新课标人教A版高中数学必修五第三章第3节《分式不等式与高次不等式》同步训练题(无答案)

合集下载

人教A版高中数学必修五章节素质测试题——第三章 不等式.doc

人教A版高中数学必修五章节素质测试题——第三章 不等式.doc

新课标高中数学人教A 版必修5章节素质测试题——第三章 不等式(考试时间:120分钟 满分:150分)姓名__________评价_________一、选择题(本大题共12小题,每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确) 1.(11广东文5)不等式0122>--x x 的解集是( )A .1(,1)2-B .(1, +∞)C .(-∞,1)∪(2,+∞)D .1(,)(1,)2-∞-⋃+∞2.(11上海理15)若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( )A. 222a b ab +>B. a b +≥C.11a b +> D. 2b a a b +≥ 3.(11陕西文3)设0a b <<,则下列不等式中正确的是( )A.2a b a b +<<<B.2a ba b +<<< C.2a b a b +<<< D2a ba b +<<<4.(11重庆文7)若函数)2(21)(>-+=x x x x f 在x a =处取最小值,则a =( )A.1+B.1.3D .45.(12福建理5)下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+ D .)(1112R x x ∈>+6.(12广东理5)已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A .12B .11C .3D .1-7.(09湖北文8)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆车至多只运一次,则该厂所花的最少运输费用为( )A.2000元B.2200元C.2400元D.2800元 8.(10重庆理7)已知822,0,0=++>>xy y x y x ,则y x 2+的最小值是( )A.3B.4C.29 D.211 9.(10全国Ⅰ文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是( )A.(1,)+∞B.[1,)+∞C. (2,)+∞D. [2,)+∞ 10.(09山东文5)在R 上定义运算⊙: a ⊙b a ab b ++=2,则满足x ⊙)2(-x <0的实数x 的取值范围为( )A. {}20<<x xB. {}12<<x x - C. {}12>-<x x x ,或 D. {}21<<x x -11.(11浙江理理5)设实数y x 、满足不等式组250270,0x y x y x +-⎧⎪+-⎨⎪⎩>>≥,y ≥0,若y x 、为整数,则34x y +的最小值是( ) A .14B .16C .17D .1912.(09陕西理11)若x ,y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围是( )A. (1-,2 )B. (4-,2 )C. (4,0]-D. (2,4)- 二、填空题(每小题5分,共20分. 将你认为正确的答案填写在空格上) 13.(10山东文14)已知+∈R y x ,,且满足134x y+=,则xy 的最大值为____________. 14.(08江苏4)A={}73)1(x 2+<-x x ,则Z A I 的元素的个数为 . 15.(11新课标理13)若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 .16.(10安徽文15)若200=+>>b a b a ,,,则下列不等式对一切满足条件的b a ,恒成立的是 . (写出所有正确命题的编号).①1≤ab ; ②2≤+b a ; ③222≥+b a ; ④333≥+b a ;⑤211≥+ba 三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤) 17.(本题满分10分)已知R a ∈,试比较a+24与a -2的大小. 18.(本题满分12分,07江西文17)已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩≤满足29()8f c =.(Ⅰ)求常数c 的值;(Ⅱ)解不等式()18f x >+.19.(本题满分12分,11安徽理19)(Ⅰ)设1,1≥≥y x ,证明xy yx xy y x ++≤++111; (Ⅱ)设c b a ≤≤<1,证明c b a a c b a c b c b a log log log log log log ++≤++.20.(本题满分12分,08福建文20)已知{}n a 是正整数组成的数列,11a =,且点*1)()n a n N +∈在函数21y x =+的图像上: (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足111,2na n nb b b +==+,求证:221n n n b b b ++⋅<.21.(本题满分12分,福建文21)设函数f (θ)cos θθ+,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x,y ),且0θπ≤≤. (1)若点P 的坐标为1(,22,求f ()θ的值; (II )若点P (x ,y )为平面区域Ω:x+y 1x 1y 1≥⎧⎪≤⎨⎪≤⎩,上的一个动点,试确定角θ的取值范围,并求函数()f θ的最小值和最大值.22.(本题满分12分,10广东19)某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?13.__3__. 14. 6 . 15. -6 . 16. ①,③,⑤. 三、解答题 17.解:aa a a a +-+-=--+2)2)(2(4)2(24 ,22)4(422+=+--=a a a a ①当2-<a 时,0)2(24<--+a a ,<+a24a -2; ②当02≠->a a 且时,0)2(24>--+a a ,>+a 24a -2;③当0=a 时,0)2(24=--+a a ,=+a24a -2.18. 解:(Ⅰ)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=, 12c =. (Ⅱ)由(Ⅰ)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤,由()18f x >+得, ①当102x <<时,121+x >182+,解得x >42,所以142x <<; ②当112x <≤时,124+-x >182+, 即x42->25321222-=,x 4->25-,解得x <85,所以1528x <≤.综上所述,不等式()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.19. 证明:(Ⅰ)由于x ≥1,y ≥1,所以xy yx xy y x ++≤++111 2)(1)(xy x y y x xy ++≤++⇔将上式中的右式减左式,得)1)(1)(1()1)(1()1)(()1)(1())()(()1)(()1)(())((22---=+---=-+--+=+-+--=++-++y x xy y x xy xy xy y x xy xy y x y x xy xy y x xy xy x y 既然x ≥1,y ≥1,所以0)1)(1)(1(≥---y x xy ,从而所要证明的不等式成立. (Ⅱ)设y c x b b a ==log ,log ,由对数的换底公式得xy c yb x a xy a ac b c ====log ,1log ,1log ,1log 于是,所要证明的不等式即为xy yx xy y x ++≤++111 其中1log ,1log ≥=≥=c y b x b a 故由(Ⅰ)立知所要证明的不等式成立.20. 解:(Ⅰ)由已知得1)(21+=+n n a a ,即11=-+n n a a ,又11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列. 因此.1)1(1)1(1n n d n a a n =⋅-+=-+=故数列{}n a 的通项公式为).(*N n n a n ∈= (Ⅱ)由(Ⅰ)知:n a n =,从而nn n b b 21=-+.)()()()(12123121----+-⋯⋯+-+-+=n n n n n b b b b b b b b b b.1221)21(1222112-=--⋅=++⋯⋯++=--n n n n因为212212)12()12)(12(----=-⋅++++n n n n n n b b b.02)1222()1222(122222<-=+⋅--+--=++++n n n n n n 所以b n ·b n +2<b 21+n .21. 解:(Ⅰ)由点P的坐标和三角函数的定义可得sin 1cos .2θθ⎧=⎪⎪⎨⎪=⎪⎩于是1()cos 2.22f θθθ=+=+= (Ⅱ)作出平面区域Ω(即三角形区域ABC )如图所示,其中A (1,0),B (1,1),C (0,1).于是0.2πθ≤≤又()cos 2sin()6f πθθθθ=+=+,且2,663πππθ≤+≤故当,623πππθθ+==即,()f θ取得最大值,且最大值等于2;当,066ππθθ+==即时,()f θ取得最小值,且最小值等于1.22. 解:设为该儿童分别预订x 个单位的午餐和y 个单位的晚餐,设费用为z 元,则目标函数为y x z 45.2+=,由题意知:⎪⎪⎩⎪⎪⎨⎧∈≥+≥+≥+Ny x y x y x y x 、54106426664812,即⎪⎪⎩⎪⎪⎨⎧∈≥+≥+≥+N y x y x y x y x 、275371623. 画出可行域:由⎩⎨⎧=+=+27537y x y x 得⎩⎨⎧==34y x ,所以直线7=+y x 与2753=+y x 的交点为)3,4(A .当直线045.20=+y x l :自左至右平行移动经过点)3,4(A 时,.2245.2min =+=y x z 答:应当为儿童分别预定4个单位午餐和3个单位晚餐,能满足上述的营养要求,并且花费最少.。

