE=OF,∴四边形MENF是平行四边形,∵EF=MN,∴四边形MENF是矩形,故(Ⅰ)正确,观察图形可知当∠MOF=∠AOB,∴S扇形FOM=S扇形AOB,观察图形可知,这样的点P不唯一(如下图所示),故(Ⅱ)错误,故选:D.一十四.翻折变换(折叠问题)(共1小题)17.(2022•河北)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的( )A.中线B.中位线C.高线D.角平分线【答案】D【解答】解:由已知可得,∠1=∠2,则l为△ABC的角平分线,故选:D.一十五.相似三角形的应用(共1小题)18.(2021•河北)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=( )A.1cm B.2cm C.3cm D.4cm【答案】C【解答】解:如图:过O作OM⊥CD,垂足为M,过O'作O'N⊥AB,垂足为N,∵CD∥AB,∴△CDO∽△ABO',即相似比为,∴=,∵OM=15﹣7=8(cm),O'N=11﹣7=4(cm),∴=,∴AB=3cm,故选:C.一十六.条形统计图(共1小题)19.(2021•河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )A.蓝B.粉C.黄D.红【答案】D【解答】解:根据题意得:5÷10%=50(人),(16÷50)×100%=32%,则喜欢红色的人数是:50×28%=14(人),50﹣16﹣5﹣14=15(人),∵柱的高度从高到低排列,∴图2中“( )”应填的颜色是红色.故选:D.一十七.众数(共1小题)20.(2022•河北)五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是( )A.只有平均数B.只有中位数C.只有众数D.中位数和众数【答案】D【解答】解:根据题意知,追加前5个数据的中位数是5,众数是5,追加后5个数据的中位数是5,众数为5,∵数据追加后平均数会变大,∴集中趋势相同的只有中位数和众数,故选:D.。

2020-2021学年苏科版数学中考复习专题练习—正多边形与圆及圆中有关计算(含答案)

2020-2021学年苏科版数学中考复习专题练习—正多边形与圆及圆中有关计算(含答案)

正多边形与圆及圆中有关计算一、学习目标1.了解正多边形的概念及正多边形与圆的关系,并会进行有关计算;2.会用弧长公式、扇形面积公式、圆锥侧面积公式计算有关问题;3.体会方程思想和转化思想.二、题型训练题型一、正多边形与圆【例题1】如图,等边△ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.22∶3B.2∶3C.23∶2D.3∶2【例题2】如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.【例题3】如图,A、B、C、D、E是⊙O上的5等分点,连接AC、CE、EB、BD、DA,得到一个五角星图形和五边形MNFGH.(1)计算∠CAD的度数;(2)连接AE,证明:AE=ME;(3)求证:ME2=BM·BE.【题小结】转化思想,正多边形转化为等腰三角形或直角三角形、三角形面积的转化、相等的线段之间的转化.借题发挥:1.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD2.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=cm.借题发挥1借题发挥2ab借题发挥3例题3例题1例题23.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若∠ADB =18°,则这个正多边形的边数为 . 题型二、圆中与弧长、面积有关的计算 【例题4】如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,⌒FA 1,⌒A 1B 1,⌒B 1C 1,⌒C 1D 1,⌒D 1E 1,⌒E 1F 1,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .【例题5】在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1.如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′.则图中阴影部分面积为( )A .π4B .π-32C .π-34D .3π2【题小结】弄清旋转的本质,把不规则图形的面积转化为规则图形的面积.借题发挥:1.如图,半径为10的扇形AOB 中,∠AOB =90°,C 为⌒AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE 为36°,则图中阴影部分的面积为( )A .10πB .9πC .8πD .6π 2.若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为 cm (结果保留π). 3.如图,AB 是⊙O 的弦,C 是⊙O 外一点,OC ⊥OA ,CO 交AB 于点P ,交⊙O 于点D ,且CP =CB .(1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若∠A =30°,OP =1,求图中阴影部分的面积.题型三、与圆锥有关的计算【例题6】已知圆锥的底面半径为1cm ,高为3cm ,则它的侧面展开图的面积为= cm 2.【例题7】已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是 度.【题小结】转化及方程思想:立体图形与平面图形的相互转化,由圆锥有关的公式列出方程解决问题. 借题发挥: 例题4 借题发挥1 例题5 借题发挥3A B C'C B'。

