脲醛树脂胶的胶凝时间影响因素及其控制培训课件
影响脲醛树脂固化的主要因素
影响脲醛树脂固化的主要因素脲醛树脂胶调制是在加入一定数量的固化剂后确保脲醛胶的活性期大于从调胶至热压这段时间,并使所有胶层在热压时间内完成固化,保证人造板的胶合质量,同时尽可能缩短热压周期,减少能源消耗,提高生产率。
脲醛树脂添加固化剂后粘度显著增长直至凝胶,这段时间即为树脂适用期,以分表示。
而适用期一段为胶凝时间的80%。
胶凝时间测定法有2种:①手工测定法。
只须使用恒温水浴、玻璃棒等极为简单化验设备。
②凝胶计时仪法。
胶凝时间既与固含量、粘度、游离醛含量及聚合度等树脂质量指标有关,又与环境温度、湿度等外界条件有关。
尽管调胶时原胶质量及外界条件有所不同,只须在树脂胶添加不同种类和不同量固化剂,使达到能满足各种人造板生产需要的胶凝时间。
1 固化机理固化剂以氯化铵为例试加说明:树脂胶中存在游离甲醛,加入固化剂氯化铵即与树脂中游离醛发生反应,氯化铵与水反应及氯化铵热分解分别放出盐酸,以上3个反应为可逆反应。
使脲醛树脂胶pH值迅速下降,实现弱酸固化,分子量逐渐增大,最后形成体型网状结构树脂。
2 胶凝时间影响因素2.1 温度和湿度(1)调制后脲醛树脂的胶凝时间与环境温度、热压温度有关。
环境温度越高,生活力越短,胶凝时间越短,反之亦然。
其原因从反应机理得知温度会影响胶液pH 值降低的速度,从而影响胶液的活性期及胶凝时间。
为此,在不同生产季节应考虑选择不同种类及不同量的固化剂,以提高胶合质量。
当氯化铵溶液加入量小于3%时,胶凝时间迅速缩短。
此外,在热压工艺中热压温度对胶凝时间也会造成一定的影响,调胶后若胶凝时间较长可适当提高热压温度,加速树脂固化,缩短生产周期。
反之,若调胶后胶凝时间过短,可适当降低热压温度,以防树脂提前固化而影响产品质量。
但热压温度过高易造成板坯局部提前固化而引起分层鼓泡;而热压温度过低,热传递效率降低延长固化时间, 导致板中水分过多。
固化不全,同样会产生分层鼓泡。
(2) 操作环境湿度大,固化速度慢。
脲醛树脂固化机理及其应用
脲醛树脂固化机理及其应用
脲醛树脂是一种常用的热固化树脂,具有优良的物理和化学性能,被广泛应用于涂料、胶粘剂、塑料、纸张等领域。
脲醛树脂固化机理是通过加热使脲醛树脂中的脲醛基发生缩聚反应,形成三维网络结构。
脲醛基的缩聚反应是一个复杂的化学反应过程,包括三个主要的步骤:甲醛与脲的加成反应、脲醛缩合反应和脲醛交联反应。
甲醛与脲的加成反应是将脲醛树脂中的脲醛基与甲醛分子发生加成反应,形成部分甲醛加成产物。
脲醛缩合反应是指部分甲醛加成产物之间的缩合反应,生成链状的脲醛聚合物。
脲醛交联反应是指脲醛聚合物之间的交联反应,形成三维网络结构,从而固化树脂。
脲醛树脂具有优异的性能,主要应用于以下几个领域:
1. 涂料:脲醛树脂可以用作涂料的主要成膜物质,具有优良的耐磨性、耐化学品性和耐候性,可以广泛应用于金属、木材、玻璃等表面的保护和装饰。
2. 胶粘剂:由于脲醛树脂具有良好的粘接性能和高温抗剪强度,可以用于制备高性能胶粘剂,广泛应用于家具、汽车、船舶等领域。
3. 塑料:脲醛树脂可以与聚酯、酚醛等树脂共混制备复合材料,具有优异的绝缘性能和耐热性能,适用于制备电气绝缘材料和耐高温构件。
4. 纸张:脲醛树脂可以用作纸张的增强剂和表面涂层剂,可以提高纸张的强度、耐水性和耐久性。
总之,脲醛树脂固化机理的研究和其在不同领域的应用,为生产和应用提供了重要的理论和实践基础。
脲醛树脂胶的胶凝时间影响因素与其控制
脲醛树脂胶的胶凝时间影响因素及其控制-脲醛树脂胶调制是在加入一定数量的固化剂后确保脲醛胶的活性期大于从调胶至热压这段时间 ,并使所有胶层在热压时间内完成固化 ,保证人造板的胶合质量 ,同时尽可能缩短热压周期 ,减少能源消耗 ,提高生产率。
脲醛树脂添加固化剂后粘度显著增长直至凝胶 ,这段时间即为树脂适用期 , 以分表示。
而适用期一段为胶凝时间的 80%。
胶凝时间测定法有 2种 :①手工测定法。
只须使用恒温水浴、玻璃棒等极为简单化验设备。
②凝胶计时仪法。
胶凝时间既与固含量、粘度、游离醛含量及聚合度等树脂质量指标有关 , 又与环境温度、湿度等外界条件有关。
尽管调胶时原胶质量及外界条件有所不同 ,只须在树脂胶添加不同种类和不同量固化剂, 使达到能满足各种人造板生产需要的胶凝时间。
1固化机理固化剂以氯化铵为例试加说明 :树脂胶中存在游离甲醛化铵热分解分别放出盐酸酸固化 ,分子量逐渐增大,加入固化剂氯化铵即与树脂中游离醛发生反应,氯化铵与水反应及氯,以上 3 个反应为可逆反应。
使脲醛树脂胶pH值迅速下降,实现弱,最后形成体型网状结构树脂。
2 胶凝时间影响因素2.1 温度和湿度(1)调制后脲醛树脂的胶凝时间与环境温度、热压温度有关。
环境温度越高,生活力越短 ,胶凝时间越短 , 反之亦然。
其原因从反应机理得知温度会影响胶液pH值降低的速度,从而影响胶液的活性期及胶凝时间。
为此,在不同生产季节应考虑选择不同种类及不同量的固化剂,以提高胶合质量。
当氯化铵溶液加入量小于3%时, 胶凝时间迅速缩短。
此外 , 在热压工艺中热压温度对胶凝时间也会造成一定的影响,调胶后若胶凝时间较长可适当提高热压温度,加速树脂固化 ,缩短生产周期。
反之 ,若调胶后胶凝时间过短 ,可适当降低热压温度 ,以防树脂提前固化而影响产品质量。
但热压温度过高易造成板坯局部提前固化而引起分层鼓泡 ;而热压温度过低 ,热传递效率降低延长固化时间 ,导致板中水分过多。
脲醛树脂胶粘剂制备原理
脲醛树脂胶粘剂制备原理、配方、工艺脲醛树脂胶粘剂:是尿素与甲醛在催化剂(碱性或酸性催化剂)作用下,缩聚而成的初期脲醛树脂;在固化剂或助剂作用下,形成不溶,不熔的末期树脂.尿素与甲醛的缩聚产物早在1896年就已获得,但工业上用作胶粘剂是1929年以后的事.我国脲醛树脂是在1957年开始工业化生产,1962年成为胶合板生产的主要胶粘剂,目前已成为我国人造板生产的主要胶种.从外观形式看,UF主要有液状(糖浆状或乳状)和粉状.液状UF一般可贮存2-6个月,而粉状UF 的贮存期可长达1-2年.(1)由于含有大量的羟甲基和酰胺基,能溶于水,有较好的胶接性能;(2)可室温或加温100℃以上很快固化;(3)与PF相比,固化后胶层无颜色,不污染制品;(4)胶接强度比动,植物胶高;(5)毒性较小,但固化时会放出刺激性的甲醛;(6)制造容易,价格便宜;(7)耐光性好,较耐老化;(8)工艺性好,使用方便;(9)脆性大,固化过程易产生内应力引起龟裂;(10)耐水性和胶接强度低于酚醛树脂胶.脲醛树脂胶粘剂的特性3.1.2 合成脲醛树脂的原料尿素:分子式:CO(NH2)2;分子量:60.06;熔点:135℃为无色针状结晶或白色结晶,极易溶于水,水溶液呈弱碱性;易吸湿结块.在水,稀酸或稀碱中不很稳定.甲醛:分子式:CH2O ;分子量:30.03;沸点:-19.5℃是一种重要的有机原料,为无色,强烈特殊刺激性气味的气体,有毒.易溶于水,工业用甲醛水溶液(福尔马林)为无色透明液体,混入铁等物质为淡黄色,其甲醛含量一般为36-37%.此外,还有氢氧化钠,甲酸,氯化铵,六次甲基四胺等.3.1.3 脲醛树脂形成原理(一)加成反应加成反应过程:尿素与甲醛水溶液在广泛的酸性或碱性条件反应的第一阶段是加成反应,首先生成一羟甲脲.一羟甲脲的生成:NH2CONH2 + CH2O NH2CONHCH2OH (3-1)二羟甲脲的生成:NH2CONHCH2OH + CH2O HOCH2NHCONHCH2OH(3-2)上述反应若尿素与甲醛为等摩尔比且在中性条件下进行,最终达到尿素,甲醛,一羟甲脲和二羟甲脲四个组分的平衡.但若尿素与甲醛的摩尔比大于1:1时,上述平衡组成就会发生变化,尤其是摩尔比大于1:2时,二羟甲脲进一步与甲醛加成生成三羟甲脲:HOCH2NHCONHCH2OH + CH2OHOCH2NHCON(CH2OH)2 (3-3)反应(3-1)和(3-2)可同时被酸(H+)和碱(OH-)所催化,但碱的催化效应较大.正反应和逆反应都能被催化到大致相同的程度,所以PH值的变化,平衡常数改变不大,但在实际的脲醛树脂的合成中,由于反应中间都在酸性条件下进行的,羟甲脲参加缩聚反应或生成不溶于水的次甲脲沉淀,这样平衡常常不能达到.