一次函数试题及其答案
人教版一次函数单元测试题(含答案)
人教版一次函数单元测试题(含答案)人教版一次函数单元测试题(含答案)一、选择题1.已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x0时,y随x的增大而减小D.不论x如何变化,y不变2.表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()A。
m=,n=-B。
m=,n=-1C。
m=-1,n=-D。
m=-3,n=-23.若直线y=1x+n与曲线y=x2-2x-3有且仅有一个公共点,则n的取值范围是()A。
n<-3或n>1B。
n>-3且n<1C。
n≥-3且n≤1D。
n=-3或n=14.点A(-5,y1)和B(-2,y2)都在直线y=-1x上,则y1和y2的关系是()A。
y1≤y2B。
y1=y2C。
y1<y2D。
y1>y25.若ab>0,bc<0,则函数y=1(ax-c)的图象不经过第()象限。
A。
一B。
二C。
三D。
四6.如果一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k的取值范围是()A。
k>0B。
k<0C。
0<k<1D。
k>17.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如下图所示,若返回时上坡、下坡的速度仍保持不变,那么小亮从学校骑车回家用的时间是()A.37.2分钟B.48分钟C.30分钟D.33分钟8.在函数y=3x+2的图像上的点是()A。
(-1,1) B。
(-1,-1) C。
(2,8) D。
(0,-1.5)9.下列函数中,自变量的取值范围选取错误的是()A。
y=x-2中,x取x≥2B。
y=2/(x+1)中,x取x≠-1C。
y=2x中,x取全体实数D。
y=(x+3)/1中,x取x≥-310.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图像可能是()ABCD11.如图(1)所示的是实验室中常用的仪器,向以下内均匀注水,最后把注满,在注水过程中,的水面高度与时间的关系如图(2)所示,图中PQ为一线段,则这个是三棱柱。
一次函数测试题3套(有答案)
----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 一次函数测试题一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=.y=C .D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0)3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+14.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分) 11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 20.如图,一次函数y=kx+b的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1). 23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零 钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢? 25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.①求y (元)与x (套)的函数关系式,并求出自变量的取值范围;②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58x y =-⎧⎨=-⎩ 18.0;7 19.±6 20.y=x+2;421.①y=169x ;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t ≤3时,y=2.4;当t>3时,y=t-0.6. ②2.4元;6.4元25.①y=50x+45(80-x )=5x+3600.∵两种型号的时装共用A 种布料[1.1x+0.•6(80-x )]米, 共用B 种布料[0.4x+0.9(80-x )]米, ∴ 解之得40≤x ≤44, 而x 为整数,∴x=40,41,42,43,44,∴y 与x 的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y 随x 的增大而增大, ∴当x=44时,y 最大=3820,即生产M 型号的时装44套时,该厂所获利润最大,最大利润是3820元.班级_____________座号____________姓名_____________成绩_________ __一.精心选一选(本大题共8道小题,每题4分,共32分)1、下列各图给出了变量x 与y 之间的函数是: ( ) A 、y=2x-1 B 、y=3C 、y=2x 2D 、y=-2x+1 3、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为:( )A 、y=2x-14B 、y=-x-6C 、y=-x+10D 、y=4x 4、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b=+上,且0k <.若12x x >,则1y ,2y 的关系是:( ) A 、12y y > B 、12y y < C 、12y y =D 、无法确定.5、若函数y=kx +b 的图象如图所示,那么当y>0时,x 的取值范围是:( ) A 、 x>1 B 、 x>2 C 、 x<1 D 、 x<26、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限7、一次函数y=ax+b ,若a+b=1,则它的图象必经过点( ) A 、(-1,-1) B 、(-1, 1) C 、(1, -1) D 、(1, 1)8、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是: ( )二.耐心填一填(本大题5小题,每小题4分,共20分) 八年级上学期第十四章《一次函数》单元测试----------------------------精品word文档值得下载 值得拥有---------------------------------------------- 10、请你写出一个图象经过点(0,2),且y 随x 的增大而减小的一次函数解析式 。
初二数学一次函数试题答案及解析
初二数学一次函数试题答案及解析1.已知函数y=-x+1与函数y=-2x+3,当x为________时,两函数值相等.【答案】2【解析】由题意得-x+1=-2x+3,解得x=2.2.(2013河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t 秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.【答案】(1)y=-x+4 (2)4<t<7 (3)t=1【解析】解:(1)直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,∴y=-x+4.(2)当直线y=-x+b过点M(3,2)时,2=-3+b,解得b=5.∵b=1+t,∴5=1+t,∴t=4.当直线y=-x+b过点N(4,4)时,4=-4+b,解得b=8.∵b=1+t,∴8=1+t,∴t=7.∴当点M,N位于l的异侧时,4<t<7.(3)t=1时,落在y轴上;t=2时,落在x轴上.3.直线y=3x+9与x轴的交点是( )A.(0,-3)B.(-3,0)C.(0,3)D.(3,0)【答案】B【解析】当y=0时,3x+9=0,解得x=-3.4.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是( )A.x>0B.x<0C.x>1D.x<1【答案】B【解析】不等式kx+b>1,就是一次函数y=kx+b的函数值大于1,这部分图象在(0,1)的上方,此时,x<0.故选B.5.如图所示,利用函数图象回答下列问题:(1)方程组的解为________.(2)不等式2x>-x+3的解集为________.【答案】(1) (2)x>1【解析】(1)直线y=2x与x+y=3的交点坐标即为方程组的解.(2)不等式2x>-x+3的解集即为直线y=2x在直线y=-x+3上方时所对应的x的取值集合.6.用画函数图象的方法解不等式3x+2>2x-1.【答案】解法一:原不等式可化为x+3>0.画出函数y=x+3的图象(如图1所示).由图象可以看出:当x>-3时,这条直线上的点在x轴上方,即此时y>0.∴不等式3x+2>2x-1的解集为x>-3.解法二:在同一直角坐标系中分别画出函数y=3x+2与函数y=2x-1的图象(如图2所示),可以看出,它们交点的横坐标为-3.当x>-3时,对于同一个x值,直线y=3x+2上的点总在直线y=2x-1上相应点的上方,这时3x+2>2x-1,故不等式的解集为x>-3.【解析】从函数角度看不等式,画出函数的图象,观察图象即可求出不等式的解集.7.已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x(元/件)在一定范围内分别近似满足下列函数解析式:y1=-4x+190,y2=5x-170.当y1=y2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y1<y2时,称该商品的供求关系为供过于求;当y1>y2时,称该商品的供求关系为供不应求.(1)求该商品的稳定价格和稳定需求量.(2)当该商品的价格为45元/件时,该商品的供求关系如何?【答案】(1)40元/件 30件(2)供过于求【解析】(1)当y1=y2时,-4x+190=5x-170,解得x=40.当x=40时,y1=-4×40+190=30.答:稳定价格为40元/件,稳定需求量为30件.(2)当x=45时,y1=-4×45+190=10,y2=5×45-170=55.因为y1<y2,所以供过于求.8.对于一次函数y=-2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得函数y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)【答案】D【解析】A.∵一次函数y=-2x+4中k=-2<0,∴函数值y随x的增大而减小,故本选项正确,不符合题意;B.∵一次函数y=-2x+4中k=-2<0,b=4>0,∴此函数的图象经过第一、二、四象限,不经过第三象限,故本选项正确,不符合题意;C.由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故本选项正确,不符合题意;D.∵令y=0,得x=2,∴函数的图象与x轴的交点坐标是(2,0),故本选项错误,符合题意.故选D.9.一次函数y=kx+b的图象经过点(3,0),则关于x的方程kx+b=0的解为()A.x=3B.x=-3C.x=3或x=-3D.x=-1【答案】A【解析】y=kx+b的图象和x轴交点的横坐标为3,所以方程kx+b=0的解为x=3.10.(2013武汉)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.【答案】【解析】解:∵直线y=2x+b经过点(3,5),∴5=2×3+b,∴b=-1.故不等式2x+b≥0即2x-1≥0,解得.11.下列函数关系式:①y=-x;②y=2x+11;③y=x2+x+1;④,其中一次函数的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】①y=-x是一次函数;②y=2x+11是一次函数;③④不符合一次函数的形式,故不是一次函数.故选B.12. (2014湖南娄底)一次函数y=kx-k(k<0)的图象大致是( )A.B.C.D.【答案】A【解析】∵k<0,∴-k>0,∴一次函数y=kx-k(k<0)的图象经过第一、二、四象限,故选A.13. (2013江苏徐州)下列函数中,y随x的增大而减小的函数是( )A.y=2x+8B.y=-2+4xC.y=-2x+8D.y=4x【答案】C【解析】因为y随x的增大而减小时,一次函数y=kx+b(k≠0)必须满足k<0,故选C.14. (2014江苏徐州)将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为( )A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)【答案】A【解析】函数y=-3x的图象沿y轴向上平移2个单位长度后对应的函数关系式为y=-3x+2.故选A.15.在同一平面直角坐标系中画出下列函数的图象.(1)y=2x与y=2x+3;(2)y=2x+1与.【答案】(1)列表:(2)列表:描点、连线,图象如图②所示.【解析】所给函数的自变量x可以是任意实数,列表表示两组对应值,描出两个点,连成直线即可.16.已知一次函数y=kx+b的图象经过点(3,-3),且与直线y=4x-3的交点在x轴上.(1)求这个一次函数的解析式;(2)此函数的图象经过哪几个象限?(3)求此函数的图象与坐标轴围成的三角形的面积.【答案】(1)对于一次函数y=4x-3,当y=0时,.∴直线y=4x-3与x轴的交点坐标为(,0),∴直线y=kx+b经过点(3,-3)和点(,0),∴解得∴一次函数的解析式为.(2)∵,b=1>0,∴一次函数的图象经过第一、二、四象限.(3)对于,当x=0时,y=1;当y=0时,,∴该一次函数的图象与坐标轴围成的三角形的面积为.【解析】(1)先确定直线y=4x-3与x轴的交点坐标,然后利用待定系数法求出一次函数解析式;(2)由k、b的符号确定一次函数的图象所经过的象限;(3)求三角形的面积时要先求出一次函数的图象与两坐标轴的交点坐标.17.为了保护学生的视力,课桌椅的高度都是按一定比例配套设计的.假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,且y是x的一次函数.下表列出了两套符合条件的课桌椅的高度:椅子的高度x/(1)请确定y关于x的函数解析式;(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?请通过计算说明理由.【答案】(1)由题意可设函数的解析式为y=kx+b(k≠0).将x=40.0,y=75.0;x=37.0,y=70.2代入上式,得方程组解得所以y关于x的函数解析式为y=1.6x+11.0.(2)配套.理由如下:把x=42.0代入函数解析式,得y=1.6×42.0+11.0=78.2,与课桌的实际高度相等.所以一把高42.0cm的椅子和一张高78.2cm的课桌刚好配套.【解析】先用待定系数法求出一次函数的解析式,再检验是否满足一次函数的解析式.18.点P(3,-1)、Q(-3,-1)、R(,0)、S(,4)中,在函数y=-2x+5的图象上的点有()A.1个B.2个C.3个D.4个【答案】C【解析】题目中所给的点中在函数y=-2x+5的图象上的有点P、R、S,共3个.19.(2013鞍山)在一次函数y=kx+2中,若y随x的增大而增大,那么它的图象不经过第________象限.【答案】四【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.20.(2013资阳)在一次函数y=(2-k)x+b中,y随x的增大而增大,则k的取值范围为________.【答案】k<2【解析】因为y随x的增大而增大,所以2-k>0,所以k<2.21.(2013眉山)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B.C.D.【答案】C【解析】根据题中所给条件可判断c>0,a<0.22.(2013山东临沂)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x 的部分对应值如下表:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系,该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)【答案】(1)设y与x之间的函数解析式为y=kx+b,根据题意,得解得∴y与x之间的函数关系式为(10≤x≤70).(2)根据题意,得,解得x1=50,x2=80.∵10≤x≤70,∴x=50.即该机器的生产数量为50台.(3)设销售数量z(台)与售价a(万元/台)之间的函数关系式为z=ma+n,根据题意,得解得∴z=-a+90.当z=25时,a=65.故该厂第一个月销售这种机器的利润为(万元).【解析】(1)利用待定系数法求一次函数解析式.(2)生产数量×每台的成本-总成本.(3)利润=售价-成本.23.已知一次函数y=kx+b,当x=2时,y=-1,当x=-1时,y=2,则此函数的解析式为________.【答案】y=-x+1【解析】由题意得解得即y=-x+1.24.(2013陕西)“五一”期间,申老师一家自驾游去了离家170千米的某地,图是他们离家的距离y(千米)与汽车行驶时间x(时)之间的函数图象.(1)他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式.(3)他们出发2小时时,离目的地还有多少千米?【答案】解:(1)由图象可设OA段图象的函数表达式为y=kx(k≠0).当x=1.5时,y=90,所以1.5k=90,解得k=60,即y=60x(0≤x≤1.5).当x=0.5时,y=60×0.5=30.答:他们出发半小时时,离家30千米.(2)由图象可设AB段图象的函数表达式为y=k′x+b,将A(1.5,90),B(2.5,170)的坐标代入,得解得所以y=80x-30(1.5≤x≤2.5).(3)当x=2时,y=80×2-30=130.170-130=40(千米).答:他们出发2小时时,离目的地还有40千米.【解析】此题主要是将实际问题转化为函数的问题来解决,利用待定系数法来确定一次函数的表达式,给出自变量的值来求出相应的函数值.25.下列函数中,是正比例函数的是()①;②;③y=1+5x;④y=x2-5x;⑤y=2x.A.①⑤B.①②C.③⑤D.②④【答案】A【解析】由正比例函数的概念知①⑤是正比例函数.26.下列四个点中,在正比例函数的图象上的点是( )A.(2,5)B.(5,2)C.(2,-5)D.(5,-2)【答案】D【解析】要判断点是否在正比例函数的图象上,只需把点的横坐标代入函数解析式检验纵坐标,若两者相同,则该点在这一正比例函数的图象上,否则不在.因此把选项中各点的坐标分别代入验证,只有(5,-2)适合.27.写出一个正比例函数,使其图象经过第二、四象限:________.【答案】答案不唯一,如:y=-x【解析】设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过第二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为y=-x(答案不唯一).28.已知关于x的函数y=kx+4k-2(k≠0).若其图象经过原点,则k=________,若y随x的增大而减小,则k的取值范围是________.【答案】;k<0【解析】∵函数的图象经过原点,∴4k-2=0.∴.当k<0时,y随x的增大而减小.29. (2014陕西)若点A(-2,m)在正比例函数的图象上,则m的值是( )A.B.C.1D.-1【答案】C【解析】将(-2,m)代入中,得m=1,故选C.30.如图所示,正比例函数图象经过点A,求这个正比例函数的解析式.【答案】设该正比例函数的解析式为y=kx(k≠0),由图象可知,该函数图象过点A(1,3),∴3=k,∴该正比例函数的解析式为y=3x.【解析】可设该正比例函数的解析式为y=kx(k≠0),然后结合图象可知,该函数图象过点A(1,3),再利用方程求出k的值,进而解决问题.。
