四年级 奥数 讲义 661学子 教案库 四年级寒假 第06讲 周期问题 学生版

合集下载

四年级奥数-周期问题-教案

四年级奥数-周期问题-教案

周期问题教案教学目标:1、使学生了解很多事物变化的周期性,掌握事物变化的周期;2、使学生能掌握周期问题中的基本概念,对于较复杂的周期问题,能够通过画图,计算等方法分析,找出周期,达到解决问题的目的。

教学重难点:理解周期问题意义,掌握准确需寻找周期数的方法与解决周期问题的公式,如何使用总量除以周期,并区分是否有余数。

教学过程:情景导入:《老和尚和小和尚的故事》从前有座山,山里有座庙,庙里有个老和尚,老和尚对小和尚说:“从前有座山,山里有座庙,庙里有个老和尚,老和尚对小和尚说……”从而揭示周期问题的概念:在日常生活中,同样有一些现象按照一定规律周而复始,持续重复出现,我们把这种特殊的规律问题称为周期问题。

归纳定义:在日常生活中,有很多现象都是按照一定的规律、依次持续重复出现的,我们把这种现象叫做周期现象,而重复出现一次的个数叫做周期。

专题简析:在日常生活中,有一些现象按照一定的规律持续重复出现,例如,人的生肖、每周的七天等等。

我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。

确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,能够从总量里减掉不是特球的个数后,再继续算。

例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。

(1)□△□△□△□△……(2)□△△□△△□△△……分析与解答:第(1)题排列规律是“□△”两个图形重复出现,20÷2=10,即“□△”重复出现10次,所以第20个图形是△。

第(2)题的排列规律是“□△△”三个图形重复出现,20÷3=6…2,即“□△△”重复出现6次后又出现了两个图形“□△”,所以第20个图形是△。

练习一(1)□□△△□□△△□□△△……第28个图形是什么?(2)盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2001个字是什么字?(3)公园门口挂了一排彩灯泡按“二红三黄四蓝”重复排列,第63只灯泡是什么颜色?第112只呢?例2:有一列数,按5、6、2、4、5、6、2、4…排列。

小学奥数周期问题教案模板

小学奥数周期问题教案模板

课时安排:2课时教学目标:1. 让学生了解周期问题的定义,掌握周期问题的解题方法。

2. 培养学生观察规律、分析问题的能力,提高学生的逻辑思维能力。

3. 通过实际操作,使学生能够灵活运用周期问题的解题方法解决实际问题。

教学重点:1. 周期问题的定义和特点。

2. 周期问题的解题方法。

教学难点:1. 确定周期。

2. 利用周期解决问题。

教学准备:1. 多媒体课件。

2. 彩灯图片、自然数排列图片、钟面图片等。

3. 练习题。

教学过程:第一课时一、导入新课1. 展示彩灯图片,引导学生观察彩灯颜色的排列规律。

2. 提问:彩灯的颜色是如何排列的?有没有一定的规律?二、新课讲解1. 引入周期问题的定义:周期现象在运动变化过程中,某些特征有规律循环出现;周期:连续两次出现所经过的时间或重复出现一次的个数。

2. 举例说明周期现象,如彩灯的颜色排列、自然数的排列、钟面的时针和分针的转动等。

3. 讲解周期问题的解题方法:a. 观察法:通过观察题目中的现象,找出规律。

b. 逆推法:从结果出发,逆向思考,找出规律。

c. 经验法:根据生活经验,找出规律。

三、课堂练习1. 练习1:计算第13只彩灯和第24只彩灯的颜色。

2. 练习2:找出以下数列的周期:1,2,1,2,1,2,……四、小结1. 回顾本节课所学内容,强调周期问题的定义和特点。

2. 强调解题方法的重要性,鼓励学生在实际生活中运用所学知识。

第二课时一、复习导入1. 复习上一节课所学的周期问题知识。

2. 提问:如何确定周期?如何利用周期解决问题?二、新课讲解1. 讲解确定周期的技巧:a. 观察法:通过观察题目中的现象,找出规律。

b. 逆推法:从结果出发,逆向思考,找出规律。

c. 经验法:根据生活经验,找出规律。

2. 讲解利用周期解决问题的方法:a. 利用除法求余数:将问题中的数量除以周期,求出余数。

b. 根据余数确定答案:根据余数的大小,找出周期中的相应位置,确定答案。

三、课堂练习1. 练习1:计算第49个自然数在排列顺序中位于哪个字母下面。

四年级奥数教材讲义

四年级奥数教材讲义

四年级奥数教材讲义(总96页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除目录第一讲加减速算与巧算 (2)第二讲乘法速算与巧算 (9)第三讲乘除法速算与巧算 (14)第四讲找规律填数 (21)第五讲应用题(一) (26)第六讲错中求解 (33)第七讲数数图形 (40)第八讲数列求和 (46)第九讲和倍问题 (55)第十讲差倍问题 (63)第十一讲和差问题 (70)第十二讲消去法解题 (77)第十三讲还原问题 (84)第十四讲图形面积计算 (91)第一讲加减速算与巧算人生一世离不开计算:日常生活买这买那离不开;学习活动中求解问题离不开;科学研究和统筹设计离不开……。

为了加快我们的生活节奏,提高我们的工作效率,人们总想着算得快些,再快些。

为此,人们总结了不少精彩的速算方法和技巧。

速算和巧算也一直是数学学习中的一个重要内容,同学们也一定希望自己在计算时,算得正确,迅速又合理灵活吧!那么怎样才能做到这些呢?首先必须掌握一些计算法则、定理、性质和拆、并等一些技巧性方法。

