中考数学考试大纲(最新版)
中考数学试卷大纲
一、试卷结构1. 试卷总分:满分120分,考试时间120分钟。
2. 试卷结构:分为选择题、填空题、解答题三大块。
二、选择题(共20题,每题2分,满分40分)1. 数与代数(1)实数的运算及性质(2)一元一次方程及不等式(3)二元一次方程组(4)一元二次方程及根的判别式(5)函数及其性质2. 几何与代数(1)三角形、四边形及相似、全等(2)圆及圆的性质(3)平面直角坐标系与坐标计算(4)解析几何基础3. 统计与概率(1)平均数、中位数、众数(2)频率分布表(3)概率计算(4)随机事件三、填空题(共10题,每题3分,满分30分)1. 完成实数的运算2. 求一元一次方程的解3. 求二元一次方程组的解4. 求一元二次方程的解5. 求函数的值6. 判断三角形的性质7. 求圆的面积8. 在平面直角坐标系中求点的坐标9. 求概率10. 求平均数、中位数、众数四、解答题(共5题,每题10分,满分50分)1. 数与代数(一元二次方程、函数)题目:已知一元二次方程ax^2+bx+c=0(a≠0)的解为x1和x2,求:(1)若x1+x2=5,求a、b、c的值;(2)若x1x2=4,求a、b、c的值。
2. 几何与代数(三角形、四边形)题目:已知在三角形ABC中,AB=AC,BC=5cm,求:(1)求三角形ABC的面积;(2)求角B的度数。
3. 统计与概率题目:某班级有30名学生,成绩如下表所示:成绩区间 | 人数——|——0-60 | 560-70 | 1070-80 | 1080-90 | 590-100 | 0求:(1)求该班级的平均成绩;(2)求该班级的中位数;(3)求该班级的众数。
4. 综合题题目:已知平面直角坐标系中,点A(2,3),点B(-1,2),求:(1)直线AB的方程;(2)点C(x,y)在直线AB上,且AC的长度为5,求点C的坐标。
5. 应用题题目:某工厂生产一批产品,每天产量为100件,成本为1000元,售价为200元。
完整版)初中数学中考考试大纲
完整版)初中数学中考考试大纲初中数学中考考试大纲一、知识与技能1、数与代数考试内容:本部分主要考察有理数、实数、二次根式、代数式、整式、因式分解、分式、方程与方程组、不等式与不等式组、函数及其表示等知识点。
要求目标:学生需要掌握有理数的概念、大小比较、加减乘除乘方运算、数的开方等基本知识;理解实数、无理数的概念,以及近似数和有效数字的概念;掌握代数式、整式的概念和基本运算法则,以及因式分解、分式、方程与方程组、不等式与不等式组等知识;理解函数的概念和表示方法,能够求解一次函数和反比例函数等问题。
2、几何考试内容:本部分主要考察平面图形的性质、三角形的性质、圆的性质、相似与全等等知识点。
要求目标:学生需要掌握平面图形的基本性质,如线段、角、多边形等;掌握三角形的性质,如三角形内角和、中线定理、角平分线定理等;掌握圆的性质,如圆心角、弧长、切线等;理解相似和全等的概念,能够判断两个图形是否相似或全等。
3、数据与统计考试内容:本部分主要考察数据的收集、整理和表示方法,以及统计分析方法等知识点。
要求目标:学生需要掌握数据的收集、整理和表示方法,如频数、频率、累计频率等;掌握统计分析方法,如均值、中位数、众数、极差、方差等;能够进行简单的数据分析和统计。
4、应用题考试内容:本部分主要考察数学知识在实际问题中的应用能力。
要求目标:学生需要能够将数学知识应用到实际问题中,解决生活中的实际问题。
例如,能够解决关于比例、利润、利率、速度等方面的实际问题。
反比例函数的意义是指两个变量之间的关系是反比例关系,即其中一个变量的值增加,另一个变量的值就会相应地减少。
例如,当一个物品的价格上涨时,人们购买该物品的数量会下降。
反比例函数的表达式通常写作y=k/x,其中k是常数。
这个表达式中,y和x分别代表两个变量的值,k是比例系数。
当x增加时,y会相应地减少,反之亦然。
反比例函数的图像是一个开口朝下的双曲线。
反比例函数也可以写成y=k/x^n的形式,其中n是正整数。
(完整版)初中数学中考考试大纲
知识与技能注:知识与技能考查分为四个层次(1) 认识)(al);能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象(2) 理解(a2):能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系(3) 掌握(a3):能在理解的基础上,把对象运用到新的情境中(4) 运用(a4):能综合运用知识,合理地选择与运用有关的方法完成特定的数学任务。
上述知识与技能中,属于“运用”层次的有:图形与变换12 (7)、图形与坐标14(5) 、统计与概率1 (12)二、数学思考数学思考特指在面临各种问题情境时,能够从数学的角度去思考问题,能够发现其中所存在的数学现象并运用数学的知识与方法去解决问题,该领域应特别关注学生数感、符号感、空间概念、统计概念、应用意识、推理能力等方面的发展情况,在考试中主要体现在以下几个方面:(1) 实世界中数量关系,具有初步的数感、符号感和抽象思维能力。
这一目标主要包括能够在较复杂的层面上用数字和图表刻画现实生活中的现象,对一些数字信息作出合理解释与推断,并运用代数中的方程、不等式、函数等去刻画具体问题,建立合适的数学模型。
(2) 对现实空间及图形有较丰富的认识,具体初步的空间观念和形象思维能力。
这一目标包括能够通过动手操作、图形变换等多种方式探讨图形的形状、大小、位置关系、等量关系等,进行简单的图案设计、构建几何空间,并尝试用图形去从事推理活动。
(3) 能运用数据描述信息,作出合理推断,具有统计的观念。
这一目标主要包括能够从事教为完整的统计活动,能针对现实情境中呈现的原始数据,并根据需要进行重新整理和分析,对数据作数学处理,按照处理的结果做出合理推断和决策,同时了解在现实情境中收集与表达数据的基本方法,能够运用计算器或计算机处理较为复杂的数据。
(4) 能够通过观察、实验、猜想、证明等数学活动过程,作出合理推理和演绎推理,能有条理地,清晰地阐述自己的观点。
中考数学考试大纲(最新版).doc
