三、嵌入式微处理器体系结构
史上最详细!嵌入式系统知识和接口技术总结
史上最详细!嵌⼊式系统知识和接⼝技术总结1什么是嵌⼊式IEEE(Institute of Electrical and Electronics Engineers,美国电⽓和电⼦⼯程师协会)对嵌⼊式系统的定义:“⽤于控制、监视或者辅助操作机器和设备的装置”。
原⽂为:Devices Used to Control,Monitor or Assist the Operation of Equipment,Machinery or Plants)。
嵌⼊式系统是⼀种专⽤的计算机系统,作为装置或设备的⼀部分。
通常,嵌⼊式系统是⼀个控制程序存储在ROM中的嵌⼊式处理器控制板。
事实上,所有带有数字接⼝的设备,如⼿表、微波炉、录像机、汽车等,都使⽤嵌⼊式系统,有些嵌⼊式系统还包含操作系统,但⼤多数嵌⼊式系统都是由单个程序实现整个控制逻辑。
从应⽤对象上加以定义,嵌⼊式系统是软件和硬件的综合体,还可以涵盖机械等附属装置。
国内普遍认同的嵌⼊式系统定义为:以应⽤为中⼼,以计算机技术为基础,软硬件可裁剪,适应应⽤系统对功能、可靠性、成本、体积、功耗等严格要求的专⽤计算机系统。
⼀个嵌⼊式系统装置⼀般都由嵌⼊式计算机系统和执⾏装置组成,嵌⼊式计算机系统是整个嵌⼊式系统的核⼼,由硬件层、中间层、系统软件层和应⽤软件层组成。
执⾏装置也称为被控对象,它可以接受嵌⼊式计算机系统发出的控制命令,执⾏所规定的操作或任务。
执⾏装置可以很简单,如⼿机上的⼀个微⼩型的电机,当⼿机处于震动接收状态时打开;也可以很复杂,如SONY 智能机器狗,上⾯集成了多个微⼩型控制电机和多种传感器,从⽽可以执⾏各种复杂的动作和感受各种状态信息。
2嵌⼊式系统的组成⼀、硬件层硬件层中包含嵌⼊式微处理器、存储器(SDRAM、ROM、Flash等)、通⽤设备接⼝和I/O接⼝(A/D、D/A、I/O等)。
在⼀嵌⼊式处理器基础上添加电源电路、时钟电路和存储器电路,就构成了⼀个嵌⼊式核⼼控制模块。
嵌入式系统与软件(2)
8
嵌入式微处理器分类
按用途来分,嵌入式微处理器可分为四种: 按用途来分,嵌入式微处理器可分为四种: 嵌入式微处理器:由通用计算机的CPU演变而来, 嵌入式微处理器:由通用计算机的CPU演变而来,不同的 CPU演变而来 是只保留了和嵌入式以后能够用紧密相关的功能硬件, 是只保留了和嵌入式以后能够用紧密相关的功能硬件,去 除了其他冗余功能,并配上了必要的外围扩展电路, 除了其他冗余功能,并配上了必要的外围扩展电路,减小 了体积和功耗。 了体积和功耗。 嵌入式微控制器:又称单片机, 嵌入式微控制器:又称单片机,一般以一种微处理器为核 片内集成了ROM EPROM、RAM、总线、总线逻辑、 ROM、 心,片内集成了ROM、EPROM、RAM、总线、总线逻辑、定 时器、计数器、I/O等 时器、计数器、I/O等。 嵌入式DSP处理器:专用于数字信号处理,采用哈佛结构, 嵌入式DSP处理器:专用于数字信号处理,采用哈佛结构, DSP处理器 采用一系列措施保证数字信号的处理速度,如对FFT FFT( 采用一系列措施保证数字信号的处理速度,如对FFT(快 速傅立叶变换)的专门优化。 速傅立叶变换)的专门优化。 嵌入式片上系统SoC:又系统级芯片, 嵌入式片上系统SoC:又系统级芯片,在一个硅片上实现 SoC 了一个更为复杂的计算机系统。 了一个更为复杂的计算机系统。 9
6
操作
可以对存储器和寄存器进行运 算和操作
编译
难以用优化编译器生成高效的 目标代码程序
嵌入式微处理器
经过近20年的发展,嵌入式微处理器的集成度、 经过近20年的发展,嵌入式微处理器的集成度、主 20年的发展 频、位数都得到了提高
20世纪 年 世纪80年 世纪 代中后期 制作工艺 主频 晶体管 个数 位数 1 - 0.8 µm < 33 MHz > 500K 8/16bit 20世纪 年 世纪90年 世纪 代初期 0.8 - 0.5 µm <100 MHz >2M 8/16/32bit 20世纪 年 世纪90年 世纪 代中后期 0.5 – 0.35 µm <200 MHz >5M 8/16/32bit 21世纪初期 世纪初期 0.25 - 0.13 µm < 600 MHz >22M 8/16/32/64bit
《微处理器系统结构与嵌入式系统设计》课程教案
《微处理器系统结构与嵌入式系统设计》课程教案第一章:微处理器概述1.1 微处理器的定义与发展历程1.2 微处理器的组成与工作原理1.3 微处理器的性能指标1.4 嵌入式系统与微处理器的关系第二章:微处理器指令系统2.1 指令系统的基本概念2.2 常见的指令类型及其功能2.3 指令的寻址方式2.4 指令执行过程第三章:微处理器存储系统3.1 存储器的分类与特点3.2 内存管理单元(MMU)3.3 存储器层次结构与缓存技术3.4 存储系统的性能优化第四章:微处理器输入/输出系统4.1 I/O 接口的基本概念与分类4.2 常见的I/O 接口技术4.3 直接内存访问(DMA)4.4 interrupt 与事件处理第五章:嵌入式系统设计概述5.1 嵌入式系统的设计流程5.2 嵌入式处理器选型与评估5.3 嵌入式系统硬件设计5.4 嵌入式系统软件设计第六章:嵌入式处理器架构与特性6.1 嵌入式处理器的基本架构6.2 嵌入式处理器的分类与特性6.3 嵌入式处理器的发展趋势6.4 嵌入式处理器选型considerations 第七章:数字逻辑设计基础7.1 数字逻辑电路的基本概念7.2 逻辑门与逻辑函数7.3 组合逻辑电路与触发器7.4 微处理器内部的数字逻辑设计第八章:微处理器系统设计与验证8.1 微处理器系统设计流程8.2 硬件描述语言(HDL)与数字逻辑设计8.3 微处理器系统仿真与验证8.4 设计实例与分析第九章:嵌入式系统软件开发9.1 嵌入式软件的基本概念9.2 嵌入式操作系统与中间件9.3 嵌入式软件开发工具与环境9.4 嵌入式软件编程实践第十章:嵌入式系统应用案例分析10.1 嵌入式系统在工业控制中的应用10.2 嵌入式系统在消费电子中的应用10.3 嵌入式系统在医疗设备中的应用10.4 嵌入式系统在其他领域的应用案例分析第十一章:嵌入式系统与物联网11.1 物联网基本概念与架构11.2 嵌入式系统在物联网中的应用11.3 物联网设备的硬件与软件设计11.4 物联网安全与隐私保护第十二章:实时操作系统(RTOS)12.1 实时操作系统的基本概念12.2 RTOS的核心组件与特性12.3 常见的实时操作系统及其比较12.4 实时操作系统在嵌入式系统中的应用第十三章:嵌入式系统功耗管理13.1 嵌入式系统功耗概述13.2 低功耗设计技术13.3 动态电压与频率调整(DVFS)13.4 嵌入式系统的电源管理方案第十四章:嵌入式系统可靠性设计14.1 嵌入式系统可靠性概述14.2 故障模型与故障分析14.3 冗余设计技术与容错策略14.4 嵌入式系统可靠性评估与测试第十五章:现代嵌入式系统设计实践15.1 现代嵌入式系统设计挑战15.2 多核处理器与并行处理15.3 系统级芯片(SoC)设计与集成15.4 嵌入式系统设计的未来趋势重点和难点解析第一章:微处理器概述重点:微处理器的定义、发展历程、组成、工作原理、性能指标。