其次是要整体观察题目,找出数据特点及它们之间的联系。

三是联想一些相关的运算定律和性质,选择最佳的算法,从而使较复杂的计算题能很快地计算结果。

在加减法的运算中,同学们熟知的加法交换律和加法结合律是运算的基础,请同学们回忆一下:a+b﹦;a+b+c﹦还有一些比较重要的性质是我们在学习过程中需要掌握的。

⑴“带符号搬家”:在连减或加、减法的混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。

即数字与它前面的符号可同时在运算中移动位置,不影响运算的结果。

例如:a-b-c﹦a-c-b a+b-c﹦a-c+b⑵“添括号法则”:在加、减法混合运算中,添括号时,如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”号,那么括号内的数的原运算符号要改变。

四年级 奥数 讲义 661学子 教案库 四年级寒假 第06讲 周期问题 学生版

四年级 奥数 讲义 661学子 教案库 四年级寒假 第06讲 周期问题 学生版

第六讲周期问题要点总结课堂精讲【例1】有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,红花、黄花、绿花各有多少朵?【例2】2002年元旦是星期二,那么,2003年1月1日是星期几?【例3】有同样大小的红珠、白珠、黑珠共160个,按4个红珠,3个白珠,2个黑珠的顺序排列着。

黑珠共有几个?第101个珠子是什么颜色?【例4】我国农历用鼠牛虎兔龙蛇马羊猴鸡狗猪这12种动物按顺序轮流代表各年的年号。

如果1940年是龙年,那么,1996年是什么年?【例5】英文字母A、B、C、D按BCDABAACDABAACDABAACD……排列,共250个字母,最后一个字母是什么?【例6】有13名小朋友编成1到13号,依次围成一个圆圈。

现在从1号开始,每数到第3个人发一粒糖。

那么,最后一个拿到糖的人是几号?【例7】工厂的仓库里有80吨货物,第一天往仓库里运入50吨,第二天再运出60吨,第三天又运入50吨,第四天再运出60吨……如此不停的循环下去。

那么第几天的时候,仓库里的货物会被运完?【例8】在一根绳子上依次穿2个红珠、3个白珠、5个黑珠,并按此方式反复.如果从头开始数,直到第77颗,那么其中白珠比黑珠少多少颗?【例9】如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈.现在,一只红跳蚤从标有数“1”的圆圈按顺时针方向跳了100步,落在一个圆圈里.一只黑跳蚤也从标有数“1”的圆圈起跳,但它是沿着逆时针方向跳了200步,落在另一个圆圈里.问:这两个圆圈里的数乘积是多少?【例10】如图,4只小动物不断交换座位.一开始,小鼠坐第1号椅子,小猴坐第2号椅子,小免坐第3号椅子,小猫坐第4号椅子.第1次前后两排交换.第2次是在第1次交换的基础上左右两排交换.第3次又是前后两排交换.第4次再左右两排交换,……,这样一直换下去.问:第10次交换座位后,小兔坐在第几号椅子上?开始座次第一次第二次第十次本讲随堂练习【作1】今天是星期四,从明天开始第1800天是星期几?【作2】有一串数,任意5个相邻数之和都等于15。

四年级下册数学【说课稿】-找规律——周期问题 苏教版

四年级下册数学【说课稿】-找规律——周期问题 苏教版

四年级下册数学说课稿-找规律——周期问题苏教版一、前言数学是一门非常重要的学科,也是一个需要具备长期坚持和不断积累的学科。

在学习数学的过程中,很多学生会遇到类似于找规律、解方程等问题。

本文将介绍四年级下册数学中的找规律——周期问题。

二、找规律找规律是数学中一个非常重要的环节,可以帮助学生更好地理解数学知识,提高解决问题的能力。

找规律既可以用图形来表示,也可以用数字来表示。

在四年级下册中,学生要掌握的就是用数字的方式来找规律。

这时需要通过观察一些数列,然后推出它们的规律,最后得到一般项公式。

例如:已知数列:3,6,9,12,15……观察这个数列,我们将每个数都除以3,得到新的数列:1,2,3,4,5……新的数列恰好是一个等差数列,公差为1,首项为1。

所以原数列的通项公式也就是:a n=3n三、周期问题如果一个数列按照某个规律重复出现,那么就可以称这个数列是具有周期性的。

在四年级下册数学中,我们要解决的就是具有周期性的数列问题。

在处理周期性的数列问题时,首先需要确认这个数列是否具有周期性。

例如:已知数列:1,2,3,4,1,2,3,4……可以发现该数列是按照1,2,3,4的顺序重复出现的,因此该数列具有周期性。

确定了数列具有周期性之后,我们需要知道它的周期,也就是数列重复出现的长度。

例如:已知数列:1,2,3,4,1,2,3,4……可以看到该数列重复出现的长度为4,因此该数列的周期为4。

了解了数列的周期,我们就可以通过找规律来推出数列中每一项的值。

这可以通过以下步骤来完成:1.找到数列的一般项公式2.将该公式中的n值替换成$n\\bmod p$,其中p为数列的周期例如:已知数列:2,4,1,3,2,4,1,3……首先确定该数列的周期为4。

因此,我们需要找到这个数列的一般项公式。

可以发现该数列的规律为每隔4个数重复出现。

因此,该数列的一般项公式为:a n=a n−4然后我们将公式中的n值替换成$n\\bmod 4$,得到:$$a_{n}=a_{n\\bmod 4}$$因此,当n为0,1,2,3时,分别对应的项数为2,4,1,3。

四年级奥数知识讲解周期问题

四年级奥数知识讲解周期问题

★小学四年级奥数专题讲解之“周期问题”杨启令专题简析:在日常生活中,有一些按照一定的规律不断重复出现。

如:人的12生肖,一年有春夏秋冬四个季节,一个星期有七天等等。

像这些问题,我们称为“简单周期问题”。

这一类问题一般要利用余数的知识来解答。

所以这就要求我们对题目要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果。

例题1 : 2001年10月1日是星期一,问10月25日是星期几?分析:我们知道,每个星期有7天,也就是说以7天为一个周期不断地重复。

那么从10月1日到10月25日经过了25—仁24 (天)。

因此用除法算式解答。

解:(1)、从10月1日到10月25日有:25—仁24 (天)(2)、24天里有多少个星期余多少天?24 - 7=3 (个星期)……3 (天)(说明24天中包含3个星期还多3天,最后一天起,再过3天就应是星期四)答:10月25日是星期四。

