立体几何课后习题选高考真题
高三立体几何专题练习(含答案)
立体几何专题练习卷一、填空题(本大题满分56分,每小题4分) 1.正方体DC B A ABCD 111-的棱长为a ,则异面直线1AB 与1BC 所成的角的大小是__________.2.已知某铅球的表面积是2484cm π,则该铅球的体积是___________2cm .3.若圆锥的侧面积为20π,且母线与底面所成的角为4arccos5,则该圆锥的体积为___________.4.在长方体1111ABCD A B C D -中,若12,1,3AB BC AA ===,则1BC 与平面11BB D D 所成的角θ可用反三角函数值表示为θ=____________.5.若取地球的半径为6371米,球面上两点A 位于东经O12127',北纬O 318',B 位于东经O12127',北纬O 255',则A B 、两点的球面距离为_____________千米(结果精确到1千米).6.已知圆锥的母线长为5cm ,侧面积为π15 2cm ,则此圆锥的体积为__________3cm .7.若圆锥的底面半径和高都是2,则圆锥的侧面积是_____________. 8.如图,是一个无盖正方体盒子的表面展开图,A B C 、、为其上的三个点,则在正方体盒子中,ABC ∠=____________.9.一个圆柱形容器的轴截面尺寸如右图所示,容器内有一个实心的球,球的直径恰等于圆柱的高.现用水将该容器注满,然后取出该球(假设球的密度大于水且操作过程中水量损失不计),则球取出后,容器中水面的高度为__________cm. (精确到0.1cm )10.如图,用铁皮制作一个无盖的圆锥形容器,已知该圆锥的母线与底面所在平面的夹角为45︒,容器的高为10cm .制作该容器需要铁皮面积为__________cm2.(衔接部分忽略不计,结果保留整第9题数)11.如图,圆锥的侧面展开图恰好是一个半圆,则该圆锥的母线与底面所成的角的大小是__________ .12.如右下图,ABC ∆中, 90=∠C ,30=∠A ,1=BC .在三角形内挖去半圆(圆心O 在边AC 上,半圆与BC 、AB 相切于点C 、M ,与AC 交于N ),则图中阴影部分绕直线AC 旋转一周所得旋转体的体积为__________ .13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥, 则该圆锥与圆柱等底等高。
高考数学近三年真题立体几何(理科专用)
三年专题 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( ) A .1.0×109m 3B .1.2×109m 3C .1.4×109m 3D .1.6×109m 32.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45A C B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,B B '与C C '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差A A C C ''- 1.732≈)( )A .346B .373C .446D .4735.【2021年甲卷理科】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1A CBC A C B C ⊥==,则三棱锥O A B C-的体积为( )A 12B 12C 4D 46.【2021年新高考1的母线长为( )A .2B .C .4D .7.【2021年新高考2卷】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .201+B .2C .563D 38.【2020年新课标1卷理科】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 4B 2C 4D 29.【2020年新课标1卷理科】已知,,A B C 为球O 的球面上的三个点,⊙1O 为A B C的外接圆,若⊙1O 的面积为4π,1A BB C A C O O ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π10.【2020年新课标2卷理科】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H11.【2020年新课标2卷理科】已知△ABC 4的等边三角形,且其顶点都在球O的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 212.【2020年新课标3卷理科】下图为某几何体的三视图,则该几何体的表面积是( )A.B .C .D .13.【2020年新高考1卷(山东卷)】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°14.【2022年新高考1卷】已知正方体ABCD −A 1B 1C 1D 1,则( ) A .直线BC 1与DA 1所成的角为90° B .直线BC 1与CA 1所成的角为90° C .直线BC 1与平面BB 1D 1D 所成的角为45°D .直线BC 1与平面ABCD 所成的角为45°15.【2022年新高考2卷】如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED,AB =ED =2FB ,记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A .V 3=2V 2B .V 3=V 1C .V 3=V 1+V 2D .2V 3=3V 116.【2021年新高考1卷】在正三棱柱111A B CA B C -中,11A BA A ==,点P 满足1B P BC B B λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1A B P△的周长为定值B .当1μ=时,三棱锥1P A B C-的体积为定值C .当12λ=时,有且仅有一个点P ,使得1AP B P⊥D .当12μ=时,有且仅有一个点P ,使得1AB ⊥平面1A BP17.【2021年新高考2卷】如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足M NO P⊥的是( )A .B .C .D .18.【2020年新课标3卷理科】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.19.【2020年新高考1卷(山东卷)】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD=60°.以1D BCC 1B 1的交线长为________.20.【2020年新高考2卷(海南卷)】已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________三年专题立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.2.【2022年全国乙卷】如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.3.【2022年新高考1卷】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值.4.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 5.【2021年甲卷理科】已知直三棱柱111A B C A B C -中,侧面11A AB B为正方形,2A BB C ==,E ,F 分别为A C 和1C C 的中点,D 为棱11AB 上的点.11B FA B ⊥(1)证明:B F D E⊥;(2)当1BD为何值时,面11B BC C与面D F E 所成的二面角的正弦值最小?6.【2021年乙卷理科】如图,四棱锥P A B C D==,P D D C-的底面是矩形,P D⊥底面A B C D,1M为B C的中点,且P B A M⊥.(1)求B C;(2)求二面角A P M B--的正弦值.7.【2021年新高考1卷】如图,在三棱锥A B C D-中,平面A B D⊥平面B C D,A B A D=,O为B D的中点.(1)证明:O A C D⊥;(2)若OCD是边长为1的等边三角形,点E在棱A D上,2--=,且二面角E B C DD E E A的大小为45︒,求三棱锥A B C D-的体积.8.【2021年新高考2卷】在四棱锥Q A B C D-中,底面A B C D是正方形,若====.A D Q D Q A Q C2,3(1)证明:平面Q A D ⊥平面A B C D ; (2)求二面角BQ D A--的平面角的余弦值.9.【2020年新课标1卷理科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,A E 为底面直径,A EA D=.A B C是底面的内接正三角形,P 为D O 上一点,6P OO=.(1)证明:P A ⊥平面P B C ;(2)求二面角BP C E--的余弦值.10.【2020年新课标2卷理科】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AM N 所成角的正弦值.11.【2020年新课标3卷理科】如图,在长方体1111A B C D A B C D -中,点,E F 分别在棱11,D DB B 上,且12D EE D =,12B FF B =.(1)证明:点1C 在平面A E F 内;(2)若2A B=,1A D=,13A A=,求二面角1AE F A --的正弦值.12.【2020年新高考1卷(山东卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 13.【2020年新高考2卷(海南卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.。
高考立体几何20-22(附答案)
高考立体几何20-22一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+12√3B.28√2C.563D.28√2 3二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.2.如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足MN⊥OP的是()A.B.C.D.三、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
3.正三棱台高为1,上下底边长分别为3√3和4√3,所有顶点在同一球面上,则球的表面积是()A.100πB.128πC.144πD.192π四、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分。
4.如图,四边形ABCD为正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB,记三棱锥E−ACD,F−ABC,F−ACE的体积分别为V1,V2,V3,则()A.V3=2V2B.V3=2V1C.V3=V1+V2D.2V3=3V1五、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
5.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.E B.F C.G D.H的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,6.已知△ABC是面积为9√34则O到平面ABC的距离为()A.√3B.32C.1D.√32六、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.7.如图,PO是三棱锥P−ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)求证:OE∥平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C−AE−B的正弦值.七、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.8.在四棱锥Q−ABCD中,底面ABCD是正方形,若AD=2,QD=QA=√5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B−QD−A的平面角的余弦值.答案解析部分1.【答案】D【解析】【解答】解:作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高,下底面面积S1=16,上底面面积S2=4,所以棱台的体积为V=13ℎ(S1+√S1S2+S2)=13×√2×(16+√16×4+4)=283√2故答案为:D【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解. 2.【答案】B,C【解析】【解答】解:对于A,如图(1)所示,连接AC,则MN//AC,故△POC(或其补角)为异面直线OP,MN所成的角.在直角三角形OPC中,OC=√2,CP=1,故tan∠POC=1√2=√22故MN△OP不成立,故A错误;对于B,如图(2)所示,取NT的中点Q,连接PQ,OQ,则OQ△NT,PQ△MN,由正方体SBCM-NADT可得SN△平面ANDT,而OQ⊂平面ANDT,故SN△OQ,而SN∩MN=N,故OQ△平面SNTM,又MN⊂平面SNTM,则OQ△MN,而OQ∩PQ=O,所以MN△平面OPQ,而OP⊂平面OPQ,故MN△OP.故B正确;对于C,如图(3)所示,连接BD,则BD//MN,由B的判断可得OP△BD,故OP△MN,故C正确;对于D,如图(4)所示,取AD的中点Q,AB的中点K,连接AC,PQ,OQ,PK,OK,则AC//MN,因为DP=PC,故PQ//AC,则PQ//MN,所以△QPO或其补角为异面直线PO,MN所成的角,因为正方体的棱长为2,故PQ=12AC=√2,OQ=√AO2+AQ2=√3,PO=√PK2+OK2=√5,则有QO2<PQ2+OP2故△QPO不可能是直角,故MN,OP不可能垂直故D错误.故答案为:BC【分析】根据线面垂直的判定定理可得BC的正误,平移直线MN构造所考虑的线线角后可判断AD 的正误.3.【答案】A【解析】【解答】设正三棱台上下底面所在圆面的半径r1,r2,所以2r1=3√3sin60∘,2r2=4√3sin60∘,即r1=3,r2=4,设球心到上下底面的距离分别为d1,d2,球的半径为R,所以d1=√R2−9,d2=√R2−16,故|d1−d2|=1或d1+d2=1,即|√R2−9−√R2−16|= 1或√R2−9+√R2−16=1,解得R2=25,所以球的表面积为S=4πR2=100π.故答案为:A【分析】根据题意可求出正三棱台上下底面所在圆面的半径r1,r2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而求出球的表面积.4.【答案】C,D【解析】【解答】设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√(2a)2+(√2a)2=√6a,FM=√a2+(√2a)2=√3a,EF=√a2+(2√2a)2=3a,EM2+FM2=EF2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,A、B不符合题意;C、D符合题意.故答案为:CD【分析】直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3= V A−EFM+V C−EFM计算出V3,依次判断选项即可.5.【答案】A【解析】【解答】根据三视图,画出多面体立体图形,图中标出了根据三视图M点所在位置,可知在侧视图中所对应的点为E 故答案为:A【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.6.【答案】C【解析】【解答】设球O 的半径为R ,则 4πR 2=16π ,解得: R =2 .设 △ABC 外接圆半径为 r ,边长为 a , ∵△ABC 是面积为 9√34的等边三角形,∴12a 2×√32=9√34 ,解得: a =3 , ∴r =23×√a 2−a 24=23×√9−94=√3 ,∴ 球心 O 到平面 ABC 的距离 d =√R 2−r 2=√4−3=1 . 故答案为:C.【分析】根据球O 的表面积和 △ABC 的面积可求得球O 的半径R 和 △ABC 外接圆半径r ,由球的性质可知所求距离 d =√R 2−r 2 .7.【答案】(1)证明:连接 BO 并延长交 AC 于点 D ,连接 OA 、 PD ,因为 PO 是三棱锥 P −ABC 的高,所以 PO ⊥ 平面 ABC , AO ,BO ⊂ 平面 ABC , 所以 PO ⊥AO 、 PO ⊥BO ,又 PA =PB ,所以 △POA ≅△POB ,即 OA =OB ,所以 ∠OAB =∠OBA ,又 AB ⊥AC ,即 ∠BAC =90° ,所以 ∠OAB +∠OAD =90° , ∠OBA +∠ODA =90° , 所以 ∠ODA =∠OAD所以 AO =DO ,即 AO =DO =OB ,所以 O 为 BD 的中点,又 E 为 PB 的中点,所以 OE//PD ,又 OE ⊄ 平面 PAC , PD ⊂ 平面 PAC , 所以 OE// 平面 PAC(2)解:过点 A 作 AF‖OP ,以AB 为 x 轴,AC 为 y 轴,AF 为z 轴建立如图所示的空问直角坐标系.因为 PO =3,PA =5 ,由(1) OA =OB =4 ,义 ∠ABO =∠CBO =30° ,所以, AB =4√3 ,所以 P(2√3,2,3),B(4√3,0,0) ,A(0,0,0) , E(3√3,1,32) ,设 AC =a ,则 C(0,a ,0) ,平面AEB 的法向量设为 n1̅̅̅=(x ,y ,z),AB ⃗⃗⃗⃗⃗⃗ =(4√3,0,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32){AB ⃗⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 1=0,所以 {4√3x =03√3x +y +32z =0,所以 x =0 ,设 z =−2 ,则 y =3 ,所以 n ⃗ 1=(0,3,−2) : 平面AEC 的法向量设为 n 2⃗⃗⃗⃗ =(x ,y ,z),AC ⃗⃗⃗⃗⃗ =(0,a ,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32){AC ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2=0 ,所以 {ay =03√3x +y +32z =0 ,所以 y =0 ,设 x =√3 ,则 z =−6 ,阦以 n 2⃗⃗⃗⃗ =(√3,0,−6) : 所以 cos〈n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ 〉=n1⃗⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ 2|=√13×√39=13√3=4√313二面角 C −AE −B 的平面角为 θ ,则 sinθ=√1−cos 2θ=1113,所以二面角 C −AE −B 的正弦值为 1113。
历年高考立体几何真题+答案
历年高考真题1、2003(理科)(本题满分12分)已知平行六面体ABCD —A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AB=4,AD=2.若B 1D ⊥BC ,直线B 1D 与平面ABCD 所成的角等于30°,求平行六面体ABCD —A 1B 1C 1D 1的体积..[解]连结BD ,因为B 1B ⊥平面ABCD ,B 1D ⊥BC ,所以BC ⊥BD.在△BCD 中,BC=2,CD=4,所以BD=32.又因为直线B 1D 与平面ABCD 所成的角等于30°,所以 ∠B 1DB=30°,于是BB 1=31BD=2.故平行六面体ABCD —A 1B 1C 1D 1的体积为S ABCD ·BB 1=38. 2.2005(理科)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知正三棱锥ABC P -的体积为372,侧面与底面所成的二面角的大小为 60. (1)证明:BC PA ⊥;(2)求底面中心O 到侧面的距离.[证明](1)取BC 边的中点D ,连接AD 、PD ,则BC AD ⊥,BC PD ⊥,故⊥BC 平面APD . BCPA ⊥[解](2)如图, 由(1)可知平面⊥PBC 平面APD ,则PDA ∠面所成二面角的平面角.过点O 作E PD OE ,⊥为垂足,则OE 就是点O 到侧面的距离. 设OE 为h ,由题意可知点O 在AD 上,∴ 60=∠PDO ,h OP 2=.h BC h OD 4,32=∴=,∴ 2234)4(43h h S ABC ==∆, ∵ 3233823431372h h h =⋅⋅=,∴ 3=h . 即底面中心O 到侧面的距离为3.3、2006(理科)(本题满分 14分)本题共有 2个小题,第 1小题满分 5分,第 2小题满分满分 9分。
在三棱柱 ABC —A1B1C1 中,∠ABC=90°,AB=BC=1。
立体几何高考题及答案
立体几何高考题及答案【篇一:新课标近三年立体几何高考题(解析版)】ss=txt>1、(2011.8.)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为(D)2、(2011.18.)(本小题满分12分)如图,四棱锥p?abcd中,底面abcd为平行四边形,?dab?60?,ab?2ad,pd?底面abcd.(i)证明:pa?bd;(ii)设pd=ad=1,求棱锥d-pbc的高.解:(Ⅰ)因为?dab?60?,ab?2ad,由余弦定理得bd?从而bd2+ad2= ab2,故bd?ad又pd?底面abcd,可得bd?pd所以bd?平面pad. 故 pa?bd故bc?平面pbd,bc?de。
则de?平面pbc。
由题设知,pd=1,则bd=,pb=2,即棱锥d—pbc的高为. 24、(2012.19)(本小题满分12分)12的中点(I)证明:平面bdc1⊥平面bdc(Ⅱ)平面bdc1分此棱柱为两部分,求这两部分体积的比。
(Ⅰ)由题设知bc⊥cc1,bc⊥ac,cc1?ac?c,∴bc?面acc1a1, 又∵dc1?面acc1a1,0∴dc1?bc,由题设知?a1dc1??adc?45,∴?cdc1=90,即dc1?dc,又∵dc?bc?c,∴dc1⊥面bdc,∵dc1?面bdc1,∴面bdc⊥面bdc1;(Ⅱ)设棱锥b?dacc1的体积为v1,ac=1,由题意得,v1=?由三棱柱abc?a1b1c1的体积v=1,∴(v?v1):v1=1:1,∴平面bdc1分此棱柱为两部分体积之比为1:1.5、(2013课标全国Ⅰ,文11)某几何体的三视图如图所示,则该几何体的体积为( d ).6.(2013课标全国Ⅰ,文15)已知h是球o的直径ab上一点,ah∶0111?2?1?1=, 232(1)证明:ab⊥a1c;(2)若ab=cb=2,a1c,求三棱柱abc-a1b1c1的体积.(1)证明:取ab的中点o,连结oc,oa1,a1b. 因为ca=cb,所以oc⊥ab.故△aa1b为等边三角形,所以oa1⊥ab.因为oc∩oa1=o,所以 ab⊥平面oa1c.又a1c?平面oa1c,故ab⊥a1c.(2)解:由题设知△abc与△aa1b都是边长为2的等边三角形,所以oc=oa1又a1ca1c=oc+oa12, 22故oa1⊥oc.因为oc∩ab=o,所以oa1⊥平面abc,oa1为三棱柱abc-a1b1c1的高.又△abc的面积s△abcx解:(1)f′(x)=e(ax+a+b)-2x-4.由已知得f(0)=4,f′(0)=4.故b=4,a+b=8.从而a=4,b=4.x2(2)由(1)知,f(x)=4e(x+1)-x-4x,【篇二:2015年高考题立体几何汇编】lass=txt>1.(15北京理科)设?,?是两个不同的平面,m是直线且m??.“m∥?”是“?∥?”的a.充分而不必要条件 c.充分必要条件【答案】b 【解析】b.必要而不充分条件 d.既不充分也不必要条件?是两个不同的平面,试题分析:因为?,若“m∥?”,则平面?、?m是直线且m??.可能相交也可能平行,不能推出?//?,反过来若?//?,m“m∥?”是“?∥?”的必要而不充分条件.考点:1.空间直线与平面的位置关系;2.充要条件.2.(15北京理科)某三棱锥的三视图如图所示,则该三棱锥的表面积是侧(左)视图??,则有m∥?,则俯视图a.2? b.4 c.2? d.5 【答案】c 【解析】试题分析:根据三视图恢复成三棱锥p-abc,其中pc?平面abc,取ab棱的中点d,d连接cd、pd,有pad=bd=1,pc=1,?abcd,ab?,底面abc为等腰三角形底边ab上的高cd为2,pd?s?abc?11?2?2?2,,s?pab??2??22ac?bc?,s?pac?s?pbc?1??1?,三棱锥表面积s表??2. 22考点:1.三视图;2.三棱锥的表面积.3.(15北京理科)如图,在四棱锥a?efcb中,△aef为等边三角形,平面aef?平面efcb,ef∥bc,bc?4,ef?2a,?ebc??fcb?60?,o为ef的中点. (Ⅰ) 求证:ao?be;(Ⅱ) 求二面角f?ae?b的余弦值;(Ⅲ) 若be?平面aoc,求a的值. afceb【答案】(1)证明见解析,(2)?【解析】4,(3)a?3试题分析:证明线线垂直可寻求线面垂直,利用题目提供的面面垂直平面aef?平面efcb,借助性质定理证明ao?平面efcb,进而得出线线垂直,第二步建立空间直角坐标系,写出相关点的坐标,平面aef的法向量易得,只需求平面aeb的法向量,设平面aeb的法向量,利用线线垂直,数量积为零,列方程求出法向量,再根据二面角公式求出法向量的余弦值;第三步由于ao?be,要想be?平面aoc,只需be?oc,利用向量be、oc的坐标,借助数量积为零,求出a的值,根据实际问题予以取舍.试题解析:(Ⅰ)由于平面aef?平面efcb,△aef为等边三角形,o为ef的中点,则ao?ef,根据面面垂直性质定理,所以ao?平面efcb,又be?平面efcb,则ao?be.(Ⅱ)取cb的中点d,连接od,以o为原点,分别以oe、od、oa为x、y、z轴建立空间直角坐标系,a),e(a,0,0),b?,0),ae?(a,0,),eb?(2?a?,0),由于平面aef与y轴垂直,则设平面aef的法向量为n1?(0,1,0),设平面aeb的法向量n2?(x,y,1),n2?ae,ax?0,x?n2?eb,(2?a)x??)y?0,y??1,则n2??1,1),二面角f?ae?b的余弦值cos?n1,n2??n1?n2n1?n2?1??,5由二面角f?ae?b为钝二面角,所以二面角f?ae?b的余弦值为?. (Ⅲ)有(1)知ao?平面efcb,则ao?be,若be?平面aoc,只需be?oc,eb?(2?a,?,0),又oc?(??,0),2be?oc??2(2?a)??)?0,解得a?2或a?44,由于a?2,则a?. 33考点:1.线线垂直的证明;2.利用法向量求二面角;3.利用数量积解决垂直问题.4.(15北京文科)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为() a.1bc.2【答案】c 【解析】试题分析:四棱锥的直观图如图所示:由三视图可知,sc?平面abcd,sa是四棱锥最长的棱,sa???.考点:三视图.6.(15年广东理科)若空间中n个不同的点两两距离都相等,则正整数n的取值 a.大于5 b. 等于5 c. 至多等于4 d. 至多等于3 【答案】c.【考点定位】本题考查空间想象能力、推理能力,属于中高档题. 7.(15年广东理科)如图2,三角形pdc所在的平面与长方形abcd所在的平面垂直,pd=pc=4,ab=6,bc=3.点e是cd边的中点,点f、g分别在线段ab、bc上,且af=2fb,cg=2gb.图2(1)证明:pe?fg;(2)求二面角p-ad-c的正切值;(3)求直线pa与直线fg所成角的余弦值.【答案】(1)见解析;(2(3.【解析】(1)证明:∵ pd?pc且点e为cd的中点,∴pe?dc,又平面pdc?平面abcd,且平面pdc面pdc,∴ pe?平面abcd,又fg?平面abcd,∴ pe?fg;(2)∵ abcd是矩形,∴ ad?dc,又平面pdc?平面abcd,且平面pdc面abcd,∴ ad?平面pcd,又cd、pd?平面pdc,∴ ad?dc,ad?pd,∴?pdc即为二面角p?ad?c的平面角,在rt?pde中,pd?4,de?fec平面abcd?cd,pe?平平面abcd?cd,ad?平1ab?3,pe? 2∴ tan?pdc?pe?即二面角p?ad?c; de(3)如下图所示,连接ac,【篇三:立体几何(2013年高考题汇编)】ass=txt>一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1 .(2013广东(理))设m,n是两条不同的直线,?,?是两个不同的平面,下列命题中正确的是()a.若???,m??,n??,则m?n b.若?//?,m??,n??,则m//n c.