加成反应机理:在酸性和碱性条件下,其加成反应可通过不同的反应机理进行,其反应历程和产物也有所不同.碱性条件下,加成反应生成较为稳定的初期产物羟甲脲.NH2CONH2 + OH-→NH2CONH- + H2ONH2CONH- + H2C+=O-→NH2CONHCH2O-NH2CONHCH2O- + H2O→NH2CONHCH2OH + OH-从反应动力学的角度来看,生成一羟甲脲,二羟甲脲和三羟甲脲的速度比为9:3:1,即其反应能力随引入羟甲基而依次降低.因此,生成一羟甲脲和二羟甲脲是决定脲醛树脂理化性能有意义的产物.酸性条件下,是甲醛受氢离子的作用,首先生成带正电荷的次甲醇:_CH2O + H2O HO—CH2—OHHO—CH2—OH + H+ +CH2OH +H2O带正电荷的次甲醇与尿素反应,生成不稳定的羟甲脲,它进而缩聚脱水,生成次甲基键连接的低分子缩聚物或次甲脲:NH2CONH2 + C+H2OH→NH2CON+H2CH2OHNH2CON+H2CH2OH→NH2CONHCH2OH + H+→NH2CONHC+H2 + H2ONH2CONHC+H2 + NH2CONH2→NH2CONHCH2N+H2CONH2→NH2CONHCH2NHCONH2 + H+ 或者NH2CONH2 + 2CH2O CH2NCONCH2 + 2H2OPH1%时就显示出影响了;含量越高,树脂在贮存期间的羟甲基含量下降越明显,贮存稳定性越差.不应超过0.8%.游离氨:能提高缩聚反应初期阶段及补加尿素再缩聚阶段的介质PH值;但当含量高于0.015%时,树脂的固化时间延长和贮存稳定性降低.不应超过0.015%.(四)反应温度和反应时间在反应体系中,反应温度和反应时间既有单独作用又有联合其它因素共同作用.反应温度:对反应速度,游离甲醛含量胶树脂贮存稳定性等的影响较为明显;过高(酸性介质),出现凝胶,易形成次甲脲沉淀;过低,反应时间过长,树脂聚合度低,粘度低等.应视各反应阶段的具体条件而定,酸性加成阶段,应为40-60℃,碱性加成阶段,应为80-95℃适宜.反应时间:关系到树脂的聚合度,游离甲醛含量,粘度及树脂的力学性能等;过短,反应不完全,固体含量低,粘度小,游离甲醛含量高,树脂机械强度低;过长,聚合度过高,粘度过高,树脂水混和性下降,贮存期短.应考虑反应时间与其它条件的共同作用.3.1.5 脲醛树脂的合成(一)原料计算所需尿素量为已知,按下式计算其它原料量:式中: ——所计算的原料量(Kg)——所计算原料的分子量——所计算原料的摩尔数——尿素纯度(%)——尿素量(Kg)——所计算原料的浓度(%)60.06——尿素分子量(二)胶接用脲醛树脂合成合成实例:甲酸:水1: 2甲醛水溶液1000尿素(1) 377.6尿素(2) 66.6尿素(3) 59.2六次甲基四胺 3.9聚乙烯醇11氢氧化钠适量甲酸适量(2)合成工艺甲醛水加入反应釜后加六次甲基四胺.用氢氧化钠调PH=7.8-8.2,加热升温并加入尿素(1)和聚乙烯醇(提高UF的耐老化性能,增加初粘性),在30-50min内升到88-92℃,并保温30min.用甲酸调PH=5.2-5.4,在温度88-92℃下保温30min.用甲酸调PH=4.7-4.9,反应20min后不断测定粘度,当粘度达到19-21s(涂-4杯,30℃).加尿素(2)并用氢氧化钠调PH=4.9-5.1,在温度为85-87℃下反应到粘度为25.5-28.5s.用氢氧化钠调PH=7.5-8.0,并冷却到温度为80℃,加尿素(3),在65℃下保持30min.冷却并调PH=7.0-7.6,在35℃下放料.(3)树脂质量指标包括外观,密度,固体含量,粘度,PH值,游离甲醛,固化时间,粘度变化率,贮存期,水混合性等.这些指标的测定按照标准(GB/T 14074.1-93——14074.18-93)进行测定.(4)应用:胶合板生产等.(三)浸渍用脲醛树脂合成合成实例:(1)合成工艺:用氢氧化钠调甲醛水溶液(155份)PH值为8.5-9.0,加尿素(占总尿素100份的57.5%).加热到55-60 ℃,停止加热,反应液自升到78-82 ℃,在此温度保持10-15min.用醋酸(醋酸:水=1:1)调PH值为4.5-4.6,在90-95 ℃保温20-30min.用氢氧化钠调PH值为8.7-9.2,同时降温到70-75 ℃,加余下的全部尿素.在60-65 ℃下保温35-40min.冷却到20-25 ℃,树脂液用120-200目/cm2筛网过滤.(2)树脂质量指标:固体含量,粘度,比重,PH值,游离甲醛,固化时间,渗透能力等.(3)应用:该树脂渗透能力强,用于浸渍纸,制造胶膜纸;也可作脲醛树脂与聚酯树脂的混合浸渍液的主要成份.3.1.6 脲醛树脂的调制脲醛树脂在加热加压条件下,虽然自身也能固化,但时间很长,固化后的产物,由于交联度低,固化不完全,胶接质量差.因此,在实际使用时都要加入固化剂(亦称促进剂,有时也有例外,如木材酸性较强时,可以不加)使UF迅速固化,保证胶接质量;其次,为了改变UF的某些性能(如增加初粘性,提高耐水性及耐老化性,降低游离醛等),还需加入某种助剂.以上过程称为UF的调制(简称为调胶).一般来说,UF的调制需要根据用途和需要进行.(一)固化剂UF的固化剂有酸和酸性盐两类.酸类固化剂有草酸,磷酸,苯磺酸,酒石酸,柠檬酸,无水苯甲酸等;酸性盐类有氯化铵,氧化锌,硫酸铁胺,盐酸苯胺等.不宜采用强酸固化剂,但强酸性盐(尤其是强酸铵盐,如氯化铵,硫酸铵)可行.以上这些固化剂的性质不同,效果不一,使用时应根据UF的理化性能,气温条件及胶接制品的要求等酌情应用.(1)单组分固化剂:如氯化铵,硫酸铵.使用最广的是氯化铵,其加入量一般为UF树脂量(固体含量)的0.2-2%.我们常加入1%的氯化铵(固体计),且有时还要将氯化铵调成水溶液(如20%). (2)多组分固化剂:如氯化铵与尿素,氯化铵与氨水,或氯化铵与六亚甲基四胺及尿素3组分混合物等.目的有两:一是为了延长树脂的适用时间,特别是夏季,由于室温较高,单独使用氯化铵(或硫酸铵)时,树脂的适用期往往不能满足要求;二是在冬季,采用常温固化方式时,为加速树脂固化,常使用氯化铵与浓盐酸合用,可使固化时间大大缩短.(3)潜伏性固化剂:是指在常态下呈化学惰性,在某种特定温度下起作用的固化剂.如酒石酸,草酸,有机酸盐等,但效果不太理想,国内目前正开始研究使用.(4)微胶囊固化剂:就是在固化剂的表面有一层保护膜——胶囊,在低温下由于表层胶囊的隔离,不起固化作用;而在高温或受压下,表层胶囊被破坏,胶囊内的固化剂即与UF接触,使之固化.目前国内还没有这种固化剂.注意:氯化铵对冷固化的UF来说,并不是很好的固化剂.这是因为铵盐在UF中释放酸速度与气温有关.且冬季施加氯化铵的量应比夏季多.还应注意的一点是:由于UF的固化过程中,主要变化有化学反应和水分和移动,此时还应考虑木材含水率,固化剂的性质,气温高低,空气湿度和风力大小等因素.固化剂的选择原则:(1)根据不同的用途要求和气候条件进行适当的选择.如胶合板用氯化铵固化剂,冬天一般加入量0.4-0.8%,春秋天加0.3-0.5%,夏天加0.2-0.3%,还要加一些延缓剂(如氨水,尿素等),因为温度愈高,湿度愈低,固化愈快,适用期愈短.(2)选择的固化剂,固化后的胶层PH值不宜过低或过高,一般胶层的PH值在4-5之间,其胶合性能最理想.PH值过低,胶层易老化,过高会造成固化不完全.(3)根据胶接制品的工艺要求选择.如较厚的刨花板生产,要求表层刨花中的胶固化时间要长,中(芯)层刨花中的胶固化时间要短,为了使表芯层胶液同时固化,就得在固化剂上做些文章.如表层刨花用胶的固化剂由氯化铵25份,氨水35份和水45份组成,加入量为树脂质量的5-6%,其固化时间为110-130s;芯层刨花用胶的固化剂为20%的氯化铵溶液,加入量为5-6%,其固化时间为35-45s,这样可使表芯层胶液达到同时固化.(二)助剂UF常用的助剂有填充剂,发泡剂,甲醛结合剂,防老化剂,耐水剂,增粘剂等.下面重点讲讲填充剂.(1)填充剂作用:降低成本,提高UF初粘性,减少UF渗透量,延长适用期,降低内应力,减少UF体积收缩率,提高耐老化性,降低游离甲醛含量等.