练习题:1、2001年5月3日是星期四,问5月20日是星期几?2、2008年8月1日是星期三,问8月28日是星期几?3、2001年6月1日是星期五,问9月1日是星期几?例题2:100个3相乘,积的个位数字是几?分析:我们只需考虑积的个位数的排列规律就可以了。

解: (1 )、1X 3=3……1个3相乘积的个位数字是:3(2)、3X 3=9……2个3相乘积的个位数字是:9(3)、3X 3X 3=27……3个3相乘积的个位数字是:7(4)、3X 3X 3X 3=81……4个3相乘积的个位数字是:1(5)、3X 3X 3X 3X 3=243…… 5个3相乘积的个位数字是:3 (已经重复出现)(说明:可以发现积的个位数分别以3、9、7、1不断出重复出现的。

即每4个3的积的个位数为一个周期。

)所以100个有多少个周期?100十4=25 (个)(整除说明是最后一个即个位为1)答:积的个位数字是1。

小学奥数中周期性问题的讲解

小学奥数中周期性问题的讲解

小学奥数中周期性问题的讲解小学奥数中周期性问题的讲解奥数是一种理性的精神,使人类的思维得以运用到最完善的程度.让我们一起来阅读“奥数应用题练习及解析:周期性问题”,忘了痛苦,忘了喜悦,冲吧!11.乘积1×2×3×4×…×1990×1991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?考点:周期性问题.1923992分析:我们用所有数的乘积除以了495个5之后得到的个位数字是6,那还要除以495个2才可以,因为他们乘到一起变成了495个0,再除以495个2就相当于把末尾的0全部去掉了,那么此时的个位数字就是要求的第一个不为0的数.2的495次方的个位数字是8(2的n次方的个位数字是2,4,8,6四位一周期495÷4=123…3)那么用刚才我们除以495个5之后得到的个位数字6除以8,就会得到最终的个位数字,6÷8的个位数字是2(就是2×8个位数字是6,当然7×8的个位数字也是6,但是注意了2的个数要远多于495个,所以最终的去掉495个0之后的数一定是个偶数,所以只能是2.解答:解:此题中是1991个数字的连乘积,根据题干分析:所有数的乘积除以了495个5之后得到的个位数字是6,那还要除以495个2才可以,因为他们乘到一起变成了495个0,再除以495个2就相当于把末尾的0全部去掉了,那么此时的个位数字就是要求的第一个不为0的数.2的495次方的个位数字是8;2的n次方的个位数字是2,4,8,6四位一周期,495÷4=123…3;那么用刚才我们除以495个5之后得到的个位数字6除以8,就会得到最终的个位数字,6÷8的个位数字是2(就是2×8个位数字是6,当然7×8的个位数字也是6,但是注意了2的个数要远多于495个,所以最终的去掉495个0之后的数一定是个偶数,所以只能是2.点评:将原式进行分组整合讨论,根据个位数字是2、5乘积的个位数字特点进行分析,得出从右边数第一位不为0的数字规律;根据2的连乘积的末位数的出现周期解决问题,是本题的关键所在.12.有串自然数,已知第一个数与第二个数互质,而且第一个数的恰好是第二个数的,从第三个数开始,每个数字正好是前两个数的和,问这串数的第1991个数被3除所得的余数是几?考点:周期性问题.1923992分析:(1)因为第一个数5/6×=第二个数×1/4,所以第一个数:第二个数=1/4:5/6=3:10.又两数互质,所以第一个数为3,第二个数为10,从而这串数为:3,10,13,23,36,59,95,154,249,403,652,1055…(2)要求这串数的.第1991个数被3除所得的余数是几,可以先推理出得出这串数字除以3的余数的规律是什么;由此即可解决问题.解答:解:根据题干分析可得这串数字为:3,10,13,23,36,59,95,154,249,403,652,1055…这串数字被3除所得的余数依次为:0,1,1,2,0,2,2,1,0,1,1,2,所以可以看出这串数字除以3的余数按“0,1,1,2,0,2,2,1”循环,周期为8.因为1991÷8=248…7,所以第1991个数被3除所得余数应是第249周期中的第7个数,即2.答:这串数的第1991个数被3除所得的余数是2.点评:解答此题应注意以下两个问题:(1)由于两个数互质,所以这两个数只能是最简整数比的两个数;(2)求出这串数被3除所得的余数后,找出余数变化的周期,但这并不是这串数的周期.一般来说,一些有规律的数串,被某一个整数逐个去除,所得的余数也具有周期性.13.表中,将每列上下两个字组成一组,例如第一组为(共社),第二组为(产会),那么第340组是 (好,好) .共产党好共产党好共产党好......社会主义好社会主义好社会主义好......考点:周期性问题.1923992分析:此题分成两部分来看:(1)上面一部分的周期为:四字一周期,分别为:共→产→党→好;那么第340个字在340÷4=85周期最后一个,与第一组中第四个字“好”相同;(2)同样的方法可以得出下面的周期为:五字一周期:社→会→主→义→好,由此即可解决问题.解答:解:根据题干分析:(1)上面四字一周期,分别为:共→产→党→好;那么第340个字在340÷4=85周期的最后一个,与第一组中第四个字“好”相同;(2)下面五字一周期,分别为:社→会→主→义→好,那么第340个字在340÷5=68周期最后一个数字,与第一周期的最后一个字“好”相同;答:由上述推理可得:第340组的数字是(好,好),故答案为:(好,好).点评:此题也可以这样考虑:因为“共产党好”四个字,“社会主义好”五个字,4与5的最小公倍数是20,所以在连续写完5个“共产党好”与4个“社会主义好”之后,将重复从头写起,出现周期现象,而且每个周期是20组数.因为340÷20=17,所以第340组正好写完第17个周期,第340组是(好,好).14.甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为 75 厘米.考点:公约数与公倍数问题.1923992分析:根据题意甲、乙从同一端点开始涂色,甲按黑、白,黑、白交替进行;乙按白、黑,白、黑交替进行,如图所示.由图可知,甲黑、乙白从同一端点起,到再一次甲黑、乙白同时出现,应是5与6的最小公倍数的2倍,即5×6×2=60厘米,也就是它们按60厘米为周期循环出现,据此可以轻松求解.解答:解:按60厘米为周期循环出现,在每一个周期中没有涂色的部分是,1+3+5+4+2=15(厘米);所以,在3米的木棍上没有涂黑色的部分长度总和是,15×(300÷60)=75(厘米).故答案为:75.点评:此题主要考查最小公倍数问题,注意这里的周期是5与6最小公倍数的2倍,而不是5与6的最小公倍数.。