若m?n,m??,n??,则??? d.若m??,m//n,n//?,则???【答案】d2.(2013年高考大纲卷(文))已知正四棱锥abcd?a1b1c1d1中,aa1?2ab,则cd与平面bdc1所成角的正弦值等于a.213bc.3d.3【答案】a3.(2013浙江(理))在空间中,过点a作平面?的垂线,垂足为b,记b?f?(a).设?,?是两个不同的平面,对空间任意一点p,q1?f?[f?(p)],q2?f?[f?(p)],恒有 pq1?pq2,则a.平面?与平面?垂直 b.平面?与平面?所成的(锐)二面角为450 c.平面?与平面?平行d.平面?与平面?所成的(锐)二面角为600【答案】a4 .(2013上海春季高考)若两个球的表面积之比为1:4,则这两个球的体积之比为a.1:2b.1:4 c.1:8 d.1:16【答案】c5 .(2013广东(理))某四棱台的三视图如图所示,则该四棱台的体积是)))(((正视图侧视图俯视图第5题图1416a.4b.3 c.3d.6【答案】b6.(2013山东数(理))已知三棱柱abc?a1b1c1的侧棱与底面垂直,体积为4,底面是边长.若p为底面a1b1c1的中心,则pa与平面abc所成角的大小为 5????a.12b.3 c.4 d.6【答案】b7.(2013年高考辽宁卷(文))已知三棱柱abc?a1b1c1的6个顶点都在球o的球面上,若ab?3,ac?4,ab?ac,aa1?12,则球o的半径为a.2b.c.132d.【答案】c8 (2013新课标Ⅱ(理))已知m,n为异面直线,m?平面?,n?平面?.直线l满足l?m,l?n,l??,l??,则a.?//?,且l//?b.???,且l??c.?与?相交,且交线垂直于ld.?与?相交,且交线平行于l【答案】d9.(2013辽宁(理))已知三棱柱abc?a1b1c1的6个顶点都在球o的球面上,若))))((((ab?3,ac?4,ab?ac,aa1?12,则球o的半径为()a.2b.c.132d.【答案】c10.(2013江西(理))如图,正方体的底面与正四面体的底面在同一平面?上,且ab?cd,正方体的六个面所在的平面与直线ce,ef相交的平面个数分别记为m,n,那么m?n?a.8b.9 c.10 d.11【答案】a11.(2013新课标Ⅱ(理))一个四面体的顶点在空间直角坐标系o?xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zox平面为投影面,则得到正视图可以为a.b. c. d.【答案】a12.(2013安徽(理))在下列命题中,不是公理..的是 a.平行于同一个平面的两个平面相互平行b.过不在同一条直线上的三点,有且只有一个平面c.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 d.如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】a二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.(2013北京(文))某四棱锥的三视图如图所示,该四棱锥的体积为__________.)))(((【答案】314.(2013上海(理))在xoy平面上,将两个半圆弧(x?1)2?y2?1(x?1)和(x?3)2?y2?1(x?3)、两条直线y?1 和y??1围成的封闭图形记为d,如图中阴影部分.记d绕y轴旋转一周而成的几何体为?,过(0,y)(|y|?1)作?的水平截面,所得截面面积为48?,试利用祖暅原理、一个平放的圆柱和一个长方体,得出?的体积值为__________【答案】2?2?16?.15.(2013陕西(理))某几何体的三视图如图所示, 则其体积为_______.【答案】?316.(2013上海(文科))已知圆柱?的母线长为l,底面半径为r,o 是上地面圆心,a、b是下底面圆周上两个不同的点,bc是母线,如图.若直线oa与bc所成角的大小为则1?________. r【答案】三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(2013江西(文))如图,直四棱柱abcd – a1b1c1d1中,ab//cd,ad⊥ab,ab=2,ad=,aa1=3,e为cd上一点,de=1,ec=3 (1) 证明:be⊥平面bb1c1c; (2) 求点b1 到平面ea1c1 的距离【答案】解.(1)证明:过b作cd的垂线交cd于f,则bf?ad?ef?ab?de?1,fc?2在rt?bfe中,be,rt?bfc中,bc 在?bce中,因为be?bc=9=ec,故be?bc 由bb1?平面abcd,得be?bb1,所以be?平面bb1c1c(2)三棱锥e?a1b1c1的体积v=aa1?s?a1b1c122213在rt?a1d1c1中,a1c1,ea1同理,ec1,因此s?a1c1e?.设点b1到平面eac11的体积11的距离为d,则三棱锥b1?eac1v=?d?s?a1ec1,?d?318.(2013重庆(理))如图,四棱锥p?abcd中,pa?底面abcd,bc?cd?2,ac?4,?acb??acd?点,af?pb.(1)求pa的长; (2)求二面角b?af?d的正弦值.?3,f为pc的中。
高三立体几何习题(含答案)
1CBAC 1B 1A 1高三立体几何习题一、 填空题1.已知AB 是球O 的一条直径,点1O 是AB 上一点,若14OO =,平面α过点1O 且垂直AB ,截得圆1O ,当圆1O 的面积为9π时,则球O 的表面积是 .【答案】100p2.把一个大金属球表面涂漆,共需油漆2.4公斤.若把这个大金属球熔化制成64个大小都相同的小金属球, 不计损耗,将这些小金属球表面都涂漆,需要用漆 公斤.【答案】9.63.已知球的表面积为64π2cm ,用一个平面截球,使截面圆的半径为2cm ,则截面与球心的距离是 cm【答案】234.一个圆锥与一个球体积相等且圆锥的底面半径是球半径的2倍,若圆锥的高为1,则球的表面积为 .【答案】4p 5.一个底面置于水平面上的圆锥,若主视图是边长为2的正三角形,则圆锥的侧面积为 .【答案】4p6.如图所示:在直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==,则平面11A B C 与平面ABC 所成的二面角的大小为 . 【答案】4π二、选择题1.如图,已知圆锥的底面半径为10r =,点Q 为半圆弧 AB 的中点, 点P 为母线SA 的中点.若PQ 与SO 所成角为4π,则此圆锥的 全面积与体积分别为( ) A .100051006,3ππ B .10005100(16),3ππ+ C .100031003,3ππ D .10003100(13),3ππ+【答案】B2.如图,取一个底面半径和高都为R 的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R 的半球放在同一水平面α上.用一平行于平面α的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为S 圆和S 圆环,那么( ) A .S 圆>S 圆环 B .S 圆<S 圆环 C .S 圆=S 圆环 D .不确定PSAQO B3.如图所示,PAB ∆所在平面α和四边形ABCD 所在的平面β互相垂直,且AD α⊥,BC α⊥,4AD =,8BC =,6AB =,若tan 2tan 1ADP BCP ∠-∠=,则动点P 在平面α内的轨迹是( ) A.线段 B.椭圆的一部分 C.抛物线 D.双曲线的一部分 【答案】D4.在空间中,下列命题正确的是( )A .若两直线,a b 与直线l 所成的角相等,那么//a bB .空间不同的三点A 、B 、C 确定一个平面C. 如果直线//l 平面α且//l 平面β,那么//αβ D .若直线a 与平面M 没有公共点,则直线//a 平面M【答案】D5.如图,已知直线l ⊥平面α,垂足为O ,在ABC △中,2,2,22BC AC AB ===,点P 是边AC 上的动点.该三角形在空间按以下条件作自由移动:(1)A l ∈,(2)C α∈.则OP PB +的最大值为( )(A) 2. (B) 22. (C) 15+. (D) 10.【答案】C6.平面α上存在不同的三点到平面β的距离相等且不为零,则平面α与平面β的位置关系为( ))(A 平行 )(B 相交 )(C 平行或重合 )(D 平行或相交【答案】D7.a b c 、、表示直线,α表示平面,下列命题正确的是( )A .若//,//αa b a ,则//αbB . 若,α⊥⊥a b b ,则α⊥aC .若,⊥⊥a c b c ,则//a bD .若,αα⊥⊥a b ,则//a b 【答案】D8.下列命题中,正确的个数是【 】① 直线上有两个点到平面的距离相等,则这条直线和这个平面平行; ② a 、b 为异面直线,则过a 且与b 平行的平面有且仅有一个; ③ 直四棱柱是直平行六面体;④ 两相邻侧面所成角相等的棱锥是正棱锥.A 、0B 、1C 、2D 、3 【答案】B9.在四棱锥ABCD V -中,1B ,1D 分别为侧棱VB ,VD 的中点,则四面体11CD AB 的体积与四棱锥 ABCD V -的体积之比为( ) A .6:1 B .5:1 C .4:1D .3:1【答案】CβαP B A DC A Bl C αNPO3三、解答题1.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)证明:11D E A D ⊥;(2)AE 等于何值时,二面角1D EC D --的大小为4π.【答案】解:(1)在如图所示的空间直角坐标系中,11(1,0,1),(0,0,0),(0,0,1)A D D 设(1,,0)([0,2])E y y ∈ 则11(1,,1),(1,0,1)D E y DA =-= …所以110D E DA ⋅=……所以11D E A D ⊥……(2)方法一:设(,,)n u v w =为平面1DCE 的一个法向量 由1100n CD n D E ⎧⋅=⎪⎨⋅=⎪⎩,得200v w u yv w -+=⎧⎨+-=⎩,所以(2)2u y v w v =-⎧⎨=⎩… 因为二面角1D EC D --的大小为4π,所以2222(0,0,1)(,,)22cos ||42(2)5u v w u v w y π⋅===++-+ 又[0,2]y ∈,所以23y =-,即当23AE =-时二面角1D EC D --的大小为4π2.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)当E 为AB 的中点时,求四面体1E ACD -的体积; (2)证明:11D E A D ⊥.【答案】解:(1)1122ACE S AE BC ∆=⋅=… 因为1D D ACE ⊥平面,所以1111136E ACD D ACE ACE V V S D D --∆==⋅=… (2)正方形11ADD A 中,11A D AD ⊥……因为11AB ADD A ⊥平面,所以1AB A D ⊥…所以11A D AD E ⊥平面…所以11D E A D ⊥……D 1C 1A 1A E DB 1B C Ox y zD 1C 1A 1AEDB 1B C3.三棱柱111C B A ABC -中,它的体积是315,底面ABC ∆中,090=∠BAC ,3,4==AC AB ,1B 在底面的射影是D ,且D 为BC 的中点.(1)求侧棱1BB 与底面ABC 所成角的大小;(7分)(2)求异面直线D B 1与1CA 所成角的大小.(6分)【答案】解:(1)依题意,⊥D B 1面ABC ,BD B 1∠就是侧棱1BB 与底面ABC 所成的角θ 2分111111431532ABC A B C ABC V S B D B D -∆=⋅=⨯⨯⨯=4分1532B D =5分计算25=BD ,θθtan 25tan 1==BD D B , tan 3,3πθθ=∴= 7分 (2)取11C B 的中点E ,连E A EC 1,,则1ECA ∠(或其补角)为所求的异面直线的角的大小 9分 ⊥D B 1面ABC ,D B 1‖CE ,面ABC ‖面111C B A ⊥∴CE 面111C B A ,E A CE 1⊥∴ 11分33325tan 251===∠EC AE CE A 12分 所求异面直线D B 1与1CA 所成的角6π13分4.在如图所示的几何体中,四边形CDPQ 为矩形,四边形ABCD 为直角梯形,且90BAD ADC ∠=∠= ,平面CDPQ ⊥平面ABCD ,112AB AD CD ===,2PD =.(1)若M 为PA 的中点,求证:AC //平面DMQ ;(2)求平面PAD 与平面PBC 所成的锐二面角的大小.【答案】解:(1)如图,设CP 与M 的交点为N ,连接MN .易知点N 是CP 的中点,又M 为PA 的中点,故//AC MN .…4分于是,由MN ∉平面DMQ ,得//AC 平面DMQ .……………6分 (2)如图,以点D 为原点,分别以DA DB DC 、、为x 轴,y 轴,z 轴,建立空间直角坐标系,则(0,0,0),(1,0,0),(1,1,0),(0,2,0),(0,0,2)D A B C P .易知1(0,1,0)n = 为平面PAD 的一个法向量,设2(,,)n x y z =为平面PBC 的一个法向量.则220220n BC x y n PC y z ⎧=-+=⎪⎨=-=⎪⎩2x y z y =⎧⎪⇒⎨=⎪⎩,令1y =,得2(1,1,2)n = .…………………10分 设平面PAD 与平面PBC 所成的锐二面角为θ,则12121cos 2n n n n θ== ,…………………12分1A ABCQP D M5(第20题图)D 1C 1B 1BCDA 1A故平面PAD 与平面PBC 所成的锐二面角的大小为3π.………………………………………14分5.(本题满分14分) 本题共2个小题,第1小题6分,第2小题8分. 在如图所示的直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的 菱形,且60,BAD ∠=︒1 4.AA =(1)求直四棱柱1111ABCD A B C D -的体积; (2)求异面直线11AD BA 与所成角的大小.【答案】解:(1)因菱形ABCD 的面积为2sin6023,AB ⋅︒= ……2分故直四棱柱1111ABCD A B C D -的体积为:12348 3.ABCD S AA ⋅=⨯=底面……6分(2)连接111BC AC 、,易知11//BC AD ,故11A BC ∠等于异面直线11AD BA 与所成角. ……8分由已知,可得111125,23,A B BC AC === ……10分则在11A BC ∆中,由余弦定理,得 222111111117cos .210A B BC AC A BC A B BC +-∠==⋅ ……12分 故异面直线11AD BA 与所成角的大小为7cos .10arc……14分6.(本题满分12分)本题共2小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过11,,A C B 三点的平面截去长方体的一个角后,得到如下所示的几何体111ABCD AC D -.(1)若11A C 的中点为1O ,求求异面直线1BO 与11A D 所成角的大小(用反三角函数值表示);(2)求点D 到平面11A BC 的距离d .【答案】解:(1)按如图所示建立空间直角坐标系.由题知,可得点D(0,0,0)、(2,2,0)B 、1(0,0,3)D 、1(2,0,3)A 、1(0,2,3)C . 由1O 是11AC 中点,可得1(1,1,3)O .于是,111(1,1,3),(2,0,0)BO A D =--=-. 设异面直线1BO 与11A D 所成的角为θ,则111111211cos 11||||211BO A D BO A D θ⋅===. 因此,异面直线1BO 与11A D 所成的角为11arccos11. (2)设(,,)n x y z = 是平面ABD 的法向量. ∴110,0.n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩又11(0,2,3),(2,0,3)BA BC =-=- ,∴230,230.y z x z -+=⎧⎨-+=⎩ 取2z =, A BC D1A 1C 1D可得3,3,2.x y z =⎧⎪=⎨⎪=⎩即平面11BAC 的一个法向量是(3,3,2)n = . ∴||n DB d n ⋅=62211=.7.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过1A 、1C 、B 三点的平面截去长方体的 一个角后,得到如下所示的几何体111ABCD AC D -.(1)求几何体111ABCD AC D -的体积,并画出该几何体的左视图(AB 平行主视图投影所在的平面); (2)求异面直线1BC 与11A D 所成角的大小(结果用反三角函数值表示).【答案】解: 2AB BC ==,13AA =,11111=2232231032ABCD A D C V V V -∴=-⨯⨯-⨯⨯⨯⨯=长方体三棱锥.左视图如右图所示. (2)依据题意,有11,A D AD AD BC ,即11A D BC . ∴1C BC ∠就是异面直线1BC 与11A D 所成的角. 又 1C C BC ⊥,∴113tan 2C C C BC BC ∠==.∴异面直线1BC 与11A D 所成的角是3tan 2arc . 8. (本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分8分.如图,在直三棱柱111C B A ABC -中,已知21===AB BC AA ,AB ⊥BC . (1)求四棱锥111A BCC B -错误!未指定书签。
专题15 立体几何多选、填空题(理科)(原卷版)-十年(2014-2023)高考数学真题分项汇编
十年(2014-2023)年高考真题分项汇编立体几何填空、多选目录题型一:立体几何结构特征 (1)题型二:立体几何三视图 (2)题型三:立体几何的表面积与体积 (3)题型四:立体几何中的球的问题 (9)题型五:立体几何线面位置关系 (9)题型六:立体几何中的角度与距离 (10)题型一:立体几何结构特征1.(2023年全国甲卷理科·第15题)在正方体1111ABCD A B C D -中,E ,F 分别为AB ,11C D 的中点,以EF 为直径的球的球面与该正方体的棱共有____________个公共点.2.(2020年高考课标Ⅲ卷理科·第15题)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.3.(2019·全国Ⅱ·理·第16长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(本题第一空2分,第二空3分).4.(2017年高考数学上海(文理科)·第11题)如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为________.5.(2015高考数学江苏文理·第9题)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积和高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为_______.二、多选题1.(2023年新课标全国Ⅰ卷·第12题)下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体2.(2021年新高考Ⅰ卷·第12题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 题型二:立体几何三视图1.(2021年高考全国乙卷理科·第16题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).2.(2019·北京·理·第11题)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.3.(2017年高考数学上海(文理科)·第8题)已知球的体积为36π,则该球主视图的面积等于________.4.(2017年高考数学山东理科·第13题)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为__________.则该棱台的体积为________.2.(2023年新课标全国Ⅱ卷·第14题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.3.(2020年新高考全国Ⅰ卷(山东)·第15题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.4.(2020年新高考全国卷Ⅱ数学(海南)·第13题)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________5.(2020天津高考·第15题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅ 的最小值为_________.6.(2020江苏高考·第9题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半轻为0.5cm,则此六角螺帽毛坯的体积是____cm.7.(2019·天津·理·第11题)个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.8.(2019·全国Ⅲ·理·第16题)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9g /cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .9.(2019·江苏·第9题)如图,长方体1111ABCD A B C D -的体积是120,E 是1CC 的中点,则三棱椎-E BCD 的体积是______.10.(2018年高考数学江苏卷·第10题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(2018年高考数学天津(理)·第11题)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为.12.(2018年高考数学课标Ⅱ卷(理)·第16题)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为__________.13.如图,在正三棱柱111ABC A B C -中,1AB =.若二面角1C AB C --的大小为60,则点1C 到直线AB 的距离为.1A 1B 1C AB C14.(2014高考数学天津理科·第10题)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________3m.15.(2014高考数学山东理科·第13题)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V =.16.(2014高考数学江苏·第8题)设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且1294S S =,则12V V 的值是.17.(2015高考数学天津理科·第10题)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m.18.(2015高考数学上海理科·第4题)若正三棱柱的所有棱长均为a ,且其体积为,则a =.19.(2017年高考数学江苏文理科·第6题)如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_______.20.(2016高考数学浙江理科·第14题)如图,在ABC ∆中,2,120AB BC ABC ==∠= .若平面ABC 外的点P 和线段AC 上的点D ,满足,PD DA PB BA ==,则四面体PBCD 的体积的最大值是.21.(2016高考数学浙江理科·第11题)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是2cm ,体积是3cm .OO 1O 2(第6题)⋅⋅⋅22.(2016高考数学天津理科·第11题)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_____________3m .23.(2016高考数学四川理科·第13题)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则三棱锥的体积为_______.二、多选题1.(2022新高考全国II 卷·第11题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =题型四:立体几何中的球的问题1.(2020年新高考全国Ⅰ卷(山东)·第16题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D BCC 1B 1的交线长为________.2.(2017年高考数学天津理科·第10题)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝2.(2019·北京·理·第12题)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l m ⊥;②m ∥α;③l α⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【3.(2016高考数学课标Ⅱ卷理科·第14题),αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果m n ⊥,m α⊥,//n β,那么αβ⊥.(2)如果m α⊥,//n α,那么m n ⊥.(3)如果//αβ,m α⊂,那么//m β.(4)如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)二、多选题1.(2021年新高考全国Ⅱ卷·第10题)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是()A .B .C .D ._____________.(结果用反三角函数值表示)2.(2015高考数学浙江理科·第13题)如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是.3.(2015高考数学四川理科·第14题)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面相互垂直,动点M 在线段PQ 上,,E F 分别为AB ,BC 中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________4.(2015高考数学上海理科·第6题)若圆锥的侧面积与过轴的截面积面积之比为2π,则其母线与轴的夹角的大小为.5.(2017年高考数学课标Ⅲ卷理科·第16题),a b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与,a b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角;②当直线AB 与a 成60︒角时,AB 与b 成60︒角;③直线AB 与a 所成角的最小值为45︒;④直线AB 与a 所成角的最大值为60︒.其中正确的是.(填写所有正确结论的编号)6.(2016高考数学上海理科·第6题)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________.二、多选题1.(2023年新课标全国Ⅱ卷·第9题)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A .该圆锥的体积为πB .该圆锥的侧面积为C .AC =D .PAC △2.(2022新高考全国I 卷·第9题)已知正方体1111ABCD A B C D -,则()A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒C .直线1BC 与平面11BBD D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒。
2024届新高考数学大题精选30题--立体几何含答案
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
立体几何高考题全
