高中数学课时跟踪检测十一等比数列的性质新人教A版必修61

合集下载

人教A版选择性必修时等比数列的性质课件2

人教A版选择性必修时等比数列的性质课件2

(2)若an>0,a2a4+2a3a5+a4a6=25,求a3+a5;
解:(2)由等比中项,化简条件得+2a3a5+=25,即(a3+a5) =25,
2
因为 an>0,所以 a3+a5=5.
[例1] 已知{an}为等比数列.
(3)若an>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.
解:(1)由题意可得16a(1+25%)n-1=25a(1-20%)n-1,解得n=2,故到2023年两
林场木材的总存量相等.
(2)两林场木材的总量到2026年能否翻一番?

4

4
解:(2)令 n=5,则 a5=16a( ) +25a( ) <2(16a+25a),故到 2026 年不能翻一番.


[做一做4] 已知数列{an}是等比数列,且公比大于0,则“q>1”是“数列{an}
是递增数列”的(
D
)
A.充要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
解析:当a1<0,q>1时,数列{an}为递减数列,即充分性不成立;
当“数列{an}是递增数列”时,可能是a1<0,0<q<1,即必要性不成立.
公比为qk.
[思考2] 若数列{an}的奇数项和偶数项分别成等比数列,且公比相同,则
{an}是等比数列吗?
提示:反例:1,3,2,6,4,12,…,显然满足条件,但不是等比数列.
[做一做2] (多选题)对任意等比数列{an},下列说法一定正确的是( CD )

新教材高中数学课时跟踪检测一集合的概念新人教A版必修第一册(含答案)

新教材高中数学课时跟踪检测一集合的概念新人教A版必修第一册(含答案)

新教材高中数学新人教A 版必修第一册:集合的概念层级(一) “四基”落实练1.(多选)下列每组对象,能构成集合的是( ) A .中国各地最美的乡村B .直角坐标系中横、纵坐标相等的点C .2022年将参加北京冬奥会的优秀运动员D .清华大学2020年入学的全体学生解析:选BD 中国各地最美的乡村,无法确定集合中的元素,故A 不能;优秀运动员,无法确定集合中的元素,故C 不能.∴根据集合元素的确定性可知,B 、D 都能构成集合.2.设A 是方程2x 2+ax +2=0的解集,且2∈A ,则实数a 的值为( ) A .-5 B .-4 C .4D .5解析:选A 因为2∈A ,所以2×22+2a +2=0,解得a =-5.3.将集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ x +y =5,2x -y =1用列举法表示,正确的是( ) A .{2,3} B .{(2,3)} C .{x =2,y =3}D .(2,3)解析:选B 解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1,得⎩⎪⎨⎪⎧x =2,y =3,所以集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ x +y =5,2x -y =1={(2,3)},故B 正确. 4.(多选)设集合A ={x |x 2-2x =0},则下列表述正确的是( ) A .{0}∈A B .2∈A C .{2}∈AD .0∈A解析:选BD ∵集合A ={x |x 2-2x =0}={0,2},∴0∈A,2∈A ,∵元素与集合是属于关系,故A 、C 不正确. 5.(多选)下列说法错误的是( )A .在直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0}B .方程x -2+|y +2|=0的解集为{-2,2}C .集合{(x ,y )|y =1-x }与{x |y =1-x }是相等的D .若A ={x ∈Z|-1≤x ≤1},则-1.1∈A解析:选BCD 根据集合的概念易知A 正确.B 错误,方程的根为⎩⎪⎨⎪⎧x =2,y =-2,故其解集应写成{(2,-2)}.C 错误,{(x ,y )|y =1-x }是由直线y =1-x 上的所有点组成的集合,{x |y =1-x }是由符合y =1-x 的所有x 的值构成的集合,二者不相等.D 错误,由题意可知,A ={-1,0,1},∴-1.1∉A . 故选B 、C 、D.6.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b ________A ,ab ________A .(填“∈”或“∉”)解析:因为a 是偶数,b 是奇数,所以a +b 是奇数,ab 是偶数,故a +b ∉A ,ab ∈A . 答案:∉ ∈7.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b的可能取值所组成的集合中元素的个数为________.解析:当a ,b 同正时,|a |a +|b |b =a a +bb =1+1=2.当a ,b 同负时,|a |a +|b |b =-a a+-bb=-1-1=-2.当a ,b 异号时,|a |a+|b |b=0. ∴|a |a +|b |b的可能取值所组成的集合中元素共有3个.答案:38.用适当的方法表示下列集合. (1)方程x (x 2+2x +1)=0的解集;(2)在自然数集中,小于1 000的奇数构成的集合.解:(1)因为方程x (x 2+2x +1)=0的解为0或-1,所以解集为{0,-1}.(2)在自然数集中,奇数可表示为x =2n +1,n ∈N ,故在自然数集中,小于1 000的奇数构成的集合为{x |x =2n +1,且n <500,n ∈N}.层级(二) 能力提升练1.设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素的个数为( )A .3B .4C .5D .6解析:选B 当a =1,b =4时,x =5;当a =1,b =5时,x =6;当a =2,b =4时,x =6;当a =2,b =5时,x =7;当a =3,b =4时,x =7;当a =3,b =5时,x =8.由集合元素的互异性知M 中共有4个元素.2.已知集合Ω中的三个元素l ,m ,n 分别是△ABC 的三个边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形解析:选D 因为集合中的元素是互异的,所以l ,m ,n 互不相等,即△ABC 不可能是等腰三角形.3.已知含有三个实数的集合既可表示成⎩⎨⎧⎭⎬⎫a ,b a,1,又可表示成{a 2,a +b,0},则a2 021+b2 020=________.解析:由题意,得b a=0且a ≠0,a ≠1,所以b =0,a 2=1,解得a =-1(a =1舍去),所以a2 021+b2 020=-1.答案:-14.已知数集A 满足条件:若a ∈A ,则11-a∈A (a ≠1),如果a =2,试求出A 中的所有元素.解:根据题意,由2∈A 可知,11-2=-1∈A ;由-1∈A 可知,11--1=12∈A ;由12∈A 可知,11-12=2∈A . 故集合A 中共有3个元素,它们分别是-1,12,2.5.已知集合A ={x |ax 2-3x +2=0}. (1)若集合A 中只有一个元素,求实数a 的值; (2)若集合A 中至少有一个元素,求实数a 的取值范围; (3)若集合A 中至多有一个元素,求实数a 的取值范围.解:(1)当a =0时,原方程可化为-3x +2=0,得x =23,符合题意.当a ≠0时,方程ax 2-3x +2=0为一元二次方程,由题意得,Δ=9-8a =0,得a =98.所以当a =0或a =98时,集合A 中只有一个元素.(2)由题意得,当⎩⎪⎨⎪⎧a ≠0,Δ=9-8a >0,即a <98且a ≠0时方程有两个实根,又由(1)知,当a =0或a =98时方程有一个实根.所以a 的取值范围是⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≤98.(3)由(1)知,当a =0或a =98时,集合A 中只有一个元素.当集合A 中没有元素,即A =∅时, 由题意得⎩⎪⎨⎪⎧a ≠0,Δ=9-8a <0,解得a >98.综上得,当a ≥98或a =0时,集合A 中至多有一个元素.层级(三) 素养培优练1.若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4,有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________.解析:若只有①正确,则a =1,b =1,c ≠2,d =4,而a =b =1与集合中元素的互异性矛盾,所以只有①正确是不可能的;若只有②正确,则有序数组为(3,2,1,4),(2,3,1,4);若只有③正确,则有序数组为(3,1,2,4);若只有④正确,则有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2). 故符合条件的有序数组(a ,b ,c ,d )的个数是6. 答案:62.已知集合A ={x |x =3n +1,n ∈Z},B ={x |x =3n +2,n ∈Z},M ={x |x =6n +3,n ∈Z}.(1)若m ∈M ,则是否存在a ∈A ,b ∈B ,使m =a +b 成立?(2)对任意a ∈A ,b ∈B ,是否一定存在m ∈M ,使a +b =m ?证明你的结论. 解:(1)设m =6k +3=3k +1+3k +2(k ∈Z), 令a =3k +1(k ∈Z),b =3k +2(k ∈Z),则m =a +b . 故若m ∈M ,则存在a ∈A ,b ∈B ,使m =a +b 成立.(2)设a =3k +1,b =3l +2,k ,l ∈Z ,则a +b =3(k +l )+3,k ,l ∈Z.当k+l=2p(p∈Z)时,a+b=6p+3∈M,此时存在m∈M,使a+b=m成立;当k+l=2p+1(p∈Z)时,a+b=6p+6∉M,此时不存在m∈M,使a+b=m成立.故对任意a∈A,b∈B,不一定存在m∈M,使a+b=m.。

