电气工程概论重点
电气工程概论
3
一、电力系统的组成
电力系统就是由发电厂、变电所、输配电线路 和电力用户连接而成的统一整体,包含着电能 的生产、输送、分配和使用。
电力系统加上发电厂的动力部分,如汽轮机、 水轮机、锅炉、水库、反应堆等,称之为动力 系统。
图1-1 电力网、电力系统和动力系统
2020/5/7
4
图1-1 电力网、电力系统和动力系统
➢ 电能质量主要指标的影响因素、主要危害以及 可采用的解决方法见表1-5。
2020/5/7
19
3.提高电力系统运行的经济性
➢ (1)在发电环节,要综合各类发电厂的运行特点, 合理安排其发电顺序,实现电源的优化组合。
➢ (2)在输送电能环节,要采取各种措施降低网络 损耗,提高电能的传输效率。
➢ (3)结合本地区的区域特点,积极致力于新能源 的开发和利用,减少电能的生产和输送成本。
的发生,以及在事故发生后能够最快的缩小事故范围, 防止事故扩大。
2020/5/7
13
2.保证良好的电能质量 衡量电能质量的主要指标有电压、波形和频率。
(1)电压 电压质量一般用电压偏差、电压波动和闪变以及三相
电压不平衡度三个指标来衡量。
U % U U N 100 % UN
(1-1)
式中:△U% 为电压偏差;U电网某点的实际运行电压;
2020/5/7
5
1.发电厂 生产电能的工厂,把不同形式的一次能源转
换成电能。
➢ 分类:据所利用能源的种类不同,可将发电厂 分为火力发电厂、水力发电厂、核能发电厂、 风力发电厂、地热发电厂、太阳能发电厂和潮 汐发电厂等。
➢ 发电厂举例
2020/5/7
6
2.变电所 变电所是联系发电厂和用户的中间环节,起
电气工程概论考试复习重点
第一章绪论(注:由于填空简答没有明确是哪些,所以请各位同学自主选择性背诵)1.电能的特点和电能生产必须满足的要求?答:特点:电能可以大规模生产;电能运输简单,便于大容量、远距离传输和分配;电能方便转换和易于控制;电能代替其他能源可以提高能源利用效率,被称为“节约的能源”。
要求:安全,在电能的生产、传输、分配和使用的过程中,不应发生人身和设备事故;可靠,要保持足够的备用容量和备用能源,以保证电能用户对供电可靠性的要求;优质,保证电能的良好质量,以满足电能用户对电压、频率和波形的质量要求;经济,建设投资要省,尽可能减少能源消耗以及网损等。
2.什么是电力系统?答:由发电厂内的发电机、电力网内的变压器和电力线路以及用户的各种用电设备,按照一定的规律连接而组成的统一整体,称为电力系统。
3.为什么要组建大型电力系统?答:提高供电的可靠性,组成电力系统后由于装机容量大,并列运行机组多,抗干扰能力强,并且大型电力系统在各地区之间互供电能,互为备用,提高供电可靠性;减少系统装机容量,利用地区之间的时间差、季节性,错开高峰负荷用电,削弱系统负荷的尖峰,因而在满足用电高峰负荷条件下,减少系统装机容量;减少系统备用容量,大型电力系统所需备用容量,要比按各个发电厂孤立运行时所需备用容量的总和小的多;采用高效率大容量的发电机组,一个电力系统的最大单机容量受电力系统容量的制约,所以需要使用大型电力系统,拥有足够的备用容量;合理利用能源,充分发挥水电在系统中的作用。
4.电力系统的特点?答:电能不能大量存储;暂态过程十分短暂;地区性特点较强;与国民经济各部门有着极为密切的关系。
5.对电力系统的要求?答:为用户提供充足的电力;保证供电的安全可靠;保证良好的电能质量;提高电力系统运行经济性。
6.电能的质量指标?答:电压、频率、波形。
7.为什么要规定电力系统额定电压?简述发电机、变压器和电力线路的额定电压与电力系统额定电压之间的关系。
《电气工程概论》第一章 电机与电器基础(第1节)课堂笔记及练习题
《电气工程概论》第一章电机与电器基础(第1节)课堂笔记及练习题主题:第一章电机与电器基础(第1节)学习时间:2015年9月28日--10月4日内容:我们这周主要学习绪论以及第一节开关电器的部分内容,主要学习开关电器的技术参数,低压断路器(自动开关)的用途、分类、选择要点,低压控制器的用途、选用。
通过绪论的学习对电气工程概论这门课程有个总体的了解,同时要对低压断路器(自动开关)、低压控制的概念以及技术参数和使用方法重点掌握。
绪论1.电气工程的历史和形成电气工程是研究电磁领域的客观规律及其应用的科学技术,以电工科学中的理论和方法为基础而形成的工程技术。
根据电气工程学科的发展现状,可将其分为相对独立的五个分学科:电力系统及其自动化技术、电机与电器及其控制技术、高电压与绝缘技术、电力电子技术和电工新技术,其结构简图如下:2.电气工程的地位和发展电气工程学科在国家科技体系中具有特殊的重要地位。
1)是国民经济的一些基本工业(能源、电力、电工制造等)所依靠的技术科学;2)是另一些基本工业(交通、铁路、冶金、化工、机械等)必不可少的支持技术;3)是一些高新技术的重要科技组成部分。
3.电气工程的展望1)20世纪中叶以来,以电子信息技术为核心的新技术革命正在兴起,冲击着所有传统科学,包括基础科学、技术科学、综合科学,甚至社会科学等在内的广大领域。
2)有人统计,最近20年中的科技创造和发明超过了过去两千年中创造发明的总和。
3)在技术科学范围内,不少学科都发生了“旧貌换新颖”的变化,电工学科的巨大变化也十分显著。
第一章电机与电器基础第一节开关电器1.1.1概述1.开关电器概述(1)断路器:电力网正常工作和发生故障时关合和开断电路。
(2)隔离开关:将高压设备与电源隔离,以保证检修工作人员的安全。
(3)熔断器:电路发生故障或短路时,依靠熔件的熔断来开断电路。
(4)低压控制电器:接通和分断低压交、直流的控制电路。
其中,高压断路器是电力系统中最重要的高压开关电器,不但要用于关合、开断正常线路工作,更主要是用来在电力系统发生短路故障时自动切断短路电流。
电气工程概论第三章-电力电子
电气工程概论
3.1 功率半导体器件
图3-2示出了各种功率半导体器件的工作范围
电气工程概论
3.1 功率半导体器件
二、大功率二极管
大功率二极管属不可控器件,在不可控整流、电感性负载回路 的续流等场合均得到广泛使用。
(一)大功率二极管的结构 大功率二极管的内部结构是一个具有P型、N型半导体、一个PN 结和阳极A、阴极K的两层两端半导体器件,其符号表示如图33(a)所示。 从外部构成看,也分成管芯和散热器两部分。一般情况下, 200A以下的管芯采用螺旋式(图3-3(b) ),200A以上则采用平板 式(图3-3(c) )。
1. 电压参数
(1)断态重复峰值电压UDRM 取断态不重复峰值电压UDSM的90%定义为断态重复峰值电压UDRM, “重复”表示这个电压可以以每秒50次,每次持续时间不大于 10ms的重复方式施加于元件上。
电气工程概论
3.1 功率半导体器件
(2)反向重复峰值电压URRM
取反向不重复峰值电压URSM的90%为定义为反向重复峰值电压 URRM,这个电压允许重复施加。
电气工程概论
3.1 功率半导体器件
三、晶闸管(SCR)
晶闸管是硅晶体闸流管的简称,其价格低廉、工作可靠,尽管 开关频率较低,但在大功率、低频的电力电子装置中仍占主导 地位。 (一)晶闸管的结构 晶闸管是大功率的半导体器件,从总体结构上看,可区分为管 芯及散热器两大部分,分别如图3-7及图3-8所示。
晶闸管常应用于低频的相控电力电子电路,有时也在高频电力电子电路中 得到应用,如逆变器等。在高频电路应用时,需要严格地考虑晶闸管的开 关特性,即开通特性和关断特性。
(1)开通特性 晶闸管由截止转为导通的过程为开通过程。图3-11给出了
电气工程基础概论(pdf 33页)
电力网
用户
发电厂的 动力部分
+
按照一定规律连接而组成的统一整体,称为电力系统
动力系统
合肥工业大学 .电气与自动化工程学院
1.3 电力系统
一、电力系统的基本概念
1、电力系统的含义
水轮机 水库
发电机
升压变
降压变
输电线路
电力系 统的基 本参数?