初中一次函数试题及答案
初中一次函数试题及答案一、选择题1. 一次函数y=kx+b的图象不经过第______象限。
A. 第一B. 第二C. 第三D. 第四答案:B2. 函数y=2x-3的图象与y轴的交点坐标是______。
A. (0, -3)B. (0, 2)C. (-3, 0)D. (3, 0)答案:A3. 如果一次函数y=kx+b的斜率k大于0,那么该函数的图象经过第______象限。
A. 第一、三B. 第一、二C. 第二、四D. 第一、二、三答案:D二、填空题4. 已知一次函数y=3x+4,当x=2时,y的值为______。
答案:105. 函数y=-2x+5的图象与x轴的交点坐标是______。
答案:(2.5, 0)三、解答题6. 已知一次函数y=kx+b的图象经过点(1, 2)和(-1, -4),求k和b 的值。
答案:将点(1, 2)代入y=kx+b得到方程2=k+b,将点(-1, -4)代入得到-4=-k+b。
解这个方程组,我们得到k=3,b=-1。
7. 函数y=4x-7与x轴的交点坐标是多少?答案:将y设为0,解方程4x-7=0得到x=1.75。
因此,交点坐标为(1.75, 0)。
四、计算题8. 一个一次函数的图象经过点A(2, 5)和点B(-1, -3),求这个一次函数的解析式。
答案:设一次函数为y=kx+b,根据点A(2, 5)和点B(-1, -3),我们有方程组:\[\begin{cases}2k + b = 5 \\-k + b = -3\end{cases}\]解这个方程组,得到k=2,b=1。
因此,一次函数的解析式为y=2x+1。
9. 已知一次函数y=kx+b的图象经过点(3, 6),且当x=0时,y=2,求k和b的值。
答案:根据题意,我们有方程组:\[\begin{cases}3k + b = 6 \\b = 2\end{cases}\]解这个方程组,得到k=2,b=2。
因此,一次函数的解析式为y=2x+2。
初二数学一次函数试题答案及解析
初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.与直线y=2x+1关于x轴对称的直线是()A.y="-2x+1"B.y=-2x-1C.D.【答案】B.【解析】∵直线y=f(x)关于x对称的直线方程为y=-f(x),∴直线y=2x+1关于x对称的直线方程为:-y=2x+1,即y=-2x-1.故选B.【考点】一次函数图象与几何变换.3.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0B.1C.2D.3【答案】B.【解析】∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③ 故选B .【考点】一次函数的性质.4. A 城有肥料300吨,B 城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A 城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B 城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A 城运往甲乡的肥料为x 吨. (1)请你填空完成下表中的每一空:(3)怎样调运化肥,可使总运费最少?最少运费是多少?【答案】(1)填空见下表;(2)y==-15x+13100;(3) A 城运往甲乡的化肥为260吨,A 城运往乙乡的化肥为40吨,B 城运往甲乡的化肥为20吨,B 城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【解析】(1)根据A 城运往甲乡的化肥为x 吨,则可得A 城运往乙乡的化肥为(300-x )吨,B 城运往甲乡的化肥为(260-x )吨,B 城运往乙乡的化肥为[240-(300-x )]吨; (2)根据(1)中所求以及每吨运费从而可得出y 与x 大的函数关系; (2)x 可取60至260之间的任何数,利用函数增减性求出即可. 试题解析:(1)填表如下:(2)根据题意得出:y=20x+25(300-x )+25(260-x )+15[240-(300-x )]=-15x+13100; (3)因为y=-15x+13100,y 随x 的增大而减小,根据题意可得:,解得:60≤x≤260,所以当x=260时,y最小,此时y=9200元.此时的方案为:A城运往甲乡的化肥为260吨,A城运往乙乡的化肥为40吨,B城运往甲乡的化肥为20吨,B城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【考点】1.一次函数的应用;2.一元一次不等式组的应用.5.两个全等的直角三角形重叠放在直线上,如图14-1,AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线上向左平移,使点C从F点向E点移动,如图14-2所示.(1)求证:四边形ABED是矩形;请说明怎样移动Rt△ABC,使得四边形ABED是正方形?(2)求证:四边形ACFD是平行四边形;说明如何移动Rt△ABC,使得四边形ACFD为菱形?(3)若Rt△ABC向左移动的速度是1cm/s,设移动时间为t秒,四边形ABFD的面积为Scm.求s随t变化的函数关系式.【答案】(1)证明见解析;(2)证明见解析;(3)S=3t2+24.【解析】(1)四边形ACFD为Rt△ABC平移形成的,推出AD∥BE,AB∥DE,∠ABE=90°,根据矩形的判定得出即可;根据正方形的判定得出即可;(2)根据平移得出AD∥CF,AC∥DF,根据平行四边形的判定得出即可;根据菱形的判定得出即可;(3)根据平行四边形的性质得出AD=CF,求出BF,根据梯形的面积公式求出即可.试题解析:(1)证明:∵Rt△ABC从Rt△DEF位置平移得出图2,∴AD∥BE,AB∥DE,∠ABE=90°,∴四边形ABED是矩形;当Rt△ABC向左平移6cm时,四边形ABED是正方形;(2)证明:∵四边形ACFD为Rt△ABC平移形成的,∴AD∥CF,AC∥DF,∴四边形ACFD为平行四边形,在Rt△ABC中,由勾股定理得:AC==10cm,即当Rt△ABC向左平移10cm时,四边形ACFD为菱形;(3)解:分为以上图形中的三种情况,∵由(2)知:四边形ACFD为平行四边形,∴AD=CF=1s×tcm/s=tcm,∴BF=(8+t)cm,∵四边形ABFD的面积为Scm2,∴三种情况的四边形ABFD的面积S=(AD+BF)×AB=•(t+8+t)•6,S=3t2+24,即三种情况S随t变化的函数关系式都是S=3t2+24.【考点】几何变换综合题.6.甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,按原路原速返回,追上小明后(米)与行走的时间为x(分两人一起步行到乙地.如图,线段OA表示小明与甲地的距离为y1(米)与行走的时间为x(分钟)钟)之间的函数关系;折线BCDEA表示小亮与甲地的距离为y2之间的函数关系.请根据图像解答下列问题:(1)小明步行的速度是米/分钟,小亮骑自行车的速度米/分钟;(2)图中点F坐标是(,)、点E坐标是(,);(3)求y1、y2与x之间的函数关系式;(4)请直接写出小亮从乙地出发再回到乙地过程中,经过几分钟与小明相距300米?【答案】(1)50,200;(2)8,400;32,1600;(3)y1=50x,y2=﹣200x+2000;(4)经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【解析】(1)根据图象可知小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)(3)分别设小明、小亮与甲地的距离为y1(米)、y2(米)与x(分钟)之间的函数关系式为y1=k1x,y2=k2x+b,由待定系数法根据图象就可以求出解析式;再进一步求得交点的坐标,得出点F、E的坐标即可;(4)分追击问题与相遇的过程中小亮与小明相距300米探讨得出答案即可.试题解析:(1)小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)设小明与甲地的距离为y1(米)与x(分钟)之间的函数关系式为y1=k1x,代入点(40,2000)得:2000=40k1,解得k1=50,所以y1=50x,设小亮与甲地的距离为y2(米)与x(分钟)之间的函数关系式为y2=k2x+b,则代入点(0,2000)和(10,0)得,所以yBC=﹣200x+2000,由图可知24分钟时两人的距离为:S=24×50=1200,小亮从甲地追上小明的时间为24×50÷(200﹣50)=8分钟,也就是32分钟时为0,则y1=50x=1600,则点E坐标为(32,1600);由题意得,解得,所以图中点F坐标是(8,400);(3)由(2)可知y1=50x,yBC=﹣200x+2000(0≤x≤10),设S与x之间的函数关系式为:S=kx+b,由题意,,解得:,∴S=﹣150x+4800,即yED=﹣150x+4800(24≤x≤32);(4)当0≤x≤10时,(2000﹣300)÷(50+200)=6.8(分钟)当8≤x≤10,300÷(50+200)+8=9.2(分钟)当24≤x≤32,则50x﹣(﹣150x+4800)=300,解得x=25.5(分钟)答:小亮从乙地出发再回到乙地过程中,经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【考点】一次函数的应用.7.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是()A.x<1B.x>1C.x<2D.x>2【答案】B【解析】先把点(1,2)代入y=ax﹣1,求出a的值,然后解不等式ax﹣1>2即可.【考点】一次函数与一元一次不等式.8.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多【答案】B.【解析】结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.【考点】函数的图象.9.一次函数的大致图象是()【答案】A.【解析】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b <0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.本题中因为a的取值不明确,故应分两种情况讨论,找出符合任一条件的选项即可.当a>0时,直线经过一,三,四象限,选项A正确;当a<0时,直线经过一,二,四象限,A、B、C、D均不符合此条件.故选A.【考点】一次函数的图象性质.10.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
一次函数练习题(附答案)
一次函数练习题(附答案)一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题 1.函数y=中,自变量某的取值范围是()某(ab的图象如图所示,那么a的取值范围是()A.a1C.a07.(上海市)如果一次函数yb的图象经过第一象限,且与y轴负半轴相交,那么()A.k0B.k0C.k0D.k08.(陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某某某2)9.(浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。
CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0)3C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。
12.某一次函数的图像经过点(-1,2),且经过第一、二、三象限,请你写出一个符合上述条件的函数关系式_________。
13.在平面直角坐标系中,把直线y=2某向下平移3个单位,所得直线的解析式_14.(福建晋江)若正比例函数y1,2),则该正比例函数的解析式为y36(kPa)时,ya某b1200某y某y2(某5(2)设函数解析式为y=k某,则图像过点(1,1.6),故y=1.6某(某≥0).(3)方案一:80元。
方案二:y=6某60-2=70(元).方案三:y=1.6某60=96(元)5∴选方案二最好。
22解:(1)小李3月份工资=2000+2%某14000=2280(元)小张3月份工资=1600+4%某11000=2040(元)(2)设y2b,取表中的两对数(1,7400),(2,9200)代入解析式,得kk=1800 解得1800某9200b,b=5600(3)小李的工资w12%(1200某24某16005600)1824当小李的工资w218242208,解得,某8答:从9月份起,小张的工资高于小李的工资。
一次函数练习题(附答案)
