2.3.2一般位置直线的投影
第二章 正投影的基础知识(1点和直线的投影
X
ax
●
A
O a●
H
空间点用大写字母表 示,点的投影用小写 字母表示。点“ ”不 能用“ * ”
投影面展开
不动
V
a
V
●
●
a
●
X
ax
A O X
ax a H
●
O
a
向下翻转90º
●
H
点的投影规律:
① aa⊥OX轴;
② aax= Aa
aax=Aa
各种位置点的投影:
(1)处于投影面上的点
投影特点:在该投影面上的投影和空间点本身重合;另一个投 影在X轴上
d
a b d
b c
b d a 如何判断?
对于特殊位置直线, 只有两个同面投影互相 平行,空间直线不一定 平行。 求出侧面投影后可知: AB与CD不平行。
求出侧面投影
⒉ 两直线相交
V a A a c
c k
C
b d K D d k
交点是两直 线的共有点
b B a c
k
d
b
H
a
c k
d b
判别方法:
若空间两直线相交,则其同面投影必 相交,且交点的投影必符合空间一点的投 影规律。
例1:习题集P10 例2:习题集P10
2-12(1) 2-13
⒊ 两直线交叉
d
投影特性:
两直线相交吗?
b
a c c
1(2 ) 3 4
●
●
●
为什么?
●
2
●
b d
a
1 3(4 )
●
三视图的对应投影规律 三视图间的位置关系
主视图(V面)
工程制图投影的基础知识
⼯程制图投影的基础知识⼯程制图投影的基础知识 投影可分为正投影和斜投影。
正投影即是投射线的中⼼线垂直于投影的平⾯,其投射中⼼线不垂直于投射平⾯的称为斜投影。
下⾯是⼩编为⼤家整理的⼯程制图投影的基础知识,欢迎参考~ 投影法的基本知识 1、投影的形成原理。
⽤光线照射物体,在预设的⾯上绘制出被投射物体图形的⽅法,叫做投影法。
光线叫做投射线,所投射的⾯叫做投影⾯,投影⾯上等到的物体图形叫做该物体的投影。
2、投影法种 中⼼投影法:投射线都从投影中⼼出发,在投影⾯上作出物体图形的⽅法叫做中⼼投影法。
平⾏投影法:若将投射中⼼移⾄⽆穷远处,则所有的投射线就相互平⾏。
⽤相互平⾏的投射线,在投影⾯上作出物体图形的⽅法叫做平⾏投影法。
在平⾏投影法中,根据投影⾯是否垂直于投影⾯,⼜分为两种: 1)斜投影投射线倾斜于投影⾯ 2)正投影投射线平⾏于投影⾯ 正投影法能准确地表达出物体的形状结构,⽽且度量性好,因⽽在⼯程上⼴泛应⽤。
但它的缺点是⽴体感差,⼀般要⽤两个或两个以上的图形才能把物体的形状表达清楚。
机械图形主要是⽤正投影法绘制的,所以正投影法是本课程学习的主要内容。
在以后的课程中,除有特别说明外,我们提到的投影均指正投影三视图的画图步骤,根据物体或⽴体图画三视图时,应把物体摆平放正,选择形体主要特征明显的⽅向作为主视图的投影⽅向,⼀般画图步骤如下: 1、⽤点画线和细实线画出各视图的作图基准线。
2、⽤细实线、虚线,按照物体的构成,先⼤后⼩,先整体,后局部的顺序,⽤三视图的投影规律,画出物体三视图的底图。
3、底图画完后,需经过检查,没有错误后并清理图⾯,再按图线要求描深。
图线的描深顺序为:先曲线,后直线;⽔平线应⾃上⽽下,依次描深,垂线应⾃左向右依次描深。
按照这种顺序描深,可以保证曲线与直线的正确连接,提⾼描深速度,保证图⾯的清洁。
点的投影各种位置直线的投影: (1)投影⾯平⾏线 直线平⾏于⼀个投影⾯与另外两个投影⾯倾斜时,称为投影⾯平⾏线。
3-直线的投影及两只线的相对位置关系
一边平行于投影面的直角的投 影特性
例题 3
练习1
练 习 2
练习3
练习4
各种位置的直线的投影及相对位置关系
一、各种位置的直线的投影特性及应用
投影面平行线 投影面垂直线 一般位置直线
二、直线的相对位置关系
相交 平行 交叉
投影特性 及应用
一、特殊位置直线的投影及特性
1. 投影面平行线的投影及其特性:正平 线、侧平线、水平线
2. 投影面垂直线的投影及其特性:正垂 线、侧垂线、铅垂线
二、一般位置直线的投影及其 真长与倾角的图解方法
1. 一般位置直线的投影特性
2. 一般位置的直线的真长与倾角的图解 方法
直角 三角 形法 求直 线实 长的 基本 原理
三、 直线上的点的投影特性
1. 在直线的同面投影上
2. 按比例等分线段
2~4 两直线的相对位置
1. 相交
2. 平行
投影 特性
及
3. 交叉
应用
两相交直线的判断方法
两 相 交 直 线 的 投 影
例 题 1