用电设备
发电厂
电力网
用户
(1)系统装机容量(发电机额定有功功率总和,MW)
2、发电厂
水轮机 水库
发电机 升压变
降压变
输电线路
用电设备
发电厂
电力网
用户
发电厂是生产电能 的工厂,它把其他 不同类的一次能源 转换成电能。
火力发电厂(火电厂、热电厂) 水力发电厂(堤坝式、径流式、抽水蓄能式) 核动力发电厂(压水堆、沸水堆) 其他发电厂(风力、太阳能、地热、沼气、 潮汐、海浪)
合肥工业大学 .电气与自动化工程学院
合肥工业大学 .电气与自动化工程学院
1.1 概述
1、电能是什么?
它是一种二次能源!由一次能源经加工 转换而成的能源。
2、电能的意义?
假如没有电能,我们的生活、生产、社 会将发生什么变化?
3、电能的特点?
① 可以大规模生产; ② 便于输送和分配; ③ 便于转换和控制; ④ 提高能源利用效率; ⑤ 无污染,噪声小。
(2)系统年发电量(发电机全年发电量总和,MWh)
(3)最高电压等级(电力线路的最高额定电压,kV) (4)最大负荷(一段时间内有功负荷最大值,MW) (5)年用电量(所有用户全年所用电量总和,MWh)
(6)额定频率 (交流工频:50Hz)
合肥工业大学 .电气与自动化工程学院
电气工程概论知识点汇总
电气工程概论知识点汇总1,电气工程可分为:电器与电机及其控制技术,电力电子技术,电力系统及其自动化技术,高电压与绝缘技术,电工新技术。
2,开关电器是指用来关合和开断电路的电器。
断路器的作用:主要用在电力网正常工作和发生故障时关合和开断电路。
隔离开关作用:用来将高压设备与电源隔离,以保证检修人员的安全.熔断器作用:用来在电路发生故障或短路时依靠熔件的熔断来开断电路。
低压控制电气:用于接通和分断低压交,直流的控制电路。
3,SF6断路器SF6的作用是灭弧和绝缘介质.高压断路器是电力系统中最重要的高压开关电器,不但要用于关合,开断正常线路工作,更主要用来在电力系统发生短路故障时自动的切断短路电流。
低压断路器主要用于配电线路和电气设备的过载,欠压,失压和短路保护,是低压开关中性能最完善的开关,常在低压大功率电路中作为主控电器。
4,断路器的额定电流是指截流部分和接触部分设计时所根据的电流.熔体的额定电流是指熔体本身所允许通过的最大电流.对同一熔断器来说,通常可分别装入不同额定电流的熔体,最大的熔体额定电流可与熔断器的额定电流相同.5,触头结构经历的三个阶段:圆盘形触头,横向磁场触头,纵向磁场触头。
6,变压器主要由导磁铁心及两个紧密耦合的绕组组成.7,电压互感器的作用:把高电压转换成100V或50V二次电压,供保护、计量、仪表装置使用,对一次设备和二次设备进行隔离。
电流互感器的作用:将很大的一次电流转变为1A或的5A二次电流;为测量装置和继电保护的线圈提供电流;对一次设备和二次设备进行隔离。
8,电流互感器二次绕组不允许开路,二次绕组和外壳必须可靠接地,以防止因绝缘击穿而危害人身安全。
电压互感器二次绕组不允许短路,二次绕组和铁心必须可靠接地,二次负载不易接太多,以免降低负载阻抗,影响测量准确度。
9,并联电容器主要用在交流电系统中进行无功补偿,提高功率因数,降低线路损耗,充分发挥输电设备的效能。
10,电抗器主要用与实现对电力系统和工业用户的限流,无功补偿,移项等功能,对提高电能质量,提高电网运行的可靠性,降低系统故障率具有重要意义。
电气工程概论课程总结
电气工程概论课程总结电气工程概论是电气工程专业的入门课程,通过该课程的学习,我对电气工程的基本概念、原理和应用有了初步的了解。
本文将以四个方面进行总结:课程内容回顾、学习收获、实践应用和未来发展。
1. 课程内容回顾电气工程概论课程内容主要包括以下几个方面:(1) 电路基本理论:包括电流、电压、电阻、电容等基本概念,以及欧姆定律、基尔霍夫定律和电路分析方法等。
(2) 电气元件与电路:介绍了电阻、电容、电感、二极管和晶体管等电气元件的基本原理和应用。
(3) 电力系统:涵盖了电力的发电、输送和配电等基本知识,以及电能质量和电网安全等问题。
(4) 控制系统:讲解了控制系统的基本原理、闭环控制和开环控制等内容。
(5) 电气设备与机械设备:介绍了电机、变压器、发电机等电气设备的工作原理和应用场景,以及选型和维护等问题。
2. 学习收获通过学习电气工程概论课程,我获得了以下几方面的收获:(1) 基础理论知识:通过掌握电路基本理论和电气元件的原理,我对电路的搭建和分析有了更深入的理解。
(2) 系统思维能力:学习电力系统和控制系统相关知识,培养了我分析和解决实际问题的能力。
(3) 实践应用能力:通过实验和课程设计,我学会了使用电子设备和仪器,掌握了如何进行电路调试和故障排除。
(4) 团队合作能力:在课程项目中,我与同学合作完成了多个小组任务,培养了与他人合作解决问题的能力。
3. 实践应用电气工程概论课程的学习为我今后的实践应用奠定了基础:(1) 工程实践:我可以运用所学知识进行实际的工程设计和电路调试,提高工作效率和准确性。
(2) 电器维修:在日常生活中,我可以运用所学知识进行电器故障排除和维修,提高家庭电器的使用寿命。
(3) 新能源领域:随着新能源技术的快速发展,电气工程师在太阳能、风能等领域将有更多的应用机会。
4. 未来发展电气工程概论课程只是电气工程专业学习的开端,未来还有更多深入的专业课程等待学习:(1) 信号与系统:学习信号与系统等专业课程,深化对电气工程中信号传输和处理的理解。
电气工程学科概论复习提纲
电气信息概论复习提纲
题型:
填空题,简答题,论述题
第一章:
莱顿蓄电瓶,避雷针,库仑定律,电流的发现,伏打电池,奥斯特电流的磁效应,安培定律,欧姆定律,电磁感应定律。
第二章:
电动机的原理,电动机也叫驱动装置,发电机,实用发电机,交流发电机和交流电动机;交流发电机和远距离输电;电力系统的优越性;电磁学理论;电子管有线通信;无线通信;现代计算机的结构及逻辑基础;控制的基本原理;经典控制理论与现代控制理论的数学模型
第三章:
电类专业的划分;两大电类专业的具体分科;动力领域的电类专业,信息领域的电类专业;
第三章:
专业定位;。
电气工程概论
根据学科发展可分为:电机与电器及齐其控制技术、电力电子技术、电力系统及其自动化技术、高电压与绝缘技术、电工新技术。
开关电器短路器:主要用在电力网正常工作和发生故障时观合合开断电路。
隔离开关:主要用来将高压设备与电源隔开,以保证检修工作人员的安全。
熔断器:用来在电路发生故障或短路时依靠熔断来开断电路。
低压控制电路:用来接通和分段低压交直流的控制电路。
高压断路器根据灭弧介质及其作用原理分为:油断路器、真空断路器、压缩空气断路器和SF6断路器。
万能式四种操作方式:手柄操作,杠杆操作,电磁铁操作,电动机操作。
低压断路器的选择要点:断路器的额定工作电压不应小于线路的额定电压,断路器的额定电流不应小于线路的计算负载电流,断路器的额定断路通断能力应不小于线路中可能出现的最大短路电流,线路末端单相对地断路电流应不小于1.25倍断路器脱扣器整定电流,欠电压脱扣器额定电压等于线路额定电压,是否需要延时,按使用场合的需要而定,注意断路器接触方向,注意与其他电器的配合协调,电动机保护断路器的瞬时动作电流应考虑电动机的启动条件。