中考数学考试大纲考试目标【数与代数】有理数有理数的意义用数轴上的点表示有理数及有理数的相反数和绝对值有理数的大小比较求有理数的相反数与绝对值(绝对值内不含字母)乘方的意义有理数的加、减、乘、除、乘方运算及混合运算(以三步为主)实数平方根、算术平方根、立方根和二次根式的概念用根号表示平方根、立方根开方和乘方互为逆运算求某些非负数的算术平方根,求实数的立方根无理数和实数的概念实数与数轴上的点一一对应关系对含有较大数字的信息作出合理的解释和推断用有理数估计一个无理数的大致范围近似数与有效数字的概念二次根式的加、减、乘、除运算法则实数的简单四则运算代数式用字母表示数的意义用代数式表示简单问题的数量关系解释一些简单代数式的实际背景或几何意义求代数式的值整数指数幂的意义和基本性质用科学记数法表示数整式和分式的概念简单的整式加减运算及乘法运算(其中的多项式相乘仅指一次式相乘)平方差、完全平方公式的推导及运用提取公因式法和公式法(用公式不超过两次,指数是正整数)因式分解运用分式基本性质进行约分和通分简单的分式加、减、乘除运算方程与方程组根据具体问题中的数量关系,列出方程或方程组解一元一次方程和二元一次方程组解可化为一元一次方程的分式方程(方程中分式不超过两个)用因式分解法、公式法和配方法解简单的数字系数的一元二次方程用观察、画图或计算等方法估计方程的解根据具体问题的实际意义,检验结果是否合理不等式与不等式组不等式的意义不等式的基本性质解一元一次不等式及由两个一元一次不等式组成的不等式组,并在数轴上表示出解集不等式与不等式组的简单应用函数常量、变量的意义举出函数的实例函数的概念及函数的三种表示方法结合图象对简单实际问题中的函数关系进行分析求简单整式、分式和简单实际问题中的函数的自变量的取值范围求函数值用适当的函数表示法刻画某些实际问题中变量之间的关系结合对函数关系的分析,尝试对变量的变化规律进行初步预测一次函数、反比例函数和二次函数的意义根据已知条件确定一次函数和反比例函数的表示法通过对实际问题情境的分析确定二次函数表达式画一次函数、反比例函数的图象用描点法画二次函数的图象理解一次函数和反比例函数的性质通过图象认识二次函数的性质根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆)运用一次函数图象求二元一次方程组的近似解利用二次函数图象求一元二次方程组的近似解利用一次函数、反比例函数和二次函数解决实际问题【空间与图形】图形的认识认识点、线、面角的概念与表示认识度、分、秒,能进行度、分、秒的简单换算角的大小比较或估计角度的和差计算角平分线及其性质相交线与平行线补角、余角、对顶角等概念等角的余角相等、等角的补角相等、对顶角相等垂线、垂线段等概念,了解垂线段最短点到直线的距离和两跳平行线之间的距离过一点有且仅有一条直线垂直于已知直线用三角尺或量角器过一点画一条直线的垂线线段垂直平分线及其性质两直线平行同位角相等过直线外一点有且只有一条直线平行于已知直线用三角尺和直尺过已知直线外一点画这条直线的平行线三角形三角形的有关概念(内角、外角、中线、高、角平分线)画任意三角形的角平分线、中线和高三角形中线及其性质全等三角形的概念三角形全等的条件等腰三角形、等边三角形和直角三角形的有关概念等腰三角形、等边三角形和直角三角形的性质判定等腰三角形、直角三角形的条件勾股定理及其简单运用四边形多边形的概念多边形的内角和与外角和公式平行四边形、矩形、菱形、正方形、梯形的概念平行四边形、矩形、菱形、正方形、梯形的性质平行四边形、矩形、菱形、正方形、梯形之关系间的判定平行四边形、矩形、菱形、正方形的条件等腰梯形的有关性质判定等腰梯形的依据圆圆及其有关概念弧、弦、圆心角的关系点与圆、直线与圆以及圆与圆的位置关系圆的简单性质圆周角与圆心角的关系,直径所对圆周角的特征三角形的内心和外心切线的概念切线与过切点的半径之间的关系,会过圆上一点画圆的切线判定一条直线是否为圆的切线计算弧长和扇形的面积,计算圆锥的侧面积和全面积尺规作图基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线利用基本作图作三角形;已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形过不在同一直线上的三点作圆对于尺规作图题,应保留作图痕迹视图与展开图画基本几何体(直棱柱、圆柱、圆锥、球)的三视图判断简单物体(基本几何体地简单组合)的三视图根据三视图描述简单几何体或简单物体的实物原型直棱柱、圆锥的侧面展开图基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)根据展开图判断立体模型图形与变换轴对称、平移和旋转的概念轴对称、平移和旋转的基本性质按要求作出简单平面图形经过一次或两次轴对称后的图形;作出简单图形平移后的图形;作出简单图形旋转后的图形找出成轴对称的两个图形或轴对称图形的对称轴等腰三角形、矩形、菱形、等腰梯形、正多边形、圆的轴对称性及相关性质平行四边形、圆是中心对称图形探索图形之间的变换关系(轴对(3)运用三角函数解决与直角称、平移、旋转及其组合)三角形有关的简单实际问题应用轴对称、平移、旋转或他们17.图形与坐标的组合进行图案设计(1)平面直角坐标系的概念欣赏现实生活中的轴对称,欣赏(2)在给定的直角坐标系中,平移、旋转在现实生活中的应用由坐标描出点的位置,由点的位图形的相似置写出它的坐标比例的基本性质、线段的比、成(3)在方格纸上建立适当的直比例线段角坐标系,描述物体的位置黄金分割(4)在同一坐标系中感受图形图形相似、三角形相似的概念变换后点的坐标的变化图形相似的简单性质(5)运用不同的方式确定物体两个三角形相似的判定依据的位置观察和认识现实生活中的物体相18.图形与证明似(1)证明的作用、反例的作用利用图形的相似解决一些实际问(2)定义、命题、定理的含义题(3)命题的构成(区分条件与16.三角函数结论)(1)锐角三角函数 sinA,cosA,(4)逆命题的概念tanA 的概念(5)两个互逆命题的关系(2) 30°, 45°, 60°角的(6)反证法的含义三角函数值(7)综合法证明的格式(8)掌握下列“证明的依据”垂直平分线性质定理及逆定理,一条直线截两条平行直三角形三边的垂直平分线交与一线所得的同位角相等;两条直线点(外心)被第三条直线所截,若同位角相三角形中位线定理等,那么这两条直线平行;若两等腰三角形、等边三角形、直角个三角形的两边及其夹角(或两三角形的性质和判定定理角及其夹边,或三边)分别相等,平行四边形、矩形、菱形、正方则这两个三角形全等;全等三角形、等腰梯形的性质和判定定理形的对应边、对应角分别相等(9)利用“证明的依据” (上【统计与概率】一条目)中的基本事实证明下列19.统计命题:(1)收集、整理、描述和分析平行线的性质定理(内错角相等、数据同旁内角互补)(2)抽样的意义平行线的判定定理(内错角相等(3)总体、个体、样本的概念或同旁内角互补,则两直线平行)(4)用样本估计总体的思想三角形的内角和定理及推论(5)用扇形统计图表示数据直角三角形全等的判定定理(6)加权平均数的概念角平分线性质定理及逆定理,三(7)加权平均数的计算角形三个内角的平分线交于一点(8)选择合适的统计量表示数(内心)据的集中程度(9)用样本的平均数估计总体的平均数(10)极差和方差的概念(11)极差和方差的计算(12)用极差和方差表示数据的离散程度(13)用样本的方差估计总体的方差(14)频数、频率的概念(15)频数分布的意义和作用(16)列频数分布表、画频数分布直方图和频数折线图及其应用(17)根据统计结果作出合理的判断和预测(18)从有关实际问题的资料中获得数据信息,对日常生活中的某些数据发表自己的看法(19)运用统计知识解决一些简单的实际问题20.概率(1)概率的意义(2)运用列表、画树状图计算简单事件发生的概率(3)用概率知识解决一些实际问题(4)通过实验获得事件发生的概率(5)理解大量重复实验的频率可作为事件发生概率的估计值【实践与综合运用(课题学习)】结合“数与代数” “空间与图形”“统计与概率”三个学习领域的内容进行课题学习内容的考核,要求如下:有初步的研究问题的方法和经验。
