完全平方公式变形公式专题

合集下载

完全平方公式常考题型(经典)

完全平方公式常考题型(经典)

完全平方公式典型题型一、公式及其变形1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2)公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。

注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。

2、公式变形 (1)+(2)得:2222()()2a b a b a b ++-+= (12)-)(得: 22()()4a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=-3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++二、题型题型一、完全平方公式的应用例1、计算(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2);练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1);题型二、配完全平方式 1、若k x x ++22是完全平方式,则k =2、.若x 2-7xy +M 是一个完全平方式,那么M 是3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N =4、如果224925y kxy x +-是一个完全平方式,那么k =题型三、公式的逆用1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2.5.代数式xy -x 2-41y 2等于-( )2题型四、配方思想1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____.2、已知0136422=+-++y x y x ,求y x =_______.3、已知222450x y x y +--+=,求21(1)2x xy --=_______.4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy+=_______.5.已知014642222=+-+-++z y x z y x ,则z y x ++= . 6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?题型五、完全平方公式的变形技巧1、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

完全平方公式与平方差公式完全平方公式变形的应用素材

完全平方公式与平方差公式完全平方公式变形的应用素材

完全平方公式变形的应用完全平方公式是多项式乘法中非常重要的一个公式。

掌握其变形特点并灵活运用,可以巧妙地解决很多问题。

一. 完全平方公式常见的变形有a 2+b 2=(a+b )2-2ab ,a 2+b 2=(a-b )2+2ab ,(a+b )2-(a-b )2=4ab ,a 2+b 2+c 2=(a+b+c )2-2(ab+ac+bc )二. 乘法公式变形的应用例1: 已知:x 2+y 2+4x-6y+13=0,x 、y 均为有理数,求x y 的值。

分析:逆用完全乘方公式,将x 2+y 2+4x-6y+13化为两个完全平方式的和,利用完全平方式的非负性求出x 与y 的值即可。

解:∵x 2+y 2+4x-6y+13=0,(x 2+4x+4)+(y 2-6y+9)=0,即(x+2)2+(y-3)2=0。

∴x+2=0,y=3=0。

即x=-2,y=3。

∴x y =(-2)3=-8。

例已知,试求的值。

21612242a a a a a a ++=++分析:本题巧妙地利用a a a aa a a a a a a a aa a a a a a a a a 222222422222112160161111561111111156136113311+=+-++=≠=++=++∴+=-∴++=++=+-=--=-=-()()()进行运算。

解:由,可知,因此可得,。

例3 已知:a+b=8,ab=16+c 2,求(a-b+c )2022的值。

分析:由已知条件无法直接求得(a-b+c )2022的值,可利用(a-b )2=(a+b )2-4ab 确定a-b 与c 的关系,再计算(a-b+c )2022的值。

解:(a-b )2=(a+b )2-4ab=82-4(16+c 2)=-4c 2。

即:(a-b )2+4c 2=0。

∴a-b=0,c=0。

∴(a-b+c )2022=0。

例4 已知:a 、b 、c 、d 为正有理数,且满足a 4+b 4+C 4+D 4=4abcd 。

完全平方公式变形公式专题

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型一.公式拓展:拓展一:拓展二:拓展三:拓展四:杨辉三角形拓展五: 立方与与立方差二.常见题型:(一)公式倍比例题:已知=4,求。

(1),则=(2)已知=(二)公式变形(1)设(5a +3b)2=(5a -3b)2+A,则A=(2)若()()x y x y a-=++22,则a 为 (3)如果,那么M 等于(4)已知(a+b)2=m,(a —b)2=n,则ab 等于(5)若,则N 得代数式就是(三)“知二求一”1.已知x ﹣y=1,x 2+y 2=25,求xy 得值.2.若x+y=3,且(x+2)(y+2)=12.(1)求xy 得值;(2)求x 2+3xy+y 2得值.3.已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).4.已知a ﹣b=3,ab=2,求:(1)(a+b)2(2)a 2﹣6ab+b 2得值.(四)整体代入例1:,,求代数式得值。

例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值⑴若,则=⑵若,则= 若,则=⑶已知a2+b2=6ab且a>b>0,求得值为⑷已知,,,则代数式得值就是.(五)杨辉三角请瞧杨辉三角(1),并观察下列等式(2):根据前面各式得规律,则(a+b)6=.(六)首尾互倒1.已知m2﹣6m﹣1=0,求2m2﹣6m+=.2.阅读下列解答过程:已知:x≠0,且满足x2﹣3x=1.求:得值.解:∵x2﹣3x=1,∴x2﹣3x﹣1=0∴,即.∴==32+2=11.请通过阅读以上内容,解答下列问题:已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7,求:(1)得值;(2)得值.(七)数形结合1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)您认为图(2)中得阴影部分得正方形边长就是多少?(2)请用两种不同得方法求图(2)阴影部分得面积;(3)观察图(2),您能写出下列三个代数式之间得等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值.2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示.(1)请写出图3图形得面积表示得代数恒等式;(2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2.(八)规律探求15.有一系列等式:1×2×3×4+1=52=(12+3×1+1)22×3×4×5+1=112=(22+3×2+1)23×4×5×6+1=192=(32+3×3+1)24×5×6×7+ 1=292=(42+3×4+1)2…(1)根据您得观察、归纳、发现得规律,写出8×9×10×11+1得结果(2)试猜想n(n+1)(n+2)(n+3)+1就是哪一个数得平方,并予以证明.。