要求:化学性质上应是不活泼的中性或近于中性的物质;能与水充分混合,水分蒸发后能转变为固体的物质;能与树脂混合,不产生分层沉淀;无副作用或副作用低(如保持胶的粘度,对固化时间,耐水性能,胶接强度及耐久性影响应尽可能小);原料易得,价格低廉,易加工成粉末(细度要求在100目以上).种类:淀粉类(常用的有面粉,淀粉,高梁粉,木薯粉等);蛋白质类(常用的有豆粉和血粉);纤维素类(常用的有树皮粉,花生壳粉,木粉,水解玉米芯粉等);矿石粉类(石英粉,白垩土粉,高岭土粉等) 用量:视UF的质量和人造板要求而定,一般来说,施加量在5-20%以内为宜.(2)其它助剂发泡剂:如血粉,拉开粉(烷基磺酸钠),用量0.5-1.0%(质量).甲醛结合剂:如尿素,三聚氰胺,含单宁的树皮粉,豆粉,面粉,聚乙酸乙烯乳液等,用量5-15%.防老化剂:如1-5%(用量)的聚乙烯醇或15-20%(用量)的聚乙酸乙烯酯乳液.耐水剂:苯酚,间苯二酚,三聚氰胺,硫脲等.三聚氰胺生产防水,防潮UF胶.增粘剂:聚乙烯醇,面粉,豆粉等,增加初粘性.(三)UF的调胶工艺主要根据人造板及木制品的工艺要求而定.如普通胶合板用胶调胶工艺:注:混合固化剂配方为:氯化铵25,尿素30,六亚甲基四胺45,水50(质量)3.1.7 脲醛树脂的改性(一)降低胶接制品释放的甲醛量胶接制品所释放的甲醛来源:(1)UF树脂中的游离甲醛;(2)树脂固化中分解的甲醛;(3)木材等被胶接材料所释放的甲醛.降低甲醛含量的途径:(1)从树脂合成配方入手:采用低摩尔比U/F;加入能与尿素,甲醛共聚的苯酚或三聚氰胺,双氰胺等;尿素分次加入;改变反应PH值等反应条件.(2)从调胶入手:加入甲醛结合剂(捕捉剂),如尿素,三聚氰胺,含单宁的树皮粉,豆粉,面粉,聚乙酸乙烯乳液等.(3)从制品后续处理入手:如封边,贴面;氨气处理等.(二)改善脲醛树脂的耐水性在UF中加入三聚氰胺或间苯二酚,可提高其耐水性能,并在较小程度上提高耐沸水性能;UF与PF或三聚氰胺树脂或聚醋酸乙烯酯乳液等混合,也可改善其耐水性.(三)改善脲醛树脂的胶接强度和耐久性从用UF胶合某些非木质材料如麦秆,棉秆,稻草等来说,有必要改善其胶接强度,可加入苯酚,间苯二酚,三聚氰胺等,可对UF起增强作用.对于改善UF的耐久性来说,可加入增塑剂(如橡胶乳),聚醋酸乙烯乳液,柠檬酸,填充剂等.。
脲醛树脂固化机理及其应用
第29卷 第4期2007年7月北 京 林 业 大 学 学 报JOURNAL OF BEIJING FORES TRY UNIVERSITYVol.29,No.4Jul.,2007收稿日期:2006--09--07http: 基金项目:国家科技支撑计划课题(2006BAD18B09)、 948 国家林业局引进项目(2006--4--107).第一作者:李建章,博士,副教授.主要研究方向:木材胶粘剂与木质复合材料.电话:010--62336092 Email:lijianzhang126@126 com 地址:100083北京林业大学材料科学与技术学院.脲醛树脂固化机理及其应用李建章 李文军 周文瑞 范东斌 高 伟(北京林业大学材料科学与技术学院)摘要:脲醛树脂在人造板生产中的大量使用是室内空气中产生甲醛污染的主要原因.掌握脲醛树脂的固化机理将成为解决甲醛污染问题的关键.该文依据高分子缩聚的经典理论和胶体学说以及一些实验与生产事实,讨论了脲醛树脂中的游离甲醛问题、胶接制品的甲醛释放问题、脲醛树脂的耐水性问题、脲醛树脂固化速度与摩尔比以及固化剂种类的关系问题,分析了脲醛树脂固化的经典理论与胶体学说存在的问题.关键词:脲醛树脂,甲醛释放,经典缩聚理论,胶体学说中图分类号:TQ433 4 文献标识码:A 文章编号:1000--1522(2007)04--0090--05LI Jian -zhang;LI Wen -jun;ZHOU Wen -rui;FAN Dong -bin;GAO Wei.Curing mechanism of urea -formaldehyde resin and its application .Journal o f Beijing Forestry University (2007)29(6)90--94[Ch,11ref.]College of Materials Science and Technology,Beijing Forestry University,100083,P.R.China.The wood -based boards mostly bonded with urea -formaldehyde (UF)resin are the main reasons of formaldehyde pollution of indoor air.To master the curing mechanism of UF resin is the key for resolving the formaldehyde pollution proble m.According to the traditional condensation polymerization theory,colloidal concept of UF resin,and some e xperimental and production facts,this paper discussed the formaldehyde content of UF resin,formaldehyde emission and water resistance of wood -based boards,and the effec ts of molar ratios and catalysts on the curing rate of UF resin,the existent problems of the traditional condensation polymerization theory,and the colloidal concept for explaining the curing mechanism of UF resin were clarified.Key wordsurea -formaldehyde resin,formaldehyde emission,traditional condensation polymerizationtheory,colloidal concept脲醛树脂因其良好的性能和低廉的价格(是合成树脂中价格最低的)而得到广泛应用,它是胶粘剂中用量最大的品种.特别是在木材加工业各种人造板的制造中,脲醛树脂及其改性产品占胶粘剂总用量的90%左右.然而,用脲醛树脂生产的人造板在制造和使用过程中存在着甲醛释放的问题.甲醛为毒性较高的物质,在我国有毒化学品优先控制名单上高居第二位.甲醛对眼、粘膜和呼吸道均有刺激作用,会引起慢性呼吸道疾病、过敏性鼻炎、免疫功能下降等病症;甲醛被认为是潜在的致癌物质,可能是鼻癌、咽喉癌、皮肤癌的诱因,因此释放甲醛问题严重损害着生产者和使用者的身体健康.继 煤烟型 、 光化学烟雾型 污染后,现代人正身陷于以 室内空气污染 为标志的第三污染时期,其中甲醛是主要污染物之一.使用脲醛树脂生产的人造板及其制品是甲醛污染的主要来源,且具有长期性的特点[1].近几年来,室内空气中的甲醛污染已经给人们的健康带来了严重威胁,解决各类使用脲醛树脂生产的人造板及其制品中严重的甲醛释放问题已经刻不容缓.为此,我国颁布了强制性国家标准GB18580 2001 室内建筑装饰装修材料 人造板及其制品中甲醛释放限量 [2],2002年1月1日开始试行,7月1日强制实施.脲醛树脂的使用已经有100多年的历史,但是其固化及胶接机理研究还不透彻,特别是低摩尔比脲醛树脂的固化及胶接机理还不完全清楚.真正掌握脲醛树脂、特别是低摩尔比脲醛树脂的固化与胶接机理,将成为解决上述问题的关键.本文依据高分子缩聚的经典理论、胶体学说和一些实验与生产事实对脲醛树脂的固化机理以及实际应用中的一些问题进行了分析、探讨.1 脲醛树脂固化的经典缩聚理论经典缩聚理论认为,当甲醛与尿素的摩尔比大于1 0时,脲醛树脂的合成与固化反应属于体型缩聚;一般作为胶粘剂使用时,通过控制反应程度(低于凝胶点)先合成脲醛树脂初期树脂,胶接制品时再进一步缩聚交联成体型结构.