8.1空间几何体的三视图、表面积和体积带详细答案
空间几何体的三视图、表面积和体积 高考数学真题与解析
专题八立体几何8.1空间几何体的三视图、表面积和体积考点一空间几何体的三视图与直观图1.(2016天津文,3,5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()答案B由几何体的正视图、俯视图以及题意可画出几何体的直观图,如图所示.该几何体的侧视图为选项B中图形.故选B.评析本题主要考查空间几何体的三视图与直观图,考查学生的空间想象能力和识图、画图能力.2.(2014课标Ⅰ,8,5分,0.795)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案B 由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱,故选B.3.(2014北京理,7,5分)在空间直角坐标系O-xyz 中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).若S 1,S 2,S 3分别是三棱锥D-ABC 在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则()A.S 1=S 2=S 3B.S 2=S 1且S 2≠S 3C.S 3=S 1且S 3≠S 2D.S 3=S 2且S 3≠S 1答案D 三棱锥D-ABC 如图所示.S 1=S △ABC =12×2×2=2,S 2=12×2×2=2,S 3=12×2×2=2,∴S 2=S 3且S 1≠S 3,故选D.4.(2014课标Ⅰ理,12,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.62B.6C.42D.4答案B 由多面体的三视图可知该几何体的直观图为一个三棱锥,如图所示.其中面ABC⊥面BCD,△ABC 为等腰直角三角形,AB=BC=4,取BC 的中点M,连接AM,DM,则DM⊥面ABC,在等腰△BCD 中,BD=DC=25,BC=DM=4,所以在Rt△AMD 中,AD=B 2+D 2=42+22+42=6,又在Rt△ABC 中,AC=42<6,故该多面体的各条棱中,最长棱为AD,长度为6,故选B.评析本题考查空间几何体的三视图与直观图之间的互相转化,考查面面垂直性质定理的应用.同时考查考生的空间想象能力和运算求解能力.正确画出三棱锥的直观图是解决本题的关键.5.(2013课标Ⅱ,理7,文9,5分)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()答案A设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O、A、B、C为顶点的四面体补成一正方体后,由于OA⊥BC,所以该几何体以zOx平面为投影面的正视图为A.方法归纳由几何体直观图画三视图的要求:①注意三个视图对应的观察方向;②注意视图中虚线与实线的区别;③画出的三视图要符合“长对正,高平齐,宽相等”的基本特征.6.(2013湖南理,7,5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.2C.2-12D.2+12答案C若该正方体的放置方式如图所示,当正视的方向与正方体的任一侧面垂直时,正视图的面积最小,其值为1,当正视的方向与正方体的对角面BDD1B1或ACC1A1垂直时,正视图的面积最大,其值为2,由于正视的方向不同,因此正视图的面积S∈[1,2].故选C.评析本题考查空间几何体的三视图与直观图,考查学生空间想象能力及有关知识的应用能力,解答本题应设法求出正视图的面积的取值范围,而不应该逐项计算.7.(2011课标理,6文,8,5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()答案D 由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面垂直于底面的三棱锥组成的组合体,故其侧视图应为D 选项.错因分析将组合体看成半圆柱和三棱锥的组合或不注意C 和D 中中线实虚的含义,易误选A 或C.评析本题主要考查空间几何体的三视图,考查学生的识图能力和空间想象能力.考点二空间几何体的表面积与体积1.(2018课标Ⅰ文,5,5分)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π答案B 本题主要考查圆柱的表面积及圆柱的轴截面.设圆柱的底面半径为r,高为h,由题意可知2r=h=22,∴圆柱的表面积S=2πr 2+2πr·h=4π+8π=12π.故选B.解题关键正确理解圆柱的轴截面及熟记圆柱的表面积公式是解决本题的关键.2.(2016课标Ⅱ文,4,5分)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323πC.8πD.4π答案A 设正方体的棱长为a,则a 3=8,解得a=2.设球的半径为R,则2R=3a,即R=3,所以球的表面积S=4πR 2=12π.故选A.方法点拨对于正方体与长方体,其体对角线为其外接球的直径,即外接球的半径等于体对角线的一半.3.(2016课标Ⅲ,理10,文11,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+365B.54+185C.90D.81答案B由三视图可知,该几何体是底面为正方形(边长为3),高为6,侧棱长为35的斜四棱柱.其表面积S=2×32+2×3×35+2×3×6=54+185.故选B.