完全平方公式常考题型经典

完全平方公式常考题型经典

完全平方公式典型题型一、公式及其变形1、 完全平方公式:222()+2a b a ab b +=+ 〔1〕222()2a b a ab b -=-+ 〔2〕公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项为哪一项左边二项式中两项乘积的2倍。

注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。

2、公式变形 (1)+〔2〕得:2222()()2a b a b a b ++-+= (12)-)(得: 22()()4a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=-3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++二、题型题型一、完全平方公式的应用例1、计算〔1〕〔-21ab 2-32c 〕2; 〔2〕〔x -3y -2〕〔x +3y -2〕;练习1、(1)〔x -2y 〕〔x 2-4y 2〕〔x +2y 〕;〔2〕、〔a -2b +3c -1〕〔a +2b -3c -1〕;题型二、配完全平方式 1、假设k x x ++22是完全平方式,那么k =2、.假设x 2-7xy +M 是一个完全平方式,那么M 是3、如果4a 2-N ·ab +81b 2是一个完全平方式,那么N =4、如果224925y kxy x +-是一个完全平方式,那么k =题型三、公式的逆用1.〔2x -______〕2=____-4xy +y 2. 2.〔3m 2+_______〕2=_______+12m 2n +________.3.x 2-xy +________=〔x -______〕2. 4.49a 2-________+81b 2=〔________+9b 〕2.5.代数式xy -x 2-41y 2等于-〔 〕2 题型四、配方思想1、假设a 2+b 2-2a +2b +2=0,那么a 2004+b 2005=_____.2、0136422=+-++y x y x ,求y x =_______.3、222450x y x y +--+=,求21(1)2x xy --=_______. 4、x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______. 5.014642222=+-+-++z y x z y x ,那么z y x ++= .6、三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?题型五、完全平方公式的变形技巧1、 2()16,4,a b ab +==求223a b +与2()a b -的值。

完整版)完全平方公式变形公式专题

完整版)完全平方公式变形公式专题

完整版)完全平方公式变形公式专题半期复(3)——完全平方公式变形公式及常见题型一、公式拓展:拓展一:$a+b=(a+b)^2-2ab$a-b=(a-b)^2-2ab$拓展二:$(a+b)-(a-b)=4ab$a+b)=(a-b)+4ab$拓展三:$a+b+c=(a+b+c)-2ab-2ac-2bc$拓展四:杨辉三角形a+b)^2=a^2+2ab+b^2$a+b)^3=a^3+3a^2b+3ab^2+b^3$拓展五:立方和与立方差a^3+b^3=(a+b)(a^2-ab+b^2)$a^3-b^3=(a-b)(a^2+ab+b^2)$二、常见题型:一)公式倍比已知$a+b=4$,求$\frac{a^2+b^2}{2ab}$ 1)$x+y=1$,求$x^2+xy+y^2$2)已知$x(x-1)-(x-y)=-2$,求$x^2-y^2$ 二)公式变形1)设$(5a+3b)^2=(5a-3b)^2+A$,求$A$2)若$(2a-3b)=(2a+3b)+N$,求$N$3)如果$(x-y)+M=(x+y)$,求$M$4)已知$(a+b)=m$,$(a-b)=n$,求$ab$5)若$(2a-3b)=(2a+3b)+N$,求$N$的代数式三)“知二求一”1.已知$x-y=1$,$x^2+y^2=25$,求$xy$的值2.若$x+y=3$,$(x+2)(y+2)=12$,求$xy$和$x^2+3xy+y^2$的值3.已知$x+y=3$,$xy=-8$,求$x^2+y^2$和$(x^2-1)(y^2-1)$的值4.已知$a-b=3$,$ab=2$,求$(a+b)^2$和$a^2-6ab+b^2$的值四)整体代入例1:已知$x-y=24$,$x+y=6$,求$5x+3y$的值例2:已知$a=x+20$,$b=x+19$,$c=x+21$,求$a^2+b^2+c^2-ab-bc-ac$的值⑴若$x-3y=7$,$x-9y=49$,求$x+3y$的值⑵若$a+b=2$,求$a-4b$的值⑶已知$a^2+b^2=6ab$且$a>b$,求$a+b$的值已知$a=2005x+2004$,$b=2005x+2006$,$c=2005x+2008$,则代数式$a^2+b^2+c^2-ab-bc-ca$的值为:begin{aligned}a^2+b^2+c^2-ab-bc-ca&=(2005x+2004)^2+(2005x+2006)^2+(2005x+2008)^2\\ quad-(2005x+2004)(2005x+2006)-(2005x+2006)(2005x+2008)-(2005x+2008)(2005x+2004)\\ 3\cdot(2005x)^2+3\cdot2\cdot2005x+3\cdot(2004^2+2006^2 +2008^2)-3\cdot(2004\cdot2006+2006\cdot2008+2008\cdot2004)\\ 3\cdot2005^2x^2+6\cdot2005x+3\cdot(2004^2+2006^2+2008 ^2)-3\cdot(2004+2006+2008)^2+3\cdot(2004^2+2006^2+2008^2)\\ 3\cdot2005^2x^2+6\cdot2005x+3\cdot(2004^2+2006^2+2008 ^2)-3\cdot2018^2+6\cdot(2004^2+2006^2+2008^2)\\10\cdot(2005^2x^2+2005)+10\cdot(2004^2+2006^2+2008^2) -3\cdot2018^2\\10\cdot(2005^2x^2+2005)+10\cdot(2005^2-1)-3\cdot2018^2\\10\cdot2005^2x^2+10\cdot2005^2-10\cdot2005+10\cdot2005^2-10-3\cdot2018^2\\10\cdot2005^2x^2+20\cdot2005^2-10\cdot2005-3\cdot2018^2-10\\end{aligned}五)杨辉三角观察杨辉三角(1),发现每个数都是上面两个数之和,可以得到如下规律:a+b)^1=a+b$$a+b)^2=a^2+2ab+b^2$$a+b)^3=a^3+3a^2b+3ab^2+b^3$$a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4$$a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5$$根据规律,$(a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6 $。