两 平 行 直 线 的 投 影
例题 2
两交叉直线的空间位置及投影
两交叉直线的投影特性----1
重影点 可见性 的判断
交叉直线的投影----2
二、一边平行于投影面的直角的投影
1. 投影特性 2. 应用:例题:求点A到水平线BC的距 离
河北电大《画法几何与机械制图》习题答案(大部分)3
河北电大《画法几何与机械制图》习题答案(大部分)31. 在三投影面体系中,与H、V、W三个投影面都倾斜的直线称为一般位置直线。
一般位置直线的三面投影都与三个投影轴倾斜。
()对2. 为了求两条交叉直线的距离,只要把其中的一条直线变换为投影面垂直线,另一条直线也随之变换,则在最新的投影面上就能反映出二者的距离。
()对1. 如下图所示的三视图中,左视图中有错误。
()对2. 局部剖视图的剖切范围可大可小,可视机件的具体结构形状而定。
但在同一视图中,局部剖视图的数量不宜过多,以免使图形显得过于破碎。
()对3. 被大量使用的,且被经常使用的机械零件,称之为常用件。
()错4. 双头螺柱的有效长度L由设计人员根据计算确定;而双头螺柱的旋入端长度bm,由带螺孔的被连接件的材料决定。
()对5. 比例是指实际机件要素与图样中相应机件要素的线性尺寸之比。
()错6. 位于直线上的一点,其分割直线段长度之比,在投影后比值保持不变。
()对7. 如下图所示,其所表达形体的水平投影是完全正确的。
()对8. 如下图所示,其所表达形体的三面投影是完全正确的。
()错9. 对于移出断面图,当剖切平面通过回转面形成的孔或凹坑的轴线时,或者当剖切平面通过非圆孔会导致完全分离的两个断面时,这些结构应按剖视图的方法绘制。
()对10. 滚动轴承是用来支承旋转轴并承受轴上载荷、以提高转动效率的标准组件。
()对1. 过定点P作已知线段AB的垂直线,其作图方法和步骤是:先使三角板的斜边过线段AB,然后将三角板旋转,使三角板的斜边过点A,即可作出所需的垂直线。
()错2. 两同轴回转体的相贯线,是垂直于公共轴线的圆。
()对3. 读图的基本要领之一,就是“弄清每个视图所有线条和线框的含义”。
()对4. 在标注组合体尺寸时,需要用形体分析法对组合体进行形体分析。
()对5. 组合体的尺寸标注,只需标注各部分形体的定形尺寸和定位尺寸。
()错6. 如下图所示,其所表达形体的三面投影是错误的。
第二讲 直线的投影
投影面垂直面
铅垂面
相仿性
a b Z c c β b a o c b
相仿性
a YW
投影面 垂直面的投 影特性是:
X
积聚性
γ
1)在其所垂直的投影面上,投影为斜直 线,有积聚性;该斜直线与投影轴的夹角反映 该平面对相应投影面的倾角; 2)如用平面图形表示平面,则在另外两 个投影面上的投影不是实形,但有相仿性。
作业
• 2-10,2-11,2-12,2-14,2-15
例1 试根据各种位置直线的投影特性判断三棱锥上六 条 棱边为什么位置的直线。 AB为 水平线 SB为 侧平线
V
;BC为 水平线 ; AC为 侧垂线 ; ;SA为一般位置直线 ; SC为 一般位置直线 。
Z
s'
Z
s"
S a'
X
b'
s b
A B
投影面垂直线 侧垂线(垂直于W面) 垂直于某一投影面
铅垂线(垂直于H面)
一般位置直线
与三个投影面都倾斜的直线
2.1 一般位置直线
直线与H、V 和W 三投影面的夹角分别用 α、β、γ表示。 投影长分别是: a b = AB cosα
ab = AB cosβ ab=AB cosγ
一般位置直线投影特性
YH
名称 铅垂面 (H)
立体图
投影图
投影特性
1)H投影为斜直线, 有积聚性,且反 映、 大小 2)V、W投影不是 实形,但有相仿 性。 1)V投影为斜直线, 有积聚性,且反 映、大小 2)H、W投影不是 实形,但有相仿 性。
正垂面 (V)
侧垂面
(W)
1)W投影为斜直线, 有积聚性,且反 映、大小 2)H、V投影不是 实形,但有相仿 性。
机械工程图学-投影理论的基础知识(平面的投影)
Wang chenggang
2-4/132
2.3 点、直线和平面的投影—2.3.2 直线的投影
作业
《机械工程图学基础教程习题集》 P10 ~ P13
Wang chenggang
2-5/132
2.3 点、直线和平面的投影—2.3.2 直线的投影
作业
《机械工程图学基础教程习题集》 P10 ~ P13
2-19/132