高中数学必修5(人教A版)第三章不等式3.4知识点总结含同步练习及答案

高中数学必修5(人教A版)第三章不等式3.4知识点总结含同步练习及答案

描述:例题:高中数学必修5(人教A版)知识点总结含同步练习题及答案第三章 不等式 3.4 基本不等式一、学习任务掌握基本不等式 ();能用基本不等式证明简单不等式(指只用一次基本不等式即可解决的问题);能用基本不等式求解简单的最大(小)值问题(指只用一次基本不等式即可解决的问题).二、知识清单均值不等式的含义均值不等式的应用 均值不等式的实际应用三、知识讲解1.均值不等式的含义均值定理如果 ,,那么 .当且仅当 时,等号成立.对任意两个正实数,,数 叫做 , 的算术平均值,数 叫做 , 的几何平均值.均值不等式可以表达为:两个正实数的算术平均值大于或等于它的几何平均值.均值不等式也称为基本不等式 .两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.⩽ab −−√a +b2a >0,b >0a b ∈R +⩾a +b2ab −−√a =b a b a +b2a b ab −−√a b 设 ,,下列不等式中不成立的是( )A. B.C. D.解:D,故 A 中不等式成立;,所以,所以 B 中不等式成立;,, ,所以不等式两边同时平方可得 ,故 C 中不等式成立.因为 的符号不确定,当时,不等式不成立.a >0b >0+⩾2b a a b+⩾2ab a 2b2ab ⩽()a +b22a −b +⩾21a −b+⩾2=2b a ab ⋅b a ab −−−−−−√(a −b ⩾0)2+⩾2aba 2b 2a >0b >0⩽a +b 2ab −−√⩾ab ()a +b 22a −b a ⩽b 已知 ,,且 ,求 的最大值.解:由均值不等式可得 ,当且仅当 时等号成立,所以 ,当且仅当 , 时等号成立,所以 的最大值为 .x y ∈R +x +4y =1xy x +4y ⩾2x ⋅4y −−−−−√x =4y xy ⩽116x =12y =18xy 116描述:例题:2.均值不等式的应用基本不等式的应用非常广泛,如求函数最值,证明不等式,比较大小,求取值范围,解决实际问题等.其中,求最值是其最重要的应用 .利用均值不等式求最值时应注意“一正,二定,三相等”,三者缺一不可.求函数 (x>3)\) 的最小值.解:因为 ,所以,所以当且仅当,即 时,取 “” 号,所以 .y =+x 1x −3x >3x −3>0y =+x =+(x −3)+3⩾5,1x −31x −3x −3=1x −3x =4==5y min (1)求函数的最小值;(2)求函数 的最大值.解:(1)当,所以,,所以当且仅当 ,即 时, 取得最小值 .(2)当,所以 ,,所以当且仅当 ,即 时, 取得最大值 .f (x )=+3x (x >0)12x f (x )=+3x (x <0)12x x >0>012x3x >0f (x )=+3x ⩾2=12,12x ⋅3x 12x−−−−−−√=3x 12xx =2f (x )12x <0−>012x−3x >0f (x )=+3x 12x=−[(−)+(−3x )]12x ⩽−2(−)⋅(−3x )12x −−−−−−−−−−−−−√=−12,−=−3x 12xx =−2f (x )−12求函数的最大值.解:因为 ,所以 ,所以f (x )=x (1−3x )(0<x <)130<x <130<1−3x <1描述:例题:3.均值不等式的实际应用利用基本不等式解决实际问题的一般步骤:①正确理解题意,设出变量,一般可以把要求最大(小)值的变量定为函数;②建立相应的函数关系式,把实际问题抽象成函数的最大值或最小值问题;③在定义域内,求出函数的最大值或最小值;④正确写出答案.当且仅当 ,即 时, 取得最大值 .f (x )=x (1−3x )=×3x (1−3x )13⩽13()3x +1−3x 22=,1123x =1−3x x =16f (x )112设 ,求证:.证明:因为 ,,,所以当且仅当 时,等号成立,所以 .a ,b ,c ∈R ++⩾ab +bc +ca a 2b 2c 2+⩾2ab a 2b 2+⩾2bc b 2c 2+⩾2ca c 2a 2(+)+(+)+(+)⩾2ab +2bc +2ca ,a 2b 2b 2c 2c 2a 2a =b =c ++⩾ab +bc +ca a 2b 2c 2建造一个容积为 ,深为 的长方形无盖水池,如果池底的造价是每平方米 元,池壁的造价是每平方米 元,求这个水池的最低造价.解:设水池的造价为 元,池底的长为 ,则宽为.所以当且仅当 ,即 时,等号成立.所以当 时,.答:水池的最低造价为元.8m 32m 12080y x m 4xm y =4×120+2(2x +)×808x=480+320(x +)4x ⩾480+320×2x ⋅4x−−−−−√=1760,x =4xx =2x =2=1760y min 1760某种汽车,购车费用是 万元,每年使用的保险费、汽油费约为 万元,年维修费第一年是 万元,以后逐年递增 万元.问这种汽车使用多少年时,它的年平均费用最少?解:设使用 年时,年平均费用 最少.由于“年维修费第一年是 万元,以后逐年递增 万元”,可知汽车每年维修费构成以 万元为首项, 万元为公差的等差数列.因此汽车使用 年的总维修费用为万元,所以100.90.20.2x y 0.20.20.20.2xx (0.2+0.2x )2四、课后作业 (查看更多本章节同步练习题,请到快乐学)当且仅当 ,即 时, 取得最小值.答:汽车使用 年时年平均费用最少.y =10+0.9x +x (0.2+0.2x )2x =10+x +0.1x 2x =1++10x x 10⩾1+2⋅10x x10−−−−−−−√=3=10xx 10x =10y 10答案:1. 若 ,下列不等式中总能成立的是 A .B .C .D .Ca >b >0()>>2aba +ba +b2ab −−√>>a +b 22ab a +b ab−−√>>a +b 2ab −−√2ab a +b>>2ab a +bab −−√a +b 2答案:2. 下列各式中最小值是 的是 A .B .C .D .D2()+x y y x+5x 2+4x 2−−−−−√tan x +cot x+2x 2−x答案:解析:3. 已知 ,则函数 的最大值是A .B .C .D .C ,由 可得 ,根据基本不等式可得,当且仅当 即 时取等号,则 .x <12y =2x +12x −1()21−1−2y =−[(1−2x )+]+111−2x x <121−2x >0(1−2x )+⩾211−2x 1−2x =11−2x x =0=−1y max 答案:4. 如果正数 满足 ,那么 A . ,且等号成立时 的取值唯一B . ,且等号成立时 的取值唯一C . ,且等号成立时 的取值不唯一D . ,且等号成立时 的取值不唯一Aa ,b ,c ,d a +b =cd =4()ab ⩽c +d a ,b ,c ,d ab ⩾c +d a ,b ,c ,d ab ⩽c +d a ,b ,c ,d ab ⩾c +d a ,b ,c ,d高考不提分,赔付1万元,关注快乐学了解详情。