小学奥数周期问题--周期问题精讲【最新】

小学奥数周期问题--周期问题精讲【最新】

第十四讲:周期问题知识点说明周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.板块一、图形中的周期问题【例 1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【解析】仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330÷=,正好有30个周期,第90个是白球.100333÷=…1,有33个周期还多1个,所以,第100个是黑球.【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【例 2】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【解析】⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.73514÷=(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的.⑵第10颗黄珠子前面有完整的9组,一共有5945⨯=(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:592=+47=(颗)⨯+452⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:=+=(颗).524⨯+10414【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?【解析】这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为2855÷=…3,所以28个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字.【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?【解析】从第一盏白灯开始,每隔三盏彩灯就又出现一盏白灯,不难看出白灯的编号依次是:1,5,9,13,……,这些编号被4除所得的余数都是1.734181=⨯+,即73被4除的余数是1,因此第73盏灯是白灯.【例 3】节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?【解析】⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个周期就是54110++=(盏)灯.150(541)15÷++=,150盏灯刚好15个周期,所以第150盏应该是这个周期的最后一盏,是黄色的灯.⑵如果是200盏灯,就是200(541)20⨯=(盏)前÷++=的周期.每个周期都有4盏蓝灯,20480200盏彩灯中有80盏蓝灯.【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【解析】50(225) 5⨯+=(个).÷++=…5.52212【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【解析】⑴每个周期有3216++=枚硬币,要求最后一枚,用这个数除以6,根据余数来判断÷=……2,所以最后一枚是1分硬币200633⑵每个周期中6枚硬币共价值13221512⨯+⨯+⨯=(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了12332398⨯+=(分),所以,这200枚硬币一共价值398分.【巩固】 桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【解析】 1963÷=…1,1462÷=…2,所以,第19枚硬币是一角的,第14枚硬币是五角的.【巩固】 有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【解析】 这些花按5红、9黄、13绿的顺序轮流排列,它的一个周期内有591327++=(朵)花.因为249279÷=……6,所以,这249朵花中含有9个周期还余下6朵花.按花的排列规律,这6朵花中前5朵应是红花,最后一朵应是黄花.在这一个周期里,绿花最多,红花最少,所以在249朵花中,自然也是绿花最多,红花最少.少几朵呢?有两种解法:(方法1)249(5913)9÷++= (6)红花有:59550⨯+=(朵)绿花有:139117⨯=(朵)红花比绿花少:1175067-=(朵)(方法2)249(5913)9÷++=……6,一个周期少的:1358-=(朵),9872⨯=(朵),余下的6朵中还有5朵红花,所以72567-=(朵).【例 4】 如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A ”,第二组是“们,”……⑴写出第62组是什么?⑵如果“爱,C ”代表1991年,那么“科,D ”代表1992年……问2008年对应怎样的组?【解析】 (1)要求第62组是什么数,我们要分别求出上、下两行是什么字(字母),上面一行是以“我们爱科学”五个字为一个周期,下面一行则是以“ABCDEFG ”七个字母为一个周期62512÷=……2 ,6278÷=……6,所以第62组是“们,F ”⑵2008是1991之后的第17组,现在上面一行按“科学我们爱”五个字为一个周期,下面一行则按“DEFGABC ” 七个字母为一个周期:2008199117-=(组),1753÷= (2)1772÷=……3,所以2008年对应的组为“学,F ”.【巩固】 在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第50组是什么?【解析】 要知道第50组是哪两个数,我们首先要弄清楚第一行和第二行的第50个字分别应该是什么.第一行“新北京新奥运”是6个字一个周期,5068÷=…2,第50个字就是北.再看第二行“奥林匹克运动会”是7个字一个周期,5077÷=…1,第50个字就是奥.把第一行和第二行合在一起,第50组就是“北奥”.【例 5】 如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A 、B 、C 三点周围的阴影部分是圆形的水洼。

奥数四年级—周期问题(课堂PPT)