经典理论认为,脲醛树脂初期树脂的生成分两个阶段.第一阶段即碱性介质中甲醛与尿素的加成(羟甲基化)阶段,它取决于尿素与甲醛的摩尔比,可生成一羟甲基脲、二羟甲基脲、三羟甲基脲.虽然尿素具有4个官能度,但四羟甲基脲却从未被分离出来.第二阶段即酸性介质中羟甲基脲的缩合(亚甲基化)阶段,生成具有亚甲基键或醚键连接的低聚物,可以是水溶或水不溶的预聚物.传统的化学分析方法与现代的仪器分析基本证实了上述经典理论对脲醛树脂结构的描述.传统的经典理论认为,脲醛树脂是热固性树脂,当树脂的pH值降至3 0~4 0时,立即固化.在固化过程中,树脂的一些具有反应活性的官能团,如 C H2OH、 NH 、 NH2进一步发生反应,使树脂交联形成三维网络结构,变成不溶和不熔的白色块状物.2 脲醛树脂的胶体学说无论是脲醛树脂的性质,还是脲醛树脂生产过程中出现的一些问题,有许多是经典理论无法解释或者解释得十分勉强的[3].如,大部分热固性树脂即使有颜色,也都是透明体系,而合成的脲醛树脂常常一开始或存放一段时间后是乳白、不透明的;大部分热固性树脂固化后的产物为透明的玻璃态,断裂面平滑,而固化后的脲醛树脂为乳白色、不透明,具有结晶构造,断面有球形结构;典型的脲醛树脂可以通过超离心沉降分离出呈球形粒子的固体;脲醛树脂的生产过程中,酸性阶段黏度增长至一定程度加入固体尿素后,树脂的黏度往往会下降很多.针对以上问题,1983年Pratt在WSU胶粘剂年会上第一次提出了脲醛树脂的胶体学说,并随后在Journal Adhesion杂志上发表[4].他认为脲醛树脂是线性的聚合物,在水中形成胶体分散体系,当胶体稳定性遭到破坏时,胶体粒子凝结、沉降,脲醛树脂发生固化或凝胶.脲醛树脂胶体的稳定性是由于粒子周围有一层甲醛分子吸附层或质子化的甲醛分子吸附层,当胶粒凝结时,就有甲醛或氢离子释放出来.胶体学说认为,脲醛树脂的固化是胶体粒子聚结和发展其粒子聚结结构的过程.它要求胶粒有一最低限浓度,在没有达到这一浓度时,黏度增长是有限的(只是粒子的体积效应);达到这一浓度后,由于粒子聚结形成粒子结构,黏度就会突变.脲醛树脂逐渐变混是粒子由小到大发展过程的表现.高摩尔比脲醛树脂由于甲醛的溶剂化使粒子变小,发展成较大粒子需要时间,这就使混浊现象延迟.脲醛树脂胶体学说对低摩尔比脲醛树脂合成、固化过程中的一些问题和现象解释得比较清楚.当前低摩尔比脲醛树脂在工业生产使用中占主导地位,所以,脲醛树脂胶体学说在理论和实践方面均有其现实意义.3 脲醛树脂的经典理论与胶体学说在实际生产中的应用目前,脲醛树脂作为胶粘剂使用存在一些问题,如脲醛树脂的游离甲醛和胶接制品(人造板等)的甲醛释放、耐水性差、低摩尔比脲醛树脂固化速度慢与贮存稳定性差等.在这些问题上,经典理论在实际应用中发挥了较大作用,而胶体学说给我们提出了新思路.3 1 脲醛树脂和胶接制品的甲醛释放问题根据经典理论,甲醛与尿素的反应为可逆反应.甲醛的量越大,甲醛的未反应部分即甲醛的残留就越大,游离甲醛含量就越高;同时,甲醛的量越大,生成的羟甲基和醚键也越多,固化后胶层老化(水解、热解)释放的甲醛量越高,也就是人造板等制品的甲醛释放量越高.因此按照经典理论,通过降低甲醛与尿素的摩尔比、合成后期真空脱水等就能够有效降低脲醛树脂游离甲醛含量以及胶接制品的甲醛释放量,这些方法在工业生产上已经普遍使用[5].另外,通过控制反应条件,在脲醛树脂合成过程中生成较多的稳定的亚甲基键连接以及Uron环状结构,同样可以降低胶接制品的甲醛释放量[6--7].胶体学说则认为,脲醛树脂属于胶体,甲醛有助于胶体的稳定;脲醛树脂凝胶、固化时放出甲醛.如果找到能够替代甲醛作为脲醛树脂树脂稳定剂的物质,就可以解决人造板的甲醛释放问题.胶体学说为解决脲醛树脂甲醛释放问题提供了新思路,但还没有得到很好的实践验证.这方面的研究有待于进一步深入.3 2 耐水性问题经典学说认为,脲醛树脂的耐水性与树脂结构有关,如采用较高的摩尔比(1 5左右)使脲醛树脂91第4期李建章等:脲醛树脂固化机理及其应用具有高的交联度,就能够显示出高的耐水性;反之摩尔比过低(如低于1 05)难以形成交联结构时,耐水性与胶接强度就低.当然,如果摩尔比过高(如高于2 0)时,由于生成较多的醚键和富余较多的羟甲基,反而导致耐水性下降.这些在生产实践中已经得到证实.经典学说还认为,脲醛树脂水解性是脲醛树脂分子主结构即价键的酸水解,改进其耐水性能只能从水解条件方面着手,即降低其酸性.研究发现,将脲醛树脂固化后的胶层调至中性,则表现出非常优越的耐水性.例如,将弱碱性玻璃微粉加入脲醛树脂中或将胶合板用碳酸氢钠水溶液处理,使其固化后的胶层呈现中性或弱碱性,则脲醛树脂能够表现出很高的耐水性、甚至具有一定的耐沸水性.同时,亚甲基键与Uron结构稳定性高、耐水解性强,通过控制反应过程,生成较多的亚甲基连接与Uron结构将有助于提高脲醛树脂的耐水性.这些已有实验证实[8].在耐水性问题上胶体学说则认为,价键酸水解可以放到后一步考虑,脲醛树脂表现出的多级结构和稳定性是主要的.但是,该学说在实际应用中还没有很好地发挥作用.3 3 固化速度问题3 3 1 脲醛树脂摩尔比与凝胶点的关系对于体型缩聚反应的凝胶点预测,Carothers推导出了著名的Carothers方程[9]:P c=(2 f) 100%(1)式中,P c是凝胶点(%),即发生凝胶化时的反应程度(认为此时的聚合度无限大); f是体系平均官能度.只要计算出 f就可以利用Carothers方程很容易地预测体型缩聚反应的凝胶点.而 f为非过量物质的官能度总量的2倍与单体总物质量之比.表1列出了几个不同摩尔比的脲醛树脂体型缩聚反应的平均官能度和凝胶点预测值.其中,甲醛的官能度为2,尿素的官能度为3(虽然,尿素有2个NH2,总计4个H,但平均只有2 8~3个H是活泼的、可以参与化学反应,因此可以认为尿素的官能度是3).表1 不同摩尔比脲醛树脂体型缩聚反应的平均官能度和凝胶点预测值TABLE1 P c and f of UF resins wi th different molar ratios摩尔比(F U)0 91 01 051 31 5 f1 892 002 052 262 40P c %10610097 688 583 3凝胶点等于100%表示反应程度为100%,也就是所有的官能团全部反应时才能形成凝胶,这种情况是困难与不可能的.因此,摩尔比为1 0的脲醛树脂是难以凝胶化的.同样,摩尔比为0 9的脲醛树脂的凝胶点大于100%表示不能发生凝胶.摩尔比为1 05的反应体系可以发生凝胶,但理论上反应程度必须达到97 6%以上时才出现凝胶化现象;而摩尔比为1 3时反应程度为88 5%就可以了.理论和实践表明,缩聚反应后期,由于体系黏度很高而未反应官能团很少且往往被包埋,从而造成缩聚物后期的反应程度难以提高,因此低摩尔比的脲醛树脂固化速度要比高摩尔比的慢很多.反映到工业生产上,低摩尔比脲醛树脂胶接人造板的热压周期长、生产效率低.当然,凝胶点的预测是在没有被胶接物(如木材)存在的前提下进行的.当用脲醛树脂生产人造板时,由于木材的化学成分中含有大量的羟基、羟甲基等活性基团,这些基团在一定条件下可能与脲醛树脂中的羟基、羟甲基以及氨基、亚氨基等结合形成化学键或氢键.这样,即使脲醛树脂的摩尔比很低,胶接木材时也可能借助于木材中的活性基团而形成化学或物理交联,表现出较高的胶接强度与一定的耐水性.有专利报道,摩尔比低于1 0的三聚氰胺改性脲醛树脂胶粘剂也能制造出内聚强度很高的MDF[10],实际生产中也已经开始应用摩尔比低于1 0的改性脲醛树脂.研究发现,摩尔比为0 8、0 9的脲醛树脂,当使用氯化铵或硫酸铵作为固化剂时,确实如经典缩聚理论预测的那样难以固化.按常规方法测定固化时间时,难以出现凝胶化现象,仅仅是水分挥发而变得黏稠.但是,当使用过硫酸铵、过硫酸钾作固化剂时,则能够很快凝胶变成固体[11].