初三数学中考试卷考纲
一、考试目的本次考试旨在检测学生对初中阶段数学知识的掌握程度,检验学生的数学思维能力、运算能力和解决问题的能力,为高中阶段的学习奠定基础。
二、考试范围1. 数与代数(1)实数:实数的概念、性质、运算;绝对值;平方根;立方根;实数的大小比较。
(2)代数式:代数式的概念、运算;单项式、多项式、分式的概念、运算;因式分解。
(3)方程与不等式:一元一次方程、一元二次方程、二元一次方程组、不等式及其解集;方程与不等式的应用。
2. 几何(1)平面几何:点、线、面、角、三角形、四边形、圆等基本概念;三角形全等、相似、勾股定理;平行四边形、矩形、菱形、正方形、圆的性质和判定。
(2)空间几何:长方体、正方体、棱柱、棱锥、球的性质和判定;三视图;空间几何问题的计算。
3. 统计与概率(1)统计:统计图表的制作、分析;平均数、中位数、众数、方差、标准差的概念及计算。
(2)概率:概率的基本概念、概率的求法;古典概型、几何概型;随机事件的独立性。
三、考试题型1. 基础题:包括选择题、填空题,主要考查学生对基本概念、性质、公式的掌握程度。
2. 应用题:包括计算题、证明题、应用题,主要考查学生的运算能力、逻辑推理能力、解决问题的能力。
3. 综合题:包括综合应用题、探究题,主要考查学生的综合运用知识的能力、创新思维能力。
四、考试时间本次考试时间为120分钟。
五、评分标准1. 基础题:每题3分,共15分。
2. 应用题:每题5分,共20分。
3. 综合题:每题10分,共30分。
总分:65分。
六、考试注意事项1. 考生在考试过程中应遵守考场纪律,保持安静,认真作答。
2. 考生在考试过程中如遇问题,应及时向监考老师求助。
3. 考生在考试结束后,应将试卷、答题卡和草稿纸交回给监考老师。
4. 考生在考试过程中应保持卷面整洁,字迹清晰。
5. 考生应认真审题,确保答题准确无误。
七、考试说明1. 本试卷严格按照《初中数学课程标准》和《中考数学考试大纲》编写。
广东中考数学大纲
广东中考数学大纲
广东中考数学大纲主要包括以下内容:
1. 考试性质:初中学业水平考试数学学科考试是义务教化阶段数学学科的终结性考试,目的是全面、精确地反映初中毕业生的数学学业水平。
考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是中学阶段学校招生的重要依据之一。
2. 指导思想:初中学业水平考试数学学科考试要体现《义务教化数学课程标准(2011年版)》的理念和要求,引导学校教学和学生学习,促进初中数
学课程与高中乃至整个义务教育阶段的数学课程的有机衔接。
3. 考试目标与内容:包括知识与技能、数学思考、问题解决和情感态度等四个方面的内容。
4. 考试形式与试卷结构:包括考试形式、试卷难度、试卷结构等。
5. 试题难度:根据不同层次的要求,试题可分为容易题、中等题和较难题,分别占全卷分数的70%、20%和10%。
6. 评价标准:根据不同的要求,评价标准可分为不同层次,包括了解、理解、掌握、运用等。
总的来说,广东中考数学大纲是为了全面、准确地评估初中毕业生的数学学业水平,引导学校教学和学生学习,促进初中数学课程与高中数学课程的有机衔接。
全国中考数学考试大纲全解
全国中考数学考试大纲全解关键信息项:1、考试范围数与代数图形与几何统计与概率综合与实践2、考试目标知识技能目标过程性目标数学思考目标问题解决目标3、试卷结构题型分布分值比例难易程度比例11 考试范围111 数与代数数与式:包括有理数、实数、代数式、整式与分式。
方程与不等式:一元一次方程、二元一次方程组、一元二次方程、分式方程、一元一次不等式(组)。
函数:一次函数、反比例函数、二次函数。
112 图形与几何图形的性质:点、线、面、角,相交线与平行线,三角形,四边形,圆,尺规作图。
图形的变化:图形的平移、旋转、轴对称,相似,投影与视图。
113 统计与概率统计:数据的收集、整理与描述,数据的分析,统计图表。
概率:随机事件与概率,用列举法求概率,用频率估计概率。
114 综合与实践以实际问题为背景,综合运用数学知识和方法解决问题。
12 考试目标121 知识技能目标掌握数学基础知识,包括基本概念、定理、公式等。
能够熟练进行基本的数学运算和推理。
122 过程性目标经历数学探究活动,积累数学活动经验。
体会数学的基本思想和方法,如分类讨论、数形结合、转化等。
123 数学思考目标能够用数学的眼光观察世界,提出数学问题。
通过思考和推理,解决数学问题,发展逻辑思维能力。
124 问题解决目标能够运用数学知识和方法解决实际问题,提高应用意识。
学会与他人合作交流,共同解决问题。
13 试卷结构131 题型分布选择题:考查基础知识和基本技能。
填空题:考查对概念、定理的理解和简单计算。
解答题:包括计算题、证明题、应用题等,综合考查学生的数学能力。
132 分值比例数与代数约占 45%,图形与几何约占 40%,统计与概率约占 15%。
133 难易程度比例容易题约占 70%,中等题约占 20%,较难题约占 10%。
在中考数学考试中,将严格按照上述大纲的要求进行命题和评价。
考生应全面掌握大纲所涵盖的内容,注重基础知识的学习和基本技能的训练,同时培养数学思维和解决问题的能力,以取得优异的成绩。
2023年中考数学总复习提纲(人教版)
2023年中考数学总复习提纲(人教版)第一章:数与代数1. 整数和有理数- 整数的四则运算- 有理数的加减乘除运算2. 分数和小数- 分数的基本概念- 分数的加减乘除运算- 分数与小数的转换3. 数量与单位- 基本数量单位的认识- 不同单位之间的换算- 速度、密度、质量等实际问题的计算第二章:几何与图形1. 平面图形- 点、线、面的基本概念- 直线、点线面的位置关系- 四边形、三角形、圆的特征和性质2. 空间图形- 立体图形的基本概念- 立方体、长方体、圆柱体的特征和性质- 探索立体图形的表面积和体积公式3. 平面坐标系- 直角坐标系的认识- 平面坐标系中的点的位置表示- 利用坐标解决简单几何问题第三章:函数与方程1. 函数的初步认识- 函数的概念与常见例子- 函数的表达式和函数图象2. 一次函数与二次函数- 一次函数的定义和性质- 二次函数的定义和性质- 利用函数图象解决实际问题3. 方程与不等式- 一元一次方程与一元一次不等式- 解方程和不等式的基本步骤- 问题转化为方程或不等式的求解第四章:数据与统计1. 数据的整理和分析- 数据的收集方法与表示方式- 数据的整理和分类- 数据的分析和统计2. 图表的分析与应用- 条形图、折线图的意义与应用- 饼图、直方图的意义与应用- 利用图表解决实际问题3. 概率的初步认识- 事件与概率的概念- 等可能事件的概率计算- 实际问题中的概率计算以上是2023年中考数学总复习提纲(人教版)的大纲目录。