奥数四年级—周期问题(课堂PPT)
周期问题(一)
在日常生活中,有一些现象会按照一定的规 律不断重复出现。例如人的生肖:鼠、牛、虎、 兔、龙、蛇、马、羊、猴、鸡、狗、猪就是按一 定的顺序不断重复出现的;每周有七天,从星期 一开始到星期日结束,总是以七天为一个循环, 不断重复出现。
在数学中,一些数和图形的变化也是周而复 始地循环出现的。我们把这种特殊的规律性问题 称为周期问题。解答这类题目必须找到规律。
解:136÷5=27...1 (我)
136÷4=34
(D)
答:第136组是(我,D)。
6
小结
解周期问题的关键是发现规律,找出周期。找规律时 一定要仔细观察,认真比较,也可以用列表的方法帮 助发现规律。确定周期后,再用总量除以周期, 如果正好有整数个周期,结果为周期里的最后一个; 如果有余数,那就是下个周期里的第几个。
解 +12-9+6-4=5 一个循环增加了5 1984-1949=35 刚好是7个循环 7×4=28步 2014-1949=65 刚好是13个循环13×4=52步
12
答:
10
练 7、有100朵花,按红花4朵、绿花3朵、黄花5朵、紫花2 习 朵的顺序排列,最后一朵是什么颜色?四种花各有几朵?
解:4+3+5+2=14 100÷14=7...2 红
红 4×7+2=30
绿 3×7=21
黄 5×7=35
紫 2×7=14
8、如下表,每列上下为一组,第1组是(小,A),第二 组是(学,B),问:第70组是什么?
小 学 生 爱 数 学 小 学 生 爱 数 学 ...
AB
C
D
E
A
B
C
D
E
A

四年级奥数综合复习之【周期问题】

四年级奥数综合复习之【周期问题】

四年级奥数综合复习之【周期问题】四年级奥数复习之:周期问题周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期。

周期性问题的基本解题思路:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

1、观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,18÷2=9,所以第18个数是2。

2、如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16÷3=5……1,所以第16个数是1。

3、如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算。

例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(16-1) ÷2=7……1,所以第16个数是2.4、遇到日期问题,求星期几,如果求的日期 > 已知日期,则使用顺推,如果求的日期 < 已知日期,则倒推。

第一讲:图形中的周期问题1、美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【黑/26】2、小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.第10颗黄珠子是从头起第几颗?第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【47/14】3、如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A”,第二组是“们, B”……第62组是什么?如果“爱,C”代表1991年,“科,D”代表1992年……问2008年对应怎样的组?【们,F/学,F】4、如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。

周期问题(四年级)

周期问题(四年级)

周期问题一、教学目标1、引导学生发现周期问题的规律,探索周期问题中的几个常见问题的解决策略,初步理解运用有余数除法解决求第几个问题的方法。

2、培养学生思维能力和语言表达能力。

二、考点、热点回顾周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2三、典型例题例1、小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是_________球,第100个又是_____________球。

变式训练1、美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是______________颜色美美怕这种颜色的珠子数量不够,请你帮她算出这种颜色在这串珠子中共有_________个。

四年级《简单的周期》教案

四年级《简单的周期》教案

教学目标:1.知识目标:了解和掌握简单的周期的概念和特点。

2.能力目标:通过观察和实验,学习掌握简单的周期的规律。

3.情感目标:培养学生的观察、分析和解决问题的能力,培养学生的科学探究意识。

教学重点:学生理解和掌握简单的周期的概念和特点。

教学难点:学生掌握简单的周期的规律。

教学准备:PPT,实验材料(如:小球)、黑板、白板笔、蓝纸红笔、学生用纸、书籍。

教学过程:一、导入(5分钟)1.出示PPT,对学生进行简单的预习。

通过展示图形和图片,引出周期的概念。

2.引导学生回忆生活中的周期,如季节的周期、月亮与太阳的周期等,并进行简单的讨论。

二、讲授(15分钟)1.出示PPT,给学生介绍什么是简单的周期。

2.引导学生观察图形和图片,了解周期的特点,如轮流出现、有规律循环等。

3.调动学生的积极性,提问:你们能举出一些更简单的周期例子吗?三、实验探究(25分钟)1.在课前准备好实验材料,如小球或其他具备周期特点的物品。

2.引导学生观察小球的运动,记录和总结观察到的现象。

3.组织学生进行探究实验,让学生根据自己的想法进行实验,并记录实验结果。

4.引导学生分析实验结果,总结出周期的规律和特点,并进行讨论。

四、巩固(15分钟)1.针对实验结果,引导学生总结有关周期的规律。

2.出示PPT,带领学生观察和分析一些长周期的现象,如植物的生长过程、动物的变化等。

3.提问:你知道还有哪些周期吗?请说出具体的例子。

五、拓展(15分钟)1.扩展学生的思维,出示相关图片及动画视频,与学生一起观察并讨论。

2.鼓励学生进行自主学习,使用图书馆或互联网资源,寻找更多有关周期的资料。

3.提醒学生将自己的学习成果呈现出来,如制作展板、口头报告等。

六、作业布置(5分钟)1.布置作业:请同学们在家中观察和记录三种周期现象,并写一段观察记录。

2.提醒学生按时提交作业,并鼓励学生陈述自己的观察结果和意见。

教学反思:1.教学过程中,通过展示图片、进行实验和讨论的方式,激发了学生的学习兴趣,提高了教学效果。

小学奥数周期问题教案

小学奥数周期问题教案

小学奥数周期问题教案教案标题:小学奥数周期问题教案教学目标:1. 学生能够理解什么是周期问题,并能够运用所学知识解决相关问题。

2. 学生能够培养逻辑思维和问题解决能力。

教学准备:1. PowerPoint演示或黑板2. 奥数周期问题的练习题3. 计算器4. 学生练习册教学步骤:引入:1. 引入周期问题的概念,解释周期问题是指在一定的规律下,某个事件或现象会重复出现的问题。

2. 通过举例子来让学生更好地理解周期问题,例如:一年有四个季节,每个季节持续三个月,那么一年有多少个月?探究:1. 让学生参与探究周期问题的解决方法。

2. 给学生一个简单的周期问题,如:一辆车每隔5秒钟通过一次红绿灯,那么10分钟内通过红绿灯多少次?3. 引导学生思考解决问题的方法,例如:可以通过计算每分钟通过红绿灯的次数,然后再乘以10分钟。