嵌入式系统设计师核心讲义概要
嵌入式系统基础知识1.1嵌入式系统的定义和组成一、嵌入式系统的定义1.IEEE定义2.国内定义二、嵌入式系统的发展概述1.嵌入式系统的发展历史2.嵌入式系统的发展趋势3.知识产权核三、嵌入式系统的组成1.概述2.硬件层3.中间层4.系统软件层5.应用软件层四、实时系统1.实时系统定义2.实时系统特点3.实时系统调度4.实时系统分类5.实时任务分类1.2 嵌入式微处理器体系结构一、冯诺依曼与哈佛结构1.冯诺依曼结构2.哈佛结构二、CISC与RISC1.复杂指令集计算机(CISC)2.精简指令集计算机(RISC)三、流水线技术1.流水线的基本概念2.流水线技术的特点3.流水线结构的分类4.流水线处理机的主要指标四、信息存储的字节顺序1.大端和小端存储法2.可移植性问题3.通信中的存储顺序问题4.数据格式的存储顺序1.3 嵌入式系统的硬件基础一、组合逻辑电路基础1.组合逻辑电路概述2.真值表3.布尔代数4.门电路5.译码器6.数据选择器和数据分配器二、时序逻辑电路1.时钟信号2.触发器3.寄存器与移位器4.计数器三、总线电路及信号驱动1.总线2.三态门3.总线的负载能力4.单向和双向总线驱动器5.总线复用6.总线通信协议7.总线仲裁四、电平转换电路1.数字集成电路的分类2.常用数字集成电路逻辑电平接口技术五、可编程逻辑器件基础1.可编程逻辑器件(PLD)概述2.PLD的电路表示法3.可编程阵列逻辑器件PAL和可编程逻辑阵列PLA4.可编程通用阵列逻辑器件GAL5.门阵列GA6.可编程程序门阵列PGA1.4嵌入式系统中信息表示和运算基础一、进位计数制与转换1.二进制2.十六进制3.数制表示4.数制转换二、计算机中数的表示1.基本概念2.数的定点和浮点表示三、非数值数据编码1.非数值数据定义2.字符和字符串的表示方法3.汉字的表示方法4.统一代码5.语音编码四、差错控制编码1.引入2.基本原理3.差错控制码分类4.常用的差错控制编码1.5嵌入式系统的性能评价一、质量项目1.性能指标2.可靠性与安全性3.可维护性4.可用性5.功耗6.环境适应性7.通用性8.安全性9.保密性10.可扩展性11.其他指标二、评价方法1.测量法2.模型法三、评估嵌入式系统处理器的主要指标1.MIPS测试基准2.Dhrystone3.EEMBC嵌入式微处理器与接口知识2.1嵌入式微处理器的结构和类型一、嵌入式微处理器1.定义2.组成3.分类二、典型8位微处理器结构和特点1.8位微处理器2.8051微处理器三、典型16位微处理器结构和特点1.16位微处理器2.16位微处理器MC68HC912DG128A四、典型32位微处理器结构和特点1.ARM处理器2.MIPS系列3.PowerPC五、DSP处理器结构和特点1.数字信号处理器的特点2.典型的数字信号处理器3.DSP的发展方向六、多核处理器的结构和特点1.多核处理器概述2.典型多核处理器介绍2.2嵌入式系统的存储体系一、存储器系统概述1.存储器系统的层次结构2.高速缓存(cache)3.存储管理单元MMU二、嵌入式系统存储设备分类1.嵌入式系统的存储器2.存储器部件的分类3.存储器的组织和结构的描述三、ROM的种类和选型1.常见ROM的种类2.PROM、EPROM、E2PROM型ROM的各自典型特征和不同点四、Flash Memory的种类和选型1.Flash Memory的种类(NOR和NAND型)2.NOR和NAND型Flash Memory各自的典型特征和不同点五、RAM的种类和选型1.常见RAM的种类(SRAM、DRAM、DDRAM)2.SRAM、DRAM、DDRAM各自的典型特征和不同点六、外部存储器的种类和选型1.外存概述2.硬盘存储器的基本结构与分类3.光盘存储器4.标准存储卡(CF卡)5.安全数据卡(SD卡)2.3嵌入式系统输入输出设备一、嵌入式系统常用输入输出设备1.概述2.键盘、鼠标3.触摸屏4.显示器5.打印机6.图形图像摄影输入设备二、GPIO原理与结构1.原理2.结构三、AD接口的基本原理和结构1.概述2.AD转换方法3.AD转换的重要指标四、DA接口的基本原理和结构1.DA转换的工作原理2.DA转换的主要指标五、键盘接口基本原理与结构1.键盘的分类2.用ARM芯片实现键盘接口六、显示接口的基本原理与结构1.液晶显示器LCD显示接口原理与结构2.电致发光3.LCD种类4.LCD的设计方法5.其他显示接口原理与结构七、显示接口的基本原理与结构1.触摸屏原理2.电阻触摸屏的有关技术3.触摸屏的控制4.触摸屏与显示屏的配合八、音频接口基本原理与结构1.音频数据类型2.IIS音频接口总线2.4嵌入式系统总线接口一、串行接口基本原理与结构1.串行通信的概念2.串行数据传送模式3.RS232串行接口4.RS422串行接口5.RS485串行总线接口二、并行接口基本原理与结构1.并行接口的分类2.并行总线三、PCI总线1.概述2.特点3.32位PCI系统的引脚分类4.PCI总线进行读操作四、USB通用串行总线1.概念2.主要性能特点B系统描述4.物理接口B电压规范6.总线协议7.健壮性B接口工作原理五、SPI串行外围设备接口1.概念2.使用信号3.同外设进行连接以及原理4.工作模式六、IIC总线1.概念2.特点3.操作模式4.通用传输过程及格式5.工作原理七、PCMCIA接口1.内存卡的种类2.16位PCMCIA接口的规范与结构2.5嵌入式系统网络接口一、以太网接口基本原理与结构1.以太网基础知识2.嵌入式以太网接口的实现方法3.在嵌入式系统中主要处理的以太网协议4.网络编程接口二、CAN总线1.概念2.特点3.位时间的组成4.CAN总线的帧数据格式5.在嵌入式处理器上扩展CAN总线接口三、XDSL接口的基本原理和结构1.概念2.XDSL技术的分析3.各类XDSL的特点四、无线以太网基本原理与结构1.概念2.标准3.网络结构4.接口设计和调试五、蓝牙接口基本原理与结构1.蓝牙技术2.蓝牙技术的特点3.蓝牙接口的组成4.链路管理与控制5.蓝牙接口的主要应用六、1394接口基本原理与结构1.发展过程2.应用领域3.IEEE 1394的特点4.IEEE 1394的协议结构2.6嵌入式系统电源一、电源接口技术1.AC电源2.