平面解析几何中的对称问题
解析几何中的对称性和轴对称性

解析几何中的对称性和轴对称性解析几何是数学的一个分支,涉及到平面几何和空间几何的研究。
对称性和轴对称性是解析几何中极其重要的一部分内容。
它们是我们研究几何形状的重要工具,可以帮助我们呈现出几何形状的美感和魅力。
从理论和实践两个方面来探讨对称性和轴对称性对于解析几何的意义和应用。
一、对称性在解析几何中,对称性是指一个几何形状能够保持不变,即在区域内任意取一点,以这个点为中心,任意方向转移后仍是同一形状。
简单来说,就是如果一个几何形状在满足特定条件的情况下能够发生变化,而这种变化后的形状与原始形状完全相同,那么这种几何形状就具有对称性。
对称性有许多种类型,如旋转对称性、平移对称性、点对称性等。
其中,旋转对称性是指在特定中心进行旋转后能够得到与原始形状相同的新形状;平移对称性是指在特定方向上平移后能够得到与原始形状完全相同的新形状;点对称性是指以特定点为中心将一条几何线转移到对称轴的相同位置上,从而得到一个与原始形状完全一致的新形状。
通过对称性,我们可以在几何形状间进行比较和分析,帮助我们更好地理解和掌握几何形状的规律和特征。
同时,在科学研究和实际工程中,对称性也具有重要的作用,可以帮助我们设计和制造更为合理、美观、稳定的物体。
二、轴对称性轴对称性是解析几何中另一个重要的概念,它与对称性有很多相似之处。
轴对称性是指一个几何形状能够保持不变,即在区域内任意取一点,以这个点为中心,任意方向转移后仍是同一形状。
而轴对称性和对称性的不同之处在于轴对称性是指一个几何形状能够沿特定轴进行翻转后得到与原始形状相同的新形状。
轴对称性有很多种类型,根据轴的不同可以分为水平轴对称、垂直轴对称、对角轴对称等。
其中,水平轴对称是指几何形状以水平轴为对称轴进行翻转后得到新形状;垂直轴对称是指几何形状以垂直轴为对称轴进行翻转后得到新形状;对角轴对称是指几何形状以对角线为对称轴进行翻转后得到新形状。
通过轴对称性,我们可以更好地理解和掌握几何形状的特征和规律,有助于我们分析和设计更为合理、美观、稳定的物体;同时,在实际工程中,轴对称性也有着重要的应用,如在汽车、飞机、船舶等的设计和制造中,轴对称性可以提高其稳定性和美观性。
高考数学 专题05 解析几何中的对称解法(解析版)

专题05 解析几何中的对称解法一.【学习目标】1.掌握点关于直线,直线关于直线,曲线关于点,曲线关于直线的对称2.对称思想的应用 二.【知识点】 1.中心对称(1)设平面上的点M (a ,b ),P (x ,y ),P ′(x ′,y ′),若满足:x +x ′2=a ,y +y ′2=b ,那么,我们称P ,P ′两点关于点M 对称,点M 叫做对称中心.(2)点与点对称的坐标关系:设点P (x ,y )关于M (x 0,y 0)的对称点P ′的坐标是(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2x 0-xy ′=2y 0-y . 2.轴对称(1)设平面上有直线l :Ax +By +C =0和两点P (x ,y ),P ′(x ′,y ′),若满足下列两个条件:①__________________;②_______________________,则点P ,P ′关于直线l 对称. (2)对称轴是特殊直线的对称问题对称轴是特殊直线时可直接通过代换法得解:①关于x 轴对称(以_____代______); ②关于y 轴对称(以_______代_______); ③关于y =x 对称(_______互换);④关于x +y =0对称(以_______代_____,以_____代______); ⑤关于x =a 对称(以______代______); ⑥关于y =b 对称(以________代________). (3)对称轴为一般直线的对称问题可根据对称的意义,由垂直平分列方程,从而找到坐标之间的关系:设点P (x 1,y 1),Q (x 2,y 2)关于直线l :Ax +By +C =0(AB ≠0)对称,则 三.【题型】(一)点关于直线的对称 (二)光线的对称问题 (三)圆关于直线的对称 (四)利用对称求最值 (五)圆锥曲线的对称 (六)椭圆的中点弦问题 (七)双曲线的中点弦 (八)抛物线的对称问题 (九)椭圆中的对称方法 (十)对称的综合应用 四.【题型解法】(一)点关于直线的对称例1.已知坐标原点()0,0O 关于直线L 对称的点()3,3M -,则直线L 的方程是( ) A .210x y -+= B .210x y --= C .30x y -+= D .30x y --=【答案】D【解析】由(0,0)O , (3,3)M -, 可得OM 的中点坐标为33,22⎛⎫-⎪⎝⎭,又313OMk-==-, OM∴的垂直平分线的斜率为1, ∴直线L的方程为33122y x⎛⎫+=⨯-⎪⎝⎭,即30x y--=,故选D.练习1.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称为欧拉线,已知ABC∆的顶点(20)(04)A B,,,,若其欧拉线方程为20x y-+=, 则顶点C的坐标为()A.04-(,)B.4,0-()C.4,0()或4,0-()D.4,0()【答案】B【解析】设C坐标x,y(),所以重心坐标为2+4(,)33x y+,因此2+4204033x yx y+-+=∴-+=,从而顶点C的坐标可以为4,0-(),选B.(二)光线的对称问题例2.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.5B.33C.6D.210【答案】D【解析】点P关于y轴的对称点P'坐标是()2,0-,设点P关于直线:40AB x y+-=的对称点()",P a b,由()112204022baa b-⎧⨯-=-⎪⎪-⎨++⎪+-=⎪⎩,解得42ab=⎧⎨=⎩,故光线所经过的路程()22'"242210P P=--+=,故选D.练习1.一条光线从点()2,3-射出,经x轴反射后与圆2264120x y x y+--+=相切,则反射光线所在直线的斜率为()A.65或56B.45或54C.43或34D.32或23【解析】点()2,3-关于x 轴的对称点Q 的坐标为()2,3--, 圆2264120x y x y +--+=的圆心为()3,2,半径为1R =.设过()2,3--且与已知圆相切的直线的斜率为k , 则切线方程为()23y k x =+-即230kx y k -+-=, 所以圆心()3,2到切线的距离为25511k d R k-===+,解得43k =或34k =,故选C.