2.3 点、直线和平面的投影—2.3.3 平面的投影
垂直于水平面的平面称为铅垂面。
Y
a’ b’ a” b”
d’
c’ d” c”
X
O
YW
a(d) c(b)
YH
Wang chenggang
a’
b’
d’
c’
A
D
a(d)
a”
B d” b”
C
c”
b(c)
铅垂面
2-20/132
2.3 点、直线和平面的投影—2.3.3 平面的投影
平行于H 面的称为水平面,其投影特性为: ①水平投影反映平面的实形。 ②正面投影和侧面投影积聚为一条与相应轴平行的直线。
水平面的投影特性
Wang chenggang
2-26/132
2.3 点、直线和平面的投影—2.3.3 平面的投影
平行于V面的称为正平面,其投影特性为: ①正面投影反映平面的实形。 ②水平投影和侧面投影积聚为一条与相应轴平行的直线。
Wang chenggang
2-24/132
2.3 点、直线和平面的投影—2.3.3 平面的投影
(2)投影面平行面
平行于一个 投影面的平面。
必然同时垂 直于另外两个投 影面!
图2-26 投影面平行面的立体图
工程制图(第二版) (2)
第2章 正投影的基本知识
点A到H面的距离Aa = a′ax = a″ay = oaz = zA。 由此可见,若已知点A的投影(a′、a、a″),即可确定该
点的坐标,也就确定了该点的空间位置;反之亦然。 由图2-9(b)可知,点的每个投影包含了点的两个坐标;点
的任意两个投影包含了点的三个坐标,所以,根据点的任意两 个投影,也可确定点的空间位置。
正平线
① cb∥OX,c″b″∥OZ ② a′b′ = CB ③ 、 反映实形
侧平线
① ac∥OY,a′c′∥OZ ② a″c″ = AC ③ 、β 反映实形
第2章 正投影的基本知识 2) 投影面垂直线 垂直于一个投影面的直线称为投影面垂直线。根据其垂直 的投影面的不同,又可分为:
正垂线——垂直于V面,平行于H、W面的直线; 铅垂线——垂直于H面,平行于V、W面的直线; 侧垂线——垂直于W面,平行于V、H面的直线。
表2-2列出了投影面垂直线的立体图、投影图及投影特性。
第2章 正投影的基本知识
表2-2 投影面垂直线的投影特性
分类
立体图
投影图
投影特性
铅垂线
① ab 积聚为一点 ② a′b′⊥OX;a″b″⊥OY ③ a′b′ = a″b″ =AB
正垂线
① b′c′积聚为一点 ② bc⊥OX;b″c″⊥OZ ③ bc = b″c″ =BC
第2章 正投影的基本知识 图2-8 已知点的两个投影求第三投影
第2章 正投影的基本知识 4.点的投影与直角坐标的关系
若将三投影面体系看做空间的直角坐标系,则V、H、W面 相当于坐标面,OX、OY、OZ轴相当于坐标轴,点O相当于坐标
原点。 由于图2-9(a)中长方体的每组平行边分别相等,因此可得
直线的投影
2.投影面垂直线
正垂线
立 体 及 其 三 视 图
投 影 轴 测 图
直 线 投 影 图
直线的投影
铅垂线
侧垂线
投影特性: 在所垂直的
投影面上的投影 积聚为一点;
另外两个投 影反映实长,且 垂直于相应的轴。
直线的投影 二、直线对投影面的各种相对位置及投影特性
3.一般位置直线 对三个投影面都是倾斜的直线称为一般位置直线。
特殊位置直线在三面投影中能直接显示其真长及对投影面的倾角,而一般位 置直线则不能。
用直角三角形法求一般位置直线的真长和倾角。
ΔABD为直角三角形,
其中AB为实长,AD=ab,α
为AB对H面的倾角,BD=Bb-
Db=b'bX- a'aX=ΔZ(直 线段AB两端点的Z坐标差)。
D
因此,已知AB投影,可以
通过ab和ΔZ作辅助直角三
角形求出AB及α角。
直线的投影 三、用直角三角形法求直线的真长及对投影面的倾角
特殊位置直线在三面投影中能直接显示其真长及对投影面的倾角,而一般位 置直线则不能。
用直角三角形法求一般位置直线的真长和倾角。
D
直线的投影 三、用直角三角形法求直线的真长及对投影面的倾角
特殊位置直线在三面投影中能直接显示其真长及对投影面的倾角,而一般位 置直线则不能。
在两直线交叉垂直时,也同样具有上述特性。
直线的投影 六、一边平行于投影面的直角的投影
例5: 如图a所示,求点A到直线BC的距离AK。
分析:由图可知BC∥V面,而AK⊥BC,故根据直 角投影定理可得:a′k′⊥b′c′。
图a
用直角三角形法求AK的实长