电池3.稳压器二、电源管理技术1.电源管理技术2.降低功耗的设计技术2.7电子电路设计基础一、电路设计1.电路设计原理2.电路设计方法(有效步骤)二、PCB电路设计1.PCB设计原理2.PCB设计方法(有效步骤)3.多层PCB设计的注意事项(布线的原则)4.PCB螯合剂中的可靠性知识三、电子设计1.电子设计原理四、电子电路测试1.电子电路测试原理与方法2.硬件抗干扰测试嵌入式系统软件及操作系统知识3.1嵌入式软件基础一、嵌入式软件概述1.嵌入式软件的定义2.嵌入式软件的特点二、嵌入式软件分类1.系统软件2.应用软件3.支撑软件三、嵌入式软件的体系结构1.无操作系统的情形2.有操作系统的情形四、设备驱动层1.板级支持包2.引导加载程序3.设备驱动程序五、嵌入式中间件1.定义2.基本思想3.分类3.2嵌入式操作系统概述一、嵌入式操作系统的概念1.概述2.功能3.特点4.组件二、嵌入式操作系统的分类1.按系统的类型分类2.按响应时间分类3.按软件结构分类三、常见的嵌入式操作系统1.Vxworks2.嵌入式linux3.Windows CE4.Uc/os-II5.Palm OS3.3任务管理一、单道程序技术和多道程序技术1.定义2.实例二、进程、线程和任务1.进程2.线程3.任务三、任务的实现1.任务的层次结构2.任务的创建与终止3.任务的状态4.任务控制块TCB5.任务切换6.任务队列四、任务调度1.任务调度概述2.先来先服务算法3.短作业优先算法4.时间片轮转算法5.优先级算法五、实时系统调度1.任务模型2.RMS算法(单调速率调度算法)3.EDF算法(最早期限优先调度算法)六、任务间的同步与互斥1.任务之间的关系2.任务互斥3.任务互斥的解决方案4.信号量5.任务同步6.死锁7.信号七、任务间通信1.概念2.分类3.共享内存4.消息传递5.管道3.4存储管理一、存储管理概述1.存储管理方式2.内存保护3.实时性要求二、存储管理方案的种类1.实模式方案2.保护模式方案三、分区存储管理1.概念2.固定分区存储管理3.可变分区存储管理4.分区存储管理实例四、地址映射1.地址映射概述2.静态地址映射3.动态地址映射五、页式存储管理1.基本原理2.数据结构3.内存的分配与回收4.地址映射5.页式存储管理方案的特点六、虚拟存储管理1.程序局部性原理2.虚拟页式存储管理3.页面置换算法4.工作集模型3.5设备管理一、设备管理基础1.概述2.访问硬件寄存器的方法二、IO控制方式1.程序循环检测方式2.中断驱动方式3.直接内存访问方式(DMA)三、IO软件1.中断处理程序2.设备驱动程序3.设备独立的IO软件4.用户空间的IO软件3.6文件系统一、嵌入式文件系统概述1.基本概念2.嵌入式文件系统同桌面文件系统的区别3.常见的嵌入式文件系统二、文件和目录1.文件的基本概念2.文件的使用3.目录三、文件系统的实现1.数据块2.文件的实现3.目录的实现4.空闲空间管理嵌入式软件程序设计4.1嵌入式软件开发概述一、嵌入式应用开发过程1.步骤2.与桌面系统开发的区别3.示例二、嵌入式软件开发的特点1.需要交叉编译工具2.通过仿真手段调试3.开发板是中间目标机4.可利用的资源有限5.需要与硬件打交道三、嵌入式软件开发的挑战1.软硬件协同设计2.嵌入式操作系统3.代码优化4.有限的IO功能4.2嵌入式程序设计语言一、概述二、程序设计语言概述1.低级语言与高级语言2.汇编程序、编译程序、解释程序3.程序设计语言的定义4.程序语言的发展概述5.嵌入式程序设计语言三、汇编语言1.基本原理2.ARM汇编语言四、面向过程的语言1.基本概念2.数据成分3.运算成分程序语言的运算成分4.控制成分五、面向对象的语言1.面向对象的基本概念2.面向对象的程序设计语言六、汇编、编译与解释程序的基本原理1.汇编程序基本原理2.编译程序基本原理3.解释程序基本原理4.3嵌入式软件开发环境一、要求二、宿主机、目标机1.宿主机2.目标机3.宿主机与目标机的连接三、嵌入式软件开发工具1.软件开发阶段2.编辑器3.编译器4.调试及调试工具5.软件工程工具四、集成开发环境1.IDE的发展2.Tornado3.WindowsCE应用程序开发工具4.Linux环境下的集成开发环境4.4嵌入式软件开发一、嵌入式平台选型1.嵌入式系统设计的阶段2.软硬件平台的选择二、软件设计1.软件设计的任务2.模块结构设计3.结构化软件设计方法4.面向对象软件设计方法三、嵌入式程序设计1.BootLoader设计2.设备驱动程序设计3.网络应用程序设计四、编码1.编码过程2.编码准则3.编码技术五、测试1.软件测试2.测试的任务3.测试的方法和分类4.嵌入式软件测试的步骤5.覆盖测试六、下载和运行1.TFTP2.编程器的固化4.5嵌入式软件移植一、概述1.嵌入式软件的特点2.可移植性和可重用性的考虑3.嵌入式应用软件的开发4.嵌入式软件的移植二、无操作系统的软件移植1.概述2.基于层次化的嵌入式应用软件的设计三、有操作系统的软件移植1.概述2.示例四、应用软件的移植1.应用软件实现涉及的两方面2.移植应用软件是需考虑的因素3.软件开发时需遵守的原则嵌入式系统开发与维护知识5.1系统开发过程及其项目管理一、概述二、系统开发生命周期各阶段的目标和任务的划分方法1.常用开发模型1.1边做边修改模型1.2瀑布模型1.3快速原型模型1.4增量模型1.5螺旋模型1.6演化模型2.需求分析3.设计3.1系统架构设计3.2硬件子系统设计3.3软件子系统设计4.系统集成与测试三、系统开发项目管理基础知识及常用的管理工具1.项目管理概述2.项目范围管理3.项目成本管理4.项目时间管理5.软件配置管理6.软件配置管理的解决方案四、系统开发工具与环境知识1.建模工具2.编程工具3.测试工具5.2系统分析基础知识一、系统分析的目的和任务1.需求工程的概念2.相关术语二、用户需求1.概念2.关于Ada编程环境的需求示例3.编辑软件设计模型的CASE需求文档的示例4.特别的用户需求示例三、系统需求1.概念2.替代自然语言描述的系统分析方法四、系统规格说明书的编写方法1.系统规格说明书2.书写用户需求应遵循的简单原则3.需求文档的可能用户以及使用文档的方式4.Heninger(1980)对软件需求文档提出的要求5.IEEE标准为需求文档提出的结构6.编写系统规格说明书应重点注意的内容5.3系统设计知识一、传统的设计方法1.瀑布模型的组成部分2.瀑布模型法的优缺点3.传统的嵌入式系统的设计4.软硬件协同设计二、实时系统分析与设计1.实时系统分析阶段的主要任务2.实时系统的开发方法三、软硬件协同设计方法1.软硬件协同设计在实际应用中的表现2.软硬件协同设计的流程3.软硬件协同设计的优点4.