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

高中数学第四章数列 等比数列的概念第2课时等比数列的性质课后提能训练新人教A版选择性必修第二册

高中数学第四章数列 等比数列的概念第2课时等比数列的性质课后提能训练新人教A版选择性必修第二册

第四章 4.3 4.3.1 第2课时A 级——基础过关练1.(多选)设数列{a n }为等比数列,则下面四个数列中,是等比数列的是( ) A .{a 2n }B .{pa n }(p 为非零常数)C .{a n ·a n +1}D .{a n +a n +1}【答案】ABCD 【解析】A 中,∵a 2n +1a 2n =⎝ ⎛⎭⎪⎫a n +1a n 2=q 2,∴{a 2n }是等比数列;B 中, ∵pa n +1pa n =a n +1a n =q ,∴{pa n }是等比数列;C 中,∵a n ·a n +1a n -1·a n =a n +1a n -1=q 2,∴{a n ·a n +1}是等比数列;D 中,∵a n +a n +1a n -1+a n =q (a n -1+a n )a n -1+a n=q ,∴{a n +a n +1}是等比数列.2.已知等比数列{a n }中,公比q =12,a 3a 5a 7=64,则a 4=( )A .1B .2C .4D .8【答案】D 【解析】由a 3a 5a 7=a 35=64,得a 5=4.又∵q =12,∴a 4=a 5q=8.3.(2022年广西模拟)在等比数列{a n }中,a n >0,a 1+a 2+…+a 8=4,a 1a 2…a 8=16,则1a 1+1a 2+…+1a 8的值为( )A .2B .4C .8D .16【答案】A 【解析】由分数的性质得1a 1+1a 2+…+1a 8=a 8+a 1a 8a 1+a 7+a 2a 7a 2+…+a 4+a 5a 4a 5.∵a 8a 1=a 7a 2=a 3a 6=a 4a 5,∴原式=a 1+a 2+…+a 8a 4a 5=4a 4a 5.又∵a 1a 2…a 8=16=(a 4a 5)4,a n >0,∴a 4a 5=2,∴1a 1+1a 2+…+1a 8=2.4.(2021年驻马店期末)若数列{a n }满足1a n +1-3a n=0(n ∈N *),则称{a n }为“梦想数列”,已知数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,且b 1+b 2+b 3=2,则b 3+b 4+b 5=( )A .18B .16C .32D .36【答案】A 【解析】由1a n +1-3a n =0,得a n =3a n +1,即“梦想数列”为公比为13的等比数列.若数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,则1b n +1=13·1b n ,即b n +1=3b n ,即数列{b n }为公比为3的等比数列.若b 1+b 2+b 3=2,则b 3+b 4+b 5=9(b 1+b 2+b 3)=18.5.正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7=( ) A .56 B .65 C .23D .32【答案】D 【解析】因为正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,所以a 4·a 6=6,a 4+a 6=5,解得a 4=3,a 6=2.所以a 5a 7=a 4a 6=32.6.已知等比数列{a n }中,a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( ) A .4 B .6 C .8D .-9【答案】A 【解析】a 6(a 2+2a 6+a 10)=a 6a 2+2a 26+a 6a 10=a 24+2a 4a 8+a 28=(a 4+a 8)2.∵a 4+a 8=-2,∴a 6(a 2+2a 6+a 10)=4.7.已知等比数列{a n }中,满足a 1=1,公比q =-3,下列说法正确的有( )①数列{3a n +a n +1}是等比数列;②数列{a n +1-a n }是等差数列;③数列{a n a n +1}是等比数列;④数列{log 3|a n |}是等差数列.A .①②B .①③C .②④D .③④【答案】D 【解析】等比数列{a n }中,满足a 1=1,公比q =-3,3a n +a n +1=3[(-3)n -1]+(-3)n=[(-1)n -1+(-1)n]·3n=0,∴数列{3a n +a n +1}是由0构成的常数列,不是等比数列,故①错误;a n +1-a n =(-3)n-(-3)n -1=43·(-3)n,是等比数列,故②错误;a n a n +1=(-3)n -1·(-3)n =(-3)2n -1,是等比数列,故③正确;log 3|a n |=log 3|(-3)n -1|=n -1,是等差数列,故④正确.故选D .8.在等比数列{a n }中,a n >0且a 1a 5+2a 3a 5+a 3a 7=25,则a 3+a 5=________.【答案】5 【解析】在等比数列{a n }中,a n >0且a 1a 5+2a 3a 5+a 3a 7=25,即a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,解得a 3+a 5=5.9.设等比数列{a n }的各项均为正数且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=________.【答案】10 【解析】由题意可得a 5a 6+a 4a 7=2a 5a 6=18,解得a 5a 6=9,∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=log 395=log 3310=10.10.有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.解:设这四个数为aq,a ,aq ,2aq -a ,则⎩⎪⎨⎪⎧a q ·a ·aq =216①,a +aq +(2aq -a )=36②,由①,得a 3=216,a =6③,将②变形得3aq =36,将③代入此式得q =2, 所以这四个数为3,6,12,18.B 级——能力提升练11.已知等比数列{a n }的公比q >0且q ≠1,又a 6<0,则( ) A .a 5+a 7>a 4+a 8 B .a 5+a 7<a 4+a 8 C .a 5+a 7=a 4+a 8 D .|a 5+a 7|>|a 4+a 8|【答案】A 【解析】∵a 6<0,q >0,∴a 5,a 7,a 8,a 4都是负数,∴a 5+a 7-a 4-a 8=a 4(q -1)+a 7(1-q )=(q -1)·(a 4-a 7).若0<q <1,则q -1<0,a 4-a 7<0,则有a 5+a 7-a 4-a 8>0;若q >1,则q -1>0,a 4-a 7>0,则有a 5+a 7-a 4-a 8>0,∴a 5+a 7>a 4+a 8.12.(多选)(2022年海南期末)在各项均为正数的等比数列{a n }中,已知a 1+a 5=1a 1+1a 5=52,则下列结论正确的是( ) A .a 2a 4=1 B .a 2+a 4=322C .q =2或12D .a 1=2或12【答案】ABD 【解析】设等比数列{a n }的公比为q ,因为a 1+a 5=1a 1+1a 5=52,所以⎩⎪⎨⎪⎧a 1+a 5=52,a 1a 5=1,所以⎩⎪⎨⎪⎧a 1=2,a 5=12或⎩⎪⎨⎪⎧a 1=12,a 5=2,即2×q 4=12或12×q 4=2,所以解得⎩⎪⎨⎪⎧a 1=2,q 2=12或⎩⎪⎨⎪⎧a 1=12,q 2=2,所以选项C 错误,选项D 正确;因为等比数列{a n }的各项均为正数,所以a 2a 4=a 1a 5=1,选项A 正确;a 2+a 4=a 1q +a 1q 3=322,选项B 正确.故选ABD .13.(2022年焦作四模)在各项均为正数的等比数列{a n }中,a 1a 11+2a 5a 9+a 3a 13=25,则a 1a 13的最大值是________.【答案】254【解析】由题意利用等比数列的性质知,a 1a 11+2a 5a 9+a 3a 13=a 26+2a 6a 8+a 28=(a 6+a 8)2=25,又因为a n >0,所以a 6+a 8=5,所以a 1a 13=a 6a 8≤⎝ ⎛⎭⎪⎫a 6+a 822=254,当且仅当a6=a 8=52时,取等号.14.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则a 5=________,b 10=________.【答案】4 64 【解析】因为a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,所以a n ,a n+1是方程f (x )=x 2-b n x +2n 的两个根,根据根与系数的关系,可得a n ·a n +1=2n,a n +a n +1=b n ,由a n ·a n +1=2n,可得a n +1·a n +2=2n +1,两式相除可得a n +2a n=2,所以a 1,a 3,a 5,…成公比为2的等比数列,a 2,a 4,a 6,…成公比为2的等比数列.又因为由a 1=1,得a 2=2,所以a 5=1×22=4,a 10=2×24=32,a 11=1×25=32,所以b 10=a 10+a 11=32+32=64.15.从盛满a (a >1)升纯酒精的容器里倒出1升,然后添满水摇匀,再倒出1升混合溶液后又用水添满摇匀,如此继续下去,问:第n 次操作后溶液的浓度是多少?当a =2时,至少应倒几次后才能使酒精的浓度低于10%?解:设开始时溶液的浓度为1,操作一次后溶液浓度a 1=1-1a.设操作n 次后溶液的浓度为a n ,则操作(n +1)次后溶液的浓度为a n +1=a n ⎝⎛⎭⎪⎫1-1a ,∴{a n }是以a 1=1-1a 为首项,q =1-1a为公比的等比数列,∴a n =a 1q n -1=⎝ ⎛⎭⎪⎫1-1a n,即第n 次操作后酒精的浓度是⎝ ⎛⎭⎪⎫1-1a n. 当a =2时,由a n =⎝ ⎛⎭⎪⎫12n<110(n ∈N *),解得n ≥4.故至少应操作4次后才能使酒精的浓度小于10%.。