投影。投影用粗实线绘制。
直线的投影
第二章直线的投影
例2-10 求点C 到任意倾斜直线AB的距离。
§2-7 直线的辅助投影
各投影都相交,投影的交点符合点 虽然投影也相交,但投影的交点不符 的投影规律,所以AB与CD相交。 合点的投影规律,故EF和GH不相交。
§2-5 两直线的相对位置
例2-3 试判断两直线AB 和CD 是否相交。 解: 各投影的交点不符合点的投影规律, 所以两直线不相交。
§2-5 两直线的相对位置
例2-4 已知平行两直线 AB、CD,试作一直线KL与AB、CD 都相交,且该直线 距H 面为10。 解:
点击后自动演播
§2-5 两直线的相对位置
三、两直线交错
若两直线既不平行也不相交,那必然是交错两直线,也称交 叉两直线,即异面直线。 下面这些都是交错直线。
交错直线同面投影的交点是两直线上一对重影点的投影,对 此重影需进行可见性判断。
§2-5 两直线的相对位置
例2-5 试判断交错两直线AB、CD之重影的可见性。 解: zⅣ>zⅢ,所以4可见,3不可见。
§2-2 直线上的点
一、直线上的点 从属性:直线上的点其投影必在直线的同面投影上。 定比性:直线线段上一点把线段分成两段,其长度之比, 等于这两段在同一投影面上的投影长度之比。
ac∶cb=a'c'∶c'b'= a"c"∶c"b"=AC∶CB
§2-2 直线上的点
例2-1 已知线段EF的两投影,试在其上取一点K,使EK∶KF =3∶4。 解:
求任意倾斜直线段的实长和倾角的基本方法是直角三角形 法。下图表示它的原理和作图过程。
§2-3 直线的倾角和直线段的实长
例2-2 已知直线CD 的正面投影c'd'和点C 的水平投影c,且知 直线CD 对H 面的倾角α=30°,求作线段CD 的H 面投影。 解:
各位置直线和平面投影特性总结
13
直角三角形法
直角三角形法的四要素:投影长、坐标差、实长、 倾角。已知四要素中的任意两个,便可确定另外两个。 解题
时,直角三角形画在任何位置都不影响解题结果,但用哪个长 度来作直角边不能搞错。 如图所示,在各个直角三角形中,实长与水平投影的夹角是α, α的对边长一定是Z坐标差;实长与正面投影的夹角是,的 对边长一定是Y坐标差;实长与侧面投影的夹角是, 的对边 一定是X坐标差。直线对H、V、W三投影面的倾角为α、、 。
3、一般位置平面
——与三个投影面都倾斜的平面。
16
(1)正垂面
投影特性:(一线两框)
1、正面投影abcd积聚为一倾斜于投影OX、OZ的直线。 2、abcd、abcd 具有类似性,PH OX轴,PWO轴 3、abcd与OX、OZ轴的夹角反映α、 角的真实大小
Z V
Z
γ
14
(二)各种位置平面的投影特性
在三面投影体系中,根据平面与投影面所处的相 对位置不同有如下分类:
平面
特殊位置平面 一般位置平面
投影面平行面 投影面垂直面
15
各种位置平面的三面投影
平面对H、V、W三投影面的倾角是指平面与投影面之间的
夹角,分别用α、、
1、投影面的垂直面
——与一个投影面垂直,而与另两个倾斜的平面。
X
O
βγ
β γ
H Y
YH
18
(3)侧垂面
投影特性:(一线两框)
1、侧面投影 abcd积聚为一倾斜于投影OYW、OZ的直线。 2、abcd、abcd 具有类似性,PH OYH,PVOZ轴 3、 abcd与OZ、OYW轴的夹角反映、α角的真实大小
《机械制图》直线的投影
2. a b、ab、a b 均倾斜于投影轴
b A
a
3. a b、ab、a b 与投影轴夹角不 反映
、 、大小
5
a
Y
直线的投影
二、各类位置的直线的投影特性
1、一般位置直线 一般位置直线的投影图
Z
b
b
一般位置直线的投影特性为:
a
a
① 其三面投影均与投影轴倾斜,且小于
X
O
YW
线段的实长。
b
② 各投影与投影轴的夹角均不反映一般
A
a
B
b
X
O
a
b
Y
16
直线的投影
二、各类位置的直线的投影特性
3、投影面垂直线 正垂线的投影图
正垂线上所有点的X坐标相等、 Z坐标相等。
(a)b
z a
b
X
O
YW
a
投影特性: 1. ab 积聚成一点
b
2. ab OX ; ab OZ
YH
3. ab = ab =AB
17
直线的投影
二、各类位置的直线的投影特性
b
B
b
Y
直线的投影
二、各类位置的直线的投影特性
2、投影面平行线 侧平线的投影图