4. 让学生自己计算并给出答案,然后进行讨论和解释。

拓展:1. 给学生更复杂的周期问题,如:一辆车每隔3分钟通过一次红绿灯,红灯持续40秒,绿灯持续60秒,黄灯持续10秒,那么一小时内通过红绿灯多少次?2. 让学生分析问题,并找出解决方法,例如:可以计算每小时通过红绿灯的次数,然后再乘以通过红绿灯所需的时间。

3. 让学生自己计算并给出答案,然后进行讨论和解释。

巩固:1. 让学生进行奥数周期问题的练习题,帮助他们巩固所学知识。

2. 监督学生的解题过程,及时给予指导和帮助。

总结:1. 对本节课所学内容进行总结,强调周期问题的解决方法和重要性。

2. 鼓励学生在日常生活中多观察和思考周期问题,并能够灵活运用所学知识解决实际问题。

作业:布置相关的奥数周期问题作业,要求学生在规定时间内完成,并检查作业的正确性。

教学反思:及时总结本节课的教学效果,思考学生的学习情况和问题,并做出相应的调整和改进。

苏教版四年级上册数学 第6招 周期问题的应用 知识点梳理重点题型练习课件

苏教版四年级上册数学 第6招 周期问题的应用 知识点梳理重点题型练习课件

17 19 21 23
31 29 27 25
…… … …
2001÷2=1000……1 2001 是这些数中的第1001 个数。 1001÷8=125(组)……1(个) 答:2001 所在的列以字母B 作为代表。源自应 用 3 日期中的周期问题
3.尊师重教是我国的优良传统,每年的9 月10 日是
教师节。2022 年的教师节是星期六,2023 年的
规范解答:18÷4=4(组)……2(个) (6+5+4+3)×4+6+5=83 答:第18 个数是5,前18 个数的和是83。
应 用 1 乘法中的周期问题
1.20 个7 相乘的积的个位数字是几?
积的个位
7
7
7×7
9
7×7×7
3
7×7×7×7
1
7×7×7×7×7
7


计算可知,积 的个位数每4 个数为一组, 20÷4=5(组), 所以20 个7 相 乘的积的个位 数字是1
教师节是星期几?
计算从2022 年9 月10 日到2023 年9 月10 日一共有多少 天,根据每7天为一个周期,每个周期的第一天是星期 六求解
从2022 年9 月10 日到12 月31 日有 21+31+30+31=113(天),从2023 年1 月1 日到9 月10 日有31+28+31+30+31+30+ 31+31+10=253(天),一共有113+253= 366(天),366÷7=52(个)……2(天),因为每 个周期的第一天是星期六,所以2023 年的教 师节是星期日。
20÷4=5(组) 答:20 个7 相乘的积的个位数字是1。
应 用 2 数列中的周期问题
2.将单数如下图排列,各列分别用A、B、C、D、E

四年级上册数学奥数课件---周期问题---全国通用---共15张

四年级上册数学奥数课件---周期问题---全国通用---共15张
0占位
试写 三千五百万零七十
练一练
01 02 03
选择:下面的数中,只读一个0的是( )
A.1003040
B.1003400
C.1000304
D.1030004
读数、写数
将来的某一天,你,没错,就是在坐的同学!中了六千零二万的彩票!然后你花了三 千二百零三万三千二百零三块买平板电脑、买玩具、买芭比娃娃。又花了2003020买 了一辆宝马给爸爸,花了1023450给妈妈买了一个LV包包。把204099藏到了自己床 底下,剩下的钱跟自己的好伙伴分掉了,请写出红色的数字

王林带领4个小朋友种42棵树,平均每人种多少棵?王林要
多种几棵才能完成任务?
•本节课结束,做练习检验这节课的成果 如何。
2 、人不会苦一辈子,但总会苦一阵子;许多人为了逃避苦一阵子,却苦了一辈子。 9 、思路决定出路,气度决定高度,细节决定成败,性格决定命运。 9 、真正的坚韧,应该是哭的时候要彻底,笑的时候要开怀,说的时候要淋漓尽致,做的时候不要犹豫。 13 、不幸就像石头,弱者把看成绊脚石,强者把它当成垫脚石。 10 、人生就像奔腾的江水,没有岛屿与暗礁,就难以激起美丽的浪花。 8 、漂亮女人也许是魔鬼,丑陋女人的却可能是天使,上天总是公平的,不要以貌取人。 1 、让生活的句号圈住的人,是无法前时半步的。 16 、问候不一定要慎重其事,但一定要真诚感人。 17 、求知不知足,不断有进步;人生常知足,才会烦恼少;生活不满足,失望会塞爆。 1 、态度决定一切,实力捍卫尊严!人要经得起诱惑,耐得住寂寞! 11 、有时候输了起点,但至少我们还有拐点,所以,无论如何,都不要放弃,相信自己,你可以。 1 、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 19 、事在人为,路在脚下,财富在心中。 18 、时间带走了青春,带走了纯真,带走了很多很多。它只留下了两样:一个成熟一个孤单。 7 、在别人嘴里,永远不会是原本的自己。 1 、我明白眼前的都是气泡,明白安静的才是苦口良药,明白什麼才让我骄傲,却不明白你。 2 、忌妒别人,不会给自己增加任何的好处,忌妒别人,也不可能减少别人的成就。 11 、不要害怕你的生活将要结束,应该担心你的生活永远不会真正开始。

四年级上数学教案-简单的周期(探索规律)-苏教版

四年级上数学教案-简单的周期(探索规律)-苏教版

四年级上数学教案-简单的周期(探索规律)-苏教版一、教学目标1.认识周期的概念,了解周期的特点和周期性的现象;2.通过试验、观察、总结归纳等方法,探索周期现象中的规律;3.发展学生的观察、实验、分析问题和解决问题的能力;4.培养学生的观察能力,让他们养成观察、发现规律的好习惯。