高中数学14等比数列的性质新人教A版必修5(1)

高中数学14等比数列的性质新人教A版必修5(1)

课时分层作业(十四) 等比数列的性质(建议用时:40分钟)[学业达标练]一、选择题1.已知等比数列{a n },a 1=1,a 3=19,则a 5等于( )A .±181B .-181C.181D .±12C [根据等比数列的性质可知a 1a 5=a 23⇒a 5=a 23a 1=181.]2.在等比数列{a n }中,a 1+a 2+a 3=2,a 4+a 5+a 6=4,则a 10+a 11+a 12等于( )【导学号:91432208】A .32B .16C .12D .8B [a 4+a 5+a 6a 1+a 2+a 3=q 3=42=2,∴a 10+a 11+a 12=(a 1+a 2+a 3)q 9=2·(2)3=24=16.]3.已知等比数列{a n }中,a n >0,a 1,a 99是方程x 2-10x +16=0的两根,则a 40a 50a 60的值为( ) A .32 B .64 C .256D .±64B [由题意得,a 1a 99=16, ∴a 40a 60=a 250=a 1a 99=16, 又∵a 50>0,∴a 50=4, ∴a 40a 50a 60=16×4=64.]4.设{a n }是公比为q 的等比数列,令b n =a n +1,n ∈N *,若数列{b n }的连续四项在集合{-53,-23,17,37,82}中,则q 等于( )【导学号:91432209】A .-43B .-32C .-32或-23D .-34或-43C [即a n 的连续四项在集合{-54,-24,16,36,81}中,由题意知,这四项可选择-54,36,-24,16,此时,q =-23,若选择16,-24,36,-54,则q =-32.]5.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则m n 等于( )A.32 B.32或23 C.23D .以上都不对A [不妨设12是x 2-mx +2=0的根,则其另一根为4,∴m =4+12=92,对方程x 2-nx +2=0,设其根为x 1,x 2(x 1<x 2),则x 1x 2=2, ∴等比数列为12,x 1,x 2,4,∴q 3=412=8,∴q =2,∴x 1=1,x 2=2, ∴n =x 1+x 2=1+2=3,∴m n =92×3=32.] 二、填空题6.在等比数列{a n }中,a 3=16,a 1a 2a 3…a 10=265,则a 7等于________.【导学号:91432210】256 [因为a 1a 2a 3…a 10=(a 3a 8)5=265,所以a 3a 8=213,又因为a 3=16=24,所以a 8=29=512. 因为a 8=a 3·q 5,所以q =2,所以a 7=a 8q=256.]7.在右列表格中,每格填上一个数字后,使每一横行成等差数列,每纵列成等比数列,则x +y +z 的值为________.2 [∵x 2=24,∴x =1.∵第一行中的数成等差数列,首项为2,公差为1,故后两格中数字分别为5,6. 同理,第二行后两格中数字分别为2.5,3.∴y =5·⎝ ⎛⎭⎪⎫123,z =6·⎝ ⎛⎭⎪⎫124, ∴x +y +z =1+5·⎝ ⎛⎭⎪⎫123+6·⎝ ⎛⎭⎪⎫124=3216=2.]8.某单位某年十二月份的产值是同年一月份产值的m 倍,那么该单位此年的月平均增长率是________.【导学号:91432211】11m -1 [由题意可知,这一年中的每一个月的产值成等比数列,求月平均增长率只需利用a 12a 1=m ,所以月平均增长率为11m -1.] 三、解答题9.在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项、公比. [解] 设该数列的公比为q .由已知,得⎩⎪⎨⎪⎧a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以⎩⎪⎨⎪⎧a 1q -=2,q 2-4q +3=0,解得⎩⎪⎨⎪⎧a 1=1,q =3,(q =1舍去),故首项a 1=1,公比q =3.10.已知数列{a n }中,a 1=1,a n +1=52-1a n ,b n =1a n -2,求数列{b n }的通项公式.【导学号:91432212】[解] a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2,b n +1+23=4⎝⎛⎭⎪⎫b n +23.又a 1=1,故b 1=1a 1-2=-1, 所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,所以b n +23=-13×4n -1,b n =-4n -13-23.[冲A 挑战练]1.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( ) A .±2 B .±4 C .2D .4C [∵T 13=4T 9,∴a 1a 2…a 9a 10a 11a 12a 13=4a 1a 2…a 9,∴a 10a 11a 12a 13=4.又∵a 10·a 13=a 11·a 12=a 8·a 15, ∴(a 8·a 15)2=4,∴a 8a 15=±2.又∵{a n }为递减数列,∴q >0,∴a 8a 15=2.]2.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=( )【导学号:91432213】A .16B .14C .4D .49A [∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0, ∵b 7=a 7≠0,∴b 7=a 7=4,∴b 6b 8=b 27=16.]3.在等比数列{a n }中,若a 7=-2,由此数列的前13项之积等于________. -213[由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27, ∴a 1a 2a 2…a 13=(a 27)6·a 7=a 137, 而a 7=-2.∴a 1a 2a 3…a 13=(-2)13=-213.]4.已知-7,a 1,a 2,-1四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则a 2-a 1b 2=________. -1 [由题意,知a 2-a 1=-1--3=2,b 22=(-4)×(-1)=4.又因为b 2是等比数列中的第三项,所以b 2与第一项同号,即b 2=-2,所以a 2-a 1b 2=2-2=-1.] 5.已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式.【导学号:91432214】[解] (1)证明:∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1.∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∵首项c 1=a 1-1,又a 1+a 1=1,∴a 1=12,∴c 1=-12,又c n =a n -1,∴q =12.∴{c n }是以-12为首项,公比为12的等比数列.(2)由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n, ∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n. ∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n-1-⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n=⎝ ⎛⎭⎪⎫12n. 又b 1=a 1=12,代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n.。