完全平方公式的6种变形

完全平方公式的6种变形

完全平方公式的6种变形
完全平方公式的6种变形
完全平方公式是数学中用于求解一元二次方程的根的一种公式,它可以表示为:$$ ax^2 + bx + c = 0 $$
它有六种变形,即:
(1)$$ ax^2 = -bx - c $$
(2)$$ ax^2 = bx + c $$
(3)$$ ax^2 + c = bx $$
(4)$$ ax^2 - c = bx $$
(5)$$ ax^2 + bx = -c $$
(6)$$ ax^2 - bx = c $$
从上述六种变形来看,式子中的$a$,$b$,$c$是变形过程中,满足方程一定性
质的参数,一般情况下$a$,$b$都不能为0,改变其值,可以使方程更好地求解。

当$a$,$b$,$c$具有确定的值时,可以利用完全平方公式来求解方程的根。

例如,方程 $$ x^2+7x+10=0 $$ 的运行结果为$x=-2.5$和$x=-3.5$,可以用完全
平方公式$x^2-7x+10=0$,来检验结果是否正确:
$$ x^2-7x+10=(x-2.5)(x-3.5) $$
从计算结果可以看出,完全平方公式计算的结果是正确的。

总之,完全平方公式是一种重要的数学工具,它可以将一元二次方程改写成特
殊的形式,以便更容易地解决方程。

六种变形使用不同的参数,因此,在求解一元二次方程的过程中,可以根据实际情况选用最合适的形式,从而更容易地获得正确的解。

完全平方公式的变形及其应用

完全平方公式的变形及其应用

完全平方公式的变形及其应用完全平方公式的变形及其应用多项式乘法的完全平方公式的变形形式很多,且应用广泛。

下面结合例题,介绍完全平方公式的变形及其应用。

一、变式1:$a^2+b^2=(a+b)^2-2ab$这是因为:由$(a+b)=a^2+b^2+2ab$,移项,得$a^2+b^2=(a+b)^2-2ab$。

例1:已知$x+y=5$,$xy=2$,求下列各式的值:(1)$x^2+y^2$;(2)$x^4+y^4$。

解:由变式1,得(1)$x^2+y^2=(x+y)^2-2xy=5^2-2\times2=21$;(2)$x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=21^2-2\times4=433$。

二、变式2:$a^2+b^2=(a-b)^2+2ab$这是因为:由$(a-b)=a^2-2ab+b^2$,移项,得$a^2+b^2=(a-b)^2+2ab$。

例2:已知$a-\sqrt{11}=5$,求$a^2+11$的值。

解:由变式2,得$a^2+11=\left(a-\sqrt{11}\right)^2+2\sqrt{11}=5^2+2\sqrt{11}=27$。

三、变式3:$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)$这是因为:由$(a+b)=a^2+b^2+2ab$,得$2ab=(a+b)-\left(a^2+b^2\right)$,两边同除以2,得$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)$。

例3:已知$a+b=7$,$a^2+b^2=29$,求$ab$的值。

解:由变式3,得$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)=\dfrac{1}{2}\left(2a+b-\sqrt{7^2-29}\right)=10$。

(完整版)完全平方公式变形公式专题

(完整版)完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型一.公式拓展:拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+2)1(1222-+=+a a a a 2)1(1222+-=+aa a a 拓展二:ab b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=-拓展三:bc ac ab c b a c b a 222)(2222---++=++拓展四:杨辉三角形3223333)(b ab b a a b a +++=+4322344464)(b ab b a b a a b a ++++=+拓展五: 立方和与立方差))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-二.常见题型:(一)公式倍比 例题:已知b a +=4,求ab b a ++222。

(1)1=+y x ,则222121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2222)()1(则=(二)公式变形(1)设(5a +3b )2=(5a -3b )2+A ,则A=(2)若()()x y x y a-=++22,则a 为 (3)如果22)()(y x M y x +=+-,那么M 等于(4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于(5)若N b a b a ++=-22)32()32(,则N 的代数式是(三)“知二求一”1.已知x ﹣y=1,x 2+y 2=25,求xy 的值.2.若x+y=3,且(x+2)(y+2)=12.(1)求xy 的值;(2)求x 2+3xy+y 2的值.3.已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).4.已知a ﹣b=3,ab=2,求:(1)(a+b )2(2)a 2﹣6ab+b 2的值.(四)整体代入例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。