人教新课标版数学高二必修5(R-A版)过关测试 第三章 不等式

人教新课标版数学高二必修5(R-A版)过关测试 第三章 不等式

第三章过关测试卷(100分,45分钟)一、选择题(每题6分,共48分)1.设a <b <0,下列不等式一定成立的是( )A.a 2<ab <b 2B.b 2<ab <a 2C.a 2<b 2<abD.ab <b 2<a 2 2.关于x 的不等式022>-+bx ax 的解集是⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,3121, ,则ab 等 于( )A.24B.6C.14D.14- 3.〈四川〉不等式32+-x x ≤2的解集是( ) A.{}38->-<x x x 或 B.{}38->-≤x x x 或 C.{}23≤≤-x x D.{}23≤<-x x 4.已知函数y =f (x )的图象如图1所示,则不等式0112>⎪⎭⎫⎝⎛-+x x f 的解集为( )A.()1,∞-B. ()1,2-C. ()2,-∞-D. ()()+∞-∞-,12,图1 图25.设x ,y ∈R ,a >1,b >1,若a x =b y =3,32=+b a ,则yx 11+的最大值为( ) A.2 B.23 C.1 D.21 6.若不等式x 2+ax +1≥0对一切x ∈⎥⎦⎤ ⎝⎛21,0成立,则a 的最小值为( )A.0B. 2-C.25-D. 3- 7.如图2,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车的运营总利润y (单位:十万元)与营运年数x (x ∈N )为二次函数关系.若使营运的年平均利润最大,则每辆客车应营 运( )A.3年B.4年C.5年D.6年8.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--,0,0,02,063y x y x y x 若目标函数z =ax +by (a >0,b >0)的最大值为12,则b a 32+的最小值为( ) A.625 B. 38 C. 311 D.4 二、填空题(每题5分,共15分)9.〈许昌五校联考〉已知实数x ,y 满足条件⎪⎩⎪⎨⎧≥≤≤≥+-,0,30,02y x y x 则目标函数y x z -=2的最大值是 .10.已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞),则ac c a 11+++的最小值为 . 11.〈安徽理〉设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,则下列命题正确的是 (写出所有正确命题的编号).①若ab >c 2,则3π<C ;②若a +b >2c ,则3π<C ;③若a 3+b 3=c 3,则2π<C ; ④若(a +b )c <2ab ,则2π>C ;⑤若(a 2+b 2)c 2=2a 2b 2,则3π>C .三、解答题(14题13分,其余每题12分,共37分) 12.已知x >0,y >0且082=-+xy y x ,求: (1)xy 的最小值; (2)x +y 的最小值.13.医院用甲、乙两种原料给手术后的病人配营养餐,甲种原料每10 g 含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g 含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质,试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?14.设a >0,b >0,对任意的实数x >1,有b x xax >-+1成立,试比较1+a 和b 的大小.参考答案及点拨一、1.B 点拨:∵a <b <0,∴()()0,022>-=->-=-b a b b ab b a a ab a ,∴a 2>ab ,ab >b 2,∴a 2>ab >b 2,故选B.2.A 点拨:由题意知3121,-是方程022=-+bx ax 的根,故有⎪⎩⎪⎨⎧-=⨯--=+-,23121,3121a a b ∴a =12,b =2,∴ab =24. 3.B 点拨:原不等式可化为232-+-x x ≤0,即38+--x x ≤0,即(x +3)(x +8)≥0且3-≠x ,解得:x ≤-8或3->x .4.B 点拨:由函数y =f (x )的图象知:要使0112>⎪⎭⎫⎝⎛-+x x f ,则需1112<-+x x ,即012<-+x x ,利用穿根法得12<<-x (如答图1). ∴原不等式的解集为()1,2-.答图15.C 点拨:∵a x =b y =3,∴3log ,3log b a y x ==.∴()3lg ·lg 3lg lg 3lg lg 3log 13log 111b a b a y x b a =+=+=+. ∵ab b a 232≥+=,即ab ≤3(当且仅当a =b 时,取“=”),由⎩⎨⎧==+,b a b a ,32得⎩⎨⎧==.3,3b a ∴当3==b a 时,ab 有最大值3. ∴yx 11+的最大值为1.故选C. 6.C 点拨:∵不等式12++ax x ≥0对一切⎥⎦⎤ ⎝⎛∈21,0x 成立,∴对一切⎥⎦⎤ ⎝⎛∈21,0x ,12--≥x ax ,即x x a 12+-≥成立.令⎪⎭⎫ ⎝⎛+-=+-=x x x x x g 11)(2.易知⎪⎭⎫ ⎝⎛+-=x x x g 1)(在⎥⎦⎤⎝⎛21,0内为增函数. ∴当21=x 时,25)(max -=x g .∴a 的取值范围是25-≥a ,即a 的最小值是25-.故选C.7.C 点拨:由题图知抛物线顶点坐标为(6,11),且过点(4,7).设()1162+-=x a y ,将(4,7)代入,得()116472+-=a ,∴1-=a .∴()251211622-+-=+--=x x x y .∴年平均利润为⎪⎭⎫ ⎝⎛+-=+--=x x x x x y 25121225.∵1025≥+x x (当且仅当x x 25=,即x =5时,取“=”),∴当x =5时,xy有最大值2.故选C. 8.A 点 拨:不等式组表示的平面区域如答图2所示的阴影部分,当直线ax +by =z (a >0,b >0)过直线02=+-y x 与直线063=--y x 的交点(4,6)时,目标函数by ax z += (a >0,b >0)取得最大值12,即4a +6b =12,即2a +3b =6, 而62526136136323232=+≥⎪⎭⎫ ⎝⎛++=+•⎪⎭⎫ ⎝⎛+=+b a a b b a b a b a (当且仅当a =b =56时取“=”),故选A.答图2 答图3二、9. 6 点拨:平面区域如答图3所示,平移直线02=-y x ,当直线过点A (3,0)时,目标函数的值最大,最大值为6.10.4 点拨:依题意f (x )的最小值为0,所以a >0且0211=+-=⎪⎭⎫ ⎝⎛-c aa a f ,即a >0且ac =1,所以c >0,故422112222=+≥+++=+++=+++ac ac c a c a accc a a a c c a ,当且仅当a =c =1时,等号成立.11.①②③ 点拨:对于①,∵ab >c 2,∴212222cos 22222=-≥-+>-+=ab ab ab ab ab b a ab c b a C (当且仅当a =b 时取“=”).又∵C ∈(0,π),∴⎪⎭⎫⎝⎛∈3,0πC ,∴①正确. 对于②,∵a +b >2c >0,∴4)(22b ac +<.∴()()21222143242cos 22222222=≥-+=+-+>-+=ab ab ab abb a abb a ba abcb a C (当且仅当a =b 时取“=”). 又∵C ∈(0,π),∴⎪⎭⎫ ⎝⎛∈3,0πC ,∴②正确.对于③, ∵333c b a =+, ∴()()()()=-+=+-+=-+33422423332232322233b a b a b a b a b a c b a()04233332222>≥-+b a ab b a b a (当且仅当a =b 时取“=”).∴(a 2+b 2)3>(c 2)3,即a 2+b 2>c 2.∴02cos 222>-+=ab c b a C ,∴2π<C ,∴③正确. 对于④,∵0<(a +b )·c <2ab , ∴()ab b a b a c ≤+<22224 (当且仅当a =b 时取“=”).∴021222cos 22222>=≥-+>-+=ab ab ab ab b a ab c b a C (当且仅当a =b 时取“=”),∴2π<C ,故④不正确.对于⑤,∵(a 2+b 2)·c 2=2a 2b 2, ∴ab ab b a b a b a c =≤+=2222222222(当且仅当a =b 时取“=”), ∴212222cos 22222=-≥-+≥-+=ab ab ab ab ab b a ab c b a C (当且仅当a =b 时取“=”).又∵C ∈(0,π),∴⎥⎦⎤ ⎝⎛∈30π,C ,故⑤不正确.∴正确命题为:①②③.三、12.解:(1)由082=-+xy y x ,得128=+yx ,又x >0, y >0,则xy y x y x 8282281=⋅≥+=,得xy ≥64.当且仅当⎪⎪⎩⎪⎪⎨⎧==+,28,128yx yx 即⎩⎨⎧==4,16y x 时等号成立.此时(xy )min =64.(2)由082=-+xy y x ,得128=+yx , 则()1882210821028=⋅+≥++=+⋅⎪⎪⎭⎫ ⎝⎛+=+xyy x x yy x y x y x y x . 当且仅当⎪⎪⎩⎪⎪⎨⎧==+,82,128x y yx yx 即⎩⎨⎧==6,12y x 时等号成立.此时(x +y )min =18.13.解:设甲、乙两种原料各用10x g 、10y g ,所需费用为z 元.由题意,得z =3x +2y ,线性约束条件为⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+,0,0,40410,2275y x y x y x 画出可行域如答图4中阴影部分.作直线l 0:3x +2y =0,则易知当l 0平移至l 位置时,z 有最小值,此时l 过点A .由⎩⎨⎧=+=+40410,3575y x y x 得⎪⎭⎫ ⎝⎛3,514A .∴用甲、乙原料分别为514×10=28(g),3×10=30(g)时,费用最省. 温馨提示:本题设“甲、乙原料分别为10x g 、10y g ”比设“甲、乙原料分别为x g,y g ”运算方便.答图414.解:设()1-+=x x ax x f ,则()()1111111)(-+-++=-++=x x a a x ax x f , ∵x >1,∴1-x >0,∴()2121)(+=++≥a a a x f .当且仅当()()1111>-=-x x x a ,即ax 11+=时,上式取“=”,又f (x )>b 恒成立,∴()21+<a b ,又∵a >0,b >0,∴b a >+1.。

新课标人教版必修5高中第3章不等式单元检测试卷及答案解析(原始打印版)

新课标人教版必修5高中第3章不等式单元检测试卷及答案解析(原始打印版)

新课标人教版必修5高中数学 第3章 不等式单元检测试卷1.设a b <,c d <,则下列不等式中一定成立的是 ( )A .d b c a ->-B .bd ac >C .d b c a +>+D .c b d a +>+2. “0>>b a ”是“222b a ab +<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.不等式b ax >的解集不可能是 ( )A .φB .RC .),(+∞a bD .),(ab --∞ 4.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于 ( ) A .-14 B .14 C .-10 D .105.不等式||x x x <的解集是 ( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 6.若011<<ba ,则下列结论不正确的是 ( ) A .22b a < B .2b ab < C .2>+ba ab D .||||||b a b a +>+7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化 8.下列各式中最小值是2的是 ( )A .y x +x yB .4522++x x C .tan x +cot x D . x x -+229.下列各组不等式中,同解的一组是 ( )A .02>x 与0>xB .01)2)(1(<-+-x x x 与02<+xC .0)23(log 21>+x 与123<+x D .112≤--x x 与112≤--x x 10.如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( )A. }8|{<a aB. }8|{>a aC. }8|{≥a aD. }8|{≤a a 11.若+∈R b a ,,则b a 11+与ba +1的大小关系是 .12.函数121lg+-=x xy 的定义域是 . 13.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.14. 已知0()1,0x x f x x ≥⎧=⎨-<⎩,, 则不等式3)2(≤+x f 的解集___ _ ____.15.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是___ _ ____. 16.解不等式:21582≥+-x x x17.已知1<a ,解关于x 的不等式12>-x ax.18.已知0=++c b a ,求证:0≤++ca bc ab 。

新课标A版高中数学必修5:第三章+不等式++单元同步测试(含解析)

新课标A版高中数学必修5:第三章+不等式++单元同步测试(含解析)