这说明使用不同固化剂时,脲醛树脂的固化机理可能不同.3 3 2 固化促进机理与固化剂种类的影响脲醛树脂胶粘剂调胶时,一般都要加入氯化铵、硫酸铵等强酸弱碱盐作为固化剂.4NH4Cl+6C H2O 4HCl+(C H2)6N4+6H2O(1)NH4Cl HCl+NH3(2)NH4Cl+H2O HCl+NH4OH(3)一般认为,强酸弱碱盐催化的脲醛树脂的固化机理,主要是盐与树脂中的游离甲醛反应放出无机酸,使体系的pH值下降,导致缩合反应加速而使树脂快速凝胶、固化,如反应式(1)所示.研究和实践已经证实,脲醛树脂胶粘剂中游离甲醛含量越低,其固化时间越长,证明反应式(1)起主导作用.虽然铵盐可以加热分解以及在水中水解放出无机酸,如反应式(2)、(3)所示,但是这些反应可能不占主导地位.92北 京 林 业 大 学 学 报第29卷另外,如果在低游离甲醛含量的脲醛树脂胶粘剂中直接加入强酸(如盐酸、硫酸),也可以使树脂的固化时间大为缩短,甚至会使首先接触酸的树脂部分瞬间凝胶、固化而不能使用.强酸能够使低游离甲醛含量脲醛树脂胶粘剂快速固化的现象,说明了体系pH值降低是脲醛树脂胶粘剂固化的关键之一.低游离甲醛含量脲醛树脂胶粘剂用铵盐固化时,固化速度变得很慢,其主要原因之一也是由于体系pH值降低较慢、降幅较小所致.因此,经典理论认为树脂结构、体系pH值是脲醛树脂固化速度的决定因素.实验与生产实践也证明了pH值对脲醛树脂固化速度的重要影响.按照胶体学说,脲醛树脂是胶体,电解质的加入将有助于脲醛树脂的凝胶、固化.据报道,在脲醛树脂中添加食盐既可提高其固化速度,又可降低成本,这已被美国工业界普遍采用.胶体学说认为,添加食盐使胶粒的双离子层变薄,胶粒不稳定,凝结加速,并合理地解释了过程中pH值微小的变化.不过,研究表明氯化钠虽然确实能够加速脲醛树脂的固化,但是效果非常有限[11].另外,在脲醛树脂合成过程中和合成后加入氯化钠,脲醛树脂的贮存期并无很大变化,说明脲醛树脂的胶体成分并不很大.3 4 脲醛树脂固化前后的外观按照胶体学说,由于脲醛树脂属于胶体,即使高摩尔比的脲醛树脂起初是透明的,存放一段时间后应会变成乳白色,脲醛树脂固化后的断面有球形构造.事实上,脲醛树脂即使合成初期是透明的,存放一段时间后都变成乳白色,并且氯化铵、硫酸铵作固化剂的脲醛树脂固化后的外观确实如上所述.但是,研究发现[11],即使脲醛树脂固化前是乳白色的,当使用过硫酸铵作固化剂时,不同摩尔比(0 8~1 2)的脲醛树脂固化后均断面平滑、外观透明.另外,相同摩尔比的脲醛树脂合成工艺不同时,产品的外观也完全不同.如,摩尔比为1 05的脲醛树脂根据合成工艺不同其外观可以是乳白的,也可以是透明的;并且如果合成工艺合适,脲醛树脂贮存1个月后仍然能够保持透明.观测脲醛树脂固化前后的外观可以推断,脲醛树脂具有一定的胶体性质,但可能不完全属于胶体;不同反应条件下合成的脲醛树脂其性质不同、不同固化剂作用下其固化机理可能不同.当然,脲醛树脂的固化过程是很复杂的,其固化速度除了跟体系pH值有关外,还跟树脂的合成工艺、树脂结构等有关.更多的研究、实践还有待于进一步深入.4 脲醛树脂固化的经典理论与胶体学说存在的问题4 1 经典理论存在的问题经典理论虽然在脲醛树脂固化机理解释与实际应用中发挥了重要作用,为解决脲醛树脂存在的问题做出了重大贡献,但是仍然有一些现象难以得到圆满解释,如:摩尔比低于1 0的脲醛树脂在强酸或者过硫酸盐作固化剂时能够快速固化成固体;用氯化铵、硫酸铵作固化剂时,脲醛树脂固化后呈不透明的乳白色、断面粗糙,而当使用过硫酸盐作固化剂时则固化后的树脂透明、断面平滑;摩尔比低于1 0的脲醛树脂胶接的制品仍然具有较高的胶接强度.4 2 胶体学说存在的问题胶体理论虽然对解决脲醛树脂存在的诸如甲醛释放问题、耐水性问题提出了新思路,但是到目前为止还没有充分发挥作用,还有很多问题难以解释,如:较高摩尔比(1 5左右)脲醛树脂与低摩尔比(如1 1以下)脲醛树脂相比,耐水性、胶接强度完全不同;虽然用氯化铵、硫酸铵作固化剂时,脲醛树脂固化后呈不透明的乳白色、断面粗糙,显示了胶体性质,但当使用过硫酸盐作固化剂时则固化后透明、断面平滑;氯化钠加入脲醛树脂中对其贮存期影响不大等.5 结 论脲醛树脂的固化机理主要符合经典缩聚理论,但同时也在一些方面与胶体学说相符.经典缩聚理论在实际应用中对解决脲醛树脂及其制品的甲醛污染问题、耐水性问题等方面发挥了重要作用,而胶体学说虽然提出了解决脲醛树脂甲醛释放等问题的新思路,但还没有得到很好的实践验证.可以说,脲醛树脂既具有普通热固性树脂的特点,同时某些方面又具有胶体的性质.因此,脲醛树脂固化的经典理论与胶体学说都在一定条件下发挥作用.为了很好地解决脲醛树脂实际应用中存在的甲醛污染等问题,更加深入地进行脲醛树脂固化机理方面的研究是非常必要的.参考文献[1]李建章,周文瑞,张德荣.室内空气中的甲醛污染与解决办法[J].中国林业产业,2004(7):51--55.LI J Z,Z HO U W R,ZHANG D R.Formaldehyde pollution i n indoor ai r and its resolving methods[J].China Forestry Industry,2004(7): 51--55[2]国家质量监督检验检疫总局.GB18580 2001室内建筑装饰装修材料 人造板及其制品中甲醛释放限量[S].北京:中国标准出版社,200293第4期李建章等:脲醛树脂固化机理及其应用General Admi nistrati on of Quality Supervision Ins pection and Quarantine of the People s Republic of China.GB18580 2001 Formaldehyde emission limit o f inne r building deco ration and fitme nt mate rial\-wood based boards[S].Beijing:Standards Pres s of China,2002[3]孙振鸢,吴书泓.脲醛树脂的结构与形态 脲醛树脂胶体理论及其进展[J].林业科学,1993,29(1):49--56.SUN Z Y,WU S H.Structures and morphology of UF resin introduc tion of colloidal theory and its progress of UF resin[J].Scientia Silvae Sinic ae,1993,29(1):49--56[4]PRATT T J,JO HNS W E,RAM MON R M,et al.A novel c oncept onthe s truc ture of cured urea-formaldehyde resin[J].J Adhesion,1985, 17(4):275--295[5]夏至远.木材工业实用大全 胶粘剂卷[M].北京:中国林业出版社,1996.XIA Z Y.Practical technique o f wood industry Wood adhesives[M].Beijing:Chi na Fores try Publishi ng House,1996[6]MYERS G E.Hydrolytic s tabili ty of cured urea-formaldehyde res ins[J].Wood Science,1982,15(2):127--138 [7]GAO W,LI J Z,Z HO U W R.Uron s tructure in reducing freeformaldehyde content and emis sion of UF resin and plywood[C] Proce edings o f the3rd World Congress on Adhe sion and Re late d Phe nomena.Beiji ng:WCAR P,2006[8]黄泽恩,孙振鸢.脲醛树脂模型化合物的水解[J].