、选择题1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为( )(A) y=8x (B) y=2x+6 (C) y=8x+6 (D) y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A) 一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )(A) 4 (B) 6 (C) 8 (D) 164.若甲、乙两弹簧的长度y ( cmj)与所挂物体质量x (kg)之间的函数解析式分别为y=k i x+a i和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y i,乙弹簧长为丫2,则y i与y2的大小关系为( )(A) y i>y2 (B) y i=y2(C) y i<y2 (D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组(A) (BJ (C)a, b的取值,使得下列4个图中的一个为正确的是( )6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A) 一(B)二(C)三(D)四7. 一次函数y=kx+2经过点(1, 1),那么这个一次函数( )(A) y随x的增大而增大(B) y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( )(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=- 3x-4的图像,可把直线y=- -x ().2 2(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10 .若函数y= (m-5) x+ (4m+1) x 2(m 为常数)中的y 与x 成正比例,则 m 的值为()合条件的点P 共有()16 . 一次函数y=ax+b (a 为整数)的图象过点(98, 19),交x 轴于(p, 0),交y 轴于(?0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )(A ) 0(B ) 1(C ) 2(D )无数17 .在直角坐标系中,横坐标都是整数的点称为整点, 设k 为整数.当直线y=x-3与y=kx+k的交点为整点时,k 的值可以取()(A ) 2 个 (B ) 4 个 (Q 6 个 (D ) 8 个18 . (2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线 y=x-3与丫=权+卜的交点为整点时,k 的值可以取()(A ) 2 个 (B ) 4 个 (C ) 6 个 (D ) 8 个19 .甲、乙二人在如图所示的斜坡 AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a<b );乙上山的速度是 1a 米/分,下山的速度是2b 米/分.如2果甲、乙二人同时从点 A 出发,时间为t (分),离开点A 的路程为S (米),?那么下面11/A 、 1(A) m>— — 4■若直线y=3x-1 , 7 ,小1 (B) m>5 (C) m=——4与y=x-k 的交点在第四象限, (D) m=5 k 的取值范围是().12/、 1(A) k<- 3P (-1 (B) 1<k<1 33)直线, (C) k>1,、八 1(D) k>1 或 k<- 使它与两坐标轴围成的三角形面积为35, ?这样的直线可以作1314 (A) 4 条(B) 3 条 (C) 2 条 (D) 1 条a.已知abcw0,而且一(A )第一、二象限 (C )第三、四象限 ,当-1 WxW2时,函数 (B)(D) a第二c a 一,,, 、一,--- =p,那么直线 y=px+p 一TE 通过(----- )b第一、四象限y=ax+6满足y<10,则常数a 的取值范围是( )(A) -4<a<0 (B) 0<a<2 15 (C) -4<a<2 且 aw0.在直角坐标系中,已知(D) -4<a<2A (1,1),在x 轴上确定点P,使△AOP^J 等腰三角形,则符(A) 1 个(B) 2 个 (C) 3 个 (D) 4 个图象中,大致表示甲、乙二人从点A出发后的时间t (分)与离开点A的路程S (米)?之间的函数关系的是()20 .若k、b是一元二次方程x2+px- 1 q =0的两个实根(kbw0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1 .已知一次函数y=-6x+1 ,当-3WxW 1时,y的取值范围是 .2 .已知一次函数y= (m-2) x+m-3的图像经过第一,第三,第四象限,则m的取值范围是3 .某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:.4 .已知直线y=-2x+m不经过第三象限,则m的取值范围是 .5 .函数y=-3x+2的图像上存在点P,使得P砌x?轴的距离等于3, ?则点P?的坐标为6 .过点P (8, 2)且与直线y=x+1平行的一次函数解析式为 .7 . y=2x与y=-2x+3的图像的交点在第象限. 38.某公司规定一个退休职工每年可获得一份退休金,?金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(bwa), 他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、?q?)表示元.9 .若一次函数y=kx+b ,当-3WxW1时,对应的y值为1WyW9, ?则一次函数的解析式为.10 .(湖州市南滑区2005年初三数学竞赛试)设直线kx+ (k+1) y-1=0 (为正整数)与两坐标所围成的图形的面积为S k(k=1, 2, 3,……,2008),那么Si+S2+---+S2008=.11.据有关资料统计,两个城市之间每天的电话通话次数现测得A B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为 t,那么B C 两个城市间每天的电话次数为 次(用t 表 示).三、解答题1 .已知一次函数 y=ax+b 的图象经过点 A (2, 0)与B (0, 4). (1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数 y 的值在-4WyW4范围内,求相应的 y 的值在什么范围内.2.已知y=p+z,这里p 是一个常数,z 与x 成正比仞ij,且x=2时,y=1; x=3时,y=-1 .(1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1WxW4,求y 的取值范围.T?与这两个城市的人口数 mr n (单位:万人)以及两个城市间的距离 d (单位: kmn km )有 T= 2~ d 2的关系(k 为常数).?3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的. ?小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,?测量了家里的写字台和凳子, 写字台的高度为77cm,凳子的高度为,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象. (1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3) ?求小明出发多长时间距家125.已知一次函数的图象,交x轴于A (-6,0),交正比例函数的图象于点B,且点B? 在第三象限,它的横坐标为-2,4AOB的面积为6平方单位,?求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A (0, 1)出发,经过x轴上点C反射后经过点B (3, 3),求光线从A点到B点经过的路线的长.7.由方程I x-1 + y-1 =1确定的曲线围成的图形是什么图形,其面积是多少?28.在直角坐标系x0y中,一次函数y=——x+J2的图象与x轴,y轴,分别交于A、B两点,?点C坐标为(1, 0),点D在x轴上,且/ BCD=/ ABQ求图象经过B、D?两点的一次函数的解析式.9 .已知:如图一次函数 y= - x-3的图象与x 轴、210 .已知直线y=4x+4与x 轴、y 轴的交点分别为3(?0, -1), Q (0, k),其中0<k<4,再以Q 点为圆心,PQ 长为半径作圆,则当 k 取何值时, OQ?与直线AB 相切?11 . (2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有 50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往 A B 两地收割小麦,其中 30?台派往A 地,20台派往B 地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金 乙型收割机的租金A 地 1800元/台 1600元/台B 地1600元/台1200元/台(1)设派往A 地x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为 y (元),请用x 表示y,并注明x 的范围.(2)若使租赁公司这 50台联合收割机一天获得的租金总额不低于79600元,?说明有多少种分派方案,并将各种方案写出.0)作AB 的垂线交AB 于点E,交y 轴于点D,求点 Dy 轴分别交于A 、B 两点,过点C(4, EA 、B.又P 、Q 两点的坐标分别为 P12.已知写文章、出版图书所获得稿费的纳税计算方法是(x 800)・20%・(1 30%), x 400 - - —占…八f (x)= 其中f (x)表本稿费为x兀应缴纳的x(1 20%)・20%y 30%),x 400税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,?问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元, 乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.?又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x, y的值.am3时,只付基本费814.某市为了节约用水,规定:每户每月用水量不超过最低限量元和定额损耗费c元(c W 5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部3 .分每1m付b兀的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:15. A市、B市和C市有某种机器10台、10台、8台,?现在决定把这些机器支援给 D 市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从8所调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E 市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x (台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W(元),并求W的最大值和最小值.答案:1. B2.B3. A4. A5. B 提示:由方程组 y bx a 的解知两直线的交点为(1, a+b ), ?y ax b而图A 中交点横坐标是负数,故图A 不对;图C 中交点横坐标是2W1,故图C 不对;图D 外交点纵坐标是大于 a,小于b 的数,不等于a+b, 故图D 不对;故选B.… — , 一『 k 0,,一6. B 提小::直线y=kx+b 经过一、一、四象限,,对于直线y=bx+k,b 0••• ',图像不经过第二象限,故应选 B.b 07. B 提示:丁 y=kx+2 经过(1, 1), • . 1=k+2, • . y=-x+2 ,・「k=-1<0 , y 随x 的增大而减小,故 B 正确.y=-x+2不是正比例函数,,其图像不经过原点,故 C 错误. •••k<0, b=?2>0, .•.其图像经过第二象限,故 D 错误. 8. C 9 . D 提示:根据y=kx+b 的图像之间的关系可知,・•・当 p=2 时,y=px+q 过第一、 当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限.14. D 15 . D 16 . A 17 . C 18 . C 19 . C将y=- 3x?的图像向下平移 4个单位就可得到 y=- - x-4的图像.210. C 提示:•••函数y= (m-5)2x+ (4m+D x 中的y 与x 成正比例,4m 10,即0, 5,1 , 41 ...m=——,故应选 4 C.11. B 12 , C 13 . ,①若 a+b+cw0, ②若a+b+c=0,则B 提示:a —bc 则 p=(a b) (b a Ip=a b c = 1 c c 'a c) (cb cc a "V 平 义=2;20. A 提示:依题意,△ =p2+4 q >0,1.4.5. k*b k*b一次函数y=kx+b中,y随x的增大而减小过一、二、四象限,选A.-5WyWl9 2 . 2Vm<3 3.如y=-x+1 等.P |q| 0m>0.提示:应将y=-2x+m的图像的可能情况考虑周全. (1, 3)或(5,-3 ).提示:二,点P到x轴的距离等号当y=3时,3x= 1;当y=-3时,x=?;,点P的坐标为(3 3一次函数的图像一定经3,,点3)提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为P的纵坐标为3或-35或(一,-3 ).33,故点P的纵坐标应有两种情况.6. y=x-6 .提示:设所求一次函数的解析式为y=kx+b. .,直线y=kx+b 与y=x+1 平行,k=1,,y=x+b.将P (8, 2)代入,得2=8+b, b=-6,,所求解析式为y=x-6 .7.解方程组y 2一x,32x得3,,两函数的交点坐标为9,83,43 . 」3),在第一象限. 42 28 aq bp 2(bp aq) y=2x+7 或y=-2x+3101004200911.据题意,有80t=501602k, .,k=32t.5因此,B、C两个城市间每天的电话通话次数为80 1002-T BC=kx32t 5 t5 64 2,曲'/口 2a b 0a 21 . (1)由题息得:解得b 4 b 4,这个一镒函数的解析式为: y=-2x+4 (?函数图象略).(2) y=-2x+4 , -4WyW4,.•--4 <-2x+4 <4, 0<x<4.2. (1) ; z 与x 成正比例,,设 z=kx (kw0)为常数,则 y=p+kx.将 x=2, y=1 ; x=3, y=-1 分别代入 y=p+kx, ,口 2k p 1 〃,口得解得k=-2 , p=5,3k p 1二. y 与x 之间的函数关系是 y=-2x+5 ;(2) .1 1<x< 4,把 x-1, x2=4 分别代入 y=-2x+5 ,得 y 『3, y2=-3 .・ ・・当 1WxW4 时,-3 WyW3. 另解:: 1<x<4,-8 < -2x < -2 , -3W-2x+5W3,即-3WyW3.3. (1)设一次函数为y=kx+b ,将表中的数据任取两取,不防取(37.0 , 70.0 )和(42.0 , 78.0 )代入,得,一次函数关系式为 y=1.6x+10.8 .X 43.5+10.8=80.4 . 77W80.4 , •••不配套. 4. (1)由图象可知小明到达离家最远的地方需(2)设直线 CD 的解析式为 y=k 1x+b 1,由 C (2, 15)、D (3, 30),代入得:y=15x-15 , (2<x<3). 当 x=2.5 时,y=22.5 (千米) 答:出发两个半小时,小明离家.(3)设过E 、F 两点的直线解析式为 y=k 2x+b 2,由 E (4, 30), F (6, 0),代入得 y=-15x+90, (4<x<6) 过A 、B 两点的直线解析式为 y=k 3x,B (1, 15), y=15x . (0<x<1), ?分别令y=12 ,得x= 26(小时),x=-(小时).5 52k p 1 3k p 13小时;此时,他离家 30千米.26 4答:小明出发小时26■或4小时距家12千米.5 55.设正比例函数 y=kx, 一次函数 y=ax+b,•・•点B 在第三象限,横坐标为-2 ,设B (-2 , yB),其中yB<0,S A AOB =6, — AO, yB | =6,21. yB=-2 ,把点B (-2, -2)代入正比例函数 y=kx, ?得卜=1.0 6aba 把点 A (-6, 0)、B (-2,-2)代入 y=ax+b,得解得2 2ab, bD,彳D 吐y 轴,BHx 轴,交于 E.先证^ AOC2△ DOC・•.OD=OA=?,1 CA=CD CA+CB=DB=DE 2 BE 2 32 42 = 5.7 .当 x>1, y>1 时,y=-x+3 ;当 x> 1, y<1 时,y=x-1 ;当 x<1 , y> 1 时,y=x+1 ;当 x<?1 , y<1 时,y=-x+1 . 由此知,曲线围成的图形是正方形,其边长为J2,面积为2.8 . .••点A B 分别是直线y=12x+应与x 轴和y 轴交点, ••A (-3, 0), B (0,夜),•・•点C 坐标(1,0)由勾股定理得 BC=/3, AB=V 11 , 设点D 的坐标为(x, 0).(1)当点D 在C 点右侧,即x>1时, ・• / BCD h ABR / BDC=/ ADR .BCD^△ ABRBC CD .3 |x 1| ①AB BD '而,x 2 2• • X I = — , x2=—,经检验: X I = — , x2=—,都是方程①的根,24 24.x=1,不合题意,,舍去,,x=5,,D?点坐标为(卫,0).422・・尸’T-3即所求.6.延长BC 交x 轴于 3_11 x 2 2x 1••• 8x 2-22x+5=0 ,2 2设图象过B、D两点的一次函数解析式为y=kx+b , 55k b2・••所求一次函数为y=- 2/2x+J2 .59 .(2)若点D在点C左侧则x<1 ,可证△ ABS△ AD^AD BD . |x 3| . x2 2AB CB' -11—一飞一• • 8x2-18x-5=0 ,--- x i=— - , x2=5 ,经检验x i=—,4 245 , 、,…,x2=-,都是方程②的根.2x2= 5不合题意舍去,,x i=-),,D点坐标为(-1,0),2 4 4,图象过B、D (- 1, 0)两点的一次函数解析式为y=4,2x+J2,4综上所述,满足题意的一次函数为y=- 2^2 x+ J2或y=4 J2 x+ J2 .5直线y= —x-3与x轴交于点A (6, 0),与y轴交于点B (0, -3),2OA=6 OB=3 「OAL OB CD! AB, ,/ ODC= OABcot / ODC=cotZ OAB 即OD OAOC OB '“OC,OA 4 6 一,一OD=------- ------=8.,点D 的坐标为(0, 8),OB 3设过CD的直线解析式为y=kx+8 ,将C (4, 0)代入0=4k+8,解得k=-2 .1一, y -x・・・直线CD y=-2x+8,由2y 2x3 .3解得82254「•点E的坐标为(—,--).5 510 .把x=0, y=0分别代入y=±x+4得3「.A 、B 两点的坐标分别为(-3, 0), (0, 4) ?. ?•. OA=3 OB=4,,AB=5, BQ=4-k, QP=k+1.当 QQ LAB 于 Q'(如图),当QQ =QP 时,O Q 与直线 AB 相切.由 Rt^BQQ Rt△ BA(O 得BQ QQ' BQ Qp . 4 k k 1 . _ 7 BA AO BA AO •-53 ' " 8 .・・・当k=7时,O Q 与直线 AB 相切.811 . (1) y=200x+74000, 10<x<30(2)三种方案,依次为 x=28, 12 .