二、教学重点和难点1.重点:让学生认识周期的特点以及探索周期现象中的规律;2.难点:如何启发学生发现周期的规律,提高学生的观察能力。

三、教学内容1. 师生共同探索:什么是周期1.导入:请同学们向大家介绍什么是“周期”。

2.学习:学生通过与老师和其他同学的互动,了解周期的概念,掌握周期现象的基本特点。

3.总结:总结生活中常见的周期现象。

2. 认识简单的周期1.导入:通过小小的试验,探究一下简单的周期。

2.学习:引导学生通过实验和观察,认识简单的周期现象。

3.思考:通过老师的引导,师生共同思考这个周期现象中是否存在什么规律和特点。

4.总结:总结这个周期现象的规律和特点。

3. 找规律的游戏1.游戏:老师设计一个寻找规律的游戏,引导学生发现其中的周期性规律。

2.分析:通过游戏的分析,学生发现规律并进行总结归纳。

3.总结:老师引导学生总结这个周期现象的规律和特点。

4. 发挥思维的活动1.活动:老师设计一个新的探索周期现象的活动,让学生发挥自己的思维和想象,探索规律。

2.思考:学生通过自己的思考和实践,发掘周期性规律。

3.总结:老师引导学生总结这个周期现象的规律和特点。

四、教学方法1.情境教学法:通过游戏、实验等情境活动的方式,让学生更好地认识周期和周期性现象。

2.合作探究法:通过师生合作探讨、讨论、总结等方式,让学生更好地发现规律和总结归纳。

3.启发式教学法:通过启发学生发现问题、探究规律等方式,激发学生学习兴趣,并提高学生的观察能力。

五、教学评估1.观察学生的参与情况和表现;2.对学生的表现进行评价,并给出具体的评价标准;3.收集学生的反馈,不断改进教学方法,提高教学效果。

四年级奥数专题 周期性问题(学生版)

四年级奥数专题 周期性问题(学生版)

周期性问题学生姓名授课日期教师姓名授课时长知识定位本讲是小升初的热点内容。

通过本讲的学习,主要是锻炼学生观察和总结的能力。

要求学生能够发现问题的周期,并且能够确定周期。

本讲除了讲解一般排序的周期问题外,还将讲解数表、末尾数字和圆周上的周期问题。

在学习这部分内容时应当注意:数字或图形或事物是从什么位置开始循环的,能够确定周期。

并且会处理余数问题,能够准确的根据余数确定问题中的事物所在的位置。

重点难点:1.找准变化的规律2.确定解题的突破口知识梳理【授课批注】在给学生讲解周期性问题时,要结合具体的事例(比如星期问题),让学生更深刻的理解周期性问题,并带领学生总结出最后的余数如何处理才能正确的解决问题。

【授课批注】在给学生讲解周期性问题时,要结合具体的事例(比如星期问题),让学生更深刻的理解周期性问题,并带领学生总结出最后的余数如何处理才能正确的解决问题。

一、周期问题的一般定义和解题思路周期问题的定义:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.阳历中有闰日的年份叫闰年,相反就是平年,平年为365天,闰年为366天. 在公历纪年中,平年的二月为28天,闰年的二月为29天. 闰年的2月29日为闰日.一般的,能被4整除的年份是闰年,不能被4整除的年份是平年.如:1988年2008年是闰年;2005年2006年2007年是平年.但是如果是世纪年(也就是整百年),就只有能被400整除才是闰年,否则就是平年.如:2000年就是闰年,1900年就是平年.解题思路:周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

二、竞赛考点:同余知识的应用 例题精讲【试题来源】【题目】今天是星期_________ ;那么80天后是星期______________ 。

周期问题教案

周期问题教案

周期问题教案教案:周期问题(500字)一、教学目标:1. 知识与能力:(1) 理解周期问题的概念和基本性质;(2) 掌握求解周期问题的方法和技巧;(3) 能够运用周期问题解决实际问题。

2. 过程与方法:(1) 通过引导学生观察、感知周期问题,培养学生的综合分析和解决问题的能力;(2) 通过小组合作和整合资源,激发学生的参与热情和主动学习的态度;(3) 通过师生互动,让学生充分发展形成推理、思考、表达和交流的能力。

3. 情感态度与价值观:(1) 培养学生的合作与交流意识,培养学生的团队意识和创新精神;(2) 培养学生的观察和思考能力,培养学生的实际问题解决能力;(3) 强化学生的自主学习和探究能力,提高学生的学习兴趣和主动性。

二、教学重点:1. 掌握周期问题的概念和基本性质;2. 学会求解周期问题的方法和技巧。

三、教学难点:1. 提高学生的动手能力和实际问题解决能力;2. 培养学生的综合分析和判断能力。

四、教学过程:1. 创设情境,引导学生思考:教师通过引导学生观察生活中的周期性现象,如季节变化、月份、星期、天数、月亮的圆缺、植物的生长等,引出“周期问题”的概念和基本性质。

2. 学习与合作探究:(1) 学生分小组合作,探究周期问题的解决方法。

每个小组选择一个周期性现象进行观察和记录,然后通过分析和总结,找出解决周期问题的关键方法和技巧。

(2) 学生展示并讨论各自小组的成果,共同总结出解决周期问题的一般方法,并将其归纳为“周期解题法”。

3. 整合资源,提升解题能力:(1) 教师提供一些周期问题的练习题,让学生在小组内进行讨论和解答,并互相评价和提出改进建议。

通过合作和竞赛的方式,提高学生的解题能力和对周期问题的理解。

(2) 教师提供一些实际生活中的周期问题,让学生进行综合分析和综合解决。

通过实际问题的解决,培养学生的实际问题解决能力和综合分析能力。

4. 总结与拓展:(1) 学生通过小组汇报和讨论,总结出解决周期问题的一般方法和技巧。

小学四年级奥数 周期问题

小学四年级奥数 周期问题

周期问题辅导教案课题:周期问题【错题重现1】【新课知识讲解】知识点一:掌握周期问题的概念。

在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。

例1:●●○●●○●●○……上面黑、白两色小球探险一定的规律排列着,其中第90个是()例2.有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。