立体几何高考题1.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.172B. 52C.3D.22.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122πB .12πC .82πD .10π3.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A.433 B. 332 C. 423 D. 23 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90π B.63π C.42π D.36π5.某三棱锥的三视图如图所示,则该三棱锥的体积为(A )60 (B )30 (C )20 (D )10 6.在正方体ABCD -A 1B 1C 1D 1中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥7.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π48.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是9.平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1, α∩平面ABCD =m ,α∩平面ABB 1 A 1=n ,则m ,n 所成角的正弦值为 (A (B )2(C (D )1310.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是328π,则它的表面积是(A )17π (B )18π (C )20π (D )28π11.体积为8的正方体的顶点都在同一球面上,则该球的表面积为 (A )12π (B )323π (C )8π (D )4π 12.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是( )A.814π B. 16π C. 9π D. 274π13.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A.16 B. 6 C. 13D. 314.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( ).2..2.1A B C D ππ15.设m 、n 是两条不同的直线,α、β是两个不同的平面,则( ) A.若n m ⊥,α//n ,则α⊥m B.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥mD.若n m ⊥,β⊥n ,αβ⊥,则α⊥m 16.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥17.(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A . C .132D .18.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为19.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
专题05 立体几何专项高考真题总汇(带答案与解析)
专题05立体几何(选择题、填空题)1.【2021·浙江高考真题】某几何体的三视图如图所示,则该几何体的体积是()A .32B .3C.2D.【答案】A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,,下底为12=,故1111131222ABCD A B C D V -=⨯+⨯⨯=,故选:A.2.【2021·北京高考真题】某四面体的三视图如图所示,该四面体的表面积为()A .332+B .4C .33D .2【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【解析】根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213333112242+⨯⨯⨯+⨯=,故选:A.3.【2021·浙江高考真题】如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD 则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.4.【2021·全国高考真题(理)】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为()A .212B .312C .24D .34【答案】A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则2d ==,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.【2021·全国高考真题(理)】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D6.【2021·全国高考真题】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B.C .4D.【答案】B【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=解得l =.故选:B.7.【2021·北京高考真题】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10mm <),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A .小雨B .中雨C .大雨D .暴雨【答案】B【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【解析】由题意,一个半径为()200100mm 2=的圆面内的降雨充满一个底面半径为()20015050mm 2300⨯=,高为()150mm 的圆锥,所以积水厚度()22150150312.5mm 100d ππ⨯⨯==⨯,属于中雨.故选:B.8.【2021·全国高考真题】在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,13,0,12A ⎛⎫ ⎪ ⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则13,0,12A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭ ,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+ ,取1BB ,1CC 中点为,M N .BP BM MN λ=+ ,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫= ⎪ ⎪⎝⎭,11,,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.9.【2021·全国高考真题(理)】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【分析】由题意结合所给的图形确定一组三视图的组合即可.【解析】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,BC BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -.故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.10.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514-B .512-C .514D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-由题意得212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去).故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.11.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选A.【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.12.【2020年高考全国II 卷理数】已知△ABC 是面积为934O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A 3B .32C .1D .32【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=⨯-,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.13.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A .2B .4+42C .3D .4+23【答案】C 【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:22AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.14.【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A.【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.15.【2020年高考天津】若棱长为为A .12πB .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.16.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6+B .6+C .12+D .12+【答案】D 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.17.【2020年高考浙江】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .6【答案】A 【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.18.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.19.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B 【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.20.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 【答案】D【解析】解法一:,PA PB PC ABC == △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==364466,π2338R V R =∴=π=⨯=,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===,AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC = ,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,221221222x x x ∴+=∴==,,,PA PB PC ∴===,又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==,62R ∴=,34466338V R ∴=π=π⨯=,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.21.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.22.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.23.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.24.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA 上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PB αβ===<=,即αβ>;在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.25.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.26.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=解得:22r =,其体积:34233V r =π=π.故答案为:23π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.27.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.28.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲cm.【答案】2π【解析】正六棱柱体积为2624⨯⨯⨯,圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为:2π-【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.29.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,为半径的球面与侧面BCC 1B 1的交线长为________.【答案】22π.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B = ,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,,1D E =,所以||EP ===,所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧 FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得 22FGπ==.故答案为:22π.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.30.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm ,∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.31.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.32.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.33.【2019年高考天津卷理数】2的正方形,5若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】π4【解析】由题意,的正方形,借助勾股定理,2=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭.【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.34.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是▲.【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.35.【2019年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,22,21)122BG GE CH x GH x x x ∴===∴=⨯+=+=,1x ∴=1.。
五年(2019-2023)年高考真题 专题04 立体几何(解析版)
五年(2019-2023)年高考真题分项汇编专题04立体几何考点精析:考点一空间几何体的侧面积和表面积1.(2021()A .2B .C .4D .【解析】由题意,设母线长为l ,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有2l ππ=⋅,解得l =所以该圆锥的母线长为故选:B .2.(2022•上海)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为.【解析】因为圆柱的底面积为9π,即29R ππ=,所以3R =,所以224S Rh ππ==侧.故答案为:24π.3.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为.【解析】如图1,上底面圆心记为O ,下底面圆心记为O ',连接OC ,过点C 作CM AB ⊥,垂足为点M ,则12ABC S AB CM ∆=⨯⨯,根据题意,AB 为定值2,所以ABC S ∆的大小随着CM 的长短变化而变化,如图2所示,当点M 与点O 重合时,CM OC ===此时ABC S ∆取得最大值为122⨯=;如图3所示,当点M 与点B 重合,CM 取最小值2,此时ABC S ∆取得最小值为12222⨯⨯=.综上所述,ABC S ∆的取值范围为.故答案为:.4.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为.【解析】圆柱的底面半径为1r =,高为2h =,所以圆柱的侧面积为22124S rh πππ==⨯⨯=侧.故答案为:4π.5.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为()A .1B .2C .4D .8【解析】如图,则21142133V ππ=⨯⨯=,22121233V ππ=⨯⨯=,∴两个圆锥的体积之比为43223ππ=.故选:B .6.(2020•浙江)已知圆锥的侧面积(单位:2)cm 为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:)cm 是.【解析】 圆锥侧面展开图是半圆,面积为22cm π,设圆锥的母线长为acm ,则2122a ππ⨯=,2a cm ∴=,∴侧面展开扇形的弧长为2cm π,设圆锥的底面半径OC rcm =,则22r ππ=,解得1r cm =.故答案为:1cm .7.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为3343,其顶点都在同一球面上,则该球的表面积为()A .100πB .128πC .144πD .192π【解析】当球心在台体外时,由题意得,上底面所在平面截球所得圆的半径为3332sin 60=︒4=,如图,设球的半径为R 1=,解得5R =,∴该球的表面积为24425100R πππ=⨯=.当球心在台体内时,如图,1=,无解.综上,该球的表面积为100π.故选:A .8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积22(1cos )S r πα=-(单位:2)km ,则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%【解析】由题意,作出地球静止同步卫星轨道的左右两端的竖直截面图,则36000640042400OP =+=,那么64008cos 4240053α==;卫星信号覆盖的地球表面面积22(1cos )S r πα=-,那么,S 占地球表面积的百分比为222(1cos )4542%4106r r παπ-=≈.故选:C .考点二空间几何体的体积9.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l,则该正四棱锥体积的取值范围是()A .[18,81]4B .27[4,814C .27[4,64]3D .[18,27]【解析】如图所示,正四棱锥P ABCD -各顶点都在同一球面上,连接AC 与BD 交于点E ,连接PE ,则球心O 在直线PE 上,连接OA ,设正四棱锥的底面边长为a ,高为h ,在Rt PAE ∆中,222PA AE PE =+,即2222221(22l h a h =+=+, 球O 的体积为36π,∴球O 的半径3R =,在Rt OAE ∆中,222OA OE AE =+,即2222(3))2R h =-+,∴221602a h h +-=,∴22162a h h +=,26l h ∴=,又3l∴3922h ,∴该正四棱锥体积2232112()(122)4333V h a h h h h h h ==-=-+,2()282(4)V h h h h h '=-+=- ,∴当342h <时,()0V h '>,()V h 单调递增;当942h <时,()0V h '<,()V h 单调递减,()max V h V ∴=(4)643=,又327(24V = ,981()24V =,且278144<,∴2764()43V h ,即该正四棱锥体积的取值范围是27[4,643,故选:C .10.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为2140.0km ;水位为海拔157.5m 时,相应水面的面积为2180.0km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(7 2.65)(≈)A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯【解析】26214014010km m =⨯,26218018010km m =⨯,根据题意,增加的水量约为666614010180101401018010(157.5148.5)3⨯+⨯⨯⨯⨯⨯-6(140180607)109++⨯=6693(32060 2.65)103143710 1.410m ≈+⨯⨯⨯=⨯≈⨯.故选:C .11.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A .203+B .282C .563D .2823【解析】解法一:如图1111ABCD A B C D -为正四棱台,2AB =,114A B =,12AA =.在等腰梯形11A B BA 中,过A 作11AE A B ⊥,可得14212A E -==,2211413AE AA A E =--=.连接AC ,11A C ,4422AC =+=,11161642A C =+,过A 作11AG A C ⊥,142222A G -==,AG ===,∴正四棱台的体积为:V h=22243++=2823=.解法二:作出图形,连接该正四棱台上下底面的中心,如图,该四棱台上下底面边长分别为2,4,侧棱长为2,∴该棱台的记h =下底面面积116S =,上底面面积24S =,则该棱台的体积为:1211282((164333V h S S =++=⨯++=.故选:D .12.【多选】(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:)m 的正方体容器(容器壁厚度忽略不计)内的有()A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体【解析】对于A ,棱长为1的正方体内切球的直径为10.99>,选项A 正确;对于B ,如图,正方体内部最大的正四面体11D A BC - 1.4=>,选项B 正确;对于C ,棱长为1 1.8<,选项C 错误;对于D ,如图,六边形EFGHIJ 为正六边形,E ,F ,G ,H ,I ,J 为棱的中点,高为0.01米可忽略不计,看作直径为1.2米的平面圆,六边形EFGHIJ 棱长为2米,30GFH GHF ∠=∠=︒,所以62FH ===米,故六边形EFGHIJ 内切圆半径为62米,而223(1.2) 1.442=>=,选项D 正确.故选:ABD .13.【多选】(2022•新高考Ⅱ)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,//FB ED ,2AB ED FB ==.记三棱锥E ACD -,F ABC -,F ACE -的体积分别为1V ,2V ,3V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =【解析】设22AB ED FB ===,114||33ACD V S ED ∆=⨯⨯=,212||33ABC V S FB ∆=⨯⨯=,如图所示,连接BD 交AC 于点M ,连接EM 、FM ,则3FM =6EM =,3EF =,故1323622EMF S ∆==,3113222332EMF V S AC ∆=⨯=⨯,故C 、D 正确,A 、B 错误.故选:CD .14.【多选】(2021•新高考Ⅰ)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则()A .当1λ=时,△1AB P 的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【解析】对于A ,当1λ=时,1BP BC BB μ=+ ,即1CP BB μ= ,所以1//CP BB ,故点P 在线段1CC 上,此时△1AB P 的周长为11AB B P AP ++,当点P 为1CC 的中点时,△1AB P ,当点P 在点1C 处时,△1AB P 的周长为1,故周长不为定值,故选项A 错误;对于B ,当1μ=时,1BP BC BB λ=+ ,即1B P BC λ= ,所以1//B P BC ,故点P 在线段11B C 上,因为11//B C 平面1A BC ,所以直线11B C 上的点到平面1A BC 的距离相等,又△1A BC 的面积为定值,所以三棱锥1P A BC -的体积为定值,故选项B 正确;对于C ,当12λ=时,取线段BC ,11B C 的中点分别为M ,1M ,连结1M M ,因为112BP BC BB μ=+ ,即1MP BB μ= ,所以1//MP BB ,则点P 在线段1M M 上,当点P 在1M 处时,1111A M B C ⊥,111A M B B ⊥,又1111B C B B B = ,所以11A M ⊥平面11BB C C ,又1BM ⊂平面11BB C C ,所以111A M BM ⊥,即1A P BP ⊥,同理,当点P 在M 处,1A P BP ⊥,故选项C 错误;对于D ,当12μ=时,取1CC 的中点1D ,1BB 的中点D ,因为112BP BC BB λ=+ ,即DP BC λ= ,所以//DP BC ,则点P 在线的1DD 上,当点P 在点1D 处时,取AC 的中点E ,连结1A E ,BE ,因为BE ⊥平面11ACC A ,又1AD ⊂平面11ACC A ,所以1AD BE ⊥,在正方形11ACC A 中,11AD A E ⊥,又1BE A E E = ,BE ,1A E ⊂平面1A BE ,故1AD ⊥平面1A BE ,又1A B ⊂平面1A BE ,所以11A B AD ⊥,在正方体形11ABB A 中,11A B AB ⊥,又11AD AB A = ,1AD ,1AB ⊂平面11AB D ,所以1A B ⊥平面11AB D ,因为过定点A 与定直线1A B 垂直的平面有且只有一个,故有且仅有一个点P ,使得1A B ⊥平面1AB P ,故选项D 正确.故选:BD .15.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.【解析】如图所示,根据题意易知△11SO A SOA ∆∽,∴11121222SO O A SO OA ===,又13SO =,6SO ∴=,13OO ∴=,又上下底面正方形边长分别为2,4,∴所得棱台的体积为1(416416)3283⨯++⨯⨯=.故答案为:28.16.(2023•新高考Ⅰ)在正四棱台1111ABCD A B C D -中,2AB =,111A B =,12AA =,则该棱台的体积为.【解析】如图,设正四棱台1111ABCD A B C D -的上下底面中心分别为M ,N ,过1A 作1A H AC ⊥,垂足点为H ,由题意易知122A M HN ==,又2AN =22AH AN HN ∴=-=,又1AA =,1A H MN ∴==∴该四棱台的体积为1(14326⨯++⨯=.故答案为:766.17.(2020•海南)已知正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点,则三棱锥1A NMD -的体积为.【解析】如图,正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点,∴111122ANM S ∆=⨯⨯=,∴111112323A NMD D AMN V V --==⨯⨯=.故答案为:13.18.(2022•上海)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==.(1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.【解析】(1)在三棱锥P ABC -中,因为PO ⊥底面ABC ,所以PO AC ⊥,又O 为AC 边中点,所以PAC ∆为等腰三角形,又2AP AC ==.所以PAC ∆是边长为2的为等边三角形,3PO ∴=,三棱锥体积2113231334P ABC ABC V S PO -∆=⋅=⨯⨯,(2)以O 为坐标原点,OB 为x 轴,OC 为y 轴,OP 为z轴,建立空间直角坐标系,则(0P ,03),(3B 0,0),(0C ,1,0),3(2M ,12,0),3(2PM = ,12,3)-,平面PAC 的法向量(3OB = 0,0),设直线PM 与平面PAC 所成角为θ,则直线PM 与平面PAC 所成角的正弦值为332sin ||4||||32PM OB PM OB θ⋅===⋅⨯ ,所以PM 与面PAC 所成角大小为319.(2020•上海)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD .(1)若5PC =,求四棱锥P ABCD -的体积;(2)若直线AD 与BP 的夹角为60︒,求PD 的长.【解析】(1)PD ⊥ 平面ABCD ,PD DC ∴⊥.3CD = ,5PC ∴=,4PD ∴=,2134123P ABCD V -∴=⨯⨯=,所以四棱锥P ABCD -的体积为12.(2)ABCD 是正方形,PD ⊥平面ABCD ,BC PD ∴⊥,BC CD⊥又PD CD D= BC ∴⊥平面PCDBC PC∴⊥ 异面直线AD 与PB 所成角为60︒,//BC AD∴在Rt PBC ∆中,60PBC ∠=︒,3BC =故33PC =在Rt PDC ∆中,3CD =32PD ∴=考点三空间中直线与直线之间的位置关系20.(2022•上海)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为()A .点PB .点BC .点RD .点Q【解析】线段MN 上不存在点在线段1A S 、1B D 上,即直线MN 与线段1A S 、1B D 不相交,因此所求与1D 可视的点,即求哪条线段不与线段1A S 、1B D 相交,对A 选项,如图,连接1A P 、PS 、1D S ,因为P 、S 分别为AB 、CD 的中点,∴易证11//A D PS ,故1A 、1D 、P 、S 四点共面,1D P ∴与1A S 相交,A ∴错误;对B 、C 选项,如图,连接1D B 、DB ,易证1D 、1B 、B 、D 四点共面,故1D B 、1D R 都与1B D 相交,B ∴、C 错误;对D 选项,连接1D Q ,由A 选项分析知1A 、1D 、P 、S 四点共面记为平面11A D PS ,1D ∈ 平面11A D PS ,Q ∉平面11A D PS ,且1A S ⊂平面11A D PS ,点11D A S ∉,1D Q ∴与1A S 为异面直线,同理由B ,C 选项的分析知1D 、1B 、B 、D 四点共面记为平面11D B BD ,1D ∈ 平面11D B BD ,Q ∉平面11D B BD ,且1B D ⊂平面11D B BD ,点11D B D ∉,1D Q ∴与1B D 为异面直线,故1D Q 与1A S ,1B D 都没有公共点,D ∴选项正确.故选:D .21.(2021•浙江)如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD B C .直线1A D 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 【解析】连接1AD ,如图:由正方体可知11A D AD ⊥,1A D AB ⊥,1A D ∴⊥平面1ABD ,11A D D B ∴⊥,由题意知MN 为△1D AB 的中位线,//MN AB ∴,又AB ⊂ 平面ABCD ,MN ⊂/平面ABCD ,//MN ∴平面ABCD .A ∴对;由正方体可知1A D 与平面1BDD 相交于点D ,1D B ⊂平面1BDD ,1D D B ∉,∴直线1A D 与直线1D B 是异面直线,B ∴、C 错;//MN AB ,AB 不与平面11BDD B 垂直,MN ∴不与平面11BDD B 垂直,D ∴错.故选:A .22.(2020•上海)在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线交正方体于P 、Q 两点,则Q 点所在的平面是()A .11AAB BB .11BBC C C .11CCD D D .ABCD 【解析】如图,由点P 到11A D 的距离为3,P 到1AA 的距离为2,可得P 在△1AA D 内,过P 作1//EF A D ,且1EF AA 于E ,EF AD 于F ,在平面ABCD 中,过F 作//FG CD ,交BC 于G ,则平面//EFG 平面1A DC .连接AC ,交FG 于M ,连接EM ,平面//EFG 平面1A DC ,平面1A AC ⋂平面11A DC A C =,平面1A AC ⋂平面EFM EM =,1//EM A C ∴.在EFM ∆中,过P 作//PQ EM ,且PQ FM 于Q ,则1//PQ A C .线段FM 在四边形ABCD 内,Q 在线段FM 上,Q ∴在四边形ABCD 内.∴则Q 点所在的平面是平面ABCD .故选:D .23.(2023•上海)如图所示,在正方体1111ABCD A B C D -中,点P 为边11A C 上的动点,则下列直线中,始终与直线BP 异面的是()A .1DDB .AC C .1AD D .1B C【解析】对于A ,当P 是11A C 的中点时,BP 与1DD 是相交直线;对于B ,根据异面直线的定义知,BP 与AC 是异面直线;对于C ,当点P 与1C 重合时,BP 与1AD 是平行直线;对于D ,当点P 与1C 重合时,BP 与1B C 是相交直线.故选:B .考点四异面直线及其所成的角24.【多选】(2022•新高考Ⅰ)已知正方体1111ABCD A B C D -,则()A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒C .直线1BC 与平面11BBD D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒【解析】如图,连接1B C ,由11//A B DC ,11A B DC =,得四边形11DA B C 为平行四边形,可得11//DA B C ,11BC B C ⊥ ,∴直线1BC 与1DA 所成的角为90︒,故A 正确;111A B BC ⊥ ,11BC B C ⊥,1111A B B C B = ,1BC ∴⊥平面11DA B C ,而1CA ⊂平面11DA B C ,11BC CA ∴⊥,即直线1BC 与1CA 所成的角为90︒,故B 正确;设1111A C B D O = ,连接BO ,可得1C O ⊥平面11BB D D ,即1C BO ∠为直线1BC 与平面11BB D D 所成的角,1111sin 2OC C BO BC ∠== ,∴直线1BC 与平面11BB D D 所成的角为30︒,故C 错误;1CC ⊥ 底面ABCD ,1C BC ∴∠为直线1BC 与平面ABCD 所成的角为45︒,故D 正确.故选:ABD .考点五空间中直线与平面之间的位置关系25.(2019•上海)已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a α⊆,b β⊆,c γ⊆,则直线a、b、c不可能满足以下哪种关系()A.两两垂直B.两两平行C.两两相交D.两两异面【解析】如图1,可得a、b、c可能两两垂直;如图2,可得a、b、c可能两两相交;如图3,可得a、b、c可能两两异面;故选:B.26.【多选】(2021•新高考Ⅱ)如图,下列正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点,则满足MN OP⊥的是()A.B.C.D.【解析】对于A,设正方体棱长为2,设MN与OP所成角为θ,则12tan12θ==,∴不满足MN OP⊥,故A错误;对于B,如图,作出平面直角坐标系,设正方体棱长为2,则(2N ,0,0),(0M ,0,2),(2P ,0,1),(1O ,1,0),(2MN = ,0,2)-,(1OP = ,1-,1),0MN OP ⋅= ,∴满足MN OP ⊥,故B 正确;对于C ,如图,作出平面直角坐标系,设正方体棱长为2,则(2M ,2,2),(0N ,2,0),(1O ,1,0),(0P ,0,1),(2MN =- ,0,2)-,(1OP =- ,1-,1),0MN OP ⋅= ,∴满足MN OP ⊥,故C 正确;对于D ,如图,作出平面直角坐标系,设正方体棱长为2,则(0M ,2,0),(0N ,0,2),(2P ,1,2),(1O ,1,0),(0MN = ,2-,2),(1OP = ,0,2),4MN OP ⋅= ,∴不满足MN OP ⊥,故D 错误.故选:BC .考点六直线与平面所成的角27.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为)O ,地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为()A .20︒B .40︒C .50︒D .90︒【解析】可设A 所在的纬线圈的圆心为O ',OO '垂直于纬线所在的圆面,由图可得OHA ∠为晷针与点A 处的水平面所成角,又OAO '∠为40︒且OA AH ⊥,在Rt OHA ∆中,O A OH '⊥,40OHA OAO '∴∠=∠=︒,另解:画出截面图,如下图所示,其中CD 是赤道所在平面的截线.l 是点A 处的水平面的截线,由题意可得OA l ⊥,AB 是晷针所在直线.m 是晷面的截线,由题意晷面和赤道面平行,晷针与晷面垂直,根据平面平行的性质定理可得//m CD ,根据线面垂直的定义可得AB m ⊥,由于40AOC ∠=︒,//m CD ,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与A 处的水平面所成角为40BAE ∠=︒,故选:B .28.(2021•上海)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =.(1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积;(2)求直线1AB 与平面11ACC A的夹角大小.【解析】(1)如图,在长方体1111ABCD A B C D -中,1112322332C PAD PAD C PAD V S h -∆-⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭平面;(2)连接1111A C B D O = ,AB BC = ,∴四边形1111A B C D 为正方形,则11OB OA ⊥,又11AA OB ⊥,111OA AA A = ,1OB ∴⊥平面11ACC A ,∴直线1AB 与平面11ACC A 所成的角为1OAB ∠,∴221122122262sin 23OB OAB AB +∠===+∴直线1AB 与平面11ACC A 所成的角为261329.(2021•浙江)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,15PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(Ⅰ)证明:AB PM ⊥;(Ⅱ)求直线AN 与平面PDM 所成角的正弦值.【解析】(Ⅰ)证明:在平行四边形ABCD 中,由已知可得,1CD AB ==,122CM BC ==,60DCM ∠=︒,∴由余弦定理可得,2222cos60DM CD CM CD CM =+-⨯⨯︒11421232=+-⨯⨯⨯=,则222134CD DM CM +=+==,即CD DM ⊥,又PD DC ⊥,PD DM D = ,CD ∴⊥平面PDM ,而PM ⊂平面PDM ,CD PM ∴⊥,//CD AB ,AB PM ∴⊥;(Ⅱ)解:由(Ⅰ)知,CD ⊥平面PDM ,又CD ⊂平面ABCD ,∴平面ABCD ⊥平面PDM ,且平面ABCD ⋂平面PDM DM =,PM MD ⊥ ,且PM ⊂平面PDM ,PM ∴⊥平面ABCD ,连接AM ,则PM MA ⊥,在ABM ∆中,1AB =,2BM =,120ABM ∠=︒,可得2114212(72AM =+-⨯⨯⨯-=,又PA =Rt PMA ∆中,求得PM ==,取AD 中点E ,连接ME ,则//ME CD ,可得ME 、MD 、MP 两两互相垂直,以M 为坐标原点,分别以MD 、ME 、MP 为x 、y 、z 轴建立空间直角坐标系,则(A 2,0),(0P ,0,,1,0)C -,又N 为PC的中点,31(22N ∴-,335(22AN =- ,平面PDM 的一个法向量为(0,1,0)n = ,设直线AN 与平面PDM 所成角为θ,则5||2sin |cos ,|||||AN n AN n AN n θ⋅=<>==⋅ .故直线AN 与平面PDM 所成角的正弦值为156.30.(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l上的点,QB =,求PB 与平面QCD所成角的正弦值.【解析】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥ 平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CD PD D = ,BC ∴⊥平面PCD ,设m 为平面PCD 中任意一条直线,则BC m ⊥,//l BC ,l m ∴⊥,由线面垂直的定义是l ⊥平面PCD ;(2)解:如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,1PD AD == ,Q 为l上的点,QB =,PB ∴=,1QP =,则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),作//PQ AD ,则PQ 为平面PAD 与平面PBC 的交线为l,因为QB =,QAB ∆是等腰直角三角形,所以(1Q ,0,1),则(1DQ = ,0,1),(1PB = ,1,1)-,(0DC = ,1,0),设平面QCD 的法向量为(n a = ,b ,)c ,则00n DC n DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,∴00b a c =⎧⎨+=⎩,取1c =,可得(1n =- ,0,1),|cos n ∴<,6||||3||||n PB PB n PB ⋅>=== ,PB ∴与平面QCD所成角的正弦值为3.31.(2020•上海)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.【解析】(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,221214S πππ∴=⨯⨯+⨯=.故该圆柱的表面积为4π.(2) 正方形11ABC D ,1AD AB ∴⊥,又12DAD π∠=,1AD AD ∴⊥,AD AB A = ,且AD 、AB ⊂平面ADB ,1AD ∴⊥平面ADB ,即1D 在面ADB 上的投影为A ,连接1CD ,则1D CA ∠即为线段1CD 与平面ABCD 所成的角,而1126cos 33AC D CA CD ∠==,∴线段1CD 与平面ABCD 所成的角为6arccos3.32.(2020•山东)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD所成角的正弦值的最大值.【解析】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥ 平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CD PD D = ,BC ∴⊥平面PCD ,设平面PCD 中有任一直线l ',则BC ⊥直线l ',//l BC ,l ∴⊥直线l ',∴由线面垂直的定义得l ⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),设(Q m ,0,1),(DQ m = ,0,1),(1PB = ,1,1)-,(0DC = ,1,0),设平面QCD 的法向量为(n a = ,b ,)c ,则00n DC n DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,∴00b am c =⎧⎨+=⎩,取1a =-,可得(1n =- ,0,)m ,cos n ∴< ,2||||31n PB PB n PB m⋅>==⋅⋅+ ,PB ∴与平面QCD 2223123131m m m m ++=+⋅+2323261131323m m =++=+1m =取等号,PB ∴与平面QCD 所成角的正弦值的最大值为63.33.(2020•浙江)如图,在三棱台ABC DEF -中,平面ACFD ⊥平面ABC ,45ACB ACD ∠=∠=︒,2DC BC =.(Ⅰ)证明:EF DB ⊥;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)证明:作DH AC ⊥,且交AC 于点H , 面ADFC ⊥面ABC ,DH ⊂面ADFC ,DH BC ∴⊥,∴在Rt DHC ∆中,2cos 452CH CD =⋅︒=,2DC BC = ,2222CH BC BC ∴===,∴22BC CH =,即BHC ∆是直角三角形,且90HBC ∠=︒,HB BC ∴⊥,BC ∴⊥面DHB ,BD ⊂ 面DHB ,BC BD ∴⊥, 在三棱台DEF ABC -中,//EF BC ,EF DB ∴⊥.(Ⅱ)设1BC =,则1BH =,2HC =在Rt DHC ∆中,2DH =2DC =,在Rt DHB ∆中,22213DB DH HB =+=+=,作HG BD ⊥于G ,BC HG ⊥ ,HG ∴⊥面BCD ,GC ⊂ 面BCD ,HG GC ∴⊥,HGC ∴∆是直角三角形,且90HGC ∠=︒,设DF 与面DBC 所成角为θ,则θ即为CH 与面DBC 的夹角,且sin sin 2HG HCG HC θ=∠== 在Rt DHB ∆中,DH HB BD HG ⋅=⋅,2633DH HB HG BD ⋅∴===,633sin 322θ∴===.34.(2019•上海)如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1A C 和平面ABCD 的夹角;(2)求点A 到平面1A MC 的距离.【解析】(1)依题意:1AA ⊥平面ABCD ,连接AC ,则1A C 与平面ABCD 所成夹角为1A CA ∠,15AA = ,5AC =,∴△1A CA 为等腰三角形,14A CA π∴∠=,∴直线1A C 和平面ABCD 的夹角为4π,(2)(空间向量),如图建立坐标系,则(0A ,0,0),(3C ,4,0),1(0A ,0,5),(3M ,0,2),∴(3AC = ,4,0),1(3A C = ,4,5)-,(0MC = ,4.2)-,设平面1A MC 的法向量(n x = ,y ,)z ,由13450420n A C x y z n MC y z ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,可得(2n = ,1,2),∴点A 到平面1A MC的距离||10||3AC n d n ⋅== .35.(2019•浙江)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A A C AC ==,E ,F 分别是AC ,11A B 的中点.(Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC所成角的余弦值.【解析】方法一:证明:(Ⅰ)连接1A E ,11A A A C = ,E 是AC 的中点,1A E AC ∴⊥,又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC ,平面11A ACC ⋂平面ABC AC =,1A E ∴⊥平面ABC ,1A E BC ∴⊥,1//A F AB ,90ABC ∠=︒,1BC A F ∴⊥,111A F A E A = ,BC ∴⊥平面1A EF ,EF BC ∴⊥.解:(Ⅱ)取BC 中点G ,连接EG 、GF ,则1EGFA 是平行四边形,由于1A E ⊥平面ABC ,故1A E EG ⊥,∴平行四边形1EGFA 是矩形,由(Ⅰ)得BC ⊥平面1EGFA ,则平面1A BC ⊥平面1EGFA ,EF ∴在平面1A BC 上的射影在直线1A G 上,连接1A G ,交EF 于O ,则EOG ∠是直线EF 与平面1A BC 所成角(或其补角),不妨设4AC =,则在Rt △1A EG中,1A E =,EG =,O 是1A G的中点,故12A G EO OG ===2223cos 25EO OG EG EOG EO OG +-∴∠==⨯⨯,∴直线EF 与平面1A BC 所成角的余弦值为35.方法二:证明:(Ⅰ)连接1A E ,11A A A C = ,E 是AC 的中点,1A E AC ∴⊥,又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC ,平面11A ACC ⋂平面ABC AC =,1A E ∴⊥平面ABC ,如图,以E 为原点,在平面ABC 中,过E 作AC 的垂线为x 轴,EC ,1EA 所在直线分别为y ,z 轴,建立空间直角坐标系,设4AC =,则1(0A ,0,,B,1B,33(22F ,(0C ,2,0),33(22EF =,(BC = ,由0EF BC = ,得EF BC ⊥.解:(Ⅱ)设直线EF 与平面1A BC 所成角为θ,由(Ⅰ)得(BC = ,1(0A C = ,2,-,设平面1A BC 的法向量(n x = ,y ,)z ,则100BC n y A C n y ⎧=+=⎪⎨==⎪⎩ ,取1x =,得n = ,||4sin 5||||EF n EF n θ∴== ,∴直线EF 与平面1A BC35=.考点七二面角的平面角及求法36.(2022•浙江)如图,已知正三棱柱111ABC A B C -,1AC AA =,E ,F 分别是棱BC ,11A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则()A .αβγB .βαγC .βγαD .αγβ【解析】 正三棱柱111ABC A B C -中,1AC AA =,∴正三棱柱的所有棱长相等,设棱长为1,如图,过F 作FG AC ⊥,垂足点为G ,连接GE ,则1//A A FG ,EF ∴与1AA 所成的角为EFG α∠=,且tan GE GE FGα==,又[0GE ∈,1],tan [0α∴∈,1],EF ∴与平面ABC 所成的角为FEG β∠=,且1tan [1GF GE GEβ==∈,)+∞,tan tan βα∴,...①,再过G 点作GH BC ⊥,垂足点为H ,连接HF ,又易知FG ⊥底面ABC ,BC ⊂底面ABC ,BC FG ∴⊥,又FG GH G = ,BC ∴⊥平面GHF ,∴二面角F BC A --的平面角为GHF γ∠=,且1tan GF GH GHγ==,又[0GH ∈,32,tan γ∴∈)+∞,tan tan γα∴,...②,又GE GH ,tan tan βγ∴,...③,由①②③得tan tan tan αβγ,又α,β,[0γ∈,)2π,tan y x =在[0,2π单调递增,αβγ∴,故选:A.37.(2019•浙江)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则()A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<【解析】方法一、如图G 为AC 的中点,V 在底面的射影为O ,则P 在底面上的射影D 在线段AO 上,作DE AC ⊥于E ,易得//PE VG ,过P 作//PF AC 于F ,过D 作//DH AC ,交BG 于H ,则BPF α=∠,PBD β=∠,PED γ=∠,则cos cos PF EG DH BD PB PB PB PB αβ===<=,可得βα<;tan tan PD PD ED BDγβ=>=,可得βγ<,方法二、由最小值定理可得βα<,记V AC B --的平面角为γ'(显然)γγ'=,由三正弦定理可得βγγ'<=;方法三、(特殊图形法)设三棱锥V ABC -为棱长为2的正四面体,P 为VA 的中点,易得12cos α==sin α=,sin β=sin 3γ==,当23AP =时,由余弦定理可得273PB ==,281628999cos 27433α+-==sin α=,可得αγ<,故C 错误.故选:B.38.【多选】(2023•新高考Ⅱ)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45︒,则()A .该圆锥的体积为πB.该圆锥的侧面积为C.AC =D .PAC ∆【解析】取AC 中点D ,则OD AC ⊥,PD AC ⊥,由二面角的定义可知,二面角P AC O --的平面角即为45PDO ∠=︒,对于A ,PAB ∆中,由于2PA PB ==,120APB ∠=︒,则1PO =,AO =,则1OD =,1313V ππ=⋅⋅=,选项A 正确.对于B,2S π==侧,选项B 错误.对于C,AC ==,选项C 正确.对于D,PD =122PAC S ∆==,选项D 错误.故选:AC .39.(2023•上海)已知直四棱柱1111ABCD A B C D -,AB AD ⊥,//AB CD ,2AB =,3AD =,4CD =.(1)证明:直线1//A B 平面11DCC D ;(2)若该四棱柱的体积为36,求二面角1A BD A --的大小.【解析】(1)证明:根据题意可知//AB DC ,11//AA DD ,且1AB AA A = ,∴可得平面11//A ABB 平面11DCC D ,又直线1A B ⊂平面11A ABB ,∴直线1//A B 平面11DCC D ;(2)设1AA h =,则根据题意可得该四棱柱的体积为1(24)3362h ⨯+⨯⨯=,4h ∴=,1A A ⊥ 底面ABCD ,在底面ABCD 内过A 作AE BD ⊥,垂足点为E ,则1A E 在底面ABCD 内的射影为AE ,∴根据三垂线定理可得1BD A E ⊥,故1A EA ∠即为所求,在Rt ABD ∆中,2AB =,3AD =,BD ∴==,AB AD AE BD ⨯∴==,又14A A h ==,114tan 6A A A EA AE ∴∠===∴二面角1A BD A --的大小为213arctan3.40.(2023•新高考Ⅱ)如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,60ADB ADC ∠=∠=︒,E为BC 中点.(1)证明BC DA ⊥;(2)点F 满足EF DA = ,求二面角D AB F --的正弦值.【解析】证明:(1)连接AE ,DE ,DB DC = ,E 为BC 中点.DE BC ∴⊥,又DA DB DC == ,60ADB ADC ∠=∠=︒,ACD ∴∆与ABD ∆均为等边三角形,AC AB ∴=,AE BC ∴⊥,AE DE E = ,BC ∴⊥平面ADE ,AD ⊂ 平面ADE ,BC DA ∴⊥.(2)解:设2DA DB DC ===,∴BC =DE AE ==2AD =,2224AE DE AD ∴+==,AE DE ∴⊥,又AE BC ⊥ ,DE BC E = ,AE ∴⊥平面BCD ,以E 为原点,建立如图所示空间直角坐标系,(2,0,0)D ,2)A ,2,0)B ,(0E ,0,0),EF DA = ,∴(2,0,2)F -,∴(2,0,2)DA =- ,2,2)AB = ,(2,0,0)AF = ,设平面DAB 与平面ABF 的一个法向量分别为1111(,,)n x y z = ,2222(,,)n x y z = ,则1111220220x z z ⎧-+=⎪⎨-=⎪⎩,令11x =,解得111y z ==,22222020z -==⎪⎩,令21y =,解得20x =,21z =,故1(1n = ,1,1),2(0n = ,1,1),设二面角D AB F --的平面角为θ,则1212||26|cos |3||||32n n n n θ⋅==⨯ ,故3sin 3θ=,所以二面角D AB F --33.41.(2023•新高考Ⅰ)如图,在正四棱柱111ABCD A B C D -中,2AB =,14AA =.点2A ,2B ,2C ,2D 分别在棱1AA ,1BB ,1CC ,1DD 上,21AA =,222BB DD ==,23CC =.(1)证明:2222//B C A D ;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P .【解析】(1)证明:根据题意建系如图,则有:2(0B ,2,2),2(0C ,0,3),2(2A ,2,1),2(2D ,0,2),∴22(0,2,1)B C =- ,22(0,2,1)A D =- ,∴2222B C A D = ,又2B ,2C ,2A ,2D 四点不共线,2222//B C A D ∴;(2)在(1)的坐标系下,可设(0P ,2,)t ,[0t ∈,4],又由(1)知2(0C ,0,3),2(2A ,2,1),2(2D ,0,2),∴22(2,2,2)C A =- ,2(0,2,3)C P t =- ,22(0,2,1)A D =- ,设平面22PA C 的法向量为(,,)m x y z = ,则22222202(3)0m C A x y z m C P y t z ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩ ,取(1,3,2)m t t =-- ,设平面222A C D 的法向量为(,,)n a b c = ,则2222222020n C A a b c n A D b c ⎧⋅=+-=⎪⎨⋅=-+=⎪⎩ ,取(1,1,2)n = ,∴根据题意可得|cos150||cos m ︒=< ,|||||||m n n m n ⋅>= ,∴22362(1)(3)46t t =-+-+⨯,2430t t ∴-+=,又[0t ∈,4],∴解得1t =或3t =,P ∴为12B B 的中点或2B B 的中点,21B P ∴=.42.