设稿费为 x 元,.. x>7104>400,• ・x-f (x) =x-x (1-20%) 20% (1-30%) =x-x - 4 - 1• — x=111 x=7104.5 5 10 125,x=7104X 卫1=8000 (元).答:这笔稿费是 8000元.12513 . (1)设预计购买甲、乙商品的单价分别为 a 元和b 元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5 )(x-10 ) + (b+1) y=1529,②再由甲商品单价上涨 1元,而数量比预计数少 5个,乙商品单价上涨仍是1元的情形得:(a+1) (x-5) + (b+1) y=1563. 5, ③.1.5x y 10a 44,由①,②,③得:,④-⑤X2并化简,得x+2y=186.x y 5a 68.5.2(2)依题意有:205<2x+y<210 及 x+2y=186,得 54<y<55 —.3由于y 是整数,得y=55,从而得x=76 .0, 4;x 3, y0.29, 30的情况.由题意知:0<cW5, 0<8+cWl3.从表中可知,第二、三月份的水费均大于 13元,故用水量15m 3、22m 3均大于最低限量 am,19 8 b (15 a ) c将x=15, x=22分别代入②式,得( ) 解得b=2, 2a=c+19,⑤.33 8 b (22 a ) c再分析一月份的用水量是否超过最低限量,不妨设9>a ,将 x=9 代入②,得 9=8+2 (9-a ) +c,即 2a=c+17, ⑥. ⑥与⑤矛盾.故9w a,则一月份的付款方式应选①式,则8+c=9,,c=1代入⑤式得,a=10.综上得 a=10 , b=2, c=1 . ()15. (1)由题设知,A 市、B 市、C 市发往D 市的机器台数分 x, x, 18-2x ,发往E 市的机器台数分别为10-x, 10-x, 2x-10 .于是 W=200x+300x+400( 18-2x ) +800( 10-x ) +700( 10-x ) +500(2x-10 ) =-800x+17200 .0 x 10,0 x 10, 又0 18 2x 8,5 x 9,••.5<x<9, .. W=-800x+17200 (5W x<9, x 是整数).由上式可知,W 是随着x 的增加而减少的, 所以当x=9时,W 取到最小值10000元;? 当x=5时,W 取到最大值13200元.(2)由题设知,A 市、B 市、C 市发往D 市的机器台数分别为 x, y, 18-x-y ,发往E 市的机器台数分别是 10-x , 10-y , x+y-10 ,于是 W=200x+800( 10-x ) +300y+700 ( 10-y ) +?400( 19-x-y ) +500(x+y-10 )=-500x-300y-17200 .0 x 10,0 x 10, 又 0 y 10,0 y 10, 0 18 x y 8,10 x y 18,14.设每月用水量为 xm3,支付水费为 y 元.则 y=8 c,0 x a8 b(x a) c,x0 x 10,W=-500x-300y+17200 ,且0 y 10, (x,y 为整数) .0 x y 18.W=-200x-300 (x+y) +17200>-200 X 10-300 X 18+17200=9800.当x=?10, y=8时,W=9800所以,W 的最小值为 9800.又 W=-200x-300 (x+y) +17200W-200 X 0-300 X 10+17200=14200.当 x=0, y=10 时,W=14200 所以,W 的最大值为14200. 1.在一次函数y 2x 3中,y 随x 的增大而(填“增大”或“减小”),当 0 x 5时,y 的最小值为2.如图,直线y 1=kx b 过点A(0, 2),且与直线y 2=mx 交于点P(1, m),则不等式组 mx>kx b>mx 2 时,x 的取值范围是。
一次函数真题汇编附解析
一次函数真题汇编附解析一、选择题1.关于一次函数y=3x+m ﹣2的图象与性质,下列说法中不正确的是( ) A .y 随x 的增大而增大B .当m≠2时,该图象与函数y=3x 的图象是两条平行线C .若图象不经过第四象限,则m >2D .不论m 取何值,图象都经过第一、三象限 【答案】C 【解析】 【分析】根据一次函数的增减性判断A ;根据两条直线平行时,k 值相同而b 值不相同判断B ;根据一次函数图象与系数的关系判断C 、D . 【详解】A 、一次函数y=3x+m ﹣2中,∵k=3>0,∴y 随x 的增大而增大,故本选项正确;B 、当m≠2时,m ﹣2≠0,一次函数y=3x+m ﹣2与y=3x 的图象是两条平行线,故本选项正确;C 、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m ﹣2≥0,即m≥2,故本选项错误;D 、一次函数y=3x+m ﹣2中,∵k=3>0,∴不论m 取何值,图象都经过第一、三象限,故本选项正确. 故选:C . 【点睛】本题考查了两条直线的平行问题:若直线y 1=k 1x+b 1与直线y 2=k 2x+b 2平行,那么k 1=k 2,b 1≠b 2.也考查了一次函数的增减性以及一次函数图象与系数的关系.2.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( ) A .0b < B .2b <C .02b <<D .0b <或2b >【答案】D 【解析】 【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】解∵B 点坐标为(b ,-b+2), ∴点B 在直线y=-x+2上,直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0), ∴∠AQO=45°,∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°, ∴b 的取值范围为b <0或b >2. 故选D .【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(bk-,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .3.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x <<【答案】D 【解析】 【分析】根据一次函数的性质即可得答案. 【详解】∵一次函数1y x =--中10k =-<, ∴y 随x 的增大而减小, ∵123y y y <<, ∴123x x x >>. 故选:D . 【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.4.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .24y x =+ B .24y x =-+C .31y x =+D .31y x -=-【答案】B 【解析】 【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案. 【详解】设一次函数关系式为y kx b =+, ∵图象经过点()1,2,2k b ∴+=;∵y 随x 增大而减小, ∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-, ∴y=-3x+1,-3+1=-2,故该选项不符合题意, 故选:B . 【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.5.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2 B .8C .﹣2D .﹣8【答案】A 【解析】试题分析:设正比例函数解析式为:y=kx ,将点A (3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x ,将B (m ,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A .考点:一次函数图象上点的坐标特征.6.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B 【解析】 【分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标. 【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B . 【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.7.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长; ∵A 的坐标为(-4,5),D 是OB 的中点, ∴D (-2,0),由对称可知A'(4,5), 设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B 【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.8.已知直线y=2x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )A.12<k<1 B.13<k<1 C.k>12D.k>13【答案】A【解析】【分析】由直线y=2x-1与y=x-k可列方程组求交点坐标,再通过交点在第四象限可求k的取值范围.【详解】解:设交点坐标为(x,y)根据题意可得21y xy x k=-⎧⎨=-⎩解得112x ky k=-⎧⎨=-⎩∴交点坐标()112k,k--∵交点在第四象限,∴10120kk-⎧⎨-⎩><∴112k<<故选:D.【点睛】本题考查了两条直线相交坐标问题,掌握平面直角坐标系内点的坐标特点是解题的关键.9.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1, ∵四边形OACB 是矩形, ∴BC=OA=2,AC=OB=1,∵点C 在第二象限,∴C 点坐标为(-2,1), ∵正比例函数y =kx 的图像经过点C , ∴-2k=1,∴k=-12, 故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.10.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点nB 的坐标为( )A .(2n ,2n-1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +)【答案】B 【解析】 【分析】先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标. 【详解】 ∵1(1,0)A ∴11OA =∵过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ∴()11,2B ∵2(2,0)A∴22OA =∵过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ∴()12,4B∵点3A 与点O 关于直线22A B 对称 ∴()()334,0,4,8A B以此类推便可求得点A n 的坐标为()12,0n -,点B n 的坐标为()12,2n n - 故答案为:B . 【点睛】本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.11.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m £【答案】B 【解析】 【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项. 【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m £,正确,是真命题;故答案为:B 【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:砝码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.【答案】B【解析】【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案.【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x+b,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x+2.显然当y=7.5时,x=275,故选B.【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.13.若一次函数y=(k-3)x-1的图像不经过第一象限,则A.k<3 B.k>3 C.k>0 D.k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k<3.故选A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.14.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D 【解析】试题解析:当x >-1时,x+b >kx-1, 即不等式x+b >kx-1的解集为x >-1. 故选A .考点:一次函数与一元一次不等式.15.如图,已知一次函数3y x b =+与3y ax =-交于点P (-2,-5),则关于x 的不等式33x b ax +>-的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】 直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x >−2时,一次函数y =3x +b 的图象在函数y =ax−3的图象的上方,∴不等式3x +b >ax−3的解集为x >−2, 在数轴上表示为:.故选:C .【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.16.如图,一次函数y kx b =+的图象经过点03()4)3(A B -,,,,则关于x 的不等式3 0kx b ++<的解集为( )A .4x >B .4x <C .3x >D .3x <【答案】A【解析】【分析】 由30kx b ++<即y<-3,根据图象即可得到答案.【详解】∵y kx b =+,30kx b ++<,∴kx+b<-3即y<-3,∵一次函数y kx b =+的图象经过点B(4,-3),∴当x=4时y=-3,由图象得y 随x 的增大而减小,当4x >时,y<-3,故选:A.【点睛】此题考查一次函数的性质,一次函数与不等式,正确理解函数的性质、会观察图象是解题的关键.17.已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C.D.【答案】A【解析】【分析】函数的解析式可化为y=k(x+1),易得其图象与x轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y=k(x+1),即函数图象与x轴的交点为(﹣1,0),观察四个选项可得:A符合.故选A.【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.18.下列命题中哪一个是假命题()A.8的立方根是2B.在函数y=3x的图象中,y随x增大而增大C.菱形的对角线相等且平分D.在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.19.下列各点在一次函数y=2x ﹣3的图象上的是( )A .( 2,3)B .(2,1)C .(0,3)D .(3,0【答案】B【解析】【分析】把各点分别代入一次函数y=2x ﹣3进行检验即可.【详解】A 、2×2﹣3=1≠3,原式不成立,故本选项错误;B 、2×2﹣3=1,原式成立,故本选项正确;C 、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;D 、2×3﹣3=3≠0,原式不成立,故本选项错误,故选B .【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.20.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A【解析】【分析】直接利用一次函数的定义分析得出答案.【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A .【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.。
一次函数测试题及其答案
一次函数测试题1.函数xx的取值范围是()A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠12.已知正比例函数y=-2x,当x=-1时,函数y的值是()A.2 B.-2 C.-0.5 D.0.53.一次函数y=-2x-3的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数关系,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时。