易错警示学生易因空间想象能力较差而误认为侧棱长为6,或漏算了两底面的面积而致错.4.(2015课标Ⅰ理,11,5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8答案B由已知条件可知,该几何体由圆柱的一半和半球组成,其表面积为2πr2+πr2+4r2+2πr2=5πr2+4r2.由5πr2+4r2=16+20π得r=2.故选B.5.(2015北京理,5,5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+5B.4+5C.2+25D.5答案C 由三视图可得该三棱锥的直观图如图所示,其中PA=1,BC=2,取BC 的中点M,连接AM,MP,则AM=2,AM⊥BC,故AC=AB=B 2+A 2=1+4=5,由正视图和侧视图可知PA⊥平面ABC,因此可得PC=PB=B 2+A 2=1+5=6,PM=B 2+A 2=1+4=5,所以三棱锥的表面积为S △ABC +S △PAB +S △PAC +S △PBC =12×2×2+12×5×1+12×5×1+12×2×5=2+25,故选C.6.(2015陕西,理5,文5,5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案D 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S=2×12×π×12+π×1×2+2×2=3π+4.评析本题考查三视图的概念和性质以及圆柱的表面积,考查运算及推理能力和空间想象能力.由三视图确定几何体的直观图是解题的关键.7.(2015课标Ⅱ,理9,文10,5分,0.685)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π答案C ∵S △OAB 是定值,且V O-ABC =V C-OAB ,∴当OC⊥平面OAB 时,V C-OAB 最大,即V O-ABC 最大.设球O 的半径为R,则(V O-ABC )max =13×12R 2×R=16R 3=36,∴R=6,∴球O 的表面积S=4πR 2=4π×62=144π.思路分析由△OAB 的面积为定值分析出当OC⊥平面OAB 时,三棱锥O-ABC 的体积最大,从而根据已知条件列出关于R 的方程,进而求出R 值,利用球的表面积公式即可求出球O 的表面积.导师点睛点C 是动点,在三棱锥O-ABC 中,如果以面ABC 为底面,则底面面积与高都是变量,而S △OAB 为定值,因此转化成以面OAB 为底面,这样高越大,体积越大.8.(2014浙江理,3,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2答案D由三视图可知该几何体由一个直三棱柱与一个长方体组合而成(如图),其表面积为S=3×5+2×12×4×3+4×3+3×3+2×4×3+2×4×6+3×6=138(cm2).9.(2014福建文,5,5分)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.1答案A由题意得圆柱的底面半径r=1,母线l=1.∴圆柱的侧面积S=2πrl=2π.故选A.10.(2018浙江,3,4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8答案C本小题考查空间几何体的三视图和直观图以及几何体的体积公式.由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1cm,2cm,高为2 cm,直四棱柱的高为2cm.故直四棱柱的体积V=1+22×2×2=6cm3.思路分析(1)利用三视图可判断几何体是直四棱柱;(2)利用“长对正,高平齐,宽相等”的原则,可得直四棱柱的各条棱长.11.(2016山东理,5,5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.13+23πB.13+C.13+答案C由三视图可知四棱锥为正四棱锥,底面正方形的边长为1,四棱锥的高为1,球的直径等于正四棱锥底面正方形的对角线的长,所以球的直径2R=2,即所以半球的体积为23πR3又正四棱锥的体积为13×12×1=13,所以该几何体的体积为13+故选C.易错警示不能从俯视图中正确地得到球的半径,而错误地从正视图中得到球的半径R=12.评析本题考查了空间几何体的三视图和体积公式.正确得到几何体的直观图并准确地计算是解题关键.12.(2016北京,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1答案A由三视图可画出三棱锥的直观图如图所示,其底面是等腰直角三角形ACB,直角边长为1,三棱锥的高为1,故体积V=13×12×1×1×1=16.故选A.13.(2015课标Ⅰ,理6,文6,5分,0.451)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛答案B设圆锥底面的半径为R尺,由14×2πR=8得R=16π,从而米堆的体积V=14×13πR2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62π≈22(斛).故选B.14.(2015课标Ⅱ,理6,文6,5分,0.426)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18B.17C.16D.15答案D如图,由已知条件可知,在正方体ABCD-A1B1C1D1中,截去三棱锥A-A1B1D1后剩余的部分即为题中三视图对应的几何体,设该正方体的棱长为a,则截去部分的体积为16a3,剩余部分的体积为a3-16a3=56a3.