接触器主要有交流接触器和直流接触器。
控制继电器的分类:电磁式(按被控制对象的电压电流和负载性质及要求来选择)时间继电器(应注意延时时间和延时方式)热过载继电器(主要用于长期或断续工作电动机的保护,选用时应注意电动机的型号、容适用场合等。
触头的改进大致经过了三个阶段:圆盘形触头,横向磁场触头,纵向磁场触头。
圆盘形触头:缺点:随着开断电流的增大,阳极出现斑点,电弧由扩散型变成积聚型,电弧就难以熄灭了。
目前只用于开断电流要求不大的真空负荷开关和真空接触器上。
横向磁场触头特点:它与电弧电流产生的电磁力能使电弧在电极表面运动,防止电弧停留在某一点上。
纵向磁场触头:它是由流经触头的电流自身产生的。
交流电量过零时,纵向磁场强度也为零,有利于电子和离子的径向扩散。
真空灭弧室主要由绝缘外壳、屏蔽罩、波级管和动静触头组成。
电气工程概论复习资料
电气工程概论复习资料第二章电机电器及其控制技术1.电机的作用:电能的生产传输和分配,驱动各种机械和装备,控制电机。
2.电机的发展历史:初始阶段为永磁式发电机,实用度不高,1845年惠斯通用电磁铁职称第一台电磁铁发电机,1866年西门子制成第一台自激式发电机,自激原理的发现是永磁式发电机想励磁式发电机发展的关键,1870年格拉姆支撑了环形电枢自激发电机,之后出现了铁芯开槽法,1880爱迪生制造了大型直流发电机,1885研制出两相异步电动机,1888年第一台三相交流异步电动机诞生。
3.随着电工科学,材料科学,计算机科学及控制技术的发展,电机的发展又进入了新的阶段。
特别是电力电力,微机控制技术,永磁材料和超导材料的发展,给电机的发展注入了新的活力。
4.电机的分类,可按照应用的电流种类,功能分类,运行速度,功率分类,不乏有特种电机。
5.同步电机中发电机应用较多,异步电机中电动机拖动应用更多6.异步电机的工作原理和异步的含义:定子绕组接三相对称交流电,在气隙中建立基波圆形旋转磁动势,从而产生旋转磁场;气隙磁场与转子绕组有相对运动,切割转子绕组,产生电动势,转子带电;带电转子在变化磁场中受到电磁力的作用,从而产生电磁转矩。
转子便在电磁转矩的作用下旋转起来。
电机转速与旋转磁场不可能同步,始终存在转差率,因此称为异步电动机;异步电动机转子电流是通过电磁感应作用产生的,所以又称为感应电动机。
7.同步电机选取:转子强度和固定转子绕组考虑,用隐极同步电机(气隙均匀,转子圆柱形),当转子速度和离心力较小时,采用凸极同步电机(不均匀,极弧范围气隙小,极间部分气隙大)。
8.永磁无刷电动机分为方波驱动和正弦波驱动,随着稀土永磁材料技术,电力电子技术,计算机控制技术,和微电机制造工艺的提升,使得该电机发展及性能不断提高。
9.对起动、调速及制动没有特殊要求时(水泵、通风机、输送机、传送带),选用笼型电机;对重载起动的机械(起重机、卷扬机、锻压机及重型机械),选用绕线转子电机。
电气工程概论重点
电气工程概论重点第一章绪论电能(de)基本要求:1.安全 2.可靠 3.优质 4.经济能量(de)形式:机械能,热能,化学能,辐射能,电能和核能能量(de)转换:形态,空间(输送),时间(储存)电力系统(de)基本概念:由发电机、电力网内(de)变压器和电力线路以及用户(de)各种用电设备,按照一定(de)规律连接而组成(de)统一整体,称为电力系统.电力系统(de)特点:1.电能不能大量存储 2.暂态过程十分短暂 3.地区性特点较强 4.与国民经济各部门有着极为密切(de)关系.对电力系统(de)要求:1.为用户提供充足(de)电力 2.保证供电(de)安全可靠 3.保证良好(de)电能质量4.提高电力系统运行经济性大型电力系统(de)优势:1提高供电(de)可靠性,2减少系统装机量,3减少系统备用容量,4采用高效率大容量发电机组,5合理利用能源,充分发挥水电在系统中(de)作用电能质量(de)主要指标有电压、频率和波形.为什么要规定电力系统额定电压为了使电力系统和电气设备制造厂(de)生产标准化、系列化和统一化,电力系统(de)电压等级应有统一(de)标准.发电机,变压器和电力线路(de)额定电压与电力系统(de)额定电压(de)关系:发电机(de)容量一般比电力系统高5%,升压变压器(de)一次绕组(de)额定电压比电力系统高5%,二次高10%,降压器一次与电力系统相同,二次绕组高10%,电力线路和电力系统额定电压相同电力系统电压等级特点: 1.发电机(de)额定电压较电力系统(de)额定电压高出5%.2.电力变压器(de)一次绕组是接受电能(de),相当于受电设备,其一次绕组(de)额定电压应等于电力系统(de)额定电压,对于直接和发电机连接(de)升压变压器(de)一次绕组额定电压应等于发电机(de)额定电压,使之相互配合.3.电力变压器(de)二次绕组是提供电能(de),相当于供电设备,其二次绕组(de)额定电压较电力系统额定电压高出10%.但在3、6、10kV电压时,如短路阻抗小于%(de)配电变压器,则其二次绕组(de)额定电压比同级电网(de)额定电压高出5%.第二章电气设备(de)原理与功能变压器:利用电磁感应原理吧一种电压等级(de)交流电转换成相同频率(de)另一电压等级(de)交流电能. 采用高压输电能减少线路损耗变压器分类:油浸式,干式以及水冷式变压器额定值:1额定容量,2额定电压3额定电流4阻抗电压5短路损耗6空载损耗7空载电流百分值8链接组号变压器(de)过负荷能力:指在较短(de)时间累所能输出(de)功率,在一定条件下,可以超出变压器(de)额定容量发电站和变电站(de)主要作用:生产,输送和分配电能;根据电力系统要求投切线路;见识主要设备(de)工作状态;队主要设备进行定期(de)检修和维护;迅速消除故障,尽量减小故障(de)影同步发电机(de)非正常状态:过负荷运行,异步运行,不对称运行发电机励磁系统(de)基本要求:1有足够(de)强励顶值电压,2具有足够(de)励磁电压上升速度3有足够(de)调节容量,4应运行稳定,工作可靠,相应快速,调节平滑,具有足够(de)电压调节精度转差率:转差率为转子转速n 与同步转速0n 之差(0n -n )对同步转速0n (de)比值,以s 表示,则s=(0n -n )/0n异步电机三种运行状态:1. 电动机状态 当0<n<0n 即0<s<1时2. 发电机状态 n>0n ,s<03. 电磁制动状态 n<0,s>14. 最大转矩Tm=k ’U^2/2X 20三相异步电动机(de)启动方式:全压启动,降压启动,绕线型电机(de)启动 断路器(de)基本技术数据(断路器是开关电器)1. 额定电压N U . 额定电压是指断路器长期工作(de)标准电压(线电压).它决定着断路器(de)绝缘尺寸,也决定断路器(de)熄弧条件.断路器可以在~倍(de)系统额定电压下正常工作.2. 额定电流N I 额定电流是指断路器长时间允许通过(de)最大工作电流.额定电流决定着断路器(de)导电回路(de)几何尺寸.3. 