专题37 正多边形和圆-中考数学二轮复习之难点突破+热点解题方法

专题37 正多边形和圆-中考数学二轮复习之难点突破+热点解题方法

专题37 正多边形和圆一、单选题1.如图所示,ABC 为O 的内接三角形,2,30AB C =∠=︒,则O 的内接正方形的面积( )A .2B .4C .8D .16【答案】C【分析】 先连接BO ,并延长交⊙O 于点D ,再连接AD ,根据同圆中同弧所对的圆周角相等,可得⊙ADB=30°,而BD 是直径,那么易知⊙ADB 是直角三角形,再利用直角三角形中30°的角所对的边等于斜边的一半,那么可求BD ,进而可知半径的长,任意圆内接正方形都是以两条混响垂直的直径作为对角线的四边形,故利用勾股定理可求正方形的边长,从而可求正方形的面积.【详解】解:连接BO ,并延长交⊙O 于点D ,再连接AD ,如图,⊙⊙ACB=30°,⊙⊙BDA=30°,⊙BD 是直径,⊙⊙BAD=90°,在Rt⊙ADB 中,BD=2AB=4,⊙⊙O 的半径是2,⊙⊙O 的内接正方形是以两条互相垂直的直径为对角线的,⊙正方形的边长=⊙S 正方形=8=.【点睛】本题考查了圆周角定理、含有30角的直角三角形的性质,解题的关键是作辅助线,构造直角三角形. 2.如图,在一张正六边形纸片中剪下两个全等的直角三角形(阴影部分),拼成一个四边形,若拼成的四边形的周长为12,则纸片的剩余部分拼成的五边形的面积为( )A .B .C .8D .16【答案】B【分析】 由题可知,求解剩余部分拼成的五边形的面积,需要利用Rt⊙OBC ,求解正六边形面积和两个直角三角形面积;最后正六边形面积减去两倍Rt⊙OBC 的面积即可.【详解】依题意,如图,根据题意得:⊙BOC =30°,设BC =x ,则OB =2x ,OC =, ⊙2(x +2x )=12,解得x =2,⊙OC =⊙ 11222OBC S BC OC ∆=⨯⨯=⨯⨯=⊙ 正六边形的面积=1212OBC S ∆⨯=⨯=⊙ 拼成一个四边形的面积为:2OBC S ∆⨯=⊙纸片的剩余部分拼成的五边形的面积为:=故选:B .本题考查正六边形的性质及面积求法,重点在于利用正六边形分解成12个全等直角三角形的方法. 3.如图,两个正六边形ABCDEF 、EDGHIJ 的顶点A 、B 、H 、I 在同一个圆上,点P 在ABI 上,则tan⊙API 的值是( )A .B .C .2D .1【答案】A【分析】 连接AE ,EI ,AH ,过点J 作JM ⊙EI 于M ,证明90AIH ∠=︒,设HI JI JE a ===,求出AI 即可.【详解】解:如图,连接AE ,EI ,AH ,过点J 作JM ⊙EI 于M .⊙ABCDEF 是正六边形,⊙⊙DEF =⊙F =120°,⊙F A =FE ,⊙⊙FEA =⊙F AE =30°,⊙⊙AED =90°,同法可证,⊙DEI =⊙EIH =90°,⊙⊙AED +⊙DEI =180°,⊙A ,E ,I 共线,设HI JI JE a ===,⊙JM ⊙EI ,⊙EM =MI, ⊙AI =2EI =a ,⊙⊙API =⊙AHI ,⊙tan⊙API =tan⊙AHI =AI HI=a= 故选:A .【点睛】本题考查了正多边形和圆,解直角三角形,圆周角定理等知识,解题关键是正确添加辅助线,构造直角三角形解决问题.4,这个正六边形的面积为( )A .12B.C.D.【答案】B【分析】根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.【详解】解:如图,连接OA 、OB ;过点O 作OG ⊙AB 于点G .在Rt⊙AOG 中,OG =⊙AOG =30°,⊙OG =OA •cos 30°, ⊙OA 30OG cos ===︒2,⊙这个正六边形的面积=6S ⊙OAB =612⨯⨯2=.故选:B【点睛】此题主要考查正多边形和圆,根据题意画出图形,再根据正多边形的性质及锐角三角函数的定义解答即可.5.已知⊙O的半径是2,一个正方形内接于⊙O,则这个正方形的边长是()A.B.2C D.4【答案】A【分析】利用正方形的性质结合勾股定理可得出正方形的边长.【详解】解:如图所示:⊙⊙O的半径为2,四边形ABCD是正方形,⊙OA=OB=2,⊙AOB=90°,⊙AB==故选:A.【点睛】此题主要考查了正多边形和圆,熟练掌握正方形的性质是解题的关键.6.将一枚飞镖投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A .12B .25C .35D .23【答案】A【分析】算出白色区域的面积与整个图形的面积之比即为所求概率.【详解】解:如图,过点A 作AG BF ⊥于点G⊙ 六边形ABCDEF 为正六边形,⊙BAF=120∠︒,=60FAG ∠︒设正六边形的边长为a,则22aAG FG ==⨯=,BF=2⊙空白部分的面积为:13322ABF a S S ==⨯⨯=△空白正六边形的面积为:226S ==六⊙飞镖落在白色区域的概率为:12S P S ==空白六故选:A【点睛】本题考查概率的求解,确定白色区域面积占整个图形面积的占比是解题的关键.7.已知正六边形ABCDEF内接于O,若O的直径为2,则该正六边形的周长是()A.12B.C.6D.【答案】C【分析】如图,连接OA、OB,由正六边形ABCDEF内接于O可得⊙AOB=60°,即可证明⊙AOB是等边三角形,根据O直径可得OA的长,进而可得正六边形的周长.【详解】如图,连接OA、OB,⊙O的直径为2,⊙OA=1,⊙正六边形ABCDEF内接于O,⊙⊙AOB=60°,⊙OA=OB,⊙⊙AOB是等边三角形,⊙AB=OA=1,⊙该正六边形的周长是1×6=6,故选:C.【点睛】本题考查正多边形和圆,正确得出⊙AOB=60°是解题关键.8.若正六边形的半径长为6,则它的边长等于()A.6B.3C.D.【答案】A【分析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.【详解】正六边形的中心角为360660,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于6,则正六边形的边长是6.故选:A.【点睛】此题主要考查了正多边形和圆,利用正六边形的外接圆半径和正六边形的边长将组成一个等边三角形得出是解题关键.9.如图,AB,AC分别为O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为()A .8B .10C .12D .14【答案】C【分析】 连接OB ,OC ,OA ,根据圆内接正三角形,正方形可求出AOB ∠,AOC ∠的度数,进而可求BOC ∠的度数,利用360BOC n︒∠=,即可求得答案. 【详解】如图:连接OB ,OC ,OA ,ABE △为圆内接正三角形3601203AOB ︒∴∠==︒ 四边形ACDF 为圆内接正方形 360904AOC ︒∴∠==︒ 1209030BOC AOB AOC ∴∠=∠-∠=︒-︒=︒ 若以BC 为边的圆内接正n 边形,则有36030BOC n ︒∠==︒ 12n ∴=故选:C .【点睛】本题考查了圆内接正多边形中心角的求法,熟练掌握圆内接正多边形的中心角等于360n︒(n 为正多边形的边数)是解题关键.10.如图,圆内接正方形的边长为2,以其各边为直径作半圆,则图中阴影部分的面积为( )A.4B.24π-C.2πD.2π+【答案】A【分析】设正方形的中心为O,连接OA,OB首先求出其长度,再根据阴影部分面积等于四个直径为2的半圆面积之和加上一个边长为2的圆的面积求解即可.【详解】解:设正方形的中心为O,连接OA,OB,由题意可得OA=OB,⊙AOB=90°,AB=2⊙在Rt⊙AOB中,⊙2221=42424 22ABS AB OAππππ⎛⎫⨯⨯+-⨯=+-=⎪⎝⎭阴影故选:A【点睛】本题考查正多边形和圆,勾股定理,正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.如图,螺母的外围可以看作是正六边形ABCDEF,己知这个正六边形的半径是2,则它的周长是()A.B.C.12D.24【答案】C【分析】如图,先求解正六边形的中心角AOB ∠,再证明AOB 是等边三角形,从而可得答案.【详解】解:如图,O 为正六边形的中心,,OA OB 为正六边形的半径,1360606AOB ∴∠=⨯︒=︒,2OA OB ==,AOB ∴为等边三角形,2AB ∴=,∴ 正六边形ABCDEF 的周长为62=12.⨯故选:.C【点睛】本题考查的是正多边形与圆,正多边形的半径,中心角,周长,掌握以上知识是解题的关键.12.如图,有一个半径为4cm 的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是( ).AB .2cmC .D .4cm【答案】C【分析】 连接OA 、OB ,根据圆内接正六边形的性质得到⊙AOB 是等边三角形,作OC⊙AB 于C ,求得⊙AOC=30,由OA=4cm ,得到AC=2cm ,根据勾股定理求出=.【详解】如图,连接OA、OB,则⊙AOB是等边三角形,作OC⊙AB于C,⊙⊙AOB是等边三角形,⊙⊙OAB=60︒,⊙⊙AOC=30,⊙OA=4cm,⊙AC=2cm,=,故选:C..【点睛】此题考查圆内接正六边形的性质,等边三角形的性质,勾股定理,直角三角形30度角所对的直角边等于斜边的一半的性质,熟记圆内接正六边形的性质是解题的关键.13.如图,正六边形ABCDEF内接于O,连接AC,则BAC∠的度数是()A.60︒B.50︒C.40︒D.30【答案】D【分析】连接BO、CO,根据正六边形的性质可求⊙BOC,再根据圆周角的性质可求BAC∠.【详解】解:连接BO、CO,在正六边形ABCDEF中,⊙BOC=3606︒=60°,⊙⊙BAC=12⊙BOC=30°, 故选:D .【点睛】本题考查了正六边形的性质和圆周角的性质,连接半径,求圆心角是解题关键.14.如图,正ABC 内接于半径是1的圆,则阴影部分的面积是( )A .4π-B .4π-C .2π-D .2π- 【答案】A【分析】设该圆的圆心为O ,连接OA 、OB ,延长AO 交BC 于点D ,根据题意可知:O 为ABC 的中心,OA=OB=1,⊙ABC=60°从而求出⊙1,然后根据30°所对的直角边是斜边的一半和勾股定理即可求出OD 和BD ,然后根据垂径定理求出BC ,最后根据S 阴影=S 圆-S ⊙ABC 即可求出结论.【详解】解:设该圆的圆心为O ,连接OA 、OB ,延长AO 交BC 于点D ,⊙正ABC内接于半径是1的圆,⊙O为ABC的中心,OA=OB=1,⊙ABC=60°⊙⊙1=12⊙ABC=30°,AD⊙BC在Rt⊙ODB中,OD=12OB=12,=⊙AD=OA+OD=32,⊙S阴影=S圆-S⊙ABC=21π-12 BC·AD=π-4故选A.【点睛】此题考查的是正多边形与圆、垂径定理、等边三角形的性质和直角三角形的性质,掌握正多边形中心的性质、垂径定理、等边三角形的性质和直角三角形的性质是解题关键.15.公元3世纪,刘徽发现可以用圆内接正多边形的周长近似地表示圆的周长.如图所示,他首先在圆内画一个内接正六边形,再不断地增加正多边形的边数;当边数越多时,正多边形的周长就越接近于圆的周长.刘徽在《九章算术》中写道:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”我们称这种方法为刘徽割圆术,它开启了研究圆周率的新纪元.小牧通过圆内接正n边形,使用刘徽割圆术,得到π的近似值为()A .360sin 2n n ︒⋅B .3602sin n n ︒⋅C .3602sin 2n n ︒⋅D .360sin n n︒⋅ 【答案】A【分析】如详解图,先利用三角函数的知识把正n 边形的边长用含有n 的式子表达出来,求解出正n 边形的周长,再利用正n 边形的周长无限接近圆的周长即可求解.【详解】如图:36012n︒∠= , 360sin 2a b n︒= 360sin 2a b n︒=, 则正n 边形的周长为:36022sin 2L an bn n︒== , 圆的周长为:2L b π=, 由圆的内接正n 边形的周长无限接近圆的周长可得:3602sin22bn b n π︒≈ 整理得:360sin2n nπ︒≈ 故选:A .【点睛】本题考查了极限的思想,抓住圆内接正n 边形的周长无限接近圆的周长是解题关键.16.如图,O 的内接正六边形ABCDEF 的边长为1,则BC 的长为( )A .14πB .13π C .23π D .π【答案】B【分析】如图(见解析),先根据圆内接正六边形的性质求出中心角60BOC ∠=︒,再根据等边三角形的判定与性质可得1OB OC BC ===,然后利用弧长公式即可得.【详解】如图,连接OB 、OC ,由题意得:1BC =,正六边形ABCDEF 是O 的内接正六边形,∴中心角360606BOC ︒∠==︒, 又OB OC =, BOC ∴是等边三角形,1OB OC BC ∴===,则BC 的长为60111803ππ⨯=, 故选:B .【点睛】本题考查了圆内接正六边形的性质、弧长公式等知识点,熟练掌握圆内接正六边形的性质是解题关键.17.如图,⊙O与正六边形OABCDE的边OA、OE分别交于点F、G,点M为劣弧FG的中点.若FM=,则⊙O的半径为()A.2B C.D.【答案】C【分析】连接OM,根据正六边形OABCDE和点M为劣弧FG的中点,可得⊙OFM是等边三角形,进而可得⊙O的半径.【详解】解:如图,连接OM,⊙正六边形OABCDE,⊙⊙FOG=120°,⊙点M为劣弧FG的中点,⊙⊙FOM=60°,OM=OF,⊙⊙OFM是等边三角形,⊙OM=OF=FM=则⊙O的半径为.故选:C.【点睛】本题考查正多边形与圆,解题的关键是学会添加常用辅助线.18.如图,正方形ABCD 和正三角形AEF 内接于O ,DC 、BC 交EF 于G 、H ,若正方形ABCD 的边长是4,则GH 的长度为( )A .B .CD 【答案】A【分析】 连接AC 交EF 于M ,连接OF ,根据正方形的性质、等边三角形的性质及等腰三角形的性质即可求解.【详解】解:连接AC 交EF 于M ,连接OF ,四边形ABCD 是正方形,90B ∴∠=︒,AC ∴是O 的直径,ACD ∴∆是等腰直角三角形,AC ∴==OA OC ∴==AEF ∆是等边三角形,AM EF ∴⊥,30OFM ∠=︒,12OM OF ∴==CM ∴=45ACD ∴∠=︒,90CMG ∠=︒,45CGM ∴∠=︒,CGH ∴∆是等腰直角三角形,2GH CM ∴==故选:A .【点睛】本题考查正多边形与圆的关系,涉及到特殊锐角三角函数值、正方形的性质、等边三角形的性质及等腰三角形的性质,解题的关键是综合运用所学知识.19.如图,圆内接正八边形的边长为1,以正八边形的一边AB 作正方形ABCD ,将正方形ABCD 绕点B 顺时针旋转,使AB 与正八边形的另一边BC '重合,则正方形ABCD 与正方形A BC D '''重叠部分的面积为( )A 1B .12CD 【答案】A【分析】 先计算出正八边形的内角⊙ABC′=135°,再利用旋转的性质得⊙ABC=⊙A′BC′=90°,⊙BA′D′=⊙BAD=90°,所以⊙ABA′=135°-90°=45°,则延长BA′过点D ,如图,然后利用正方形ABCD 与正方形A′BC′D′重叠部分的面积=S ⊙BDC -S ⊙DA′E 进行计算.【详解】 正八边形的内角(82)1801358ABC ︒'︒-⨯∠==,正方形ABCD 绕点B 顺时针旋转,使BC 与正八边形的另一边BC '重合,90,90ABC A BC BA D BAD ∴∠=∠''=︒∠''=∠=︒.1359045ABA ∴∠'=︒-︒=︒.如解图,延长BA '至点D ,DC 与A D ''相交于点E ,,,11AB A B AB BD =∴'==='1A D ∴=.⊙正方形ABCD 与正方形A BC D '''重叠部分的面积11111)1)122BDC DA E S S '=-=⨯⨯-⨯⨯= 故选:A .【点睛】本题考查正多边形与圆,把一个圆分成n 等分,依次连接各点所得的多边形是这个圆的内接正多边形,也考查了正方形和正八边形的性质.20.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .BC .2D .【答案】A【分析】 如图,连接OB 、OC .首先证明⊙OBC 是等边三角形,求出BC 、BM ,根据勾股定理即可求出OM .【详解】解:如图,连接OB 、OC .