它们的体积之比为15.故选D.15.(2015重庆理,5,5分)某几何体的三视图如图所示,则该几何体的体积为()A.13+2πB.13π6C.7π3D.5π2答案B由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.所以该几何体的体积为12×13×π×12×1+π×12×2=13π6,故选B.16.(2015浙江理,2,5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.323cm3D.403cm3答案C由三视图知,该几何体是由棱长为2cm的正方体和底面边长为2cm,高为2cm的正四棱锥组合而成的几何体.所以该几何体的体积V=23+13×22×2=323cm3,故选C.17.(2015山东理,7,5分)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.2π3B.4π3C.5π3D.2π答案C如图,此几何体是底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥,故所求体积V=2π-π3=5π3.评析本题主要考查几何体的体积及空间想象能力.18.(2015湖南文,10,5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率=新工件的体积)原工件的体积A.89πB.827πC.24(2-1)3πD.8(2-1)3π答案A由三视图可知,原工件是一个底面半径为1,母线长为3的圆锥,则圆锥的高为22,新工件是该圆锥的内接正方体,如图,此截面中的矩形为正方体的对角面,设正方体的棱长为x,则22x1=22-x22,解得x=223.所以正方体的体积V1223=16227,又圆锥的体积V2=13π×12×22=223π,所以原工件材料的利用率为12=89π,故选A.19.(2014陕西理,5,5分)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.32π3B.4πC.2πD.4π3答案D 如图为正四棱柱AC 1.根据题意得AC=2,∴对角面ACC 1A 1为正方形,∴外接球直径2R=A 1C=2,∴R=1,∴V 球=4π3,故选D.20.(2014课标Ⅱ,理6,文6,5分,0.506)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59C.1027D.13答案C 该零件是两个圆柱体构成的组合体,其体积为π×22×4+π×32×2=34πcm 3,圆柱体毛坯的体积为π×32×6=54πcm 3,所以切削掉部分的体积为54π-34π=20πcm 3,所以切削掉部分的体积与原来毛坯体积的比值为20π54π=1027,故选C.21.(2014课标Ⅱ文,7,5分,0.495)正三棱柱ABC-A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A-B 1DC 1的体积为()A.3B.32C.1答案C 在正三棱柱ABC-A 1B 1C 1中,∵AD⊥BC,AD⊥BB 1,BB 1∩BC=B,∴AD⊥平面B 1DC 1,∴t1D1=13△1D1·AD=13×12×2×3×3=1,故选C.22.(2013课标Ⅰ,理8,文11,5分,0.718)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π答案A由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积V=4×2×2+12π×22×4=16+8π.故选A.思路分析由三视图分析该几何体的构成,从而利用三视图中的数据计算几何体的体积.23.(2013浙江文,5,5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm3答案B由三视图可知,该几何体是一个长方体截去了一个三棱锥,结合所给数据,可得其体积为6×6×3-13×12×4×4×3=100(cm3),故选B.24.(2012大纲全国,理7,文7,5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18答案B由三视图可得,该几何体为如图所示的三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC 边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=13×12×6×3×3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.25.(2011陕西文,5,5分)某几何体的三视图如图所示,则它的体积为()A.8-2π3B.8-π3C.8-2πD.2π3答案A由给出的三视图可得原几何体为正方体中挖去一圆锥,且此圆锥以正方体的上底面内切圆为底,以正方体的棱长为高.故所求几何体的体积为8-13×π×12×2=8-2π3.评析三视图是考查空间想象能力很好的一个题材,正确解答此类题目的关键是平时空间想象能力的培养,对文科学生来说,本题属中等难度题.26.(2016课标Ⅰ,6,5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π,则它的表面积是()A.17πB.18πC.20πD.28π答案A由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR3=28π3,故R=2,从而它的表面积S=78×4πR2+34×πR2=17π.