额定开断电流Nbr I 额定开断电流是指断路器在额定电压下能保证正常开断(de)最大短路电流.该电流是断路器开断能力(de)一个重要参数.开断电流和电压有关,在低于额定电压时,断路器开断电流可以提高,但由于灭弧装置机械强度(de)限制,开断电流有一极限值,该极限值称为极限开断电流.4. 短路关合电流NCl I 在额定电压下,能可靠关合、开断(de)最大短路电流称为额定关合电流,它是表征断路器灭弧能力、触头和操动机构性能(de)重要参数之一.断路器合闸于有潜伏性故障(de)线路时,就要经历一个先合后跳(de)操作循环,此时只有断路器(de)额定关合电流大于冲击电流,才能可靠地开断. 5. 热稳定电流th I 表示断路器承受短路电流热效应(de)能力.我国规定4s 内所能承受(de)热稳定电流为额定热稳定电流.通常断路器(de)热稳定电流等于它(de)额定开断电流.6. 动稳定电流es i 动稳定电流亦称为极限通过电流,是指断路器承受短路电流电动力效应(de)能力.即指断路器处在合闸位置时,允许通过(de)短路电流最大峰值.动稳定电流决定于导电部分及支持绝缘子部分(de)机械强度,并决定于触头(de)结构形式.7. 全开断(分闸)时间ab t 全开断时间是指断路器从接到分闸命令瞬间到电弧完全熄灭为止(de)时间间隔.全开断时间是用来表征断路器开断过程快慢(de)一种参数.该参数是断路器固有分闸时间与燃弧时间之和.8. 合闸时间on t 合闸时间是指断路器从接到合闸命令瞬间到各相(de)触点均接触为止(de)时间间隔.9. 额定断流容量Nbr S 断流容量综合反映断路器(de)开断能力,与额定电压和额定开断电流两个因素有关,Nbr S =3N U Nbr I互感器 互感器(de)主要作用是:把高电压和大电流按比例地换成低电压(100V 或100/3V )和小电流(5A 或1A ),以便提供测量和继电保护所需(de)信号,并使测量仪表和继电保护装置标准化、小型化;把高电压(一次)部分与低电压(二次)部分相互隔离,且互感器二次侧均接地,以保证运行人员和设备(de)安全. 互感器(de)分类及作用是什么互感器二次侧为何必须接地互感器分为电压互感器,电流互感器和新型互感器,(作用同上)互感器二次侧均接地,以保证运行人员和设备(de)安全.电流互感器在运行中,为什么二次绕组不允许开路当电流互感器二次绕组开路时,2•I =0,则二次侧磁动势2•F =0,而使一次侧磁动势1•F 全部用来励磁,即0•F =1•F ,从而使铁心中(de)合成磁动势较正常情况下增大很多倍,并使铁心严重饱和.铁心中磁通(de)变化d φ/dt 成正比,因此,二次绕组将在磁通过零时,感应产生很高(de)尖顶波电动势,其值可达数千甚至上万伏,这对工作人员及仪表、继电器等都是极其危险(de).同时由于磁感应强度剧增,铁心损耗大大增加,铁心会产生严重过热,损坏线圈(de)边缘.此外铁心中还会有剩磁,使互感器误差增大.因此,电流互感器在运行中,二次回路是不允许开路(de).若需断开某个仪表和继电器,必须先将该仪表或继电器绕组短路后,才能断开仪表和继电器.第三章电气设备(de)分类与系统一次设备:生产,输送,分配和使用电能(de)设备二次设备:一次设备和系统(de)运行状态进行测量,控制,监视和保护(de)设备 电力系统分为:发电系统,输变电系统,配电系统,用电系统2、火电厂(de)生产流程及特点火电厂(de)种类虽很多,但从能量转换(de)观点分析,其生产过程却是基本相同(de),概括地说是把燃料(煤)中含有(de)化学能转变为电能(de)过程.整个生产过程可分为三个阶段:① 燃料(de)化学能在锅炉中转变为热能,加热锅炉中(de)水使之变为蒸汽,称为燃烧系统;② 锅炉产生(de)蒸汽进入汽轮机,推动汽轮机旋转,将热能转变为机械能,称为汽水系统;③由汽轮机旋转(de)机械能带动发电机发电,把机械能变为电能,称为电气系统.分类标准:按燃料,按原动机,按供出能源,按发电厂总装机容量,按蒸汽压力和温度,按供电范围特点:1布局灵活.2一次性投建设资少3耗煤量大4动力设备繁多5大型发电机组有停机到开机并带满负荷时间久6各种排放物污染大3水力发电:生产过程,从河流高处火水库内引水,利用水(de)压力或流速冲动水轮机旋转,将水能转变成机械能,然后由水轮机带动发电机旋转,将机械能转变成电能.特点:能量转换过程中损耗小,发电效率高分类:堤坝式水电厂,引水式发电厂和混合式水电厂特点:1水能是再生能源2可综合利用3发电成本低,效率高4运行灵活5可储蓄可调节6建设和生产受自然环境影响7建设投资大,工期长4抽水蓄能电厂工作原理抽水蓄电厂是以一定水量作为能量载体,通过能量转换向电力系统提供电能.为此,其上、下游均需有水库以容蓄能量转换所需要(de)水量.在抽水蓄能电厂中,必须兼备抽水和发电两类设施.在电力负荷低谷时(或丰水时期),利用电力系统(de)富余电能(或季节性电能),将下游水库中(de)水抽到上游水库,以位能形式储存起来;待到电力系统负荷高峰时(或枯水时期),再将上游水库中(de)水放下,驱动水轮发电机组发电,并送往电力系统,这时,用以发电(de)水又回到下游水库.显而易见,抽水蓄能电厂既是一个吸收低谷电能(de)电力用户(抽水工况),又是一个提供峰荷电力(de)发电厂在电力系统中作用:调峰,填谷,备用,调频,调相,黑启动,蓄能第二节输变电系统输变电系统组成:变换电压(de)设备,接通和开断电路(de)开关电器,防御过电压,限制故障电流(de)电器,无功补偿设备,载流导体,接地装置功能:将发电厂生产(de)电能经过输变电系统配给给配电系统和用户电气主接线形式:有汇流母线和无汇流母线,有汇流母线(de)形式有单母线,单母线分段,单母线分段带旁路母线,双母线,双母线分段,双母线带旁路母线和一台半断路器接线.无汇流母线形式有单元接线,桥式接线和角形接线.双母线带旁路断路器(de)电器主接线形式检修某一出线时,不中断回路步骤:w2,w1正常供电,接通旁路断路器QF2旁边(de)母线隔离开关和和旁路母线隔离开关,再闭合QF2,是旁路母线W3带点,若W3故障则由几点保护装置断开QF2,若W3正常,闭合QS4,断开QF4,再断开QF4两端隔离开关,此时即可不中断回路供电检修高压直流输电系统就是将送端系统(de)高压交流电,经换流变压器变压,由换流器将高压交流转换成高压直流,通过直流输电线路输送到另一端换流站,再由换流器将高压直流转换成高压交流,然后经过换流变压器与受端交流电网相连,将电能送至受端系统.通常将交流转换成直流称为整流,实现整流功能(de)装置称为整流器;将直流转换成交流称为逆变,实现逆变功能(de)装置称为逆变器.整流器和逆变器统称为换流器.配电系统组成及作用:配电系统处于电力系统末端,把发电系统或输变电系统与用户连接起来,向用户分配电能和供给电能(de)重要环节,组成包括配电变电站,高低压配电线路和接户线在内(de)整个配电网和设备常用(de)几个重要指标1.供电可靠率 供电可靠率=1—(统计期间总时间用户平均停电时间)×100% 2.