(三)圆关于直线的对称例3..直线1l :y x =、2l :2y x =+与C e :22220x y mx ny +--= 的四个交点把C e 分成的四条弧长相等,则(m = ) A .0或1 B .0或1-C .1-D .1【答案】B【解析】直线l 1:y=x 与l 2:y=x+2之间的距离为2,⊙C :22220x y mx ny +--=的圆心为(m ,m ),半径r 2=m 2+m 2,由题意可得222222222()()22{22()()2m nm n m n m n -+=+-++=+解得 m=0或m=-1,故选B.练习1.已知圆关于对称,则的值为 A .B .1C .D .0【答案】A 【解析】化圆为.则圆心坐标为,圆关于对称,所以直线经过圆心,,得. 当时,,不合题意,.故选A .练习2.已知直线3420x y ++=与圆2240x y y ++=相交于,A B 两点,则线段AB 的垂直平分线的方程为A .4360x y --=B .4320x y --=C .4360x y ++=D .3480x y ++= 【答案】A【解析】圆2240x y y ++=的圆心坐标为()0,2C -,AB 的中垂线垂直于AB 且过C ,故可设中垂线的方程为:430x y m -+=,代入()0,2C -可得6m =-,故所求的垂直平分线的方程为4360x y --=,故选A.(四)利用对称求最值例4.已知点P ,Q 分别在直线1:20l x y ++=与直线2:10l x y +-=上,且1PQ l ⊥,点()3,3A --,31,22B ⎛⎫⎪⎝⎭,则AP PQ QB ++的最小值为().A .130B .3213+C .13D .32【答案】B【解析】因为112,P l l l Q ⊥P ,故()21322PQ --==1AA k '=,故1AA l '⊥,所以A P A Q 'P ,又322AA '=,所以AA PQ '=,故四边形AA QP '为平行四边形, 322AP PQ QB A Q QB '++=++, 因为13A Q QB A B ''+≥=,当且仅当,,A Q B '三点共线时等号成立,AP PQ QB ++的最小值为32132+,选B.(五)圆锥曲线的对称例5.已知F 是双曲线2218y C x -=:的右焦点,P 是C 左支上一点,)66,0(A ,当APF ∆周长最小时,则点P 的纵坐标为( ) A .66 B .26C .46D .86-【答案】B【解析】如图:由双曲线C 的方程可知:a 2=1,b 2=8,∴c 2=a 2+b 2=1+8=9,∴c=3,∴左焦点E (-3,0),右焦点F (3,0), ∵|AF|=223(66)15+=,所以当三角形APF 的周长最小时,|PA|+|PF|最小. 由双曲线的性质得|PF|-|PE|=2a=2,∴|PF|=|PE|+2,又|PE|+|PA|≥|AE|=|AF|=15,当且仅当A ,P ,E 三点共线时,等号成立. ∴三角形APF 的周长:|AF|+|AP|+|PF|=15+|PE|+|AP|+2≥15+15+2=32.此时,直线AE 的方程为y=2666x +,将其代入到双曲线方程得:x 2+9x+14=0, 解得x=-7(舍)或x=-2, 由x=-2得6(负值已舍) 故选:B .练习1.椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 关于直线0x y +=的对称点A 是椭圆C 上的点,则椭圆的离心率为( ) ABC1 D1【答案】A【解析】∵点()0F c -,关于直线0x y +=的对称点A 为()0,A c ,且A 在椭圆上, 即22b c =,∴c b =,∴椭圆C的离心率2e ===.故选A .(六)椭圆的中点弦问题例1.如果椭圆22193x y +=的弦被点(1,1)M 平分,则这条弦所在的直线方程是( )A .340x y +-=B .320x y -+=C .320x y --=D .340x y +-=【答案】A【解析】设直线与椭圆交点为()11,A x y ,()22,B x y22112222193193x y x y ⎧+=⎪⎪∴⎨⎪+=⎪⎩,两式作差得:1212121213ABy y x x k x x y y -+==-⋅-+ 又M 为AB 中点 122x x ∴+=,122y y += 13AB k ∴=-∴直线方程为:()1113y x -=--,即:340x y +-= 本题正确选项:A练习1.已知椭圆()222210x y a b a b+=>>,点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于,A B两点,且AB 的中点为11,2M ⎛⎫⎪⎝⎭,则椭圆的离心率为()A.22B.12C.14D.32【答案】A【解析】设A(1x,1y),B(2x,2y),又AB的中点为11,2M⎛⎫⎪⎝⎭,则121221x x y y+=+=,,又因为A、B在椭圆上所以22221122222211x y x ya b a b+=+=,两式相减,得:2121221212y y y y bx x x x a-+⋅=--+∵12121212b1c2AB FP OMy y y yk k kx x x x,-+===-==-+,∴22b2cba=,,∴22a bc=,平方可得()42224a a c c=-, ∴22ca=12,c2a2=,故选A.练习2.已知椭圆22142x y+=,则以点(1,1)为中点的弦的长度为()A.2B.3C30D36【答案】C【解析】设直线方程为y=k(x﹣1)+1,代入椭圆方程,消去y得:(1+2k2)x2﹣(4k2﹣4k)x+2k2﹣4k﹣2=0,设交点坐标为A(x1,y1),B(x2,y2),则x1+x2=2,解得k=﹣12,∴x1x2=13,∴221212301()43k x x x x++-=.故选C.练习3.已知椭圆C :()2222100x y a b a b +=>,>的离心率为2,直线l 与椭圆C 交于A B ,两点,且线段AB 的中点为()21M -,,则直线l 的斜率为( )A.13B.23C.12D.1【答案】C【解析】由c e a ==,得2222234c a b a a -==, ∴224a b =,则椭圆方程为22244x y b +=,设()()1122A x y B x y ,,,,则121242x x y y ,+=-+=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:()()()()121212124x x x x y y y y -+=--+,∴()12121212414422y y x x x x y y -+-=-=-=-+⨯.