根据这个提纲进行复习将有助于你掌握数学的基础知识和解题技巧。
希望你认真学习,取得优异的成绩!加油!。
最新初中数学中考考试大纲
用有理数估计无理数的大致范围
√
近似数与有效数字
√
5、二次根式
二次根式的概念
√
用二次根式的加、减、乘、除运算法则进行实数运算(不要求分母有理化)
√
代
附件(二):数
服饰□学习用品□食品□休闲娱乐□小饰品□式
500元以上1224%6、代数式
除了“漂亮女生”形成的价格,优惠等条件的威胁外,还有“碧芝”的物品的新颖性,创意的独特性等,我们必须充分预见到。 用字母表示数的意义、代数式
一、知识与技能
1、数与代数
考试内容
考试
要求目标
单元
知识条目
a1
a2
a3
有
理
数
1、有理数的概念
有理数的意义、数轴、相反数、绝对值等概念
√
有理数大小的比较
√
2、有理数的运算
有理数的加、减、乘、除、乘方运算
√
有理数的混合运算
√
很大的数与很小的数
√
实
数
3、数的开方
平方根、算术平方根、立方根的概念
4、实数
无理数、实数的概念、实数与数轴上的点一一对应
√
作简单平面图形平移后的图形
√
利用平移进行图案设计
√
平移在现实生活中的应用
√
12、图形的旋转
旋转的概念
√
旋转的基本性质
√
平行四边形、圆的对称性
√
作简单平面图形旋转后的图形
√
旋转在现实生活中的应用
√
图形之间的变换关系(轴对称、平移、旋转及其组合)
√
用轴对称、平移和旋转的组合进行图案设计
√
作角的平分线
√
(完整版)初中数学中考考试大纲
等腰三角形、矩形、菱形、腰梯形、正多边形、圆的轴对称及其相关性质
√
生活中的轴对称图形、物体的镜面对称
√
利用轴对称设计图形
√
11、图形的平移
平移的概念
√
平移的基本性质
√
作简单平面图形平移后的图形
√
利用平移进行图案设计
√
平移在现实生活中的应用
√
12、图形的旋转
旋转的概念
√
旋转的基本性质
√
平行四边形、圆的对称性
√
用三角尺或量角器画直线的垂线
√
平行线的概念,两直线平行的性质和判断
√
用三角尺和直尺过直线外一点画这条直线的平行线
√
两条平行线之间的距离
√
度量两条平行线间的距离
√
4、证明
定义、命题、定理的含义
√
区分命题的条件和结论
√
逆命题的概念
√
利用反例证明一个命题是错误的
√
反证法的含义
√
综合法证明的格式与过程
√
5、三角形
√
线段垂直平分线定理及其逆定理
√
三角形中位线的性质
√
考试内容
考试
目标要求
单元
知识条目
a1
a2
a3
图
形
的
认识Βιβλιοθήκη 与证明6、四边形
多边形的内角和与外角和
√
正多边形的概念
√
四边形的不稳定性
√
平行四边形、矩形、菱形、正方形的概念
√
平行四边形、矩形、菱形、正方形的关系
√
平行四边形的性质和判定
√
矩形、菱形、正方形的性质和判定
初中数学中考考试大纲
知识条目
a1
a2
a3
方
程
与
不
等
式
10、方程与方程组
①用观察、画图等手段估计方程的解
√
②一元一次方程的解法
√
③简单的二元一次方程的解法
√
④可化为一元一次方程的分式方程的解法(方程中的分式方程不超过两个)
√
⑤简单数字系数的一元二次方程的解法(公式法、配方法、因式分解法)
√
⑥列方程(组)解应用题
√
11、不等式与不等式组
⑧图形的位似
√
⑨利用位似将一个图形放大或缩小
√
⑩利用图形的相似解决一些实际问题
√
⑾锐角三角形函数的意义
√
⑿特殊角三角函数值
√
⒀用锐角三角形函数解决简单的实际问题
√
图形与坐标
14、图形与坐标
①平面直角坐标系的有关概念
√
②画平面直角坐标系,点的位置与坐标
√
③在方格上建立直角坐标系,描述物体的位置
√
④图形坐标与坐标变化
√
考试内容
考试
要求目标
单元
知识条目
a1
a2
a3
图形的认识与证明
8、尺规作图
①作一条线段等于已知线段
√
②作一个角等于已知角
√
③作角的平分线
√
④作线段的垂直平分线
√
⑤利用基本作图作三角形
√
⑥过一点、两点和不在同一直线上的三点作圆
√
9、视图与投影
①画基本几何体的三视图
√
②判断简单物体的三视图,根据三视图描述基本几何体或实物原型
√
⑾运用三角形、四边形、正六边形进行镶嵌设计
武汉市中考数学大纲
武汉市中考数学大纲一、考试性质武汉市中考数学考试是义务教育阶段的终结性考试,目的是全面、准确地评估初中毕业生在数学学科方面达到的水平,考试结果既是衡量学生是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据。
二、考试目标1. 知识技能(1)数学基础知识与基本技能- 数与式:有理数及其运算、实数及其运算、代数式、整式与分式。
- 方程与不等式:一元一次方程、一元二次方程、不等式与不等式组。
- 函数:一次函数、反比例函数、二次函数。
- 图形与几何:相交线与平行线、三角形、四边形、圆。
- 图形与变换:图形的平移、旋转与轴对称。
- 相似与全等:相似图形、全等图形。
- 尺规作图:基本作图、五种尺规作图。
(2)数学思想方法- 分类讨论思想。
- 函数与方程思想。
- 数形结合思想。
- 转化与化归思想。
(3)数学基本活动经验- 数学实验。
- 数学探究。
2. 数学思考(1)运用数学思维方式进行思考。
(2)发展数学应用意识。
(3)有条理地思考,有根有据地表达自己思考的过程。
(4)形成坚持真理、修正错误的科学态度。
3. 问题解决(1)提出问题并尝试用数学语言加以表述。
(2)分析问题并寻找解决策略。
(3)掌握分析与综合、归纳与演绎的基本方法。
(4)能根据问题提供的信息,自觉应用所学数学知识寻求解决问题的途径与方法,并有效地进行表达和交流。
(5)能主动应用所学数学知识解决生活中简单的实际问题,并在解决复杂问题时具有初步的判断和选择能力。
(6)能从多角度寻求解决问题的方法,并考虑问题的全面性。
(7)能对解决问题的过程进行反思,获得解决问题的经验,形成初步的探究和解决问题的能力。
4. 情感态度(1)积极参与数学学习活动,对数学有好奇心和求知欲。
(2)在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
(3)初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2024年全国中考数学考试大纲
2024年全国中考数学考试大纲一、考试目标和要求2024年全国中考数学考试旨在全面评估学生对数学知识和技能的掌握程度,培养学生的逻辑思维和问题解决能力。
考试内容涵盖数学的基本概念、运算技巧、应用能力和数学思维方法。