系统涉及到组成部分5.4系统实施基础一、系统架构设计1.系统架构设计在软件生命周期中的作用2.系统架构设计原则和概念二、系统详细设计1.系统详细设计在软件生命周期中的作用2.系统详细设计阶段用到的设计方法概述三、系统测试1.系统测试在软件生命周期中的作用2.系统测试类型3.系统测试的策略5.5系统维护知识一、系统运行管理1.运行管理制度2.日常运行管理内容3.系统软件及文档管理二、系统维护知识1.系统可维护性概念2.系统维护的内容及类型3.系统维护的管理和步骤三、系统评价知识1.系统评价的目的和任务2.系统评价的指标嵌入式系统设计6.1嵌入式系统设计的特点一、嵌入式系统设计的主要任务二、嵌入式系统的设计方法三、嵌入式系统的特点1.软硬件协调并行开发2.嵌入式系统通常是面向特定应用的系统3.实时嵌入式操作系统的多样性RTOS4.与台式机相比,可利用资源很少5.嵌入式系统设计需要交叉开发环境6.嵌入式系统的程序需要固化7.嵌入式系统的软件开发难度较大8.嵌入式应用软件的开发需要强大的开发工具和操作系统的支持9.其他方面6.2嵌入式系统的设计流程一、概述1.嵌入式系统的设计和开发要求2.嵌入式系统的设计和开发流程的阶段二、产品定义1.产品功能与产品性能2.产品定义三、嵌入式系统的软硬件划分1.性能原则2.性价比原则3.资源利用率原则四、嵌入式系统硬件设计1.概述2.嵌入式系统硬件的选择3.硬件功能模块划分4.硬件的可靠性五、嵌入式系统的软件设计1.嵌入式开发过程中的角色2.进行嵌入式系统软件设计时需要考虑的方面六、系统集成和测试1.系统集成过程中,可以分阶段运行测试程序2.嵌入式系统集成过程中的调试工具3.嵌入式系统的软件测试的方法6.3设计示例:嵌入式数控系统一、嵌入式系统采用的设计方法1.传统设计方法2.软硬件协同设计方法二、数控系统简介1.概述C系统构成三、需求分析1.功能要求2.非功能要求四、系统体系结构设计1.系统软硬件划分2.硬件系统划分3.系统软件功能划分五、硬件设计1.板级设计2.芯片级硬件设计六、软件设计1.软件接口设计2.系统软件模块划分七、系统集成与测试1.功能干涉测试2.压力测试3.容量测试4.性能测试5.安全测试6.容错测试。
嵌入式系统的分类
嵌入式系统的分类1、以硬件划分1.1嵌入式微控制器(Microcontrol lerUnit,也称MCU)单片机就属于嵌入式微控制器,单片机机心由ROM(或EPROM)、总线、总线逻辑、定时器(或计数器)、Watch Dog、I/O、串行口、脉宽调制输出、A/D、D/A、Flash RAM、EEPROM等组成,它属于单片式设计,体积小、功耗低、成本小、可靠性高的特点,该类型的品种、数量都是最多的,目前嵌入式系统中,MCU在70年代就已经研制出来,但由于以上的特点,直到现在,它依然占有70%的市场份额。
1.2嵌入式微处理器(MicroProcessor Unit,又称MPU)嵌入式微处理器是根据计算机的CPU演变来的,然而与计算机处理器不同的是,它要求性能高、功耗低、体积小、成本小、重量轻、可靠性高的特点,以满足嵌入式环境下的特殊需求,如ARM系列广泛应用于手机终端,PowerPC系列广泛应用于航空系统。
1.3嵌入式DSP处理器(EmbeddedDigitalSignalProcessor,又称EDSP)DSP的算法理论在70年代就已经出现,那时还没有专门的DSP 处理器,只能用MPU的分立元件实现,然而处理的速度无法满足DSP算法要求,1982年,首枚DSP处理器诞生,它是专门用于处理信号的处理器,以信号处理的特殊要求在系统结构处理、算法上进行专门设计的处理器,它具有很高的编译效果与执行速度的功能。
80年代中期,诞生出基于CMOS工艺的DSP处理器,它的储容量和运算速度与前代相比都有飞跃性的提高、现在随着DSP处理器的不断发展,它的集成度更高、应用范围更广。
1.4嵌入片上系统(SystemOnChip,又称SOC)嵌入片上系统追求包容性最强的集成器件,它使现了软硬件无缝结合,在处理器片上直接嵌入操作系统的代码模块,因此具有很高的综合性。
使用SOC,SOC一般是专用的芯片,它具有系统简洁、体积小、功耗小、可靠性高、生产效率高的特点。
嵌入式系统体系结构
嵌入式系统体系结构嵌入式系统体系结构:嵌入式系统的组成包含了硬件层、中间层、系统软件层和应用软件层。
1、硬件层:嵌入式微处理器、存储器、通用设备接口和I/O接口。
嵌入式核心模块=微处理器+电源电路+时钟电路+存储器Cache:位于主存和嵌入式微处理器内核之间,存放的是最近一段时间微处理器使用最多的程序代码和数据。
它的主要目标是减小存储器给微处理器内核造成的存储器访问瓶颈,使处理速度更快。
2、中间层(也称为硬件抽象层HAL或者板级支持包BSP).它将系统上层软件和底层硬件分离开来,使系统上层软件开发人员无需关系底层硬件的具体情况,根据BSP层提供的接口开发即可。
BSP有两个特点:硬件相关性和操作系统相关性。
设计一个完整的BSP需要完成两部分工作:A、嵌入式系统的硬件初始化和BSP功能。
片级初始化:纯硬件的初始化过程,把嵌入式微处理器从上电的默认状态逐步设置成系统所要求的工作状态。
板级初始化:包含软硬件两部分在内的初始化过程,为随后的系统初始化和应用程序建立硬件和软件的运行环境。
系统级初始化:以软件为主的初始化过程,进行操作系统的初始化。
B、设计硬件相关的设备驱动。
3、系统软件层:由RTOS、文件系统、GUI、网络系统及通用组件模块组成。
RTOS是嵌入式应用软件的基础和开发平台。
4、应用软件:由基于实时系统开发的应用程序组成。
嵌入式芯片体系结构介绍1.嵌入式微处理器(Micro Processor Unit,MPU)嵌入式微处理器是由通用计算机中的CPU演变而来的。
它的特征是具有32位以上的处理器,具有较高的性能,当然其价格也相应较高。
但与计算机处理器不同的是,在实际嵌入式应用中,只保留和嵌入式应用紧密相关的功能硬件,去除其他的冗余功能部分,这样就以最低的功耗和资源实现嵌入式应用的特殊要求。
和工业控制计算机相比,嵌入式微处理器具有体积小、重量轻、成本低、可靠性高的优点。
目前主要的嵌入式处理器类型有Am186/88、386EX、SC-400、Power PC、68000、MIPS、ARM/ StrongARM系列等。
微处理器与嵌入式系统的区别
微处理器与嵌入式系统的区别微处理器与嵌入式系统的区别嵌入式系统(Embedded system),是一种“完全嵌入受控器件内部,为特定应用而设计的专用计算机系统”。
下面是店铺整理的微处理器与嵌入式系统的区别,欢迎大家参考!随着电子科学的不断发展,人们开始逐渐对数码产品有了更高的需求,这就促使了信息技术的不断发展。