课时作业22:第2课时 等比数列的性质

课时作业22:第2课时 等比数列的性质

第2课时 等比数列的性质一、选择题1.对任意等比数列{a n },下列说法一定正确的是( )A .a 1,a 3,a 9成等比数列B .a 2,a 3,a 6成等比数列C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列答案 D解析 由等比数列的性质得,a 3·a 9=a 26≠0,因此a 3,a 6,a 9一定成等比数列.故选D.2.在等比数列{a n }中,若a 2 019=8a 2 016,则公比q 的值为( )A .2B .3C .4D .8答案 A解析 ∵a 2 019=8a 2 016=a 2 016·q 3,∴q 3=8,∴q =2.3.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( )A .100B .-100C .10 000D .-10 000答案 C解析 ∵lg(a 3a 8a 13)=lg a 38=6, ∴a 38=106,∴a 8=102=100.∴a 1a 15=a 28=10 000. 4.等比数列{a n }中,a 1+a 2=3,a 2+a 3=6.则a 8等于( )A .64B .128C .256D .512答案 B解析 a 2+a 3=q (a 1+a 2)=3q =6,∴q =2,∴a 1+a 2=a 1+2a 1=3a 1=3,∴a 1=1.∴a 8=27=128.5.已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q 为( )A.13 B .3 C .±13D .±3 答案 B解析 设等差数列为{a n },公差为d ,d ≠0.则a 23=a 2·a 6,∴(a 1+2d )2=(a 1+d )(a 1+5d ), 化简得d 2=-2a 1d ,∵d ≠0,∴d =-2a 1,∴a 2=-a 1,a 3=-3a 1,∴q =a 3a 2=3. 6.(2018·长春模拟)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( )A .8B .9C .10D .11答案 C解析 由题意得,2a 5a 6=18,a 5a 6=9,∵a 1a m =9,∴a 1a m =a 5a 6,∴m =10.7.(2018·济南模拟)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )A .12B .13C .14D .15答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n+1=a 31q 3n -3=324,因此q 3n -6=81=34=q 36,所以n =14. 二、填空题8.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7= .答案 18解析 由题意得a 4=12,a 5=32,∴q =a 5a 4=3. ∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18.9.已知数列{a n }是等比数列,且a n >0,a 3a 5+2a 4a 6+a 5a 7=81,则a 4+a 6= . 答案 9解析 因为数列{a n }为等比数列,且a 3a 5+2a 4a 6+a 5a 7=81,所以a 24+2a 4·a 6+a 26=81,所以(a 4+a 6)2=81,又a n >0,所以a 4+a 6=9.10.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9= . 答案 8解析 由等比数列的性质,得a 3a 11=a 27,∴a 27=4a 7. ∵a 7≠0,∴a 7=4,∴b 7=a 7=4.再由等差数列的性质知b 5+b 9=2b 7=8.11.在等比数列{a n }中,若a 1a 2a 3a 4=1,a 13a 14a 15a 16=8,则a 41a 42a 43a 44= .答案 1 024解析 设等比数列{a n }的公比为q ,a 1a 2a 3a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41·q 6=1,① a 13a 14a 15a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,②②÷①得q 48=8,q 16=2,∴a 41a 42a 43a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)(q 16)10=210=1 024. 三、解答题12.已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值. 解 ∵{a n }为等比数列,∴a 1·a 9=a 3·a 7=64.又∵a 3+a 7=20,∴a 3=4,a 7=16或a 3=16,a 7=4.①当a 3=4,a 7=16时,a 7a 3=q 4=4,此时a 11=a 3q 8=4×42=64. ②当a 3=16,a 7=4时,a 7a 3=q 4=14,此时a 11=a 3q 8=16×⎝⎛⎭⎫142=1. 13.在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0.(1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项a n .(1)证明 因为b n =log 2a n ,所以b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n=log 2q (q >0)为常数,所以数列{b n }为等差数列且公差d =log 2q .(2)解 因为b 1+b 3+b 5=6,所以(b 1+b 5)+b 3=2b 3+b 3=3b 3=6,即b 3=2.又因为a 1>1,所以b 1=log 2a 1>0,又因为b 1·b 3·b 5=0,所以b 5=0,即⎩⎪⎨⎪⎧ b 3=2,b 5=0,即⎩⎪⎨⎪⎧ b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1, 因此S n =4n +n (n -1)2(-1)=9n -n 22. 又因为d =log 2q =-1,所以q =12,b 1=log 2a 1=4, 即a 1=16,所以a n =25-n (n ∈N *).14.在等比数列{a n }中,若a 7a 11=6,a 4+a 14=5,则a 20a 10= . 答案 23或32解析 ∵{a n }是等比数列,∴a 7·a 11=a 4·a 14=6, 又a 4+a 14=5,∴⎩⎪⎨⎪⎧ a 4=2,a 14=3或⎩⎪⎨⎪⎧a 4=3,a 14=2.∵a 14a 4=q 10,∴q 10=32或q 10=23.而a 20a 10=q 10,∴a 20a 10=23或32. 15.在等差数列{a n }中,公差d ≠0,a 1,a 2,a 4成等比数列,已知数列a 1,a 3,1k a ,2k a ,…,n k a ,…也成等比数列,求数列{k n }的通项公式.解 由题意得a 22=a 1a 4,即(a 1+d )2=a 1(a 1+3d ),得d (d -a 1)=0,又d ≠0,∴a 1=d .又a 1,a 3,1k a ,2k a ,…,n k a ,…成等比数列,∴该数列的公比q =a 3a 1=3d d=3, ∴n k a =a 1·3n +1.又n k a =a 1+(k n -1)d =k n a 1,∴数列{k n }的通项公式为k n =3n +1(n ∈N *).。

高中数学全册综合练课时跟踪训练含解析新人教A版必修第一

高中数学全册综合练课时跟踪训练含解析新人教A版必修第一

学习资料全册综合练一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是()A.-3∈A B.3∉BC.A∩B=B D.A∪B=B解析:由题知A={y|y≥-1},因此A∩B={x|x≥2}=B,故选C.答案:C2.已知sin错误!=错误!,那么cos α=()A.-错误!B.-错误!C。

错误! D.错误!解析:sin错误!=sin错误!=cos α=错误!.答案:C3.函数y=错误!的定义域是()A.(-∞,2) B.(2,+∞)C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)解析:由函数解析式得错误!即错误!即错误!∴该函数定义域为(2,3)∪(3,+∞),故选C。

答案:C4.已知二次函数f(x)=ax2+bx,则“f(2)≥0"是“函数f(x)在(1,+∞)上单调递增"的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:函数f(x)在(1,+∞)上单调递增,则a>0,x=-错误!≤1,所以b≥-2a,这与f(2)≥0等价.而f(2)≥0不能确定函数f(x)在(1,+∞)上单调递增,故选C。

答案:C5.下列四个命题:①∃x∈(0,+∞),错误!x<错误!x;②∃x∈(0,1),log错误!x>log错误!x;③∀x∈(0,+∞),错误!x>log错误!x;④∀x∈错误!,错误!x<log错误!x.其中真命题是()A.①③B.②③C.②④D.③④解析:根据指数函数的图象和性质,可知①③是错误的,②④是正确的,故选C.答案:C6.若tan α=错误!,tan(α+β)=错误!,则tan β=()A.错误!B.错误!C.错误!D.错误!解析:tan β=tan[(α+β)-α]=错误!=错误!=错误!=错误!,故选A。