具体考试目标和要求如下:1. 理解与应用知识学生应掌握数与代数、几何、函数、统计与概率等方面的基本概念和基本原理,并能灵活运用这些知识解决实际问题。
2. 计算与推理能力学生应具备基本的计算能力,能熟练运用数与代数、几何、函数等方面的运算技巧。
同时,学生应具备良好的逻辑思维和推理能力,能运用数学方法和思维解决实际问题。
3. 建模与解决问题能力学生应具备基本的建模能力,能从具体问题中抽象出数学模型,并能利用数学模型解决实际问题。
4. 快速反应与解决问题能力学生应具备较强的计算与推理能力,能在一定时间内迅速反应和解决问题,提高解决问题的效率。
二、考试内容2024年全国中考数学考试内容包括数与代数、几何、函数、统计与概率四个方面。
其中,数与代数占30%,几何占30%,函数占20%,统计与概率占20%。
具体内容如下:1. 数与代数(1)整数、有理数和无理数的概念与性质;(2)代数式及其运算;(3)一元一次方程及其应用;(4)比例与比例方程;(5)四则运算和整式的运算;(6)一元二次方程及其应用。
2. 几何(1)相交线与平行线;(2)三角形的性质与构造;(3)多边形的性质与构造;(4)相似与全等三角形;(5)三角形的面积;(6)圆的性质与构造;(7)平面图形的投影与旋转。
3. 函数(1)函数的概念与性质;(2)一次函数与二次函数的图象与性质;(3)函数的运算与复合函数;(4)函数方程与应用。
4. 统计与概率(1)统计调查与统计表的分析;(2)图表的绘制与分析;(3)样本调查与抽样方法;(4)概率的概念与计算。
三、考试要求和评分标准2024年全国中考数学考试采用闭卷形式,考试时间为120分钟。
考试试卷分为选择题和解答题两部分。
(完整版)初中数学中考考试大纲
⑤三角形的内心与外心
V
⑥切线的概念
V
⑦切线与过切点的半径之间的关系
V
⑧切线的判定
V
⑨过圆上一点画圆的切线
V
⑩弧长及扇形面积的计算
V
(11)圆锥的侧面积和全面积的计算
V
考试内容
考试 要求目标
单
元
知识条目
a1
a2
a3
图 形 的 认 识 与 证 明
&尺规作图
①作一条线段等于已知线段
V
②作一个角等于已知角
V
⑥平行四边形的性质和判定
V
⑦矩形、菱形、正方形的性质和判定
V
⑧梯形的概念
V
⑨等腰梯形的性质和判定
V
⑩线段、矩形、平行四边形、三角形 的中心及物理意义
V
(11)运用三角形、四边形、正六边形进 行镶嵌设计
V
7、圆
①圆的有关概念
V
②弧、弦、圆心角的关系
V
③圆的性质
V
④圆周角与圆心角的关系、直径所对 圆周角的特征
V
⑥列方程(组)解应用题
V
11、不等式与不等式组
①不等式的意义
V
②不等式的基本性质
V
③简单的一兀一次不等式的解法
V
④两个一兀一次不等式组成的不等 式组的解法
V
⑤在数轴上表示不等式(组)的解 集
V
⑥列不等式(组)解简单的应用题
V
函 数
12、函数及其表示
①常量、变量的意义
V
②函数的概念和表示方法
V
③简单实际问题中的函数关系
V
③估计、比较角的大小
V
④计算角度的和与差
2024年中考数学考试大纲更新版
2024年中考数学考试大纲更新版中考作为学生学业生涯中的一次重要考试,数学科目一直占据着重要的地位。
为了更好地引导学生学习数学,提高数学素养,适应时代发展的需求,2024 年中考数学考试大纲进行了更新。
以下将对更新后的考试大纲进行详细解读。
一、考试目标2024 年中考数学考试旨在考查学生的数学基础知识、基本技能、基本思想和基本活动经验,以及运用所学知识分析问题和解决问题的能力。
注重考查学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,同时关注学生的创新意识和实践能力的发展。
二、考试内容1、数与代数(1)数的认识理解有理数、无理数、实数的概念,掌握它们的性质和运算。
能比较实数的大小,能用数轴上的点表示实数,会求实数的相反数、绝对值。
(2)数的运算掌握有理数的加、减、乘、除、乘方运算,以及简单的混合运算。
理解整式、分式的概念,掌握整式的加减乘除运算,以及分式的化简和运算。
能进行二次根式的化简和运算。
(3)方程与不等式能解一元一次方程、二元一次方程组、一元二次方程,会用方程解决实际问题。
能解一元一次不等式(组),并用数轴表示解集。
(4)函数理解函数的概念,能确定函数自变量的取值范围。
掌握一次函数、反比例函数、二次函数的图象和性质,能用函数解决实际问题。
2、图形与几何(1)图形的认识认识点、线、面、角、相交线与平行线,掌握三角形、四边形、圆的基本性质和相关定理。
了解视图与投影的基本知识。
(2)图形的变换掌握平移、旋转、轴对称的性质,能进行简单的图形变换。
(3)图形的相似与全等理解相似三角形、全等三角形的判定和性质,能运用它们解决问题。
(4)解直角三角形掌握锐角三角函数的概念,能运用三角函数解决与直角三角形相关的实际问题。
(5)图形与坐标理解平面直角坐标系的概念,能在坐标系中表示点的位置,会用坐标表示图形的变换。
3、统计与概率(1)数据的收集、整理与描述了解普查和抽样调查的区别,会收集、整理和分析数据,能用统计图(条形统计图、扇形统计图、折线统计图)描述数据。
福建福州市中考数学大纲
福建福州市中考数学大纲一、考试性质与目标初中数学学业考试是义务教育初中阶段的终结性省级考试,旨在全面、准确地反映初中毕业生是否达到《义务教育数学课程标准(实验)》所规定的学业水平。
考试结果既是衡量学生是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据。
二、考试内容与要求1.考试内容初中数学学业考试的内容包括数学基础知识、基本技能和数学思想方法,以及数学应用能力等。
具体包括:数与式、方程与不等式、函数及其图像、图形与几何、统计与概率等。
2.考试要求(1)对数学基础知识的考查,注重知识的整体性和系统性,以及在生活、生产、社会实践中的应用。
(2)对数学基本技能的考查,注重学生的运算能力、数据处理能力和空间观念。
(3)对数学思想方法的考查,注重学生的数学思维能力和问题解决能力。
(4)对数学应用能力的考查,注重学生的数学建模能力和数学实践能力。
三、考试形式与结构1.考试形式初中数学学业考试采用闭卷笔试的形式,考试时间为120分钟,试卷满分为150分。
2.考试结构试卷结构包括选择题、填空题和解答题三种类型。
选择题和填空题主要考查学生的基础知识和基本技能,解答题主要考查学生的数学应用能力和问题解决能力。
其中,选择题和填空题的分值约占40%,解答题的分值约占60%。
四、考试难度与题型特点1.考试难度初中数学学业考试的难度根据学生的实际水平和发展需要来确定,注重考查学生的数学能力和素养。
难度系数控制在0.75左右,以保证考试的公平性和有效性。
2.题型特点(1)选择题:注重考查学生的基础知识掌握程度和基本技能运用能力。
题目内容涉及各种数学基础知识,如代数、几何、概率等,要求学生在四个选项中选出正确答案。