网损率 网损率=总供电量电力网电能损耗量×100% 3.电压合格率 电压合格率是指电力系统某点电压在统计时间内电压合格(de)时间占总时间(de)百分比.电压合格率有日电压合格率、月电压合格率和年电压合格率之分.电压系统负荷 按供电(de)可靠性划分一类负荷(亦称一级负荷)二类负荷(亦称二级负荷)三类负荷(亦称三级负荷)负荷曲线:描述某一段时间内用电负荷(de)大小随时间变化规律(de)曲线 日负荷曲线是描述一天24h 负荷变化情况(de)曲线,分为日有功负荷曲线和日无功负荷曲线.日负荷曲线对电力系统(de)规划设计和运行十分有用,它是安排日发电计划、确定各发电厂发电任务和系统运行方式以及计算用户日用电量等(de)重要依据.年负荷曲线是描述一年内每月(或每日)最大有功负荷随时间变化情况(de)曲线,分为年最大负荷曲线和年持续负荷曲线.年最大负荷曲线是描述一年内每月(或每日)最大有功负荷随时间变化情况(de)曲线.年持续负荷曲线是按一年内系统负荷数值(de)大小及其持续小时数依次由大到小排列绘制而成(de)曲线.这种曲线可用来安排发电计划及进行可靠性估计.如果用户始终保持最大负荷P m ax 运行,经过T m ax 时间后所消耗(de)电能恰好等于全年(de)实际耗电量,则称T m ax 为年最大负荷利用小时数,即T m ax =m ax P A =m ax 1P 87600Pdt 年最大负荷利用小时数(de)大小,在一定程度上反映了实际负荷在一年内(de)变化程度.消弧线圈(de)作用及其使用范围:当发生单相接地故障时,接地故障与消弧线圈构成另一个回路,接地故障相接地电流中增加了一个感性电流,和装设消弧线圈前(de)容性电流方向相反,相互补偿较少了接地故障点(de)故障电流,使电弧易于自行熄灭,从而避免引起各种危害,提高了供电可靠性,范围:3-6kv 电力网30A,10kv 电力网20A,35-60kv 电力网10A消弧线圈一般运行在过补偿状态原因:在过补偿方式下,即使电力网运行方式改变,也不会发展成为全补偿方式,致使电力网发生谐振,同事,由于消弧线圈有一定(de)裕度,今后电力网发展线路增多,对地电容增加后,原有消弧线圈还可以继续使用.第四章 设备工作接地与保护接地第一节 概述工作接地 为了保证电气设备在正常或发生故障情况下可靠工作而采取(de)接地.工作接地一般都是通过电气设备(de)中性点来实现(de),所以又称为电力系统中性点接地.保护接地为了保证工作人员接触时(de)人身安全,将一切正常工作时不带电而在绝缘损坏时可能带电(de)金属部分接地,称为保护接地.保护接零在中性点直接接地(de)低压电力网中,把电气设备(de)外壳与接地中性线(也称零线)直接连接,以实现对人身安全(de)保护作用,称为保护接零(或简称接零).防雷接地为了防止雷击和过电压对电气设备及人身造成危害,必须将强大(de)雷电流安全导入大地,以此为目(de)(de)接地称为防雷接地,也称过电压保护接地.防静电接地为消除生产过程中产生(de)静电积累引起触电或爆炸而设置(de)接地称为防静电接地.第二节工作接地(中性点接地)我国电力系统(de)中性点接地方式主要有四种,即中性点不接地(中性点绝缘)、经消弧线圈接地、中性点直接接地和经电阻接地.根据电力系统中发生单相接地故障时接地故障电流(de)大小,可将中性点接地(de)方式分为两类:一类是小电流接地系统,包括中性点不接地和经消弧线圈接地;另一类为大电流接地系统,包括中性点直接接地和经电阻接地.电力系统中性点经消弧线圈接地时,有三种补偿方式,即全补偿方式、欠补偿方式和过补偿方式.①若选择消弧线圈(de)电感时,使得I L=I C,则接地电容电流将全部被补偿,接地故障点电流为零,此即全补偿方式.采用全补偿方式使接地电流为零似乎很理想,但实际上此时容抗等级感抗,系统会发生串联谐振,产生很大(de)谐振电流,并在消弧线圈(de)阻抗上形成很高(de)电压降,使中性点(de)对地电位大为升高,可能会损坏设备(de)绝缘.②若I L<I C,则接地故障点有未被补偿(de)电容电流流过,这种补偿方式称为欠补偿方式.采用欠补偿方式时,当电力网运行方式改变而切除部分线路时,整个电力网对地电容抗将减小,有可能发展为全补偿方式,导致电力网发生谐振,危及系统安全运行;此外,欠补偿方式容易引起铁磁谐振过电压等其他问题,所以很少被采用.③若I L>I C,则接地故障点有剩余(de)电感电流流过,这种补偿方式称为过补偿方式.在过补偿方式下,即使电力网运行方式改变而切除部分线路时,也不会发展成为全补偿方式,致使电力网发送谐振.同时,由于消弧线圈有一点(de)裕度,今后电力网发展,线路增多、对地电容增加后,原有消弧线圈还可以继续使用.因此,实际上大多采用过补偿方式.保护接地与接零方式混用(de)危害及中性线重复接地(de)必要性如果同时采用了接地和接零两种保护方式,若实行保护接地(de)设备发生故障,则中性线(de)对地低呀压将会升高到电源相电压(de)一半或更高.这时,实行保护接零(de)所有设备上,便会带有统样(de)高电位,使设备外壳等金属部分将呈现较高(de)对地电压,从而危及操作人员(de)安全.所以同一低压配电系统内,保护接地与保护接零这两种不同(de)方式一定不能混用.在中性点直接接地(de)低压配电系统中,为确保接零保护方式(de)安全可靠,防止中性线断线所造成(de)危害,系统中除了工作接地外,还必须在整个中性线(de)其他部位再行接地,称之为重复接地.当中性点直接接地(de)低压配电系统实行重复接地后,可保证在万一出现中性线断线(de)情况下,配电系统(de)保护方式可以从保护接零(de)TN方式转化为保护接地(de)TT方式,从而减轻触点(de)危险程度.保护接地方式及其作用:1 IT接地,通过降低接地电阻Re以及限制设备外壳接地电压Ue(de)值 2 TT接地通过接地电流使回路(de)过电流装置动作而切断故障电路3TN 接地一般情况下使熔断器熔断或自动开关跳闸,从而切断电源保障人生安全.一台半断路器接线单元接线双母线带旁路母线接线 QF2—专用旁路断路器;QS1、QS2—旁路隔离开关;W3—旁路母线第五章 电压、功率及电能损耗(de)计算工程上常用(de)几个计算量1. 电压降落 指网络元件首、末端电压(de)相量差(1•U —2•U )2. 电压损耗 指网络元件首、末端电压(de)数值差(1U —2U ) 电压损耗=N U U U 21-×100% 3. 电压偏移 指网络中某点(de)实际电压值与网络额定电压(de)数值差(N U U -)电压偏移常以百分比值表示,即 电压偏移=NN U U U -×100% 4. 输电效率 指线路末端输出(de)有功功率2P 与线路首端输入(de)有功功率1P (de)比值,常以百分值表示,即 输电效率=%10012⨯P P 中枢点是指那些反映系统电压水平(de)主要发电厂或枢纽变电站(de)母线,系统中大部分负荷由这些节点供电.1. 逆调压 高峰负荷时升高电压(N U )、低谷负荷时降低电压(N U )(de)中枢点电压调整方式,称为逆调压.这种方式适用于中枢点供电线路长,负荷变化范围较大(de)场合.2. 顺调压 高峰负荷时允许中枢点电压略低(N U )、低谷负荷时允许中枢点电压略高(U).N3.常调压在任何负荷下都保持中枢点电压为基本不变(de)数值,取(~)UN第六章短路故障分析与计算短路所谓“短路”就是电力系统中一切不正常(de)相与相之间或相与地之间发生通路(de)情况.短路(de)四种类型三相短路、两相短路、单相接地短路、两相接地短路有名值(任意单位)标幺值标幺值=位)基准值(与有名值同单序阻抗:元件三相参数对称时,元件两端某一序(de)电压降与通过该元件同一序电流(de)比值.。