第144个珠是什么颜色?例3.有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?例4.有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。

三种颜色的弹子各有多少个?例5.上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是()知识点2、学会观察一些数、图形的变化并能找到规律。

变式题:1.根据图中物体的排列规律,填空。

(2)□○△□○△……第55个是()2.把1~100号的卡片依次发给小红、小芳、小华、小明四个人,已知1号发绘小红,16号发给谁?38号呢?3.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。

“72”是谁报的?“190”呢?4.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?●●●○●●●○●●●○……5.有同样大小的红、白、黑珠共90个,按先3个红的,后2个白的,再1个黑的排列。

黑珠共有几个?第68个珠子是什么颜色?6.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色的花?四种花各有几朵?7.第26列的字母和数字各是什么?8.如图所示,每列上、下两个字(字母)组成一组,例如,第1组是(我,A),第二组是(们,B),四、作业布置:(40分)1.10个2连乘的积的个位数是几?2.1998年元旦是星期四,1998年元旦是星期几?3.黑珠、白珠共185个串成一串,排列如图:○●○○○●○○○●○○○……4.把自然数按下图的规律排列后,分成A、B、C、D、E五类,例如,4在D类,10在B 类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六讲 周期问题
【例1】有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,红花、黄花、绿花各有多少朵?
【例2】2002年元旦是星期二,那么,2003年1月1日是星期几?
【例3】有同样大小的红珠、白珠、黑珠共160个,按4个红珠,3个白珠,2个黑珠的顺序排列着。

黑珠共有几个?第101个珠子是什么颜色?
【例4】我国农历用鼠牛虎兔龙蛇马羊猴鸡狗猪这12种动物按顺序轮流代表各年的年号。

如果1940年是龙年,那么,1996年是什么年?
【例5】英文字母A、B、C、D按BCDABAACDABAACDABAACD……排列,共250个字母,最后一个字母是什么?
【例6】有13名小朋友编成1到13号,依次围成一个圆圈。

现在从1号开始,每数到第3个人发一粒糖。

那么,最后一个拿到糖的人是几号?
【例7】工厂的仓库里有80吨货物,第一天往仓库里运入50吨,第二天再运出60吨,第三天又运入50吨,第四天再运出60吨……如此不停的循环下去。

那么第几天的时候,仓库里的货物会被运完?
【例8】在一根绳子上依次穿2个红珠、3个白珠、5个黑珠,并按此方式反复.如果从头开始数,直到第77颗,那么其中白珠比黑珠少多少颗?
【例9】如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈.现在,一只红跳蚤从标有数“1”的圆圈按顺时针方向跳了100步,落在一个圆圈里.一只黑跳
蚤也从标有数“1”的圆圈起跳,但它是沿着逆时针方向跳了200步,落
在另一个圆圈里.问:这两个圆圈里的数乘积是多少?
【例10】如图,4只小动物不断交换座位.一开始,小鼠坐第1号椅子,小猴坐第2号椅子,小免坐第3号椅子,小猫坐第4号椅子.第1次前后两排交换.第2次是在第1次交换的基础上左右两排交换.第3次又是前后两排交换.第4次再左右两排交换,……,这样一直换下去.问:第10次交换座位后,小兔坐在第几号椅子上?
开始座次
第一次
第二次第十次
【作1】今天是星期四,从明天开始第1800天是星期几?
【作2】有一串数,任意5个相邻数之和都等于15。

第一个数等于1,第二个数等于2,第三个数等于3,第四个数等于4……那么第100个数等于多少?
【作3】观察下面这幅图三角形的变化规律,然后在横线上画出第200个三角形的样子______________。

【作4】如图所示,表格中每行的文字都是循环出现的,那么第200列的3个文字从上到下依次是 , , ;
【作5】甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为多少厘米?
……
阻碍我们去发现、去创造的,仅仅是我们心理上的障碍和思想中的顽石。

从前有一户人家的菜园摆着一颗大石头,宽度大约有四十公分,高度有十公分。

到菜园的人,
不小心就会踢到那一颗大石头,不是跌倒就是擦伤。

儿子问:"爸爸,那颗讨厌的石头,为什么不把它挖走?"
爸爸这么回答:"你说那颗石头喔?从你爷爷时代,就一直放到现在了,它的体积那么大,不知道要挖到到什么时候,没事无聊挖石头,不如走路小心一点,还可以训练你的反应能力。

" 过了几年,这颗大石头留到下一代,当时的儿子娶了媳妇,当了爸爸。

有一天媳妇气愤地说:"爸爸,菜园那颗大石头,我越看越不顺眼,改天请人搬走好了。

"
爸爸回答说:"算了吧!那颗大石头很重的,可以搬走的话在我小时候就搬走了,哪会让它留到现在啊?"
媳妇心底非常不是滋味,那颗大石头不知道让她跌倒多少次了。

有一天早上,媳妇带着锄头和一桶水,将整桶水倒在大石头的四周。

十几分钟以后,媳妇用锄头把大石头四周的泥土搅松。

媳妇早有心理准备,可能要挖一天吧,谁都没想到几分钟就把石头挖起来,看看大小,这颗
石头没有想像的那么大,都是被那个巨大的外表蒙骗了。

温馨提示:你抱着下坡的想法爬山,便无从爬上山去。

如果你的世界沉闷而无望,那是因为
你自己沉闷无望。

改变你的世界,必先改变你自己的心态。

相关文档
最新文档