(浙江专版)高中数学课时跟踪检测(八)等差数列的性质新人教A版必修5

(浙江专版)高中数学课时跟踪检测(八)等差数列的性质新人教A版必修5

课时跟踪检测(八) 等差数列的性质层级一 学业水平达标1.在等差数列{a n }中,已知a 4+ a 8= 16,贝U 比+ a io =()A .12B .16C . 20D . 24解析:选B 因为数列{a n }是等差数列,所以 a2 + a io = a 4 + a $= 16.B . 6 D . 10又T a 1 + a 9= 10,即 2a 5= 10,a 5 = 5.因为 a , b , c 成等差数列,贝 2b = a +c , 所以 2b +4= a +c + 4,即 2(b +2) = (a +2) +(c + 2) , 所以 a +2, b +2, c +2 成等差数列. 4.在等差数列 {a n } 中, a 1= 2, a 3+ a 5= 10,则 a 7= ()B . 8C . 10D . 14解析:选B 由等差数列的性质可得 a 1+ a 7= a 3 + a 5= 10,又a 1 = 2,所以a 7= 8. 5.等差数列{a n }中,a 2 + a 5 + a 8= 9,那么方程x 2 + (a 4+ a 6)x + 10= 0的根的情况()A.没有实根 B •两个相等实根 C.两个不等实根D •无法判断2解析:选 A 由a 2 + a 5 + a 8 = 9得a 5= 3,二a °+ a 6= 6,方程转化为 x + 6x + 10= 0.因为 A <0,所以2.在等差数列{a n }中,a i + a 9= 10, 则a 5的值为( A . 5 C . 8解析:选 A 由等差数列的性质,a 1+ a 9= 2a 5,3. 列说法中正确的是 ( A . a , b , c 成等差数列,贝 2a ,b 2, c 2成等差数列 B . a ,b ,c 成等差数列,贝 log 2a , log 2b , log 2c 成等差数列C . a , b , c 成等差数列,贝D . a , b , c 成等差数列,贝 a +2, b + 2, c +2 成等差数列2a ,2b ,2c成等差数列解析: A . 5方程没有实根.6. 若三个数成等差数列,它们的和为______________ 9,平方和为59,则这三个数的积为.解析:设这三个数为a-d, a, a+d,a—d+ a+ a+ d= 9,则 2 2 2a—d + a + a+ d = 59.a= 3, a= 3,解得或d = 4 d=—4.•••这三个数为一1,3,7或7,3 , —1. •••它们的积为一21.答案:—217. 若a, b, c成等差数列,则二次函数y= ax2—2bx+ c的图象与x轴的交点的个数为解析:••• a, b, c成等差数列,• 2b= a+ c,2 2 2•- A = 4b —4ac= (a+ c) —4ac= (a—c) >0.•••二次函数y= ax2—2bx+ c的图象与x轴的交点个数为1或2.答案:1或22& 已知等差数列{a n}满足a m—1 + a m+1—a m—1 = 0,且m>1,贝V ai + a2n—1 = _________ .解析:因为数列{a n}为等差数列,则a n—1+ a m+ 1= 2a m,贝U a n—1+ a m+ 1 —a m—1 = 0可化为2a m—a m—1 = 0,解得a m= 1,所以a1 + a2m-1= 2a m= 2.答案:29. 在等差数列{a n}中,若a1 + Q +…+ a5= 30, a6 + a7+…+ ao= 80,求an + a12+ …+ a15.解:法一:由等差数列的性质得a+ an = 2a6,比+ a12= 2a?,…,a5 + a15= 2a o.•- (a1+ a2 + …+ a5)+ (an + a12+ …+ 日5)= 2( a6 + a7 + …+ ae).•- an + a12+…+ a15= 2( a6 + a7+…+ ae) —(a1 + a2+…+ a5)= 2x 80—30= 130.法二:•••数列{a n}是等差数列,• a1+ a2+・・・+ a5, a6 + a? +•••+ a® an+ a12+・・・+ a15 也成等差数列,即30,80 , a“ + a12 +•+ a15成等差数列.•- 30 + (an + &佗+…+ a15) = 2x 80, • an + a12+…+ a15= 130.10. 有一批影碟机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售.某单位购买一批此类影碟机,问去哪家商场买花费较少.解:设单位需购买影碟机n台,在甲商场购买每台售价不低于440元,售价依台数n成等差数列.设该数列为{a n}.a n= 780 + (n—1)( —20) = 800 —20n,解不等式a n>440,即卩800—20n》440,得n w 18.当购买台数小于等于18台时,每台售价为(800 —20n)元,当台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800X 750%= 600元.作差:(800 — 20n ) n — 600n = 20n (10 — n ), 当 n <10 时,600n <(800 — 20n ) n , 当 n = 10 时,600n = (800 — 20n ) n , 当 10<n w 18 时,(800 — 20n ) n <600n , 当 n >18 时,440n <600n .即当购买少于10台时到乙商场花费较少,当购买10台时到两商场购买花费相同,当购 买多于10台时到甲商场购买花费较少.层级二应试能力达标1.已知等差数列{a n }: 1,0,— 1, — 2,…;等差数列{b n }: 0,20,40,60 ,…,则数列 {a n + b n }是( )A.公差为一1的等差数列 B .公差为20的等差数列C.公差为一20的等差数列D .公差为19的等差数列解析:选 D (a 2 + b 2) — (a 1+ b 1) = (a 2— a" + (b 2— b" =— 1 + 20= 19. 2.已知数列{a n }为等差数列且a 1+ a y + a 13= 4n,则tan ( a ?+ a^的值为()A. 3 B . ± 3 C - fD . — 34 n解析:选D 由等差数列的性质得 a 1+ a 7 + a 13= 3a 7 = 4n,「. a 7=.13.若方程(x 2— 2x + m )( x 2— 2x + n ) = 0的四个根组成一个首项为 的等差数列,贝U |m —n | =()A. 1 1 C.2解析:选C 设方程的四个根 a 1, a 2, a s , a 4依次成等差数列,则 a 1+ a 4= a 2+ a s = 2, 再设此等差数列的公差为 d ,则2a 1 + 3d = 2,••• tan( a 2 + a 12)= tan(2 a ?) = tanr =tan2n=—,3.BQ 3-a1=4,…d= 2,1 1 3 1 5 • a2=4+2 = 4’ a3= 4 +1= 4,4,3.a 4+ —4+ 2I m-n | = | a i a 4 — a 2&| 173 5X ----- X -44 4 4“竹九节”问题:现有一根 9节的竹子,自上而下各节的容积成等差数解析:选B 设所构成的等差数列{a n }的首项为a i ,公差为d ,则有a 1 + a 2 + a 3 + a 4 = 3, a 7 + a 8 + a 9 = 4,135. _____________________________________________________ 已知{a n }为等差数列,且 a 6= 4,则a 4a 7的最大值为 _______________________________________ .解析:设等差数列的公差为 d ,则 a 4a 7= (a e — 2d )( a e + d ) = (4 — 2d )(4 + d ) = — 2(d + 1)2 +18,即a 4a 7的最大值为18.答案:18a n a n + 16. _______________________________________________________________________ 已知数列{a n }满足a 1= 1,若点 n , n +1在直线x — y + 1 = 0上,贝U a n= ____________________________________ .解析:由题设可得 色一空 + 1 = 0,即 空—色=1,所以数列 色是以1为公差的等差 n n +1n +1 n n 数列,且首项为1,故通项公式an = n ,所以a n = n 2.n答案:n 21 21 17.数列{a n }为等差数列,b n = a n ,又已知 b 1+ b 2 + b 3= , bbb 3=,求数列{a n }的 2 8 8通项公式.11 1 21 1 1解:T b 1 + b 2 + b 3=a 1 + a 2 + a 3= , db 2b 3= a+ a 2 + a 3 = , • a + a 2+ & = 2228 2 812.4 •《九章算术》列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为(A. 1升B. 67升 c.47升D.37升 4a 1 + 6d = 3,即3a 1 + 21d = 4.解得故第5节的容积为 6767升.a1=22,766,则 a s = a 1 + 4d =篇,=2 017 ,••• a i , a 2, a 3成等差数列,二 比=1,故可设 a i = 1 -d , a 3 = 1 + d ,得 2d+ 2-d= ”,解得 d = 2 或 d =-2.当 d = 2 时,a 〔 = 1 — d = — 1, a n = — 1 + 2(n — 1) = 2n — 3; 当 d = — 2 时,a 1 = 1 — d = 3, a n = 3 — 2(n — 1) = — 2n + 5.[f盈邊锻範&下表是一个“等差数阵”:其中每行、每列都是等差数列, a j 表示位于第i 行第j 列的数.(1) 写出a 45的值;(2) 写出a ij 的计算公式,以及 2 017这个数在“等差数阵”中所在的一个位置. 解:通过每行、每列都是等差数列求解. (1) a 45表示数阵中第4行第5列的数.先看第1行,由题意4,7,…,a 15,…成等差数列, 公差 d = 7— 4= 3,贝y a 15= 4+ (5 — 1) x 3= 16. 再看第2行,同理可得a 25= 27.最后看第5列,由题意a 15, a 25,…,a 45成等差数列, 所以 a 45= ai 5 + 3d = 16 + 3 x (27 — 16) = 49.(2) 该“等差数阵“的第 1行是首项为4,公差为3的等差数列a 1j = 4 + 3(j — 1); 第2行是首项为7,公差为5的等差数列aa = 7+ 5( j — 1);第i 行是首项为4+ 3( i — 1),公差为2i +1的等差数列, ••• a ij = 4 + 3( i — 1) + (2i + 1)( j — 1) =2ij + i + j = i (2j + 1) + j .要求2 017在该“等差数阵”中的位置,也就是要找正整数 -1-d +1+ - 1+d2 + 2+ 221~8,i , j ,使得 i (2j + 1) + j2;;[¥•又 j € N* ,•••当i = 1 时,得j = 672.••• 2 017在“等差数阵”中的一个位置是第1行第672 列.。