完全平方公式常考题型

完全平方公式常考题型

完全平方公式常考题型(经典)(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--完全平方公式典型题型一、公式及其变形1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2)公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。

注意:222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+-完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。

2、公式变形 (1)+(2)得:2222()()2a b a b a b ++-+= (12)-)(得: 22()()4a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=-3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++二、题型题型一、完全平方公式的应用例1、计算(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2);练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b-3c -1);题型二、配完全平方式1、若k x x ++22是完全平方式,则k =2、.若x 2-7xy +M 是一个完全平方式,那么M 是3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N =4、如果224925y kxy x +-是一个完全平方式,那么k =题型三、公式的逆用1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2.5.代数式xy -x 2-41y 2等于-( )2 题型四、配方思想1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____.2、已知0136422=+-++y x y x ,求y x =_______.3、已知222450x y x y +--+=,求21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式yx xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= .6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形题型五、完全平方公式的变形技巧1、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

初中完全平方公式12种变形

初中完全平方公式12种变形

初中完全平方公式12种变形在初中数学课中,完全平方公式一直是学习的重要内容。

它可以用来解决复杂的问题,它可以准确地表达一个问题,而且它有很多变形,其中有12种。

首先,完全平方公式的基本原理是,当一个多项式的项中存在平方项时,可以将其化简为完全平方公式的形式。

它的基本形式是x^2+2xy+y^2=a^2,其中a为一个实数。

其次,一元二次方程的12种变形分别是:(1)x^2+2xy+y^2=a^2;(2)x^2-2xy+y^2=a^2;(3)x^2+2xy-y^2=a^2;(4)x^2-2xy-y^2=a^2;(5)ax^2+2xy+y^2=b^2;(6)ax^2-2xy+y^2=b^2;(7)ax^2+2xy-y^2=b^2;(8)ax^2-2xy-y^2=b^2;(9)x^2+2axy+y^2=c^2;(10)x^2-2axy+y^2=c^2;(11)x^2+2axy-y^2=c^2;(12)x^2-2axy-y^2=c^2;然后,我们需要分析上述12种变形的特征和特点,以便于更好地理解其含义。

首先,这些变形有一个共性,即都是完全平方公式的形式,因此它们可以看作一类。

其次,它们的参数不同,例如,前四种的参数a、b、c都是实数,而后八种的参数a、b、c则是变量。

最后,这12种变形可以分为四类,即有系数a的变形,有常数b的变形,有变量c的变形,以及包含x和y的变形。

最后,要正确使用完全平方公式的12种变形,需要掌握其特征和使用方法。

首先,要明确它们的参数,例如有些是实数,而有些则是变量。

其次,要了解它们的共性和特点,例如上面提到的变形分为四类。

最后,要熟练掌握它们的解题方法,例如展开式的方法、变量的替换方法以及因式分解的方法。

这样,才能够更好地解决完全平方公式的12种变形,让自己更加深入地掌握这门学科知识。

总之,完全平方公式可以分为12种变形,它们有着自己的特征和特点,要正确使用它们,需要掌握其参数、共性和解题方法,这样才能更好地解决复杂的问题,为自己赢得一份好成绩。

完全平方公式的变形及其应用专题练习(解析版)

完全平方公式的变形及其应用专题练习(解析版)