(2)填空题:注重考查学生的运算能力和数据处理能力。
题目内容涉及各种数学运算和数据处理方法,要求学生在空白处填写正确的答案。
(3)解答题:注重考查学生的数学思维能力和问题解决能力。
题目内容涉及各种数学应用问题,要求学生运用所学知识进行分析、推理和计算,并写出完整的解题过程。
全国中考数学大纲2024版更新
全国中考数学大纲2024版更新中考,作为学生学业生涯中的一次重要考试,其数学大纲的更新一直备受关注。
2024 版的全国中考数学大纲在众多期待中迎来了新的变化,这些变化不仅反映了教育理念的进步,也对学生的学习和教师的教学提出了新的要求。
首先,让我们来看看知识内容方面的更新。
在代数领域,函数的部分得到了进一步的深化和拓展。
函数一直是数学中的重要概念,新版大纲更加注重函数与实际问题的结合,要求学生能够运用函数知识解决生活中的各种数学问题。
例如,通过建立函数模型来分析经济增长、资源消耗等实际情况,培养学生的数学应用能力和解决实际问题的思维。
几何方面的更新也十分显著。
在传统的平面几何和立体几何基础上,增加了对于空间想象力和几何推理能力的考察。
不再仅仅局限于对定理和公式的记忆,而是更强调学生对几何图形的理解和构建能力。
比如,通过给定一些条件,让学生自己设计和构建符合要求的几何图形,并进行相关的计算和证明。
在统计与概率部分,新版大纲加大了对于数据分析和处理能力的要求。
学生需要能够从大量的数据中提取有用的信息,进行合理的分析和推断。
同时,对于概率的计算和应用也有了更深入的考察,要求学生能够理解概率的本质,并运用概率知识解决实际决策中的问题。
在数学思维能力的培养方面,2024 版大纲也有了明确的导向。
逻辑推理能力一直是数学的核心能力之一,新版大纲更加注重培养学生严谨的逻辑思维和推理过程。
通过设置一些具有挑战性的推理题目,引导学生逐步深入思考,锻炼其逻辑推理的严密性和准确性。
创新思维能力的培养在新版大纲中也得到了重视。
鼓励学生从不同的角度思考问题,提出独特的解题方法和思路。
例如,在一些综合性的问题中,不再局限于一种标准答案,而是鼓励学生发挥创造性,只要解题过程合理、逻辑清晰,都能得到认可。
为了适应这些大纲的更新,学生在学习方法上也需要做出相应的调整。
不能再满足于死记硬背公式和定理,而是要真正理解数学知识的本质和内在联系。
中考数学考试大纲(最新版)
中考数学考试大纲〔5〕无理数和实数的概念考试目标〔6〕实数与数轴上的点一一对【数与代数】应关系1. 有理数〔7〕对含有较大数字的信息作〔1〕有理数的意义出合理的解释和推断〔2〕用数轴上的点表示有理数〔8〕用有理数估计一个无理数及有理数的相反数和绝对的大致X围值〔9〕近似数与有效数字的概念〔3〕有理数的大小比较〔10〕二次根式的加、减、乘、〔4〕求有理数的相反数与绝对除运算法那么值〔绝对值内不含字母〕〔11〕实数的简单四那么运算〔5〕乘方的意义 3. 代数式〔6〕有理数的加、减、乘、除、〔1〕用字母表示数的意义乘方运算及混合运算〔以三〔2〕用代数式表示简单问题的步为主〕数量关系2. 实数〔3〕解释一些简单代数式的实〔1〕平方根、算术平方根、立方际背景或几何意义根和二次根式的概念〔4〕求代数式的值〔2〕用根号表示平方根、立方根〔5〕整数指数幂的意义和根本〔3〕开方和乘方互为逆运算性质(4〕求某些非负数的算术平方〔6〕用科学记数法表示数根,XX数的立方根〔7〕整式和分式的概念1〔8〕简单的整式加减运算及乘一元二次方程法运算〔其中的多项式相乘〔5〕用观察、画图或计算等方法仅指一次式相乘〕估计方程的解〔9〕平方差、完全平方公式的推〔6〕根据具体问题的实际意义,导及运用检验结果是否合理〔10〕提取公因式法和公式 5. 不等式与不等式组法〔用公式不超过两次,指〔1〕不等式的意义数是正整数〕因式分解〔2〕不等式的根本性质〔11〕运用分式根本性质进〔3〕解一元一次不等式及由两行约分和通分个一元一次不等式组成的〔12〕简单的分式加、减、乘不等式组,并在数轴上表示除运算出解集4. 方程与方程组〔4〕不等式与不等式组的简单〔1〕根据具体问题中的数量关应用系,列出方程或方程组 6. 函数〔2〕解一元一次方程和二元一〔1〕常量、变量的意义次方程组〔2〕举出函数的实例〔3〕解可化为一元一次方程的〔3〕函数的概念及函数的三种分式方程〔方程中分式不超表示方法过两个〕〔4〕结合图象对简单实际问题〔4〕用因式分解法、公式法和配中的函数关系进展分析方法解简单的数字系数的〔5〕求简单整式、分式和简单实2际问题中的函数的自变量例函数的性质的取值X围〔15〕通过图象认识二次函〔6〕求函数值数的性质〔7〕用适当的函数表示法刻画〔16〕根据公式确定图象的某些实际问题中变量之间顶点、开口方向和对称轴的关系〔公式不要求记忆〕〔8〕结合对函数关系的分析,尝〔17〕运用一次函数图象求试对变量的变化规律进展二元一次方程组的近似解初步预测〔18〕利用二次函数图象求〔9〕一次函数、反比例函数和二一元二次方程组的近似解次函数的意义〔19〕利用一次函数、反比例〔10〕根据条件确定一函数和二次函数解决实际次函数和反比例函数的表问题示法【空间与图形】〔11〕通过对实际问题情境7. 图形的认识的分析确定二次函数表达〔1〕认识点、线、面式〔2〕角的概念与表示〔12〕画一次函数、反比例函〔3〕认识度、分、秒,能进展数的图象度、分、秒的简单换算〔13〕用描点法画二次函数〔4〕角的大小比较或估计的图象〔5〕角度的和差计算〔14〕理解一次函数和反比〔6〕角平分线及其性质38. 相交线与平行线〔2〕画任意三角形的角平分线、〔1〕补角、余角、对顶角等概念中线和高〔2〕等角的余角相等、等角的补〔3〕三角形中线及其性质角相等、对顶角相等〔4〕全等三角形的概念〔3〕垂线、垂线段等概念,了解〔5〕三角形全等的条件垂线段最短〔6〕等腰三角形、等边三角形和〔4〕点到直线的距离和两跳平直角三角形的有关概念行线之间的距离〔7〕等腰三角形、等边三角形和〔5〕过一点有且仅有一条直线直角三角形的性质垂直于直线〔8〕判定等腰三角形、直角三角〔6〕用三角尺或量角器过一点形的条件画一条直线的垂线〔9〕勾股定理及其简单运用〔7〕线段垂直平分线及其性质10. 四边形〔8〕两直线平行同位角相等〔1〕多边形的概念〔9〕过直线外一点有且只有一〔2〕多边形的内角和与外角和条直线平行于直线公式〔10〕用三角尺和直尺过已〔3〕平行四边形、矩形、菱形、知直线外一点画这条直线正方形、梯形的概念的平行线〔4〕平行四边形、矩形、菱形、9. 三角形正方形、梯形的性质(1〕三角形的有关概念〔内角、〔5〕平行四边形、矩形、菱形、外角、中线、高、角平分线〕正方形、梯形之关系间的4〔6〕判定平行四边形、矩形、菱12.尺规作图形、正方形的条件〔1〕根本作图:作一条线段等于〔7〕等腰梯形的有关性质线段;作一个角等于已〔8〕判定等腰梯形的依据知角;作角的平分线;作线11.