5.已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且此函数图像与y轴的交点在x轴上方,则m的取值范围是()A.m>-2 B.m<1 C.<-2 D.-2<m<16.(2007福建福州)已知一次函数(1)y a x b=-+的图象如图所示,那么a的取值范围是()A.1a>B.1a<C.0a>D.0a<7.(2007上海市)如果一次函数y kx b=+的图象经过第一象限,且与y轴负半轴相交,那么()A.0k>,0b>B.0k>,0b<C.0k<,0b>D.0k<,0b<8.(2007陕西)如图,一次函数图象经过点A,且与正比例函数y x=-的图象交于点B,则该一次函数的表达式为()A.2y x=-+B.2y x=+C.2y x=-D.2y x=--9.(2007浙江湖州)将直线y=2x向右平移2个单位所得的直线的解析式是()。
A、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2)10.已知两点M(3,5),N(1,-1),点P是x轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(23,0)C.(43,0)D.(32,0)二、填空题O xyAB1-y x=-2O xy11.若点A(2,,-4)在正比例函数y=kx的图像上,则k=_____ 。
初一数学一次函数试题答案及解析
初一数学一次函数试题答案及解析1.一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是()A.B.C.D.【答案】C.【解析】公共汽车经历:加速-匀速-减速到站-加速-匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.故选C.【考点】函数的图象.2.小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校,我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:(1)小明骑车行驶了多少千米时,自行车“爆胎”修车用了几分钟?(2)小明共用多长时间到学校的?(3)小明修车前的速度和修车后的速度分别是多少?(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?【答案】(1)3千米;5分钟;(2 小明用30分钟到学校;(3)小明修车前的速度:千米/分钟,修车后的速度:千米/分钟;(4)早到分钟.【解析】(1)通过图象上的点的坐标和与x轴之间的关系可知他在图中停留了5分钟;(2)通过图象上即可看出小明用30分钟到学校;(3)对应路程除以时间即可求出速度;(4)先算出先前速度需要分钟,做差30﹣=即可求解.试题解析:(1)3千米;5分钟;(2)通过图象上即可看出小明用30分钟到学校;(3)小明修车前的速度:千米/分钟,修车后的速度:千米/分钟;(4)先前速度需要分钟,30﹣=,即早到分钟.【考点】一次函数的应用.3.做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获利的总利润最大?最大的总利润是多少?【答案】(1)分配到甲店的A款22件,B款8件;分配到乙店的A款14件,B款16件。
八年级数学一次函数32道典型题(含答案和解析)
八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。
初二数学一次函数试题答案及解析
初二数学一次函数试题答案及解析1. 如图,直线y=kx ﹣2与x 轴交于点A (1,0),与y 轴交于点B ,若直线AB 上的点C 在第一象限,且S △BOC =3,求点C 的坐标.【答案】(﹣3,﹣8)【解析】先把A 点坐标代入y=kx ﹣2求出k=2,得到直线解析式为y=2x ﹣2,再确定B 点坐标为(0,﹣2),设C 点坐标为(x ,y )(x <0,y <0),然后根据三角形面积公式得到×2×(﹣x )=3,解得x=﹣3,再求出自变量为﹣3所对应的函数值即可得到C 点坐标. 试题解析:把A (1,0)代入y=kx ﹣2得k ﹣2=0,解得k=2, ∴直线解析式为y=2x ﹣2,把x=0代入y=2x ﹣2得y=﹣2, ∴B 点坐标为(0,﹣2),设C 点坐标为(x ,y )(x <0,y <0), ∵S △BOC =3,∴×2×(﹣x )=3,解得x=﹣3, 把x=﹣3代入y=2x ﹣2得y=﹣8,∴C 点坐标为(﹣3,﹣8).【考点】一次函数图象上点的坐标特征.2. 一次函数y=-2x-4的图象不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】A .【解析】对于一次函数y=﹣2x ﹣4, ∵k=﹣2<0,∴图象经过第二、四象限; 又∵b=﹣4<0,∴一次函数的图象与y 轴的交点在x 轴下方,即函数图象还经过第三象限, ∴一次函数y=﹣2x ﹣4的图象不经过第一象限. 故选A .【考点】一次函数图象与系数的关系.3.已知点A(2a﹣1,3a+1),直线l经过点A,则直线l的解析式是_________.【答案】y=x+.【解析】∵点A的坐标为A(2a﹣1,3a+1),∴x=2a﹣1,y=3a+1,∴a=,a=,所以=,整理得,y=x+.故答案是y=x+.【考点】待定系数法求一次函数解析式.4.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C.D.【答案】A.【解析】由图象知方程组的解是.故选A.【考点】一次函数图象的应用.5.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港.最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y 1、y2与x的函数关系如图.(1)填空:A、C两港口间的距离为 km,a= ;(2)请分别求出y1、y2与x的函数关系式,并求出交点P的坐标;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船经过多长时间正好相距10千米?【答案】(1)120,4;(2)y1=,y2=15x(0≤x≤6),点P的坐标为(2,30);(3)甲、乙两船经过小时或小时或小时,正好相距10千米.【解析】(1)从图中可以看出A、B两港是30km,B、C两港是90km,A、C两港口间的距离为30+90=120km,根据路程÷时间求出甲的速度:30÷1=30(km/h),进而求出a的值:a=120÷30=4.(2)利用待定系数法求出y1,y2,联立解方程组,即可求出点P的坐标.(3)先根据一次函数的图象求出乙的速度,再根据甲在乙船前和乙船后,及甲船已经到了而乙船正在行驶,三种情况进行解答即可.试题解析:(1)120,4.(2)当0≤x≤1时,由点(0,30),(1,0)求得y1=﹣30x+30;当1<x≤4时,由点(1,0),(4,90)求得y1=30x﹣30;即y1与x的函数关系式为y1=.由点(6,90)求得,y2=15x(0≤x≤6),即y2与x的函数关系式为y2=15x(0≤x≤6);由图象可知,交点P的横坐标x>1,此时y1=y2,解方程组,得.所以点P的坐标为(2,30);(3)由函数图象可知,乙船的速度为:90÷6=15(km/m).①甲在乙后10km,设行驶时间为xh,则x<2.如果0≤x≤1,那么(﹣30x+30)+15x=10,解得x=,不合题意舍去;如果1≤x<2,那么15x﹣(30x﹣30)=10,解得x=,符合题意;②甲超过乙后,甲在乙前10km,设行驶时间为xh,则x>2.由题意,得30x﹣30﹣15x=10,解得x=,符合题意;③甲船已经到了而乙船正在行驶,则4≤x<6.由题意,得90﹣15x=10,解得x=,符合题意;即甲、乙两船经过小时或小时或小时,正好相距10千米.【考点】1.一次函数的应用;2.直线上点的坐标与方程的关系;3.待定系数法的应用;4.分类思想的应用..6.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第____象限.【答案】四.【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案是四.【考点】一次函数图象与系数的关系.7.甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)、甲、乙两人的速度各是多少?(2)、求甲距A地的路程S与行驶时间t的函数关系式。
初二数学一次函数试题答案及解析
初二数学一次函数试题答案及解析1.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0B.1C.2D.3【答案】B.【解析】∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③故选B.【考点】一次函数的性质.2.某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题:(1)有几种符合题意的生产方案写出解析过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?【答案】(1)21种.(2)y=-0.2x+280.x=40时成本总额最低.【解析】(1)设生产A种饮料x瓶解出不等式方程组即可.(2)如图可得x与y的关系式,可知道x与y的关系.试题解析:(1)根据题意得:,解这个不等式组,得20≤x≤40.因为其中正整数解共有21个,所以符合题意的生产方案有21种.(2)根据题意,得y=2.6x+2.8(100-x),整理,得y=-0.2x+280.∵k=-0.2<0,∴y随x的增大而减小.∴当x=40时成本总额最低.【考点】一元一次不等式组的应用.3.关于正比例函数y=-2x,下列说法错误的是( )A.图象经过原点B.图象经过第二,四象限C.y随x增大而增大D.点(2,-4)在函数的图象上【答案】C.【解析】A、正比例函数y=-2x,图象经过原点,正确,不合题意;B、正比例函数y=-2x,图象经过第二,四象限,正确,不合题意;C、正比例函数y=-2x,y随x增大而减小,故此选项错误,不合题意;D、当x=2时,y=-4,故点(2,-4)在函数的图象上正确,不合题意;故选C.【考点】正比例函数的性质.4.已知点A(-5,y1)和B(-4,y2)都在直线y=x-4上,则y1与y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能确定【答案】C.【解析】∵点A(﹣5,y1)和B(﹣4,y2)都在直线y=x﹣4上,∴y1=﹣5﹣4=﹣9,y2=﹣4﹣4=﹣8,∵﹣9<﹣8,∴y1<y2,故选C.【考点】一次函数图象上点的坐标特征.5.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_________.【答案】x<2.【解析】由图象可知一次函数y=kx+b的图象经过点(2,0)、(0,3).∴可列出方程组,解得,∴该一次函数的解析式为y=x+3,∵<0,∴当y>0时,x的取值范围是:x<2.故答案是x<2.【考点】一次函数的图象.6.已知一次函数y=kx+b的图象如图所示,则k,b的符号是 ( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【答案】D.【解析】由一次函数y=kx+b的图象经过二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0,再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选D.【考点】一次函数图象与系数的关系.7.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第____象限.【答案】四.【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案是四.【考点】一次函数图象与系数的关系.8.如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与轴交于点B,且OA=OB,求这两个函数的关系式及两直线与轴围成的三角形的面积.【答案】 3.75【解析】解:如图,过点A作AC⊥轴于点C,则AC=3,OC=4,所以OA=OB=5,故B点坐标为(0,).设直线AO的关系式为,因为其过点A(4,3),则,解得.所以.设直线AB的关系式为,因为其过点A(4,3)、B(0,),则解得:所以关系式为.令,得,则D点坐标为(2.5,0).所以两直线与轴围成的三角形AOD的面积为2.5×3÷2=3.75.9.已知一次函数,(1)为何值时,它的图象经过原点;(2)为何值时,它的图象经过点(0,).【答案】(1)9 (2)10【解析】分析:(1)把点的坐标代入一次函数关系式,并结合一次函数的定义求解即可;(2)把点的坐标代入一次函数关系式即可.解:(1)∵图象经过原点,∴点(0,0)在函数图象上,代入解析式得:,解得:.又∵是一次函数,∴,∴.故符合.(2)∵图象经过点(0,),∴点(0,)满足函数解析式,代入得:,解得:.10.某车间有甲、乙两条生产线.在甲生产线已生产了200吨成品后,乙生产线开始投入生产,甲、乙两条生产线每天分别生产20吨和30吨成品.(1)分别求出甲、乙两条生产线各自总产量(吨)与从乙开始投产以来所用时间(天)之间的函数关系式.(2)作出上述两个函数在如图所示的直角坐标系中的图象,观察图象,分别指出第10天和第30天结束时,哪条生产线的总产量高?【答案】(1)(2)乙生产线的总产量高【解析】解:(1)由题意可得:甲生产线生产时对应的函数关系式是;乙生产线生产时对应的函数关系式为.(2)令,解得,可知在第20天结束时,两条生产线的产量相同,故甲生产线所对应的生产函数图象一定经过点(0,200)和(20,600);乙生产线所对应的生产函数图象一定经过点(0,0)和(20,600).作出图象如图所示.由图象可知:第10天结束时,甲生产线的总产量高;第30天结束时,乙生产线的总产量高.11.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是 ( )A.﹣2B.-1C.0D.2【答案】D.【解析】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.【考点】一次函数图象与系数的关系12. A、B两码头相距150千米,甲客船顺流由A航行到B,乙客船逆流由B到A,若甲、乙两客船在静水中的速度相同,同时出发,它们航行的路程y(千米)与航行时间x(时)的关系如图所示.(1)求客船在静水中的速度及水流速度;(2)一艘货轮由A码头顺流航行到B码头,货轮比客船早2小时出发,货轮在静水中的速度为10千米/时,在此坐标系中画出货轮航程y(千米)与时间x(时)的关系图象,并求货轮与客船乙相遇时距A码头的路程。
一次函数试题及答案
一次函数试题及答案### 一次函数试题一、选择题1. 如果直线y=3x+4与x轴相交于点A(-4/3, 0),则直线y=3x+b与x 轴相交于点B(x, 0),则b的值是()。
- A. 4- B. 12- C. -4- D. 02. 已知一次函数y=kx+b的图象过点(3,5)和(-1,-1),则k+b的值是()。
- A. 4- B. 3- C. 2- D. 1二、填空题1. 一次函数y=kx+b的斜率为2,且过点(1,-1),求b的值。
2. 直线y=-2x+3与y轴的交点坐标是()。
三、解答题1. 已知一次函数y=kx+b的图象经过点(-1,2)和(2,-1),求k和b的值。
2. 直线y=-x+3与x轴相交于点A,与y轴相交于点B,求AB的长度。
答案一、选择题1. 答案:B解析:已知直线y=3x+4与x轴相交于点A(-4/3, 0),因此当y=0时,x=-4/3。
直线y=3x+b与x轴相交时,y=0,所以3x+b=0,解得x=-b/3。
因为交点B的横坐标是x,所以-b/3=x,即b=3x。
将点A的横坐标-4/3代入得b=12。
2. 答案:C解析:将点(3,5)代入y=kx+b得3k+b=5,将点(-1,-1)代入得-k+b=-1。
解方程组得k=2,b=1,所以k+b=3。
二、填空题1. 答案:b=-3解析:已知斜率k=2,将点(1,-1)代入y=kx+b得-1=2*1+b,解得b=-3。
2. 答案:(0,3)解析:直线与y轴相交时,x=0,代入y=-2x+3得y=3。
三、解答题1. 解:将点(-1,2)代入y=kx+b得-k+b=2,将点(2,-1)代入得2k+b=-1。
解方程组得k=-3/2,b=-2。
2. 解:直线y=-x+3与x轴相交时,y=0,代入得x=3,所以点A(3,0)。
与y轴相交时,x=0,代入得y=3,所以点B(0,3)。
根据两点间距离公式,AB=√(3²+3²)=3√2。
一次函数基础测试题及答案解析