完全平方公式的变形及其应用专题练习一、选择题1、若a +b =7,ab =5,则(a -b )2=( ).A. 27B. 29C. 30D. 32答案:B解答:(a -b )2=a 2-2ab +b 2=(a +b )2-4ab将a +b =7,ab =5代入可得:原式=29.选B.2、设(5a +3b )2=(5a -3b )2+A ,则A =( ).A. 30abB. 60abC. 15abD. 12ab答案:B解答:A =(5a +3b )2-(5a -3b )2=(5a +3b +5a -3b )(5a +3b -5a +3b )=10a ·6b=60ab .选B.3、已知x +1x =3,则下列三个等式:①x 2+21x =7②x -1x 2x 2-6x =-2中,正确的有().A. ①②B. ①③C. ②③D. ①②③答案:B解答:①∵x +1x =3,∴(x +1x )2=32,∴x 2+2+21x =9,∴x 2+21x =7.∴①正确.②∵(x -1x )2=x 2-2+21x =7-2=5,∴x -1x =②错误③∵x+1x=3,∴x2+1=3x,∴x2-3x=-1,∴2x2-6-=-2.③正确4、若实数n满足(n-2015)2+(2014-n)2=1,则代数式(n-2015)(2014-n)的值为().A. 1B. 0C. 12D. -1答案:B解答:设n-2015=a,2014-n=b,∴a2+b2=(a+b)2-2ab=12-2ab,∴1-2ab=1ab=0,∴(n-2015)(2014-n)=0.二、填空题5、已知(x+y)2=32,xy=4,则(x-y)2=______.答案:16解答:(x-y)2=(x+y)2-4xy=32-4×4=16.6、a2+b2=17,ab=4,则a+b=______.答案:±5解答:∵a2+b2=17,ab=4,∴(a+b)2=a2+2ab+b2=17+8=25,∴a+b=±5.7、已知a>b,ab=2且a2+b2=5,则a-b=______.答案:1解答:∵a>b,即a-b>0,ab=2且a2+b2=5,∴(a-b)2=a2+b2-2ab=5-4=1,则a -b =1,故答案为:1.8、已知a +b =5,ab =3,则a 2+b 2=______.答案:19解答:把知a +b =5两边平方,可得:a 2+2ab +b 2=25,把ab =3代入得:a 2+b 2=25-6=19,故答案为:19.9、已知(m -n )2=8,mn =2,则m 2+n 2=______.答案:12解答:m 2+n 2=(m -n )2+2mn=8+2×2=12.10、如果m 2+3m -1=0,则m 2+21m =______. 答案:11解答:由已知,m ≠0, ∴213m m m+-=0, 即:m -=-3,m 2+21m =(m -1m)2+2=(-3)2+2=11. 11、已知长为a ,宽为b 的长方形的周长为14,面积为10,则a 2+b 2=______. 答案:29解答:∵周长为14,∴2(a +b )=14,即a +b =7,∵面积为10,∴ab =10,a 2+b 2=(a +b )2-2ab ,=49-20,=29.12、已知实数a 、b 满足ab =2,a +b =3,则代数式a 2+b 2的值等于______. 答案:5解答:a 2+b 2=(a +b )2-2ab =32-2×2=9-4=5故答案为:5.13、已知a +b =2,ab =-1,则3a +ab +3b =______;a 2+b 2=______. 答案:5;6解答:∵a +b =2,ab =-1,∴3a +ab +3b =3(a +b )+ab =3×2+(-1)=5,a 2+b 2=(a +b )2-2ab =22-2×(-1)=4+2=6.14、已知a -b =3,ab =-1,则a 2+b 2=______,(a +b )2=______. 答案:7;5解答:∵a -b =3,∴(a -b )×(a -b )=3×3=9,∴a 2-ab -ab +b 2=9,即a 2+b 2=9+2ab , 又∵ab =-1,∴a 2+b 2=9+2×(-1)=9-2=7;原式=(a -b )2+4ab ,( )=9+(-4),=5.故答案为:7;5.15、已知x +1x =5,那么x 2+21x=______. 答案:23 解答:∵x +1x=5, ∴x 2+21x =(x +1x )2-2=25-2=23. 16、已知xy +x +y =5,x 2y +xy 2=7,则x 2y 2+2xy +1+x 2+y 2的值为______. 答案:12解答:令xy =a ,x +y =b ,则xy +x +y =a +b =5,x 2y +xy 2=xy (x +y )=ab =7.原式=x 2y 2+1+(x +y )2=a 2+b 2+1=(a +b )2-2ab +1=52-14+1=12. 故答案为:12.17、已知实数a 、b 满足(a +b )2=1,(a -b )2=25,求a 2+b 2+ab =______.答案:7解答:a 2+b 2=()()222a b a b -++=13,ab =()()224a b a b -+-=-6,a 2+b 2+ab =718、已知(200-a )(198-a )=999,那么(200-a )2+(198-a )2=______. 答案:2002解答:∵(200-a )(198-a )=999,(200-a )-(198-a )=2,∴(200-a )2+(198-a )2=[(200-a )-(198-a )]2+2(200-a )(198-a )=2002.19、已知:a -1a =2,则a 2+21a =______,a 4+41a =______. 答案:6;34解答:∵a 2+21a =(a -1a )2+2×a ×1a , ∴a 2+21a=4+2=6, ∵a 4+41a =(a 2+21a )2-2×a 2×21a, ∴a 4+41a=36-2=34. 三、解答题20、已知a +b =3,ab =-10.求:(1)a 2+b 2的值.(2)(a -b )2的值.答案:(1)29(2)49.解答:(1)∵a +b =3,ab =-10,a 2+b 2=(a +b )2-2ab =9+20=29. (2)∵a +b =3,ab =-10,∴(a -b )2=(a +b )2-4ab =9-4×(-10)=49.21、已知x2+y2=25,x+y=7,求x-y的值.答案:x-y=±1.解答:∵x+y=7,∴(x+y)2=x2+2xy+y2=49,∵x2+y2=25,∴2xy=24,∴(x-y)2=x2+y2-2xy=25-24=1.∴x-y=±1.22、已知x+y=5,xy=3,求x2+y2,x3+y3,x4+y4,x6+y6的值.答案:19;80;343;6346.解答:x2+y2=(x+y)2-2xy=19;x3+y3=(x+y)(x2-xy+y2)=80;x4+y4=(x2+y2)2-2x2y2=192-2×9=343;x6+y6=(x3+y3)2-2x3y3=6346.23、已知x+y=3,(x+3)(y+3)=20.(1)求xy的值.(2)求x2+y2+4xy的值.答案:(1)2.(2)13.解答:(1)∵(x+3)(y+3)=20,∴(x+3)(y+3)=xy+3(x+y)+9=20,∵x+y=3,∴xy=20-9-3×3=2.(2)∵x+y=3,∴(x+y)2=x2+y2+2xy=9,∴x2+y2+4xy=x2+y2+2xy+2xy=9+4=13.24、已知a+b=5,ab=3.(1)求a2b+ab2的值.(2)求a2+b2的值.(3)求(a2-b2)2的值.答案:(1)15.(2)19.(3)325.解答:(1)原式=ab (a +b )=3×5=15. (2)原式=(a +b )2-2ab =52-2×3=25-6=19. (3)原式=(a 2-b 2)2=(a -b )2(a +b )2=25(a -b )2=25[(a +b )2-4ab ]=25×(25-4×3)=25×13=325.25、已知x -1x =32,x >0,求: (1)x 2+21x . (2)x +1x. (3)x 3-31x的值. 答案:(1)174(2)52(3)638解答:(1)x 2+21x=(x -1x )2+2=(32)2+2=174. (2)(x +1x )2=x 2+21x +2=174+2=254,解得x +1x =±52, 又因x >0,可知x +1x >0,故x +1x =52. (3)x 3-31x =(x -1x )3+3(x -1x )=(32)3+3×32=638, 或x 3-31x =(x -1x )(x 2+21x +1)=32×(174+1)=638. 26、两个不相等的实数a ,b 满足a 2+b 2=5. (1)若ab =2,求a +b 的值.(2)若a2-2a=m,b2-2b=m,求a+b和m的值.答案:(1)a+b=±3.(2)a+b=2,m=.解答:(1)∵a2+b2=5,ab=2,∴(a+b)2=a2+2ab+b2=5+2×2=9,∴a+b=±3.(2)∵a2-2a=m,b2-2b=m,∴a2-2a=b2-2b,a2-2a+b2-2b=2m,∴a2-b2-2(a-b)=0,∴(a-b)(a+b-2)=0,∵a≠b,∴a+b-2=0,∴a+b=2,∵a2-2a+b2-2b=2m,∴a2+b2-2(a+b)=2m,∵a2+b2=5,∴5-2×2=2m,解得:m=12,即a+b=2,m=12.。