⊙ABCDEF是正六边形,⊙⊙BOC=60°,OB=OC=4,⊙⊙OBC是等边三角形,⊙BC=OB=OC=4,⊙OM⊙BC,⊙BM=CM=2,在Rt⊙OBM中,2222OM OB BM=-=-=,4223故选:A.【点睛】本题考查正多边形与圆、等边三角形的性质、勾股定理、弧长公式等知识,解题的关键是记住等边三角形的性质,弧长公式,属于基础题,中考常考题型.21.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.则正方形ABCD与正六边形AEFCGH的周长之比为()A.⊙ 3B C D.【答案】A【分析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出.【详解】解:设此圆的半径为R,R ,它的内接正六边形的边长为R ,内接正方形和内接正六边形的周长比为:R :6R =.故选:A .【点睛】本题考查了正多边形和圆,找出内接正方形与内接正六边形的边长关系,是解决问题的关键.22.如图,正五边形ABCDE 和等边AFG 内接于O ,则GFD ∠的度数是( )A .10︒B .12︒C .15︒D .20︒【答案】B【分析】 如图(见解析),先根据正五边形的内角和定理与性质可得108ABC BCD ∠=∠=︒,BC CD =,再根据三角形的内角和定理、等腰三角形的性质可得36CBD ∠=︒,从而可得72ABD ∠=︒,然后根据圆周角定理可得72AFD ABD ∠=∠=︒,最后根据等边三角形的性质可得60AFG =︒∠,据此即可得出答案.【详解】如图,连接BD ,五边形ABCDE 是正五边形,()521801085ABC BCD -⨯︒∴∠=∠==︒,BC CD =, 1(180)362CBD CDB BCD ∴∠=∠=︒-∠=︒, 72ABD ABC CBD ∴∠=∠-∠=︒,由圆周角定理得:72AFD ABD ∠=∠=︒,又AFG 是等边三角形,60AFG ∴∠=︒,726012GFD AFD AFG ∴∠=∠-∠=︒-︒=︒,故选:B .【点睛】本题考查了正五边形的内角和与性质、等腰三角形和等边三角形的性质、圆周角定理等知识点,通过作辅助线,利用到圆周角定理是解题关键.23.如图,在平面直角坐标系中,将边长为1的正六边形OABCDE 绕点O 顺时针旋转i 个45°,得到正六边形i i i i i OA B C D E ,则正六边形(2020)i i i i i OA B C D E i =的顶点i C 的坐标是( )A .(1,B .C .(1,2)-D .(2,1)【答案】A【分析】 如图,以O 为圆心,OC 为半径作,O 得到将边长为1的正六边形OABCDE 绕点O 顺时针旋转i 个45°,即把OC 绕点O 顺时针旋转i 个45°,2020C 与4C 重合,利用正六边形的性质与锐角三角函数求解C 的坐标,利用4,C C 关于原点成中心对称,从而可得答案.【详解】解:如图,以O 为圆心,OC 为半径作,O将边长为1的正六边形OABCDE 绕点O 顺时针旋转i 个45°,即把OC 绕点O 顺时针旋转i 个45°,C 旋转后的对应点依次记为12,...C C , 1周角=360,︒OC ∴绕点O 顺时针旋转顺时针旋转8次回到原位置,20208252...4,÷=2020C ∴与4C 重合,4,C C 关于原点成中心对称,连接,CE正六边形OABCDE ,,120.DC DE CDE DEO EOA ∴=∠=∠=∠=︒30,90,60,DEC CEO COE ∴∠=︒∠=︒∠=︒1,OE =tan tan 60CE COE OE∴∠=︒==CE ∴= (,C ∴- 4,C C 关于原点成中心对称,((420201,,1,.C C ∴故选A .【点睛】本题考查的是旋转的旋转,正六边形的性质,圆的对称性,锐角三角函数,掌握以上知识是解题的关键. 24.设边长为a 的等边三角形的高、内切圆的半径、外接圆的半径分别为h 、r 、R ,则下列结论不正确...的是( )A .h R r =+B .2R r =C .4r a =D .3R a = 【答案】C【分析】 将图形标记各点,即可从图中看出长度关系证明A 正确,再由构造的直角三角形和30°特殊角证明B 正确,利用勾股定理求出r 和R,即可判断C 、D .【详解】如图所示,标上各点⊙AO 为R⊙OB 为r ⊙AB 为h,从图象可以得出AB=AO+OB⊙即h R r =+⊙A 正确⊙⊙三角形为等边三角形⊙⊙⊙CAO=30°⊙根据垂径定理可知⊙ACO=90°⊙⊙AO=2OC⊙即R=2r ⊙B 正确⊙在Rt⊙ACO 中,利用勾股定理可得⊙AO 2=AC 2+OC 2⊙即22212R a r ⎛⎫=+ ⎪⎝⎭⊙由B 中关系可得⊙()222122r a r ⎛⎫=+ ⎪⎝⎭,解得6=r a ⊙则3R a =⊙所以C 错误,D 正确;故选:C .【点睛】本题考查圆与正三角形的性质结合,关键在于巧妙利用半径和构建直角三角形.25.如图,在边长为1的正六边形ABCDEF 中,M 是边DE 上一点,则线段AM 的长可以是()A .1.4B .1.6C .1.8D .2.2【答案】C【分析】连接AE,AD,过点F作FH⊙AE于点H,则AM的长介于AE和AD之间,分别求出AE,AD的长,再结合选项即可得到问题答案.【详解】解:连接AE,AD,,过点F作FH⊙AE于点H,⊙多边形ABCDEF是正六边形,⊙⊙AFE=⊙DEF=(6-2) ×180°÷6=120°,⊙⊙FEH=30°,⊙AEM=90°,⊙HF=12AF=12,=,<AM<2,故选:C.【点睛】本题考查了正多边形,以及勾股定理等知识,熟记和正多边形有关的各种性质以及正确的添加出图形的辅助线是解题的关键.26.如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A .4πB .4πC .8πD .4π 【答案】A【分析】正六边形的面积加上六个小半圆的面积,再减去中间大圆的面积即可得到结果.【详解】解:正六边形的面积为:1462⨯⨯=, 六个小半圆的面积为:22312ππ⋅⨯=,中间大圆的面积为:2416ππ⋅=,所以阴影部分的面积为:12164πππ+-=-,故选:A .【点睛】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键. 27.如图,AB 是O 的直径,O 的半径为2,AD 为正十边形的一边,且//AD OC ,则劣弧BC 的长为( )A .πB .32πC .43πD .65π 【答案】D【分析】 利用正十边形的中心角求法得⊙AOD=36º,再根据等腰三角形的性质及由平行线的性质求得⊙AOC 的度数,进而求得⊙BOC ,然后用弧长公式求解即可.【详解】⊙AD 为正十边形的一边, ⊙⊙AOD=36010=36º, ⊙OA=OD , ⊙⊙OAD=⊙ODA=180362-=72º, ⊙AD⊙OC ,⊙⊙AOC=⊙OAD=72º,⊙⊙BOC=180º-⊙AOC=180º-72º=108º,⊙劣弧BC 的长为108261805ππ⨯=, 故选D .【点睛】本题考查了正多边形的中心角、圆的定义、等腰三角形的性质、平行线的性质、弧长公式,熟练掌握基本图形的性质,会利用弧长公式求解弧长是解答的关键.二、填空题28.公元263年左右,我国数学家刘徽发现当正多边形的边数无限增加时,这个正多边形面积可无限接近它的外接圆的面积,因此可以用正多边形的面积来近似估计圆的面积,如图,O 是正十二边形的外接圆,设正十二边形的半径OA 的长为1,如果用它的面积来近似估计O 的面积,那么O 的面积约是___.【答案】3【分析】设AB 为正十二边形的边,连接OB ,过A 作AD OB ⊥于D ,由正十二边形的性质得出30AOB ∠=,由直角三角形的性质得出1122AD OA ==,求出AOB 的面积1124OB AD ⨯==,即可得出答案. 【详解】解:设AB 为正十二边形的边,连接OB ,过A 作AD OB ⊥于D ,如图所示:3601130,,1222AOB AD OB AD OA ∠∴==⊥∴==, AOB ∴的面积111112224OB AD =⨯=⨯⨯= ∴正十二边形的面积11234=⨯=, O ∴的面积≈正十二边形的面积3=,故答案为:3.【点睛】本题考查了正多边形和圆、正十二边形的性质、直角三角形的性质以及三角形面积等知识;熟练掌握正十二边形的性质是解题的关键.29.如图,在正五边形ABCDE 中,AC 为对角线,以点A 为圆心,AE 为半径画圆弧交AC 于点F ,连结EF ,则⊙1的度数为__.【答案】54°【分析】根据五边形的内角和公式求出⊙ABC ,根据等腰三角形的性质,三角形内角和的定理计算⊙BAC ,再求⊙EAF ,利用圆的性质得AE=AF ,最后求出⊙1即可.【详解】解:⊙五边形ABCDE 是正五边形,⊙⊙EAB =⊙ABC =()5-21805⨯︒=108°, ⊙BA =BC ,⊙⊙BAC=⊙BCA=180-1082︒︒=36°,⊙⊙EAF=108°﹣36°=72°,⊙以点A为圆心,AE为半径画圆弧交AC于点F,⊙AE=AF,⊙⊙1=180-722︒︒=54°.故答案为:54°.【点睛】本题考查了正多边形的内角与圆,熟练掌握正多边形的内角的计算公式、和圆的性质,等腰三角形的性质是解题的关键.30.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).若设T1,T2的边长分别为a,b,圆O的半径为r,则r:a=____;r:b=____;正六边形T1,T2的面积比S1:S2的值是____.【答案】1:1 2 3:4【分析】根据圆内接正六边形的边长等于它的半径可得r与a比值,在由圆的半径和正六边形的半边及正六边形对角线的一半组成的直角三角形中,根据锐角三角函数即可求得r与b的比值;根据相似多边形的面积比是相似比的平方,由r:a与r:b 可求a:b,继而即可求解.【详解】连接OE,OG,OF,⊙EF=a,T1为正六边形,⊙⊙OEF为等边三角形,OE为圆O的半径r,⊙a:r=1:1,即r:a=1:1⊙,由题意可知:OG为⊙FOE的平分线,即⊙EOG=12⊙EOF=30°,在Rt⊙OEG中,OE=r,OG=b,⊙OE OG =r b=cos⊙EOG=cos30°,即r b⊙r :2⊙,⊙由⊙⊙得,a :2,且两个正六边形T 1,T 2相似,⊙S 1:S 2=a 2:b 2=3:4,故答案为:1:12;3:4.【点睛】本题考查正多边形与圆的有关知识,解题的关键是学会构造由正多边形半径,边心距、半边组成的直角三角形,掌握锐角三角函数,注意相似多边形的面积比即是相似比的平方.31.如图,正六边形ABCDEF 的边长为2,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为_____(结果保留根号和π).【答案】43π 【分析】 设正六边形的中心为点O ,连接OD 、OE ,作OH⊙DE 于H ,根据正多边形的中心角公式求出⊙DOE ,求出OH 和正六边形ABCDEF 的面积,再求出⊙A ,利用扇形面积公式求出扇形ABF 的面积,即可得出结果.【详解】解:设正六边形的中心为点O ,连接OD 、OE ,作OH⊙DE 于H ,如图所示:⊙DOE =3606︒=60°, ⊙OD =OE =DE =2,⊙OH⊙正六边形ABCDEF 的面积=12= ⊙A =()621801206-⨯︒=︒, ⊙扇形ABF 的面积2120243603ππ⨯==,⊙图中阴影部分的面积43π=,故答案为:43π. 【点睛】本题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的关键.32.如图,等边⊙ABC 内接于⊙O ,BD 为⊙O 内接正十二边形的一边,CD=等于_________.【答案】252542π- 【分析】首先连接OB,OC,OD,由等边⊙ABC内接于⊙O,BD为内接正十二边形的一边,可求得⊙BOC,⊙BOD 的度数,则证得⊙COD是等腰直角三角形,并利用勾股定理求得圆的半径,最后利用S阴影=S扇形OCD-S⊙OCD 进行计算后即可得出答案.【详解】解:连接OB,OC,OD,⊙等边⊙ABC内接于⊙O,BD为内接正十二边形的一边,⊙⊙BOC=13×360°=120°,⊙BOD=112×360°=30°,⊙⊙COD=⊙BOC−⊙BOD=90°,⊙OC=OD,⊙⊙OCD=45°,⊙OC2+ OD2=CD2.即2OC2=50,⊙OC=5,⊙S阴影=S扇形OCD-S⊙OCD=90251252555360242ππ-⨯⨯=-.故答案为:2525 42π-.【点睛】此题考查了正多边形与圆、扇形面积的计算等知识,掌握辅助线的作法以及数形结合思想的应用是解题的关键.三、解答题33.已知:如图,A为⊙O上一点;求作:⊙O的内接正方形ABCD.【答案】见解析【分析】先作直径AC,再过O点作AC的垂线交⊙O于D、B,然后连接AB、AD、CD、CB即可.【详解】解:如图,四边形ABCD为所作.【点睛】本题考查了作图——复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.的余角34.如图,正五边形ABCDE内接于O,P为DE上的一点(点P不与点,D E重合),求CPD的度数.【答案】54°【分析】连接OC,OD.求出⊙COD的度数,再根据圆周角定理即可解决问题.【详解】如图,连接,OC OD.⊙五边形ABCDE是正五边形,⊙360725COD︒∠==︒,⊙1362CPD COD∠=∠=︒,⊙90°-36°=54°,⊙CPD∠的余角的度数为54°.【点睛】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.35.如图1,等边ABC内接于⊙O,连接CO并延长交⊙O于点D.(1)可以证明CD垂直平分AB,写出AD与DB的数量关系:___.(2)请你仅使用无刻度的直尺按要求作图:⊙在图1中作出一个正六边形,保留作图痕迹(作图过程用虚线表示,作图结果用实线表示).⊙请在图2中作出⊙O的内接正六边形ADBECF的一条不经过顶点的对称轴,保留作图痕迹(作图过程用虚线表示,作图结果用实线表示).【答案】(1)AD DB=;(2)⊙见解析,⊙见解析【分析】(1)结合外心的定义和等边三角形的性质推断出CD垂直平分AB,从而利用垂径定理得出结论即可;(2)⊙结合(1)的结论,可直接连接AO,BO,分别延长与圆相交,再顺次连接各交点即可;⊙如图,延长AF,EC,交于一点,此时可构成等边三角形,从而连接交点与圆心的直线即为所求的对称轴.【详解】(1)AD DB=,⊙O为三角形的外心,⊙O为三角形三边中垂线的交点,又⊙三角形为等边三角形,⊙可得CD垂直平分AB,根据垂径定理可得:AD DB=;(2)⊙如图所示,在(1)的基础之上,连接AO,并延长至E,连接BO,并延长至F,顺次连接圆周上各点即可;⊙如图所示:(方法不唯一)【点睛】本题主要考查复杂作图,以及正多边形与圆之间的关系,熟练掌握正多边形的性质是解题关键.36.如图M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDEFG…的边AB、BC上的点,且BM=CN,连接OM、ON(1)求图1中⊙MON 的度数(2)图2中⊙MON 的度数是 ,图3中⊙MON 的度数是(3)试探究⊙MON 的度数与正n 边形边数n 的关系是____【答案】(1)120︒;(2)90︒,72︒;(3)360MON n︒∠=. 【分析】(1)如图(见解析),先根据圆内接正三角形的性质可得3603120BOC ,再根据圆内接正三角形的性质可得30OBM OCN ∠=∠=︒,然后根据三角形全等的判定定理与性质可得BOM CON ∠=∠,最后根据角的和差、等量代换即可得;(2)如图(见解析),先根据圆内接正方形的性质可得360904BOC ︒∠==︒,再根据(1)同样的方法可得90MON BOC ∠=∠=︒;先根据圆内接正五边形的性质可得中心角360725BOC ︒∠==︒,再根据(1)同样的方法可得72MON BOC ∠=∠=︒;(3)根据(1)、(2)归纳类推出一般规律即可得.【详解】(1)如图,连接OB 、OC ,则OC OB =,ABC 是O 内接正三角形,∴中心角3603120BOC, ⊙点O 是O 内接正三角形ABC 的内心,⊙1130,3022OBM ABC OCN ACB ∠=∠=︒∠=∠=︒, ⊙OBM OCN ∠=∠,在OMB △和ONC 中,BM CN OBM OCN OB OC =⎧⎪∠=∠⎨⎪=⎩,。