∴直线l 的斜率为12. 故选:C .(七)双曲线的中点弦例7.直线l 与双曲线2212y x -=交于A ,B 两点,以AB 为直径的圆C 的方程为22240x y x y m ++++=,则m =( )A.-3B.3C.5-D.【答案】A【解析】设11(,)A x y ,22(,)B x y由根据圆的方程可知(1,2)C --,C 为AB 的中点根据双曲线中点差法的结论202021112ABx b k a y -=⨯=⨯=- 由点斜式可得直线AB 的方程为1y x =-将直线AB 方程与双曲线方程联立22121y x y x ⎧-=⎪⎨⎪=-⎩解得34x y =-⎧⎨=-⎩或10x y =⎧⎨=⎩,所以AB =由圆的直径AB ===3m =-故选A.练习1.双曲线221369x y -=的一条弦被点(4,2)P 平分,那么这条弦所在的直线方程是( )A .20x y --=B .2100x y +-=C .20x y -=D .280x y +-=【答案】C【解析】设弦的两端点1(A x ,1)y ,2(B x ,2)y ,斜率为k ,则22111369x y -=,22221369x y -=,两式相减得12121212()()()()369x x x x y y y y -+-+=, 即121212129()98136()3642y y x x k x x y y -+⨯====-+⨯,∴弦所在的直线方程12(4)2y x -=-,即20x y -=. 故选:C练习2.已知双曲线C的焦点在坐标轴上,其渐近线方程为y =,过点P ⎫⎪⎪⎝⎭. ()1求双曲线C 的标准方程;()2是否存在被点()1,1B 平分的弦?如果存在,求出弦所在的直线方程;如果不存在,请说明理由.【答案】(1)2212y x -=(2)直线l 不存在.详见解析【解析】()1双曲线C的焦点在坐标轴上,其渐近线方程为y =,设双曲线方程为:22y x λ2-=,过点P ⎫⎪⎪⎝⎭.可得λ1=,所求双曲线方程为:22y x 12-=. ()2假设直线l 存在.设()B 1,1是弦MN 的中点,且()11M x ,y ,()22N x ,y ,则12x x 2+=,12y y 2+=.M Q ,N 在双曲线上,22112x y 122222x y 1-=⎧⎪∴-=⎨⎪⎩, ()()()()121212122x x x x y y y y 0∴+---+=,()()12124x x 2y y ∴-=-,1212y y k 2x x -∴==-,∴直线l 的方程为()y 12x 1-=-,即2x y 10--=,联立方程组222x y 22x y 10-=⎧--=⎨⎩,得22x 4x 30-+=1643280QV =-⨯⨯=-<,∴直线l 与双曲线无交点,∴直线l 不存在.练习3.已知双曲线的中心在原点,焦点为,且离心率.(1)求双曲线的方程; (2)求以点为中点的弦所在的直线方程.【答案】(1);(2).【解析】(1) 由题可得,,∴,,所以双曲线方程 .(2)设弦的两端点分别为,,则由点差法有: , 上下式相减有:又因为为中点,所以,,∴,所以由直线的点斜式可得,即直线的方程为.经检验满足题意.(八)抛物线的对称问题例8.已知抛物线2:2(0)C y px p =>,倾斜角为4π的直线交抛物线C 于A ,B 两点,且线段AB 中点的纵坐标为1,则抛物线C 的准线方程是________ 【答案】12x =-【解析】设1122(,),(,)A x y B x y ,则有2211222,2y px y px ==,两式相减得:()()()1212122y y y y p x x -+=-,又因为直线的斜率为1,所以12121y y x x -=-, 所以有122y y p +=,又线段AB 的中点的纵坐标为1, 即122y y +=,所以1p =,所以抛物线的准线方程为12x =-.故答案为:12x =-.练习1.如图所示,点P 为抛物线E :28y x =上的动点,点Q 为圆:M 22430x y x +-+=上的动点,则PQ的最小值为___________.【答案】1【解析】圆:M 22430x y x +-+=可化为22(2)1x y -+=, 故圆M 的圆心(2,0),半径为1.设000(,)(0)P x y x ≥为抛物线28y x =上任意一点,故有2008y x =,∴00(,)P x y 与(2,0)的距离2222200000000(2)44844(2)d x y x x x x x x =-+=-++=++=+当00x =时, 00(,)P x y 与(2,0)的距离取最小值2,PQ ∴的最小值为211-=,故答案为:1.(九)椭圆中的对称方法例9.如图,椭圆()222210x y a b a b+=>>的右焦点为F ,过F 的直线交椭圆于,A B 两点,点C 是A 点关于原点O 的对称点,若CF AB ⊥且CF AB =,则椭圆的离心率为__________.【答案】63-【解析】作另一焦点F ',连接AF '和BF '和CF ',则四边形FAF C '为平行四边,所以AF CF AB '==,且AF AB '⊥,则三角形ABF '为等腰直角三角形, 设AF AB x '== ,则24x x x a +=,解得(422)x a =-,(222)AF a =,在三角形AFF ' 中由勾股定理得222()()(2)AF AF c '+=,所以2962,63e e =-=,故答案为63-.练习1.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点为1F ,2F ,点P 在椭圆C 上,且12PF F ∆面积3 6.(1)求椭圆C 的方程,并求椭圆C 的离心率;(2)已知直线l :1(0)y kx k =+>与椭圆C 交于不同的两点AB ,若在x 轴上存在点(,0)M m ,使得M 与AB 中点的连线与直线l 垂直,求实数m 的取值范围【答案】(1)22143x y +=,椭圆的离心率12e =(2)3,012⎡⎫-⎪⎢⎪⎣⎭【解析】(1)由题意得2223226bc c a a b c ⎧=⎪+=⎨⎪=+⎩,解之得2a =,3b =1c =,所以椭圆C 的方程为22143x y +=,椭圆的离心率12e =; (2)由221143y kx x y =+⎧⎪⎨+=⎪⎩得()2243880k x kx ++-=,设()11,A x y ,()22,B x y ,则122843kx x k -+=+,122643y y k +=+, 所以线段AB 中点的坐标为2243,4343k k k -⎛⎫⎪++⎝⎭, 则223143443k k k m k -+=-++,整理得213434k m k k k=-=-++, 因为0k >,所以34k k +≥=34k k =,即k =时上式取得等号,此时m取得最小值12-, 因为0k >,所以2043k m k =-<+,所以实数m的取值范围是⎡⎫⎪⎢⎪⎣⎭. 