故选A.27.(2016课标Ⅱ,6,5分)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π答案C由三视图可得圆锥的母线长为22+(23)2=4,∴S圆锥侧=π×2×4=8π.又S圆柱侧=2π×2×4=16π,S圆柱底=4π,∴该几何体的表面积为8π+16π+4π=28π.故选C.思路分析先求圆锥的母线长,从而可求得圆锥的侧面积,再求圆柱的侧面积与底面积,最后求该几何体的表面积.28.(2017课标Ⅱ文,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.答案14π解析本题考查长方体和球的性质,考查了球的表面积公式.由题意知长方体的体对角线为球O的直径,设球O的半径为R,则(2R)2=32+22+12=14,得R2=72,所以球O的表面积为4πR2=14π.疑难突破明确长方体的体对角线为球O的直径是求解的关键.易错警示易因用错球的表面积公式而致错.29.(2013课标Ⅱ,15,5分,0.158)已知正四棱锥O-ABCD底面边长为3,则以O为球心,OA为半径的球的表面积为.答案24π解析设底面中心为E,连接OE,AE,则|AE|=12|AC|=∵体积V=13×|AB|2∴|OA|2=|AE|2+|OE|2=6.从而以OA为半径的球的表面积S=4π·|OA|2=24π.思路分析先根据已知条件直接利用锥体的体积公式求得正四棱锥O-ABCD的高,再利用勾股定理求出|OA|,最后根据球的表面积公式计算即可.30.(2013课标Ⅰ,15,5分,0.123)已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.答案9π2解析平面α截球O所得截面为圆面,圆心为H,设球O的半径为R,则由AH∶HB=1∶2得OH=13R,由圆H的面积为π,得圆H的半径为1,+12=R2,得出R2=98,所以球O的表面积S=4πR2=4π·98=92π.31.(2013福建理,12,4分)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是.答案12π解析由三视图知:棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积为232=12π.32.(2017江苏,6,5分)如图,在圆柱O 1O 2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则12的值是.答案32解析本题考查空间几何体的体积.设圆柱内切球的半径为R,则由题设可得圆柱O 1O 2的底面圆的半径为R,高为2R,∴12=π2·2R 43π3=32.33.(2018天津理,11,5分)已知正方体ABCD-A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH 的体积为.答案112解析本题主要考查正方体的性质和正四棱锥的体积.由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M-EFGH 的体积V=13×12×12=112.34.(2016天津理,11,5分)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m3.答案2解析四棱锥的底面是平行四边形,由三视图可知其面积为2×1=2m2,四棱锥的高为3m,所以四棱锥的体积V=13×2×3=2m3.易错警示该题有两点容易出错:一是锥体的体积公式中的系数13易漏写;二是底面平行四边形的面积易错误地写成3×1=3m2.评析本题考查了三视图和直观图,考查了锥体的体积.35.(2016四川,13,5分)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.答案解析由题意及正视图可知三棱锥的底面等腰三角形的底长为23,三棱锥的高为1,则三棱锥的底面积为12×22-(3)2×23=3,∴该三棱锥的体积为13×3×1=评析正确理解正视图中的数据在直观图中表示的含义很关键.36.(2014山东理,13,5分)三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则12=.答案14解析如图,设S△ABD=S1,S△PAB=S2,E到平面ABD的距离为h1,C到平面PAB的距离为h2,则S 2=2S1,h2=2h1,V1=1S1h1,V2=1S2h2,∴1=1ℎ1=1.评析本题考查三棱锥的体积的求法以及等体积转化法在求空间几何体体积中的应用.本题的易错点是不能利用转化与化归思想把三棱锥的体积进行适当的转化,找不到两个三棱锥的底面积及相应高的关系,从而造成题目无法求解或求解错误.37.(2012安徽,12,5分)某几何体的三视图如图所示,则该几何体的体积等于.答案56解析由题意知,该三视图对应的几何体如图,其体积12(2+5)×4×4=56.评析本题主要考查三视图的知识,考查学生的空间想象能力.由三视图得到直观图是解题关键.38.(2011课标理,15,5分)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=23,则棱锥O-ABCD的体积为.答案83解析如图,连接AC,BD,交于O1,则O1为矩形ABCD所在小圆的圆心,连接OO1,则OO1⊥面ABCD,易求得O1C=23,又OC=4,∴OO1=B2-12=2,∴棱锥体积V=13×6×23×2=83.