电气工程概论
电气工程概论第三章绪论3.1电力系统发展简史3.1.1电力工业简介1由一种或几种一次能源经过转换或加工得到的能源产品,称为二次能源。
电能是一种应用极其广泛的二次能源。
2电力工业的主要生产环节有发电、输电、变电、配电、用电。
3常用的电压等级:高压输电电压220kV高压配电电压35~110kV中压配电电压1~35kV低压配电电压6~10kV,380/220kV3.1.2欧美电力工业的发展简史3.1.3中国电力工业的发展3.1.4中国电力系统现状与展望3.2电力系统简介3.2.1电力系统的功能与作用1监测供电质量的指标有全网的频率、各供电点的电压、电压和电流波形、三相不对称度、电压闪变等。
2电力主设备(一次设备):发电、变电、输电、配电、用电等设备称为电力主设备;由主设备构成的系统称为主系统,也称为一次系统;二次设备:测量、监视、控制、继电保护、安全自动装置、通信,以及各种自动化系统等用于保证主系统安全、稳定、正常运行的设备称为二次设备;二次设备构成的系统称为辅助系统,叶成伟二次系统。
3电力系统的基本任务是安全、可靠、优质、经济地生产、输送与分配电能,满足国民经济和人民生活需要。
4发挥电力系统的功能与作用应满足以下基本要求:满足用户需求(数量与质量要求)、安全可靠性要求、经济性要求、环保和生态要求。
3.2.2现代电力系统的特点1电力系统技术发展特征:大机组、大电网、高电压、高度自动化。
2数字化、网络化、信息化、智能化技术日益提高电力系统的自动化水平。
3新能源的开发利用,特别是可再生能源的开发利用也是现代电力技术的发展趋势。
4建立健全的电力市场机制是提高效率、降低成本、促进电力资产的合理利用与发展的有效保证。
3.2.3电力资源与负荷1中国资源的分布(西部为主)、中国能源结构(水、煤为主)、中国经济发展的格局(东部领先)决定了中国电网的发展格局:西电东送、南北互供、全国联网。
2电力系统的负荷按供电可靠性分为一级负荷、二级负荷、三级负荷。
电气工程概论第一章
235 92 1 U 1 n x y 2.5 0 0 n 200MeV
2 核聚变反应:两个轻质量的原子核结合,产生更稳定的结构并释
放出能量。
消耗同样质量的原料,核聚变反应所释放的能量为核裂变反应的 4.22倍。即每消耗1kg核聚变原料,产生约相当于11816t标准煤完全 能量 燃烧后所释放出的热能。
绪论
d
e N
dt dx t x
Nv eT ev t x
从而
式中,v=dx/dt为线圈与磁场间相对运动的速度;
eV Nv
为变压器电动势, x
辐射能
eT N 为运动电动势。 t
同时也利于突出主要特点,下面将两种电动势分别予以讨论。
机械能 辐射能
弹性势能:物体由于弹性变形而具有的做功本领。 表面能:不同类物质或同类物质不同相的分界面上,由于表面张力 的存在而具有的作功能力。
核能
第二节
能量转换原理
绪论
热能 热能是能量的一种基本形式,所有其他形式的能量都可以 完全转换为热。热能被认为是一种分子运动的能量。构成物质 的微观分子运动的动能和势能的总和称之为热能。热能既可以 显热形式储存,也可以潜热形式储存。 若系统的熵的变化为ds ,则热能 Wq Tds 在电力系统中,当电流流经电阻介质时产生的能量将散逸为 r 热能。在电机、输电线中的损耗电能可用 Ws R[i (t )]2 dt 0 机械能 辐射能 计算。
输入能量 - 输出能量 = 储存能量的变化。 任何能量转换过程都需要一定的转换条件,并在一定的设 备或系统中实现。
化学能 核能
第二节 能量转换原理
四、旋转电机中的能量转换 1、电磁感应定律
电气工程概论复习资料
电气工程学科(专业代码0806) first-grade discipline(Electrical Engineering——The branch of engineering science that studies the uses of electricity and the equipment for power generation and distribution and the control of machines and communication). 它是工程科学的一个分支,主要研究电气系统的应用和发配电设备与机械的控制及通信。
包含的二级学科:>>Motor & Electric Appliances 电机与电器>>Power System Automation 电力系统及其自动化>>High Voltage and Insulation Technology 高电压与绝缘技术>>Power Electronics and Electrical Drives 电力电子与电力传动>>Theory and New Technology of Electrical Engineering 电工理论与新技术1、MATLAB是美国Mathwork公司自1984年开始推出的一种使用简便的工程计算语言,由于其强大的数值运算能力和开放灵活的应用界面而在科学技术和工程应用的各个领域得到广泛的应用.其数学计算部分提供了强大的矩阵处理和绘图功能。
在工程仿真方面,MATLAB提供的软件几乎支持各个工程领域。
2、微机版本的SPICE称为PSpice,国外许多大学课程和电路及电子学方面的大学教科书均编入了基于PSpice的例子和练习,熟悉PSpice有利于在电力电子学课程中学习。
3、EMTP (Electro-Magnetic Transient Program) 是用于电力系统电磁暂态分析的仿真软件,是电力系统中高电压等级的电力网络和电力电子仿真应用最广泛的程序。
电气工程概论 熊信银重点概念总结
1.大型电力系统能带来那些技术经济效益:①提高供电的可靠性②减少系统装机容量③减少系统备用容量④采用高效率大容量的发电机组⑤合理利用资源,充分发挥水电在系统中的作用。
2.⑴电力系统的主要特点:①电能不能大量储存②暂态过程十分短暂③地区性特点较强④与国民经济密切相关。
⑵对电力系统的要求:①为用户提供充足的电力②保证供电的安全可靠③保证良好的电能质量④提高电力系统运行经济性3.简述衡量电能质量的主要指标,并举例说明其重要性。
①电压:电热装置消耗的功率与电压的平方成正比,过高的电压将损坏设备,过低的电压则达不到所需要的温度。