练习2.已知椭圆22:194x y C +=,若不与坐标轴垂直的直线l 与椭圆C 交于,M N 两点.(1)若线段MN 的中点坐标为()1,1,求直线l 的方程;(2)若直线l 过点()6,0,点()0,0P x 满足0PM PN k k +=(,PM PN k k 分别是直线,PM PN 的斜率),求0x 的值.【答案】(1)49130x y +-=(2)32【解析】(1)设()11,M x y ,()22,N x y ,由点,M N 都在椭圆22:194x y C +=上,故22112222194194x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩22222121094x x y y --⇒+=,则()()212121214499x x y y k x x y y +-==-=--+故直线l 的方程为()411491309y x x y -=--⇒+-= (2)由题可知,直线l 的斜率必存在,设直线l 的方程为()6y k x =-,()0,0P x , 则()()()()1212021010200660PM PN y y k k k x x x k x x x x x x x +=+=⇒--+--=--即()()12012026120x x x x x x -+++=①联立()()222222149108936360946x y k x k x k y k x ⎧+=⎪⇒+-+⨯-=⎨⎪=-⎩,则21222122108499363649k x x k k x x k ⎧+=⎪⎪+⎨⨯-⎪=⎪+⎩将其代入①得()()2220003546964902k k x x k x --+++=⇒=故0x 的值为32(十)对称的综合应用例10.在直角坐标系xOy 中,抛物线2:4x C y =与直线:4l y kx =+ 交于M ,N 两点.(1)当0k =时,分别求抛物线C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.【答案】(1) 过点M 和点N 的切线方程分别为24,24y x y x =-=--.(2)存在点()0,4P -,理由见解析【解析】(1)由题意知0k =时,联立244y x y =⎧⎪⎨=⎪⎩,解得()4,4M ,()4,4N -.设过点()4,4M 的切线方程为(4)4y k x =-+,联立2444y kx kx y =+-⎧⎪⎨=⎪⎩得:2416160x kx k -+-=, 由题意:2164(1616)0k k ∆=--=,即2440k k -+=,解得2k =, 根据对称性,过点()4,4N -的切线斜率为2k =-,所以过点M 和点N 的切线方程分别为24,24y x y x =-=--. (2)存在符合题意的点,证明如下:设点P ()0,b 为符合题意的点,()11,M x y ,()22,N x y ,直线PM ,PN 的斜率分别为1k ,2k .联立方程244y kx x y =+⎧⎪⎨=⎪⎩,得24160x kx --=,故124x x k +=,1216x x =-, 从而121212y b y b k k x x --+=+=()()12121224kx x b x x x x +-+=()44k b +.当4b =-时,有120k k +=,则直线PM 与直线PN 的倾斜角互补, 故OPM OPN ∠=∠,所以点()0,4P -符合题意.练习2.已知抛物线2:2(0)C y px p =>的焦点为F,点(,B m 在抛物线C上,A ,且||2||BF AF =.(1)求抛物线C 的标准方程;(2)过点(1,2)P 作直线PM ,PN 分别交抛物线C 于M ,N 两点,若直线PM ,PN 的倾斜角互补,求直线MN 的斜率.【答案】(1)24y x =(2)1-【解析】(1)由题得,02p F ⎛⎫⎪⎝⎭,则||2p BF m =+,||AF =因为|2||BF AF =,所以2P m +=因为点B 在抛物线C 上,所以122pm =,即6pm =.②联立①②得428480p p +-=,解得2p =或2p =-(舍去),所以抛物线C 的标准方程为24y x =.(2)由题知直线PM ,PN 的斜率存在,且不为零,且两直线的斜率互为相反数 设()11,M x y ,()22,N x y ,直线:(1)2(0)PM y k x k =-+≠由2(1)24y k x y x =-+⎧⎨=⎩,得()2222244440k x k k x k k --++-+=,则()222222444(2)16(1)0k k k k k ∆=-+--=->,又点P 在抛物线C 上,所以21244k k x k -+=同理得22244k k x k++=.则212228kx xk+ +=,12288kx xk k---==,()()12121212y y k x k x⎡⎤⎡⎤-=-+---+⎣⎦⎣⎦()122k x x k=+-22282kk kk+=⋅-8k=,所以1212818MNy y kkx xk-===---即直线MN的斜率为-1.练习3.如图, 直线12y x=与抛物线2148y x=-交于,A B两点, 线段AB的垂直平分线与直线5y=-交于Q点.(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含,A B)的动点时, 求ΔOPQ面积的最大值.【答案】(1) ()5,5Q-;(2) 最大值30【解析】(1) 解方程组212148y xy x⎧=⎪⎪⎨⎪=-⎪⎩得11-4-2xy=⎧⎨=⎩或2284xy=⎧⎨=⎩即A(-4,-2),B(8,4), 从而AB的中点为M(2,1).由12ABK=,直线AB的垂直平分线方程()122y x-=--令5y=-, 得5x=, ∴()5,5Q-(2)直线OQ的方程为x+y=0, 设21,48P x x⎛⎫-⎪⎝⎭∵点P 到直线OQ 的距离2832x +-,OQ =, ∴12OPQ S ∆=OQ d =2583216x x +-. ∵P 为抛物线上位于线段AB 下方的点, 且P 不在直线OQ 上, ∴-4≤x4或4< x ≤8.∵函数2832y x x =+-在区间[]4,8-上单调递增,∴当x =8时, ΔOPQ 的面积取到最大值30。