嵌入式系统的核心就是嵌入式处理器,它是控制、辅助嵌入式系统运行的硬件单元,其应用范围非常的广阔,它也具有很好的发展前景。
那么,面对纷繁复杂的嵌入式处理器市场,我们该如何做出适合自己的选择呢?下面店铺就对市场上常见的几种嵌入式处理器进行比较分析,希望可以对大家有所帮助(嵌入式处理器类型)。
(1)嵌入式ARM微处理器(嵌入式微处理器结构)ARM微处理器的由来与发展ARM(Advanced RISC Machines),既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。
目前,采用ARM技术知识产权(IP)核的微处理器,即我们通常所说的ARM微处理器。
它是一种高性能、低功耗的32位微处器,它被广泛应用于嵌入式系统中。
基于ARM技术的微处理器应用约占据了32位RISC微处理器75%以上的市场份额,ARM技术正在逐步渗入到我们生活的各个方面。
ARM9代表了ARM公司主流的处理器,已经在手持电话、机顶盒、数码像机、GPS、个人数字助理以及因特网设备等方面有了广泛的应用。
ARM微处理器的应用领域ARM微处理器是目前应用领域非常广的处理器,到目前为止,ARM微处理器及技术的应用几乎已经遍及工业控制、消费类电子产品、通信系统、网络系统、无线系统等各类产品市场,深入到各个领域。
1、工业控制领域:作为32的RISC架构,基于ARM核的微控制器芯片不但占据了高端微控制器市场的大部分市场份额,同时也逐渐向低端微控制器应用领域扩展,ARM微控制器的低功耗、高性价比,向传统的8位/16位微控制器提出了挑战。
嵌入式微处理器的分类与特点
1.2.1 嵌入式处理器的分类与特点1.嵌入式微处理器的分类嵌入式系统的核心部件是嵌入式处理器,一般把嵌入式处理器分成4类,即嵌入式微控制器、嵌入式微处理器、嵌入式DSP处理器和嵌入式片上系统。
(1)嵌入式微控制器(MicroController(微控制器) UnitMCU的典型代表是单片机,它将整个计算机系统集成到一块芯片中。
MCU一般以某种微处理器内核为核心,根据某些典型的应用,在芯片内部集成了ROM/EPROM、RAM、总线、总线逻辑、定时/计数器、看门狗、I/O、串行口、脉宽调制输出、A/D、D/A、FLASH RAM、EEPROM等各种必要功能部件和外设。
为适应不同的应用需求,对功能的设置和外设的配置进行必要的修改和裁减定制,使得一个系列的单片机具有多种衍生产品,每种衍生产品的处理器内核都相同,不同的是存储器和外设的配置及功能的设置。
这样可以使单片机最大限度地和应用需求相匹配,从而减少整个系统的功耗和成本。
和嵌入式微处理器相比,微控制器的单片化使应用系统的体积大大减小,从而使功耗和成本大幅度下降、可靠性提高。
由于MCU目前在产品的品种和数量上是所有种类嵌入式处理器中最多的,而且上述诸多优点决定了微控制器是嵌入式系统应用的主流。
微控制器的片上外设资源一般比较丰富,适合于控制,因此称为微控制器。
通常,MCU可分为通用和半通用两类,比较有代表性的通用系列包括8051、P51XA、MCS-251、MCS-96/196/296、C166/167、68300等。
而比较有代表性的半通用系列,如支持USB 接口的MCU 8XC930/931、C540、C541;支持I2C、CAN总线、LCD等的众多专用MCU 和兼容系列。
(2)嵌入式微处理器(MicroProcessor Unit,MPU)MPU是由通用计算机中的CPU演变而来的。
MPU采用增强型通用微处理器。
由于嵌入MPU在工作温度、电磁兼容性以及可靠性方面的要求较通用的标准微处理器高。
嵌入式系统硬件体系结构设计
嵌入式系统硬件体系结构设计一、嵌入式计算机系统体系结构体系主要组成包括:硬件层中涵盖嵌入式微处理器、存储器(sdram、rom、flash等)、通用设备USB和i/oUSB(a/d、d/a、i/o等)。
在一片嵌入式处理器基础上添加电源电路、时钟电路和存储器电路,就构成了一个嵌入式核心控制模块。
其中操作系统和应用程序都可以固化在rom中。
硬件层与软件层之间为中间层,也称作硬件抽象化层(hardwareabstractlayer,hal)或板级积极支持纸盒(boardsupportpackage,bsp),它将系统上层软件与底层硬件拆分开去,并使系统的底层驱动程序与硬件毫无关系,上层软件开发人员无须关心底层硬件的具体情况,根据bsp层提供更多的USB即可展开研发。
该层通常涵盖有关底层硬件的初始化、数据的输出/输入操作方式和硬件设备的布局功能。
3.系统软件层系统软件层由实时多任务操作系统(real-timeoperationsystem,rtos)、文件系统、图形用户USB(graphicuserinterface,gui)、网络系统及通用型组件模块共同组成。
rtos就是嵌入式应用软件的基础和研发平台。
功能层主要由实现某种或某几项任务而被开发运行于操作系统上的程序组成。
一个嵌入式系统装置通常都由嵌入式计算机系统和继续执行装置共同组成,而嵌入式计算机系统就是整个嵌入式系统的核心,由硬件层、中间层、系统软件层和应用软件层共同组成。
继续执行装置也称作被控对象,它可以拒绝接受嵌入式计算机系统收到的掌控命令,继续执行所规定的操作方式或任务。
本网关硬件环境以单片机s3c2440芯片和dm9000以太网控制芯片为主,实现rj45接口和rs232接口的数据传输。
内容包括硬件环境的初始化,数据的收发控制,封包解包设计,操作系统的移植等。
硬件框图就是直观的将每个功能模块列举,也就是一个基本的模块女团,可以简约的每个模块的功能彰显出。
微处理器系统结构与嵌入式系统设计
微处理器的存储器系统
03
嵌入式系统设计
专用性
嵌入式系统通常针对特定的应用进行设计和优化。
定义
嵌入式系统是一种专用的计算机系统,它被嵌入到设备中,以控制、监视或帮助操作该设备。
实时性
嵌入式系统需要能够在特定的时间内响应外部事件或执行特定任务。
指令集
指令中操作数的有效地址的确定方式。
寻址方式
指令在存储器中的表示方式。
指令格式
指令在二进制代码中的表示方式。
指令编码
微处理器的指令集体系结构
高速缓存(Cache):用于存储经常访问的数据,提高数据访问速度。
主存储器(Main Memory):用于存储程序和数据,是微处理器可以直接访问的存储器。
控制系统中的微处理器
微处理器具有运算速度快、集成度高、可编程性强等优点,能够提高控制系统的稳定性和可靠性。
微处理器在控制系统中的优势
微处理器在控制系统中的应用
通信系统中的微处理器微处理器 Nhomakorabea通信系统中主要用于信号处理、协议转换、数据加密等功能,保障通信的稳定性和安全性。