②频率:频率降低将使电动机的转速下降,影响生产效率和电机的寿命;频率增高会使转速上升,增加功率消耗,使经济性降低。
③波形:影响电机的正常运行和效率,危害电气设备的安全运行,例如谐波放大或谐振过电压烧坏变电站中无功补偿电容器。
4.为什么要规定电力系统额定电压?简述发电机变压器和电力线路的额定电压与电力系统额定电压之间的关系。
①对一个国家来说不可能建设一条输电线路就确定一个电压等级,这样会造成设备通用性差,备用设备增加,网络连接和管理都困难。
因此为了使电力系统和电气设备制造厂的生产标准化系列化和统一化,电力系统的电压等级应有统一的标准。
②发电机比系统额定电压高5%。
变压器一次绕组和系统额定电压相等,二次绕组比系统额定电压高10%。
电力线路的额定电压和系统额定电压相等。
5.①互感器的分类:电压互感器和电流互感器。
②原理:电磁感应原理③作用:电压互感器是一种电压变换装置,有电压变换和隔离两重作用,它将高电压转变为低电压(一般为100V),供给仪表和继电保护装置实现测量、计量、保护等作用。
电流互感器是一种电流变换装置,有电流变换和隔离两重作用,它将大电流转变为低压小电流(一般为5A),供给仪表和继电保护装置实现测量、计量、保护等作用。
④使用注意事项:电流互感器工作时二次侧不能开路,电压互感器工作时二次侧不能短路。
电气工程学学习重点解析
电气工程学学习重点解析电气工程学是一门研究电力的发电、输配、利用以及电器设备的工程学科。
它涵盖了电力系统、电力装置和电力工程等多个领域。
为了帮助学习者更好地理解和掌握电气工程学的核心内容,本文将对电气工程学的重点进行解析。
一、电气工程基础1. 电路理论电路理论是电气工程学的基础,它研究电荷在导体中的流动以及电压、电流和电阻之间的关系。
学习电路理论时,需要掌握欧姆定律、基尔霍夫定律和戴维南定理等基本概念和原理。
2. 电磁场理论电磁场理论是电气工程学中非常重要的一部分,它研究电荷和电流在空间中产生的电场和磁场的分布和变化规律。
了解电磁场理论对于理解电气设备的工作原理和电磁干扰的影响至关重要。
3. 动力学与能量转换动力学与能量转换是电气工程学中涉及到的另一个重要领域,它研究能量在电气系统中的传输与转换。
学习动力学与能量转换时,需要了解电机、变压器、发电机等设备的工作原理和性能参数。
二、电力系统1. 发电系统发电系统是电力系统的核心组成部分,它由发电机、变压器和输电线路等设备组成。
学习发电系统时,需要了解不同类型的发电机及其工作原理、负荷调节和发电保护的方法等内容。
2. 输电系统输电系统是将发电厂产生的电能输送到用户使用地点的系统。
学习输电系统时,需要了解不同电压等级的输电线路、输电塔和变电站的结构和运行原理,以及输电损耗和电压稳定等问题。
三、电力装置1. 变压器变压器是电力系统中常用的电能变压和电能传输设备。
学习变压器时,需要了解不同类型的变压器、变压器的构造和工作原理,以及变压器的故障诊断和维护方法。
2. 保护装置保护装置用于对电气设备和电力系统进行保护,避免过电流、过电压和短路等故障造成设备损坏和人身伤害。
学习保护装置时,需要了解不同类型的保护装置、保护原理和保护动作的判据。
四、电气工程应用1. 电机和驱动电机是电气工程学中的重点研究对象,它在工业、交通和家庭中广泛应用。
学习电机和驱动时,需要了解不同类型的电机、电机的性能参数和控制方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气工程概论重点第一章绪论电能的基本要求:1.安全2.可靠3.优质4.经济能量的形式:机械能,热能,化学能,辐射能,电能和核能能量的转换:形态,空间(输送),时间(储存)电力系统的基本概念:由发电机、电力网内的变压器和电力线路以及用户的各种用电设备,按照一定的规律连接而组成的统一整体,称为电力系统。
电力系统的特点:1.电能不能大量存储2.暂态过程十分短暂3.地区性特点较强4.与国民经济各部门有着极为密切的关系。
对电力系统的要求:1.为用户提供充足的电力2.保证供电的安全可靠3.保证良好的电能质量4.提高电力系统运行经济性大型电力系统的优势:1提高供电的可靠性,2减少系统装机量,3减少系统备用容量,4采用高效率大容量发电机组,5合理利用能源,充分发挥水电在系统中的作用电能质量的主要指标有电压、频率和波形。
为什么要规定电力系统额定电压?为了使电力系统和电气设备制造厂的生产标准化、系列化和统一化,电力系统的电压等级应有统一的标准。
发电机,变压器和电力线路的额定电压与电力系统的额定电压的关系:发电机的容量一般比电力系统高5%,升压变压器的一次绕组的额定电压比电力系统高5%,二次高10%,降压器一次与电力系统相同,二次绕组高10%,电力线路和电力系统额定电压相同电力系统电压等级特点:1.发电机的额定电压较电力系统的额定电压高出5%。
2.电力变压器的一次绕组是接受电能的,相当于受电设备,其一次绕组的额定电压应等于电力系统的额定电压,对于直接和发电机连接的升压变压器的一次绕组额定电压应等于发电机的额定电压,使之相互配合。
3.电力变压器的二次绕组是提供电能的,相当于供电设备,其二次绕组的额定电压较电力系统额定电压高出10%。
但在3、6、10kV 电压时,如短路阻抗小于7.5%的配电变压器,则其二次绕组的额定电压比同级电网的额定电压高出5%。
第二章 电气设备的原理与功能变压器:利用电磁感应原理吧一种电压等级的交流电转换成相同频率的另一电压等级的交流电能。
采用高压输电能减少线路损耗变压器分类:油浸式,干式以及水冷式变压器额定值:1额定容量,2额定电压3额定电流4阻抗电压5短路损耗6空载损耗7空载电流百分值8链接组号变压器的过负荷能力:指在较短的时间累所能输出的功率,在一定条件下,可以超出变压器的额定容量发电站和变电站的主要作用:生产,输送和分配电能;根据电力系统要求投切线路;见识主要设备的工作状态;队主要设备进行定期的检修和维护;迅速消除故障,尽量减小故障的影 同步发电机的非正常状态:过负荷运行,异步运行,不对称运行发电机励磁系统的基本要求:1有足够的强励顶值电压,2具有足够的励磁电压上升速度 3有足够的调节容量,4应运行稳定,工作可靠,相应快速,调节平滑,具有足够的电压调节精度转差率:转差率为转子转速n 与同步转速0n 之差(0n -n )对同步转速0n 的比值,以s 表示,则s=(0n -n )/0n异步电机三种运行状态:n即0<s<1时1.电动机状态当0<n<n,s<02.发电机状态n>3.电磁制动状态n<0,s>14.最大转矩Tm=k’U^2/2X20三相异步电动机的启动方式:全压启动,降压启动,绕线型电机的启动断路器的基本技术数据(断路器是开关电器)U。
额定电压是指断路器长期工作的标准电压(线电压)。
它决定着断路器1.额定电压N的绝缘尺寸,也决定断路器的熄弧条件。
断路器可以在1.1~1.15倍的系统额定电压下正常工作。
I额定电流是指断路器长时间允许通过的最大工作电流。
额定电流决定2.额定电流N着断路器的导电回路的几何尺寸。
I额定开断电流是指断路器在额定电压下能保证正常开断的最大短3.额定开断电流Nbr路电流。