解析几何中的对称及其所在平面

解析几何中的对称及其所在平面几何学是一门研究形状、大小、距离等等的学科,在视觉上较为直观。
在几何学中,对称是一个重要的概念,它不仅在解决几何学问题时起着关键作用,而且在各个领域中都有广泛的应用。
在本文中,我们将重点讨论解析几何中的对称及其所在平面。
一. 解析几何中的对称在解析几何中,对称是指一个函数关系,它能够将一点映射到与其关于某个轴对称的位置。
例如,对于点P(x,y),以x轴为对称轴的对称点为P'(x,-y)。
在这种情况下,将点P转化为它的对称点P'所需的变换是y轴翻转变换。
此外,我们可以定义一个x/y轴的对称关系,类似于上述y轴对称,只不过此时改为以x/y轴为对称轴。
通过这些简单的对称变换,我们可以在解析几何中解决许多问题。
二. 对称性对称性是指一个图形可以保持不变的性质,即它与自己的对称副本在某些方面是相似的。
在解析几何中,对称性的重要性不言而喻。
一个图形的对称性可以使我们更容易地确定它的性质,并以此推导出更多的结论。
在很多情况下,我们可以通过对称性将一个几何问题转化为另一个等效问题。
例如,不规则图形可以通过分解成对称图形的组合来解决。
此外,在进行几何证明时,我们也可以利用一个图形的对称性,将其转化为一个相似的但更便于处理的图形。
三. 所在平面在解析几何中,所在平面指的是一个坐标系,它包含我们所关注的所有点和直线。
所在平面通常会引入一个或多个坐标轴,用于测量方向和距离。
世界上有许多种不同的坐标系,但在解析几何中,我们通常使用笛卡尔坐标系、极坐标系或红外线坐标系。
无论使用哪种坐标系,我们都可以进行几何变换,如平移、旋转和缩放,以及对称变换等。
这些变换将会改变图形在坐标系中的位置,并可能会影响其形状和大小。
四. 解析几何中的应用在解析几何中,对称性和所在平面是非常有用的工具,它们可以帮助我们解决许多几何问题。
例如,我们可以通过对称性来求解几何图形的面积、周长等等。
我们还可以使用对称性和所在平面来帮助理解三角函数、向量和矩阵等数学概念。
高中 平面解析几何 对称问题 练习 含答案

训练目标会利用点关于直线对称,直线关于点对称,直线关于直线对称的性质求对称“元素”.训练题型(1)求对称点、对称直线,圆关于直线对称的圆;(2)利用对称求最值.解题策略(1)根据对称的几何性质列方程求解;(2)关于特殊“元素”的对称,可按相应公式代入即得(如关于原点、坐标轴、直线x=a,y=x,y=-x等);(3)数形结合,利用几何性质解决最值问题.2.直线ax+3y-9=0与直线x-3y+b=0关于直线x+y=0对称,则a与b的值分别为________.3.设△ABC的一个顶点是A(3,-1),∠B,∠C的平分线方程分别为x=0,y=x,则直线BC的方程为________.4.已知圆C:x2+y2+2x+ay-3=0 (a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C上,则a=________.5.直线2x+3y-6=0分别交x,y轴于A,B两点,P是直线y=-x上的一点,要使P A+PB最小,则点P的坐标是________.6.已知点P(a,b),Q(b,a)(a,b∈R)关于直线l对称,则直线l的方程为________________.7.已知圆C:x2+y2+2x-4y+m=0与直线l:y=x+2相切,且圆D与圆C关于直线l对称,则圆D的方程是________________.8.若直线ax-y+2=0与直线3x-y-b=0关于直线y=x对称,则a=________,b=________. 9.若圆C:x2+y2-ax+2y+1=0和圆x2+y2=1关于直线l1:x-y-1=0对称,动圆P与圆C相外切且与直线l2:x=-1相切,则动圆P的圆心的轨迹方程是________________.10.在直线l:3x-y-1=0上求一点P,使得:(1)P到A(4,1)和B(0,4)的距离之差最大;(2)P到A(4,1)和C(3,4)的距离之和最小.答案解析1.x +2y -3=0解析 由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3, 即x +2y -3=0.2.-9,3解析 在直线ax +3y -9=0上取一点(0,3),点(0,3)关于x +y =0的对称点(-3,0)在直线x -3y +b =0上,所以b =3,同理在直线x -3y +b =0上取一点(0,1),它关于x +y =0的对称点(-1,0)在直线ax +3y -9=0上,∴a =-9.3.y =2x +5解析 点A (3,-1)关于直线x =0,y =x 的对称点分别为A ′(-3,-1),A ″(-1,3),且都在直线BC 上,故得直线BC 的方程为:y =2x +5.4.-2解析 由已知得,直线x -y +2=0经过圆心⎝⎛⎭⎫-1,-a 2, 所以-1+a 2+2=0,从而有a =-2. 5.(0,0)解析 2x +3y -6=0分别交x 、y 轴于A 、B 两点,则A (3,0)、B (0,2).B 关于y =-x 的对称点为B ′(-2,0).AB ′交直线y =-x 于点(0,0),则P (0,0)即为所求.6.x -y =0解析 由题意知,k PQ =-1,故直线l 的斜率k =1,又直线l 过线段PQ 的中点M (a +b 2,a +b 2),故直线l 的方程为y -a +b 2=x -a +b 2, 即x -y =0.7.x 2+(y -1)2=12解析 圆C 的标准方程为(x +1)2+(y -2)2=5-m ,由于圆C 与直线l 相切,故圆心C (-1,2)到l 的距离等于半径,即|-1-2+2|2=5-m ,解得m =92. 故5-m =12,又圆心C (-1,2)关于直线l :y =x +2的对称点为D (0,1), 所以圆D 的方程为x 2+(y -1)2=12. 8.136 解析 因为直线ax -y +2=0关于直线y =x 对称的直线是ay -x +2=0,即x -ay -2=0,所以直线x -ay -2=0与直线3x -y -b =0重合,所以13=-a -1=-2-b, 即a =13,b =6. 