2022年中考数学真题分项汇编(全国通用):圆与正多边形(第2期)(原卷版)

2022年中考数学真题分项汇编(全国通用):圆与正多边形(第2期)(原卷版)

专题12圆与正多边形一.选择题1.(2022·湖北鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A 、B 、E 三个接触点,该球的大小就符合要求.图(2)是过球心及A 、B 、E 三点的截面示意图,已知⊙O 的直径就是铁球的直径,AB 是⊙O 的弦,CD 切⊙O 于点E ,AC ⊥CD 、BD ⊥CD ,若CD =16cm ,AC =BD =4cm ,则这种铁球的直径为()A .10cmB .15cmC .20cmD .24cm2.(2022·湖南娄底)如图,等边ABC 内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边ABC 的内心成中心对称,则圆中的黑色部分的面积与ABC 的面积之比是()A .318B .18C .9D .393.(2022·山东聊城)如图,AB ,CD 是O 的弦,延长AB ,CD 相交于点P .已知30P ,80AOC ,则 BD 的度数是()A.30°B.25°C.20°D.10°4.(2022·湖北黄冈)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则弧AD的长为()A. B.43 C.53 D.2,分别以点A,B,C为圆5.(2022·四川达州)如图所示的曲边三角形可按下述方法作出:作等边ABCBC, AC, AB,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周心,以AB长为半径作长为2π,则此曲边三角形的面积为()A.6.(2022·江苏无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为()A.12πB.15πC.20πD.24π7.(2022·湖北荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是()A4B .C . 63D 28.(2022·广西贺州)如图,在等腰直角OAB 中,点E 在OA 上,以点O 为圆心、OE 为半径作圆弧交OB 于点F ,连接EF ,已知阴影部分面积为π2 ,则EF 的长度为()AB .2C .D .9.(2022·江苏无锡)如图,AB 是圆O 的直径,弦AD 平分∠BAC ,过点D 的切线交AC 于点E ,∠EAD =25°,则下列结论错误的是()A .AE ⊥DEB .AE //ODC .DE =OD D .∠BOD =50°10.(2022·黑龙江大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是()A .60πB .65πC .90πD .120π11.(2022·内蒙古包头)如图,,AB CD 是O 的两条直径,E 是劣弧 BC 的中点,连接BC ,DE .若22ABC ,则CDE 的度数为()A .22B .32C .34D .4412.(2022·辽宁锦州)如图,线段AB 是半圆O 的直径。

2020年中考数学复习正多边形与圆 专题练习题及答案

2020年中考数学复习正多边形与圆 专题练习题及答案

正多边形与圆1.一个正多边形每一个内角是它相邻的外角的4倍,这个正多边形的边数是( )A.7 B.8 C.9 D.102.若一个四边形的外接圆与内切圆是同心圆,则这个四边形一定是( )A.矩形 B.菱形 C.正方形 D.等腰梯形3.王明想用一块边长为60cm的等边三角形做成一个最大的正六边形,写上“祝福祖国”的字样来表达自己的喜悦之情,则此六边形的边长是( )A.20cm B.25cm C.30cm D.40cm4. 利用等分圆可以作正多边形,只利用直尺和圆规不能作出的多边形是()A.正三角形B.正方形C.正六边形D.正七边形5. 已知圆的半径是23,则该圆的内接正六边形的面积是()A.3 3B.9 3C.18 3D.36 36. 如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A. R2-r2=a2B. a=2Rsin36°C. a=2rtan36°D. r=Rcos36°7. 小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )A.23cmB.43cmC.63cmD.83cm8. 已知等边三角形的内切圆半径、外接圆半径和高的比是( ) A.1∶2∶ 3 B.2∶3∶4 C.1∶3∶2 D.1∶2∶3 9. 下列命题:①正多边形都有内切圆和外接圆,且这两个圆是同心圆;②各边相等的圆外切多边形是正多边形;③各角相等的圆内接多边形是正多边形;④正多边形既是轴对称图形又是中心对称图形;⑤正n 边形的中心角是a n =360°n ,且正多边形的中心角与其每一个外角相等.其中真命题有( )A.2个B.3个C.4个D.5个10. 正多边形的一边所对的中心角与该正多边形的一个内角的关系是( )A.互补B.互余C. 既互补又互余D.无法确定 11. 圆内接正六边形的一边所对的圆周角是 或 12. 中心角为40°的正多边形的对称轴有____条 13. 下面图形中,是正多边形的是 (填序号). ①矩形 ②菱形 ③正方形 ④等腰梯形14. 已知正六边形ABCDEF 的边心距为3cm ,则正六边形的半径为 cm.15. 如图正六边形ABCDEF 内接于半径为3的圆O ,则劣弧AB 的长度为 .16. 圆内接正六边形的边心距为23,则这个正六边形的周长为 cm.17. 如图,已知⊙O 的周长等于6πcm,则它的内接正六边形ABCDEF 的边长为 cm.18. 如图,有一个边长为2cm的正六边形,如果要剪一张圆形纸片完全盖住这个图形,那么这张圆形纸片的最小半径为____cm.19. 正多边形的面积为240cm2, 周长为60cm,则边心距为 cm.20. 如图所示,已知正六边形ABCDEF内接于⊙O,图中阴影部分的面积为123,则⊙O的半径是21. 如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,求阴影部分的面积。

全国各地中考数学真题汇编:圆(填空选择46题)

全国各地中考数学真题汇编:圆(填空选择46题)

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学真题汇编:圆(填空+选择46题)一、选择题1.已知的半径为,的半径为,圆心距,则与的位置关系是()A. 外离B. 外切C. 相交D. 内切【答案】C2.如图,为的直径,是的弦,,则的度数为()A. B. C. D.【答案】C3.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A. B. C. D.【答案】C4.如图,在中,,的半径为3,则图中阴影部分的面积是()A. B. C. D.【答案】C5.如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°【答案】D6.如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.B.40πm2C.D.55πm2【答案】A7.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.【答案】A8.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内【答案】D9.如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的面积为15πcm2,则sin∠ABC的值为()A. B. C. D.【答案】C10.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B 等于()。

A.27°B.32°C.36°D.54°【答案】A11.如图,过点,,,点是轴下方上的一点,连接,,则的度数是()A. B. C. D.【答案】B12.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A. 3cmB. cmC. 2.5cmD. cm【答案】D13.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A.B.C.D.【答案】C14.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A. 75°B. 70°C. 65°D. 35°【答案】B15.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A.3B.C.D.【答案】D16.如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD的延长线于点C,若的半径为4,,则PA的长为()A. 4B.C. 3D. 2.5【答案】A17.在中,若为边的中点,则必有成立.依据以上结论,解决如下问题:如图,在矩形中,已知,点在以为直径的半圆上运动,则的最小值为()A. B. C. 34 D. 10【答案】D18.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=AED=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC= AB∴2CB2=CP•CM所以③正确A. ①②③B. ①C. ①②D. ②③【答案】A二、填空题19.已知扇形的弧长为2 ,圆心角为60°,则它的半径为________.【答案】620.一个扇形的圆心角是120°,它的半径是3cm,则扇形的弧长为________cm.【答案】21.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________ cm。

9.中考数学专题07 正多边形和圆、弧长和扇形的面积专题详解(解析版)

9.中考数学专题07 正多边形和圆、弧长和扇形的面积专题详解(解析版)