(2022•浙江)如图,已知ABCD和CDEF都是直角梯形,//EF=,AB=,3DC=,1DC EF,5AB DC,//--的平面角为60︒.设M,N分别为AE,BC的中点.∠=∠=︒,二面角F DC B60BAD CDE(Ⅰ)证明:FN AD⊥;(Ⅱ)求直线BM与平面ADE所成角的正弦值.【解析】证明:()I由于CD CB⊥,⊥,CD CF平面ABCD⋂平面CDEF CD=,CF⊂平面CDEF,CB⊂平面ABCD,所以FCB--的平面角,∠为二面角F DC B则60⊥.∠=︒,CD⊥平面CBF,则CD FNFCB又3()3,3()3=-==-=CF CD EF CB AB CD则BCF⊥,∆是等边三角形,则CB FN,FC⊂平面FCB,BC⊂平面FCB,因为DC FC⊥,DC BC⊥,FC BC C=所以DC⊥平面FCB,因为FN⊂平面FCB,所以DC FN⊥,,DC⊂平面ABCD,CB⊂平面ABCD,又因为DC CB C=所以FN⊥平面ABCD,因为AD⊂平面ABCD,故FN AD⊥;解:(Ⅱ)由于FN⊥平面ABCD,如图建系:于是3,0),3,0),(0,0,3),(1,0,3),(3,3,0)B A F E D -,则33)22M ,33(3,),3,0),(2,3,3)22BM DA DE =-==- ,设平面ADE 的法向量(n x = ,y ,)z ,则00n DA n DE ⎧⋅=⎪⎨⋅=⎪⎩ ,∴2302330x x z ⎧+=⎪⎨-++=⎪⎩,令3x =,则1y =-,3z =∴平面ADE 的法向量(3,3)n =- ,设BM 与平面ADE 所成角为θ,则||57sin 14||||BM n BM n θ⋅== .43.(2022•新高考Ⅱ)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 为PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.【解析】(1)证明:连接OA ,OB ,依题意,OP ⊥平面ABC ,又OA ⊂平面ABC ,OB ⊂平面ABC ,则OP OA ⊥,OP OB ⊥,90POA POB ∴∠=∠=︒,又PA PB =,OP OP =,则POA POB ∆≅∆,OA OB ∴=,延长BO 交AC 于点F ,又AB AC ⊥,则在Rt ABF ∆中,O 为BF 中点,连接PF ,在PBF ∆中,O ,E 分别为BF ,BP 的中点,则//OE PF ,OE ⊂/ 平面PAC ,PF ⊂平面PAC ,//OE ∴平面PAC ;(2)过点A 作//AM OP ,以AB ,AC ,AM 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,由于3PO =,5PA =,由(1)知4OA OB ==,又30ABO CBO ∠=∠=︒,则AB =∴3(0,0,0),)2P B A E ,又tan 6012AC AB =︒=,即(0C ,12,0),设平面AEB 的一个法向量为(,,)n x y z =,又3)2AB AE == ,则0302n AB n AE y z ⎧⋅==⎪⎨⋅=++=⎪⎩ ,则可取(0,3,2)n =- ,设平面AEC 的一个法向量为(,,)m a b c =,又3(0,12,0),2AC AE == ,则120302m AC b m AE b c ⎧⋅==⎪⎨⋅=++=⎪⎩,则可取(m = ,设锐二面角C AE B --的平面角为θ,则cos |cos ,|||||||13m n m n m n θ⋅=<>== ,∴11sin 13θ==,即二面角C AE B --正弦值为1113.44.(2022•新高考Ⅰ)如图,直三棱柱111ABC A B C -的体积为4,△1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【解析】(1)由直三棱柱111ABC A B C -的体积为4,可得11111433A ABC ABC ABC V --==,设A 到平面1A BC 的距离为d ,由11A ABC A A BC V V --=,∴11433A BC S d ⋅= ,∴14233d ⨯=,解得2d =.(2)连接1AB 交1A B 于点E ,1AA AB = ,∴四边形11ABB A 为正方形,11AB A B ∴⊥,又 平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =,1AB ∴⊥平面1A BC ,1AB BC ∴⊥,由直三棱柱111ABC A B C -知1BB ⊥平面ABC ,1BB BC ∴⊥,又111AB BB B = ,BC ∴⊥平面11ABB A ,BC AB ∴⊥,以B 为坐标原点,BC ,BA ,1BB所在直线为坐标轴建立如图所示的空间直角坐标系,1AA AB = ,12222BC ∴⨯=,又1142AB BC AA ⨯⨯=,解得12AB BC AA ===,则(0B ,0,0),(0A ,2,0),(2C ,0,0),1(0A ,2,2),(1D ,1,1),则(0BA = ,2,0),(1BD = ,1,1),(2BC = ,0,0),设平面ABD 的一个法向量为(n x = ,y ,)z ,则200n BA y n BD x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,令1x =,则0y =,1z =-,∴平面ABD 的一个法向量为(1n = ,0,1)-,设平面BCD 的一个法向量为(m a = ,b ,)c ,200m BC a m BD a b c ⎧⋅==⎪⎨⋅=++=⎪⎩ ,令1b =,则0a =,1c =-,平面BCD 的一个法向量为(0m = ,1,1)-,cos n <,12m >== ,二面角A BD C --32=.45.(2021•新高考Ⅱ)在四棱锥Q ABCD -中,底面ABCD 是正方形,若2AD =,QD QA ==3QC =.(Ⅰ)求证:平面QAD ⊥平面ABCD ;(Ⅱ)求二面角B QD A --的平面角的余弦值.【解析】(Ⅰ)证明:QCD ∆中,2CD AD ==,QD =,3QC =,所以222CD QD QC +=,所以CD QD ⊥;又CD AD ⊥,AD QD D = ,AD ⊂平面QAD ,QD ⊂平面QAD ,所以CD ⊥平面QAD ;又CD ⊂平面ABCD ,所以平面QAD ⊥平面ABCD .(Ⅱ)解:取AD 的中点O ,在平面ABCD 内作Ox AD ⊥,以OD 所在直线为y 轴,OQ 所在直线为z 轴,建立空间直角坐标系O xyz -,如图所示:则(0O ,0,0),(2B ,1-,0),(0D ,1,0),(0Q ,0,2),因为Ox ⊥平面ADQ ,所以平面ADQ 的一个法向量为(1α= ,0,0),设平面BDQ 的一个法向量为(x β= ,y ,)z ,由(2BD =- ,2,0),(0DQ = ,1-,2),得00BD DQ ββ⎧⋅=⎪⎨⋅=⎪⎩ ,即22020x y y z -+=⎧⎨-+=⎩,令1z =,得2y =,2x =,所以(2β= ,2,1);所以cos α<,23||||αββαβ⋅>===⋅ ,所以二面角B QD A --的平面角的余弦值为23.46.(2021•新高考Ⅰ)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD ∆是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【解析】(1)证明:因为AB AD =,O 为BD 的中点,所以AO BD ⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面ABD ,所以AO ⊥平面BCD ,又CD ⊂平面BCD ,所以AO CD ⊥;(2)方法一:取OD 的中点F ,因为OCD ∆为正三角形,所以CF OD ⊥,过O 作//OM CF 与BC 交于点M ,则OM OD ⊥,所以OM ,OD ,OA 两两垂直,以点O 为坐标原点,分别以OM ,OD ,OA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系如图所示,则(0B ,1-,0),1,0)2C ,(0D ,1,0),。
高考数学-立体几何选择填空
高考立体几何选择填空专练班别:__________ 姓名:_________ 一、选择题:(只有一个选项是正确) 1、表面积为23 的正八面体的各个顶点都在同一个球面上,则此球的体积为AA .23πB .13πC .23π D .223π 2、平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是A(A )一条直线 (B )一个圆(C )一个椭圆 (D )双曲线的一支3、过平行六面体ABCD-A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面DBB 1D 1平行的直线有DA.4条B.6条C.8条D.12条4、棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图1, 则图中三角形(正四面体的截面)的面积是CA.22B.322 3 5、过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°则该截面的面积是AA .π B. 2π C. 3π D. π326、如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题...是B A .等腰四棱锥的腰与底面所成的角都相等B .等腰四棱锥的侧面与底面所成的二面角都相等或互补C .等腰四棱锥的底面四边形必存在外接圆D .等腰四棱锥的各顶点必在同一球面上7、给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行. ③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行.④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线.其中假.命题的个数是D (A)1 (B)2 (C)3 (D)48、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是CA .16πB .20πC .24πD .32π9、过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为A(A )316 (B )916 (C )38 (D )93210、如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6,过A 、B 分别作两平面交线的垂线,垂足为A ′、B ′,则AB ∶A ′B ′=A(A )2∶1 (B )3∶1 (C )3∶2 (D )4∶311、已知平面α外不共线的三点A,B,C 到α的距离都相等,则正确的结论是DA.平面ABC 必平行于αB.平面ABC 必与α相交C.平面ABC 必不垂直于αD.存在△ABC 的一条中位线平行于α或在α内12、若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 A(A )充分非必要条件;(B )必要非充分条件;(C )充要条件;(D )非充分非必要条件13、已知球O 的半径是1,A 、B 、C 三点都在球面上,A 、B 两点和A 、C 两点的球面距离都是4π,B 、C 两点的球面距离是3π,则二面角B OA C --的大小是C (A )4π B )3π (C )2π (D )23π 14、正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是D (A )4π (B )8π (C )12π (D )16π15、对于任意的直线l 与平同α , 在平面a 内必有直线m , 使m 与l C(A)平行 (B )相交 (C)垂直 (D)互为异面直线16、正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与面ACC 1A 1所成角的正弦等于A(A) 4 (B)4 (C) 2 (D) 217、已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于AA B C .2 D 18、设n m l ,,均为直线,其中n m ,在平面α内,则“l ⊥α”是“l m l n ⊥⊥且”的A (A)充分不必要条件 (B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件19、把边长为2的正方形ABCD 沿对角线AC 折成直二面角, 折成直二面角后, 在A ,B ,C ,D 四点所在的球面上, B 与D 两点之间的球面距离为 C (A)22π (B)π (C)2π (D)3π 20、半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为C(A ))33arccos(- (B ))36arccos(- (C ))31arccos(-(D ))41arccos(- 21、棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别 是棱AA ,1DD 的中点,则直线EF 被球O 截得的线段长为DA .2 B .1 C .12+ D 22、正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为H ,则下列命题中错误..的命D A .点H 是1A BD △的垂心 B .AH 垂直平面11CB DC .AH 的延长线经过点1CD .直线AH 和1BB 所成角为4523、四面体ABCD 的外接球球心在CD 上,且2CD =,AB =A B ,间的球面距离是CA .π6B .π3C .2π3D .5π624、在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为DA.3B.22C.32λ D.5525、一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h 1,h 2,h 3,则h 1:h 2:h 3= BA .3:1:1B .3:2:2C .3:2:2D .3:2:326、已知三棱锥S ABC -的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,2AC r =,则球的体积与三棱锥体积之比是DA .πB .2πC .3πD .4π 27、若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成CA .5部分 B.6部分 C.7部分 D.8部分28、设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B OA C --的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是C (A )76π (B )54π (C )43π (D )32π 29、一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是C(A )433 (B)33 (C) 43 (D) 123. 30、已知二面角α-l -β为60 ,动点P 、Q 分别在面α、β内,P 到β3Q 到α的距离为23P 、Q 两点之间距离的最小值为C(A) (B)2 (C) 23 (D)431、在半径为3的球面上有C B A 、、三点,ABC ∠=90°,BC BA =, 球心O 到平面ABC 的距离是223,则C B 、两点的球面距离是B A. 3π B. π C. π34 D.2π 32、正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与P -GAC 体积之比为C (A )1:1 (B) 1:2 (C) 2:1 (D) 3:2 33、如果把地球看成一个球体,则地球上的北纬060纬线长和赤道长的比值为C(A )0.8 (B )0.75 (C )0.5 (D )0.2534、已知二面角l αβ--的大小为050,P 为空间中任意一点,则过点P 且与平面α和平面β所成的角都是025的直线的条数为BA .2B .3C .4D .535、在正四棱柱1111ABCD A B C D -中,顶点1B 到对角线1BD 和到平面11A BCD 的距离分别为h 和d ,则下列命题中正确的是CA .若侧棱的长小于底面的变长,则h d的取值范围为(0,1) B .若侧棱的长小于底面的变长,则h d的取值范围为223()23 C 若侧棱的长大于底面的变长,则h d 的取值范围为23(2)3 D 若侧棱的长大于底面的变长,则h d 的取值范围为23()3+∞二、填空题36、在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .(1/2,1)37、直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。
专题14 立体几何选择题(理科)(解析版)-十年(2014-2023)高考数学真题分项汇编
十年(2014-2023)年高考真题分项汇编立体几何选择题目录题型一:立体几何的机构特征及其直观图...............................................1题型二:简单几何体的表面积和体积.....................................................10题型三:球的有关问题..............................................................................38题型四:线面之间的位置关系与垂直与平行.........................................43题型五:空间角与空间距离 (52)题型一:立体几何的机构特征及其直观图1.(2023年北京卷·第9题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m,10m AB BC AD ===,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD 的夹角的正切值均为145,则该五面体的所有棱长之和为()()A .102mB .112mC .117m D .125m【答案】C解析:如图,过E 做EO ⊥平面ABCD ,垂足为O ,过E 分别做EG BC ⊥,EM AB ⊥,垂足分别为G ,M ,连接,OG OM ,由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为EMO ∠和EGO ∠,所以5tan tan EMO EGO ∠=∠=.因为EO ⊥平面ABCD ,BC ⊂平面ABCD ,所以EO BC ⊥,因为EG BC ⊥,,EO EG ⊂平面EOG ,EO EG E ⋂=,所以BC ⊥平面EOG ,因为OG ⊂平面EOG ,所以BC OG ⊥,.同理:OM BM ⊥,又BM BG ⊥,故四边形OMBG 是矩形,所以由10BC =得5OM =,所以EO =5OG =,所以在直角三角形EOG 中,EG ===在直角三角形EBG 中,5BG OM ==,8EB ===,又因为55255515EF AB =--=--=,所有棱长之和为2252101548117m ⨯+⨯++⨯=.故选:C2.(2023年全国乙卷理科·第3题)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()()A .24B .26C .28D .30【答案】D解析:如图所示,在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D -去掉长方体11ONIC LMHB -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:()()()22242321130⨯⨯+⨯⨯-⨯⨯=.故选:D .3.(2021年高考浙江卷·第4题)某几何体的三视图如图所示,则该几何体的体积是()()A .32B .3CD .【答案】A解析:几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,,下底为,腰长为12=,故1111131222ABCD A B C D V -=⨯+⨯=,故选A .4.(2021年新高考Ⅰ卷·第3题),其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B .C .4D .【答案】B解析:设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=l =,故选B .5.(2021年高考全国甲卷理科·第6题)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()()A .B .C .D .【答案】D解析:由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D6.(2020年高考课标Ⅰ卷理科·第3题)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()()A .514B .512-C .514D .512+【答案】C【解析】如图,设,CD a PE b ==,则PO ==由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得14b a =(负值舍去).故选:C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.7.(2020年高考课标Ⅱ卷理科·第7题)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()()A .EB .FC .GD .H【答案】A解析:根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.(2018年高考数学课标Ⅲ卷(理)·第3题)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体.则咬合时带卯眼的木构件的俯视图可以是()()【答案】A解析:依题意,结合三视图的知识易知,带卯眼的木构件的俯视图可以是A图.9.(2018年高考数学课标卷Ⅰ(理)·第7题)某圆柱的高为2,底面周长为16,其三视图如右圈,圆柱表面上的点M在正视图上的对应点为A.圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.25C.3D.2【答案】B解析:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的22+=B.242510.(2014高考数学课标1理科·第12题)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为()() A.62B.42C.6D.4【答案】C-,【解析】:如图所示,原几何体为三棱锥D ABC其中4,AB BC AC DB DC =====,6DA ==,故最长的棱的长度为6DA =,选C .11.(2014高考数学江西理科·第5题)一几何体的直观图如右图,下列给出的四个俯视图中正确的是()()【答案】B解析:俯视图为几何体在底面上的投影,应为B 中图形.12.(2014高考数学湖北理科·第8题)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为()左(侧)视主(正)视俯视A BC DA .227B .258C .15750D .355113【答案】B解析:由题意可知:L =2πr ,即2πL r =,圆锥体积222211112ππ3332π12π75L V Sh r h h L h L h ⎛⎫==⋅≈ ⎪⎝⎭==,故1212π75≈,25π8≈,故选B .备注:13.(2014高考数学湖北理科·第5题)在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).,给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()()A .①和②B .③和①C .④和③D .④和②【答案】D解析:如图所示A (0,0,2),B (2,2,0),C (1,2,1),D (2,2,2),B ,C ,D 点在面yOz 上的射影分别为B 1,C 1,D 1,它们在一条线上,且C 1为B 1D 1的中点.从前往后看时,看不到棱AC ,正视图中AC 1应为虚线.故正视图应为图④.点A ,D ,C 在面xOy 内的射影分别为O ,B ,C 2,俯视图为△OC 2B ,故选图②.综上选D .14.(2014高考数学福建理科·第2题)某空间几何体的正视图是三角形,则该几何体不可能是()A .圆柱B .圆锥C .四面体D .三棱柱【答案】A解析:圆柱的正视图为矩形,故选:A .15.(2014高考数学北京理科·第7题)在空间直角坐标系Oxyz 中,已知(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,D,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则()A .123S S S ==B .12S S =且31S S ≠C .13S S =且32S S ≠D .23S S =且13S S ≠【答案】D解析:设顶点D 在三个坐标平面xoy 、yoz 、zox 上的正投影分别为1D 、2D 、3D ,则11AD BD ==,2AB =,∴1S =12×2×2=2,2S =2SO CD ⋅=12×2×2=2,33S SO AD =⋅=12×2×2=2.∴选D .16.(2017年高考数学北京理科·第7题)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A .B .C .D .2【答案】B【解析】几何体是四棱锥,如图所示红色图形为三视图还原后的几何体,最长的棱长为正方体的对角线,l ==,故选B .题型二:简单几何体的表面积和体积1.(2023年天津卷·第8题)在三棱锥-P ABC 中,线段PC 上的点M 满足13PM PC =,线段PB 上的点N满足23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A .19B .29C .13D .49【答案】B解析:如图,分别过,M C 作,MM PA CC PA ''⊥⊥,垂足分别为,M C ''.过B 作BB '⊥平面PAC ,垂足为B ',连接PB ',过N 作NN PB ''⊥,垂足为N '.因为BB '⊥平面PAC ,BB '⊂平面PBB ',所以平面PBB '⊥平面PAC .又因为平面PBB ' 平面PAC PB '=,NN PB ''⊥,NN '⊂平面PBB ',所以NN '⊥平面PAC ,且//BB NN ''.在PCC '△中,因为,MM PA CC PA ''⊥⊥,所以//MM CC '',所以13PM MM PC CC '==',在PBB '△中,因为//BB '',所以23PN NN PB BB '==',所以11123231119332PAM P AMN N PAMP ABC B PACPAC PA MM NN S NN V V V V S BB PA CC BB ----⎛⎫'''⋅⋅⋅⋅ ⎪⎝⎭====⎛⎫'''⋅⋅⋅⋅ ⎪⎝⎭.故选:B2.(2023年全国乙卷理科·第8题)已知圆锥POO 为底面圆心,P A .PB 为圆锥的母线,120AOB ∠=︒,若PAB 的面积等于934,则该圆锥的体积为()A .πBC .3πD.【答案】B解析:在AOB 中,120AOB ∠=o ,而OA OB =,取AB 中点C ,连接,OC PC ,有,OC AB PC AB ⊥⊥,如图,30ABO = ∠,,232OC AB BC ===,由PAB ,得1324PC ⨯⨯=,解得332PC =,于是PO ===,所以圆锥的体积2211ππ33V OA PO =⨯⨯=⨯⨯.故选:B3.(2021年新高考全国Ⅱ卷·第5题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A .20+B .C .563D 【答案】D解析:作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高h =,下底面面积116S =,上底面面积24S =,所以该棱台的体积((121116433V h S S =++=⨯++=故选D .4.(2020年高考课标Ⅲ卷理科·第8题)下图为某几何体的三视图,则该几何体的表面积是()()A .B .4+4C .D .【答案】C解析:根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.5.(2020年浙江省高考数学试卷·第5题)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是()()A .73B .143C .3D .6【答案】A解析:由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A6.(2022高考北京卷·第9题)已知正三棱锥P ABC -的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为()A .34πB .