木材工业,1992,6(1):17--20.HUANG Z E,SUN Z Y.Hydrolysis of the model compounds of urea-formaldehyde resin[J].Wood Industry,1992,6(1):17--20[9]FLOR Y P J.Princi ples o f pol yme r chemist ry[M].New York:CornellUnivers ity Press,2003:478--479[10]MUK HERJEE S.Binder composition with low formaldehyde emis sionand proces s for i ts preparati on:United States,4,992,519[P] 1991--02--12[11]FAN D B,LI J Z,ZHOU W R.Curing charac teristics of low molarratio urea-formaldehyde resins[C] Prec ee dings o f the3rd World Congress on Adhesion and Re late d Phenome na.Beijing:WCARP, 2006(责任编辑 李文军)中国林学(英文版) 征稿启事中国林学(英文版) (Forestry Studies in China)始创于1992年,是一份由北京林业大学主办的全英文刊物,目前为季刊,大16开本.主要发表经同行评议的研究论文、简报、综述.内容包括森林生态学、森林培育学、森林经理学、林木遗传与育种、林木生理学、森林病虫害防治、森林资源信息管理、林业经济学、以及林业相关学科如水土保持科学、木材科学与技术、林产品加工等,面向国内外征稿和发行.中国林学(英文版) 致力于促进国内外林业领域科研人员的学术交流,缩短中国与其他国家在相关领域的差距.本刊从2007年开始与全球著名的学术出版机构 德国Springer出版社正式合作出版,全文链接于SpringerLink数据库,并委托其代理本刊在中国大陆以外地区的发行权,进一步加快了本刊的国际化步伐.详细信息请登录http: journal 11632.中国林学(英文版) 为中国科学技术信息所核心刊物、中国期刊网全文数据库、万方数据库刊源期刊.目前收录、检索本刊的国外著名的检索机构、数据库有CA(美国化学文摘)、JA(俄罗斯文摘杂志)、CABI(国际农业与生物科学中心)等.地址:北京市清华东路35号北京林业大学148信箱 中国林学(英文版) 编辑部邮编:100083电话:010--62337915Email:pjcheng@94北 京 林 业 大 学 学 报第29卷。
脲醛树脂胶的胶凝时间影响因素及其控制
脲醛树脂胶的胶凝时间影响因素及其控制-脲醛树脂胶调制是在加入一定数量的固化剂后确保脲醛胶的活性期大于从调胶至热压这段时间,并使所有胶层在热压时间内完成固化,保证人造板的胶合质量,同时尽可能缩短热压周期,减少能源消耗,提高生产率。
脲醛树脂添加固化剂后粘度显著增长直至凝胶,这段时间即为树脂适用期,以分表示。
而适用期一段为胶凝时间的80%。
胶凝时间测定法有2种:①手工测定法。
只须使用恒温水浴、玻璃棒等极为简单化验设备。
②凝胶计时仪法。
胶凝时间既与固含量、粘度、游离醛含量及聚合度等树脂质量指标有关,又与环境温度、湿度等外界条件有关。
尽管调胶时原胶质量及外界条件有所不同,只须在树脂胶添加不同种类和不同量固化剂,使达到能满足各种人造板生产需要的胶凝时间。
1固化机理固化剂以氯化铵为例试加说明:树脂胶中存在游离甲醛,加入固化剂氯化铵即与树脂中游离醛发生反应,氯化铵与水反应及氯化铵热分解分别放出盐酸,以上3个反应为可逆反应。
使脲醛树脂胶pH值迅速下降,实现弱酸固化,分子量逐渐增大,最后形成体型网状结构树脂。
2胶凝时间影响因素2.1温度和湿度(1)调制后脲醛树脂的胶凝时间与环境温度、热压温度有关。
环境温度越高,生活力越短,胶凝时间越短,反之亦然。
其原因从反应机理得知温度会影响胶液pH值降低的速度,从而影响胶液的活性期及胶凝时间。
为此,在不同生产季节应考虑选择不同种类及不同量的固化剂,以提高胶合质量。
当氯化铵溶液加入量小于3%时,胶凝时间迅速缩短。
此外,在热压工艺中热压温度对胶凝时间也会造成一定的影响,调胶后若胶凝时间较长可适当提高热压温度,加速树脂固化,缩短生产周期。
反之,若调胶后胶凝时间过短,可适当降低热压温度,以防树脂提前固化而影响产品质量。
但热压温度过高易造成板坯局部提前固化而引起分层鼓泡;而热压温度过低,热传递效率降低延长固化时间,导致板中水分过多。
固化不全,同样会产生分层鼓泡。
(2)操作环境湿度大,固化速度慢。
脲醛树脂胶的胶凝时间影响因素及其控制
脲醛树脂胶的胶凝时间影响因素及其控制脲醛树脂胶的胶凝时间影响因素及其控制脲醛树脂胶调制是在加入一定数量的固化剂后确保脲醛胶的活性期大于从调胶至热压这段时间,并使所有胶层在热压时间内完成固化,保证人造板的胶合质量,同时尽可能缩短热压周期,减少能源消耗,提高生产率。
脲醛树脂添加固化剂后粘度显著增长直至凝胶,这段时间即为树脂适用期,以分表示。
而适用期一段为胶凝时间的80%。
胶凝时间测定法有2种:①手工测定法。
只须使用恒温水浴、玻璃棒等极为简单化验设备。
②凝胶计时仪法。
胶凝时间既与固含量、粘度、游离醛含量及聚合度等树脂质量指标有关,又与环境温度、湿度等外界条件有关。
尽管调胶时原胶质量及外界条件有所不同,只须在树脂胶添加不同种类和不同量固化剂,使达到能满足各种人造板生产需要的胶凝时间。
1、固化机理固化剂以氯化铵为例试加说明:树脂胶中存在游离甲醛,加入固化剂氯化铵即与树脂中游离醛发生反应,氯化铵与水反应及氯化铵热分解分别放出盐酸,以上3个反应为可逆反应。
使脲醛树脂胶pH值迅速下降,实现弱酸固化,分子量逐渐增大,最后形成体型网状结构树脂。
2、胶凝时间影响因素2.1、温度和湿度(1)、调制后脲醛树脂的胶凝时间与环境温度、热压温度有关。
环境温度越高,生活力越短,胶凝时间越短,反之亦然。
其原因从反应机理得知温度会影响胶液pH值降低的速度,从而影响胶液的活性期及胶凝时间。
为此,在不同生产季节应考虑选择不同种类及不同量的固化剂,以提高胶合质量。
当氯化铵溶液加入量小于3%时,胶凝时间迅速缩短。
此外,在热压工艺中热压温度对胶凝时间也会造成一定的影响,调胶后若胶凝时间较长可适当提高热压温度,加速树脂固化,缩短生产周期。
反之,若调胶后胶凝时间过短,可适当降低热压温度,以防树脂提前固化而影响产品质量。
但热压温度过高易造成板坯局部提前固化而引起分层鼓泡;而热压温度过低,热传递效率降低延长固化时间,导致板中水分过多。
固化不全,同样会产生分层鼓泡。
最新-氨基树脂胶粘剂25-PPT精品课件
2024/7/28
29
第二章 胶粘剂
2 游离甲醛的危害与控制
2.1 甲醛的危害
甲醛是一种反应活性很强的醛类化合物,它能与人体 的蛋白质反应生成氮亚甲基化合物,使蛋白质发生变性; 引起眼睛、鼻子等部位的粘膜发炎而产生痛感。
HOOC—R—NH2 + HCHO HOOC—R—N=CH2 + H2O
2024/7/28
证实了胶体理论。
2024/7/28
16
第二章 胶粘剂
胶体理论对低摩尔比UF树脂合成、固化过程中的问 题和现象解释地比较清楚,在高摩尔比情况下,UF树脂 的憎液胶体相是否存在和它对固化过程的影响如何,还 有待于揭示与证实。
2024/7/28
17
第二章 胶粘剂
1.3 脲醛树脂的改性研究
UF树脂胶粘剂与其它胶种相比,存在着耐水性差、 固化后胶层脆性大、耐老化性能差、游离甲醛含量高等 缺点,这些缺点不但限制了它的使用范围,而且影响了 产品质量。因此,为了扩大UF树脂的应用范围,根据不 同的使用要求,采用对UF树脂胶粘剂进行改性的方法来 提高其综合性能。
2024/7/28
3
第二章 胶粘剂
UF树脂胶粘剂由于其成本低廉、原料来源丰富、固 化胶层无色、操作性能好,以及良好的胶接性能等一系 列优点,成为我国人造板生产的主要胶种。也是木材加 工业中使用量最大的合成树脂胶粘剂,占该行业胶粘剂 使用量的80%以上。
2024/7/28
4
第二章 胶粘剂
20世纪60年代,人们开始研究脲醛树脂的游离甲醛 问题。到20世纪70年代,随着分析仪器的发展,人们 对UF树脂的结构、反应动力学、固化机理有了进一步 的认识。国内外对UF树脂的研究主要为以下几方面。