第三章测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若1a <1b <0,则下列不等式中不正确的是( ) A .a +b <ab B.b a +ab >2 C .ab <b 2D .a 2<b 2解析 由1a <1b <0,可得b <a <0,∴a 2<b 2. 答案 D2.若a ,b >0,且P =a +b2,Q =a +b ,则P ,Q 的大小关系是( )A .P >QB .P <QC .P ≥QD .P ≤Q解析 P 2-Q 2=a +b +2ab2-(a +b ) =-(a -b )22≤0, 所以P 2≤Q 2,即P ≤Q . 答案 D3.已知向量a =(x ,-1),b =(y -1,1),x ,y ∈R +,若a ∥b ,则t =x +1x +y +1y 的最小值是( )A .4B .5C .6D .8解析 由a ∥b ,得x +y =1.∴t =t (x +y )=⎝ ⎛⎭⎪⎫1+1x +1y (x +y )=1+1+y x +xy +1≥3+2y x ·x y =5.当且仅当x =y =12时,t 取最小值5. 答案 B4.若集合A ={x |(2x +1)(x -3)<0},B ={x ∈N *|x ≤5},则A ∩B 是( )A .{1,2,3}B .{1,2}C .{4,5}D .{1,2,3,4,5}解析 因为集合A ={x |-12<x <3},又集合B ={x ∈N *|x ≤5},所以A ∩B ={1,2},故选B.答案 B5.若m <n ,p <q 且(p -m )(p -n )<0,(q -m )(q -n )<0,则m ,n ,p ,q 从小到大排列顺序是( )A .p <m <n <qB .m <p <q <nC .p <q <m <nD .m <n <p <q解析 将p ,q 看成变量,则m <p <n ,m <q <n . 答案 B6.当点(x ,y )在直线x +3y =2上移动时,z =3x +27y +1的最小值是( )A .339 B .7 C .1+2 2D .6解析 z =3x +27y +1≥23x ·27y +1=23x +3y +1=232+1=7.答案 B 7.如图,目标函数z =kx -y 的可行域为四边形OEFG (含边界),若点F ⎝ ⎛⎭⎪⎫23,45是目标函数的最优解,则k 的取值范围是( )A.⎝⎛⎭⎪⎫-125,45 B.⎝ ⎛⎭⎪⎫310,125 C.⎣⎢⎡⎦⎥⎤-125,-310D.⎣⎢⎡⎦⎥⎤-103,-512解析 k GF =-310,k EF =-125,由题意,知k EF ≤k ≤k GF . 答案 C8.函数f (x )=⎩⎪⎨⎪⎧x (x >1),-1(x ≤1),则不等式xf (x )-x ≤2的解集为( )A.[]-2,2B.[]-1,2C.(]1,2D.[]-2,-1∪(]1,2解析 ⎩⎪⎨⎪⎧ x >1,x 2-x ≤2,或⎩⎪⎨⎪⎧x ≤1,-x -x ≤2,解得-1≤x ≤2.答案 B9.某金店用一杆不准确的天平(两臂不等长)称黄金,某顾客要买10 g 黄金,售货员先将5 g 的砝码放入左盘,将黄金放于右盘使之平衡后给顾客;然后又将5 g 的砝码放入右盘,将另一黄金放入左盘使之平衡后又给顾客,则顾客实际所得黄金( )A .大于10 gB .小于10 gC .大于等于10 gD .小于等于10 g解析 设天平的两边臂长分别为a ,b ,两次所称黄金的重量分别为x g ,y g.则⎩⎪⎨⎪⎧5a =xb ,ya =5b ,所以x +y =5a b +5b a >2 5a b ·5ba =10.答案 A10.对任意的a ∈[]-1,1,函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围为( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(-∞,1)D .(3,+∞)解析 y =φ(a )=(x -2)a +(x 2-4x +4),x =2时,y =0,所以x ≠2.只需⎩⎪⎨⎪⎧φ(-1)>0,φ(1)>0.答案 B11.设a >0,b >0,若3是3a与3b的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D.14解析 ∵a >0,b >0,3a ·3b =3,∴a +b =1,∴1a +1b =a +b a +a +b b =1+b a +ab +1≥2+2 b a ·a b =4.答案 B12.对于使-x 2+2x ≤m 成立的所有常数M 中,我们把M 的最小值叫做-x 2+2x 的上确界.若a ,b ∈R +,且a +b =1,则-12a -2b的上确界为( )A .-3B .-4C .-14D .-92解析 ∵a ,b ∈R +,且a +b =1,∴12a +2b =a +b 2a +2(a +b )b =12+b 2a +2a b +2≥52+2 b 2a ·2a b =92,∴-12a -2b ≤-92,即-12a -2b 的上确界为-92.答案 D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设a >b ,则①ac 2>bc 2;②2a >2b ;③1a <1b ;④a 3>b 3;⑤|a |>|b |.正确的结论有________.答案 ②④14.函数y =2x 2+8x 2+1的最小值是________.解析 y =2x 2+8x 2+1=2(x 2+1)+8x 2+1-2≥22(x 2+1)8x 2+1-2=2×4-2=6.当且仅当2(x 2+1)=8x 2+1.即x =±1时,等号成立.答案 615.已知不等式x 2-ax -b <0的解集为(2,3),则不等式bx 2-ax -1>0的解集为________.解析 依题意知方程x 2-ax -b =0的两根为2,3,根据韦达定理可求得a =5,b =-6,所以不等式为6x 2+5x +1<0,解得-12<x <-13.答案 ⎝ ⎛⎭⎪⎫-12,-13 16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件下,最少要花费________元.解析 设购买35kg 的x 袋,24kg 的y 袋,则35x +24y ≥106,x∈N ,y ∈N ,共花费z =140x +120y ,作出由⎩⎪⎨⎪⎧35x +24y ≥106,x ∈N ,y ∈N ,对应的平面区域,则知目标函数在(1,3)点处取得最小值为500元.答案 500三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知a ,b ,x ,y >0且1a >1b ,x >y , 求证:x x +a >yy +b.证明:x x +a -yy +b =bx -ay (x +a )(y +b ).由1a >1b >0,可得b >a >0.又∵x >y >0,∴bx >ay ,x +a >0,y +b >0,∴bx -ay (x +a )(y +b )>0,∴x x +a >y y +b . 18.(12分)设f (x )=(m +1)x 2-mx +m -1. (1)当m =1时,求不等式f (x )>0的解集;(2)若不等式f (x )+1>0的解集为(32,3),求m 的值. 解 (1)当m =1时,f (x )>0,即 2x 2-x >0⇒x (2x -1)>0⇒x <0,或x >12.∴此时不等式的解集为(-∞,0)∪(12,+∞). (2)由f (x )+1>0,得(m +1)x 2-mx +m >0. ∵不等式的解集为(32,3),∴32和3是方程(m +1)x 2-mx +m =0的两个根, 且m +1<0.∴⎩⎪⎨⎪⎧32+3=m m +1,32×3=m m +1,m +1<0,解得m =-97.19.(12分)已知关于x 的不等式kx 2-2x +6k <0(k ≠0). (1)若不等式的解集是{x |x <-3或x >-2},求k 的值; (2)若不等式的解集为R ,求k 的取值范围.解 (1)∵不等式kx 2-2x +6k <0的解集是{x |x <-3或x >-2}, ∴方程kx 2-2x +6k =0的两根为-3,-2,且k <0.由根与系数的关系得⎩⎨⎧(-3)×(-2)=6,(-3)+(-2)=2k .∴k =-25.(2)∵不等式kx 2-2x +6k <0的解集为R ,∴⎩⎪⎨⎪⎧k <0,Δ=4-4k ×6k <0.解得⎩⎨⎧k <0,k <-66或k >66.故k 的取值范围是⎝⎛⎭⎪⎫-∞,-66.20.(12分)某校伙食长期以面粉和大米为主食,面食每100 g 含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100 g 含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?解 设每盒盒饭需要面食x 百克,米食y 百克,所需费用为z =0.5x +0.4y ,且x ,y 满足⎩⎪⎨⎪⎧6x +3y ≥8,4x +7y ≥10,x ≥0,y ≥0,作出可行域,如图所示.由图可知,平行直线系y =-54x +52z 过点A 时,纵截距52z 最小,即z 最小.由⎩⎪⎨⎪⎧6x +3y =8,4x +7y =10,解得点A ⎝ ⎛⎭⎪⎫1315,1415. 所以每盒盒饭为面食1315百克,米食1415百克时,既科学又费用最少. 21.(12分)若f (x )是定义在(0,+∞)上的增函数,且对一切x >0,y >0满足f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),若f (2)=1,解不等式f (x +3)-f ⎝ ⎛⎭⎪⎫1x <2.解由f (x +3)-f ⎝ ⎛⎭⎪⎫1x <2,得⎩⎪⎨⎪⎧f [x (x +3)]<2,x +3>0,x >0.即⎩⎨⎧f [x (x +3)]<2,x >0.又f ⎝ ⎛⎭⎪⎫42=f (4)-f (2),∴f (4)=2f (2)=2.∴⎩⎨⎧f [x (x +3)]<f (4),x >0.∵f (x )是(0,+∞)上的增函数,∴⎩⎪⎨⎪⎧x 2+3x <4,x >0,解得0<x <1. 22.(12分)某渔业公司今年初用98万元购进一艘渔船用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1)该船捕捞几年开始盈利?(即总收入减去成本及所有费用之差为正值)(2)该船捕捞若干年后,处理方案有两种:①当年平均盈利达到最大值时,以26万元的价格卖出; ②当盈利总额达到最大值时,以8万元的价格卖出.问哪一种方案较为合算,请说明理由.解 (1)设捕捞n 年后开始盈利,盈利为y 元,则y =50n -⎣⎢⎡⎦⎥⎤12n +n (n -1)2×4-98=-2n 2+40n -98. 由y >0,得n 2-20n +49<0, 解得10-51<n <10+51(n ∈N ).则3≤n ≤17,故n =3.即捕捞3年后,开始盈利. (2)①平均盈利为y n =-2n -98n +40≤-22n ·98n +40=12,当且仅当2n =98n ,即n =7时,年平均盈利最大.故经过7年捕捞后年平均盈利最大,共盈利12×7+26=110万元.②∵y =-2n 2+40n -98=-2(n -10)2+102, ∴当n =10时,y 的最大值为102.即经过10年捕捞盈利总额最大,共盈利102+8=110万元. 综上知两种方案获利相等,但方案②的时间长,所以方案①合算.。

人教新课标A版高中数学必修5第三章不等式单元测试题(含答案)

人教新课标A版高中数学必修5第三章不等式单元测试题(含答案)

绝密★启用前人教新课标A版高中数学必修5第三章不等式单元测试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间150分钟。