失分警示立体感不强,空间想象能力差,无法正确解出棱锥的高而得出错误结论.评析本题主要考查球中截面圆的性质及空间几何体的体积的计算,通过球这个载体考查学生的空间想象能力及推理运算能力.39.(2011课标文,16,5分)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.答案13解析如图,设球的半径为R,圆锥底面半径为r,由题意得πr2=316×4πR2.=12R.体积较小的圆锥的高AO1=R-12R=12R,体积较大的圆锥的高BO1=R+12R=32R.1故这两个圆锥中,体积较小者的高与体积较大者的高的比值为13.评析本题考查球、球内接圆锥的相关问题,考查R,r的关系,由题意得到是解答本题的关键. 40.(2020课标Ⅰ文,19,12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P 为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=2,圆锥的侧面积为3π,求三棱锥P-ABC的体积.解析(1)由题设可知,PA=PB=PC.由于△ABC是正三角形,故可得△PAC≌△PAB,△PAC≌△PBC.又∠APC=90°,故∠APB=90°,∠BPC=90°.从而PB⊥PA,PB⊥PC,故PB⊥平面PAC,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l.由题设可得rl=3,l2-r2=2.解得r=1,l=3.从而AB=3.由(1)可得PA2+PB2=AB2,故所以三棱锥P-ABC的体积为13×12×PA×PB×PC=13×12×第21页共21页。
高三数学空间几何体的三视图与直观图试题答案及解析
高三数学空间几何体的三视图与直观图试题答案及解析1.一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体-2V棱锥侧2×2×2−2×.故选:A.【考点】三视图求解几何体的体积.2.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..3.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.5.一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C【解析】依题意可知该几何体的直观图如图所示,故其俯视图应为C.6.某几何体的三视图如图所示,则该几何体的体积为A.12B.18C.24D.30【答案】C【解析】由三视图可知该几何体是一个底面为直角三角形的直三棱柱的一部分,其直观图如上图所示,其中,侧面是矩形,其余两个侧面是直角梯形,由于,平面平面,所以平面,所以几何体的体积为:故选C.【考点】1、空间几何体的三视图;2、空间几何体的体积.7.一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【考点】三视图内切圆球三棱柱8. [2013·四川高考]一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和侧视图可知,该几何体不可能是圆柱,排除选项C;又由俯视图可知,该几何体不可能是棱柱或棱台,排除选项A、B.故选D.9.[2013·宁波质检]如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.2B.C.2D.4【答案】A【解析】由题意可知,该三棱柱的侧视图应为矩形,如图所示.在该矩形中,MM1=CC1=2,CM=C1M1=·AB=.所以侧视图的面积为S=2.10.某几何体的三视图如图所示,则该几何体的体积的最大值为 .【答案】【解析】该几何体是类似墙角的三棱锥,假设一条直角的棱长为x,则三条直角棱长分别为.所以体积为.当且仅当时取等号.【考点】1.三视图.2.函数最值问题.3.空间想象能力.11.(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C12. (2014·咸宁模拟)某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π. 13.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为【答案】D【解析】条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。
专题05 空间几何体的三视图、表面积和体积(解析版)
专题05 空间几何体的三视图、表面积和体积【要点提炼】1.空间几何体的两组常用公式(1)柱体、锥体、台体、球的表面积公式:①圆柱的表面积S=2πr(r+l);②圆锥的表面积S=πr(r+l);③圆台的表面积S=π(r′2+r2+r′l+rl);④球的表面积S=4πR2.(2)柱体、锥体和球的体积公式:①V柱体=Sh(S为底面面积,h为高);②V锥体=13Sh(S为底面面积,h为高);③V球=43πR3.2.球的简单组合体中几何体度量之间的关系,如棱长为a的正方体的外接球、内切球、棱切球的半径分别为32a,a2,22a.考点考向一空间几何体的表面积【典例1】(1)如图所示的几何体是从棱长为2的正方体中截去以正方体的某个顶点为球心,2为半径的18球体后的剩余部分,则该几何体的表面积为()A.24-3πB.24-πC.24+πD.24+5π(2)(多选题)等腰直角三角形的直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为()A.2πB.