脲醛树脂胶实验报告
一、实验目的1. 熟悉脲醛树脂胶的制备方法;2. 了解脲醛树脂胶的性能特点;3. 分析影响脲醛树脂胶性能的因素。
二、实验原理脲醛树脂胶是一种常用的胶粘剂,主要由尿素和甲醛在酸性或碱性条件下缩合而成。
在制备过程中,通过调节反应条件,可以得到不同性能的脲醛树脂胶。
三、实验材料与仪器1. 实验材料:尿素、甲醛、氢氧化钠、盐酸、水、硫酸钠、磷酸氢二钠等;2. 实验仪器:反应釜、搅拌器、温度计、滴定管、移液管、玻璃棒、烧杯、锥形瓶等。
四、实验步骤1. 配制尿素溶液:将尿素加入一定量的水中,搅拌均匀,配制成尿素溶液;2. 配制甲醛溶液:将甲醛加入一定量的水中,搅拌均匀,配制成甲醛溶液;3. 缩合反应:将尿素溶液和甲醛溶液混合,加入一定量的氢氧化钠,调节pH值为8.5-9.5,然后在搅拌下加热至85-90℃,保持反应时间为1.5-2小时;4. 调节pH值:反应结束后,用盐酸调节pH值为7-8;5. 离心分离:将反应液离心分离,去除沉淀;6. 脱水干燥:将离心分离后的脲醛树脂胶溶液在50-60℃下进行脱水干燥,得到脲醛树脂胶固体;7. 性能测试:对制备的脲醛树脂胶进行性能测试,包括粘接力、耐水性、耐热性、耐化学性等。
五、实验结果与分析1. 粘接力:实验结果表明,制备的脲醛树脂胶具有良好的粘接力,适用于木材、纸张、纤维等材料的粘接;2. 耐水性:实验结果表明,制备的脲醛树脂胶具有良好的耐水性,适用于水下工程、防潮包装等领域;3. 耐热性:实验结果表明,制备的脲醛树脂胶具有良好的耐热性,适用于高温环境下的粘接;4. 耐化学性:实验结果表明,制备的脲醛树脂胶具有良好的耐化学性,适用于各种化学环境下的粘接。
六、结论1. 通过实验,掌握了脲醛树脂胶的制备方法;2. 制备的脲醛树脂胶具有良好的粘接力、耐水性、耐热性和耐化学性;3. 通过调整反应条件,可以制备出不同性能的脲醛树脂胶,满足不同领域的需求。
七、注意事项1. 在制备脲醛树脂胶的过程中,要注意控制反应温度、pH值、反应时间等条件,以确保产品质量;2. 甲醛是一种有毒物质,实验过程中要注意安全防护,避免吸入甲醛蒸气;3. 在储存和使用脲醛树脂胶时,要避免高温、潮湿、强酸强碱等不良环境,以免影响产品质量。
脲醛树脂快速固化方法
脲醛树脂快速固化方法
一、脲醛树脂快速固化方法
1、准备工作
(1)脲醛树脂快速固化材料:脲醛树脂和快速固化剂;
(2)快速固化条件:温度调整在60-80℃;
(3)快速固化时间:在温度调整在60-80℃的条件下,中快固化时间为20-30分钟,低温快速固化时间为1-3小时;
(4)快速固化要求:脲醛树脂固化后,其外观色泽,硬度,抗肋和耐磨应无明显变化;
2、快速固化方法
(1)在温度60-80℃的情况下,将脲醛树脂倒入有温度控制装置的加热容器中,不断搅拌,使脲醛树脂熔化;
(2)将快速固化剂加入到脲醛树脂中,搅拌使其均匀混合,控制其温度;
(3)当温度调整在60-80℃时,开始快速固化,一般中快固化时间为20-30分钟,低温快速固化时间为1-3小时;
(4)快速固化完成后,检查其外观色泽、硬度、抗肋、耐磨应无明显变化;
(5)进行清洗,除去余下的快速固化剂,并对固化体表面进行喷砂处理,彻底清理;
3、注意事项
(1)注意控制温度,温度低于60℃则脲醛树脂不能正常固化,
过高温度则容易烧焦,导致固化质量变差;
(2)搅拌时要注意,以免脲醛树脂凝结掉;
(3)快速固化剂的使用量要控制,过多会影响固化质量,太少则无法形成良好的固化效果;
(4)快速固化的质量要符合要求,表面要平整,抗肋要强,耐磨要有保证;
(5)固化完成后,定期对其表面进行维护、保养,以延长其使用寿命。
脲醛树脂固化原理
脲醛树脂固化原理脲醛树脂是一种热固性树脂,广泛应用于涂料、塑料和胶粘剂等领域。
其固化原理主要涉及脲醛树脂分子间的交联反应。
脲醛树脂的固化过程通常分为两个阶段,即缩聚和交联。
首先,脲醛树脂的分子中存在着多个活性基团,如羟基(OH)、胺基(NH2)和甲醛基(CH2O),它们在适当的条件下发生缩聚反应,生成大分子量的线性聚合物。
在缩聚过程中,甲醛基发生自身缩聚,形成甲醛多聚体,同时甲醛与脲醛树脂分子中的羟基或胺基发生缩聚反应,形成醛胺键。
接下来的交联阶段是固化的关键步骤,通过加热或加入固化剂等条件下,醛胺键进一步反应生成三维网络结构,形成了固态的脲醛树脂。
在交联过程中,醛胺键的形成使得分子间的化学键强度增加,从而提高了材料的力学性能和热稳定性。
脲醛树脂固化的过程不仅涉及缩聚和交联反应,还与条件和反应物种类有关。
在固化条件中,通常加热是必需的,可以通过单独加热或与固化剂配合使用。
加热会提高反应物分子的活性,促进缩聚和交联反应的进行。
而固化剂的选择和掺量也会影响到固化反应的速率和程度。
此外,反应物种类的选择也会对脲醛树脂的固化产物和性能产生影响。
脲醛树脂中的甲醛基和脲醛基在缩聚和交联反应中都起着重要的作用。
不同的脲醛树脂有不同的化学结构和性能特点。
例如,甲醛和尿素缩聚可得到尿素醛树脂,而甲醛和三聚氰胺缩聚则可得到三聚氰胺醛树脂。
不同反应物种类的选择会影响固化产物结构和性能。
总之,脲醛树脂固化的原理是通过缩聚和交联反应形成三维网络结构的过程。
固化条件和反应物种类的选择是影响固化反应速率和产物性能的重要因素。
通过合理控制这些因素,可以获得具有优异性能的脲醛树脂材料。
胶粘剂与涂料之四脲醛树脂胶粘剂共67页PPT
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不ห้องสมุดไป่ตู้退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
胶粘剂与涂料之四-脲醛树脂胶粘剂66页PPT
END
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
ห้องสมุดไป่ตู้ 16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
胶粘剂与涂料之四-脲醛 树脂胶粘剂
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
树脂胶化时间
树脂胶化时间一、胶化时间的定义和意义树脂胶化时间是指树脂在一定温度下从液态变为固态所需的时间。
树脂胶化时间是树脂加工过程中非常重要的参数,它直接影响到产品的质量和生产效率。
因此,准确测定树脂胶化时间对于保证产品质量和提高生产效率具有重要意义。
二、影响胶化时间的因素1. 树脂种类:不同种类的树脂由于分子结构不同,其胶化时间也会不同。
2. 温度:温度是影响树脂胶化时间的主要因素之一。
一般来说,温度越高,胶化时间越短。
3. 催化剂种类和用量:催化剂可以加速树脂固化反应,在一定范围内增加催化剂用量可以缩短胶化时间。
4. 环境湿度:环境湿度会影响树脂吸水性能,进而影响其固化速率。
5. 树脂与硬化剂比例:如果硬化剂数量不足或过多都会影响固化速率。
三、测定树脂胶化时间的方法1. 热板法:将一定量的树脂涂在加热板上,通过观察树脂表面出现凝胶状态来判断树脂胶化时间。
2. 针入度法:将一定量的树脂涂在平板上,用特制的针头垂直插入树脂中,当针头插入后不再下沉,即表示树脂已经固化。
3. 透明度法:将一定量的树脂涂在透明玻璃片上,在光源下观察其透明度变化,当变为不透明时即表示固化完成。
四、影响测定结果的因素1. 样品厚度:样品厚度会影响固化速率和胶化时间。
通常情况下,样品厚度越大,胶化时间越长。
2. 测试温度和湿度:测试环境的温度和湿度会影响测定结果。
通常情况下,测试环境应该保持恒温恒湿。
3. 样品形状和大小:样品形状和大小也会对测定结果产生影响。
通常情况下,应该尽可能保证样品形状和大小的一致性。
五、树脂胶化时间的应用1. 产品质量控制:树脂胶化时间是影响产品质量的关键因素之一。
通过准确测定树脂胶化时间,可以控制产品的固化速率和质量。
2. 生产效率提高:准确测定树脂胶化时间可以帮助企业优化生产流程,提高生产效率。