9.y 2-6x +2y -2=0解析由题意知,圆C 的圆心为C ⎝⎛⎭⎫a 2,-1,圆x 2+y 2=1的圆心为O (0,0),由两圆关于直线l 1对称,易得点(0,0)关于直线l 1:x -y -1=0对称的点(1,-1)即为点C ,故a =2,所以圆C 的标准方程为(x -1)2+(y +1)2=1,其半径为1.设动圆P 的圆心为P (x 0,y 0),半径为r ,由动圆P 与圆C 相外切可得:PC =r +1,由图可知,圆心P 一定在直线x =-1的右侧,所以由动圆P 与直线l 2:x =-1相切可得r =x 0-(-1)=x 0+1.代入PC =r +1,得:(x 0-1)2+(y 0+1)2=x 0+1+1=x 0+2,整理得:y 20-6x 0+2y 0-2=0.即圆心P 的轨迹方程为y 2-6x +2y -2=0.10.解 (1)B 关于l 的对称点B ′(3,3),l AB ′:2x +y -9=0, 由⎩⎪⎨⎪⎧ 2x +y -9=0,3x -y -1=0,解得⎩⎪⎨⎪⎧x =2,y =5,得P (2,5).(2)C 关于l 的对称点C ′(35,245), 由图象可知P A +PC ≥AC ′,当P 是AC ′与l 的交点P (117,267)时,等号成立, 所以P (117,267).。
平面解析几何中的中心对称和轴对称

平面解析几何中的中心对称和轴对称2 平面解析几何中的中心对称和轴对称龙碧霞一、中心对称定义:把一个图形绕某个点旋转180o 后能与另一个图形重合。
这两个图形关于这个点对称。
这个点叫着对称中心。
性质:关于某个点成中心对称的两个图形。
对称点的连线都经过对称中心。
且被对称中心平分。
一般有三种情况。
(1) 点关于点对称。
点P (x,y )关于点M(a,b)对称的点Q 的坐标是Q(2a-x,2b-y)。
(由中点坐标公式很容易得到)如点(1.-4)关于(-2,0)对称的点是(-5.4),(2) 直线关于点对称:直线l:Ax+By+C=0 关于点P (a,b )对称的直线为l 1的方程是:A (2a-x )+B(2b-y)+C=0 .即 Ax+By-2aA-2bB-C=0。
推导过程:方法一:在直线l 上任意取一点,最好是特殊点。
如取M(0,-B C )则点M 关于点P 对称的点N 的坐标是N (2a,2b+BC ).点N l 1根据中心对称的定义。
l 1//l.可设直线l 1的方程为Ax+By+D=0.将点N 坐标代入得2aA+B(2b+BC )+D=0.于是 D=-2aA-2Bb-C所以 l 1的方程是:Ax+By-2aA-2bB-C=0方法二:在直线l 上任意取两点并求出它们关于点P (a,b )对称的点.由两点式易得直线为l 1的方程是:Ax+By-2aA-2bB-C=0.方法三:设直线为l 1上任意一点为M(x,y ),其关于点P (a,b )对称的点M /(x /,y /)在直线为l 上.求出点M /的坐标后代入直线 l:Ax+By+C=0即得l 1的方程是:Ax+By-2aA-2bB-C=0例如:求直线l ;3x+y-2=0关于点A (-4,4)对称的直线l /方程。
解法一:关于点A 对称的两直线l 与l /互相平行。
于是可设l /的方程为:3x+y+C=0在直线l 上任取一点M (0,2),其关于点A 对称的点N 的坐标为N (-8,6),因为N 点在直线l /上。
解析几何中的对称问题

解析几何中的对称问题一、基础知识1、 点关于点的对称点(x,y)关于点(a,b)的对称点的坐标为(2a-x,2b-y)事实上,点关于点的对称的对称中心恰恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题。
2、点关于直线的对称点由轴对称定义知,对称轴即为两对称点连线的“垂直平分线“,利用”垂直“和”平分“这两个条件建立方程组,就可求出对称点的坐标,一般地:设点(x 0,y 0)关于直线Ax+By+c=0的对称点(x ’,y’),则⎪⎪⎩⎪⎪⎨⎧=++++-=⎪⎭⎫⎝⎛---02210'0'0'0'c y y B x x A B A x x y y 3、曲线关于点(中心),直线(轴)的对称问题的一般思想是用代入转移法。
(1)曲线f(x,y)=0关于点A(a,b)的对称曲线的方程是f(2a-x,2b-y)=0 (2)曲线f(x,y)=0关于直线Ax+By+c=0的对称曲线的求法:设所求曲线上任一点P(x,y)关于直线Ax+By+c=0对称点P 0(x 0,y 0),在已知曲线f(x,y)=0上,满足f(x 0,y 0)=0,利用方程组⎪⎪⎩⎪⎪⎨⎧=++++-=⎪⎭⎫⎝⎛---02210'0'0'0'c y y B x x A B A x x y y ,解得x 0,y 0,代入f(x 0,y 0)=0,从而得对称曲线方程。
4、常用的对称关系点(a,b)关于x 轴的对称点(a,-b),关于y 轴的对称点为(-a,b),关于原点的对称点(-a,-b)关于直线y=x 的对称点为(b,a),关于直线y=-x 的对称点(-b,-a),关于直线y=x+m 的对称点为(b-m,a+m),关于直线y=-x+m 的对称点(m-b,m-a). 二、题型剖析例1.(1)直线032=+-y x 关于定点)2,1(-M 对称的直线方程是( )A 。
对称在解析几何中的应用

对称在解析几何中的应用解析几何是数学中的一个重要分支,它研究了几何图形与代数方程之间的关系。
而对称作为一种重要的几何性质,在解析几何中有着广泛的应用。
本文将从不同的角度介绍对称在解析几何中的应用。
对称在图形的性质研究中起着重要的作用。
图形的对称性是指在某个中心或轴上,图形的一部分可以与另一部分完全重合。
根据对称性,我们可以判断图形的性质,比如图形的对称中心或轴、对称图形的个数等。
在解析几何中,我们可以通过方程的对称性来研究图形的性质。
例如,对于二次曲线,我们可以通过对称性来判断它的类型,从而简化问题的求解过程。
对称在图形的构造中也有重要的应用。
通过对称性,我们可以快速地构造出一些特殊的图形。
比如,我们可以通过对称性来构造出正多边形,只需要找到一个对称中心和一个对称轴即可。
此外,对称性还可以用来构造一些特殊的曲线,比如椭圆、双曲线等。
通过对称性的应用,我们可以简化图形的构造过程,提高解决问题的效率。
对称在图形的变换中也起着重要的作用。
在解析几何中,我们经常需要对图形进行平移、旋转、缩放等操作。
而对称性可以帮助我们确定变换后的图形与原图形之间的关系。
例如,如果一个图形在某个点对称,那么它在平移后仍然保持对称性。
通过对称性的应用,我们可以简化图形变换的计算过程,提高解决问题的效率。
对称在解析几何中还应用于曲线的刻画和求解。
在解析几何中,我们经常需要求解曲线的方程或者刻画曲线的性质。