微处理器在通信系统中的优势
微处理器具有高速的数据处理能力和灵活的可编程性,能够满足通信系统的复杂需求。
硬件设计
根据系统设计,编写嵌入式系统的程序和固件。
软件设计
02
01
03
04
05
嵌入式系统的设计流程
04
微处理器在嵌入式系统中的应用
1
2
3
微处理器在控制系统中发挥着核心作用,通过接收输入信号,经过处理后输出控制信号,实现对被控对象的精确控制。
嵌入式系统期末复习资料
1、嵌入式系统的定义答:根据美国电气与电子工程学会IEEE的定义,嵌入式系统是用于控制、监视或辅助操作机器和设备的装置。
需指出的是本定义并不能充分体现嵌入式系统的精髓,从根本上说,嵌入式系统的概念应从应用的角度予以阐述。
在国内的很多嵌入式网站和相关书籍中,一般都认为嵌入式系统是以应用为中心,以计算机技术为基础,并且软/硬件可裁剪,可满足应用系统对功能、可靠性、成本、体积和功耗有严格要求的专业计算机系统。
(P1的第一段也读一读)2、嵌入式系统一般由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户应用软件四个部分组成,用于实现对其他设备的控制、监视或管理等功能。
3、嵌入式微处理器的体系结构可以采用冯·诺依曼体系结构或哈佛体系结构,指令系统可以选用精简指令集系统RISC 或复杂指令集系统CISC 。
4、嵌入式微处理器的体系结构包括哪几种?它们的不同的是什么?答:嵌入式微处理器的体系结构可以采用冯·诺依曼体系结构或哈佛体系结构。
不同点:①冯·诺依曼结构的计算机由CPU和存储器构成,其程序和数据共用一个存储空间,程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置;采用单一的地址及数据总线,程序指令和数据指令的宽度相同。
程序计数器(PC)是CPU内部只是指令和数据的存储位置的寄存器。
CPU通过程序计数器提供的地址信息,对存储器进行寻址,找到所需要的指令或数据,然后对指令进行译码,最后执行指令规定的操作。
处理器执行指令时,先从存储器中取出指令译码,再去操作数执行运算,即使单条指令也要耗费几个甚至几十个周期,在高速运算时,在传输通道上会出现瓶颈效应②哈佛结构的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址、独立访问。
系统中具有程序的数据总线与地址总线,数据的数据总线与地址总线。
这种分离的程序总线和数据总线可以允许在一个机器周期内同时获取指令字和操作数,从而提高执行速度,提高数据的吞吐率。
嵌入式微处理器分类
嵌入式微处理器分类:根据微处理器的字长宽度:微处理器可分为4位、8位、16位、32位、64位。
一般把16位及以下的称为嵌入式微控制器,32位以上的称为嵌入式微处理器。
根据微处理器系统集成度,可划分为两类:一般用途的微处理器,即微处理器内部仅包含单纯的中央处理单元;单芯片微控制器,即将CPU、Rom、RAM及I/O等部分集成到同一个芯片上。
根据嵌入式微处理器的用途:可分为以下几类:1、嵌入式微控制器(MCU),又称为单片机。
微控制器的片上外设资源通常比较丰富,适合于控制,因此称为微控制器。
微控制器芯片内部集成有ROM/EPROM、RAM、总线、总线逻辑、定时/计数器、看门狗、I/O、串行口、脉宽调制输出(PWM)、A/D、D/A、Flash、EEPROM等各种必要功能和外设。
微控制器的最大特点是单片化,功耗成本低,可靠性高。
常用的有8051、MCS系列、C540、MSP430系列等,目前,微控制器占嵌入式系统的约70%的市场份额。
2、嵌入式微处理器(EMPU)。
由通用计算机中的CPU发展而来,主要特点是具有32位以上的处理器,具有比较高的性能,价格也较高。
与计算机CPU不同的是,在实际嵌入式应用中,只保留和嵌入式应用紧密相关的功能硬件,去除其它的冗余功能部分,因此其体积小、重量轻、功耗低、成本低及可靠性高。
通常嵌入式微处理器把CPU、ROM、RAM及I/O等元件做到同一个芯片上,也称为单板计算机。
目前,主要的嵌入式微处理器有ARM、MIPS、POWER PC和基于X86的386EX等。
特点:嵌入式微处理器与通用CPU最大的不同在于嵌入式微处理器大多工作在为特定用户群所专用设计的系统中,它将通用CPU许多由板卡完成的任务集成在芯片内部,从而有利于嵌入式系统在设计时趋于小型化,同时还具有很高的效率和可靠性。
嵌入式微处理器的体系结构可以采用冯·诺依曼体系或哈佛体系结构;指令系统可以选用精简指令系统(Reduced Instruction Set Computer,RISC)和复杂指令系统CISC(Complex Instruction Set Computer,CISC)。
第2章 嵌入式处理器(第三版)参考答案
第2章嵌入式处理器习题2-1 什么是CISC和RISC,各自有什么特点?答:CISC复杂指令集体系结构,RISC精减指令集体系结构。
CISCRISC一条指令仅执行简单操作,把微处理器能执行的指令数目减少到最低限度,以提高处理速度。
RISC处理器比同等的CISC(复杂指令集计算机)处理器要快50%~75%,CISC一条指令可以执行许多操作。
2-2 冯.诺依曼结构与哈佛结构各自的特点是什么?答:冯·诺依曼结构的处理器使用同一个存储器,即程序和数据共用同一个存储器;而哈佛结构则是程序和数据采用独立的总线来访问程序存储器和数据存储器。
2-3 目前有哪些主要嵌入式内核生产厂商及典型嵌入式内核?ARM处理器核有哪三大特点?答:主要内核厂商有:美国的MIPS公司MIPS处理器内核、美国的IBM与Apple和Motorola 联合开发的PowerPC、Motorola公司独立开发的68K/COLDFIRE、英国的ARM公司ARM处理器内核等等。
ARM内核的三大主要特点如下:(1)功耗低(2)性价比高(3)代码密度高2-4 简述ARM体系结构的技术特征。
答:(1)单周期操作:ARM指令系统中的指令只需要执行简单而和基本的操作,因此其执行过程在一个机器周期内完成。
(2)采用加载/存储指令结构:由于存储器访问指令的执行时间长(通过总线对外部访问),因此只采用了加载和存储两种指令对存储器进行读和写的操作,面向运算部件的操作都经过加载指令和存储指令,从存储器取出后预先存放到寄存器对内,以加快执行速度。
(3)固定的32位长度指令:指令格式固定为32位长度,这样使指令译码结构简单,效率提高。
(4)地址指令格式:编译开销大,尽可能优化,采用三地址指令格式、较多寄存器和对称的指令格式便于生成优化代码。
(5)指令流水线技术:ARM采用多级流水线技术,以提高指令执行的效率。