一、选择题(共12小题,每小题5.0分,共60分)1.某高速公路对行驶的各种车辆的最大限速为120km/h,行驶过程中,同一车道上的车间距d不得小于10 m.用不等式表示为()A.v≤120 km/h或d≥10 mB.C.v≤120 km/hD.d≥10 m2.若a>0,b>0,则下列不等式中不成立的是()A.a2+b2≥2abB.a+b≥2C.a2+b2≥(a+b)2D.+<(a≠b)3.设a=2-1,b=-1(t∈R),则a与b的大小关系是()A.a≥bB.a≤bC.a<bD.a>b4.不等式组的解集为()A. {x|-2<x<-1}B. {x|-1<x<0}C. {x|0<x<1}D. {x|x>1}5.设f(x)=x2+bx-3,且f(-2)=f(0),则f(x)≤0的解集为()A. (-3,1)B. [-3,1]C. [-3,-1]D. (-3,-1]6.函数y=的定义域是()A. {x|x<-4或x>3}B. {x|-4<x<3}C. {x|x≤-4或x≥3}D. {x|-4≤x≤3}7.若不等式mx2+2mx-4<2x2+4x的解集为R,则实数m的取值范围是()A. (-2,2)B. (-2,2]C. (-∞,-2)∪[2,+∞)D. (-∞,2)8.若a>0,b>0,则不等式-b<<a等价于()A.-<x<0或0<x<B.-<x<C.x<-或x>D.x<-或x>9.当x∈R时,不等式kx2-kx+1>0恒成立,则k的取值范围是()A. (0,+∞)B. [0,+∞)C. [0,4)D. (0,4)10.在平面直角坐标系中,点在直线的右上方,则的取值范围是()A.(1,4)B.(-1,4)C.(-∞,4)D.(4,+∞)11.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z=x+ay取得最小值的最优解有无数个,则a的一个可能值为()A.-3B. 3C.-1D. 112.设正实数x,y,z满足x2-3xy+4y2-z=0,则当取得最大值时,+-的最大值为() A. 0B. 1C.D. 3第ⅠⅠ卷二、填空题(共4小题,每小题4.0分,共16分)13.已知|a|<1,则与1-a的大小关系为________.14.已知关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集是空集,则实数a的取值范围是________.15.记不等式组所表示的平面区域为D,若直线y=a(x+1)与D有公共点,则a的取值范围是________.16.设x,y为实数,若,则的最大值是________.三、解答题(共6小题,第17-21题每小题12.0分,第22题14分,共74分)17.(1)设x≥1,y≥1,证明:x+y+≤++xy;(2)设1<a≤b≤c,证明:log a b+log b c+log c a≤log b a+log c b+log a c.18.已知a>0,b>0,m>0,n>0,求证:a m+n+b m+n≥a m b n+a n b m.19.已知定义在R上的函数f(x)=x2-(3-a)x+2(1-a)(其中a∈R).(1)解关于x的不等式f(x)>0;(2)若不等式f(x)≥x-3对任意x>2恒成立,求a的取值范围.20.营养学家指出,成人良好的日常饮食应该至少提供0.075 kg的碳水化合物,0.06 kg的蛋白质,0.06 kg的脂肪,1 kg食物A含有0.105 kg碳水化合物,0.07 kg蛋白质,0.14 kg脂肪,花费28元;而1 kg食物B含有0.105 kg碳水化合物,0.14 kg蛋白质,0.07 kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?将已知数据列成下表:21.已知实数x,y满足(1)试求z=的最大值和最小值;(2)试求z=x2+y2的最大值和最小值.22.已知函数.(1) 当时,求函数f(x)的最小值;(2) 若对任意,恒成立,试求实数的取值范围.答案解析1.【答案】B【解析】考虑实际意义,知v≤120 km/h且d≥10 m.2.【答案】D【解析】显然有a2+b2≥2ab,a+b≥2,又a2+b2-(a+b)2=a2+b2-ab=(a-b)2≥0,所以a2+b2≥(a+b)2,故选D.3.【答案】B【解析】∵t2≥0,∴t2-1≥-1,∵函数y=2x在x∈R上是单调递增的,∴2-1≤-1,即a≤b,故选B.4.【答案】C或【解析】由得所以0<x<1,所以原不等式组的解集为{x|0<x<1},故选C.5.【答案】B【解析】∵f(-2)=f(0),∴x=-==-1,∴b=2,∴f(x)≤0⇒x2+2x-3≤0⇒(x+3)(x-1)≤0,∴-3≤x≤1.6.【答案】C【解析】由x2+x-12≥0,即(x+4)(x-3)≥0,x≥3或x≤-4.7.【答案】B8.【答案】D【解析】-b<<a⇔或⇔或⇔x>或x<-.9.【答案】C【解析】当k=0时,不等式变为1>0,成立;当k≠0时,不等式kx2-kx+1>0恒成立,则即0<k<4,所以0≤k<4.10.【答案】D【解析】取原点(0,0),因为,且原点在直线的左下方,所以不等式表示的区域在直线的左下方.11.【答案】A【解析】-==,∴a=-3.12.【答案】B【解析】由已知得z=x2-3xy+4y2(*)则==≤1,当且仅当x=2y时取等号,把x=2y代入(*)式,得z=2y2,所以+-=+-=-2+1≤1.13.【答案】≥1-a【解析】-(1-a)=+a-1==,∵|a|<1,即-1<a<1,∴a+1>0,a2≥0,∴≥0,故≥1-a.14.【答案】[-2,)【解析】由题意知(a2-4)x2+(a+2)x-1<0恒成立,当a=-2时,不等式化为-1<0,显然恒成立;当a≠-2时,则即-2<a<,综上实数a的取值范围是[-2,).15.【答案】【解析】直线y=a(x+1)恒过定点P(-1,0)且斜率为a,作出可行域后数形结合可解.不等式组所表示的平面区域D为如图所示阴影部分(含边界),且A(1,1),B(0,4),C.直线y=a(x+1)恒过定点P(-1,0)且斜率为a.由斜率公式可知kAP=,kBP=4.若直线y=a(x+1)与区域D有公共点,数形结合可得≤a≤4.16.【答案】【解析】∵,∴,即∴,∴,即.17.【答案】证明(1)由于x≥1,y≥1,所以要证x+y+≤++xy,只需证xy(x+y)+1≤y+x+(xy)2,只需证[y+x+(xy)2]-[xy(x+y)+1]≥0,即(xy-1)(x-1)(y-1)≥0,因为x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设log a b=x,log b c=y,由对数的换底公式得log c a=,log b a=,log c b=,log a c=xy,于是,所要证明的不等式即为x+y+≤++xy,其中x=log a b≥1,y=log b c≥1.故由(1)可知所要证明的不等式成立.18.【答案】证明a m+n+b m+n-(a m b n+a n b m)=(a m+n-a m b n)-(a n b m-b m+n)=a m(a n-b n)-b m(a n-b n)=(a m-b m)(a n-b n).当a>b时,a m>b m,a n>b n,∴(a m-b m)(a n-b n)>0;当a<b时,a m<b m,a n<b n,∴(a m-b m)(a n-b n)>0;当a=b时,a m=b m,a n=b n,∴(a m-b m)(a n-b n)=0.综上,(a m-b m)(a n-b n)≥0.故a m+n+b m+n≥a m b n+a n b m.19.【答案】(1)f(x)=(x-2)[x-(1-a)],设函数f(x)=0的两根为x1=2,x1=1-a,且x1-x2=2-1+a=a+1,f(x)>0等价于(x-2)[x-(1-a)]>0,于是当a<-1时,x1<x2,原不等式的解集为(-∞,2)∪(1-a,+∞);当a=-1时,x1=x2,原不等式的解集为(-∞,2)∪(2,+∞);当a>-1时,x1>x2,原不等式的解集为(-∞,1-a)∪(2,+∞).(2)不等式f(x)≥x-3,即a≥-恒成立,又当x>2时,-=-(x-2+)≤-2(当且仅当x=3时取“=”号),∴a≥-2.20.【答案】每天食用食物A kg,食物B kg,能够满足日常饮食要求,又使花费最低,最低成本为16元.【解析】设每天食用x kg食物A,y kg食物B,总成本为z,那么⇒目标函数为z=28x+21y.作出二元一次不等式组所表示的平面区域,把目标函数z=28x+21y变形为y=-x+,它表示斜率为-且随z变化的一族平行直线.是直线在y轴上的截距,当截距最小时,z的值最小.如图可见,当直线z=28x+21y经过可行域上的点M时,截距最小,即z最小.解方程组得M点的坐标为.所以z min=28x+21y=16.21.【答案】(1)z=的最大值为3和最小值为;(2)z=x2+y2的最大值为13和最小值为.【解析】解(1)由于z==,所以z的几何意义是点(x,y)与点M(-1,-1)连线的斜率,因此的最值就是点(x,y)与点M(-1,-1)连线的斜率的最值,如图所示,直线MB的斜率最大,直线MC的斜率最小,又∵B(0,2),C(1,0),∴z max=kMB=3;z min=kMC=.∴z的最大值为3,最小值为.(2)z=x2+y2,则它表示可行域内的点到原点的距离的平方,结合图形知,原点到点A的距离最大,原点到直线BC的距离最小.故z max=|OA|2=13,z min=2=2=.反思与感悟当斜率k,两点间的距离,点到直线的距离与可行域相结合求最值时,注意数形结合思想方法的灵活运用.22.【答案】【解析】(1) ∵,∴, 当时取等号.即当时,.(2),恒成立,即,恒成立.等价于在上恒成立,令,,∴,即.∴的取值范围是。

人教A版高中数学必修5第三章不等式单元测试(有答案)

人教A版高中数学必修5第三章不等式单元测试(有答案)