而对称性可以帮助我们简化这些求解过程。
例如,对称性可以帮助我们确定曲线的对称中心或者对称轴,从而简化方程的求解过程。
通过对称性的应用,我们可以更快地求解曲线的方程或者刻画曲线的性质。
对称在解析几何中有着广泛的应用。
它不仅可以帮助我们研究图形的性质,简化图形的构造过程,还可以帮助我们确定图形的变换关系,简化曲线的刻画和求解过程。
因此,在解析几何的学习和应用中,对称是一个非常重要的概念。
通过对称的运用,我们可以更好地理解和应用解析几何的知识,提高解决问题的能力。
解析几何对称问题

解析几何中对称问题的常见求解方法解析几何中的对称问题在现行中学数学材料中没有按章节进行系统编排,只是分散地穿插在直线、曲线部分的题型之中。
但这部分知识是解析几何中重要的基础内容,也是近年来的高考热点之一。
对称点、对称直线的求法,对称问题的简单应用及其解题过程中所体现的思想和方法是学生必须掌握的。
这就要求教师在讲完直线、曲线部分后,需对对称问题进行适当的归纳、总结。
使学生对这部分知识有一个较完整的、系统的认识,从而解决起对称问题才能得心应手。
下面就解析几何中常见的对称问题和解决办法给大家介绍一下。
一、关于点对称。
1、点关于点对称。
①点(,)P a b 关于原点的对称点坐标是(,)a b --;②点(,)P a b 关于某一点00(,)M x y 的对称点的坐标,利用中点坐标式求得为00(2,2)x a y b --。
2、直线关于点对称。
① 直线L :0Ax By C ++=关于原点的对称直线。
设所求直线上一点为(,)P x y ,则它关于原点的对称点为(,)Q x y --,因为Q 点在直线L 上,故有()()0A x B y C -+-+=,即0Ax By C +-=;② 直线1l 关于某一点00(,)M x y 的对称直线2l 。
它的求法分两种情况:1、当00(,)M x y 在1l 上时,它的对称直线为过M 点的任一条直线。
2、当M 点不在1l 上时,对称直线的求法为:解法(一):在直线2l 上任取一点(,)P x y ,则它关于M 的对称点为00(2,2)Q x x y y --,因为Q 点在1l 上,把Q 点坐标代入直线在1l 中,便得到2l 的方程。
解法(二):在1l 上取一点11(,)P x y ,求出P 关于M 点的对称点Q 的坐标。
再由12l l K K =,可求出直线2l 的方程。
解法(三):由12l l K K =,可设1:0l Ax By C ++=关于点00(,)M x y 的对称直线为'0Ax By C ++=且=求设'C 从而可求的及对称直线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面解析几何中的对称问题新林市第一中学 515031对称性是数学美的重要表现形式之一,在数学学科中对称问题无处不在。
在代数、三角中有对称式问题;在立体几何中有中对称问题对称体;在解析几何中有图象的对称问题。
深入地研究数学中的对称问题有助于培养学生分析解决问题的能力,有助于提高学生的数学素质。
在平面解析几何中,对称问题的存在尤其普遍。
平面解析几何中的对称问题在高考试题中更是屡见不鲜。
本文将对平面解析几何中的几种常见对称问题作一些肤浅的探讨,以求斧正。
平面解析几何中的对称问题主要有如下几种:点关于点的对称问题简称点点对称;点关于直线的对称问题简称点线对称;曲线关于点的对称问题简称线点对称;曲线关于直线的对称问题简称线线对称。
一、点点对称定理1平面上一点),(y x M 关于点),(00y x P 的对称点为)2,2(00'y y x x M --,特别地,点),(y x M 关于点)0,0(P 的对称点为),('y x M --。
证明:显然),(00y x P 为线段'MM 的中点,设),('''y x M ,由中点坐标公式有:⎪⎪⎩⎪⎪⎨⎧+=+=22'0'0y y y x x x ,即⎩⎨⎧-=-=yy y x x x 0'0'22 ,故)2,2(00'y y x x M --。
例1 若点A 关于点)1,2(-B 的对称点为)2,4(C ,求点A 的坐标。
解:设),(y x A ,由定理1有)212,4)2(2(-⨯--⨯A ,即)0,8(-A 。
二、点线对称定理1平面上一点),(00y x M 关于直线)0(,0:22≠+=++B A C By Ax l 的对称点为:-+++-022000',)(2(y B A C By Ax A x M ))(22200BA C By Ax A +++。
证明:先证明一般情况,即0,0≠≠B A 的情况。
),('y x ,线段'MM 交直线l 于点与点),('y x M 关于直线l 对称,故),(Q Q y x Q 为线段'MM 的中点且l MM ⊥',X 于是有:),(y x M⎪⎩⎪⎨⎧+=+=2200y y y x x x Q Q且A B BA x x y y =--=--100, 又点),(Q Q y x Q 在直线l 上,故有:⎪⎪⎩⎪⎪⎨⎧=--=++⋅++⋅A Bx x y y C y y B xx A 0000022 ,解此二元一次方程组得:⎪⎩⎪⎨⎧+++-=+++-=2200022000)(2)(2B A C By Ax A y y B A C By Ax A x x ,即-+++-022000',)(2(y B A C By Ax A x M ))(22200BA C By Ax A +++。
至于0,0≠=B A 与0,0=≠B A 的情况比较简单,证明略。
特别地,有如下几种特殊情况:(1) 平面上一点),(00y x M 关于x 轴的对称点为:),(00y x -; (2) 平面上一点),(00y x M 关于y 轴的对称点为:),(00y x -;(3) 平面上一点),(00y x M 关于直线a x =的对称点为:),2(00y x a -; (4) 平面上一点),(00y x M 关于直线b y =的对称点为:)2,(00y b x -; (5) 平面上一点),(00y x M 关于直线x y =的对称点为:),(00x y ;(6) 平面上一点),(00y x M 关于直线x y -=的对称点为:),(00x y --;(7) 平面上一点),(00y x M 关于直线b x y +=的对称点为:),(00b x b y +-; (8) 平面上一点),(00y x M 关于直线b x y +-=的对称点为:),(00b x b y +---特别地,点),(y x M 关于点)0,0(P 的对称点为),('y x M --。