πC .2πD .3π【答案】B解析:设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23632BO =⨯⨯=,故PO ==.因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,而三角形ABC 内切圆的圆心为O,半径为32364136⨯⨯=>⨯,故S 的轨迹圆在三角形ABC 内部,故其面积为π故选,B7.(2022年高考全国甲卷数学(理)·第9题)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙()AB.CD.【答案】C【解析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl r S r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2223h l ==,所以22112221453931122393r h l V V r h ππ⨯==甲乙.故选:C .8.(2022年高考全国甲卷数学(理)·第4题)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()()A.8B .12C .16D .20【答案】B【解析】由三视图还原几何体,如图,则该直四棱柱的体积2422122V +=⨯⨯=.故选:B .9.(2022年浙江省高考数学试题·第5题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是()()A .22πB .8πC .22π3D .16π3【答案】C解析:由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =⨯⨯+⨯⨯+⨯⨯⨯+⨯+=3cm .故选:C .10.(2022新高考全国II 卷·第7题)已知正三棱台的高为1,上、下底面边长分别为在同一球面上,则该球的表面积为()A .100πB .128πC .144πD .192π【答案】A解析:设正三棱台上下底面所在圆面的半径12,r r ,所以1233432,2sin 60sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =,2d =,故121d d -=或121d d +=,即1=1+=,解得225R =符合题意,所以球的表面积为24π100πS R ==.故选:A .11.(2022新高考全国I 卷·第8题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤,则该正四棱锥体积的取值范围是()A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C解析:∵球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214(=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l <≤时,0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =时,814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C .12.(2022新高考全国I 卷·第4题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,增加的水量约为 2.65≈)()A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯【答案】C解析:依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =++=⨯⨯⨯+⨯+'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .13.(2022年高考全国乙卷数学(理)·第9题)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B .12C .33D .22【答案】C解析:设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α,则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅=(当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r 又22r h 1+=则21432327O ABCDV r h -=⋅⋅=当且仅当222r h =即h 时等号成立,故选:C14.(2021高考天津·第6题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A .3πB .4πC .9πD .12π【答案】B解析:如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==,所以,1BD =,3AD =,CD AB ⊥ ,则90CAD ACD BCD ACD ∠+∠=∠+∠= ,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CDCD BD=,CD ∴==,因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=.故选:B .15.(2021高考北京·第4题)()()A .33+22B .3+C .32+D .33+2【答案】A解析:根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213311242⨯⨯⨯+⨯=,故选:A .16.(2016高考数学北京理科·第6题)某三棱锥的三视图如图所示,则该三棱锥的体积为()()A .16B .13C .12D .1【答案】A解析:通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高1h =,底面积111122S =⨯⨯=,所以体积1136V Sh ==.17.(2020天津高考·第5题)若棱长为的正方体的顶点都在同一球面上,则该球的表面积为()A .12πB .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .18.(2020北京高考·第4题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().()A .6+B .6+C .12+D .12+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭.故选:D .19.(2019·浙江·第4题)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式=V Sh 柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是()A .158B .162C .182D .324【答案】B【解析】由三视图可知该几何体是棱柱,高为6,底面是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646(33)616222++⨯+⨯⨯=.故选B .20.(2019·上海·第14题)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为()A.1B .2C .4D .8【答案】B【解析】依题意:ππ34123121=⋅⋅⋅=V ,ππ32213122=⋅⋅⋅=V ,选B.【点评】本题主要考查圆锥的体积.21.(2018年高考数学浙江卷·第3题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是()()A .2B .4C .6D .8【答案】C【解析】该几何体的直观图如图所示,该几何体是棱长为2的正方体的34,其体积333264V cm =⨯=22.(2018年高考数学课标Ⅲ卷(理)·第10题)设,,,A B C D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为()A .123B .183C .243D .543【答案】B解析:设ABC △的边长为a ,则21sin 60362ABC S a a =︒=⇒=△,此时ABC △外接圆的半径为11632sin 60232a r =⋅==︒,故球心O 到面ABC 2216122R r -=-=,故点D 到面ABC 的最大距离为26R +=,此时1136333D ABC ABC D ABC V S d --=⋅=⨯=△,故选B .点评:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==,再由勾股定理得到OM ,进而得到结果,属于较难题型.23.(2014高考数学重庆理科·第7题)某几何体的三视图如图所示,则该几何体的表面积为()A .54B .60C .66D .72正视图左视图俯视图5432【答案】B解析:由三视图可知,该几何体是由下方的直三棱柱与上方的四棱锥组成的组合体,其中直三棱柱底面为一个边长为3,4,5的直角三角形,高为2,上方的四棱锥是底面边长是3的正方形,一个侧面与直三棱柱的底面重合。
专题06 立体几何专项高考真题总汇(带答案与解析)
专题06立体几何(解答题)1.【2021·全国高考真题】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)6【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果;(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.【解析】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F =I ,所以BC ⊥平面EFM ,即BC ⊥ME 则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+=从而EF=FM=213AO ∴=AO ⊥Q 平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.2.【2021·浙江高考真题】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.【答案】(1)证明见解析;(2)156.【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠= ,由余弦定理可得DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DMD ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥.(2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD,因为AM =,所以PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(2,0),(0,0,A P D,(0,0,0),1,0)M C -又N 为PC中点,所以31335,,,2222N AN ⎛⎛-=- ⎝⎝ .由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM所成角的正弦值为5||2sin 6||AN n AN n θ⋅===‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.3.【2021·全国高考真题(理)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)见解析;(2)112B D =【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案.【解析】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥,又1BB BF B ⋂=,所以AB ⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-= ,所以BF DE ⊥.(2)设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅===⋅ .当12a =时,2224a a -+取最小值为272,此时cos θ63=.所以()min3sin 3θ==,此时112B D =.【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.4.【2021·全国高考真题(理)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】(12;(2)7014【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【解析】(1)PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+= ,解得22a =,故2BC a ==;(2)设平面PAM 的法向量为()111,,m x y z = ,则2,1,02AM ⎛⎫=- ⎪ ⎪⎝⎭,()AP = ,由111102m AM x y mAP z ⎧⋅=-+=⎪⎨⎪⋅=+=⎩,取1x =,可得)2m = ,设平面PBM 的法向量为()222,,n x y z = ,2,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =- ,由2222202n BM x nBP y z ⎧⋅=-=⎪⎨⎪⋅=-+=⎩ ,取21y =,可得()0,1,1n =r,314cos ,14m n m n m n⋅<>==⋅,所以,70sin ,14m n <>==,因此,二面角A PM B --的正弦值为14.【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标;(2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.5.【2021·北京高考真题】已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --的余弦值为53,求111A M A B 的值.【答案】(1)证明见解析;(2)11112A M AB =.【分析】(1)首先将平面CDE 进行扩展,然后结合所得的平面与直线11BC 的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数λ的值.【解析】(1)如图所示,取11B C 的中点'F ,连结,','DE EF F C ,由于1111ABCD A B C D -为正方体,,'E F 为中点,故'EF CD ,从而,',,E F C D 四点共面,即平面CDE 即平面'CDEF ,据此可得:直线11B C 交平面CDE 于点'F ,当直线与平面相交时只有唯一的交点,故点F 与点'F 重合,即点F 为11B C 中点.(2)以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴正方形,建立空间直角坐标系D xyz -,不妨设正方体的棱长为2,设()11101A MA B λλ=≤≤,则:()()()()2,2,2,0,2,0,1,2,2,1,0,2M C F E λ,从而:()()()2,22,2,1,0,2,0,2,0MC CF FE λ=---==-,设平面MCF 的法向量为:()111,,m x y z =,则:()111112222020m MC x y z m CF x z λ⎧⋅=-+--=⎪⎨⋅=+=⎪⎩,令11z =-可得:12,,11m λ⎛⎫=- ⎪-⎝⎭,设平面CFE 的法向量为:()222,,n x y z =,则:2222020n FE y n CF x z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令11z =-可得:()2,0,1n =-,从而:5,m n m n ⋅===则:,5cos 3m n m n m n ⋅===⨯ ,整理可得:()2114λ-=,故12λ=(32λ=舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得63,,63PO a AO a AB a ===,22PA PB PC a ===.因此222PA PB AB +=,从而PA PB ⊥.又222PA PC AC +=,故PA PC ⊥.所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,,0),(0,0,222E A C P --.所以312(,,0),(0,1,222EC EP =--=- .设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m,即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(3=-m .由(1)知2(0,1,2AP = 是平面PCB 的一个法向量,记AP = n ,则25cos ,|||5⋅==n m n m n m |.所以二面角B PC E --的余弦值为255.【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN .所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM 3连接NP ,则四边形AONP 为平行四边形,故23231(,0)333PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设(,0,0)Q a ,则22123234()(4())33NQ a B a a =----,故21123223210(,,4()|3333B E a a B E =-----=.又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,210||B E B E B E B E ⋅-===⋅ n n |n |所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010.8.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c = ,11(0,,)3C F b c = ,得1EA C F = .因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内.(2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =-- ,1(0,1,2)A E =- ,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n .设2n 为平面1A EF 的法向量,则22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.9.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C ,所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C = 所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.10.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,1222BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥.(Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角.设CD =.由2,DO OC BO BC ====BD OH ==所以sin OH OCH OC ∠==,因此,直线DF 与平面DBC 所成角的正弦值为33.方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-.设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.11.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M = ,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA = 是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =- .设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||6cos ,6|A CA C CA ⋅〈〉==n n n ,于是30sin ,6CA 〈〉= n .所以,二面角1B B E D --的正弦值为306.(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 所成角的正弦值为33.12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A−MA 1−N 的正弦值.【答案】(1)见解析;(2)105.【解析】(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1= DC ,可得B 1C = A 1D ,故ME =ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =- ,1(3,2)A M =--,1(1,0,2)A N =-- ,(0,3,0)MN =-.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取(3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧-=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉==⨯‖m n m n m n ,所以二面角1A MA N --的正弦值为105.【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2)32.【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB = ,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩所以可取m =(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2.【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B−CG−A 的大小.【答案】(1)见解析;(2)30 .【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH以H 为坐标原点,HC的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz,则A (–1,1,0),C (1,0,0),G (2,0),CG =(1,0AC=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩所以可取n =(3,6,).又平面BCGE 的法向量可取为m =(0,1,0),所以3cos ,||||2⋅〈〉==n m n m n m .因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.15.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且13 PFPC=.(1)求证:CD⊥平面PAD;(2)求二面角F–AE–P的余弦值;(3)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.【答案】(1)见解析;(2)33;(3)见解析.【解析】(1)因为PA⊥平面ABCD,所以PA⊥CD.又因为AD⊥CD,所以CD⊥平面PAD.(2)过A作AD的垂线交BC于点M.因为PA⊥平面ABCD,所以PA⊥AM,PA⊥AD.如图建立空间直角坐标系A−xyz,则A(0,0,0),B(2,-1,0),C(2,2,0),D(0,2,0),P(0,0,2).因为E为PD的中点,所以E(0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP==-=.所以1222224,,,,,3333333PF PC AF AP PF⎛⎫⎛⎫==-=+=⎪ ⎪⎝⎭⎝⎭.设平面AEF的法向量为n=(x,y,z),则0,0,AEAF⎧⋅=⎪⎨⋅=⎪⎩nn即0,2240.333y zx y z+=⎧⎪⎨++=⎪⎩令z=1,则1,1y x=-=-.于是=(1,1,1)--n.又因为平面PAD的法向量为p=(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p .由题知,二面角F −AE −P为锐角,所以其余弦值为3.(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭.由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++= n .所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.16.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87.【解析】依题意,可以建立以A 为原点,分别以AB AD AE,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB = 是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49.(3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m .由题意,有224||1cos ,||||3432h h -⋅〈〉==+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF的长为8 7.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E 3EG 3由于O 为A 1G 的中点,故11522A G EO OG ===,所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,),B,1,0),1B,33,,22F ,C (0,2,0).因此,33(,,22EF =,(BC = .由0EF BC ⋅=得EF BC ⊥.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(10)=(02BC A C -,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n,得0y y ⎧+=⎪⎨=⎪⎩,取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35.【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。
高考数学立体几何选择题
高考数学立体几何选择题1. 题目:一个正方体的对角线长为6,求正方体的边长。
选项:A. 2 B. 3 C. 4 D. 52. 题目:一个圆柱的底面半径为3,高为4,求圆柱的侧面积。
选项:A. 12π B. 24π C. 36π D. 48π3. 题目:一个圆锥的底面半径为4,高为5,求圆锥的侧面积。
选项:A. 2π B. 4π C. 6π D. 8π4. 题目:一个长方体的长、宽、高分别为4、3、2,求长方体的对角线长度。
选项:A. 5 B. 6 C. 7 D. 85. 题目:一个球的直径为10,求球的表面积。
选项:A. 314 B. 628 C. 1256 D. 25126. 题目:一个正四面体的棱长为3,求正四面体的外接球半径。
选项:A. 1 B. 2 C. 3 D. 47. 题目:一个圆台的上下底面半径分别为3和2,高为4,求圆台的侧面积。
选项:A. 2π B. 4π C. 6π D. 8π8. 题目:一个正方体的对角线长为8,求正方体的体积。
选项:A. 64 B. 125 C. 216 D. 3439. 题目:一个圆柱的底面半径为5,高为6,求圆柱的体积。
选项:A. 9π B. 18π C. 27π D. 36π10. 题目:一个圆锥的底面半径为4,高为5,求圆锥的体积。
选项:A. π B. 2π C. 4π D. 8π11. 题目:一个长方体的长、宽、高分别为3、2、1,求长方体的体积。
选项:A. 6 B. 12 C. 18 D. 2412. 题目:一个球的直径为12,求球的体积。
选项:A. 4π B. 16π C. 64π D. 125π13. 题目:一个正四面体的棱长为4,求正四面体的体积。