2-5 简述Thumb、Thumb-2及Thumb-2EE的主要特点。
ARM体系结构
SIMD Instructions Multi-processing v6 Memory architecture Unaligned data support
Extensions: Thumb-2 (6T2) TrustZone® (6Z) Multicore (6K) Thumb only (6-M)
17
Embedded Processors
Chengdu University of Information Technology
18
Which architecture is your processor?
Chengdu University of Information Technology
---ARM V4
Chengdu University of Information Technology
7
•ARMV4是目前支持的最老的架构,是基于32-bit地址 空间的32-bit指令集。ARMv4除了支持ARMv3的指 令外还扩展了:
支持halfword的存取 支持byte和halfword的符号扩展读 支持Thumb指令 提供Thumb和Normal状态的转换指令 进一步的明确了会引起Undefined异常的指令 对以前的26bits体系结构的CPU不再兼容
4. 如果3中描述的功能不存在,则在该功能标识符前加x
ARM处理器命名(Classic命名)
Chengdu University of Information Technology
15
采用上述的架构,形成一系列的处理器。有时候还要区
分处理器核和处理器系列。不过,在这里其实不用区分太细,
微处理器系统结构与嵌入式系统设计答案
“微处理器系统结构与嵌入式系统设计”第一章习题解答1.2 以集成电路级别而言,计算机系统的三个主要组成部分是什么?中央处理器、存储器芯片、总线接口芯片1.3 阐述摩尔定律。
每18个月,芯片的晶体管密度提高一倍,运算性能提高一倍,而价格下降一半。
1.5 什么是SoC?什么是IP核,它有哪几种实现形式?SoC:系统级芯片、片上系统、系统芯片、系统集成芯片或系统芯片集等,从应用开发角度出发,其主要含义是指单芯片上集成微电子应用产品所需的所有功能系统。
IP核:满足特定的规范和要求,并且能够在设计中反复进行复用的功能模块。
它有软核、硬核和固核三种实现形式。
1.8 什么是嵌入式系统?嵌入式系统的主要特点有哪些?概念:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积和功耗的严格要求的专用计算机系统,即“嵌入到应用对象体系中的专用计算机系统”。
特点:1、嵌入式系统通常是面向特定应用的。
2、嵌入式系统式将先进的计算机技术、半导体技术和电子技术与各个行业的具体应用相结合的产物。
3、嵌入式系统的硬件和软件都必须高效率地设计,量体裁衣、去除冗余,力争在同样的硅片面积上实现更高的性能。
4、嵌入式处理器的应用软件是实现嵌入式系统功能的关键,对嵌入式处理器系统软件和应用软件的要求也和通用计算机有以下不同点。
①软件要求固体化,大多数嵌入式系统的软件固化在只读存储器中;②要求高质量、高可靠性的软件代码;③许多应用中要求系统软件具有实时处理能力。
5、嵌入式系统和具体应用有机的结合在一起,它的升级换代也是和具体产品同步进行的,因此嵌入式系统产品一旦进入市场,就具有较长的生命周期。
6、嵌入式系统本身不具备自开发能力,设计完成以后用户通常也不能对其中的程序功能进行修改,必须有一套开发工具和环境才能进行开发。
第二章习题答案2.2 完成下列逻辑运算(1)101+1.01 = 110.01(2)1010.001-10.1 = 111.101(3)-1011.0110 1-1.1001 = -1100.1111 1(4)10.1101-1.1001 = 1.01(5)110011/11 = 10001(6)(-101.01)/(-0.1) = 1010.12.3 完成下列逻辑运算(1)1011 0101∨1111 0000 = 1111 0101(2)1101 0001∧1010 1011 = 1000 0001(3)1010 1011⊕0001 1100 = 1011 01112.4 选择题(1)下列无符号数中最小的数是( A )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20
ARM单周期指令3段流水线操作*
1
取指 2
译码 取指
3
执行
译码 取指 执行 译码 执行
指令 t 注:程序计数器PC指向正在取指的指令而不是正在执行的指令
21
处理器的工作状态
ARM7TDMI 处理器有两种工作状态:
ARM - 32-bit, 按字排列的ARM指令集
Thumb -16-bit, 按半字排列的Thumb指令集
1985年4月26日,第一个ARM原型在英国剑桥的Acorn计算机有限公 司诞生,由美国加州San Jose VLSI技术公司制造。
20世纪80年代后期,ARM很快开发成Acorn的台式机产品,形成英国 的计算机教育基础。 1990年成立了Advanced RISC Machines Limited 。 20世纪90年代,ARM32位嵌人式RISC(Reduced Instruction Set Computer)处理器扩展到世界范围,占据了低功耗、低成本和高性 能的嵌入式系统应用领域的领先地位。 32位RISC处理器受到青睐,领先的是ARM嵌入式微处理器系列。 ARM公司虽然只成立10多年,但在1999年因移动电话火爆市场,其 32位RISC处理器占市场份额超过了50%,2001年初,ARM公司的32位 RISC处理器市场占有率超过了75%。ARM公司是知识产权供应商,是 设计公司。由合作伙伴公司来生产各具特色的芯片。
当前ARM体系结构的扩充包括:
ARM处理器系列提供的解决方案包括:
11
ARM 微处理器
微处理器核: ARM6, ARM7, ARM9, ARM10, ARM11
扩展: Thumb, DSP, SIMD, Jazelle etc. 其它IP核: UART, GPIO, memory controllers, etc
31 24 23 16 15 87 0 字地址
高地址
低地址
8 4 0
9 5 1
10 6 2
11 7 3
8 4 0
小端模式
低地址中存放字数据的低字节 高地址中存放字数据的高字节
31 24 23 16 15 87 0 字地址
高地址
低地址
11 7 3
10 6 2
9 5 1
8 4 0
8 4 0
23
指令长度及数据类型