若直线,0=++z y x 与椭圆1)()(:220220=-+-b y y a x x C有公共点,则有:≥+22)()(Bb Aa 200)(C By Ax ++证明:由1)()(:220220=-+-b y y a x x C 可令θcos 0a x x +=,θsin 0b y y +=代入)0(,0:22≠+=++B A C By Ax l 得:A )cos (0θa x ++B )sin (0θb y +0=+C整理得:θcos Aa +θsin Bb =(-A 0x +B 0y C +)即: )sin()()(22ϕθ++Bb Aa =(-A 0x +B 0y C +),(其中ϕ为辅助角) 又1)sin(≤+ϕθ,∴1)()()(2200≤+++-Bb Aa C By Ax即:≥+22)()(Bb Aa 200)(C By Ax ++ 特别地,当0,000==y x 时,有推论1 若直线)0(,0:22≠+=++B A C By Ax l 与椭圆1:2222=+by a x C 有公共点,则有:≥+22)()(Bb Aa 2C对于定理1,若令r b a ==,则有定理2 若直线)0(,0:22≠+=++B A C By Ax l 与圆22020)()(:r y y x x C =-+-有公共点,则有:≥+22)()(Br Ar 200)(C By Ax ++,整理得 ≥+)(222B A r 200)(C By Ax ++特别地,当0,000==y x 时,有推论2 若直线)0(,0:22≠+=++B A C By Ax l 与圆222:r y x C =+有公共点,则有:≥+)(222B A r 2C下面略举数例说明其应用。
一、 求点到直线的距离 例1 求点),(00y x P 到直线)0(,0:22≠+=++B A C By Ax l 的距离。
解:设点),(00y x P 到直线)0(,0:22≠+=++B A C By Ax l 的距离为d ,构造以点),(00y x P 为圆心,r 为半径的动圆22020)()(:r y y x x C =-+-,显然,当直线 )0(,0:22≠+=++B A C By Ax l 与动圆22020)()(:r y y x x C =-+-有公共点时,点),(00y x P 到直线)0(,0:22≠+=++B A C By Ax l 的距离d 为半径r 的最小值,即min r d=,由定理2知:≥+)(222B A r 200)(C By Ax ++,即:r BA CBy Ax ≤+++2200,故2200BA CBy Ax d +++=即点),(00y x P 到直线)0(,0:22≠+=++B A C By Ax l 的距离为2200BA CBy Ax d +++=此即平面解析几何中点到直线的距离公式。
二、 求最值、函数的值域例1 若,,R y x ∈且3)2(22=+-y x ,则xy的最大值为( )A .21B .33C .33D .3(1990年全国高考试题)解:设xyk =,得直线0=-y kx ,由定理1得22)2()1(3k k ≥+,解得:、 33≤≤-k ,即33≤≤-xy,故选(D ) 例2 求函数xx xx y sin 3cos 21sin cos 23++++=的值域。
解:设u x =sin ,v x =cos ,代入xx x x y sin 3cos 21sin cos 23++++=得:uv uv y 32123++++=整理得0)3()1(2)13(=-+-+-y v y u y ,又122=+v u关于v u ,的直线0)3()1(2)13(=-+-+-y v y u y 与关于v u ,的圆122=+v u 有公共点。
由推论2得:≥-+-22)]1(2[)13(y y 2)3(-y解得:⎭⎬⎫⎩⎨⎧≥-≤131y y y或即所求函数x x x x y sin 3cos 21sin cos 23++++=的值域为⎭⎬⎫⎩⎨⎧≥-≤131y y y 或。
例3 已知平面上两定点)0,1(),0,1(B A -,),(y x P 为圆4)4()3(:22=-+-y x C 上任一点,求22PBPA +的最大值与最小值。
解:依题意有22PB PA +2)(2)1()1(222222++=+-+++=y x y x y x ①又由4)4()3(:22=-+-y x C得218622-+=+y x y x ,代入①得:22PB PA +4016122)2186(22)(222-+=+-+=++=y x y x y x令22PB PA +t =,有401612-+y x t =,即0)40(1612=+-+t y x关于y x ,的直线0)40(1612=+-+t y x 与关于y x ,的圆4)4()3(22=-+-y x 有公共点。
由定理2得:≥+)1612(4222)]40(416312[t +-⨯+⨯解得:10020≤≤t故22PBPA +的最大值与最小值分别为4020与。
例4已知椭圆),149:22R y x y x C ∈=+,(,求21+-+y y x 的最大值。
解:令=t21+-+y y x ,整理得0)12()1(=+--+t y t x关于y x ,的直线0)12()1(=+--+t y t x 与椭圆),149:22R y x y x C ∈=+,(有公共点。
由推论1得:≥-+2)1(49t 2)]12([+-t ,解得:1≤t故21+-+y y x 的最大值为1。
例5 (加拿大第七届中学生数学竞赛试题)试确定最大的实数z ,使得实数y x ,满足:{53=++=++z y x xz yz xy解:由5=++z y x 得:25)(2222=+++++xz yz xy z y x ①又3=++xz yz xy ,代入①得:19222=++z y x ,即22219z y x -=+关于y x ,的直线0)5(=-++z y x 与关于y x ,的圆22219z y x -=+有公共点。
由推论2得:2222)5()11)(19(-≥+-z z解得:0131032≤--z z,即:3131≤≤-z 故最大的实数z 为313。
三、 求代数式的围 例1 若,,R y x ∈1)1(22=-+y x ,且0≥++d y x 恒成立,求d 的取值围。
解:由已知得)(y x d +-≥,设)(y x +-k =,得直线)(y x +0=+k ,由定理2得:222)1()11(k +≥+,解得:1212-≤≤--k ,即12max -=k ,即12)(max -=+-y x ,又)(y x d +-≥,故12-≥d。