正多边形和圆、弧长和扇形的面积真题测试一、单选题⌢上的任意一点,则∠APB的大小是1.(2020·柯桥模拟)如图,正六边形ABCDEF内接于⊙O,点P是CD()A. 15°B. 30°C. 45°D. 60°【答案】B【解析】:连接OA、OB、如图所示:∵∠AOB=360°=60°,6∴∠APC=1∠AOC=30°.2故答案为:B.2.(2020·新都模拟)如图,在圆内接四边形ABCD中,∠C=110°,则∠BOD的度数为()A. 140°B. 70°C. 80°D. 60°【答案】A【解析】∵四边形ABCD是圆内接四边形∴∠A+∠C=180°,∵∠C=110°,∴∠A=180°﹣∠C=70°,由圆周角定理得,∠BOD=2∠A=140°,故答案为:A.3.(2020·吉林模拟)如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=100°,则∠α=()A. 80°B. 100°C. 120°D. 160°【答案】D【解析】:优弧AB上任取一点D,连接AD,BD,.∵四边形ACBD内接与⊙O,∠C=100°,∴∠ADB=180°﹣∠C=180°﹣100°=80°,∴∠AOB=2∠ADB=2×80°=160°.故答案为:D.4.(2020·启东模拟)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A. 1B. 2C. 3D. 6【答案】B=4π,【解析】:扇形的弧长=120π×6180∴圆锥的底面半径为4π÷2π=2.故答案为:B.5.(2020九下·中卫月考)如图,一根5米长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只羊A(羊在草地上活动),那么羊在草地上的最大活动区域面积是()平方米.A. 1712πB. 176π C. 254π D. 7712π【答案】 D【解析】:如图所示:这只羊在草地上的最大活动区域为两个扇形,其中大扇形的半径为5米,圆心角为90°;小扇形的半径为5-4=1米,圆心角为180°-120°=60°羊在草地上的最大活动区域面积= 90π×52360+60π×12360 = 7712π (平方米) 故答案为:D.6.(2020·无锡模拟)已知扇形的半径为6cm ,圆心角为120°,则这个扇形的面积是( )A. 36πcm 2B. 12πcm 2C. 9πcm 2D. 6πcm 2【答案】 B【解析】:由题意得:n=120°,R=6,故可得扇形的面积S= nπr 2360 = 120π×62360 =12πcm 2 . 故答案为:B .7.(2020·南充模拟)如图A ,B ,C 是 ⊙O 上顺次3点,若 AC , AB , BC 分别是 ⊙O 内接正三角形、正方形、正n 边形的一边,则 n = ( )A. 9B. 10C. 12D. 15【答案】 C【解析】:如图:连接 OA , OB , OC .∵若AC,AB,BC分别是⊙O内接正三角形、正方形、正n边形的一边,则∠AOC=120°,∠AOB=90°.∴∠BOC=30°.∴360°=12,30°∴BC是⊙O内接正十二边形的一边.故答案为:C.8.(2020·开平模拟)如图,正五边形ABCDE绕点A旋转了α°,当α=36°时,则∠1=()A. 72°B. 108°C. 144°D. 120°【答案】C=108°,【解析】:如图,因为正五边形的每一个内角为540°5∴α=36°,.∴∠2=108°−36°=72°,由旋转的旋转得:对应角相等,∴∠1=540°−3×108°−72°=144°.故答案为:C.9.(2020·石家庄模拟)如图,以正五边形ABCDE的对角线BE为边,作正方形BEFG,使点A落在正方形BEFG内,则∠ABG的度数为()A. 18∘B. 36∘C. 54∘D. 72∘【答案】C【解析】:∵五边形ABCDE是正五边形,∴∠BAE=180°×(5−2)=108°,AB=AE,5(180°−∠A)=36°,∴∠ABE=∠BEA=12∵四边形BEFG是正方形,∴∠EBG=90°,∴∠ABG=∠EBG−∠ABE=90°−36°=54°.故答案为:C.10.(2020·台州模拟)如图,将边长为3的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为()S2A. S1>S2B. S1=S2C. S1<S2D. S1=π3【答案】A⌢=12,【解析】:由题意:EAC∴S2=1×12×3=18,∵S1=6× √34×32=27√32,∴S1>S2,故答案为:A.11.(2020·湖州模拟)如图,四边形ABCD内接于半径为3的⊙O,CD是直径,若∠ABC=110°,则扇形AOD的面积为()A. 74π B. π C. 72π D. 2π【答案】B【解析】:∵∠ABC=110°,∴优弧ADC所对的圆心角的度数为110°×2=220°,∵CD是直径,∴∠COD=180°,∵∠COD+∠AOD=220°,∴∠AOD=40°,∵⊙O的半径为3,∴扇形AOD的面积为40×π×32360=π.故答案为:B.12.(2020·金牛模拟)如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为32cm,BD的长为14cm,则DE⌢的长为()cm.A. 15πB. 12πC. 15πD. 36π【答案】C【解析】:∵AB=32cm,BD=14cm,AB,AC夹角为150°,∴AD=AB﹣BD=18cm,∴DE⌢的长为:150∘×π×18=15π(cm),180∘故答案为:C.13.(2020·河北模拟)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离不可能是()A. 0.5B. 0.6C. 0.7D. 0.8【答案】A【解析】如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2- √2小于等于1,故答案为:A.14.(2019九上·温州期中)如图,△ABC内接于⊙O,BC=6,AC=2,∠A-∠B=90°,则⊙O的面积为()A. 9.6πB. 10πC. 10.8πD. 12π【答案】B【解析】如下图所示,过点B作圆的直径BE交圆于点E,则∠ECB=90°,∴∠E+∠EBC=90°,∵圆的内接四边形对角互补,∴∠E+∠A=180°①,∵∠A−∠ABC=90°①,①-①可得:∠E+∠ABC=90°,∴∠ABC=∠EBC,∴AC⌢=CE⌢,∴CE=AC=2,在Rt△BCE中,由勾股定理得,BE=√BC2+CE2=√62+22=2√10,∴⊙O的半径为r=1BE=√10,2∴圆的面积= πr2=π⋅(√10)2=10π,故选B.15.(2019·上海模拟)正六边形的半径与边心距之比为()A. 1:√3B. √3:1C. √3:2D. 2:√3【答案】D【解析】∵正六边形的半径为R,∴边心距r=√3R,2∴R:r=1:√3=2:√3,2故答案为:D.16.(2020·宁波模拟)如图,⊙O 上有一个动点A 和一个定点B ,令线段AB 的中点是点P ,过点B 作⊙O的切线BQ ,且BQ=3,现测得 AB ⌢ 的长度是 4π3, AB ⌢ 的度数是120°,若线段PQ 的最大值是m ,最小值是n ,则mn 的值是( )A. 3 √10B. 2 √13C. 9D. 10【答案】 C【解析】:如图,连接OP ,OB ,O'点为OB 的中点,设⊙O 的半径为r ,根据题意得120·π·r180=43π , 解得r=2, ∵P 点为AB 的中点,∴OP ⊥AB ,∴∠OPB=90°,∴点P 在以OB 为直径的圆上,直线QO'交⊙O'于E. F ,如图,∵BQ 为切线,∴OB ⊥BQ ,在Rt △O'BQ 中,O'Q=√O ′B 2+BQ 2=√12+32=√10,∴QE=√10+1 , QF=√10−1,即m=√10+1 , n=√10−1,∴mn=(√10+1)(√10−1)=9.故答案为:C.17.(2019九上·无锡月考)如图,AB 是⊙o 直径,M ,N 是 AB⌢ 上两点,C 是 MN ⌢ 上任一点,∠ACB 角平分线交⊙o 于点D ,∠BAC 的平分线交CD 于点E ,当点C 从M 运动到N 时,C 、E 两点的运动路径长之比为( )A. √2B. π2C. 32D. √52【答案】A【解析】如图,连接EB,设OA=r∵AB是直径∴∠ACB=90°∵E是△ACB的内心,∴∠AEB=135°∵∠ACD=∠BCD∴AD⌢=DB⌢∴AD=DB=√2r∴∠ADB=90°∴点E在以D为圆心DA为半径的圆上,运动轨迹是GF⌢,点C的运动轨迹是MN⌢∵∠MON=2∠GDF,设∠GDF=α,则∠MON=2α,∴MN⌢GF⌢=2α·π·r180α·π·√2r180=√2故答案为:A18.(2019九上·浙江期中)如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E 为⊙O上一动点,CF⊥AE于点F。

2019、2020年浙江中考数学试题分类(6)——圆(含答案)

2019、2020年浙江中考数学试题分类(6)——圆(含答案)