高中数学课时跟踪检测十一等比数列的前n项和新人教B版必修5

高中数学课时跟踪检测十一等比数列的前n项和新人教B版必修5

高中数学课时跟踪检测十一等比数列的前n项和新人教B版必修5层级一学业水平达标1.设{an}是公比为q的等比数列,Sn是它的前n项和,若{Sn}是等差数列,则q等于( )A.1 B.0D.-1C.1或0解析:选A 因为Sn-Sn-1=an,又{Sn}是等差数列,所以an为定值,即数列{an}为常数列,所以q==1. 2.已知数列{an}是公比为3的等比数列,其前n项和Sn=3n+k(n∈N+),则实数k为( )B.1A.0D.2C.-1 解析:选C 由数列{an}的前n项和Sn=3n+k(n∈N+),当n=1时,a1=S1=3+k;当n≥2时,an=Sn-Sn-1=3n+k-(3n-1+k)=2×3n-1.因为数列{an}是公比为3的等比数列,所以a1=2×31-1=3+k,解得k=-1. 3.已知等比数列的公比为2,且前5项和为1,那么前10项和等于( )B.33A.31C.35D.37解析:选B 根据等比数列性质得=q5,∴=25,∴S10=33. 4.在等比数列{an}中,a3=,其前三项的和S3=,则数列{an}的公比q=( )A.- B.12C.-或1D.或1解析:选C 由题意,可得a1q2=,a1+a1q+a1q2=,两式相除,得=3,解得q=-或1. 5.等比数列{an}的前n项和为Sn,S5=2,S10=6,则a16+a17+a18+a19+a20等于( )B.12A.8D.24C.16解析:选C 设等比数列{an}的公比为q,因为S2n-Sn=qnSn,所以S10-S5=q5S5,所以6-2=2q5,所以q5=2,所以a16+a17+a18+a19+a20=a1q15+a2q15+a3q15+a4q15+a5q15=q15(a1+a2+a3+a4+a5)=q15S5=23×2=16. 6.等比数列{an}共有2n项,它的全部各项的和是奇数项的和的3倍,则公比q=________.解析:设{an}的公比为q,则奇数项也构成等比数列,其公比为q2,首项为a1,偶数项之和与奇数项之和分别为S偶,S奇,由题意S偶+S奇=3S奇,即S偶=2S奇,因为数列{an}的项数为偶数,。

高中数学-课时达标检测(十一)等比数列的性质 新人教A版必修

高中数学-课时达标检测(十一)等比数列的性质 新人教A版必修

课时达标检测(十一) 等比数列的性质一、选择题1.(重庆高考)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0, 因此a 3,a 6,a 9一定成等比数列,选D.2.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( ) A .35 B .63 C .21 3D .±21 3解析:选B ∵{a n }是等比数列, ∴a 4,a 6,a 8成等比数列, ∴a 26=a 4·a 8,即a 8=2127=63.3.在等比数列{a n }中,a 1=1,a 10=3,则a 2a 3a 4a 5a 6a 7a 8a 9等于( ) A .81 B .27327 C .3D .243解析:选A 因为数列{a n }是等比数列,且a 1=1,a 10=3,所以a 2a 3a 4a 5a 6a 7a 8a 9=(a 2a 9)·(a 3a 8)·(a 4a 7)·(a 5a 6)=(a 1a 10)4=34=81.故选A. 4.设数列{a n }为等比数列,则下面四个数列: ①{a 3n };②{pa n }(p 为非零常数);③{a n ·a n +1}; ④{a n +a n +1}.其中是等比数列的有( ) A .1个 B .2个 C .3个D .4个解析:选D ①∵a 3n +1a 3n =⎝ ⎛⎭⎪⎫a n +1a n 3=q 3,∴{a 3n}是等比数列;②∵pa n +1pa n =a n +1a n=q ,∴{pa n }是等比数列; ③∵a n ·a n +1a n -1·a n =a n +1a n -1=q 2,∴{a n ·a n +1}是等比数列;④∵a n +a n +1a n -1+a n =q a n -1+a na n -1+a n=q ,∴{a n +a n +1}是等比数列.5.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.二、填空题6.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0, ∵b 7=a 7≠0, ∴b 7=a 7=4. ∴b 6b 8=b 27=16. 答案:167.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048(平方厘米). 答案:2 0488.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20a 10=________. 解析:∵{a n }是等比数列, ∴a 7·a 11=a 4·a 14=6, 又a 4+a 14=5,∴⎩⎪⎨⎪⎧a 4=2,a 14=3或⎩⎪⎨⎪⎧a 4=3,a 14=2.∵a 14a 4=q 10,∴q 10=23或q 10=32. 而a 20a 10=q 10,∴a 20a 10=23或a 20a 10=32. 答案:23或32三、解答题9.在83和272之间插入三个数,使这五个数成等比数列,求插入的这三个数的乘积.解:法一:设这个等比数列为{a n },公比为q , 则a 1=83,a 5=272=a 1q 4=83q 4,∴q 4=8116,q 2=94.∴a 2·a 3·a 4=a 1q ·a 1q 2·a 1q 3=a 31·q 6=⎝ ⎛⎭⎪⎫833×⎝ ⎛⎭⎪⎫943=63=216.法二:设这个等比数列为{a n },公比为q ,则a 1=83,a 5=272,由题意知a 1,a 3,a 5也成等比数列且a 3>0,∴a 23=83×272=36,∴a 3=6,∴a 2·a 3·a 4=a 23·a 3=a 33=216.10.始于2007年初的美国次贷危机,至2008年中期,已经演变为全球金融危机.受此影响,国际原油价格从2008年7月每桶最高的147美元开始大幅下跌,9月跌至每桶97美元.你能求出国际原油价格7月到9月之间平均每月下降的百分比吗?若按此计算,到什么时间跌至谷底(即每桶34美元)?解:设每月平均下降的百分比为x ,则每月的价格构成了等比数列{a n },记a 1=147(7月份价格),则8月份价格a 2=a 1(1-x )=147(1-x ),9月份价格a 3=a 2(1-x )=147(1-x )2. ∴147(1-x )2=97,解得x ≈18.8%. 设a n =34,则34=147·(1-18.8%)n -1,解得n =8.即从2008年7月算起第8个月,也就是2009年2月国际原油价格将跌至34美元每桶.11.从盛满a (a >1)升纯酒精的容器里倒出1升,然后添满水摇匀,再倒出1升混合溶液后又用水添满摇匀,如此继续下去,问:第n 次操作后溶液的浓度是多少?当a =2时,至少应倒几次后才能使酒精的浓度低于10%?解:设开始时溶液的浓度为1,操作一次后溶液浓度a 1=1-1a.设操作n 次后溶液的浓度为a n ,则操作(n +1)次后溶液的浓度为a n +1=a n ⎝⎛⎭⎪⎫1-1a .∴{a n }是以a 1=1-1a 为首项,q =1-1a为公比的等比数列,∴a n =a 1qn -1=⎝⎛⎭⎪⎫1-1a n, 即第n 次操作后酒精的浓度是⎝⎛⎭⎪⎫1-1a n.当a =2时,由a n =⎝ ⎛⎭⎪⎫12n <110(n ∈N *),解得n ≥4.故至少应操作4次后才能使酒精的浓度小于10%.12.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且前后两数的和是16,中间两数的和是12.求这四个数.解:法一:设这四个数依次为a -d ,a ,a +d ,a +d2a ,由条件得⎩⎪⎨⎪⎧a -d +a +d 2a =16,a +a +d =12.解得⎩⎪⎨⎪⎧a =4,d =4,或⎩⎪⎨⎪⎧a =9,d =-6.所以当a =4,d =4时,所求四个数为0,4,8,16; 当a =9,d =-6时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.法二:设这四个数依次为2a q -a ,aq,a ,aq (a ≠0),由条件得⎩⎪⎨⎪⎧2a q -a +aq =16,aq +a =12.解得⎩⎪⎨⎪⎧q =2,a =8,或⎩⎪⎨⎪⎧q =13,a =3.所以当q =2,a =8时,所求四个数为0,4,8,16; 当q =13,a =3时,所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1. 法三:设这四个数依次为x ,y,12-y,16-x ,由已知得⎩⎪⎨⎪⎧2y =x +-y ,-y 2=y -x解得⎩⎪⎨⎪⎧x =0,y =4,或⎩⎪⎨⎪⎧x =15,y =9.故所求四个数为0,4,8,16或15,9,3,1.。