不等式单元测试一、选择题(本大题共12小题,每小题5分,共60分) 1.不等式x (x -2)>0的解集是( ) A .(-∞,-2)∪(0,+∞) B .(-2,0) C .(-∞,0)∪(2,+∞)D .(0,2)2.直线a >b >0,那么下列不等式成立的是( )A .-a >-bB .a +c <b +c C.1a >1bD .(-a )2>(-b )23.y =log a ⎝⎛⎭⎪⎫x 2-4x +3·1x 2+x -2的定义域是( )A .{x |x ≤1或x ≥3}B .{x |x <-2或x >1}C .{x |x <-2或x >3}D .{x |x ≤-2或x >3} 4.若x ,y ∈R, x 2+y 2=1,则(1-xy )(1+xy )有( ) A .最小值12和最大值1 B .最小值34和最大值1C .最小值12和最大值34D .最小值15.若x ,y 满足条件⎩⎪⎨⎪⎧x ≥y ,x +y ≤1y ≥-1,,则z =-2x +y 的最大值为( )A .1B .-12 C .2 D .-56.设a =log 37,b =21.1,c =0.83.1,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b 7.已知a >0,b >0,则1a +1b+2ab 的最小值是( )A .2B .2 2C .4D .58.不等式3x 2+2x +2x 2+x +1≥m 对任意实数x 都成立,则实数m 的取值范围是( )A .m ≤2B .m <2C .m ≤3D .m <39.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1 10.在△ABC 中,角A ,B ,C 所对边长分别为a ,b ,c ,若b 2+c 2=2a 2,则cos A 的最小值为( ) A.32 B.22 C.12 D .-1211.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4912.若对满足条件3x +3y +8=2xy (x >0,y >0)的任意x 、y ,(x +y )2-a (x +y )+16≥0恒成立,则实数a 的取值范围是( )A .(-∞,8]B .[8,+∞)C .(-∞,10]D .[10,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.设常数a >0,若9x +a 2x ≥a +1对一切正实数x 成立,则a 的取值范围为________.14.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≤1,x ≥0,y ≥0,则w =4x +2y -16x -3的取值范围是________.15.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.16.已知x >0,y >0,且2x +8y -xy =0,则x +y 的最小值为________. 三、解答题(本大题共6小题,共70分)17.(10分)已知a ,b ,c 为不相等的正数,且abc =1.求证:a +b +c <1a +1b +1c.18.(12分)解不等式0<x -12x +1<1,并求适合此不等式的所有整数解.19.(12分)(1)已知x >0,求f (x )=2x+2x 的最小值和取到最小值时对应x 的值;(2)已知0<x <13,求函数y =x (1-3x )的最大值.20.(12分)已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.21.(12分)设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n 内的整点个数为a n (n ∈N +).(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对一切的正整数n ,总有T n ≤m ,求实数m 的取值范围.22.(12分)某糖果厂生产A 、B 两种糖果,A 种糖果每箱可获利润40元,B 种糖果每箱可获利润50元.其生产过程分混合、烹调、包装三道工序.下表为每箱糖果生产过程中所需平均时间(单位:min).混合 烹调 包装 A 1 5 3 B24130 h ,包装的设备最多只能用机器15 h ,每种糖果各生产多少箱可获得最大利润?答案与解析1.C 不等式x (x -2)>0, ∴x <0或x >2,故选C.2.D ∵a >b >0,∴a 2>b 2,(-a )2=a 2,(-b )2=b 2,∴D 成立.3.C 由题意得⎩⎪⎨⎪⎧x 2-4x +3>0,1x 2+x -2>0,即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2+x -2>0,解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-2,∴x >3或x <-2,故选C.4.B 由x 2+y 2=1, 0≤y 2=1-x 2≤1, ∴(1+xy )(1-xy )=1-x 2y 2=1-x 2(1-x 2)=x 4-x 2+1=⎝⎛⎭⎪⎫x 2-122+34.∵0≤x 2≤1, ∴当x 2=12时有最小值34.当x 2=0或1时有最大值1,故选B. 5.A 不等式组所表示的平面区域如图示.直线z =-2x +y 过B 点时z 有最大值,由⎩⎪⎨⎪⎧y =x ,y =-1,得B (-1,-1),∴z max =1.6.B ∵a =log 37,∴1<a <2.∵b =21.1,∴b >2.∵c =0.83.1,∴0<c <1.故b >a >c . 7.C 1a +1b +2ab ≥21ab+2ab ≥22×2=4,当且仅当1a =1b且21ab=2ab ,即a =b =1时,“=”号成立,故选C.8.A ∵x 2+x +1>0恒成立,∴不等式可化为3x 2+2x +2≥m (x 2+x +1),即(3-m )x 2+(2-m )x +2-m ≥0对任意实数x 都成立,当m =3时,不等式化为-x -1≥0不恒成立.当m ≠3时,有⎩⎪⎨⎪⎧3-m >0,2-m 2-4×3-m ×2-m ≤0,即m ≤2.综上,实数m 的取值范围是m ≤2,故选A. 9.D 作出可行域如图中阴影部分所示.由z =y -ax 得y =ax +z ,知z 的几何意义是直线在y 轴上的截距. 故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.10.C cos A =b 2+c 2-a 22bc =b 2+c 2-b 2+c 222bc =b 2+c 24bc ≥2bc 4bc =12,当且仅当b =c 时等号成立,故选C.11.C 作出可行域如图(阴影部分).由题意知,圆心C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.由⎩⎪⎨⎪⎧x +y -7=0,y =1,得A (6,1),由⎩⎪⎨⎪⎧x -y +3=0,y =1,得B (-2,1),而目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与A (6,1)重合时,a 2+b 2取到最大值37.12.C ∵xy ≤⎝⎛⎭⎪⎫x +y 22,∴3x +3y +8=2xy ≤x +y22,∴x +y22-3(x +y )-8≥0,解得x +y ≥8,∵(x +y )2-a (x +y )+16≥0恒成立,即a ≤x +y +16x +y, 又x +y +16x +y≥10.∴只需a ≤10,故选C. 13.⎣⎢⎡⎭⎪⎫15,+∞ 解析:∵a >0,x >0,∴9x +a 2x ≥29x ·a 2x =6a .当且仅当9x =a 2x,即3x =a 时取等号,要使9x +a 2x≥a +1成立,只要6a ≥a +1,即a ≥15.∴a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞.14.[5,6]解析:w =4x +2y -16x -3=4x -3+2y -4x -3=4+2×y -2x -3,设k =y -2x -3.则k 的几何意义是区域内的点到定点D (3,2)的斜率, 作出不等式组对应的平面区域如图:由图象得AD 的斜率最小,BD 的斜率最大,其中A ⎝ ⎛⎭⎪⎫0,12,B (1,0),此时k AD =12-20-3=12,此时w 最小为w =4+2×12=4+1=5,k BD =0-21-3=1,此时w 最大为w =4+2×1=6, 故5≤w ≤6. 15.6解析:画出可行域如图所示,其中z =x +y 取得最小值时的整点为(0,1),取得最大值时的整点为(0,4),(1,3)(2,2)(3,1)及(4,0)共5个整点.故可确定5+1=6条不同的直线.16.18解析:由2x +8y -xy =0得2y +8x=1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫2y +8x =10+2x y +8y x≥18.当且仅当2x 2=8y 2,即x =2y 时,等号成立.17.证明:证法一:∵a ,b ,c 为不等正数,且abc =1,∴a +b +c = 1bc+1ca+1ab <1b +1c 2+1c +1a 2+1a +1b 2=1a +1b +1c.故原不等式成立. 证法二:∵a ,b ,c 为不等正数,且 abc =1,∴1a +1b +1c =bc +ca +ab =bc +ca 2+ca +ab 2+ab +bc 2>abc 2+a 2bc +ab 2c =a +b +c .故原不等式成立. 18.解:∵0<x -12x +1<1,∴⎩⎪⎨⎪⎧x +1>0,x -12<x +1,x -1≠0,∴0<x <3,且x ≠1.故不等式的解集为{x |0<x <3,且x ≠1}, ∴适合此不等式的所有整数解为x =2.19.解:(1)f (x )=2x +2x ≥22x·2x =4,当且仅当2x=2x ,即x =1时,等号成立,∴f (x )的最小值为4,此时对应的x 的值为1. (2)∵0<x <13,∴1-3x >0.y =x (1-3x )=13·3x (1-3x )≤13·⎝⎛⎭⎪⎫3x +1-3x 22=112,当且仅当3x =1-3x ,∴x =16时,等号成立,∴y =x (1-3x )的最大值为112.20.解:(1)由已知得f (1)=-a 2+6a +3>0. 即a 2-6a -3<0.解得3-23<a <3+2 3.∴不等式f (1)>0的解集为{a |3-23<a <3+23}.(2)∵f (x )>b ,∴3x 2-a (6-a )x +b -6<0,由题意知,-1,3是方程3x 2-a (6-a )x +b -6=0的两根,∴⎩⎪⎨⎪⎧a 6-a3=2,b -63=-3.∴⎩⎨⎧a =3±3,b =-3.21.解:(1)由x >0, y >0, y =3n -nx >0, 得0<x <3.所以x =1或x =2,即D n 内的整点在直线x =1和x =2上.记y =-nx +3n 为l, l 与x =1, x =2的交点的纵坐标分别为y 1, y 2, 则y 1=2n, y 2=n, ∴a n =3n (n ∈N +).(2)∵S n =3(1+2+…+n )=3nn +12,∴T n =n n +12n. 又T n +1T n =n +22n>1⇒n <2, ∴当n ≥3时, T n >T n +1,且T 1=1<T 2=T 3=32.所以实数m 的取值范围为⎣⎢⎡⎭⎪⎫32, +∞. 22.解:设生产A x 箱,生产B y 箱,可获利润z 元,即求z =40x +50y 在约束条件⎩⎪⎨⎪⎧x +2y ≤720,5x +4y ≤1 800,3x +y ≤900,x ≥0, y ≥0下的最大值.解得z max =40×120+50×300=19 800.所以生产A 120箱,生产B 300箱时,可以获得最大利润19 800元.。