2019、2020年浙江中考数学试题分类(6)——圆一.垂径定理(共2小题)1.(2020•湖州)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是.2.(2019•嘉兴)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.二.圆周角定理(共4小题)3.(2020•绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°4.(2020•杭州)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°5.(2019•湖州)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是.6.(2020•温州)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AÂ上一点,∠ADC=∠G.(1)求证:∠1=∠2.(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.三.圆内接四边形的性质(共2小题)7.(2020•湖州)如图,已知四边形ABCD 内接于⊙O ,∠ABC =70°,则∠ADC 的度数是( )A .70°B .110°C .130°D .140°8.(2019•台州)如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE .若∠ABC =64°,则∠BAE 的度数为 .四.三角形的外接圆与外心(共4小题)9.(2020•嘉兴)如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A 'B 'C ',则它们重叠部分的面积是( )A .2√3B .34√3C .32√3D .√310.(2019•绍兴)如图,△ABC 内接于⊙O ,∠B =65°,∠C =70°.若BC =2√2,则AA ̂的长为( )A .πB .√2πC .2πD .2√2π11.(2020•湖州)如图,已知△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,连结BD ,BC 平分∠ABD .(1)求证:∠CAD =∠ABC ;(2)若AD =6,求AÂ的长.12.(2019•温州)如图,在△ABC 中,∠BAC =90°,点E 在BC 边上,且CA =CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结CD ,CF .(1)求证:四边形DCFG 是平行四边形.(2)当BE =4,CD =38AB 时,求⊙O 的直径长. 五.切线的性质(共9小题)13.(2019•舟山)如图,已知⊙O 上三点A ,B ,C ,半径OC =1,∠ABC =30°,切线P A 交OC 延长线于点P ,则P A 的长为( )A .2B .√3C .√2D .12 14.(2019•台州)如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则⊙O 的半径为( )A .2√3B .3C .4D .4−√315.(2020•台州)如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE .若⊙O 与BC 相切,∠ADE =55°,则∠C 的度数为 .16.(2020•宁波)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.17.(2020•杭州)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=1 3,则tan∠BOC=.18.(2019•温州)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧(AAÂ)上,若∠BAC =66°,则∠EPF等于度.19.(2020•嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.20.(2019•绍兴)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.21.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.̂的度数.(1)求AA(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.六.切线的判定与性质(共2小题)22.(2019•宁波)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为.23.(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.̂的长.(2)若DE=√3,∠C=30°,求AA七.切线长定理(共1小题)24.(2019•杭州)如图,P为圆O外一点,P A,PB分别切圆O于A,B两点,若P A=3,则PB=()A.2 B.3 C.4 D.5八.三角形的内切圆与内心(共1小题)̂上一25.(2020•金华)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是AA 点,则∠EPF的度数是()A .65°B .60°C .58°D .50°九.正多边形和圆(共1小题)26.(2019•湖州)如图,已知正五边形ABCDE 内接于⊙O ,连结BD ,则∠ABD 的度数是( )A .60°B .70°C .72°D .144°一十.弧长的计算(共4小题)27.(2019•温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .32πB .2πC .3πD .6π28.(2020•宁波)如图,折扇的骨柄长为27cm ,折扇张开的角度为120°,图中AÂ的长为 cm (结果保留π).29.(2020•温州)若扇形的圆心角为45°,半径为3,则该扇形的弧长为 . 30.(2020•金华)如图,AÂ的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°. (1)求弦AB 的长.(2)求AÂ的长.一十一.圆锥的计算(共5小题)31.(2019•宁波)如图所示,矩形纸片ABCD 中,AD =6cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm32.(2019•湖州)已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的侧面积是( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 233.(2019•金华)如图物体由两个圆锥组成.其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .√3C .32D .√234.(2020•嘉兴)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为 ;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为 .35.(2019•杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 cm 2(结果精确到个位).一十二.圆的综合题(共6小题)36.(2020•台州)如图,在△ABC 中,∠ACB =90°,将△ABC 沿直线AB 翻折得到△ABD ,连接CD 交AB 于点M .E 是线段CM 上的点,连接BE .F 是△BDE 的外接圆与AD 的另一个交点,连接EF ,BF .(1)求证:△BEF 是直角三角形;(2)求证:△BEF ∽△BCA ;(3)当AB =6,BC =m 时,在线段CM 上存在点E ,使得EF 和AB 互相平分,求m 的值.37.(2020•宁波)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AÂ=AA ̂,四边形ABCD 的外角平分线DF 交⊙O 于点F ,连结BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE ,AF ,若AC 是⊙O 的直径.①求∠AED 的度数;②若AB =8,CD =5,求△DEF 的面积.38.(2020•杭州)如图,已知AC ,BD 为⊙O 的两条直径,连接AB ,BC ,OE ⊥AB 于点E ,点F 是半径OC 的中点,连接EF .(1)设⊙O 的半径为1,若∠BAC =30°,求线段EF 的长.(2)连接BF ,DF ,设OB 与EF 交于点P ,①求证:PE =PF .②若DF =EF ,求∠BAC 的度数.39.(2019•湖州)已知在平面直角坐标系xOy 中,直线l 1分别交x 轴和y 轴于点A (﹣3,0),B (0,3).(1)如图1,已知⊙P 经过点O ,且与直线l 1相切于点B ,求⊙P 的直径长;(2)如图2,已知直线l 2:y =3x ﹣3分别交x 轴和y 轴于点C 和点D ,点Q 是直线l 2上的一个动点,以Q 为圆心,2√2为半径画圆.①当点Q 与点C 重合时,求证:直线l 1与⊙Q 相切;②设⊙Q 与直线l 1相交于M ,N 两点,连结QM ,QN .问:是否存在这样的点Q ,使得△QMN 是等腰直角三角形,若存在,求出点Q 的坐标;若不存在,请说明理由.40.(2019•杭州)如图,已知锐角三角形ABC 内接于圆O ,OD ⊥BC 于点D ,连接OA .(1)若∠BAC =60°,①求证:OD =12OA . ②当OA =1时,求△ABC 面积的最大值.(2)点E 在线段OA 上,OE =OD ,连接DE ,设∠ABC =m ∠OED ,∠ACB =n ∠OED (m ,n 是正数),若∠ABC <∠ACB ,求证:m ﹣n +2=0.41.(2019•宁波)如图1,⊙O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F .(1)求证:BD =BE .(2)当AF :EF =3:2,AC =6时,求AE 的长.(3)设AA AA =x ,tan ∠DAE =y .①求y 关于x 的函数表达式;②如图2,连结OF ,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值.2019、2020年浙江中考数学试题分类(6)——圆参考答案与试题解析一.垂径定理(共2小题)1.【解答】解:过点O 作OH ⊥CD 于H ,连接OC ,如图,则CH =DH =12CD =4, 在Rt △OCH 中,OH =√52−42=3,所以CD 与AB 之间的距离是3.故答案为3.2.【解答】解:连接OD ,如图,∵CD ⊥OC ,∴∠DCO =90°,∴CD =√AA 2−AA 2=√A 2−AA 2,当OC 的值最小时,CD 的值最大,而OC ⊥AB 时,OC 最小,此时D 、B 两点重合,∴CD =CB =12AB =12×1=12,即CD 的最大值为12,故答案为:12.二.圆周角定理(共4小题)3.【解答】解:连接BE ,∵∠BEC =∠BAC =15°,∠CED =30°,∴∠BED =∠BEC +∠CED =45°,∴∠BOD =2∠BED =90°.故选:D .4.【解答】解:∵OA ⊥BC ,∴∠AOB =∠AOC =90°,∴∠DBC =90°﹣∠BEO =90°﹣∠AED =90°﹣α,∴∠COD =2∠DBC =180°﹣2α,∵∠AOD +∠COD =90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D .5.【解答】解:∵一条弧所对的圆周角的度数是15°,∴它所对的圆心角的度数为2×15°=30°.故答案为30°.6.【解答】解:(1)∵∠ADC =∠G , ∴AÂ=AA ̂, ∵AB 为⊙O 的直径,∴AÂ=AA ̂, ∴∠1=∠2;(2)如图,连接DF ,∵AA ̂=AA ̂,AB 是⊙O 的直径,∴AB ⊥CD ,CE =DE ,∴FD =FC =10,∵点C ,F 关于DG 对称,∴DC =DF =10,∴DE =5,∵tan ∠1=25,∴EB =DE •tan ∠1=2, ∵∠1=∠2, ∴tan ∠2=25,∴AE =AA AAAA2=252, ∴AB =AE +EB =292,∴⊙O 的半径为294. 三.圆内接四边形的性质(共2小题)7.【解答】解:∵四边形ABCD 内接于⊙O ,∠ABC =70°,∴∠ADC =180°﹣∠ABC =180°﹣70°=110°,故选:B .8.【解答】解:∵圆内接四边形ABCD ,∴∠D =180°﹣∠ABC =116°,∵点D 关于AC 的对称点E 在边BC 上,∴∠D =∠AEC =116°,∴∠BAE =116°﹣64°=52°.故答案为:52°.四.三角形的外接圆与外心(共4小题)9.【解答】解:作AM ⊥BC 于M ,如图:重合部分是正六边形,连接O 和正六边形的各个顶点,所得的三角形都是全等的等边三角形. ∵△ABC 是等边三角形,AM ⊥BC ,∴AB =BC =3,BM =CM =12BC =32,∠BAM =30°,∴AM =√3BM =3√32, ∴△ABC 的面积=12BC ×AM =12×3×3√32=9√34, ∴重叠部分的面积=69△ABC 的面积=69×9√34=3√32; 故选:C .10.【解答】解:连接OB ,OC .∵∠A =180°﹣∠ABC ﹣∠ACB =180°﹣65°﹣70°=45°,∴∠BOC =90°,∵BC =2√2,∴OB =OC =2,∴AA ̂的长为90⋅A ⋅2180=π,故选:A .11.【解答】解:(1)∵BC 平分∠ABD ,∴∠DBC =∠ABC ,∵∠CAD =∠DBC ,∴∠CAD =∠ABC ;(2)∵∠CAD =∠ABC ,∴AÂ=AA ̂, ∵AD 是⊙O 的直径,AD =6,∴AA ̂的长=12×12×π×6=32π. 12.【解答】(1)证明:连接AE ,∵∠BAC =90°,∴CF 是⊙O 的直径,∵AC =EC ,∴CF ⊥AE ,∵AD 是⊙O 的直径,∴∠AED =90°,即GD ⊥AE ,∴CF ∥DG ,∵AD 是⊙O 的直径,∴∠ACD =90°,∴∠ACD +∠BAC =180°,∴AB ∥CD ,∴四边形DCFG 是平行四边形;(2)解:由CD =38AB ,设CD =3x ,AB =8x ,∴CD =FG =3x ,∵∠AOF =∠COD ,∴AF =CD =3x ,∴BG =8x ﹣3x ﹣3x =2x ,∵GE ∥CF ,∴AA AA =AA AA =23, ∵BE =4,∴AC =CE =6,∴BC =6+4=10,∴AB =√102−62=8=8x ,∴x =1,在Rt △ACF 中,AF =3,AC =6,∴CF =√32+62=3√5,即⊙O 的直径长为3√5.五.切线的性质(共9小题)13.【解答】解:连接OA ,∵∠ABC =30°,∴∠AOC =2∠ABC =60°,∵过点A 作⊙O 的切线交OC 的延长线于点P ,∴∠OAP =90°,∵OA =OC =1,∴AP =OA tan60°=1×√3=√3,故选:B .14.【解答】解:设⊙O 与AC 的切点为E ,连接AO ,OE ,∵等边三角形ABC 的边长为8,∴AC =8,∠C =∠BAC =60°,∵圆分别与边AB ,AC 相切,∴∠BAO =∠CAO =12A BAC =30°,∴∠AOC=90°,∴OC=12AC=4,∵OE⊥AC,∴OE=√32OC=2√3,∴⊙O的半径为2√3,故选:A.15.【解答】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.16.【解答】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=√2OB=2√2,∴AC=√AA2+AA2=√22+(2√2)2=2√3;②当△OAC是直角三角形时,∠OAC=90°,连接OB,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°,∵BC=OA=OB,∴△OBC是等腰直角三角形,∴AA=2√2,故答案为:2√3或2√2.17.【解答】解:∵AB 是⊙O 的直径,BC 与⊙O 相切于点B ,∴AB ⊥BC ,∴∠ABC =90°,∵sin ∠BAC =AA AA =13, ∴设BC =x ,AC =3x , ∴AB =√AA 2−AA 2=√(3A )2−A 2=2√2x ,∴OB =12AB =√2x ,∴tan ∠BOC =AA AA =√2A =√22, 故答案为:√22. 18.【解答】解:连接OE ,OF∵⊙O 分别切∠BAC 的两边AB ,AC 于点E ,F∴OE ⊥AB ,OF ⊥AC又∵∠BAC =66°∴∠EOF =114°∵∠EOF =2∠EPF∴∠EPF =57°故答案为:57°19.【解答】解:证法错误;证明:连结OC ,∵⊙O 与AB 相切于点C ,∴OC ⊥AB ,∵OA =OB ,∴AC =BC .20.【解答】解:(1)连接OC ,如图,∵CD 为切线,∴OC ⊥CD ,∴∠OCD =90°,∵∠D =30°,∴OD =2OC =2,∴AD =AO +OD =1+2=3;(2)添加∠DCB =30°,求AC 的长, 解:∵AB 为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=12AB=1,∴AC=√3BC=√3.21.【解答】解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴AÂ的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=√2t,则HO=√AA2−AA2=√2A2−A2=t,∵OC=2OH,∴∠OCE=30°.六.切线的判定与性质(共2小题)22.【解答】解:∵在Rt △ABC 中,∠C =90°,AC =12,BD +CD =18, ∴AB =√122+182=6√13,在Rt △ADC 中,∠C =90°,AC =12,CD =5,∴AD =√AA 2+AA 2=13,当⊙P 于BC 相切时,点P 到BC 的距离=6,过P 作PH ⊥BC 于H ,则PH =6,∵∠C =90°,∴AC ⊥BC ,∴PH ∥AC ,∴△DPH ∽△DAC ,∴AA AA =AA AA , ∴AA 13=612,∴PD =6.5,∴AP =6.5;当⊙P 于AB 相切时,点P 到AB 的距离=6,过P 作PG ⊥AB 于G ,则PG =6,∵AD =BD =13,∴∠P AG =∠B ,∵∠AGP =∠C =90°,∴△AGP ∽△BCA ,∴AA AA =AA AA , ∴6√13=612, ∴AP =3√13,∵CD =5<6,∴半径为6的⊙P 不与△ABC 的AC 边相切,综上所述,AP 的长为6.5或3√13, 故答案为:6.5或3√13.23.【解答】(1)证明:连接OD ;∵OD =OC ,∴∠C =∠ODC ,∵AB =AC ,∴∠B =∠C ,∴∠B =∠ODC ,∴OD ∥AB ,∴∠ODE =∠DEB ;∵DE ⊥AB ,∴∠DEB =90°, ∴∠ODE =90°,即DE ⊥OD ,∴DE 是⊙O 的切线.(2)解:连接AD ,∵AC 是直径,∴∠ADC =90°,∵AB =AC ,∠C =30°,∴∠B =∠C =30°,BD =CD ,∴∠OAD =60°,∵OA =OD ,∴△AOD 是等边三角形,∴∠AOD =60°,∵DE =√3,∠B =30°,∠BED =90°,∴CD =BD =2DE =2√3,∴OD =AD =tan30°•CD =√33×2√3=2, ∴AA ̂的长为:60A ⋅2180=2A 3.七.切线长定理(共1小题)24.【解答】解:∵P 为圆O 外一点,P A ,PB 分别切圆O 于A ,B 两点,若P A =3, ∴PB =P A =3,故选:B .八.三角形的内切圆与内心(共1小题)25.【解答】解:如图,连接OE ,OF .∵⊙O 是△ABC 的内切圆,E ,F 是切点,∴OE ⊥AB ,OF ⊥BC ,∴∠OEB =∠OFB =90°,∵△ABC 是等边三角形,∴∠B =60°,∴∠EOF =120°,∴∠EPF =12∠EOF =60°,故选:B .九.正多边形和圆(共1小题)26.【解答】解:∵五边形ABCDE 为正五边形,∴∠ABC =∠C =(5−2)×180°5=108°, ∵CD =CB ,∴∠CBD =180°−108°2=36°, ∴∠ABD =∠ABC ﹣∠CBD =72°,故选:C .一十.弧长的计算(共4小题)27.【解答】解:该扇形的弧长=90⋅A ⋅6180=3π.故选:C .28.【解答】解:∵折扇的骨柄长为27cm ,折扇张开的角度为120°,∴AÂ的长=120⋅A ×27180=18π(cm ), 故答案为:18π.29.【解答】解:根据弧长公式:l =45⋅A ×3180=34π, 故答案为:34π. 30.【解答】解:(1)∵AÂ的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°, ∴AC =OA •sin60°=2×√32=√3,∴AB =2AC =2√3;(2)∵OC ⊥AB ,∠AOC =60°,∴∠AOB =120°,∵OA =2,∴AA ̂的长是:120A ×2180=4A 3.一十一.圆锥的计算(共5小题)31.【解答】解:设AB =xcm ,则DE =(6﹣x )cm ,根据题意,得90AA 180=π(6﹣x ),解得x =4.故选:B . 32.【解答】解:这个圆锥的侧面积=12×2π×5×13=65π(cm 2).故选:B .33.【解答】解:∵∠A =90°,AB =AD ,∴△ABD 为等腰直角三角形,∴∠ABD =45°,BD =√2AB ,∵∠ABC =105°,∴∠CBD =60°,而CB =CD ,∴△CBD 为等边三角形,∴BC =BD =√2AB ,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,∴下面圆锥的侧面积=√2×1=√2.故选:D .34.【解答】解:连接BC ,由∠BAC =90°得BC 为⊙O 的直径,∴BC =2√2,在Rt △ABC 中,由勾股定理可得:AB =AC =2,∴S 扇形ABC =90A ×4360=π;∴扇形的弧长为:90A ×2180=π,设底面半径为r ,则2πr =π,解得:r =12,故答案为:π,12. 35.【解答】解:这个冰淇淋外壳的侧面积=12×2π×3×12=36π≈113(cm 2).故答案为113.一十二.圆的综合题(共6小题)36.【解答】(1)证明:∵∠ACB =90°,将△ABC 沿直线AB 翻折得到△ABD , ∴∠ADB =∠ACB =90°,∵∠EFB =∠EDB ,∠EBF =∠EDF ,∴∠EFB +∠EBF =∠EDB +∠EDF =∠ADB =90°,∴∠BEF =90°,∴△BEF 是直角三角形.(2)证明:∵BC =BD ,∴∠BDC =∠BCD ,∵∠EFB =∠EDB ,∴∠EFB =∠BCD ,∵AC =AD ,BC =BD ,∴AB ⊥CD ,∴∠AMC =90°,∵∠BCD +∠ACD =∠ACD +∠CAB =90°,∴∠BCD =∠CAB ,∴∠BFE =∠CAB ,∵∠ACB =∠FEB =90°,∴△BEF ∽△BCA .(3)解:设EF 交AB 于J .连接AE .∵EF 与AB 互相平分,∴四边形AFBE 是平行四边形,∴∠EF A =∠FEB =90°,即EF ⊥AD ,∵BD ⊥AD ,∴EF ∥BD ,∵AJ =JB ,∴AF =DF ,∴FJ =12BD =A 2, ∴EF =m ,∵△ABC ∽△CBM ,∴BC :MB =AB :BC ,∴BM =A 26, ∵△BEJ ∽△BME ,∴BE :BM =BJ :BE ,∴BE =√2, ∵△BEF ∽△BCA , ∴AA AA =AA AA , 即√36−A 2A =A A √2,解得m =2√3(负根已经舍弃).37.【解答】解:(1)∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠E =∠ECD ﹣∠EBD =12(∠ACD ﹣∠ABC )=12AA =12α,(2)如图1,延长BC 到点T ,∵四边形FBCD 内接于⊙O ,∴∠FDC +∠FBC =180°,又∵∠FDE +∠FDC =180°,∴∠FDE =∠FBC ,∵DF 平分∠ADE ,∴∠ADF =∠FDE ,∵∠ADF =∠ABF ,∴∠ABF =∠FBC ,∴BE 是∠ABC 的平分线,∵AÂ=AA ̂, ∴∠ACD =∠BFD ,∵∠BFD +∠BCD =180°,∠DCT +∠BCD =180°,∴∠DCT =∠BFD ,∴∠ACD =∠DCT ,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠F AC=∠EBC=12∠ABC=45°,∵∠AED=45°,∴∠AED=∠F AC,∵∠FED=∠F AD,∴∠AED﹣∠FED=∠F AC﹣∠F AD,∴∠AEG=∠CAD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴AA AA =AA AA ,∵在Rt △ABG 中,AB =8,∠ABG =45°,∴AG =√22AA =4√2,在Rt △ADE 中,AE =√2AD ,∴√2AA AA =4√25, ∴AA AA =45, 在Rt △ADC 中,AD 2+DC 2=AC 2,∴设AD =4x ,AC =5x ,则有(4x )2+52=(5x )2,∴x =53, ∴ED =AD =203, ∴CE =CD +DE =353, ∵∠BEC =∠FCE ,∴FC =FE ,∵FM ⊥CE ,∴EM =12CE =356,∴DM =DE ﹣EM =56,∵∠FDM =45°,∴FM =DM =56,∴S △DEF =12DE •FM =259.38.【解答】(1)解:∵OE ⊥AB ,∠BAC =30°,OA =1, ∴∠AOE =60°,OE =12OA =12,AE =EB =√3OE =√32,∵AC 是直径,∴∠ABC =90°,∴∠C =60°,∵OC =OB ,∴△OCB 是等边三角形,∵OF =FC ,∴BF ⊥AC ,∴∠AFB =90°,∵AE =EB ,∴EF =12AB =√32.(2)①证明:过点F 作FG ⊥AB 于G ,交OB 于H ,连接EH . ∵∠FGA =∠ABC =90°,∴FG ∥BC ,∴△OFH ∽△OCB ,∴AA AA =AA AA =12,同理AA AA =12, ∴FH =OE ,∵OE ⊥AB .FH ⊥AB ,∴OE ∥FH ,∴四边形OEHF 是平行四边形,∴PE =PF .②∵OE ∥FG ∥BC ,∴AA AA =AA AA =1,∴EG =GB ,∴EF =FB ,∵DF =EF ,∴DF =BF ,∵DO =OB ,∴FO ⊥BD ,∴∠AOB =90°,∵OA =OB ,∴△AOB 是等腰直角三角形,∴∠BAC =45°.39.【解答】解:(1)如图1,连接BC ,∵∠BOC =90°,∴点P 在BC 上,∵⊙P 与直线l 1相切于点B ,∴∠ABC =90°,而OA =OB ,∴△ABC 为等腰直角三角形,则⊙P 的直径长=BC =AB =3√2;(2)过点作CM ⊥AB ,由直线l 2:y =3x ﹣3得:点C (1,0),则CM=AC sin45°=4×√22=2√2=圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,①当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2√2,解得:m=3−√2;②当点M、N在两条直线交点的上方时,同理可得:m=3+√2;故点Q的坐标为(3−√2,6﹣3√2)或(3+√2,6+3√2).40.【解答】解:(1)①连接OB、OC,则∠BOD=12∠BOC=∠BAC=60°,∴∠OBC=30°,∴OD=12OB=12OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=3 2,△ABC面积的最大值=12×BC×AD=12×2OB sin60°×32=3√34;(2)如图2,连接OC,设:∠OED =x ,则∠ABC =mx ,∠ACB =nx ,则∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣mx ﹣nx =12∠BOC =∠DOC , ∵∠AOC =2∠ABC =2mx ,∴∠AOD =∠COD +∠AOC =180°﹣mx ﹣nx +2mx =180°+mx ﹣nx , ∵OE =OD ,∴∠AOD =180°﹣2x ,即:180°+mx ﹣nx =180°﹣2x ,化简得:m ﹣n +2=0.41.【解答】证明:(1)∵△ABC 是等边三角形,∴∠BAC =∠C =60°,∵∠DEB =∠BAC =60°,∠D =∠C =60°,∴∠DEB =∠D ,∴BD =BE ;(2)如图1,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC =6,∴BG =12AA =12AA =3,∴在Rt △ABG 中,AG =√3BG =3√3,∵BF ⊥EC ,∴BF ∥AG ,∴AA AA =AA AA , ∵AF :EF =3:2, ∴BE =23BG =2,∴EG =BE +BG =3+2=5,在Rt △AEG 中,AE =√AA 2+AA 2=√(3√3)2+52=2√13;(3)①如图1,过点E 作EH ⊥AD 于点H ,∵∠EBD =∠ABC =60°,∴在Rt △BEH 中,AA AA =AAA60°=√32, ∴EH =√32AA ,BH =12AA , ∵AA AA =AA AA =A , ∴BG =xBE ,∴AB =BC =2BG =2xBE ,∴AH =AB +BH =2xBE +12BE =(2x +12)BE ,∴在Rt △AHE 中,tan ∠EAD =AA AA =√32AA (2A +12)AA =√34A +1, ∴y =√34A +1; ②如图2,过点O 作OM ⊥BC 于点M ,设BE =a ,∵AA AA =AA AA =A , ∴CG =BG =xBE =ax ,∴EC =CG +BG +BE =a +2ax ,∴EM =12EC =12a +ax ,∴BM =EM ﹣BE =ax −12a , ∵BF ∥AG ,∴△EBF ∽△EGA ,∴AA AA =AA AA=A A +AA =11+A , ∵AG =√3AA =√3AA , ∴BF =1A +1AA =√3AA A +1,∴△OFB 的面积=AA ⋅AA 2=12×√3AA A +1(AA −12A ), ∴△AEC 的面积=AA ⋅AA 2=12×√3AA (A +2AA ), ∵△AEC 的面积是△OFB 的面积的10倍,∴12×√3AA (A +2AA )=10×12×√3AA A +1(AA −12A ), ∴2x 2﹣7x +6=0,解得:A 1=2,A 2=32,∴A =√39或√37,。