完全平方公式变形公式专题

完全平方公式变形公式专题

完全平方公式变形公式专题文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]半期复习(3)—— 完全平方公式变形公式及常见题型一.公式拓展:拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+拓展二:ab b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+拓展三:bc ac ab c b a c b a 222)(2222---++=++拓展四:杨辉三角形拓展五: 立方和与立方差二.常见题型:(一)公式倍比例题:已知b a +=4,求ab b a ++222。

(1)1=+y x ,则222121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2222)()1(则=(二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A=(2)若()()x y x y a-=++22,则a 为 (3)如果22)()(y x M y x +=+-,那么M 等于(4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于(5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一”1.已知x ﹣y=1,x 2+y 2=25,求xy 的值.2.若x+y=3,且(x+2)(y+2)=12.(1)求xy 的值;(2)求x 2+3xy+y 2的值.3.已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).4.已知a ﹣b=3,ab=2,求:(1)(a+b )2(2)a 2﹣6ab+b 2的值.(四)整体代入例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。

例2:已知a= 201x +20,b=201x +19,c=201x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+=⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++= ⑶已知a 2+b 2=6ab 且a >b >0,求 ba b a -+的值为 ⑷已知20042005+=x a ,20062005+=x b ,20082005+=x c ,则代数式ca bc ab c b a ---++222的值是 .(五)杨辉三角请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= .(六)首尾互倒1.已知m 2﹣6m ﹣1=0,求2m 2﹣6m+= .2.阅读下列解答过程:已知:x ≠0,且满足x 2﹣3x=1.求:的值. 解:∵x 2﹣3x=1,∴x 2﹣3x ﹣1=0∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题:已知a ≠0,且满足(2a+1)(1﹣2a )﹣(3﹣2a )2+9a 2=14a ﹣7,求:(1)的值;(2)的值.(七)数形结合1.如图(1)是一个长为2m ,宽为2n 的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗三个代数式:(m+n )2,(m ﹣n )2,mn .(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a ﹣b )2的值.2.附加题:课本中多项式与多项式相乘是利用平面几何图形的面积来表示的,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2的面积来表示.(1)请写出图3图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示(a+b)(a+3b)=a2+4ab+3b2.(八)规律探求15.有一系列等式:1×2×3×4+1=52=(12+3×1+1)22×3×4×5+1=112=(22+3×2+1)23×4×5×6+1=192=(32+3×3+1)24×5×6×7+1=292=(42+3×4+1)2…(1)根据你的观察、归纳、发现的规律,写出8×9×10×11+1的结果(2)试猜想n(n+1)(n+2)(n+3)+1是哪一个数的平方,并予以证明.。

完全平方公式的变形公式

完全平方公式的变形公式

完全平方公式的变形公式完全平方的变形在数学中,完全平方的变形是一个重要的概念。

它涉及到将一个完全平方式转化为其他形式,以便进行运算或求解。

本文将介绍常见的完全平方变形公式,并举例说明其用途。

完全平方公式完全平方是指一个数能够表示为另一个数的平方的形式。

例如,4是2的平方,因此4是一个完全平方。

在代数中,一个完全平方式由两个或多个项组成,每个项都是某个数的平方。

下面是完全平方的一般形式表示:(a ± b)² = a² ± 2ab + b²其中,a和b是任意实数,并且a²和b²分别代表a和b的平方。

上述公式展开后,可以得到类似于a²、b²和ab的项。

这些项在完全平方变形中起着重要的作用。

完全平方变形公式完全平方变形是指将一个完全平方式转化为其他形式的过程。

通过合理运用完全平方公式,我们可以将一些复杂的代数式以更简洁的形式表达出来。

以下是两个常见的完全平方变形公式:1. 平方差公式平方差公式是指将一个完全平方的差转化为两个平方之差的形式。

具体公式如下:a² - b² = (a + b)(a - b)这个公式的作用在于将一个完全平方的差实质上分解成两个完全平方之积。

这在因式分解或解方程时非常有用。

举例:对于式子9x² - 4,如果我们使用平方差公式进行变形,可以得到:9x² - 4 = (3x + 2)(3x - 2)这样,我们将复杂的二次多项式转化为了两个一次多项式的乘积。