人教A版高中数学必修五本章练测:第三章不等式(含答案详解).docx

人教A版高中数学必修五本章练测:第三章不等式(含答案详解).docx

第三章不等式(数学人教实验A版必修5)7.已知函数f(x)=1,1,0,x xx x-+<0,⎧⎨-≥⎩则不等式x+(x+1)f(x+1)≤1的解集是()A.{x|-1≤x-1}B.{x|x≤1}C.{x|x-1}D.{x|1≤x-1}8. 设,且a b (a、b、),则M的取值范围是()A.,18B. [,1)C.[,)D.[8,+∞)9.对于满足等式x2+(y-1)2=1的一切实数x、y,不等式x+y+c≥0恒成立,则实数c的取值范围是()A.(-∞,0]B.+∞)C.-1,+∞)D.[1,+∞)10.如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d,且等号成立时a,b,c,d的取值唯B.ab≥c+d,且等号成立时a,b,c,d的取值唯一C.ab≤c+d,且等号成立时a,b,c,d 的取值不唯一D.ab≥c+d,且等号成立时a,b,c,d 的取值不唯一11. 一个直角三角形的周长为2p,则其斜边长的最小值为()A.B.C.D.12.某市的一家报刊摊点,从报社买进一种晚报的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(按30天计算)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,为使每月所获利润最大,这个摊主应每天从报社买进( )份晚报. A.250 B.400C.300D.350二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.不等式2242x x+-≤12的解集为.14.函数y=1xa-(a>0,a≠1)的图像恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则1m+1n 的最小值为.15.若不等式x22a x a>0对x∈R恒成立,则关于t的不等式a2t1<a t22t3的解集为 .16.设x,y,z∈R,则最大值是 .三、解答题(解答应写出文字说明,证明过程或演算步骤,共74分)告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏目的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告版面的高与宽的尺寸(单位:cm )能使矩形广告的面积最小? 18.(12分)不等式(m 2-2m-3)x 2-(m-3)x-1<0对一切x ∈R 恒成立,求实数m 的取值范围.19.(12分)某人上午7时乘摩托艇以匀速 v km/h(4≤v ≤20)从A 港出发到距50 km 的B 港去,然后乘汽车以匀速w km/h(30≤w ≤100)从B 港向距 300 km 的C 市驶去.应该在同一天下午4至9点到达C 市.设乘摩托艇、汽车去所需要的时间分别是x h 、y h.若所需的经费p =100+3(5-y )+2(8-x )元,那么v ,w 分别为多少时,所需经费最少?并求出这时所花的经费.20.(12分)已知二次函数f(x)满足f(-2)=0,且2x≤f(x)≤242x+对一切实数x都成立.(1)求f(2)的值;(2)求f(x)的解析式;(3)设b n=1()f n,数列{b n}的前n项和为S n,求证:S n>43(3)nn+.21.(12分)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,则投资人对甲、乙两个项目各投资多少万元才能使可能的盈利最大?22.(14分)某村计划建造一个室内面积为72 m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地.当矩形温室的边长各为多少时蔬菜的种植面积最大?最大种植面积是多少?第三章不等式(数学人教实验A版必修5)答题纸得分:一、选择题二、填空题13. 14. 15. 16.三、解答题17.18.19.20.21.22.第三章 不等式(数学人教实验A 版必修5)参考答案一、选择题1.D 解析:∵ y 2x 是增函数,而0<b <a <1,∴ 1<2b <2a <2.2.D 解析:∵ t-s =a+2b-a-b 2-1=-(b-1)2≤0,∴ t ≤s .3.C 解析:不等式组表示的平面区域如图所示, 由34,34x y x y +=⎧⎨+=⎩得交点A 的坐标为(1,1),又B ,C 两点的坐标分别为(0,4),(0,43), 故S △ABC =12 (4-43)×1=43. 第3题答图 4.B 解析:特殊值法.令a =7,b =3,c =1,满足a >b >c >0,∴2log (11)1+>2log (31)3+>2log (71)7+. 5. A 解析:不等式组可化为 xy >0,x y >0,或 xy <0,x y <0,在平面直角坐标系中作出符合上面两个不等式组的平面区域,如图中的阴影部分所示, ∴ 不等式组(x y )(x y )>0,0 x2表示的平面区域为三角形. 第5题答图6.B 解析:取测试点(0,1)可知C ,D 错,再取测试点(0,-1)可知A 错,故选B.7.C 解析:依题意得10,10,(1)()1(1)1x x x x x x x x +<+≥⎧⎧⎨⎨++-≤++≤⎩⎩或,所以1,1,11x x x x ≥-⎧<-⎧⎪⇒⎨⎨∈≤≤⎪⎩⎩R 或x <-1或-1≤x-1 x-1,故选C. 8. D 解析:M≥9.C 解析:令x = cos θ,y =1+ sin θ,则-(x+y )=- sinθ-cos θ-1=sin (θ+π4)-1.∴ -(x+y )max-1.∵ x+y+c ≥0恒成立,故c ≥-(x+y )max-1,故选C.10.A 解析:因为a+b =cd =4,由基本不等式得a+b ≥ab ≤4.又cd ≤2()4c d +,故c+d ≥4,所以ab ≤c+d ,当且仅当a =b =c =d =2时,等号成立.故选A.11.A 解析:设直角三角形的一个锐角为θ,斜边长为c , 则根据题意得c (sin θ+cos θ+1)=2p , ∴ c =2sin cos 1p θθ++∵ π,当θ=π时,等号成立,∴ c,当此三角形为等腰直角三角形时,等号成立. ∴ 斜边c.故选A. 12. B 解析:若设每天从报社买进x (250≤x ≤400,x ∈N )份晚报,则每月共可销售(20x +10×250)份,每份可获利润0.10元,退回报社10(x -250)份,每份亏损0.15元,建立月利润函数f (x ),再求f (x )的最大值,可得一个月的最大利润.设每天从报社买进x 份晚报,每月获得的总利润为y 元,则依题意,得 y =0.10(20x +10×250)-0.15×10(x -250)=0.5x +625,x ∈[250,400].∵ 函数y =0.5x +625在[250,400]上单调递增,∴ 当x =400时,y =825. 即摊主每天从报社买进400份晚报时,每月所获得的利润最大,最大利润为825元.13.{x |-3≤x ≤1} 解析:依题意x 2+2x-4≤-1 (x+3)(x-1)≤0 x ∈[-3,1]. 14.4 解析:由题意知A (1,1),∴ m+n-1=0,∴ m+n =1,∴1m +1n =(1m +1n )(m+n )=2+n m +mn≥2+=4. 15.(-2,2) 解析:由x 2-2ax +a >0对x ∈R 恒成立得Δ 4a 24a <0,即0<a <1, ∴ 函数y ax是R 上的减函数,∴ 2t 1>t22t3,解得-2<t <2.16.222 解析: x22y 2z222221 22xy z 2x 22y 2z21122xy z 2.17.解:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000.①广告版面的高为a+20,宽为2b+25,其中a >0,b >0.广告的面积S =(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b ≥18 500+=18 500+当且仅当25a =40b 时等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24 500.故广告版面的高为140 cm ,宽为175 cm 时,可使广告的面积最小. 18.解:若m 2-2m-3=0,则m =-1或m =3.当m =-1时,不合题意;当m =3时,符合题意.若m 2-2m-3≠0,设f (x )=(m 2-2m-3)x 2-(m-3)x-1,则由题意,得22230,230,m m m m m ∆2⎧--<⎨=[-(-3)]+4(--)<⎩ 解得-15<m <3.综合以上讨论,得-15<m ≤3.19.解:依题意得 4 50x 20,30 300y 100, 9 x y 14,x >0,y >0,考察z =2x +3y 的最大值,作出可行域,平移直线2x +3y =0, 当直线经过点(4,10)时,z 取得最大值38.故当v =12.5,w =30时所需要经费最少,此时所花的经费为93元. 20.(1)解:∵ 242()2+≤≤x x f x 对一切实数都成立,∴ 4≤f (2)≤4,∴ f (2)=4.(2)解:设f (x )=ax 2+bx+c (a ≠0).∵ f (-2)=0,f (2)=4,∴424,1,42024.a b c b a b c c a ++==⎧⎧⇒⎨⎨-+==-⎩⎩ ∵ ax 2+bx+c ≥2x ,即ax 2-x+2-4a ≥0,∴ Δ=1-4a (2-4a )≤0⇒(4a-1)2≤0,∴ a =14,c =2-4a =1,故f (x )=24x +x+1. (3)证明:∵ b n =1()f n =24(2)n +>4(2)(3)n n ++=4(12n +-13n +), ∴ S n =b 1+b 2+…+b n >4[(13-14)+(14-15)+…+(12n +-13n +)] =4×13-13n +=43(3)n +. 21.解:设投资人分别用x ,y 万元投资甲,乙两个项目,由题意,得10,0.30.1 1.8,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数为z =x+0.5y . 上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.作直线l 0:x+0.5y =0,并作平行于直线l 0的一组直线x+0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的点M ,此时z 最大,这里点M 是直线x+y =10与直线0.3x+0.1y =1.8的交点. 第21题答图解方程组10,0.30.1 1.8,x y x y +=⎧⎨+=⎩得4,6,x y =⎧⎨=⎩此时,z =4+0.5×6=7(万元).∴ 当x =4,y =6时,z 取得最大值.答:投资人用4万元投资甲项目,6万元投资乙项目,才能使可能的盈利最大.22.解:设矩形温室的左侧边长为a m,后侧边长为b m,则ab=72,蔬菜的种植面积S=(a-4)(b-2)=ab-4b-2a+8=80-2(a+2b)≤80-(m2).当且仅当a=2b,即a=12,b=6时,S max=32.答:矩形温室的边长为6 m,12 m时,蔬菜的种植面积最大,最大种植面积是32 m2.。