(1+2)πC.22πD.(2+2)π解析(1)由题意知该几何体的表面积S=6×22-3×14×π×22+18×4×π×22=24-π.故选B.(2)如果是绕直角边旋转,则形成圆锥,圆锥底面半径为1,高为1,母线就是直角三角形的斜边,长为2,所以所形成的几何体的表面积S=π×1×2+π×12=(2+1)π.如果绕斜边旋转,则形成的是上、下两个圆锥,圆锥的半径是直角三角形斜边上的高22,两个圆锥的母线都是直角三角形的直角边,母线长是1,所以形成的几何体的表面积S′=2×π×22×1=2π.综上可知,形成几何体的表面积是(2+1)π或2π.故选AB.答案(1)B(2)AB探究提高 1.求空间几何体的表面积,首先要掌握几何体的表面积公式,其次把不规则几何体分割成几个规则的几何体.2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(2)旋转体的表面积问题注意其侧面展开图的应用.【拓展练习1】(1)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为() A.122π B.12πC.82πD.10π(2)(2020·衡水金卷)一个圆锥的轴截面是边长为4的等边三角形,在该圆锥中有一个内接圆柱(下底面在圆锥底面上,上底面的圆周在圆锥侧面上),则当该圆柱侧面积取最大值时,该圆柱的高为()A.1B.2C.3D. 3解析(1)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为2 2.所以S表面积=2×π×(2)2+2π×2×22=12π.(2)如图,设圆柱底面半径为r (0<r <2),高为h ,则h4sin 60°=2-r 2,即h =3(2-r ),其侧面积为S =23πr (2-r )=23π(-r 2+2r ),根据二次函数性质,当r =1时,侧面积取得最大值,此时h = 3. 答案 (1)B (2)D考向二 空间几何体的体积【典例2】 (1)(2020·济南模拟)已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是( ) A.4B.6C.4 3D.6 3(2)(2020·长沙模拟)如图,在四面体PBCD 中,点A 是CD 的中点,P A =AD ,△ABC 为等边三角形,边长为6,PB =8,PC =10,则△PBD 的面积为________,四面体P ABC 的体积为________.解析 (1)∵∠ABC =π2,AB =2,BC =6,∴AC =AB 2+BC 2=22+62=210.∵∠SAB =π2,AB =2,SB =4,∴AS =SB 2-AB 2=42-22=2 3.由SC =213,得AC 2+AS 2=SC 2,∴AC ⊥AS .又∵SA ⊥AB ,AC ∩AB =A ,∴AS ⊥平面ABC ,∴AS 为三棱锥S -ABC 的高,∴V 三棱锥S -ABC=13×12×2×6×23=4 3.故选C.(2)因为△ABC 为等边三角形,边长为6,点A 为CD 的中点,所以AD =AB =6,所以△ADB 为等腰三角形.又∠DAB =180°-∠CAB =120°, 所以∠ADB =12(180°-120°)=30°,所以∠ADB +∠DCB =90°,所以∠DBC =90°,所以CB ⊥DB ,所以DB =CD 2-BC 2=144-36=6 3.因为PB =8,PC =10,BC =6,所以PC 2=PB 2+BC 2,所以CB ⊥PB .又DB ∩PB =B ,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD .因为DA =AC =AP =6,所以△PDC 为直角三角形,且∠DPC =90°,所以PD =CD 2-PC 2=144-100=211.又DB =63,PB =8,所以DB 2=PD 2+PB 2,即△PBD 为直角三角形,所以S △PBD =12×8×211=811.因为点A 为DC 的中点,所以V P -ABC =12V P -CBD =12V C -PBD =12×13×S △PBD ×CB =12×13×811×6=811,即四面体P ABC 的体积为811. 答案 (1)C (2)811 811探究提高 1.求三棱锥的体积:等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积:常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.【拓展练习2】 (1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.πB.3π4C.π2D.π4(2)(2020·东北三校一联)如图,四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2,则四面体ABEF 的体积为( )A.13B.23C.1D.43解析 如图画出圆柱的轴截面ABCD ,O 为球心.球半径R =OA =1,球心到底面圆的距离为OM =12.∴底面圆半径r =AM =OA 2-OM 2=32,故圆柱体积V =π·r 2·h =π·⎝ ⎛⎭⎪⎫322×1=3π4.(2)∵ED ⊥平面ABCD 且AD ⊂平面ABCD , ∴ED ⊥AD .∵在正方形ABCD 中,AD ⊥DC ,而DC ∩ED =D , ∴AD ⊥平面CDEF .易知FC =ED2=1,V A -BEF =V ABCDEF -V F -ABCD -V A -DEF .