初中数学中考正多边形与圆的关系(含答案解析)

初中数学中考正多边形与圆的关系(含答案解析)

正多边形与圆的关系一、选择题(本大题共10小题,共30.0分)1.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A. a<b<cB. b<a<cC. a<c<bD. c<b<a2.若正方形的外接圆半径为2,则其内切圆半径为()A. √2B. 2√2C. √22D. 13.一个正方形的边长为a,则它的内切圆的面积为()A. 34a2π B. 14a2π C. 32a2π D. a2π4.若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A. 45°B. 60°C. 72°D. 90°5.有下列四个命题:①各边相等的圆内接多边形是正多边形;②各边相等的圆外切多边形是正多边形;③各角相等的圆内接多边形是正多边形;④各角相等的圆外切多边形是正多边形.其中正确的个数为()A. 1B. 2C. 3D. 46.下列正多边形,通过直尺和圆规不能作出的是()A. 正三角形B. 正四边形C. 正五边形D. 正六边形7.正六边形的半径与边心距之比为()A. 1:√3B. √3:1C. √3:2D. 2:√38.若正六边形的边长为4,则它的外接圆的半径为().A. 4√3B. 4C. 2√3D. 29.正四边形的边心距为1,则它的半径是A. 2√2B. √2C. 2D. 110.如图,五边形ABCDE是⊙O的内接正五边形,则∠OCD的度数是()A. 60°B. 54∘C. 76°D. 72°二、填空题(本大题共10小题,共30.0分)11.若点O是正六边形ABCDEF的中心,∠MON=120°且角的两边分别交六边形的边AB、EF于M、N两点。