2. 完全平方公式的逆运算完全平方公式的逆运算是指将一个完全平方式转化为完全平方的形式。

具体公式如下:a² ± 2ab + b² = (a ± b)²这个公式的作用在于将一个由完全平方的项和一次项组成的式子,转化为一个完全平方的形式。

举例:对于式子x² + 6x + 9,如果我们使用完全平方公式的逆运算进行变形,可以得到:x² + 6x + 9 = (x + 3)²这样,我们将一个由一次项和完全平方项组成的式子转化为了一个完全平方。

完全平方公式和平方差公式的变形题

完全平方公式和平方差公式的变形题

完全平方公式和平方差公式的变形题在咱们的数学学习中啊,完全平方公式和平方差公式那可是相当重要的知识点!这俩公式就像一对形影不离的好兄弟,经常在各种数学题里出没。

咱们先来说说完全平方公式,(a+b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²。

这两个公式看起来简单,可一旦变形,那可就花样百出啦!比如说,给你一个式子 a² + 2ab + b²,让你写出它等于(a + b)²,这就是一个简单的变形题。

我记得之前有个同学,在做这种变形题的时候,那叫一个抓耳挠腮。

他看着题目,嘴里还念念有词:“这咋变啊,感觉像变魔术一样!”我走过去一看,发现他连公式都记错了。

我就跟他说:“你得先把公式记牢了,就像你记住自己的名字一样,不能记错呀!”然后我给他举了个例子,假如 a = 3,b = 4 ,那(a + b)²就是(3 + 4)² = 49 ,而 a² +2ab + b²就是 3² + 2×3×4 + 4²,算一算,也是 49 。

这么一对比,他恍然大悟,“哦,原来是这样啊!”咱们再看看平方差公式,a² - b² = (a + b)(a - b)。

这个公式的变形题也不少。

比如给你个式子 9x² - 25 ,让你因式分解,这就得用到平方差公式啦,它可以变成(3x + 5)(3x - 5)。

曾经在课堂上,我出了一道类似的题目让大家做。

有个同学特别积极,一下子就举手说:“老师,我做完啦!”我过去一看,发现他做错了。

他把 9x² - 25 写成了(9x + 25)(9x - 25)。

我就问他:“你再仔细想想,9x²是不是等于(3x)²呀?25 是不是等于 5²呀?”他一拍脑袋,“哎呀,我太着急了,没仔细想!”其实啊,做这些变形题,关键就是要对公式熟悉得不能再熟悉,就像熟悉自己的手指一样。

完全平方公式变形公式

完全平方公式变形公式

完全平方公式变形公式【实用版】目录1.完全平方公式的概念2.完全平方公式的变形公式3.完全平方公式和变形公式的应用正文1.完全平方公式的概念完全平方公式是指一个二次方程形如 $x^2 + 2ax + a^2$,其中$a$ 是常数,可以通过完全平方公式进行因式分解。

完全平方公式的因式分解形式为 $(x + a)^2$。

这个公式在代数运算中具有重要的作用,可以将一个二次方程简化为一个一次方程,从而方便求解。

2.完全平方公式的变形公式完全平方公式的变形公式是指将完全平方公式稍作变化,得到其他形式的因式分解公式。

常见的完全平方公式变形公式有以下两种:(1) 平方差公式:$(a - b)^2 = a^2 - 2ab + b^2$ 和 $(a + b)^2 = a^2 + 2ab + b^2$。

这两个公式将二次方程 $x^2 - 2ax + a^2$ 和 $x^2 + 2ax + a^2$ 分别进行因式分解,得到 $(a - b)^2$ 和 $(a + b)^2$。

(2) 完全平方和公式:$a^2 + 2ab + b^2 = (a + b)^2$ 和 $a^2 - 2ab + b^2 = (a - b)^2$。

这两个公式将二次方程 $x^2 + 2ax + a^2$ 和 $x^2 - 2ax + a^2$ 分别进行因式分解,得到 $(a + b)^2$ 和 $(a - b)^2$。

3.完全平方公式和变形公式的应用完全平方公式和变形公式在代数运算中有广泛的应用,例如求解二次方程、化简复杂的代数式等。

通过运用完全平方公式和变形公式,可以将复杂的代数式简化为更容易理解和求解的形式。

例如,对于二次方程 $x^2 + 2ax + a^2 = 0$,我们可以直接运用完全平方公式得到 $(x + a)^2 = 0$,从而解得 $x = -a$。

再如,对于代数式 $x^2 - 2ax + a^2 - b^2$,我们可以运用平方差公式将其分解为 $(x - a + b)(x - a - b)$,从而将复杂的代数式化为两个一次方程的乘积,便于求解。