侧平线上所有点的X坐标相等。
a
Z a
b
b
X
O
YW
a
投影特性: 1. ab OZ ; ab OYH
b
2. ab =AB 3. ab与Y轴、Z轴夹角反映 、 角的大小
YH
13
直线的投影
二、各类位置的直线的投影特性
2、投影面平行线
3、投影面垂直线 侧垂线的投影图
机械制图第2章
第 2 章 正投影法基本原理 2.1.2 正投影的投影特性 (1) 真实性。平面图形(或直线)与投影面平行时, 其投影 反映实形(或实长)的性质称为真实性, 如图2-6所示。源自第 2 章 正投影法基本原理
图 2-6 正投影法的真实性
第 2 章 正投影法基本原理 (2) 积聚性。平面图形(或直线)与投影面垂直时, 其投影 积聚为一条直线(或一个点)的性质称为积聚性, 如图2-7所示。 (3) 类似性。平面图形(或直线)与投影面倾斜时, 其投影 变小(或变短), 但投影的形状与原来形状相类似的性质称为类 似性, 如图2-8所示。
第 2 章 正投影法基本原理 (2) 点的投影到投影轴的距离等于空间点到对应投影面的 距离, 即:
a′ax=a″ay=A点到H面的距离Aa;
aax=a″az =A点到V面的距离Aa′; aay=a′az =A点到W面的距离Aa″。
第 2 章 正投影法基本原理 2.2.2 点的投影与直角坐标的关系 点的空间位置可用直角坐标来表示,即把投影面当作坐标
第 2 章 正投影法基本原理
图 2-3 中心投影法
第 2 章 正投影法基本原理
图 2-4 采用中心投影法绘制的图样
第 2 章 正投影法基本原理 2. 平行投影法 若将图2-3中的投射中心 S移至无限远处,则投射线都相互
平行,如图2-5所示。这种投射线相互平行的投影法称为平行投
影法。 平行投影法按投射线是否垂直于投影面, 又可分为斜投影 法和正投影法。 (1) 斜投影法: 投射线与投影面相倾斜的平行投影法。
第 2 章 正投影法基本原理
图 2-16 点的直角坐标
第 2 章 正投影法基本原理 可见, 空间点的位置可由点的坐标(x,y,z)确定,点的空间位 置、点的投影与其坐标值是一一对应的。因此,我们可以直接 从点的三面投影图中量得该点的坐标值。反之,根据所给定的 点的坐标值, 可按点的投影规律画出其三面投影图。
《机械制图》第二章 直线的投影
1.cd积聚成一点 2.c′d′⊥OX
c″d″⊥OYW 3.c′d′=c″d″=CD
1.e″f″积聚成一点 2.ef⊥OYH
e′f′⊥OZ 3.ef=e′f′=EF
一般位置直线(投影特点:三条斜线)
b a a
b
b a
投影特性:
三个投影都缩短。 即: 都不反映空间 线段的实长及与三 个投影面夹角的实 大,且与三根投影
1. ab∥OX
影
a″b″∥OZ
特
2. a′b′=AB 3. 反映α 、γ 倾角
性
βγ
1. c′d′∥ OX c″d″∥OYW
2. cd=CD 3. 反映β 、γ 倾角
β α
1.e′f′∥OZ ef∥OY H
2. e″f″=EF 3. 反映α 、β 倾角
2.投影面垂直线
由两点到两个投影面距离相等时的两 点连线构成。该直线垂直于某一投影 面,对另外两个投影面都平行 。
YW
Y
YH
• 在直线所平行的投影面上,投影反映实长,且该投影与相邻 投影轴的夹角反映该直线对另外两个投影面的倾角大小。
• 在另外两个投影面上,线段的投影为缩短的线段,且分别 平行于直线一斜二平)
名称
直 观 图
正平线
水平线
侧平线
投
γ
影
α
图
投
第二章 直线的投影
第三节 直线的投影
一、各种位置直线及投影特性
1.一般位置直线
由一般位置的两点连线构成。 该直线与三个投影面都倾斜。
β
γ
YW
α
Y YH
投影特性: 三个投影都倾斜于投影轴,每个投影既不直接
反映线段的实长,也不直接反映倾角的大小。
08根据两直线的投影判别两直线的相对位置
1.特殊位置直线的投影特性。 2.判断两直线的相对位置。
教学难点:
1.根据直线的投影特性判别直线对投影面的相对位置。 2.根据两直线的投影判别两直线的相对位置。
2.3 直线的投影
2.3.1 直线 由平面几何得知,两点确定一条直线,故直线的投影可由直线上两点的投影 确定。 如图2-15所示,分别将两点A,B的同面投影用直线相连,则得到直线AB的投 影。
2.3 直线的投影
图2-27 判断两直线是否交叉
图2-20 求直线上点的投影