选项:A. 2 B. 4 C. 8 D. 1614. 题目:一个圆台的上下底面半径分别为5和3,高为4,求圆台的体积。
选项:A. π B. 2π C. 4π D. 8π15. 题目:一个正方体的对角线长为10,求正方体的表面积。
高考数学立体几何选择题
高考数学立体几何选择题1. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 立方体2. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体3. 下列哪个图形是圆柱体?A. 圆锥体B. 球体C. 圆柱体D. 立方体4. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 立方体5. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体6. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体7. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体8. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体9. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体10. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体11. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体12. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体13. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体14. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体15. 下列哪个图形是长方体?A. 圆柱体C. 球体D. 长方体16. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体17. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体18. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体19. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体20. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体21. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体22. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体23. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体24. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体25. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体26. 下列哪个图形是正方体?A. 圆柱体C. 球体D. 正方体27. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体28. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体29. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体30. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体31. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体32. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体33. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体34. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体35. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体36. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体37. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体38. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体39. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体40. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体41. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体42. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体43. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体44. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体45. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体46. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体47. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体48. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体49. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体50. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体。
2018-2021年高考真题 立体几何 解答题全集 (学生版+解析版)
2018-2021年高考真题立体几何解答题全集(学生版+解析版)1.(2021•天津)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD 的中点.(1)求证:D1F∥平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值;(3)求二面角A﹣A1C1﹣E的正弦值.2.(2021•新高考Ⅱ)在四棱锥Q﹣ABCD中,底面ABCD是正方形,若AD=2,QD=QA=√5,QC=3.(Ⅰ)求证:平面QAD⊥平面ABCD;(Ⅱ)求二面角B﹣QD﹣A的平面角的余弦值.3.(2021•上海)如图,在长方体ABCD﹣A1B1C1D1中,已知AB=BC=2,AA1=3.(1)若P是棱A1D1上的动点,求三棱锥C﹣P AD的体积;(2)求直线AB1与平面ACC1A1的夹角大小.4.(2021•北京)已知正方体ABCD ﹣A 1B 1C 1D 1,点E 为A 1D 1中点,直线B 1C 1交平面CDE于点F .(1)求证:点F 为B 1C 1中点;(2)若点M 为棱A 1B 1上一点,且二面角M ﹣CF ﹣E 的余弦值为√53,求A 1M A 1B 1.5.(2021•甲卷)已知直三棱柱ABC ﹣A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,BF ⊥A 1B 1.(1)求三棱锥F ﹣EBC 的体积;(2)已知D 为棱A 1B 1上的点,证明:BF ⊥DE .6.(2021•乙卷)如图,四棱锥P ﹣ABCD 的底面是矩形,PD ⊥底面ABCD ,PD =DC =1,M 为BC 中点,且PB ⊥AM .(1)求BC ;(2)求二面角A ﹣PM ﹣B 的正弦值.7.(2021•浙江)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,P A=√15,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(Ⅰ)证明:AB⊥PM;(Ⅱ)求直线AN与平面PDM所成角的正弦值.8.(2021•甲卷)已知直三棱柱ABC﹣A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?9.(2021•乙卷)如图,四棱锥P﹣ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面P AM⊥平面PBD;(2)若PD=DC=1,求四棱锥P﹣ABCD的体积.10.(2021•新高考Ⅰ)如图,在三棱锥A﹣BCD中,平面ABD⊥平面BCD,AB=AD,O 为BD的中点.(1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E﹣BC﹣D的大小为45°,求三棱锥A﹣BCD的体积.11.(2021•上海)四棱锥P﹣ABCD,底面为正方形ABCD,边长为4,E为AB中点,PE⊥平面ABCD.(1)若△P AB为等边三角形,求四棱锥P﹣ABCD的体积;(2)若CD的中点为F,PF与平面ABCD所成角为45°,求PC与AD所成角的大小.12.(2020•海南)如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD 与平面PBC的交线为l.(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =√2,求PB 与平面QCD 所成角的正弦值.13.(2020•天津)如图,在三棱柱ABC ﹣A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC=2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(Ⅰ)求证:C 1M ⊥B 1D ;(Ⅱ)求二面角B ﹣B 1E ﹣D 的正弦值;(Ⅲ)求直线AB 与平面DB 1E 所成角的正弦值.14.(2020•上海)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转π2至ABC 1D 1,求线段CD 1与平面ABCD 所成的角.15.(2020•北京)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 为BB 1的中点.(Ⅰ)求证:BC1∥平面AD1E;(Ⅱ)求直线AA1与平面AD1E所成角的正弦值.16.(2020•山东)如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD 与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.17.(2020•江苏)在三棱锥A﹣BCD中,已知CB=CD=√5,BD=2,O为BD的中点,AO ⊥平面BCD,AO=2,E为AC中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F﹣DE﹣C的大小为θ,求sinθ的值.18.(2020•浙江)如图,在三棱台ABC﹣DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC=2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求直线DF与平面DBC所成角的正弦值.19.(2020•江苏)在三棱柱ABC﹣A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.20.(2020•新课标Ⅲ)如图,在长方体ABCD﹣A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.证明:(1)当AB=BC时,EF⊥AC;(2)点C1在平面AEF内.21.(2020•新课标Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=√66DO.(1)证明:P A⊥平面PBC;(2)求二面角B﹣PC﹣E的余弦值.22.(2020•新课标Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面P AB⊥平面P AC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P﹣ABC的体积.23.(2020•新课标Ⅱ)如图,已知三棱柱ABC﹣A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO=AB=6,AO∥平面EB1C1F,且∠MPN=π3,求四棱锥B﹣EB1C1F的体积.24.(2020•新课标Ⅲ)如图,在长方体ABCD﹣A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.(1)证明:点C1在平面AEF内;(2)若AB=2,AD=1,AA1=3,求二面角A﹣EF﹣A1的正弦值.25.(2020•新课标Ⅱ)如图,已知三棱柱ABC﹣A1B1C1的底面是正三角形,侧面BB1C1C 是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.26.(2020•上海)已知四棱锥P ﹣ABCD ,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD .(1)若PC =5,求四棱锥P ﹣ABCD 的体积;(2)若直线AD 与BP 的夹角为60°,求PD 的长.27.(2019•天津)如图,AE ⊥平面ABCD ,CF ∥AE ,AD ∥BC ,AD ⊥AB ,AB =AD =1,AE=BC =2.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E ﹣BD ﹣F 的余弦值为13,求线段CF 的长.28.(2019•上海)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,M 为BB 1上一点,已知BM =2,CD =3,AD =4,AA 1=5.(1)求直线A 1C 和平面ABCD 的夹角;(2)求点A 到平面A 1MC 的距离.29.(2019•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B﹣EC﹣C1的正弦值.30.(2019•新课标Ⅲ)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.31.(2019•新课标Ⅲ)图1是由矩形ADEB、Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B﹣CG﹣A的大小.32.(2019•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面P AC⊥平面PCD,P A⊥CD,CD=2,AD=3.(Ⅰ)设G,H分别为PB,AC的中点,求证:GH∥平面P AD;(Ⅱ)求证:P A⊥平面PCD;(Ⅲ)求直线AD与平面P AC所成角的正弦值.33.(2019•新课标Ⅰ)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.34.(2019•浙江)如图,已知三棱柱ABC﹣A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(Ⅰ)证明:EF⊥BC;(Ⅱ)求直线EF与平面A1BC所成角的余弦值.35.(2019•江苏)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB =BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.36.(2019•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE =A 1E ,AB =3,求四棱锥E ﹣BB 1C 1C 的体积.37.(2019•北京)如图,在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,底面ABCD 为菱形,E为CD 的中点.(Ⅰ)求证:BD ⊥平面P AC ;(Ⅱ)若∠ABC =60°,求证:平面P AB ⊥平面P AE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面P AE ?说明理由.38.(2019•北京)如图,在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,P A=AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且PF PC =13. (Ⅰ)求证:CD ⊥平面P AD ;(Ⅱ)求二面角F ﹣AE ﹣P 的余弦值;(Ⅲ)设点G 在PB 上,且PG PB =23.判断直线AG 是否在平面AEF 内,说明理由.39.(2019•新课标Ⅰ)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.40.(2019•上海)如图,在正三棱锥P﹣ABC中,PA=PB=PC=2,AB=BC=AC=√3.(1)若PB的中点为M,BC的中点为N,求AC与MN的夹角;(2)求P﹣ABC的体积.41.(2018•江苏)如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.42.(2018•北京)如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=√5,AC=AA1=2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B﹣CD﹣C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.43.(2018•江苏)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.44.(2018•天津)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2√3,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.45.(2018•新课标Ⅱ)如图,在三棱锥P﹣ABC中,AB=BC=2√2,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.46.(2018•天津)如图,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG 且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(Ⅰ)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(Ⅱ)求二面角E﹣BC﹣F的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.47.(2018•浙江)如图,已知多面体ABC﹣A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.48.(2018•上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.49.(2018•新课标Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.̂所在平面垂直,M是CD̂上异50.(2018•新课标Ⅲ)如图,矩形ABCD所在平面与半圆弧CD于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.51.(2018•北京)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.52.(2018•新课标Ⅰ)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q﹣ABP的体积.53.(2018•新课标Ⅱ)如图,在三棱锥P﹣ABC中,AB=BC=2√2,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣P A﹣C为30°,求PC与平面P AM所成角的正弦值.̂所在平面垂54.(2018•新课标Ⅲ)如图,边长为2的正方形ABCD所在的平面与半圆弧CD̂上异于C,D的点.直,M是CD(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.2018-2021年高考真题 立体几何 解答题全集 (学生版+解析版)参考答案与试题解析1.(2021•天津)如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别为棱BC ,CD的中点.(1)求证:D 1F ∥平面A 1EC 1;(2)求直线AC 1与平面A 1EC 1所成角的正弦值;(3)求二面角A ﹣A 1C 1﹣E 的正弦值.【解答】(1)证明:以点A 为坐标原点,建立空间直角坐标系如图所示,则A 1(0,0,2),E (2,1,0),C 1(2,2,2),故A 1C 1→=(2,2,0),EC 1→=(0,1,2),设平面A 1EC 1的法向量为n →=(x ,y ,z),则{n →⋅A 1C 1→=0n →⋅EC 1→=0,即{x +y =0y +2z =0, 令z =1,则x =2,y =﹣2,故n →=(2,−2,1),又F (1,2,0),D 1(0,2,2),所以FD 1→=(−1,0,2),则n →⋅FD 1→=0,又D 1F ⊄平面A 1EC ,故D 1F ∥平面A 1EC 1;(2)解:由(1)可知,AC 1→=(2,2,2),则|cos <n →,AC 1→>|=|n →⋅AC 1→||n →||AC 1→|=23×2√3=√39,故直线AC 1与平面A 1EC 1所成角的正弦值为√39; (3)解:由(1)可知,AA 1→=(0,0,2),设平面AA 1C 1的法向量为m →=(a ,b ,c),则{m →⋅AA 1→=0m →⋅A 1C 1→=0,即{c =0a +b =0, 令a =1,则b =﹣1,故m →=(1,−1,0),所以|cos <m →,n →>|=|m →⋅n →||m →||n →|=43×√2=2√23, 故二面角A ﹣A 1C 1﹣E 的正弦值为1−(2√23)2=13.2.(2021•新高考Ⅱ)在四棱锥Q ﹣ABCD 中,底面ABCD 是正方形,若AD =2,QD =QA =√5,QC =3.(Ⅰ)求证:平面QAD ⊥平面ABCD ;(Ⅱ)求二面角B ﹣QD ﹣A 的平面角的余弦值.【解答】(Ⅰ)证明:△QCD 中,CD =AD =2,QD =√5,QC =3,所以CD 2+QD 2=QC 2,所以CD ⊥QD ;又CD ⊥AD ,AD ∩QD =D ,AD ⊂平面QAD ,QD ⊂平面QAD ,所以CD ⊥平面QAD ; 又CD ⊂平面ABCD ,所以平面QAD ⊥平面ABCD .(Ⅱ)解:取AD 的中点O ,在平面ABCD 内作Ox ⊥AD ,以OD 为y 轴,OQ 为z 轴,建立空间直角坐标系O ﹣xyz ,如图所示:则O (0,0,0),B (2,﹣1,0),D (0,1,0),Q (0,0,2),因为Ox ⊥平面ADQ ,所以平面ADQ 的一个法向量为α→=(1,0,0),设平面BDQ 的一个法向量为β→=(x ,y ,z ),由BD →=(﹣2,2,0),DQ →=(0,﹣1,2),得{β→⋅BD →=0β→⋅DQ →=0,即{−2x +2y =0−y +2z =0, 令z =1,得y =2,x =2,所以β→=(2,2,1);所以cos <α→,β→>=α→⋅β→|α→|⋅|β→|=2+0+01×√4+4+1=23, 所以二面角B ﹣QD ﹣A 的平面角的余弦值为23.3.(2021•上海)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,已知AB =BC =2,AA 1=3.(1)若P 是棱A 1D 1上的动点,求三棱锥C ﹣P AD 的体积;(2)求直线AB 1与平面ACC 1A 1的夹角大小.【解答】解:(1)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,V C−PAD =13S △PAD ⋅ℎC−平面PAD =13×(12×2×3)×2=2; (2)连接A 1C 1∩B 1D 1=O ,∵AB =BC ,∴四边形A 1B 1C 1D 1为正方形,则OB 1⊥OA 1,又AA 1⊥OB 1,OA 1∩AA 1=A 1,∴OB 1⊥平面ACC 1A 1,∴直线AB 1与平面ACC 1A 1所成的角为∠OAB 1,∴sin ∠OAB 1=OB 1AB 1=√22+222√2+3=√2613.∴直线AB 1与平面ACC 1A 1所成的角为arcsin √2613.4.(2021•北京)已知正方体ABCD ﹣A 1B 1C 1D 1,点E 为A 1D 1中点,直线B 1C 1交平面CDE于点F .(1)求证:点F 为B 1C 1中点;(2)若点M 为棱A 1B 1上一点,且二面角M ﹣CF ﹣E 的余弦值为√53,求A 1M A 1B 1.【解答】(1)证明:连结DE ,在正方体ABCD ﹣A 1B 1C 1D 1中,CD ∥C 1D 1,C 1D 1⊂平面A 1B 1C 1D 1,CD ⊄平面A 1B 1C 1D 1, 则CD ∥平面A 1B 1C 1D 1,因为平面A 1B 1C 1D 1∩平面CDEF =EF ,所以CD ∥EF ,则EF ∥C 1D 1,故A 1B 1∥EF ∥C 1D 1,又因为A 1D 1∥B 1C 1,所以四边形A 1B 1FE 为平行四边形,四边形EFC 1D 1为平行四边形,所以A 1E =B 1F ,ED 1=FC 1,而点E 为A 1D 1的中点,所以A 1E =ED 1,故B 1F =FC 1,则点F 为B 1C 1的中点;(2)解:以点B 1为原点,建立空间直角坐标系,如图所示,设正方体边长为2,设点M (m ,0,0),且m <0,则C (0,2,﹣2),E (﹣2,1,0),F (0,1,0),故FE →=(−2,0,0),FC →=(0,1,−2),FM →=(m ,−1,0),设平面CMF 的法向量为m →=(a ,b ,1),则{m →⋅FM →=0m →⋅FC →=0,即{ma −b =0b −2=0, 所以a =2m ,b =2,故m →=(2m,2,1), 设平面CDEF 的法向量为n →=(x ,y ,1),则{n →⋅FE →=0n →⋅FC →=0,即{−2x =0y −2=0, 所以x =0,y =2,故n →=(0,2,1),因为二面角M ﹣CF ﹣E 的余弦值为√53,则|cos <m →,n →>|=|m →⋅n →||m →||n →|=√4m 2+4+1×√2+1=√53,解得m =±1,又m <0,所以m =﹣1,故A 1MA 1B 1=12.5.(2021•甲卷)已知直三棱柱ABC ﹣A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,BF ⊥A 1B 1.(1)求三棱锥F ﹣EBC 的体积;(2)已知D 为棱A 1B 1上的点,证明:BF ⊥DE .【解答】解:(1)在直三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥A 1B 1,又BF ⊥A 1B 1,BB 1∩BF =B ,BB 1,BF ⊂平面BCC 1B 1,∴A 1B 1⊥平面BCC 1B 1,∵AB ∥A 1B 1,∴AB⊥平面BCC1B1,∴AB⊥BC,又AB=BC,故AC=√22+22=2√2,∴CE=√2=BE,而侧面AA1B1B为正方形,∴CF=12CC1=12AB=1,∴V=13S△EBC⋅CF=13×12×√2×√2×1=13,即三棱锥F﹣EBC的体积为13;(2)证明:如图,取BC中点G,连接EG,B1G,设B1G∩BF=H,∵点E是AC的中点,点G时BC的中点,∴EG∥AB,∴EG∥AB∥B1D,∴E、G、B1、D四点共面,由(1)可得AB⊥平面BCC1B1,∴EG⊥平面BCC1B1,∴BF⊥EG,∵tan∠CBF=CFBC=12,tan∠BB1G=BGBB1=12,且这两个角都是锐角,∴∠CBF=∠BB1G,∴∠BHB1=∠BGB1+∠CBF=∠BGB1+∠BB1G=90°,∴BF⊥B1G,又EG∩B1G=G,EG,B1G⊂平面EGB1D,∴BF⊥平面EGB1D,又DE⊂平面EGB1D,∴BF⊥DE.6.(2021•乙卷)如图,四棱锥P ﹣ABCD 的底面是矩形,PD ⊥底面ABCD ,PD =DC =1,M 为BC 中点,且PB ⊥AM .