一次函数基础测试题及答案解析一、选择题1.如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为()A.-5,-4,-3 B.-4,-3 C.-4,-3,-2 D.-3,-2【答案】B【解析】【分析】根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x的不等式-x+m>nx+5n>0的解集为-5<x<-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.2.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.32C.52D.7【答案】C【解析】【分析】把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得m=12×3+1=52. 故选C. 【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.3.一次函数y=ax+b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C 【解析】 【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置. 【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小4.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b >0时图象在一、二、四象限.5.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x <<【答案】D 【解析】 【分析】根据一次函数的性质即可得答案. 【详解】∵一次函数1y x =--中10k =-<, ∴y 随x 的增大而减小, ∵123y y y <<, ∴123x x x >>. 故选:D . 【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6.正比例函数y =kx 与一次函数y =x ﹣k 在同一坐标系中的图象大致应为( )A .B .C .D .【答案】B 【解析】 【分析】根据图象分别确定k 的取值范围,若有公共部分,则有可能;否则不可能. 【详解】 根据图象知:A 、k <0,﹣k <0.解集没有公共部分,所以不可能;B 、k <0,﹣k >0.解集有公共部分,所以有可能;C 、k >0,﹣k >0.解集没有公共部分,所以不可能;D 、正比例函数的图象不对,所以不可能. 故选:B . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b 的图象的四种情况是解题的关键.7.函数ky x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】C 【解析】 【分析】分k>0和k<0两种情况确定正确的选项即可. 【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误, 故选:C. 【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.8.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定【答案】C 【解析】 【分析】求关于x 的不等式12k x b k x +>的解集就是求:能使函数1y k x b =+的图象在函数2y k x =的上边的自变量的取值范围.【详解】解:能使函数1y k x b =+的图象在函数2y k x =的上边时的自变量的取值范围是1x <-. 故关于x 的不等式12k x b k x +>的解集为:1x <-.【点睛】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y ax b=+的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y kx b=+在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.9.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-12,故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.10.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【答案】B【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=1x是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()(cm )A .y=0.5x+12B .y=x+10.5C .y=0.5x+10D .y=x+12【答案】A 【解析】分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y (cm )与所挂重物x (㎏)之间的函数关系式.详解:由表可知:常量为0.5;所以,弹簧总长y (cm )与所挂重物x (㎏)之间的函数关系式为y=0.5x+12. 故选A .点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.13.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+C .22y x =+D .22y x =-【答案】A 【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4, 故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.14.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是( )A .B .C .D .【答案】A 【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,∴不等式3x+b>ax-3的解集为:x>-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.15.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:砝码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.【答案】B【解析】【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案. 【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x +b ,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x +2.显然当y=7.5时,x =275,故选B. 【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.16.对于一次函数24y x =-+,下列结论正确的是( ) A .函数值随自变量的增大而增大 B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4 【答案】C 【解析】 【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解. 【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确; B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x , 故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确. 故选:C . 【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.17.下列函数:①y x =;②4zy =;③4y x=,④21y x =+其中一次函数的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据一次函数的定义条件进行逐一分析即可.【详解】①y=x 是一次函数,故①符合题意; ②4z y =是一次函数,故②符合题意; ③4y x=自变量次数不为1,故不是一次函数,故③不符合题意; ④y=2x+1是一次函数,故④符合题意.综上所述,是一次函数的个数有3个, 故选:C .【点睛】此题考查了一次函数的定义,解题关键在于掌握一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:3y x =-将点A '的横坐标为4y =-即点A '的坐标为4)-∵点A 向右平移6个单位得到点A '∴B '的坐标为(046)2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m 【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m ,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.20.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+B .2133y x =+ C .1y x =+D .5342y x =+ 【答案】D【解析】【分析】由已知点可求四边形ABCD 分成面积()113741422B AC y =⨯⨯+=⨯⨯=;求出CD 的直线解析式为y=-x+3,设过B 的直线l 为y=kx+b ,并求出两条直线的交点,直线l 与x 轴的交点坐标,根据面积有1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪+⎝⎭⎝⎭,即可求k 。
一次函数基础测试题及答案
一次函数基础测试题及答案一、选择题1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.2.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】 解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.3.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C【解析】【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案.【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),当x >2时,y<0.故答案为:x >2.故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.4.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( )A .0b <B .2b <C .02b <<D .0b <或2b >【答案】D【解析】【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2.【详解】解∵B 点坐标为(b ,-b+2),∴点B 在直线y=-x+2上,直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0),∴∠AQO=45°,∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,∴b 的取值范围为b <0或b >2.故选D .【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(b k -,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .5.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB (O 为坐标原点)的面积为( )A .32B .2C .23D .3【答案】C【解析】【分析】根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可.【详解】当32y x =-+中y=0时,解得x=23,当x=0时,解得y=2, ∴A(23,0),B(0,2), ∴OA=23,OB=2, ∴1122223AOB S OA OB =⋅=⨯⨯=23, 故选:C.【点睛】此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.6.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.7.甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲立刻原速返回,乙继续以原速步行前往火车站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程y (米)与时间t (分)的函数关系如图所示,则下列结论错误的是( )A .他们步行的速度为每分钟80米;B .出租车的速度为每分320米;C .公司与火车站的距离为1600米;D .出租车与乙相遇时距车站400米.【答案】D【解析】【分析】 根据图中一条函数的折返点的纵坐标是480,我们可得知,甲走了480米后才发现了没带票的,然后根据返回公司用时12分钟,速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,则可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然后判别即可.【详解】解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变, 即:甲步行的速度为每分钟480806米,乙步行的速度也为每分钟80米, 故A 正确;又∵甲乙再次相遇时是16分钟,∴16分乙共走了80161280米,由图可知,出租车的用时为16-12=4分钟,∴出租车的速度为每分12804320米,故B 正确;又∵相遇后,坐出租车去火车站比预计早到3分钟,设公司与火车站的距离为x 米, 依题意得:12380320xx ,解之得:1600x =, ∴公司与火车站的距离为1600米,出租车与乙相遇时距车站1600-1280=320米. 故C 正确,D 不正确.故选:D .【点睛】本题通过考查一次函数的应用来考查从图象上获取信息的能力.要注意题中分段函数的意义.8.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x >B .2x <C .2x ≥D .2x ≤【答案】B【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集.【详解】解:把(2,0)代入3y mx =+得:023m =+,解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小, ∵一次函数3y mx =+与x 轴的交点为(2,0),∴不等式 30mx +>的解集是:2x <,故选:B .【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C【解析】 分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b ,将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩, 解得:24k b =⎧⎨=-⎩, ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是().①从开始观察时起,50天后该植物停止长高;②直线AC的函数表达式为165y x=+;③第40天,该植物的高度为14厘米;④该植物最高为15厘米.A.①②③B.②④C.②③D.①②③④【答案】A【解析】【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得:156kb⎧=⎪⎨⎪=⎩,∴直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,1406145y=⨯+=,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,1506165y=⨯+=,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.11.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.一次函数 y = mx +1m-的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为()A.-1 B.3 C.1 D.- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可.【详解】∵一次函数y=mx+|m-1|中y随x的增大而增大,∴m>0.∵一次函数y=mx+|m-1|的图象过点(0,2),∴当x=0时,|m-1|=2,解得m1=3,m2=-1<0(舍去).故选B.【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图,已知正比例函数y1=ax与一次函数y2=12x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④【答案】D【解析】【分析】根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数21 2y x b=+ \过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<−2时,y1>y2,④正确;故选D.【点睛】考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.14.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( )A .a <0B .a >0C .a <-1D .a >-1 【答案】C【解析】【分析】【详解】∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴a+1<0,解得a<-1,故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.15.