圆段的垂直平分线〔1〕圆及其有关概念〔2〕利用根本作图作三角形;已〔2〕弧、弦、圆心角的关系知三边作三角形;两边〔3〕点与圆、直线与圆以及圆与及其夹角作三角形;两圆的位置关系角及其夹边作三角形;〔4〕圆的简单性质底边及底边上的高作等腰〔5〕圆周角与圆心角的关系,直三角形径所对圆周角的特征〔3〕过不在同一直线上的三点〔6〕三角形的内心和外心作圆〔7〕切线的概念〔4〕对于尺规作图题,应保存作〔8〕切线与过切点的半径之间图痕迹的关系,会过圆上一点画圆〔5〕的切线13.视图与展开图〔9〕判定一条直线是否为圆的〔1〕画根本几何体〔直棱柱、圆切线柱、圆锥、球〕的三视图〔10〕计算弧长和扇形的面〔2〕判断简单物体〔根本几何体积,计算圆锥的侧面积和全地简单组合〕的三视图面积〔3〕根据三视图描述简单几何5体或简单物体的实物原型〔6〕平行四边形、圆是中心对称〔4〕直棱柱、圆锥的侧面展开图图形〔5〕根本几何体与其三视图、展〔7〕探索图形之间的变换关系开图〔球除外〕之间的关系;〔轴对称、平移、旋转及其通过典型实例,知道这种关组合〕系在现实生活中的应用〔如〔8〕应用轴对称、平移、旋转或物体的包装〕他们的组合进展图案设计〔6〕根据展开图判断立体模型〔9〕欣赏现实生活中的轴对称,14.图形与变换欣赏平移、旋转在现实生活〔1〕轴对称、平移和旋转的概念中的应用〔2〕轴对称、平移和旋转的根本15.图形的相似性质〔1〕比例的根本性质、线段的〔3〕按要求作出简单平面图形比、成比例线段经过一次或两次轴对称后〔2〕黄金分割的图形;作出简单图形平移〔3〕图形相似、三角形相似的概后的图形;作出简单图形旋念转后的图形〔4〕图形相似的简单性质〔4〕找出成轴对称的两个图形〔5〕两个三角形相似的判定依或轴对称图形的对称轴据〔5〕等腰三角形、矩形、菱形、〔6〕观察和认识现实生活中的等腰梯形、正多边形、圆的物体相似轴对称性及相关性质〔7〕利用图形的相似解决一些6实际问题〔3〕命题的构成〔区分条件与16.三角函数结论〕〔1〕锐角三角函数 sinA,cosA,〔4〕逆命题的概念tanA 的概念〔5〕两个互逆命题的关系〔2〕 30°,45°,60°角的三〔6〕反证法的含义角函数值〔7〕综合法证明的格式〔3〕运用三角函数解决与直角〔8〕掌握以下“证明的依据〞三角形有关的简单实际问题一条直线截两条平行直17.图形与坐标线所得的同位角相等;两条直线〔1〕平面直角坐标系的概念被第三条直线所截,假设同位角相〔2〕在给定的直角坐标系中,等,那么这两条直线平行;假设两由坐标描出点的位置,由点的位个三角形的两边及其夹角〔或两置写出它的坐标角及其夹边,或三边〕分别相等,〔3〕在方格纸上建立适当的直那么这两个三角形全等;全等三角角坐标系,描述物体的位置形的对应边、对应角分别相等〔4〕在同一坐标系中感受图形〔9〕利用“证明的依据〞〔上变换后点的坐标的变化一条目〕中的根本领实证明以下〔5〕运用不同的方式确定物体命题:的位置平行线的性质定理〔内错角18.图形与证明相等、同旁内角互补〕〔1〕证明的作用、反例的作用平行线的判定定理〔内错角〔2〕定义、命题、定理的含义相等或同旁内角互补,那么两7直线平行〕数据三角形的内角和定理及推〔2〕抽样的意义论〔3〕总体、个体、样本的概念直角三角形全等的判定定〔4〕用样本估计总体的思想理〔5〕用扇形统计图表示数据角平分线性质定理及逆定〔6〕加权平均数的概念理,三角形三个内角的平分〔7〕加权平均数的计算线交于一点〔内心〕〔8〕选择适宜的统计量表示数垂直平分线性质定理及逆据的集中程度定理,三角形三边的垂直平〔9〕用样本的平均数估计总体分线交与一点〔外心〕的平均数三角形中位线定理〔10〕极差和方差的概念等腰三角形、等边三角形、〔11〕极差和方差的计算直角三角形的性质和判定〔12〕用极差和方差表示数据的定理离散程度平行四边形、矩形、菱形、〔13〕用样本的方差估计总体的正方形、等腰梯形的性质和方差判定定理〔14〕频数、频率的概念〔15〕频数分布的意义和作用【统计与概率】〔16〕列频数分布表、画频数分19.统计布直方图和频数折线图及其应用〔1〕收集、整理、描述和分析〔17〕根据统计结果作出合理的8判断和预测〔1〕有初步的研究问题的方法〔18〕从有关实际问题的资料中和经历。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学考试大纲考试目标【数与代数】1.有理数(1)有理数的意义(2)用数轴上的点表示有理数及有理数的相反数和绝对值(3)有理数的大小比较(4)求有理数的相反数与绝对值(绝对值内不含字母)(5)乘方的意义(6)有理数的加、减、乘、除、乘方运算及混合运算(以三步为主)2.实数(1)平方根、算术平方根、立方根和二次根式的概念(2)用根号表示平方根、立方根(3)开方和乘方互为逆运算(4)求某些非负数的算术平方根,求实数的立方根(5)无理数和实数的概念(6)实数与数轴上的点一一对应关系(7)对含有较大数字的信息作出合理的解释和推断(8)用有理数估计一个无理数的大致范围(9)近似数与有效数字的概念(10)二次根式的加、减、乘、除运算法则(11)实数的简单四则运算3.代数式(1)用字母表示数的意义(2)用代数式表示简单问题的数量关系(3)解释一些简单代数式的实际背景或几何意义(4)求代数式的值(5)整数指数幂的意义和基本性质(6)用科学记数法表示数(7)整式和分式的概念(8)简单的整式加减运算及乘法运算(其中的多项式相乘仅指一次式相乘)(9)平方差、完全平方公式的推导及运用(10)提取公因式法和公式法(用公式不超过两次,指数是正整数)因式分解(11)运用分式基本性质进行约分和通分(12)简单的分式加、减、乘除运算4.方程与方程组(1)根据具体问题中的数量关系,列出方程或方程组(2)解一元一次方程和二元一次方程组(3)解可化为一元一次方程的分式方程(方程中分式不超过两个)(4)用因式分解法、公式法和配方法解简单的数字系数的一元二次方程(5)用观察、画图或计算等方法估计方程的解(6)根据具体问题的实际意义,检验结果是否合理5.不等式与不等式组(1)不等式的意义(2)不等式的基本性质(3)解一元一次不等式及由两个一元一次不等式组成的不等式组,并在数轴上表示出解集(4)不等式与不等式组的简单应用6.函数(1)常量、变量的意义(2)举出函数的实例(3)函数的概念及函数的三种表示方法(4)结合图象对简单实际问题中的函数关系进行分析(5)求简单整式、分式和简单实际问题中的函数的自变量的取值范围(6)求函数值(7)用适当的函数表示法刻画某些实际问题中变量之间的关系(8)结合对函数关系的分析,尝试对变量的变化规律进行初步预测(9)一次函数、反比例函数和二次函数的意义(10)根据已知条件确定一次函数和反比例函数的表示法(11)通过对实际问题情境的分析确定二次函数表达式(12)画一次函数、反比例函数的图象(13)用描点法画二次函数的图象(14)理解一次函数和反比例函数的性质(15)通过图象认识二次函数的性质(16)根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆)(17)运用一次函数图象求二元一次方程组的近似解(18)利用二次函数图象求一元二次方程组的近似解(19)利用一次函数、反比例函数和二次函数解决实际问题【空间与图形】7.