【人教A版】高中数学必修5第三章课后习题解答

【人教A版】高中数学必修5第三章课后习题解答

新课程标准数学必修5第三章课后习题解答第三章 不等式3.1不等关系与不等式 练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)24<; (2>.3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法 练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>⎨⎪⎪⎩⎭或;使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<+⎨⎪⎪⎩⎭.(2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅;使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠. 习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y {}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒. 依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)52x ⎧+⎪<<⎨⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为3322x x x ⎧⎪<-<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =22450b +<,即150150b -<<151)13.72=≈(h ),3001520=.所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题 练习(P86) 1、B . 2、D . 3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩(第1题)可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元. 习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥2、3(第2题)解:设每周播放连续剧甲x 次,播放连续剧乙y目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+= 答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y--台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为122025101512(70)208(110)60z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++. 所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元) 所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42a b+练习(P100)1、因为0x >,所以12x x +≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以20a b +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20.(第2题)3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()32323264S ab bc ac a b =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少. 习题3.4 A 组(P100) 1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m . 3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=123600312006800580048000012480058000z y x x x⨯=⨯+⨯+=+++=≥ 当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元. 习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-. 设PC a =,则DP x a =-所以 222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积 211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++ 由基本不等式与不等式的性质6[18]6(18108S ⨯-=⨯-=-≤ 当72x x=,即x =m 时,ADP ∆的面积最大,最大面积是(108-2m . 2、过点C 作CD AB ⊥,交AB 延长线于点D .设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+))c =当且仅当()()a cbc x x--=,即x =tan β取得最大,从而视角也最大.第三章 复习参考题A 组(P103)1<2、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<. 4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以 070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y =+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线. 在可行域的整点中,点(5,2)M 使得z 取得最小值. 所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为 12S xy =扇形的周长为2Z x y =+≥ 当2x y =,即x =y =Z可以取得最小值,最小值为. 7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y =+扇形的面积为221112(2)()244216x y P Z xy x y +===≤当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P时扇形面积最大值为216P .8、设汽车的运输成本为y , 2()s say bv a sbv v v=+⨯=+当sasbv v=时,即v =c 时,y 有最小值.2sa y sbv v =+=≥2c 时,由函数sa y sbv v =+的单调性可知,v c =时y 有最小值,最小值为sa sbc c+. 第三章 复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或 (2)⎧⎨⎩3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为 10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥人教A 版高中数学课后习题解答答案11 5、因为22x y +是区域内的点到原点的距离的平方所以,当240330x y x y -+=⎧⎨--=⎩ 即2,3A A x y ==时,22x y +的最大值为13. 当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45. 6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1m p kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m m p p p p =++ 比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥ 所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济. 一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。

河北省人教新课标A版高中数学必修5第三章不等式3.4基本不等式同步测试

河北省人教新课标A版高中数学必修5第三章不等式3.4基本不等式同步测试

河北省人教新课标A版高中数学必修5 第三章不等式 3.4基本不等式同步测试姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2017高一下·宿州期中) 在下列函数中,最小值为2的是()A . y=2x+2﹣xB . y=sinx+ (0<x<)C . y=x+D . y=log3x+ (1<x<3)2. (2分)设等差数列的公差为d,若的方差为2,则d等于()A . 1B . 2C . ±1D . ±23. (2分) (2019高二下·蕉岭月考) 中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A .B .C .4. (2分) (2015高一下·湖州期中) 若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A .B .C . 5D . 65. (2分) (2017高二下·平顶山期末) 已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x> },则f(10x)>0的解集为()A . {x|x<﹣1或x>﹣lg2}B . {x|﹣1<x<﹣lg2}C . {x|x>﹣lg2}D . {x|x<﹣lg2}6. (2分) (2018高二上·玉溪期中) 已知m,n R,且m﹣2n+6=0,则的最小值为()A .B . 4C .D . 37. (2分) (2017高一下·晋中期末) 若b>a>0,则的最小值为()B . 3C .D . 28. (2分)已知等比数列中,公比,若,则的最值情况为()A . 有最小值B . 有最大值C . 有最小值12D . 有最大值129. (2分)已知正数x,y满足,则的最小值为()A . 8B . 4C . 2D . 010. (2分)(2020·普陀模拟) 若直线:经过第一象限内的点,则的最大值为()A .B .C .D .11. (2分)若,则的最小值为()A .B .C .D .12. (2分) (2017高二下·温州期中) 设正实数a,b满足a+b=1,则()A . 有最大值4B . 有最小值C . 有最大值D . a2+b2有最小值13. (2分) (2018高二上·泰安月考) 关于的不等式的解集是空集,则实数的范围为()A .B .C .D .14. (2分)设a= ,c=x+y,若对任意正实数x,y都存在以a,b,c为三边的三角形,则实数p的取值范围是()A . (1,3)B . (0,1)∪(3,+∞)C . (2,4)D . (2,3)15. (2分)已知,设函数的零点为m,的零点为,则的最大值为()A . 8B . 4C . 2D . 1二、填空题 (共5题;共5分)16. (1分) (2016高二上·湖州期末) 已知x,y为正实数,且x+2y=1,则的最大值是________,的最小值是________.17. (1分) (2016高三上·江苏期中) 已知正数a,b满足 = ﹣5,则ab的最小值为________.18. (1分) (2018高一下·芜湖期末) 已知函数,,则的最小值是________.19. (1分) (2019高三上·嘉兴期末) 已知正实数,满足,则的最大值为________.20. (1分) (2018高一下·双鸭山期末) 已知,若恒成立,则实数的取值范围________;三、解答题 (共5题;共25分)21. (5分) (2019高二上·郑州期中) 在中,内角,,的对边分别是,,,且.(Ⅰ)求角的大小;(Ⅱ)点满足,且线段,求的最大值.22. (5分) (2017高一上·定州期末) 2015年春,某地干旱少雨,农作物受灾严重,为了使今后保证农田灌溉,当地政府决定建一横断面为等腰梯形的水渠(水渠的横断面如图所示),为减少水的流失量,必须减少水与渠壁的接触面,若水渠横断面的面积设计为定值S,渠深为h,则水渠壁的倾斜角α(0<α<)为多大时,水渠中水的流失量最小?23. (5分) (2016高一下·霍邱期中) 解答(1)已知正数x,y满足x+2y=1,求 1 x + 1 y 的最小值(2)已知x>1,求:y=x+最小值,并求相应的x值.24. (5分)如图,一矩形铁皮的长为8m,宽为3m,在四个角各截去一个大小相同的小正方形,然后折起,可以制成一个无盖的长方体容器,所得容器的容积V(单位:m3)是关于截去的小正方形的边长x(单位:m)的函数.(1)写出关于x(单位:m)的函数解析式;(2)截去的小正方形的边长为多少时,容器的容积最大?最大容积是多少?25. (5分)解关于x的不等式 +1<0(k≥1).参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分) 16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分) 21-1、22-1、23-1、23-2、24-1、24-2、25-1、第11 页共11 页。

人教A版高中数学必修五第三章不等式题组训练.doc

人教A版高中数学必修五第三章不等式题组训练.doc

高中数学学习材料鼎尚图文*整理制作高中数学必修5第三章不等式题组训练[基础训练A 组]一、选择题(六个小题,每题5分,共30分)1.若02522>-+-x x ,则221442-++-x x x 等于( )A .54-xB .3-C .3D .x 45-2.函数y =log 21(x +11+x +1) (x > 1)的最大值是 ( )A .-2B .2C .-3D .33.不等式xx --213≥1的解集是 ( ) A .{x|43≤x ≤2} B .{x|43≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( )A .b a 11<B .ba 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( )A .最小值21和最大值1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( )A .-3<a <1B .-2<a <0C .-1<a <0D .0<a <2二、填空题(五个小题,每题6分,共30分)1.不等式组⎩⎨⎧->-≥32x x 的负整数解是____________________。

2.一个两位数的个位数字比十位数字大2,若这个两位数小于30,则这个两位数为____________________。

3.不等式0212<-+xx 的解集是__________________。

4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。

5.若f(n)=)(21)(,1)(,122N n nn n n n g n n ∈=--=-+ϕ,用不等号 连结起来为____________.三、解答题(四个小题,每题10分,共40分)1.解log (2x – 3)(x 2-3)>02.不等式049)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。

人教版数学高二A版必修五第三章 不等式 同步练习四

人教版数学高二A版必修五第三章 不等式  同步练习四

第三章:不等式☯提高训练 组一、选择题1.若方程05)2(2=++++m x m x 只有正根,则m 的取值范围是( ). A .4-≤m 或4≥m B . 45-≤<-m C .45-≤≤-m D . 25-<<-m2.若()a ax x x f ++-=12lg )(2在区间]1,(-∞上递减,则a 范围为( ) A .[1,2) B . [1,2] C .[)1,+∞ D . [2,)+∞ 3.不等式22lg lg x x <的解集是 ( ) A .1(,1)100B .(100,)+∞C .1(,1)100(100,)+∞ D .(0,1)(100,)+∞4.若不等式2log 0a x x -<在1(0,)2内恒成立,则a 的取值范围是 ( )A .1116a ≤< B .1116a << C .1016a <≤D .1016a << 5.若不等式201x ax a ≤-+≤有唯一解,则a 的取值为( ) A .0 B .2 C .4 D .6 6.不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩的区域面积是( )A .12 B .32 C .52D .1二、填空题1.不等式122log (21)log (22)2xx +-⋅-<的解集是♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉。

.已知0,0,1a b a b ≥≥+=,则12a ++21+b 的范围是♉♉♉♉♉♉♉♉♉♉♉♉。

3.若0,2y x π<≤<且tan 3tan ,x y =则x y -的最大值为________.4.设0≠x ,则函数1)1(2-+=xx y 在x =________时,有最小值__________。

5.不等式24x -+0xx≥的解集是________________。

三、解答题.若函数()log (4)(0,1)a af x x a a x=+->≠且的值域为R , 求实数a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档