最新高中数学课时跟踪检测十一等比数列的性质苏教版必修520180607156

最新高中数学课时跟踪检测十一等比数列的性质苏教版必修520180607156

课时跟踪检测(十一) 等比数列的性质层级一 学业水平达标1.等比数列{a n }中,a 4=4,则a 1a 7=________. 解析:由等比数列的性质可得:a 1a 7=a 24=16. 答案:162.已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz =________. 解析:由等比中项知y 2=3,∴y =±3,又∵y 与-1,-3符号相同,∴y =-3,y 2=xz ,所以xyz =y 3=-3 3.答案:-3 33.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=________. 解析:因为a 3·a 9=2a 25=a 26所以q 2=2, 因为各项为正数,所以q =2, 由a 2=1,所以a 1=22. 答案:224.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n(n ≥3),则log 2a 1+log 2a 3+…+log 2a 2n -1=________.解析:∵a 5·a 2n -5=a 2n =22n,且a n >0,∴a n =2n, ∵a 2n -1=22n -1,∴log 2a 2n -1=2n -1,∴log 2a 1+log 2a 3+…+log 2a 2n -1 =1+3+5+…+(2n -1)=n [1+2n -1]2=n 2.答案:n 25.在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.解析:a 7+a 8+a 9+a 10=158,a 8a 9=a 7a 10=-98,∴1a 7+1a 8+1a 9+1a 10=a 8a 9a 10+a 7a 9a 10+a 7a 8a 10+a 7a 8a 9a 7a 8a 9a 10=a 8a 9a 10+a 9+a 8+a 7a 7a 8a 9a 10=a 7+a 8+a 9+a 10a 7a 10=158-98=-53.答案:-536.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=________.解析:由条件知a 3=a 1+2a 2,∴a 1q 2=a 1+2a 1q , ∵a 1≠0,∴q 2-2q -1=0.∵q >0,∴q =1+2, ∴a 8+a 9a 6+a 7=q 2=3+2 2. 答案:3+2 27.等比数列{a n }中a 1=2,公比q =-2,记Πn =a 1·a 2·…·a n (即Πn 表示数列{a n }的前n 项之积),Π8,Π9,Π10,Π11中值最大的是________.解析:由a 1=2,q =-2, Πn =a 1×a 2×…×a n =(a 1)nqn n -12.Π8=28(-2)28=236;Π9=29(-2)36=245; Π10=210(-2)45=-255;Π11=211(-2)55=-266; 所以Π8,Π9,Π10,Π11中值最大的是Π9. 答案:Π98.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________. 解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12可得q 9=3,a n -1a n a n+1=a 31q3n -3=324,因此q3n -6=81=34=q 36,所以n =14.答案:149.等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329,且公比q ∈(0,1).求数列{a n }的通项公式.解:因为a 3·a 4=a 1·a 6=329,又a 1+a 6=11,故a 1,a 6可看作方程x 2-11x +329=0的两根,又q ∈(0,1),所以a 1=323,a 6=13,所以q 5=a 6a 1=132,所以q =12,所以a n =323·⎝ ⎛⎭⎪⎫12n -1=13·⎝ ⎛⎭⎪⎫12n -6.10.在等比数列{a n }中,已知a 1+a 2=6,a 3+a 4=3,求a 5+a 6+a 7+a 8. 解:因为{a n }为等比数列所以a 3+a 4是a 1+a 2与a 5+a 6的等比中项,所以(a 3+a 4)2=(a 1+a 2)(a 5+a 6),所以a 5+a 6=a 3+a 42a 1+a 2=326=32, 同理,a 5+a 6是a 3+a 4与a 7+a 8的等比中项, 所以(a 5+a 6)2=(a 3+a 4)(a 7+a 8),故a 7+a 8=a 5+a 62a 3+a 4=34, 所以a 5+a 6+a 7+a 8=32+34=94.层级二 应试能力达标1.若a ,b ,c 既成等差数列,又成等比数列,则公比为________.解析:由已知得⎩⎪⎨⎪⎧2b =a +c ,b 2=ac ,∴2b =a +b 2a.即a 2+b 2=2ab .∴(a -b )2=0.∴a =b ≠0.∴q =b a=1. 答案:12.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.解析:由已知得S 1·S 4=S 22,即a 1·(4a 1-6)=(2a 1-1)2,解得a 1=-12.答案:-123.如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n ,故a 7=2×⎝ ⎛⎭⎪⎫226=14. 答案:144.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________. 解析:∵a 4+a 7=2,由等比数列的性质可得,a 5a 6=a 4a 7=-8,∴a 4=4,a 7=-2或a 4=-2,a 7=4, 当a 4=4,a 7=-2时,q 3=-12,则a 1=-8,a 10=1, ∴a 1+a 10=-7,当a 4=-2,a 7=4时,q 3=-2, 则a 10=-8,a 1=1, ∴a 1+a 10=-7, 综上可得,a 1+a 10=-7. 答案:-75.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,则a 10=________. 解析:由a 4·a 7=-512,得a 3·a 8=-512.由⎩⎪⎨⎪⎧a 3·a 8=-512,a 3+a 8=124,解得⎩⎪⎨⎪⎧a 3=-4,a 8=128或⎩⎪⎨⎪⎧a 3=128,a 8=-4.(舍去).所以q =5a 8a 3=-2.所以a 10=a 3q 7=-4×(-2)7=512. 答案:5126.已知a ,b ,c 成等比数列,如果a ,x ,b 和b ,y ,c 都成等差数列,则a x +cy=________. 解析:设公比为q ,则b =aq ,c =aq 2,x =12(a +b )=12a (1+q ), y =12(b +c )=12aq (1+q ),所以a x +c y =ay +cxxy=12a 2q 1+q +12a 2q21+q14a 2q 1+q 2=2.答案:27.已知数列{a n }为等差数列且公差d ≠0,{a n }的部分项组成下列数列:ak 1,ak 2,…,ak n 恰为等比数列,其中k 1=1,k 2=5,k 3=17,求k n .解:由题设有a 2k 2=ak 1ak 3,即a 25=a 1a 17, ∴(a 1+4d )2=a 1(a 1+16d ),∴a 1=2d 或d =0(舍去),∴a 5=a 1+4d =6d , ∴等比数列的公比q =ak 2ak 1=a 5a 1=3. 由于ak n 是等差数列的第k n 项,又是等比数列的第n 项, 故ak n =a 1+(k n -1)d =ak 1qn -1,∴k n =2·3n -1-1.8.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解:∵a 1a 5=a 23,a 3a 7=a 25, ∴由题意,得a 23-2a 3a 5+a 25=36, 同理得a 23+2a 3a 5+a 25=100,∴⎩⎪⎨⎪⎧a 3-a 52=36,a 3+a 52=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =2n-2或a n =26-n .附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

高中数学第二章数列2.4第2课时等比数列的性质课时跟踪训练含解析新人教A版必

高中数学第二章数列2.4第2课时等比数列的性质课时跟踪训练含解析新人教A版必

学习资料等比数列的性质[A组学业达标]1.在等比数列{a n}中,若a4a5a6=27,则a1a9=()A.3B.6C.27 D.9解析:在等比数列{a n}中,由a4a5a6=27,得a错误!=27,得a5=3,所以a1a9=a错误!=9,故选D.答案:D2.在各项均为正数的等比数列{a n}中,若a n a n+1=22n+1,则a5=()A.4 B.8C.16 D.32解析:由题意可得,a4a5=29,a5a6=211,则a4a错误!a6=220,结合等比数列的性质得,a4,5=220,数列的各项均为正数,则a5=25=32。

答案:D3.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于()A.16 B.32C.64 D.256解析:由已知,得a1a19=16.∵a1·a19=a8·a12=a错误!,∴a8·a12=a错误!=16.a n>0,∴a10=4,∴a8·a10·a12=a错误!=64。