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是( ) A . B . C . D .【答案】B【解析】【分析】过C 作CD ⊥AB 于D ,先求出A ,B 的坐标,分别为(4,0),(0,3),得到AB 的长,再根据折叠的性质得到AC 平分∠OAB ,得到CD=CO=n ,DA=OA=4,则DB=5-4=1,BC=3-n ,在Rt △BCD 中,利用勾股定理得到n 的方程,解方程求出n 即可.【详解】过C 作CD ⊥AB 于D ,如图,对于直线,当x=0,得y=3;当y=0,x=4, ∴A (4,0),B (0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD=CO=n ,则BC=3-n ,∴DA=OA=4,∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.16.在平面直角坐标系中,直线:1m y x =+与y 轴交于点A ,如图所示,依次正方形1M ,正方形2M ,……,正方形n M ,且正方形的一条边在直线m 上,一个顶点x 轴上,则正方形n M 的面积是( )A .222n -B .212n -C .22nD .212n +【答案】B【解析】【分析】由一次函数1y x =+,得出点A 的坐标为(0,1),求出正方形M 1的边长,即可求出正方形M 1的面积,同理求出正方形M 2的面积,即可推出正方形n M 的面积.【详解】一次函数1y x =+,令x=0,则y=1,∴点A 的坐标为(0,1),∴OA=1,∴正方形M 1的边长为22112+=, ∴正方形M 1的面积=222⨯=,∴正方形M 1的对角线为()()22222⨯=,∴正方形M 2的边长为222222+=,∴正方形M 2的面积=3222282⨯==,同理可得正方形M 3的面积=5322=,则正方形n M 的面积是212n -,故选B.【点睛】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】将A(1,1),B(3,1),C(2,2)的坐标分别代入直线y=12x+b中求得b的值,再根据一次函数的增减性即可得到b的取值范围.【详解】解:直线y=12x+b经过点B时,将B(3,1)代入直线y=12x+b中,可得32+b=1,解得b=-12;直线y=12x+b经过点A时:将A(1,1)代入直线y=12x+b中,可得12+b=1,解得b=12;直线y=12x+b经过点C时:将C(2,2)代入直线y=12x+b中,可得1+b=2,解得b=1.故b的取值范围是-12≤b≤1.故选B.【点睛】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.18.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!19.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.20.如图,直线y=-x+m 与直线y=nx+5n (n≠0)的交点的横坐标为-2,则关于x 的不等式-x+m >nx+5n >0的整数解为( )A .-5,-4,-3B .-4,-3C .-4,-3,-2D .-3,-2【答案】B【解析】【分析】 根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n 中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x 的不等式-x+m >nx+5n >0的解集为-5<x <-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.。
一次函数经典试题及答案
一次函数经典试题及答案10.(20XX 年浙江省东阳县)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )【关键词】函数的意义 【答案】A1、(20XX 年宁波市)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。
(A) (B) (C) (D) s (千米)t (分钟)ABDC304515O2 4 小聪 小明 第1题(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米? 【关键词】函数与实际问题 【答案】解:(1)15,154 (2)由图像可知,s 是t 的正比例函数 设所求函数的解析式为kt s =(0≠k ) 代入(45,4)得:k 454= 解得:454=k ∴s 与t 的函数关系式t s 454=(450≤≤t ) (3)由图像可知,小聪在4530≤≤t 的时段内s 是t 的一次函数,设函数解析式为n mt s +=(0≠m )代入(30,4),(45,0)得:⎩⎨⎧=+=+045430n m n m解得:⎪⎩⎪⎨⎧=-=12154n m∴12154+-=t s (4530≤≤t ) 令t t 45412154=+-,解得4135=t 当4135=t 时,34135454=⨯=S 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。
5.(20XX 年安徽省芜湖市)要使式子a +2a有意义,a 的取值范围是() A .a ≠0 B.a >-2且a ≠0 C.a >-2或a ≠0 D.a ≥-2且a ≠0 【关键词】函数自变量的取值范围 【答案】D11.(20XX 年浙江台州市)函数xy 1-=的自变量x 的取值范围是 ▲ . 【关键词】自变量的取值范围 【答案】0≠x5.(20X X 年益阳市)如图2,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是A. B . C . D . 【关键词】函数图像火车隧道oyxoy xoy xoy x2图【答案】A20.(20XX 年浙江台州市)A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x(小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当它们行驶7了小时时,两车相遇,求乙车速度.【关键词】一次函数、分类思想 【答案】(1)①当0≤x ≤6时,x y 100=;②当6<x ≤14时, 设b kx y +=,∵图象过(6,600),(14,0)两点,∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k∴105075+-=x y .∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y (2)当7=x 时,5251050775=+⨯-=y ,757525==乙v (千米/小时). x/小y /千600146OFEC D(第20题)18. (20X X 年益阳市)我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,益阳地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式;(2)已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃? (3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米? 【关键词】一次函数、一元一次方程 【答案】解:⑴ x y 620-= (0>x ) ⑵ 500米=5.0千米 1750620=⋅⨯-=y (℃) ⑶ x 62034-=- 9=x答:略.17.(2010江西)已知直线经过点(1,2)和点(3,0),求这条直线的解析式.【关键词】一次函数 待定系数法【答案】解:设这直线的解析式是(0)y kx b k =+≠,将这两点的坐标(1,2)和(3,0)代入,得2,30,k b k b +=⎧⎨+=⎩,解得1,3,k b =-⎧⎨=⎩所以,这条直线的解析式为3y x =-+.5.(2010山东德州)某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是(A) (B) (C) (D) 【关键词】函数图像 【答案】A(20XX 年四川省眉山)某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为【关键词】函数图象 【答案】 DOyxOxyOy xO xyA B C Dt h Ot h O t h O htO第5题图深 水浅水区(20XX年四川省眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?【关键词】一元一次方程(组)、一元一次不等式(组)、一次函数型的最值问题【答案】解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000)x-尾,由题意得:+-=………………………………………(10.50.8(6000)3600x x分)解这个方程,得:4000x=∴60002000-=x答:甲种鱼苗买4000尾,乙种鱼苗买2000尾.…………………(2分)(2)由题意得:0.50.8(6000)4200+-≤……………………………(3分)x x解这个不等式,得:2000x≥即购买甲种鱼苗应不少于2000尾.………………………………(4分)(3)设购买鱼苗的总费用为y,则0.50.8(6000)0.34800=+-=-+(5分)y x x x由题意,有909593(6000)6000100100100x x +-≥⨯………………………(6分)解得: 2400x ≤…………………………………………………………(7分)在0.34800y x =-+中∵0.30-<,∴y 随x 的增大而减少 ∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)9.(2010重庆市)小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
一次函数的计算(人教版)(含答案)
一次函数的计算(人教版)一、单选题(共10道,每道10分)1.一次函数的图象过点和,则此图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限答案:C解题思路:试题难度:三颗星知识点:待定系数法求一次函数表达式2.已知函数y=ax+b经过(1,3),(0,-2),则a-b=( )A.-1B.-3C.3D.7答案:D解题思路:试题难度:三颗星知识点:待定系数法求一次函数表达式3.过点(3,2)且与直线y=1-2x无交点的直线是( )A.y=2x-4B.y=-2x+4C.y=-2x+8D.y=x-1答案:C解题思路:试题难度:三颗星知识点:一次函数表达式与坐标互转4.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )A.y=2x+3B.y=x-3C.y=2x-3D.y=-x+3答案:D解题思路:试题难度:三颗星知识点:待定系数法求一次函数表达式5.若将直线的图象向上平移3个单位长度后经过点(2,5),则平移后的直线解析式为( )A. B.C.y=x+3D.答案:C解题思路:试题难度:三颗星知识点:一次函数表达式与坐标互转6.一次函数的图象过点(0,2),且y随x的增大而增大,则m=( )A.-1B.3C.1D.-1或3答案:B解题思路:试题难度:三颗星知识点:待定系数法求一次函数解析式7.已知函数y=-x+m与y=mx-4的图象的交点在x轴的负半轴上,那么m的值为( )A.-2B.2C.±4D.±2答案:A解题思路:试题难度:三颗星知识点:两个一次函数的交点8.根据表中一次函数的自变量x与函数y的对应值,可得p的值为( )A.1B.-1C. D.答案:C解题思路:试题难度:三颗星知识点:待定系数法求一次函数表达式9.若直线y=2x+b经过直线y=x-2与y=-x+4的交点,则b的值是( )A.1B.-1C.-5D.7答案:C解题思路:试题难度:三颗星知识点:待定系数法求一次函数表达式10.已知一次函数y=kx+b,当时,对应的函数值y的取值范围是,则kb的值为( )A.12B.-6C.-6或-12D.6或12答案:C解题思路:试题难度:三颗星知识点:待定系数法求一次函数表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(共19小题)1.(2014•济宁)函数y=中的自变量x的取值范围是()A .x≥0B.x≠﹣1 C.x>0 D.x≥0且x≠﹣12.(2014•兰州)函数y=中,自变量x的取值范围是()A .x>﹣2 B.x≥﹣2 C.x≠2D.x≤﹣23.(2014•南宁)“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x 的函数关系的图象大致是()A .B.C.D.4.(2014•重庆)夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗,该工人先只打开一个进水管,蓄了少量水后关闭进水管并立即进行清洗,一段时间后,再同时打开两个出水管将池内的水放完,随后将两个出水管关闭,并同时打开两个进水管将水蓄满.已知每个进水管的进水速度与每个出水管的出水速度相同,从工人最先打开一个进水管开始,所用时间为x,游泳池内的蓄水量为y,则下列各图中能够反映y与x的函数关系的大致图象是()A .B.C.D.5.(2014•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A .体育场离张强家2.5千米B张强在体育.场锻炼了15分钟C .体育场离早餐店4千米D .张强从早餐店回家的平均速度是3千米/小时6.(2014•娄底)一次函数y=kx﹣k(k<0)的图象大致是()A .B.C.D.7.(2014•黔南州)正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A .B.C.D.8.(2014•南通)已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A .第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限9.(2014•济南)若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A .m>0 B.m<0 C.m>3 D.m<310.(2014•温州)一次函数y=2x+4的图象与y轴交点的坐标是()A .(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)11.(2014•邵阳)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A .a>b B.a=b C.a<b D.以上都不对12.(2014•广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A y1+y2>0B y1+y2<0C y1﹣y2>0D y1﹣y2<0....13.(2014•上城区一模)已知(﹣1,y1),(﹣0.5,y2),(1.7,y3)是直线y=﹣9x+b(b为常数)上的三个点,则y1、y2、y3的大小关系是()A .y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y3>y1>y214.(2014•宜宾)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A .y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+315.(2014•荆州)如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A .B.C.D.16.(2014•道外区一模)如图所示,一次函数y=ax+b与x轴的交点为A(2,0),交y轴于B(0,1),那么不等式ax+b<0的解集为()A .x>1 B.x<1 C.x>2 D.x<217.(2013•黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A .x<B.x<3 C.x>D.x>318.(2012•贵阳)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A .B.C.D.19.(2011•百色)两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A .B.C.D.二.填空题(共1小题)20.(2014•嘉兴)点A(﹣1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1﹣y2_________0(填“>”或“<”).三.解答题(共3小题)21.(2014•湘西州)如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.22.(2014•营口)随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?23.