ARM微处理器的指令长度可以是32位(ARM状态),也可 以为16位(Thumb)状态 ARM微处理器支持字节(8位)、半字(16位)、字(32 位)3种数据类型 字需要4字节对齐(地址的低两位为0)、半字需要2字节 对齐(地址的最低位为0)
24
ARM处理器的两种工作状态:
8
ARM公司商业模式的强大之处在于其价格合理,全世界范围有超过 100个合作伙伴--包括半导体工业的著名公司。ARM公司专注于设计 ,其内核耗电少、成本低、功能强,特有16/32位双指令集。ARM已 成为移动通信、手持计算、多媒体数字消费等嵌入式解决方案的 RISC标准。 在所有ARM处理器系列中,ARM7处理器系列应用最广,采用ARM7处 理器作为内核生产芯片的公司最多。
4、令PC值等于这个异常模式在异常向量表中的地址,即跳转去执行异常向量表 中的相应指令;
从异常工作模式退回到之前的工作模式时,需要由软件来完成以下工作:1、将 异常模式的R14减去一个适当的值(4或8)后赋给PC寄存器;2、将异常模式 SPSR的值赋给CPSR;
27
寄存器组织 – 1*
User32 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13(SP) R14(LR) R15(PC) Fiq32 R0 R1 R2 R3 R4 R5 R6 R7 R8_fiq R9_fiq R10_fiq R11_fiq R12_fiq R13_fiq R14_fiq R15(PC) Supervisor32 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13_svc R14_svc R15(PC) Abort32 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13_abt R14_abt R15(PC) IRQ32 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13_irq R14_irq R15(PC) Undefined32 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13_und R14_und R15(PC)
ARM内核的选择
系统的工作频率 片内存储器的容量 片内外围电路的选择
6
本节提要
1 ARM简介 2 ARM体系结构概览 3 4 5 6 ARM编程模型 ARM 指令集 ARM JTAG调试接口
S3C44B0开发平台简介
7
ARM的发展历程-1
ARM即Advanced RISC Machines的缩写。
可访问的寄存器取决于处理器的模式 其它寄存器 (the banked registers) 的状态在支持IRQ, FIQ, 管理员, 中止和未定义模式处理时被切换
29
寄存器 - 3
R0 到 R15 可以直接访问 R0 到 R14 是通用寄存器 R13: 堆栈指针 (sp) (通常)
每种处理器模式都有单独的堆栈
R14: 链接寄存器 (lr)
R15 包含程序计数器 (PC)
CPSR – 当前程序状态寄存器,包括代码标志状态和当前模式位
5个SPSRs--(程序状态保存寄存器) 当异常发生时保存CPSR状态
30
程序状态寄存器 - 1
ARM7TDMI 包含当前程序状态寄存器 (CPSR), 加上5个程序状态 保存寄存器SPSR,当异常发生时,用于保存CPSR的状态
J----支持新的JAVA,提供字节代码执行的硬件和优化软件加速功 能
14
ARM 体系结构更新
15
体系结构变化 – 1*
THUMB指令集 ( ‗T‘)
THUMB 指令集: 32位ARM指令集的子集,按16位指令重新编码
代码尺寸小 简化设计
( up to 40 % compression)
1、ARM状态:32位,ARM状态执行字对齐的32位ARM指令。 2、Thumb状态,16位,执行半字对齐的16位 3、用Bx Rn指令来进行两种状态的切换: 其中Bx是跳转指令,而Rn是寄存器(1个字,32位), 如果Rn的位0为1,则进入Thumb状态;
如果Rn的位为0,则进入ARM状态。(原因:ARM指令的后两位始终为 0,没有用,而Thumb指令的后一位始终为0,没有用,因此采用位0来 表示ARM指令与Thumb指令的切换标志位。)
3
ARM微处理器的应用领域
工业控制领域 无线通讯领域 网络应用 消费电子产品 成像和安全产品
4
ARM微处理器系列
ARM7系列
ARM9系列 ARM9E系列 ARM10E系列 SecurCore系列
Inter的Xscale
Inter的StrongARM
5
ARM微处理器的选型
嵌入式系统
第三讲 ARM嵌入式微处理器体系结构
1
本节提要
1 ARM简介 2 ARM体系结构概览 3 4 5 6 ARM编程模型 ARM 指令集 ARM JTAG调试接口
S3C44B0开发平台简介
2
ARM简介
ARM——Advanced RISC Machines
ARM——32位RISC结构IP核提供商
除了用户模式外,其他模式均可视为特权模式
26
模式切换: 当异常发生,CPU进入相应的异常模式时,以下工作是由CPU自动完成的: 1、在异常模式的R14中保存前一工作模式的下一条即将执行的指令地址; 2、将CPSR的值复制到异常模式的SPSR中; 3、将CPSR的工作模式设为该异常模式对应的工作模式;
ARM7TDMI 核的操作状态可能通过BX指令(分支和交换指令)在 ARM状态和Thumb状态之间切换
例: 从ARM状态切换到Thumb状态: LDR R0,=Label+1 BX R0 从Thumb状态切换到ARM状态: LDR R0,=Label BX R0
22
存储器模式*
大端模式
字数据的高位字节存储在低地址中 字数据的低字节则存放在高地址中
小体积、低功耗、成本低、高性能; 16位/32位双指令集; 全球众多的合作伙伴。 Thumb:16位指令集,用以改善代码密度; DSP:用于DSP应用的算术运算指令集; Jazeller:允许直接执行Java代码的扩充。 在无线、消费电子和图像应用方面的开放平台; 存储、自动化、工业和网络应用的嵌入式实时系统; 智能卡和SIM卡的安全应用。
17
体系结构变化 - 3
ARM DSP 指令集
对于音频DSP应用提供高达70%的处理速度
Jazelle
提供比基于软件的JAVA虚拟机(JVM)更高的性能 与非JAVA加速核相比,提供8倍JAVA加速性能和降低80%的功 耗 139 字节码直接在硬件上执行,88个字节码在软件上执行
18
12
ARM体系结构版本 - 1
Version 1 (obsolete)