答案:C4.已知{a n},{b n}都是等比数列,那么()A.{a n+b n},{a n·b n}都一定是等比数列B.{a n+b n}一定是等比数列,但{a n·b n}不一定是等比数列C.{a n+b n}不一定是等比数列,但{a n·b n}一定是等比数列D .{a n +b n },{a n ·b n }都不一定是等比数列解析:{a n +b n }不一定是等比数列,如a n =1,b n =-1,因为a n +b n =0,所以{a n +b n }不是等比数列.设{a n },{b n }的公比分别为p ,q ,则a n +1b n +1a n b n=a n +1a n·错误!=pq ≠0,所以{a n ·b n }一定是等比数列.故选C. 答案:C5.在等比数列{a n }中,已知a 7·a 12=5,则a 8·a 9·a 10·a 11等于( ) A .10 B .25 C .50D .75解析:利用等比数列的性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m ·a n =a p ·a q ,可得a 8·a 11=a 9·a 10=a 7·a 12=5,∴a 8·a 9·a 10·a 11=25。

高中数学课时作业等比数列的性质及应用新人教A版必修0.doc

高中数学课时作业等比数列的性质及应用新人教A版必修0.doc
二、填空题(每小题5分,共15分)
6.已知等比数列{an}中,a3=3,a10=384,则该数列的通项an=________.
解析:由已知得 = =q7=128=27,故q=2.
所以an=a1qn-1=a1q2·qn-3=a3·qn-3=3×2n-3.
答案:3×2n-3
7.三个正数成等差数列,它们的和等于15,如果它们分别加上1,3,9就成为等比数列,则此三个数分别为________.
(2)Sn= +n×1+ ×2=2n+1+n2-2.
|
11.(江西南昌八一中学月考)设等比数列{an}的前n项和为Sn,若S2n=4(a1+a3+…+a2n-1),a1a2a3=27,则a6等于()
A.27 B.81
C.243 D.729
解析:由题可得a1a2a3=a =27,即a2=3.因为S2n=4(a1+a3+…+a2n-1),所以当n=1时,有S2=a1+a2=4a1,从而可得a1=1,q=3,所以a6=1×35=243,故选C.
所以an+2-2an+1=(Sn+1+2n+2)-(Sn+1+2n+1)=2n+1,
所以 =2,
所以数列{an+1-2an}是首项为a2-2a1=2,公比为2的等比数列.
法二 由Sn=2an-2n得Sn+1=2an+1-2n+1,
所以Sn+1-Sn=an+1=2an+1-2n+1-2an+2n,
即an+1-2an=2n,
A. B.-
C.5 D.-5
解析:由1+log3an=log3an+1(n∈N*),得an+1=3an,
即{an}是公比为3的等比数列.
设等比数列{an}的公比为q,
又a2+a4+a6=9,
则log (a5+a7+a9)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(十一) 等比数列的性质层级一 学业水平达标1.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .24解析:选A 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.2.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 设等比数列的公比为q ,因为a 6a 3=a 9a 6=q 3, 即a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.故选D.3.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( ) A.56 B.65 C.23D.32解析:选D 设公比为q ,则由等比数列{a n }各项为正数且a n +1<a n 知0<q <1,由a 2·a 8=6,得a 25=6.∴a 5=6,a 4+a 6=6q+6q =5.解得q =26,∴a 5a 7=1q 2=⎝ ⎛⎭⎪⎫622=32.4.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则m n =( )A.23 B.32或23 C.32D .以上都不对解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b=92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或23,故选B. 5.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A .100 B .-100 C .10 000D .-10 000解析:选C ∵a 3a 8a 13=a 38,∴lg(a 3a 8a 13)=lg a 38=3lg a 8=6.∴a 8=100.又a 1a 15=a 28=10 000,故选C.6.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,成等比数列,则此未知数是________.解析:设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,a -2=3b ,解得⎩⎪⎨⎪⎧a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27.答案:3或277.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________.解析:由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝ ⎛⎭⎪⎫12+32×32=18.答案:188.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048. 答案:2 0489.在由实数组成的等比数列{a n }中,a 3+a 7+a 11=28,a 2·a 7·a 12=512,求q . 解:法一:由条件得⎩⎪⎨⎪⎧a 7q -4+a 7+a 7q 4=28, ①a 7q -5·a 7·a 7q 5=512, ②由②得a 37=512,即a 7=8.将其代入①得2q 8-5q 4+2=0.解得q 4=12或q 4=2,即q =±142或q =±42.法二:∵a 3a 11=a 2a 12=a 27, ∴a 37=512,即a 7=8.于是有⎩⎪⎨⎪⎧a 3+a 11=20,a 3a 11=64,即a 3和a 11是方程x 2-20x +64=0的两根,解此方程得x =4或x =16.因此⎩⎪⎨⎪⎧a 3=4,a 11=16或⎩⎪⎨⎪⎧a 3=16,a 11=4.又∵a 11=a 3·q 8, ∴q =±⎝⎛⎭⎪⎫a 11a 318=±418=±42或q =±⎝ ⎛⎭⎪⎫1418=±142.10.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解:∵a 1a 5=a 23,a 3a 7=a 25, ∴由题意,得a 23-2a 3a 5+a 25=36, 同理得a 23+2a 3a 5+a 25=100,∴⎩⎪⎨⎪⎧a 3-a 52=36,a 3+a 52=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =2n -2或a n =26-n.层级二 应试能力达标1.在等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1D .a 5=1解析:选B 由题意,可得a 1·a 2·a 3·a 4·a 5=1,即(a 1·a 5)·(a 2·a 4)·a 3=1,又a 1·a 5=a 2·a 4=a 23,所以a 53=1,得a 3=1.2.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( )A .2B .4C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.3.在各项均为正数的等比数列{b n }中,若b 7·b 8=3,则log 3b 1+log 3b 2+…+log 3b 14等于( )A .5B .6C .7D .8解析:选C log 3b 1+log 3b 2+…+log 3b 14=log 3 (b 1b 2…b 14)=log 3 (b 7b 8)7=7log 33=7. 4.设各项为正数的等比数列{a n }中,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30=( )A .230B .210C .220D .215解析:选C ∵a 1·a 2·a 3·…·a 30=230, ∴a 301·q1+2+3+…+29=a 301·q 29×302=230,∴a 1=2-272,∴a 3·a 6·a 9·…·a 30=a 103·(q 3)9×102=(2-272×22)10×(23)45=220.5.已知{a n }为公比q >1的等比数列,若a 2 015和a 2 016是方程4x 2-8x +3=0的两根,则a 2 017+a 2 018的值是______.解析:设等比数列的公比为q .因为a 2 015和a 2 016是方程4x 2-8x +3=0的两个根, 所以a 2 015+a 2 016=2,a 2 015·a 2 016=34,所以a 2 015(1+q )=2 ,①a 2 015·a 2 015q =34,②故由①②2得,+q2q=2234=163.又因为q >1,解得q =3,所以a 2 017+a 2 018=a 2 015·q 2+a 2 015·q 3. =a 2 015(1+q )·q 2=2×32=18. 答案:186.已知-7,a 1,a 2,-1四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则a 2-a 1b 2=________. 解析:由题意,知a 2-a 1=-1--3=2,b 22=(-4)×(-1)=4.又因为b 2是等比数列中的第三项,所以b 2与第一项同号,即b 2=-2,所以a 2-a 1b 2=2-2=-1. 答案:-17.已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列ab 1,ab 2,…,ab n ,…为等比数列,其中b 1=1,b 2=5,b 3=17.求数列{b n }的通项公式.解:依题意a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ),所以a 1d =2d 2,因为d ≠0,所以a 1=2d ,数列{ab n }的公比q =a 5a 1=a 1+4da 1=3,所以ab n =a 13n -1,①又ab n =a 1+(b n -1)d =b n +12a 1,②由①②得a 1·3n -1=b n +12·a 1.因为a 1=2d ≠0,所以b n =2×3n -1-1.8.已知数列{a n }满足a 1=1,a 2=2,且a n +1=2a n +3a n -1(n ≥2,n ∈N *). (1)设b n =a n +1+a n (n ∈N *),求证{b n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:由已知得a n +1+a n =3(a n +a n -1)(n ≥2,n ∈N *),则b n +1=3b n , 又b 1=3,则{b n }是以3为首项,3为公比的等比数列.(2)由a n +1+a n =3n,得a n +13n +1+13·a n 3n =13.设c n =a n 3n ,则c n +1+13c n =13,可得c n +1-14=-13⎝⎛⎭⎪⎫c n -14,又c 1=13,故c n -14=112×⎝ ⎛⎭⎪⎫-13n -1,则a n =3n--n4.。

相关文档
最新文档