图形的认识(1)认识点、线、面(2)角的概念与表示(3)认识度、分、秒,能进行度、分、秒的简单换算(4)角的大小比较或估计(5)角度的和差计算(6)角平分线及其性质8.相交线与平行线(1)补角、余角、对顶角等概念(2)等角的余角相等、等角的补角相等、对顶角相等(3)垂线、垂线段等概念,了解垂线段最短(4)点到直线的距离和两跳平行线之间的距离(5)过一点有且仅有一条直线垂直于已知直线(6)用三角尺或量角器过一点画一条直线的垂线(7)线段垂直平分线及其性质(8)两直线平行同位角相等(9)过直线外一点有且只有一条直线平行于已知直线(10)用三角尺和直尺过已知直线外一点画这条直线的平行线9.三角形(1)三角形的有关概念(内角、外角、中线、高、角平分线)(2)画任意三角形的角平分线、中线和高(3)三角形中线及其性质(4)全等三角形的概念(5)三角形全等的条件(6)等腰三角形、等边三角形和直角三角形的有关概念(7)等腰三角形、等边三角形和直角三角形的性质(8)判定等腰三角形、直角三角形的条件(9)勾股定理及其简单运用10.四边形(1)多边形的概念(2)多边形的内角和与外角和公式(3)平行四边形、矩形、菱形、正方形、梯形的概念(4)平行四边形、矩形、菱形、正方形、梯形的性质(5)平行四边形、矩形、菱形、正方形、梯形之关系间的(6)判定平行四边形、矩形、菱形、正方形的条件(7)等腰梯形的有关性质(8)判定等腰梯形的依据11.圆(1)圆及其有关概念(2)弧、弦、圆心角的关系(3)点与圆、直线与圆以及圆与圆的位置关系(4)圆的简单性质(5)圆周角与圆心角的关系,直径所对圆周角的特征(6)三角形的内心和外心(7)切线的概念(8)切线与过切点的半径之间的关系,会过圆上一点画圆的切线(9)判定一条直线是否为圆的切线(10)计算弧长和扇形的面积,计算圆锥的侧面积和全面积12.尺规作图(1)基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线(2)利用基本作图作三角形;已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形(3)过不在同一直线上的三点作圆(4)对于尺规作图题,应保留作图痕迹(5)13.视图与展开图(1)画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(2)判断简单物体(基本几何体地简单组合)的三视图(3)根据三视图描述简单几何体或简单物体的实物原型(4)直棱柱、圆锥的侧面展开图(5)基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)(6)根据展开图判断立体模型14.图形与变换(1)轴对称、平移和旋转的概念(2)轴对称、平移和旋转的基本性质(3)按要求作出简单平面图形经过一次或两次轴对称后的图形;作出简单图形平移后的图形;作出简单图形旋转后的图形(4)找出成轴对称的两个图形或轴对称图形的对称轴(5)等腰三角形、矩形、菱形、等腰梯形、正多边形、圆的轴对称性及相关性质(6)平行四边形、圆是中心对称图形(7)探索图形之间的变换关系(轴对称、平移、旋转及其组合)(8)应用轴对称、平移、旋转或他们的组合进行图案设计(9)欣赏现实生活中的轴对称,欣赏平移、旋转在现实生活中的应用15.图形的相似(1)比例的基本性质、线段的比、成比例线段(2)黄金分割(3)图形相似、三角形相似的概念(4)图形相似的简单性质(5)两个三角形相似的判定依据(6)观察和认识现实生活中的物体相似(7)利用图形的相似解决一些实际问题16.三角函数(1)锐角三角函数sinA,cosA,tanA的概念(2) 30°,45°,60°角的三角函数值(3)运用三角函数解决与直角三角形有关的简单实际问题17.图形与坐标(1)平面直角坐标系的概念(2)在给定的直角坐标系中,由坐标描出点的位置,由点的位置写出它的坐标(3)在方格纸上建立适当的直角坐标系,描述物体的位置(4)在同一坐标系中感受图形变换后点的坐标的变化(5)运用不同的方式确定物体的位置18.图形与证明(1)证明的作用、反例的作用(2)定义、命题、定理的含义(3)命题的构成(区分条件与结论)(4)逆命题的概念(5)两个互逆命题的关系(6)反证法的含义(7)综合法证明的格式(8)掌握下列“证明的依据”一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,若同位角相等,那么这两条直线平行;若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个三角形全等;全等三角形的对应边、对应角分别相等(9)利用“证明的依据”(上一条目)中的基本事实证明下列命题:平行线的性质定理(内错角相等、同旁内角互补)平行线的判定定理(内错角相等或同旁内角互补,则两直线平行)三角形的内角和定理及推论直角三角形全等的判定定理角平分线性质定理及逆定理,三角形三个内角的平分线交于一点(内心)垂直平分线性质定理及逆定理,三角形三边的垂直平分线交与一点(外心)三角形中位线定理等腰三角形、等边三角形、直角三角形的性质和判定定理平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理【统计与概率】19.统计(1)收集、整理、描述和分析数据(2)抽样的意义(3)总体、个体、样本的概念(4)用样本估计总体的思想(5)用扇形统计图表示数据(6)加权平均数的概念(7)加权平均数的计算(8)选择合适的统计量表示数据的集中程度(9)用样本的平均数估计总体的平均数(10)极差和方差的概念(11)极差和方差的计算(12)用极差和方差表示数据的离散程度(13)用样本的方差估计总体的方差(14)频数、频率的概念(15)频数分布的意义和作用(16)列频数分布表、画频数分布直方图和频数折线图及其应用(17)根据统计结果作出合理的判断和预测(18)从有关实际问题的资料中获得数据信息,对日常生活中的某些数据发表自己的看法(19)运用统计知识解决一些简单的实际问题20.概率(1)概率的意义(2)运用列表、画树状图计算简单事件发生的概率(3)用概率知识解决一些实际问题(4)通过实验获得事件发生的概率(5)理解大量重复实验的频率可作为事件发生概率的估计值【实践与综合运用(课题学习)】结合“数与代数”“空间与图形”“统计与概率”三个学习领域的内容进行课题学习内容的考核,要求如下:(1)有初步的研究问题的方法和经验。
(2)能探讨一些较简单的具有挑战性的研究课题,体验从实际问题中抽象出数学问题、建立数学模型、综合应用已有的知识解决问题的过程。
(3)体验数学知识之间的内在联系,对数学有整体性的认识。
(4)能积极思考所面临的课题,清楚的表达自己的观点,并解决问题。