(1)求BC ;(2)求二面角A ﹣PM ﹣B 的正弦值.【解答】解:(1)连结BD ,因为PD ⊥底面ABCD ,且AM ⊂平面ABCD ,则AM ⊥PD ,又AM ⊥PB ,PB ∩PD =P ,PB ,PD ⊂平面PBD ,所以AM ⊥平面PBD ,又BD ⊂平面PBD ,则AM ⊥BD ,所以∠ABD +∠ADB =90°,又∠ABD +∠MAB =90°,则有∠ADB =∠MAB ,所以Rt △DAB ∽Rt △ABM ,则AD AB =BA BM ,所以12BC 2=1,解得BC =√2; (2)因为DA ,DC ,DP 两两垂直,故以点D 位坐标原点建立空间直角坐标系如图所示, 则A(√2,0,0),B(√2,1,0),M(√22,1,0),P (0,0,1),所以AP →=(−√2,0,1),AM →=(−√22,1,0),BM →=(−√22,0,0),BP →=(−√2,−1,1),设平面AMP 的法向量为n →=(x ,y ,z),则有{n →⋅AP →=0n →⋅AM →=0,即{−√2x +z =0−√22x +y =0, 令x =√2,则y =1,z =2,故n →=(√2,1,2),设平面BMP 的法向量为m →=(p ,q ,r),则有{m →⋅BM →=0m →⋅BP →=0,即{−√22p =0−√2p −q +r =0,令q =1,则r =1,故m →=(0,1,1),所以|cos <n →,m →>|=|n →⋅m →||n →||m →|=3√7×√2=3√1414, 设二面角A ﹣PM ﹣B 的平面角为α,则sin α=√1−cos 2α=√1−cos 2<n →,m →>=1−(3√1414)2=√7014, 所以二面角A ﹣PM ﹣B 的正弦值为√7014.7.(2021•浙江)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,∠ABC =120°,AB =1,BC =4,P A =√15,M ,N 分别为BC ,PC 的中点,PD ⊥DC ,PM ⊥MD . (Ⅰ)证明:AB ⊥PM ;(Ⅱ)求直线AN 与平面PDM 所成角的正弦值.【解答】(Ⅰ)证明:在平行四边形ABCD 中,由已知可得,CD =AB =1, CM =12BC =2,∠DCM =60°,∴由余弦定理可得,DM 2=CD 2+CM 2﹣2CD ×CM ×cos60°=1+4−2×1×2×12=3, 则CD 2+DM 2=1+3=4=CM 2,即CD ⊥DM ,又PD ⊥DC ,PD ∩DM =D ,∴CD ⊥平面PDM ,而PM ⊂平面PDM ,∴CD ⊥PM ,∵CD ∥AB ,∴AB ⊥PM ;(Ⅱ)解:由(Ⅰ)知,CD ⊥平面PDM ,又CD ⊂平面ABCD ,∴平面ABCD ⊥平面PDM ,且平面ABCD ∩平面PDM =DM ,∵PM ⊥MD ,且PM ⊂平面PDM ,∴PM ⊥平面ABCD ,连接AM ,则PM ⊥MA ,在△ABM 中,AB =1,BM =2,∠ABM =120°,可得AM 2=1+4−2×1×2×(−12)=7,又P A =√15,在Rt △PMA 中,求得PM =√PA 2−MA 2=2√2,取AD 中点E ,连接ME ,则ME ∥CD ,可得ME 、MD 、MP 两两互相垂直, 以M 为坐标原点,分别以MD 、ME 、MP 为x 、y 、z 轴建立空间直角坐标系, 则A (−√3,2,0),P (0,0,2√2),C (√3,−1,0),又N 为PC 的中点,∴N (√32,−12,√2),AN →=(3√32,−52,√2), 平面PDM 的一个法向量为n →=(0,1,0),设直线AN 与平面PDM 所成角为θ,则sin θ=|cos <AN →,n →>|=|AN →⋅n →||AN →|⋅|n →|=52√274+254+2×1=√156.故直线AN 与平面PDM 所成角的正弦值为√156.8.(2021•甲卷)已知直三棱柱ABC ﹣A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF ⊥DE ;(2)当B 1D 为何值时,面BB 1C 1C 与面DFE 所成的二面角的正弦值最小?【解答】(1)证明:连接AF ,∵E ,F 分别为直三棱柱ABC ﹣A 1B 1C 1的棱AC 和CC 1的中点,且AB =BC =2,∴CF =1,BF =√5,∵BF ⊥A 1B 1,AB ∥A 1B 1,∴BF ⊥AB∴AF =√AB 2+BF 2=√22+(√5)2=3,AC =√AF 2−CF 2=√32−12=2√2,∴AC 2=AB 2+BC 2,即BA ⊥BC ,故以B 为原点,BA ,BC ,BB 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (2,0,0),B (0,0,0),C (0,2,0),E (1,1,0),F (0,2,1),设B 1D =m ,则D (m ,0,2),∴BF →=(0,2,1),DE →=(1﹣m ,1,﹣2),∴BF →•DE →=0,即BF ⊥DE .(2)解:∵AB ⊥平面BB 1C 1C ,∴平面BB 1C 1C 的一个法向量为p →=(1,0,0), 由(1)知,DE →=(1﹣m ,1,﹣2),EF →=(﹣1,1,1),设平面DEF 的法向量为n →=(x ,y ,z ),则{n →⋅DE →=0n →⋅EF →=0,即{(1−m)x +y −2z =0−x +y +z =0, 令x =3,则y =m +1,z =2﹣m ,∴n →=(3,m +1,2﹣m ),∴cos <p →,n →>=p →⋅n →|p →|⋅|n →|=31×√9+(m+1)2+(2−m)2=3√2m −2m+14=3√2(m−12)2+272, ∴当m =12时,面BB 1C 1C 与面DFE 所成的二面角的余弦值最大,此时正弦值最小,故当B 1D =12时,面BB 1C 1C 与面DFE 所成的二面角的正弦值最小.9.(2021•乙卷)如图,四棱锥P ﹣ABCD 的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB ⊥AM .(1)证明:平面P AM ⊥平面PBD ;(2)若PD =DC =1,求四棱锥P ﹣ABCD 的体积.【解答】(1)证明:∵PD⊥底面ABCD,AM⊂平面ABCD,∴PD⊥AM,又∵PB⊥AM,PD∩PB=P,PB,PD⊂平面PBD.∴AM⊥平面PBD.∵AM⊂平面P AM,∴平面P AM⊥平面PBD;(2)解:由PD⊥底面ABCD,∴PD即为四棱锥P﹣ABCD的高,△DPB是直角三角形;∵ABCD底面是矩形,PD=DC=1,M为BC的中点,且PB⊥AM.设AD=BC=2a,取CP的中点为F.作EF⊥CD交于E,连接MF,AF,AE,可得MF∥PB,EF∥DP,那么AM⊥MF.且EF=12.AE=√AD2+ED2=√14+4a2,AM=√AB2+BM2=√a2+1,AF=√EF2+AE2.∵△DPB是直角三角形,∴根据勾股定理:BP=√2+4a2,则MF=√2+4a22;由△AMF是直角三角形,可得AM2+MF2=AF2,解得a=√2 2.底面ABCD的面积S=√2,则四棱锥P﹣ABCD的体积V=1⋅ℎ⋅S=1×1×√2=√2.10.(2021•新高考Ⅰ)如图,在三棱锥A﹣BCD中,平面ABD⊥平面BCD,AB=AD,O 为BD的中点.(1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E﹣BC﹣D的大小为45°,求三棱锥A﹣BCD的体积.【解答】解:(1)证明:因为AB=AD,O为BD的中点,所以AO⊥BD,又平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,所以AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD;(2)方法一:取OD的中点F,因为△OCD为正三角形,所以CF⊥OD,过O作OM∥CF与BC交于点M,则OM⊥OD,所以OM,OD,OA两两垂直,以点O为坐标原点,分别以OM,OD,OA为x轴,y轴,z轴建立空间直角坐标系如图所示,则B(0,﹣1,0),C(√32,12,0),D(0,1,0),设A(0,0,t),则E(0,13,2t3),因为OA ⊥平面BCD ,故平面BCD 的一个法向量为OA →=(0,0,t),设平面BCE 的法向量为n →=(x ,y ,z),又BC →=(√32,32,0),BE →=(0,43,2t 3), 所以由{n →⋅BC →=0n →⋅BE →=0,得{√32x +32y =043y +2t 3z =0, 令x =√3,则y =﹣1,z =2t ,故n →=(√3,−1,2t ),因为二面角E ﹣BC ﹣D 的大小为45°,所以|cos <n →,OA →>|=|n →⋅OA →||n →||OA →|=t √4+4t 2=√22, 解得t =1,所以OA =1,又S △OCD =12×1×1×√32=√34,所以S △BCD =√32, 故V A−BCD =13⋅S △BCD ⋅OA =13×√32×1=√36.方法二:过E 作EF ⊥BD ,交BD 于点F ,过F 作FG ⊥BC 于点G ,连结EG ,由题意可知,EF ∥AO ,又AO ⊥平面BCD所以EF ⊥平面BCD ,又BC ⊂平面BCD ,所以EF ⊥BC ,又BC ⊥FG ,FG ∩EF =F所以BC ⊥平面EFG ,又EF ⊂平面EFG ,所以BC ⊥EG ,则∠EGF 为二面角E ﹣BC ﹣D 的平面角,即∠EGF =45°,又CD =DO =OB =OC =1,所以∠BOC =120°,则∠OCB =∠OBC =30°,故∠BCD =90°, 所以FG ∥CD ,因为DE AD =DF OD =EF AO =23, 则AO =32EF ,OF =13,DF =23,所以BFBD =GFCD,则GF=1+132=23,所以EF=GF=23,则AO=32EF=1,所以V A−BCD=13S△BCD⋅AO=13×12×√3×1×1=√36.11.(2021•上海)四棱锥P﹣ABCD,底面为正方形ABCD,边长为4,E为AB中点,PE⊥平面ABCD.(1)若△P AB为等边三角形,求四棱锥P﹣ABCD的体积;(2)若CD的中点为F,PF与平面ABCD所成角为45°,求PC与AD所成角的大小.【解答】解:(1)∵△P AB为等边三角形,且E为AB中点,AB=4,∴PE=2√3,又PE⊥平面ABCD,∴四棱锥P﹣ABCD的体积V=13PE•S正方形ABCD=13×2√3×42=32√33.(2)∵PE⊥平面ABCD,∴∠PFE 为PF 与平面ABCD 所成角为45°,即∠PFE =45°,∴△PEF 为等腰直角三角形,∵E ,F 分别为AB ,CD 的中点,∴PE =FE =4,∴PB =√PE 2+BE 2=2√5,∵AD ∥BC ,∴∠PCB 或其补角即为PC 与AD 所成角,∵PE ⊥平面ABCD ,∴PE ⊥BC ,又BC ⊥AB ,PE ∩AB =E ,PE 、AB ⊂平面P AB ,∴BC ⊥平面P AB ,∴BC ⊥PB ,在Rt △PBC 中,tan ∠PCB =PB BC =2√54=√52, 故PC 与AD 所成角的大小为arctan√52. 12.(2020•海南)如图,四棱锥P ﹣ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =√2,求PB 与平面QCD 所成角的正弦值.【解答】(1)证明:过P 在平面P AD 内作直线l ∥AD ,由AD ∥BC ,可得l ∥BC ,即l 为平面P AD 和平面PBC 的交线,∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC ,又BC ⊥CD ,CD ∩PD =D ,∴BC ⊥平面PCD ,∵l ∥BC ,∴l ⊥平面PCD ;(2)解:如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D ﹣xyz ,∵PD =AD =1,Q 为l 上的点,QB =√2,∴PB =√3,QP =1,则D (0,0,0),A (1,0,0),C (0,1,0),P (0,0,1),B (1,1,0),作PQ ∥AD ,则PQ 为平面P AD 与平面PBC 的交线为l ,因为QB =√2,△QAB 是等腰直角三角形,所以Q (1,0,1),则DQ →=(1,0,1),PB →=(1,1,﹣1),DC →=(0,1,0),设平面QCD 的法向量为 n →=(a ,b ,c ),则{n →⋅DC →=0n →⋅DQ →=0,∴{b =0a +c =0,取c =1,可得n →=(﹣1,0,1), ∴cos <n →,PB →>=n →⋅PB →|n →||PB →|=√3⋅√2=√63, ∴PB 与平面QCD 所成角的正弦值为√63. 13.(2020•天津)如图,在三棱柱ABC ﹣A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC=2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(Ⅰ)求证:C 1M ⊥B 1D ;(Ⅱ)求二面角B ﹣B 1E ﹣D 的正弦值;(Ⅲ)求直线AB 与平面DB 1E 所成角的正弦值.【解答】解:以C 为原点,CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图所示,则C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3),(Ⅰ)证明:依题意,C 1M →=(1,1,0),B 1D →=(2,﹣2,﹣2),∴C 1M →•B 1D →=2﹣2+0=0,∴C 1M ⊥B 1D ;(Ⅱ)依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,﹣1),设n →=(x ,y ,z )为平面DB 1E 的法向量,则{n →⋅EB 1→=0n →⋅ED →=0,即{2y +z =02x −z =0,不妨设x =1,则n →=(1,﹣1,2), ∴cos <CA →,n →>=CA →⋅n →|CA →|⋅|n →|=√66, ∴sin <CA →,n →>=√1−16=√306,∴二面角B ﹣B 1E ﹣D 的正弦值√306; (Ⅲ)依题意,AB →=(﹣2,2,0),由(Ⅱ)知,n →=(1,﹣1,2)为平面DB 1E 的一个法向量,∴cos <AB →,n →>=AB →⋅n →|AB →|⋅|n →|=−√33,∴直线AB 与平面DB 1E 所成角的正弦值为√33. 14.(2020•上海)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转π2至ABC 1D 1,求线段CD 1与平面ABCD 所成的角.【解答】解:(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,∴S =2×π×12+2π×1=4π.故该圆柱的表面积为4π.(2)∵正方形ABC 1D 1,∴AD 1⊥AB ,又∠DAD 1=π2,∴AD 1⊥AD ,∵AD ∩AB =A ,且AD 、AB ⊂平面ADB ,∴AD 1⊥平面ADB ,即D 1在面ADB 上的投影为A ,连接CD 1,则∠D 1CA 即为线段CD 1与平面ABCD 所成的角,而cos ∠D 1CA =AC CD 1=√2√3=√63, ∴线段CD 1与平面ABCD 所成的角为arccos √63. 15.(2020•北京)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 为BB 1的中点.(Ⅰ)求证:BC 1∥平面AD 1E ;(Ⅱ)求直线AA 1与平面AD 1E 所成角的正弦值.【解答】解:(Ⅰ)由正方体的性质可知,AB ∥C 1D 1中,且AB =C 1D 1, ∴四边形ABC 1D 1是平行四边形,∴BC 1∥AD 1,又BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E ,∴BC 1∥平面AD 1E .(Ⅱ)解法一:以A 为原点,AD 、AB 、AA 1分别为x 、y 和z 轴建立如图所示的空间直角坐标系,设正方体的棱长为a ,则A (0,0,0),A 1(0,0,a ),D 1(a ,0,a ),E (0,a ,12a ),∴AA 1→=(0,0,a),AD 1→=(a ,0,a),AE →=(0,a ,12a),设平面AD 1E 的法向量为m →=(x ,y ,z),则{m →⋅AD 1→=0m →⋅AE →=0,即{a(x +z)=0a(y +12z)=0, 令z =2,则x =﹣2,y =﹣1,∴m →=(﹣2,﹣1,2), 设直线AA 1与平面AD 1E 所成角为θ,则sin θ=|cos <m →,AA 1→>|=|m →⋅AA 1→|m →|⋅|AA 1|→|=2a a⋅3=23,故直线AA 1与平面AD 1E 所成角的正弦值为23.解法二:设正方体的棱长为2a ,则AD 1=2√2a ,AE =√5a ,ED 1=3a ,S △AA 1D =12•2a •2a =2a 2,由余弦定理知,cos ∠EAD 1=AD 12+AE 2−ED 122⋅AD 1⋅AE =2222⋅2√2a⋅√5a=√1010, ∴sin ∠EAD 1=3√1010,∴S △EAD 1=12AD 1•AE •sin ∠EAD 1=3a 2, 设点A 1到平面EAD 1的距离为h , ∵V A 1−EAD 1=V E−AA 1D , ∴13ℎ⋅3a 2=13⋅2a ⋅2a 2,∴h =43a ,设直线AA 1与平面AD 1E 所成角为θ,则sin θ=ℎAA 1=43a 2a =23.故直线AA 1与平面AD 1E 所成角的正弦值为23.16.(2020•山东)如图,四棱锥P ﹣ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l . (1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.【解答】解:(1)证明:过P 在平面P AD 内作直线l ∥AD , 由AD ∥BC ,可得l ∥BC ,即l 为平面P AD 和平面PBC 的交线, ∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC , 又BC ⊥CD ,CD ∩PD =D ,∴BC ⊥平面PCD , ∵l ∥BC ,∴l ⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D ﹣xyz ,则D (0,0,0),A (1,0,0),C (0,1,0),P (0,0,1),B (1,1,0), 设Q (m ,0,1),DQ →=(m ,0,1),PB →=(1,1,﹣1),DC →=(0,1,0), 设平面QCD 的法向量为n →=(a ,b ,c ),则{n →⋅DC →=0n →⋅DQ →=0,∴{b =0am +c =0,取a =﹣1,可得n →=(﹣1,0,m ),∴cos <n →,PB →>=n →⋅PB→|n →|⋅|PB →|=√3⋅√1+m ,∴PB 与平面QCD 所成角的正弦值为√3⋅√1+m2=√33•√1+2m+m 21+m 2 =√33•√1+2m 1+m 2≤√33•√1+22=√63,当且仅当m =1取等号,∴PB 与平面QCD 所成角的正弦值的最大值为√63.17.(2020•江苏)在三棱锥A ﹣BCD 中,已知CB =CD =√5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 中点. (1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F ﹣DE ﹣C 的大小为θ,求sin θ的值.【解答】解:(1)如图,连接OC ,∵CB =CD ,O 为BD 的中点,∴CO ⊥BD .以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系. ∵BD =2,∴OB =OD =1,则OC =√BC 2−OB 2=√5−1=2. ∴B (1,0,0),A (0,0,2),C (0,2,0),D (﹣1,0,0), ∵E 是AC 的中点,∴E (0,1,1), ∴AB →=(1,0,−2),DE →=(1,1,1). 设直线AB 与DE 所成角为α, 则cos α=|AB →⋅DE →||AB →|⋅|DE →|=√1+4⋅√1+1+1=√1515,即直线AB 与DE 所成角的余弦值为√1515; (2)∵BF =14BC ,∴BF →=14BC →,设F (x ,y ,z ),则(x ﹣1,y ,z )=(−14,12,0),∴F (34,12,0).∴DE →=(1,1,1),DF →=(74,12,0),DC →=(1,2,0). 设平面DEF 的一个法向量为m →=(x 1,y 1,z 1),由{m →⋅DE →=x 1+y 1+z 1=0m →⋅DF →=74x 1+12y 1=0,取x 1=﹣2,得m →=(−2,7,−5); 设平面DEC 的一个法向量为n →=(x 2,y 2,z 2),由{n →⋅DE →=x 2+y 2+z 2=0n →⋅DC →=x 2+2y 2=0,取x 2=﹣2,得n →=(−2,1,1). ∴|cos θ|=|m →⋅n →||m →|⋅|n →|=√4+49+25⋅√4+1+1=√1313.∴sin θ=√1−cos 2θ=√1−113=2√3913. 18.(2020•浙江)如图,在三棱台ABC ﹣DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解答】解:(Ⅰ)证明:作DH ⊥AC ,且交AC 于点H , ∵面ADFC ⊥面ABC ,DH ⊂面ADFC ,∴DH ⊥BC , ∴在Rt △DHC 中,CH =CD •cos45°=√22CD , ∵DC =2BC ,∴CH =√22CD =√22•2BC =√2•BC , ∴BC CH=√22,即△BHC 是直角三角形,且∠HBC =90°, ∴HB ⊥BC ,∴BC ⊥面DHB ,∵BD ⊂面DHB ,∴BC ⊥BD , ∵在三棱台DEF ﹣ABC 中,EF ∥BC ,∴EF ⊥DB .(Ⅱ)设BC=1,则BH=1,HC=√2,在Rt△DHC中,DH=√2,DC=2,在Rt△DHB中,DB=√DH2+HB2=√2+1=√3,作HG⊥BD于G,∵BC⊥HG,∴HG⊥面BCD,∵GC⊂面BCD,∴HG⊥GC,∴△HGC是直角三角形,且∠HGC=90°,设DF与面DBC所成角为θ,则θ即为CH与面DBC的夹角,且sinθ=sin∠HCG=HGHC=√2,∵在Rt△DHB中,DH•HB=BD•HG,∴HG=DH⋅HBBD=√2⋅1√3=√63,∴sinθ=HG√2=√63√2=√33.19.(2020•江苏)在三棱柱ABC﹣A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.【解答】证明:(1)E,F分别是AC,B1C的中点.所以EF∥AB1,因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1;(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB,又因为AB⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以AB⊥平面AB1C,因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.20.(2020•新课标Ⅲ)如图,在长方体ABCD﹣A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.证明:(1)当AB=BC时,EF⊥AC;(2)点C1在平面AEF内.【解答】解:(1)因为ABCD﹣A1B1C1D1是长方体,所以BB1⊥平面ABCD,而AC⊂平面ABCD,所以AC⊥BB1,因为ABCD﹣A1B1C1D1是长方体,且AB=BC,所以ABCD是正方形,所以AC⊥BD,又BD∩BB1=B.所以AC⊥平面BB1D1D,又因为点E,F分别在棱DD1,BB1上,所以EF⊂平面BB1D1D,所以EF⊥AC.(2)取AA1上靠近A1的三等分点M,连接D1M,C1F,MF,C1E.因为点E在DD1,且2DE=ED1,所以ED∥AM,且ED1=AM,所以四边形AED1M为平行四边形,所以D1M∥AE,且D1M=AE,又因为F在BB1上,且BF=2FB1,所以A1M∥FB1,且A1M=FB1,所以A1B1FM为平行四边形,所以FM∥A1B1,FM=A1B1,即FM∥C1D1,FM=C1D1,所以C1D1MF为平行四边形,所以D1M∥C1F,所以AE∥C1F,所以A,E,F,C1四点共面.所以点C1在平面AEF内.21.(2020•新课标Ⅰ)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =√66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B ﹣PC ﹣E 的余弦值.【解答】解:(1)不妨设圆O 的半径为1,OA =OB =OC =1,AE =AD =2,AB =BC =AC =√3,DO =√DA 2−OA 2=√3,PO =√66DO =√22, PA =PB =PC =√PO 2+AO 2=√62, 在△P AC 中,P A 2+PC 2=AC 2,故P A ⊥PC , 同理可得P A ⊥PB ,又PB ∩PC =P , 故P A ⊥平面PBC ;(2)建立如图所示的空间直角坐标系,则有B(√32,12,0),C(−√32,12,0),P(0,0,√22),E (0,1,0), 故BC →=(−√3,0,0),CE →=(√32,12,0),CP →=(√32,−12,√22),设平面PCE 的法向量为n →=(x ,y ,z),则由{n →⋅CE →=0n →⋅CP →=0,得{√32x +12y =0√32x −12y +√22z =0,取x =1,则y =−√3,z =−√6, 所以平面PCE 的法向量为n →=(1,−√3,−√6),由(1)可知P A ⊥平面PBC ,不妨取平面PBC 的法向量为AP →=(0,1,√22), 故cosθ=|PA →⋅n →||PA →||n →|=2√55,即二面角B ﹣PC ﹣E 的余弦值为2√55.22.(2020•新课标Ⅰ)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°. (1)证明:平面P AB ⊥平面P AC ;(2)设DO =√2,圆锥的侧面积为√3π,求三棱锥P ﹣ABC 的体积.【解答】解:(1)连接OA ,OB ,OC ,△ABC 是底面的内接正三角形, 所以AB =BC =AC .O 是圆锥底面的圆心,所以:OA =OB =OC ,所以AP2=BP2=CP2=OA2+OP2=OB2+OP2=OC2+OP2,所以△APB≌△BPC≌△APC,由于∠APC=90°,所以∠APB=∠BPC=90°,所以AP⊥BP,CP⊥BP,由于AP∩CP=P,所以BP⊥平面APC,由于BP⊂平面P AB,所以:平面P AB⊥平面P AC.(2)设圆锥的底面半径为r,圆锥的母线长为l,所以l=√2+r2.由于圆锥的侧面积为√3π,所以π⋅r⋅√2+r2=√3π,整理得(r2+3)(r2﹣1)=0,解得r=1.所以AB=√1+1−2×1×1×(−12)=√3.由于AP2+BP2=AB2,解得AP=√3 2则:V P−ABC=13×12×√32×√32×√32=√68.23.(2020•新课标Ⅱ)如图,已知三棱柱ABC﹣A1B1C1的底面是正三角形,侧面BB1C1C 是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO=AB=6,AO∥平面EB1C1F,且∠MPN=π3,求。
高考数学立体几何练习题及答案
高考数学立体几何练习题及答案一、选择题1. 已知正方体的体积为216cm³,求正方体一个面上的对角线长度。
(选项)A. 12cmB. 9cmC. 6cmD. 3cm2. 锥体的侧面积为15√3cm²,求锥体的体积。
(选项)A. 45cm³B. 30cm³C. 15cm³D. 10cm³3. 平面α与平面β相交于直线l,直线l与平面γ相交于点O,若平面α与平面β的夹角为60°,直线l与平面γ的夹角为45°,则平面α与平面γ的夹角为(选项)A. 45°B. 30°C. 60°D. 75°二、填空题1. 一个正方体的棱长为a,其对角线的长度为____。
2. 若棱长为3的正方体的一个面上有一点P,离该面的距离为2,则线段OP的长度为_____。
3. 一个正方体的一个顶点到另一个顶点的距离为a,其体对角线的长度为____。
三、解答题1. 已知一个正方体的棱长为a,求:a) 正方体的体积;b) 正方体一个面的面积;c) 正方体的对角线长度。
解答:a) 正方体的体积为a³。
b) 正方体一个面的面积为a²。
c) 正方体的对角线长度为a√3。
2. 一个圆柱的高为10cm,直径为6cm,求:a) 圆柱的底面积;b) 圆柱的侧面积;c) 圆柱的体积。
解答:a) 圆柱的底面积为π(3cm)²=9πcm²。
b) 圆柱的侧面积为2π(3cm)(10cm)=60πcm²。
c) 圆柱的体积为π(3cm)²(10cm)=90πcm³。
3. 已知一个球的表面积为100πcm²,求球的体积。
解答:设球的半径为r,则球的表面积为4πr²。
根据题意,4πr²=100π,解得r=5cm。
球的体积为4/3πr³=(4/3π)(5cm)³=500/3πcm³。