(2014•龙岩)随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按_________元收取;超过5吨的部分,每吨按_________元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月人均用了多少吨生活用水?2014年07月22日952143958的初中数学组卷参考答案与试题解析一.选择题(共19小题)1.(2014•济宁)函数y=中的自变量x的取值范围是()A .x≥0B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A.点评:本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;式是二次根式时,被开方数非负.2.(2014•兰州)函数y=中,自变量x的取值范围是()A .x>﹣2 B.x≥﹣2 C.x≠2D.x≤﹣2考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,x+2≥0,解得x≥﹣2.故选B.点评:本题考查的知识点为:二次根式的被开方数是非负数.3.(2014•南宁)“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x 的函数关系的图象大致是()A .B.C.D.考点:函数的图象.分析:根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的慢了选择即可.解答:解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的慢了,故选:B.点评:本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.4.(2014•重庆)夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗,该工人先只打开一个进水管,蓄了少量水后关闭进水管并立即进行清洗,一段时间后,再同时打开两个出水管将池内的水放完,随后将两个出水管关闭,并同时打开两个进水管将水蓄满.已知每个进水管的进水速度与每个出水管的出水速度相同,从工人最先打开一个进水管开始,所用时间为x,游泳池内的蓄水量为y,则下列各图中能够反映y与x的函数关系的大致图象是()A .B.C.D.考点:函数的图象.分析:根据题目中叙述的过程,开始打开一个进水管,游泳池内的蓄水量逐渐增多;一段时间后,再同时打开两个出水管将池内的水放完,游泳池内的蓄水量逐渐减少直到水量为0,并且时间比开始用的少;随后将两个出水管关闭,并同时打开两个进水管将水蓄满,游泳池内的蓄水量增多.解答:解:开始打开一个进水管,游泳池内的蓄水量逐渐增多;一段时间后,再同时打开两个出水管将池内的水放完,游泳池内的蓄水量逐渐减少直到水量为0,开始用的少;随后将两个出水管关闭,并同时打开两个进水管将水蓄满,游泳池内的蓄水量增多,故选:C.点评:此题考查了函数图象.关键是能够根据叙述来分析变化过程.5.(2014•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A .体育场离张强家2.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店4千米D .张强从早餐店回家的平均速度是3千米/小时考点:函数的图象.分析:结合图象得出张强从家直接到体育场,故第一段对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5千米;平均速度=总路程÷总时间.解答:解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5=1(千米),故C选项错误;D、∵张强从早餐店回家所用时间为100﹣65=35(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷=(千米/时),故D选项正确.故选:C.点评:此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.6.(2014•娄底)一次函数y=kx﹣k(k<0)的图象大致是()A .B.C.D.考点:一次函数的图象.分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解答:解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.点评:此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.7.(2014•黔南州)正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A .B.C.D.考点:一次函数的图象;正比例函数的图象.分析:根据正比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.解答:解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.点评:此题考查一次函数,正比例函数中系数及常数项与图象位置之间关系.解题时需要“数形结合”的数学思想.8.(2014•南通)已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A .第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限考点:一次函数图象与系数的关系.分析:根据“一次函数y=kx﹣3且y随x的增大而增大”得到k<0,再由k的符号确定该函数图象所经过的象限.解答:解:∵一次函数y=kx﹣1且y随x的增大而增大,∴k<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.点评:本题考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.9.(2014•济南)若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A .m>0 B.m<0 C.m>3 D.m<3考点:一次函数图象与系数的关系.分析:直接根据一次函数的性质可得m﹣3>0,解不等式即可确定答案.解答:解:∵一次函数y=(m﹣3)x+5中,y随着x的增大而增大,∴m﹣3>0,解得:m>3.故选:C.点评:本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.10.(2014•温州)一次函数y=2x+4的图象与y轴交点的坐标是()A .(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)考点:一次函数图象上点的坐标特征.分析:在解析式中令x=0,即可求得与y轴的交点的纵坐标.解答:解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选:B.点评:本题考查了一次函数图象上点的坐标特征,是一个基础题.11.(2014•邵阳)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A .a>b B.a=b C.a<b D.以上都不对考点:一次函数图象上点的坐标特征.分析:根据一次函数的增减性,k<0,y随x的增大而减小解答.解答:解:∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.点评:本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.12.(2014•广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A .y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<0考点:一次函数图象上点的坐标特征;正比例函数的图象.分析:根据k<0,正比例函数的函数值y随x的增大而减小解答.解答:解:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0.故选:C.点评:本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性.13.(2014•上城区一模)已知(﹣1,y1),(﹣0.5,y2),(1.7,y3)是直线y=﹣9x+b(b为常数)上的三个点,则y1、y2、y3的大小关系是()A .y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y3>y1>y2考点:一次函数图象上点的坐标特征.专题:计算题.分析:把x=﹣1、﹣0.5、1.7分别代入y=﹣9x+b中计算出对应的函数值,然后比较函数值的大小.解答:解:当x=﹣1时,y1=﹣9x+b=9+b;当x=﹣0.5时,y2=﹣9x+b=4.5+b;当x=1.7时,y3=﹣9x+b=﹣15.3+b,所以y1>y2>y3.故选A.点评:本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.14.(2014•宜宾)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A .y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3考点:待定系数法求一次函数解析式;两条直线相交或平行问题.分析:根据正比例函数图象确定A点坐标再根据图象确定B点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.解答:解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3,故选D.点评:此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.15.(2014•荆州)如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A .B.C.D.考点:一次函数与一元一次不等式;在数轴上表示不等式的解集.专题:数形结合.分析:观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b>kx﹣1的解集为x>﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解答:解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选A.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.16.(2014•道外区一模)如图所示,一次函数y=ax+b与x轴的交点为A(2,0),交y轴于B(0,1),那么不等式ax+b<0的解集为()A .x>1 B.x<1 C.x>2 D.x<2考点:一次函数与一元一次不等式.分析:从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式ax+b>0的解集.解答:解:如图,一次函数y=ax+b的图象经过点A(2,0),∴不等式ax+b<0的解集是x>2.故选:C.点评:本题考查了一次函数与一元一次不等式的关系.从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17.(2013•黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A .x<B.x<3 C.x>D.x>3考点:一次函数与一元一次不等式.专题:压轴题.分析:先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.解答:解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,是(,3),∴不等式2x<ax+4的解集为x<;故选A.点评:此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.18.(2012•贵阳)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A .B.C.D.考点:一次函数与二元一次方程(组).专题:推理填空题.分析:根据图象求出交点P的坐标,根据点P的坐标即可得出答案.解答:解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是,故选A.点评:本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.19.(2011•百色)两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A .B.C.D.考点:一次函数与二元一次方程(组).专题:计算题.分析:由题意,两条直线y=k i x+b1和y=k2x+b2相交于点A(﹣2,3),所以x=﹣2、y=3就是方程组的解.解答:解:∵两条直线y=k i x+b1和y=k2x+b2相交于点A(﹣2,3),∴x=﹣2、y=3就是方程组的解.∴方程组的解为:.点评:本题主要考查了二元一次方程(组)和一次函数的综合问题,两直线的交点就是两直线解析式所组成方程组的解,认真体会一次函数与一元一次方程之间的内在联系.二.填空题(共1小题)20.(2014•嘉兴)点A(﹣1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1﹣y2>0(填“>”或“<”).考点:一次函数图象上点的坐标特征.分析:根据k<0可知,一次函数的函数值y随x的增大而减小.解答:解:∵直线y=kx+b的k<0,∴函数值y随x的增大而减小,∵点A(﹣1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,﹣1<3,∴y1>y2,∴y1﹣y2>0.故答案为:>.点评:本题考查了一次函数图象上点的坐标特征,主要利用了一次函数的增减性.三.解答题(共3小题)21.(2014•湘西州)如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.考点:两条直线相交或平行问题.专题:计算题.分析:(1)先把P(2,n)代入y=x即可得到n的值,从而得到P点坐标为(2,3),然后把P点坐标代入y=﹣x+m可计算出m的值;(2)先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.解答:解:(1)把P(2,n)代入y=x得n=3,所以P点坐标为(2,3),把P(2,3)代入y=﹣x+m得﹣2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=﹣x+5得y=5,所以B点坐标为(0,5),所以△POB的面积=×5×2=5.点评:本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.22.(2014•营口)随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?考点:一次函数的应用.分析:(1)本题时一道分段函数,当0≤x≤90时和x>90时由待定系数法就可以分别求出其结论;(2)由(1)的解析式求出今年前90天平均每天的生产数量,由函数图象可以求出去年的生产总量就可以得出结论;(3)设改进技术后,至少还要a天完成不少于6000台的生产计划,根据前90天的生产量+改进技术后的生产量≥6000建立不等式求出其解即可.解答:解:(1)当0≤x≤90时设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:.则y=20x+900.当x>90时,由题意,得y=30x.∴y=;(2)由题意,得∵x=0时,y=900,∴去年的生产总量为:900台.今年平均每天的生产量为:(2700﹣900)÷90=20台,厂家去年生产的天数为:900∴20=45天.答:厂家去年生产的天数为45天;(3)设改进技术后,至少还要a天完成不少于6000台的生产计划,由题意,得2700+30a≥6000,解得:a≥110.答:改进技术后,至少还要110天完成不少于6000台的生产计划.点评:本题考查了分段函数的运用,待定系数法起一次函数的解析式的运用,列不等式解实际问题的运用,解答时求出一次函数的解析式及分析函数图象的意义是关键.23.(2014•龙岩)随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按 1.6元收取;超过5吨的部分,每吨按 2.4元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月人均用了多少吨生活用水?考点:一次函数的应用.分析:(1)由图可知,用水5吨是8元,每吨按8÷5=1.6元收取;超过5吨的部分,每吨按(20﹣8)÷(10﹣5)=2.4元收取;(2)根据图象分x≤5和x>5,分别设出y与x的函数关系式,代入对应点,得出答案即可;(3)把y=76代入x>5的y与x的函数关系式,求出x的数值即可.解答:解:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按1.6元收取;超过5吨的部分,每吨按2.4元收取;(2)当0≤x≤5时,设y=kx,代入(5,8)得8=5k,解得k=∴y=x;当x>5时,设y=kx+b,代入(5,8)、(10,20)得解得k=,b=﹣4∴y=x﹣4;(3)把y=代入y=2.4x﹣4得x﹣4=解得x=8答:该家庭这个月人均用了8吨生活用水.。