∵V E -ABCD =ED ×S 正方形ABCD ×13=2×2×2×13=83,V B -EFC =BC ×S △EFC ×13 =2×2×1×12×13=23,∴V ABCDEF =83+23=103.又V F -ABCD =FC ×S 正方形ABCD ×13=1×2×2×13=43, V A -DEF =AD ×S △DEF ×13=2×2×2×12×13=43,V A -BEF =103-43-43=23.故选B. 答案 (1)B (2)B考向三 多面体与球的切、接问题【典例3】 (1)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4πB.9π2C.6πD.32π3(2)在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P -ABCD 为阳马,侧棱P A ⊥底面ABCD ,且P A =3,BC =AB =4,设该阳马的外接球半径为R ,内切球半径为r ,则R =________;内切球的体积V =________.解析 (1)由AB ⊥BC ,AB =6,BC =8,得AC =10.要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r . 则12×6×8=12×(6+8+10)·r ,所以r =2. ∴2r =4>3不合题意.球与三棱柱的上、下底面相切时,球的半径R 最大. 由2R =3,即R =32.故球的最大体积V =43πR 3=92π.(2)在四棱锥P -ABCD 中,侧棱P A ⊥底面ABCD ,且底面为矩形,将该“阳马”补成长方体,则(2R )2=AB 2+AD 2+AP 2=16+16+9=41, 因此R =412.依题意Rt △P AB ≌Rt △P AD ,则内切球O 在侧面P AD 内的正视图是△P AD 的内切圆,故内切球的半径r =12(3+4-5)=1,则V =43πr 3=43π. 答案 (1)B (2)412 43π探究提高 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 且P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【拓展练习3】 (1)(2020·太原模拟)如图所示,在直三棱柱ABC -A 1B 1C 1中,底面ABC 是等腰直角三角形,AB =BC =1,点D 为侧棱BB 1上的动点.若△ADC 1周长的最小值为3+5,则三棱锥C 1-ABC 的外接球的体积为( )A.2πB.32π C.5π2D.3π(2)(2020·烟台诊断)已知点A,B,C在半径为2的球面上,满足AB=AC=1,BC =3,若S是球面上任意一点,则三棱锥S-ABC体积的最大值为________. 解析(1)将侧面ABB1A1和侧面BCC1B1展开在同一平面内,示意图如图所示,易知当D为侧棱BB1的中点时,△ADC1的周长最小,此时设BD=x(x>0),则21+x2+2+4x2=3+5,解得x=12,所以CC1=1,AC1= 3.又三棱锥C1-ABC的外接球的球心为AC1的中点,所以外接球的半径R=32,于是三棱锥C1-ABC的外接球的体积为V=43πR3=43π×⎝⎛⎭⎪⎫323=32π.(2)设球心为O,△ABC的外心为D,则OD⊥平面ABC.在△ABC中,由余弦定理,得cos A=12+12-(3)22×1×1=-12,则sin A=32.所以S△ABC=12AB·AC sin A=12×1×1×32=34,且△ABC的外接圆半径DA=BC2sin A=32×32=1.因此在Rt△OAD中,OD=OA2-DA2=22-12= 3.当三棱锥S-ABC的高最大时,三棱锥S-ABC的体积取最大值,而三棱锥S-ABC的高的最大值为3+2,所以三棱锥S-ABC的体积的最大值为13×34×(3+2)=3+2312.答案(1)B(2)3+2312【专题拓展练习】1.三棱锥P ABC -中,PA PB PC ==,4ABC π∠=,2AC =,则三棱锥P ABC-外接球表面积的最小值是( ) A .8π B .4πC .2πD .π【答案】B 【详解】设底面ABC 外接圆圆心为1O ,半径为r , 则22sin ACr ABC==∠,即1r =.设三棱锥P ABC -高为h ,球的半径为R .由PA PB PC ==,得球心O 在1PO 上,且222()R h R r -+=,则11112122R h h h h⎛⎫=+≥⋅⋅= ⎪⎝⎭,当且仅当1h =时等号成立, 此时外接球表面积最小,则min 4S π=.故选:B2.已知菱形ABCD 360BAD ∠=︒,将ABD △沿BD 折起,使A ,C 两点的3A BCD -的外接球的表面积为( ) A .3π B .92πC .6πD .152π【答案】B由已知得BAD 为等边三角形,∴对角线3BD AB BC CD DA =====,将ABD △沿BD 折起,使A ,C 两点的距离为3,∴折起后三棱锥A BCD -为正四面体,各棱长都是3,将此正四面体放置在正方体中,使得正方体的面对角线是正四面体的棱,设正方体的棱长为a ,则正方体的面对角线为323,2a a =∴=,所以正方体的体对角线为322a R ==,其中R 为正方体的外接球半径,由于正方体的外接球就是正四面体ABCD 的外接球,∴正四面体ABCD 的外接球表面积为24R π=92π,3.三棱柱111ABC A B C -中,棱1AB AC AA 、、两两垂直,12AA =,底面ABC 是面积为2的等腰直角三角形,若该三棱柱的顶点都在同一个球O 的表面上,则球O 的表面积为( ) A .8 B .10πC .12πD .