3. 工艺改进:通过对树脂胶化时间进行研究和分析,可以帮助企业改进工艺,提高产品质量和生产效率。
六、总结树脂胶化时间是影响树脂加工过程中产品质量和生产效率的关键参数。
脲醛胶的固化时间
脲醛胶的固化时间脲醛胶是一种广泛应用于工业生产和科学实验室的胶粘剂。
在使用脲醛胶时,固化时间是一个重要的参数。
固化时间指的是脲醛胶从液体状态转变为固体状态所需的时间。
固化时间的长短直接影响到脲醛胶的使用效果和工艺流程。
脲醛胶的固化时间受到多种因素的影响,包括温度、湿度、胶水的配比、硬化剂的种类和用量等等。
在正常的工作环境下,脲醛胶的固化时间通常在几分钟到几小时之间。
一般来说,温度越高、湿度越低,脲醛胶的固化时间越短。
脲醛胶的固化时间对于工业生产具有重要意义。
在生产线上,固化时间的长短直接影响产品的生产效率和质量。
如果固化时间过长,会导致生产效率低下,产品无法及时出货;如果固化时间过短,会导致产品质量不稳定,无法达到设计要求。
因此,生产工程师需要根据具体情况,合理控制脲醛胶的固化时间,以确保生产效率和产品质量的平衡。
在科学实验室中,固化时间的长短对于研究人员的实验设计和结果分析也具有重要意义。
固化时间过长会延长实验周期,增加实验成本;固化时间过短会影响实验结果的可靠性和准确性。
因此,科研人员需要根据实验目的和条件,选择合适的脲醛胶固化时间,以保证实验的顺利进行和结果的可信度。
为了控制脲醛胶的固化时间,可以采取一些方法。
首先,可以调整胶水的配比,增加或减少硬化剂的用量,以达到所需的固化时间。
其次,可以调节工作环境的温度和湿度,通过控制环境条件来影响固化时间。
此外,还可以使用加热设备或冷却设备来加快或延长固化时间。
脲醛胶的固化时间是一个重要的参数,直接影响到胶水的使用效果和工艺流程。
在工业生产和科学实验室中,合理控制固化时间对于保证生产效率和产品质量具有重要意义。
通过调整配比、控制环境条件和使用加热设备等方法,可以有效地控制脲醛胶的固化时间,满足不同需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脲醛树脂胶的胶凝时间影响因素及其控制
脲醛树脂胶的胶凝时间影响因素及其控制
-
脲醛树脂胶调制是在加入一定数量的固化剂后确保脲醛胶的活性期大于从调胶至热压这段时间,并使所有胶层在热压时间内完成固化,保证人造板的胶合质量,同时尽可能缩短热压周期,减少能源消耗,提高生产率。
脲醛树脂添加固化剂后粘度显著增长直至凝胶,这段时间即为树脂适用期,以分表示。
而适用期一段为胶凝时间的80%。
胶凝时间测定法有2种:①手工测定法。
只须使用恒温水浴、玻璃棒等极为简单化验设备。
②凝胶计时仪法。
胶凝时间既与固含量、粘度、游离醛含量及聚合度等树脂质量指标有关,又与环境温度、湿度等外界条件有关。
尽管调胶时原胶质量及外界条件有所不同,只须在树脂胶添加不同种类和不同量固化剂,使达到能满足各种人造板生产需要的胶凝时间。
1固化机理
固化剂以氯化铵为例试加说明:
树脂胶中存在游离甲醛,加入固化剂氯化铵即与树脂中游离醛发生反应,氯化铵与水反应及氯化铵热分解分别放出盐酸,以上3个反应为可逆反应。
使脲醛树脂胶pH值迅速下降,实现弱酸固化,分子量逐渐增大,最后形成体型网状结构树脂。
2胶凝时间影响因素
2.1温度和湿度
(1)调制后脲醛树脂的胶凝时间与环境温度、热压温度有关。
环境温度越高,生活力越短,胶凝时间越短,反之亦然。
其原因从反应机理得知温度会影响胶液pH值降低的速度,从而影响胶液的活性期及胶凝时间。
为此,在不同生产季节应考虑选择不同种类及不同量的固化剂,以提高胶合质量。
当氯化铵溶液加入量小于3%时,胶凝时间迅速缩短。
此外,在热压工艺中热压温度对胶凝时间也会造成一定的影响,调胶后若胶凝时间较长可适当提高热压温度,加速树脂固化,缩短生产周期。
反之,若调胶后胶凝时间过短,可适当降低热压温度,以防树脂提前固化而影响产品质量。
但热压温度过高易造成板坯局部提前固化而引起分层鼓泡;而热压温度过低,热传递效率降低延长固化时间,导致板中水分过多。
固化不全,同样会产生分层鼓泡。
(2)操作环境湿度大,固化速度慢。
其原因在环境湿度大的条件下,加速胶液中羟甲基团及次甲基醚键水解速度而放出甲醛,有碍于树脂固化,因而延长了胶凝时间。
2.2原胶及木材pH值
(1)原胶pH值。
脲醛树脂胶为酸固化胶种,脲醛树脂加固化剂量弱酸性(pH4.5~6)条件下,对人造板胶合强度最为理想,且缩短胶凝时间。
随着原胶pH值升高延长了胶凝时间。
固化后胶层pH值过低或过高都不利胶层固化。
若胶层pH<3.5,虽反应激烈能加速固化,但胶层易老化。
若pH值>5时,胶层固化不完全。
在脲醛树脂中,pH值决定着反应机理和反应速度,由于在树脂液中存在游离醛,脲的反应活性点及羟甲基等使胶凝时间与pH值成一定的线性关系。
不同p
H值的胶液具有不同脲醛反应的活化能,活化能愈小则反应愈易进行。
在偏酸性条件下,pH值低的胶液其活化能较低,缩合反应易于进行,则胶凝时间也较短。
(2)木材pH值和碱缓冲容量。
木材中的酸性物质会促进脲醛树脂固化,而碱性物质则不利脲醛树脂固化。
但绝大多数树种木材属于酸性物质,pH值在4~6之间,总缓冲容量为0.146mmol,但大青杨、春榆、色木、家榆等树种木材属碱性物质,pH值偏高,特别是pH值和碱缓冲能力均高的树种会降低脲醛树脂固化速度,延长胶凝时间,须增大固化剂用量或适当延长热压时间。
碱性树种木材易造成延缓固化和固化不完全而引起分层,而酸性木材易提前固化易产生分层鼓泡。
胶凝时间随着木材pH值和碱缓冲容量减少而缩短。
反之亦然。
即使同一树种,因心材与边材pH值不同,其胶凝时间也不同。
如杨木心材pH值大于边材pH值,心材较边材胶凝时间为长。
热压后心材板坯常发生开胶现象。
由于心材与酸性固化剂起中和反应,降低了胶液酸性,致使减缓胶液固化速度或阻止固化,固化难以形成网状交联结构,降低胶结合强度,使板坯易于开胶。
2.3原胶的树脂分子量、固含量及粘度
原胶分子量大、因含量高、粘度大,则适用期短,胶凝时间短。
这与树脂的摩尔比,反应温度、反应时间及脱水量有关。
原胶的粘度大,反映了树脂反应时间长,脱水量多,反应温度低。
固含量高,则反映了树脂反应时间长,脱水量多,摩尔比低。
树脂分子量大,则反映了树脂反应温度高,反应时间短。
2.4游离醛含量
游离醛含量既加速树脂胶中羟甲基团及次甲基醚键水解速度,有碍于树脂的胶凝和固化。
同时,树脂加入氯化铵固化剂后,需要有足够游离甲醛与氯化铵起反应才能加速固化,缩短胶凝时间。
但一般游离醛含量高有利于树脂的固化,但若游离醛含量过高,既影响粘结强度,又造成环境污染。
游离醛含量过低,又会延长胶凝时间。
而游离醛含量高低,除与反应速度、脱水与否有关外,主要取决于摩尔比高低。
摩尔比高,则游离甲醛含量亦高,适用期短,胶凝时间亦短。
2.5固化剂种类和加入量
固化剂种类繁多,但以氯化铵应用最为广泛,具有价格低廉,水溶性好,无毒无味,使用方便等特点。
但若采用多组份固化剂,使夏季可延长树脂的适用期,冬季可加速树脂的固化。
常在氯化铵中适当配合些浓盐酸、尿素、三聚氢铵、六次甲基四胺等化合物,也可由硫酸羟胺、水、尿素、氯化铵等或由过硫酸铵、氨、水等组成复合性固化剂。
既可使树脂迅速固化,又可使树脂达到令人满意的适用性。
若采用潜伏性固化剂,既无早期固化的危险,加热时还可加速固化,使用效果良好。
3控制适宜胶凝时间
(1)气温对脲醛树脂胶的胶凝时间影响十分显著,为此,应随不同季节变更固化剂的品种及用量,以确保脲醛树脂适宜的胶凝时间(见表1)。
夏季可参照表1,随温度升高适当减少氯化铵用量。
冬季可采用硫酸羟胺、氯化铵、尿素、水组成或由过硫酸铵、氨、水组成的复合固化剂,更便于迅速固化。
(2)对湿度低的地区或季节,固化速度快需少加固化剂量。
反之,对湿度高的地区或季节,固化速度慢时宜多加固化剂量,以便提高生产效率。
(3)脲醛树脂胶pH值应控制在pH<7~8.5范围内,这样可便于调胶的控制。
(4)调整热压工艺。
冬季为了缩短固化时间,可从改变热压工艺着手,提高热压温度,延长热压时间,加速树脂固化,缩短生产周期。
(5)调整制胶工艺。
脲醛树脂胶冬季粘度可略高于夏季粘度。