若多边形AMONF的面积为2√3,则正六边形ABCDEF的边长是____.12.半径为2的圆内接正六边形的边心距等于_____.13.圆内接正六边形的边长为10cm,它的边心距等于__________cm.14.正六边形的半径为1,则正六边形的面积为____________________;15.如图,点O为正六边形ABCDEF的中心,连接EA,则∠AED=____度;若OA=4,则该正六边形的面积为__________.16.半径为4的正n边形边心距为2√3,则此正n边形的边数为_____.17.已知一个正六边形的外接圆半径为2,则这个正六边形的周长为________.18.如图,⊙O是正五边形ABCDE的外接圆,则∠ADC的度数是________.19.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是______°.20.半径为3的圆的内接正方形的边长是________.答案和解析1.【答案】A【解析】【分析】此题主要考查了正多边形和圆的性质,解决本题的关键是构造直角三角形,得到用半径表示的边心距;注意:正多边形的计算一般要转化为解直角三角形的问题来解决.根据三角函数即可求解.【解答】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=12R.四边形的边心距为b=R×cos45°=√22R,正六边形的边心距为c=R×cos30°=√32R.∵12R<√22R<√32R,∴a<b<c,故选:A.2.【答案】A【解析】【分析】本题考查的是正方形和圆、等腰直角三角形的性质等知识,解题的关键是根据题意画出图形,属于中考常考题型.根据题意画出图形,再由正方形及等腰直角三角形的性质求解即可.【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,AE2+OE2=AO2,∴OE=√22OA=√2.故选:A.3.【答案】B【解析】【分析】本题考查了正多边形与圆的关系,知道正方形的内切圆的直径等于正方形的边长是解题的关键.根据正方形的内切圆的直径等于正方形的边长求得圆的半径,最后再求出圆的面积即可.【解答】解:因为正方形的内切圆的直径等于正方形的边长,所以r=a2,所以正方形的内切圆的面积为πr2=π(a2)2=14a2π,故选B.4.【答案】B【解析】【分析】本题考查正多边形与圆的关系、等边三角形的判定与性质;解题的关键是作辅助线,灵活运用等边三角形的判定与性质来分析、解答.如图,作辅助线,由题意可得OA=OB= AB,从而得出△OAB是等边三角形,进而求出∠AOB的度数,问题即可解决.【解答】解:如图,连接OA、OB;AB为⊙O的内接正多边形的一边,∵正多边形的边长与半径相等,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,即这个正多边形的中心角为60°.故选B.5.【答案】B【解析】【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题,经过推理论证的真命题称为定理.根据命题的“真”“假”进行判断即可.【解答】解:①各边相等的圆内接多边形是正多边形,正确;②各边相等的圆外切多边形不一定正多边形,比如菱形,所以错误;③各角相等的圆内接多边形不一定是正多边形,比如长方形,所以错误;④各角相等的圆外切多边形是正多边形,正确.故选B.6.【答案】C【解析】【分析】本题主要考查作图−复杂作图,解题的关键是熟练掌握圆上等分点的尺规作图.根据尺规作图取圆的等分点的作法即可得出答案.【解答】解:取圆上一点为圆心,相同的长度为半径画弧,重复此种作法可得到圆的六等分点,据此可得圆的内接正六边形;在以上所得六等分点中,间隔取点,首尾连接可得圆的内接正三角形;由于圆的直径可以将圆二等分、两条互相垂直的直径可以将圆四等分,据此可作出圆的内接正四边形;综上可知,不可以用尺规作图作出的是圆的内接正五边形,故选C.7.【答案】D【解析】【试题解析】【分析】此题主要考查正多边形与圆的知识,等边三角形高的计算,要求学生熟练掌握应用.可设正六边形的半径为R,欲求半径与边心距之比,我们画出图形,通过构造直角三角形,解直角三角形即可得出.解:如图所示,设正六边形的半径为R,又该多边形为正六边形,故∠OBA=60°,R,在Rt△BOG中,OG=√32∴边心距r=√3R2即半径与边心距之比2:√3,故选D.8.【答案】B【解析】【分析】本题考查正多边形与圆,用到的知识点为:n边形的中心角为360÷n,有一个角是60°的等腰三角形是等边三角形.根据正六边形的边长等于正六边形的半径,即可求解.【解答】解:正六边形的中心角为360°÷6=60°.那么外接圆的半径和正六边形的边长将组成一个等边三角形.∴它的外接圆半径是4.故选B.9.【答案】B【解析】【分析】本题考查了正多边形和圆的知识,解题的关键是正确的构造如图所示的直角三角形并求解.利用正四边形的外接圆的半径是边心距的√2倍计算.【解答】解:如图,∵正四边形的边心距为1,∴OB=1,∵∠OAB=45°,∴OA=√2OB=√2,故选:B.10.【答案】B【解析】【分析】是解题的关键.本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°n根据正多边形的中心角的计算公式:360°计算出∠COD,再由等腰三角形的性质可得.n【解答】解:∵五边形ABCDE是⊙O的内接正五边形,=72°,∴五边形ABCDE的中心角∠COD的度数为360°5∵OC=OD,∴∠OCD=∠ODC,∴∠OCD=(180°−72°)÷2=54°.故选B.11.【答案】2【解析】略12.【答案】√3【解析】【分析】此题主要考查了正多边形和圆、解直角三角形,正确掌握正六边形的性质是解题关键.构建直角三角形,利用直角三角形的边角关系即可求出.【解答】解:连接OA,作OM⊥AB,得到∠AOM=30°,AB=2,则AM=1,∴OM=OA⋅cos30°=√3∴正六边形的边心距是√3.故答案为√3.13.【答案】5√3【解析】【分析】本题考查的是正多边形与圆,熟知正六边形的性质是解答此题的关键.根据题意画出图形,利用等边三角形的性质及勾股定理直接计算即可.【解答】解:如图所示,连接OB、OC,过O作OG⊥BC于G,∵此多边形是正六边形,∴△OBC是等边三角形,∴∠OBG=60°,∴BG=5cm,OB=10cm,根据勾股定理可得:边心距OG=5√3cm;故答案为:5√3.14.【答案】3√32【解析】略15.【答案】90°;24√3【解析】【试题解析】【分析】本题考查了正多边形的性质,勾股定理的应用,等腰三角形的性质,属于中档题.六边形ABCDEF为正六边形,可得出∠AFE和∠FED的度数,进而得出∠AEF的度数,从而得出∠AED;连接OA,OF,过O作OG⊥AF于点G,先得出△AOF的面积,再乘以6,即可得出该正六边形的面积.【解答】解:∵六边形ABCDEF为正六边形,∴AF=FE,且∠AFE=∠FED=(6−2)×180°=120°,6=30°,则∠AEF=180°−120°2∴∠AED=∠FED−∠AEF=120°−30°=90°,连接OA,OF,过O作OG⊥AF于点G,∵点O为正六边形ABCDEF的中心,∴∠OAF=60°,则△AOF为等边三角形,∠AOG=30°,(三线合一)在Rt△OGA中,GA=12OA=12×4=2,则OG=√OA2−AG2=√42−22=2√3,故该正六边形的面积为:6S△AOF=6×12×4×2√3=24√3.故答案为90°;24√3.16.【答案】6【解析】【分析】此题主要考查了正多边形和圆的有关计算,根据已知得出中心角∠AOB=60°是解题关键.由三角函数求出∠DAO=60°,得出∠AOD=30°,求出中心角∠AOB=60°,即可得出答案.【解答】解:如图所示AB为正n边形的边长,OA为半径,OD为边心距,∵半径为4的正n边形边心距为2√3,∴sin∠DAO=DO AO =2√34=√32,∴∠DAO=60°,∴∠AOD=30°,∴∠AOB=60°,∴n=360°60°=6故答案为6.17.【答案】12【解析】解:∵l正六边形的半径等于边长,∴正六边形的边长a=2,正六边形的周长=6a=12,故答案为12.根据正六边形的半径等于边长进行解答即可.本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.18.【答案】72°【解析】【分析】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用由正五边形的性质得出∠CDE=(5−2)×180°÷5=108°,AE=AB=BC,得出AE⏜= AB⏜=BC⏜,由圆周角定理即可得出答案.【解答】解:∵⊙O是正五边形ABCDE的外接圆,∴∠CDE=(5−2)×180°÷5=108°,AE=AB=BC,∴AE⏜=AB⏜=BC⏜,×108°=72°;∴∠ADC=23故答案为72°.19.【答案】54【解析】【分析】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C= 108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF 是⊙O 的直径,∴∠ADF =90°,∵五边形ABCDE 是⊙O 的内接正五边形,∴∠ABC =∠C =108°,∵BC =CD ,,∴∠ABD =72°,∴∠F =∠ABD =72°,∴∠FAD =18°,∴∠CDF =∠DAF =18°,∴∠BDF =36°+18°=54°,故答案为54.20.【答案】3√2 【解析】 【分析】该题主要考查了正多边形和圆,解直角三角形,正方形的性质,正确的理解题意是解题的关键.画出图形,先根据题意首先求出BE 的长,即可解决问题.【解答】解:如图,∵四边形ABCD 是⊙O 的内接正方形,∴∠OBE =45°;∵OE ⊥BC ,∴BE =CE ;又OB =3,∴sin45°=OE OB ,cos45°=BE OB ,∴OE =3√22,即BE =3√22,∴BC=3√2,故答案为3√2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年部分省市中考数学试题分类汇编 正多边形与圆
1.(2010年山东省济南市)如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是( ) A .32 cm B .3cm
C .
3
3
2 cm D .1cm 【关键词】正多边形 【答案】A
2. (2010年台湾省)如图(十六),有一圆内接正八边形ABCDEFGH ,若△ADE 的面积为 10,则正八边形ABCDEFGH 的面积为何?
(A) 40 (B) 50 (C) 60 (D) 80 。

【关键词】正多边形的面积 【答案】A
(2010年毕节地区)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该
半圆的半径为( )
A. (4 cm
B. 9 cm
C. D.
cm 【关键词】圆及内接正方形 【答案】C
(2010年毕节地区)(本题12分)如图,已知CD 是△ABC 中AB 边上的高,以CD 为直径
的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线. 【关键词】圆、三角形、切线 【答案】证明:(证法一)连接OE DE ,. ∵CD 是⊙O 的直径,
∴90AED CED ∠=∠=.
∵G 是AD 的中点,
∴1
2
EG AD DG =
=. ∴12∠=∠. ∵34OE OD =∴∠=∠,. ∴1324∠+∠=∠+∠.即90OEG ODG ∠=∠=. ∴GE 是⊙O 的切线.
B A
C D
E F
G H 图(十六
)
(证法二)连接OE OG ,.
∵AG GD CO OD ==,, ∴OG AC ∥.
∴1234∠=∠∠=∠,. ∵OC=OE . ∴∠2=∠4. ∴∠1=∠3.
又OE OD OG OG ==,,
∴OEG ODG △≌△.
∴90OEG ODG ∠=∠=.
∴GE 是⊙O 的切线.
1. (2010年兰州市)如图,正三角形的内切圆半径为1,那么这个正三角形的边长为
A .2
B .3 C
D

【关键词】三角形的内切圆 【答案】D
1.(2010年福建省晋江市)将一块正五边形纸片(图
①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个
顶点处剪去一个四边形,例如图①中的四边形
ABCD ,则BAD ∠的大小是_______度.
【关键词】正多边形
【答案】72
1、(2010年宁波市)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF
与半径OB 相交于点P ,连结EF 、EO ,若32=DE ,︒=∠45DPA 。

(1)求⊙O 的半径;
(2)求图中阴影部分的面积。

【关键词】垂径定理,扇形面积
【答案】 解:(1)∵直径AB ⊥DE ∴32
1
==
DE CE ∵DE 平分AO ∴OE AO CO 2
121==
① ②
C y B 第24题
2
330cos ︒
∴⊙O 的半径为2。

(2)连结OF
在Rt △DCP 中,∵︒=∠45DPC ∴︒=︒-︒=∠454590D ∴︒=∠=∠902D EOF ∵ππ=⨯⨯=
22360
90
OEF S 扇形 11.(2010年安徽省芜湖市)一个正多边形的每个外角都是36°,这个正多边形的边数是__________.
【关键词】正多边形的外角和公式 【答案】十 23.(2010浙江省喜嘉兴市)如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三
角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.
(1)如图1,当n =1时,求正三角形的边长a 1; (2)如图2,当n =2时,求正三角形的边长a 2;
(3)如题图,求正三角形的边长a n (用含n 的代数式表示).
【关键词】圆、正三角形、勾股定理
【答案】(1)设PQ 与11C B 交于点D ,连结1OB , 则12
3
111-=
-=a OA D A OD , 在D OB 1Rt △中,2212
1OD D B OB +=,
即21212)12
3
()21(1-+=a a ,
解得31=a . …4分
第24题
1
(第23题 图1)
感谢你的阅读
(2)设PQ 与22C B 交于点E ,连结2OB , 则1322121-=-=a OA A A OE ,
在E OB 2Rt △中2222
2OE E B OB +=,
即22222)13()2
1
(1-+=a a ,
解得13
3
82=
a . …4分 (3)设PQ 与n n C B 交于点F ,连结n OB , 则12
3
-=
n na OF , 在F OB n △Rt 中2
2
2
OF F B OB n n +=, 即222)12
3
()21(1-+=n n na a ,
解得1
3342+=n n a n . …4分
16.(2010山东德州)粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD ),已知每支粉笔的直径为12mm ,由此估算矩形ABCD 的周长约为_______ mm .(313.7≈,结果精确到1 mm) 【关键词】正六边形特点、密铺 【答案】300
(第23题 图2)
n
n
(第23题)
第16题图2
第16题图1
A
B
D。

相关文档
最新文档