该电流是断路器开断能力的一个重要参数。
开断电流和电压有关,在低于额定电压时,断路器开断电流可以提高,但由于灭弧装置机械强度的限制,开断电流有一极限值,该极限值称为极限开断电流。
I在额定电压下,能可靠关合、开断的最大短路电流称为额定关合4.短路关合电流NCl电流,它是表征断路器灭弧能力、触头和操动机构性能的重要参数之一。
断路器合闸于有潜伏性故障的线路时,就要经历一个先合后跳的操作循环,此时只有断路器的额定关合电流大于冲击电流,才能可靠地开断。
I表示断路器承受短路电流热效应的能力。
我国规定4s内所能承受5.热稳定电流th的热稳定电流为额定热稳定电流。
通常断路器的热稳定电流等于它的额定开断电流。
i动稳定电流亦称为极限通过电流,是指断路器承受短路电流电动力6.动稳定电流es效应的能力。
即指断路器处在合闸位置时,允许通过的短路电流最大峰值。
动稳定电流决定于导电部分及支持绝缘子部分的机械强度,并决定于触头的结构形式。
7. 全开断(分闸)时间ab t 全开断时间是指断路器从接到分闸命令瞬间到电弧完全熄灭为止的时间间隔。
全开断时间是用来表征断路器开断过程快慢的一种参数。
该参数是断路器固有分闸时间与燃弧时间之和。
8. 合闸时间on t 合闸时间是指断路器从接到合闸命令瞬间到各相的触点均接触为止的时间间隔。
9. 额定断流容量Nbr S 断流容量综合反映断路器的开断能力,与额定电压和额定开断电流两个因素有关,Nbr S =3N U Nbr I互感器 互感器的主要作用是:把高电压和大电流按比例地换成低电压(100V 或100/3V )和小电流(5A 或1A ),以便提供测量和继电保护所需的信号,并使测量仪表和继电保护装置标准化、小型化;把高电压(一次)部分与低电压(二次)部分相互隔离,且互感器二次侧均接地,以保证运行人员和设备的安全。
互感器的分类及作用是什么?互感器二次侧为何必须接地?互感器分为电压互感器,电流互感器和新型互感器,(作用同上)互感器二次侧均接地,以保证运行人员和设备的安全。
电流互感器在运行中,为什么二次绕组不允许开路?当电流互感器二次绕组开路时,2∙I =0,则二次侧磁动势2∙F =0,而使一次侧磁动势1∙F 全部用来励磁,即0∙F =1∙F ,从而使铁心中的合成磁动势较正常情况下增大很多倍,并使铁心严重饱和。
铁心中磁通的变化d φ/dt 成正比,因此,二次绕组将在磁通过零时,感应产生很高的尖顶波电动势,其值可达数千甚至上万伏,这对工作人员及仪表、继电器等都是极其危险的。
同时由于磁感应强度剧增,铁心损耗大大增加,铁心会产生严重过热,损坏线圈的边缘。
此外铁心中还会有剩磁,使互感器误差增大。
因此,电流互感器在运行中,二次回路是不允许开路的。
若需断开某个仪表和继电器,必须先将该仪表或继电器绕组短路后,才能断开仪表和继电器。
第三章电气设备的分类与系统一次设备:生产,输送,分配和使用电能的设备二次设备:一次设备和系统的运行状态进行测量,控制,监视和保护的设备电力系统分为:发电系统,输变电系统,配电系统,用电系统2、火电厂的生产流程及特点火电厂的种类虽很多,但从能量转换的观点分析,其生产过程却是基本相同的,概括地说是把燃料(煤)中含有的化学能转变为电能的过程。
整个生产过程可分为三个阶段:①燃料的化学能在锅炉中转变为热能,加热锅炉中的水使之变为蒸汽,称为燃烧系统;②锅炉产生的蒸汽进入汽轮机,推动汽轮机旋转,将热能转变为机械能,称为汽水系统;③由汽轮机旋转的机械能带动发电机发电,把机械能变为电能,称为电气系统。
分类标准:按燃料,按原动机,按供出能源,按发电厂总装机容量,按蒸汽压力和温度,按供电范围特点:1布局灵活。
2一次性投建设资少3耗煤量大4动力设备繁多5大型发电机组有停机到开机并带满负荷时间久6各种排放物污染大3水力发电:生产过程,从河流高处火水库内引水,利用水的压力或流速冲动水轮机旋转,将水能转变成机械能,然后由水轮机带动发电机旋转,将机械能转变成电能。
特点:能量转换过程中损耗小,发电效率高分类:堤坝式水电厂,引水式发电厂和混合式水电厂特点:1水能是再生能源2可综合利用3发电成本低,效率高4运行灵活5可储蓄可调节6建设和生产受自然环境影响7建设投资大,工期长4抽水蓄能电厂工作原理抽水蓄电厂是以一定水量作为能量载体,通过能量转换向电力系统提供电能。
为此,其上、下游均需有水库以容蓄能量转换所需要的水量。
在抽水蓄能电厂中,必须兼备抽水和发电两类设施。
在电力负荷低谷时(或丰水时期),利用电力系统的富余电能(或季节性电能),将下游水库中的水抽到上游水库,以位能形式储存起来;待到电力系统负荷高峰时(或枯水时期),再将上游水库中的水放下,驱动水轮发电机组发电,并送往电力系统,这时,用以发电的水又回到下游水库。
显而易见,抽水蓄能电厂既是一个吸收低谷电能的电力用户(抽水工况),又是一个提供峰荷电力的发电厂在电力系统中作用:调峰,填谷,备用,调频,调相,黑启动,蓄能第二节输变电系统输变电系统组成:变换电压的设备,接通和开断电路的开关电器,防御过电压,限制故障电流的电器,无功补偿设备,载流导体,接地装置功能:将发电厂生产的电能经过输变电系统配给给配电系统和用户电气主接线形式:有汇流母线和无汇流母线,有汇流母线的形式有单母线,单母线分段,单母线分段带旁路母线,双母线,双母线分段,双母线带旁路母线和一台半断路器接线。
无汇流母线形式有单元接线,桥式接线和角形接线。
双母线带旁路断路器的电器主接线形式检修某一出线时,不中断回路步骤:w2,w1正常供电,接通旁路断路器QF2旁边的母线隔离开关和和旁路母线隔离开关,再闭合QF2,是旁路母线W3带点,若W3故障则由几点保护装置断开QF2,若W3正常,闭合QS4,断开QF4,再断开QF4两端隔离开关,此时即可不中断回路供电检修高压直流输电系统就是将送端系统的高压交流电,经换流变压器变压,由换流器将高压交流转换成高压直流,通过直流输电线路输送到另一端换流站,再由换流器将高压直流转换成高压交流,然后经过换流变压器与受端交流电网相连,将电能送至受端系统。
通常将交流转换成直流称为整流,实现整流功能的装置称为整流器;将直流转换成交流称为逆变,实现逆变功能的装置称为逆变器。
整流器和逆变器统称为换流器。
配电系统组成及作用:配电系统处于电力系统末端,把发电系统或输变电系统与用户连接起来,向用户分配电能和供给电能的重要环节,组成包括配电变电站,高低压配电线路和接户线在内的整个配电网和设备常用的几个重要指标1.供电可靠率 供电可靠率=1—(统计期间总时间用户平均停电时间)×100% 2.网损率 网损率=总供电量电力网电能损耗量×100% 3.电压合格率 电压合格率是指电力系统某点电压在统计时间内电压合格的时间占总时间的百分比。
电压合格率有日电压合格率、月电压合格率和年电压合格率之分。
电压系统负荷 按供电的可靠性划分一类负荷(亦称一级负荷)二类负荷(亦称二级负荷)三类负荷(亦称三级负荷)负荷曲线:描述某一段时间内用电负荷的大小随时间变化规律的曲线日负荷曲线是描述一天24h 负荷变化情况的曲线,分为日有功负荷曲线和日无功负荷曲线。