完全平方公式变形公式专习题

完全平方公式变形公式专习题

欢迎阅读半期复习(3)—— 完全平方公式变形公式及常见题型一.公式拓展:拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+拓展二:ab b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+拓展三:bc ac ab c b a c b a 222)(2222---++=++(1)+y x (2)已知((1)设((2)若((3)如果(4)已知(5)若2((三)“1.已知x 2.若(1)求(2)求x 3.已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).4.已知a ﹣b=3,ab=2,求:(1)(a+b )2(2)a 2﹣6ab+b 2的值.(四)整体代入例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。

例2:已知a= 201x +20,b=201x +19,c=201x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+=⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++=⑶已知a 2+b 2=6ab 且a >b >0,求 ba b a -+的值为 ⑷已知20042005+=x a ,20062005+=x b ,20082005+=x c ,则代数式ca bc ab c b a ---++222的值是 . 1.已知=2已知:x ≠.求:解:∵x 2∴,即∴=3已知a ≠0求:(1))的值. 12)形状(1(2(3三个代数式:(m+n )2,(m ﹣n )2,mn .(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a ﹣b )2的值.2.附加题:课本中多项式与多项式相乘是利用平面几何图形的面积来表示的,例如:(2a+b )(a+b )=2a 2+3ab+b 2就可以用图1或图2的面积来表示.(1)请写出图3图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示(a+b )(a+3b )=a 2+4ab+3b 2.(八)规律探求15.有一系列等式:1×2×3×4+1=52=(12+3×1+1)22×3×4×5+1=112=(22+3×2+1)23×4×5×6+1=192=(32+3×3+1)24×5×6×7+1=292=(42+3×4+1)2…(1)根据你的观察、归纳、发现的规律,写出8×9×10×11+1的结果(2)试猜想n(n+1)(n+2)(n+3)+1是哪一个数的平方,并予以证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半期复习(3)—— 完全平方公式变形公式及常见题型
一.公式拓展:
拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a
a a a 拓展二:a
b b a b a 4)()(22=--+ ()()22
2222a b a b a b ++-=+
ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=-
拓展三:bc ac ab c b a c b a 222)(2222---++=++
拓展四:杨辉三角形
3223333)(b ab b a a b a +++=+
4322344464)(b ab b a b a a b a ++++=+
拓展五: 立方和与立方差
))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型:
(一)公式倍比 例题:已知b a +=4,求ab b a ++2
2
2。

(1)1=+y x ,则222
121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2
222)()1(则=
(二)公式变形
(1)设(5a +3b )2=(5a -3b )2+A ,则A=
(2)若()()x y x y a -=++22,则a 为
(3)如果2
2)()(y x M y x +=+-,那么M 等于
(4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于
(5)若N b a b a ++=-22)32()32(,则N 的代数式是
(三)“知二求一”
1.已知x ﹣y=1,x 2+y 2=25,求xy 的值.
2.若x+y=3,且(x+2)(y+2)=12.
(1)求xy 的值;
(2)求x 2+3xy+y 2的值.
3.已知:x+y=3,xy=﹣8,求:
(1)x 2+y 2
(2)(x 2﹣1)(y 2﹣1).
4.已知a ﹣b=3,ab=2,求:
(1)(a+b )2
(2)a 2﹣6ab+b 2的值.
(四)整体代入
例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。

例2:已知a=
201x +20,b=201x +19,c=20
1x +21,求a 2+b 2+c 2-ab -bc -ac 的值
⑴若499,7322=-=-y x y x ,则y x 3+=
⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++= ⑶已知a 2+b 2=6ab 且a >b >0,求 b
a b a -+的值为 ⑷已知20042005+=x a ,20062005+=x b ,20082005+=x c ,则代数式ca bc ab c b a ---++222的值是 .
(五)杨辉三角
请看杨辉三角(1),并观察下列等式(2):
根据前面各式的规律,则(a+b )6
= .
(六)首尾互倒 1.已知m 2﹣6m ﹣1=0,求2m 2﹣6m+
= . 2.阅读下列解答过程:
已知:x ≠0,且满足x 2﹣3x=1.求:
的值.
解:∵x 2﹣3x=1,∴x 2﹣3x ﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题:
已知a ≠0,且满足(2a+1)(1﹣2a )﹣(3﹣2a )2+9a 2=14a ﹣7,
求:(1)
的值;(2)的值.
(七)数形结合
1.如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.
(1)你认为图(2)中的阴影部分的正方形边长是多少?
(2)请用两种不同的方法求图(2)阴影部分的面积;
(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?
三个代数式:(m+n)2,(m﹣n)2,mn.
(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.
2.附加题:课本中多项式与多项式相乘是利用平面几何图形的面积来表示的,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2的面积来表示.
(1)请写出图3图形的面积表示的代数恒等式;
(2)试画出一个几何图形,使它的面积能表示(a+b)(a+3b)=a2+4ab+3b2.
(八)规律探求
15.有一系列等式:
1×2×3×4+1=52=(12+3×1+1)22×3×4×5+1=112=(22+3×2+1)23×4×5×6+1=192=(32+3×3+1)24×5×6×7+1=292=(42+3×4+1)2…
(1)根据你的观察、归纳、发现的规律,写出8×9×10×11+1的结果
(2)试猜想n(n+1)(n+2)(n+3)+1是哪一个数的平方,并予以证明.。

相关文档
最新文档