图2-21 判断点是否在直线上
2.3 直线的投影
【例2-4】 如图2-22(a)所示,已知侧平线AB及点M的正面投影和水平投 影,判断点M是否在直线AB上。
【解】 判断方法有两种: (1)求出它们的侧面投影。 如图2-22(b)所示,由于m″不在a″b″上,故点M不在直线AB上。 (2)用点分线段成定比的方法判断。 由于am∶mb≠a′m′∶m′b′,故点M不在直线AB上。
判断空间两直线是否平行,一般情况下,只需判断两直线的任意两对同 名投影是否分别平行,如图2-23(b)所示。但是当两平行直线均平行于某一 投影面时,只有当所平行的投影面上的投影平行时才能判断其相互平行。如 图2-24(a)所示(CD,EF为侧平线),虽然cd∥ef,c′d′∥e′f′,但求 出侧面投影(图2-24(b))后,由于c″d″不平行于e″f″,故CD,EF不平 行。在这种情况下,一种方法是求出它们在的平行的投影面上的投影进行判 断;另一种方法是利用平行两直线共面,其投影保持定比的规律进行判断。
图2-22 判断点是否在直线上
2.3 直线的投影
2.3.4 两直线的相对位置 空间两直线的相对位置有三种:平行、相交和交叉(异面)。 1.两直线平行 若空间两直线相互平行,则其同面投影必相互平行;若两直线的三个同面投 影分别相互平行,则空间两直线必相互平行(图2-23)。
投影的基础知识
第二章投影的基本知识和点、线、面的投影基本要求:建立投影的概念,掌握正投影的基本性质;掌握点线面的投影特性;根据投影能判断出点、线、面的关系。
主要内容:1、投影的基本知识;2、点的投影;3、直线的投影;4、平面的投影。
2.1 投影的基本知识一、内容:1、投影的基本概念;2、投影的类型;3、工程中常用的投影图。
二、要求及重点:要求掌握投影的基本概念;了解投影的类型、用途。
三、教学方式:通过实物及日常生活中的现象,使学生掌握投影的基本概念;了解投影的类型、用途。
2.1 投影的基本知识一、投影的概念1、在日常生活中,经常看到空间一个物体在光线照射下在某一平面产生影子的现象,抽象后的“影子”称为投影。
2、产生投影的光源称为投影中心S,接受投影的面称为投影面,连接投影中心和形体上的点的直线称为投影线。
形成投影线的方法称为投影法(图2-1)。
(a) (b)图2-1 中心投影法图2-2 平行投影法二、投影的类型投影法分为中心投影法和平行投影法两大类。
1、中心投影法光线由光源点发出,投射线成束线状。
投影的影子(图形)随光源的方向和距形体的距离而变化。
光源距形体越近,形体投影越大,它不反映形体的真实大小。
2、平行投影法光源在无限远处,投射线相互平行,投影大小与形体到光源的距离无关,如图2-2所示。
平行投影法又可根据投射线(方向)与投影面的方向(角度)分为斜投影(a)和正投影(b)两种。
(1)斜投影法:投射线相互平行,但与投影面倾斜,如图2-2(a)所示。
(2)正投影法:投射线相互平行且与投影面垂直,如图2-2(b)所示。
用正投影法得到的投影叫正投影。
三、工程上常用的投影图1、透视图用中心投影法将空间形体投射到单一投影面上得到的图形称为透视图,如图2-3。
透视图与人的视觉习惯相符,能体现近大远小的效果,所以形象逼真,具有丰富的立体感,但作图比较麻烦,且度量性差,常用于绘制建筑效果图。
图2-3 透视图图2-4 轴测图2、轴测图将空间形体正放用斜投影法画出的图或将空间形体斜放用正投影法画出的图称为轴测图。
第2章 点、直线、平面的投影
四、两直线的相对位置
【例2-9】作一水平线,距H 面15mm,且与 AB、CD 两直线相交。
a' c' e' b' f'
X b e
a c f
d'
15
O d
四、两直线的相对位置
【例2-10】判断两直线的相对位置。
由于K点不在直 线CD 上,所以是交 叉两直线。
四、两直线的相对位置
3.两直线交叉 重影 点
相交两直线
平行两直线
平面图形
一、平面的投影特性与平面的表示法
2.用迹线表示平面
PV PV
PW
P
PH
PW P
H
迹线——平面与投影面的交线。
平面与V 面的交线称为正面迹线,用PV 表示。 平面与H 面的交线称为水平迹线,用PH 表示。 平面与W 面的交线称为侧面迹线,用PW 表示。
二、各种位置的平面
四、两直线的相对位置
【例2-13】判断下列各组的两直线是否平行。
c'
X
d' c
O
平行
平行
d 不一定
一般位置直线的两面投影平行,空间两直线就平行。 特殊位置直线的两面投影平行,其中有一个投影 反映实长,则该两直线空间平行。
四、两直线的相对位置
2.两直线相交
投影特性: 空间相交两直线的投影必定相交,且两直 线交点的投影必定为两直线投影的交点。
X坐标值确定两点的左右位置 X坐标值大为左,小则为右 Y坐标值确定两点的前后位置 Y坐标值大为前,小则为后
Z坐标值确定两点的上下位置
Z坐标值大为上,小则为下
一、点在三投影面体系中的投影
【例2-3】如图所示,试判断点B 相对于点 A 的空间位置 。
直线的投影
直角三角形法: 两直角边、斜边、锐角
实长
y β
a' Z
a"
γ
φx
b' O
θz
b" YW
Za- Zb
X a b
α
A0
实长
YH
例题2 例题2-6 已知直线AB的正面投影和点A的水平投影a, 例题3 并知AB=25,求AB 的水平投影ab及AB对V面的倾角 β。
25
β
b'
a' X b a O
例题2 例题2-7 已知直线AB的水平投影ab,和正面投影a’, 例题4 并知AB对H面的倾角为30°,求AB的正面投影及实长
b' a' X
30
b1' b a
O
四、直线上的点 点在直线上,点的投影必在直线的同名投影上 定比性:AC:CB=a 'c ':c 'b '=ac:cb=a"c" :c "b "
d' e' a' X O d'
D
b'
c'
a e cd d b
例题2 例题2-8: 在直线AB上找一点K,使 例题5 AK:KB=3:2。
3 一般位置线
1 投影面的平行线
(1)水平线
a' Z b' a" b"
X a 实长
β γ
O b YH
YW
(2)正平线
Z b' a' X a b YH
α
b" a" YW
γ
O
(3)侧平线
a' b' a b Z a"
2.3 直线的投影
X
c'
O
轴测图 投影图 投影特性:两直线的投影,既不符合平行两直线的投影 特性,又不符合相交两直线的投影特性。同面投影的交 点,就是两直线上各一点形成的对这个投影面的重影点 的重合的投影。
[例题] 检验侧平线AB和一般位置直线CD的相
对位置。 (两种方法)
(a)已知条件 (b)加W面
(c)用直线上的点
b
a
A
a W X
O
YW
X
a b
O
a
b
投影特性: H 1、ɑ/ b/ 反映真长和α、γ角。
Y
YH
2、ɑb // OX,ɑ// b// // OZ,且长度缩短。
水平线(平行H面,同时倾斜于V、W面的直线)
V
a
A
Z b
Z a a b a b
B
X a
O
W b
X a
O
YW
Hb
b YH
2、ab// OYH,a/ b / // OZ,且长度缩短。
二、一般位置直线
1、基本概念 2、一般位置直线的投影特性
1、基本概念
一般位置直线:
既不平行也不垂直于任何一个投影 面,即与三个投影面都处于倾斜位置的 直线。
2、一般位置直线的投影特性:
V
Z b B a X A H a b a X O b
2.3 直线的投影
空间两点可以决定一直线,所以只要
作出线段两端点的三面投影,连接该两点 的同面投影(同一投影面上的投影),即 可得空间直线的三面投影。 直线的投影一般仍为直线。
空间直线与投影面的相对位置有三种:
投影面平行线
特殊位置直线
机械制图与计算机绘图2-3直线的投影
2.平行两线段之比等于其投影之比。
机械制图与计算机绘图
2.3 直线的投影
二、相交两直线
k
a c
X c
d b
b
a
当两直线相交时,它们在各投影面上的同名投影 也必然相交,且交点符合空间一点的投影规律。反之 亦然。
k d
机械制图与计算机绘图
2.3 直线的投影 三、 交叉两直线
1(2)
a
X
c
2
a
1
c
凡不满足平行和相交条件的直线为交叉两直线。
2. a bOX ; a b OYW 3. a b = a b = AB
Z O
YHH
a b
YWW
机械制图与计算机绘图
(5)正垂线
2.3 直线的投影
aabb
AA
aa
aabb
zz aa
BB
bb
XX
aa aa
bb
bb
投影特性: 1. ab 积聚 成一点 2. ab OX ; ab OZ 3. ab = ab =AB
(2)直角三角形四要素:实长、投影长、坐标差及直线对投影面的 倾角。已知四要素中的任意两个,便可确定两外两个。
机械制图与计算机绘图
2.3 直线的投影
2.3.3 直线上点的投影
直线上的点具有两个特性: 1.从属性 若点在直线上,则点的各个投影必在直线的各同面投影上。利用这一
特性可以在直线上找点,或判断已知点是否在直线上。 2.定比性 属于线段上的点分割线段之比等于其投影之比。即 A C: C B = a c : c b= ac : cb = ac : c b 利用这一特性,在不作侧面投影的情况下,可以在侧平线上找点或判断已知点是
工程造价专业《2.3.2投影面平行线的投影》
内容总结
直线的投影。定义:只平行一个投影面,而倾斜于另外两个投影面的直线,称为投影面平行线。直线的投影〔二〕。分类:正平线、水平线、侧平线。2、直线的另外两个投影分别平 行于相应的投影轴,长度小于实长
第七页,共七页。
正平线直观图
直线的投影〔二〕
水平线投影图
第四页,共七页。
水平线直观图
直线的投影〔二〕
侧平线投影图
侧平线直观图
第五页,共七页。
直线的投影〔二〕
投影面平行线的投影特性:
1、直线在它所平行的投影面上的投影反映实长,该投影与相应 投影轴的夹角,反映直线与另两个投影面的倾角。 2、直线的另外两个投影分别平行于相应的投影轴,长度小于实2 投影面平行线的投影
03 投影面垂直线的投影
第一页,共七页。
直线的投影〔二〕 02 投影面平行线
❖ 定义:只平行一个投影面,而倾斜于另外两个投影面的直 线,称为投影面平行线。
分类:正平线、水平线、侧平线。
第二页,共七页。
直线的投影〔二〕
正平线投影图
第三页,共七页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点、直线、平面一般位置直线的投影
1. 掌握一般位置直线的投影规律和特点;
2. 掌握实长三角形方法。
目的和要求
直线的投影——一般位置直线
对各投影面都倾斜的直线,称为一般位置线, 一般位置线的三个投影都具有如下的投影特点:
b’
a’b’’
a’’
b
a
Z
X
Y H
Y W
B
b’
a’b’’
a’’Y
A X
Z
b
a
投影特性:① a b、 a ' b '、a " b " 均小于实长;
② a b、a ' b '、a " b " 均倾斜于投影轴; ③不反映实际的α 、β 、γ 角。
直线的投影——一般位置直线
直线的投影仍为直线, 只要作出直线上任意两点的投影,把同面投影连接起来,即得直线的三面投影。
直线对H、V和W面的倾角通常以α、β、γ分别表示。
ab=ABcosα、a′b′=ABcosβ、 a″b″=ABcosγ
直线的投影——一般位置直线
B
投影特性:1. a b、 a ' b '、a " b " 均小于实长;
2. a b、a ' b '、a " b " 均倾斜于投影轴;
3. 不反映实际的α 、β 、γ 角。
b’
a’b’’
a’’
Y
A b’a’
b’’
a’’
b a
Z
X
Y H
Y W
X
Z
b
a
直线的投影——一般位置直线
根据空间直线及直线的两面投影,从中找出几何关系,利用实长三角形法,可以求出一般位置线的实长及倾角。
直线的投影——一般位置直线
A
B
b
b '
a
a '
C
α
|z A -z B |
X
a '
a
b '
b
|z A -z B |
|z A -z B |
α
AB ab
|z A -z B |
α
AB
(1) 求直线的实长及对H面的倾角 α
直线的投影——一般位置直线
(2) 求直线的实长及对V面倾角β
A
B
b
b '
a
a '
C
X
O
|Y A -Y B |
a’
X a
b '
b
a’b’
AB
β
|Y A -Y B |
AB
β
|Y A -Y B |
βO
直线的投影——一般位置直线
(3) 求直线的实长及对W面的倾角 γ
X
Z
Y
A B
b b '
a "
b "
a
a '
Z X
a '
a”
a
O
Y H
Y W
b "
b b 'γ
|X A -X B |
|X A -X B |γ
AB
直线的投影——一般位置直线
例题. 已知线段的实长AB,求它的水平投影及α角。
a
|z A -z B |
α
AB b '
X
a '
b
AB
β
a '
b '
AB AB a 1
|y A -y B |
O
|z A -z B |
a b
a b
课 程 小 结
1. 一般位置线的投影特征;
2. 实长三角形法的基本原理;
3. 实长三角形法的应用。