π【答案】C 【详解】底面ABC 是面积为2的等腰直角三角形,所以直角边长为2,所以三棱柱111ABC A B C -可以补充成边长为2的正方体,其外接球半径为:22222232++=,所以球O 的表面积为243)12ππ=, 故选:C ..4.某几何体的三视图如图所示,该几何体的体积为V ,该几何体所有棱的棱长之和为L ,则A .8,14253V L ==+ B .8,1425V L ==+ C .8,16253V L ==+D .8,1625VL ==+【答案】A 【详解】在如图所示的正方体1111ABCD A B C D -中,P ,E 分别为11,B C BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PCPB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.5.用到球心的距离为1的平面去截球,以所得截面为底面,球心为顶点的圆锥体积为83π,则球的表面积为( )A .16πB .32πC .36πD .48π【答案】C 【详解】设球的半径为R ,圆锥的底面半径为r ,因为球心到截面的距离为1, 所以有:221r R =-, 则题中圆锥体积()2181133V R ππ=⨯⨯-=,解得3R =,故球的表面积为2436R ππ=. 故选:C6.一个体积为243的正三棱柱(底面为正三角形,且侧棱垂直于底面)的三视图如图所示,则侧视图的面积为( )A .63B .8C .123D .12【答案】C 【详解】侧视图的宽为23即为俯视图的高, ∴底面正三角形的边长为234sin 60=︒,设三棱柱的高h , 体积为1243=42362h h ⨯⨯⇒= ∴侧视图的面积为:236123S ==,故选:C.7.在三棱锥P ABC -中,PA ⊥平面ABC ,2AP =,22AB =4AC =,45BAC ∠=︒,则三棱锥P ABC -外接球的表面积是( ) A .14π B .16πC .18πD .20π【答案】D 【详解】在BAC 中,45BAC ∠=︒,22AB =4AC =, 由余弦定理可得22222cos 81624222242BC AB AC AB AC π=+-⋅=+-⨯⨯=,则222BC AB AC +=,所以BC AB ⊥, 由PA ⊥平面ABC ,则PA BC ⊥,PA AB A =,所以BC ⊥平面PAB , 所以BC PB ⊥,所以PBC 为直角三角形, 又PAC △为直角三角形,所以PC 是外接球直径,O 是PC 的中点,即为球心, 又22,2AB BC PA ===,所以()()2222222225PC =++=5所以球O 的体积245)20V ππ=⨯=. 故选:D.8.已知长方体的两个底面是边长为1的正方形,长方体的一条体对角线与底面成45角,则此长方体的外接球表面积为( ) A .4π B .6πC .12πD .24π【答案】A 【详解】记该长方体为1111ABCD A B C D -,1BD 为该长方体的一条体对角线,其与底面所成角为45,因为在长方体1111ABCD A B C D -中,侧棱1DD ⊥底面ABCD , 则1D BD ∠为1BD 与底面所成角,即145D BD ∠=, 因为长方体的两个底面是边长为1的正方形,所以222BD AD AB =+=,则12DD BD ==,所以1222BD =+=, 又长方体的外接球直径等于其体对角线的长, 即该长方体外接球的直径为12222R BD ==+=, 所以此长方体的外接球表面积为244S R ππ==. 故选:A.9.如图是一个正方体的表面展开图,则图中“0”在正方体中所在的面的对面上的是( )A .2B .1C .高D .考【答案】C 【详解】解:将展开图还原成正方体可知,“0”在正方体中所在的面的对面上的是“高”, 故选:C .10.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43,则正方体外接球的体积为( ) A .43π B .6πC .323πD .86π【答案】B 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43, 所以()12133442242AB CS Sa==⨯⨯=所以2a =()()()2222226++=,所以正方体的外接球的体积为3466 3ππ⎛⎫=⎪⎪⎝⎭11.已知三棱锥P ABC-,3BACπ∠=,3BC=,PA⊥平面ABC且23PA=,则此三棱锥的外接球的体积为()A.163πB.43πC.16πD.323π【答案】D【详解】如图,设球心为O,三角形ABC外接圆心为1O,PA⊥平面ABC,∴1132OO PA==,设球半径为R,圆1O的半径为r,则在三角形ABC中,由正弦定理可得322sin3BCrBAC===∠,即1r=,在直角三角形1AOO中,22211OO AO OA+=,即()2223r R+=,解得2R=,则外接球的体积为343233Rππ=.故选:D.12.已知正三棱柱111ABC A B C-的各棱长均为2,底面ABC与底面111A B C的中心分别为O、1O,P是1OO上一动点,记三棱锥P ABC-与三棱锥111P A B C-的体积分别为1V、2V,则12V V⋅的最大值为()A .13B .3 C .23 D .23【答案】A 【详解】∵正三棱柱111ABC A B C -的各棱长均为2, ∴111122sin 6032ABC A B C S S ∆∆==⨯⨯⨯=,且12OO =, ∴11112111111123()3333ABC A B C ABC ABC V V S OP S O P S OP O P S OO ∆∆∆∆+=⋅+⋅=⋅+=⋅=, 由1212232V V V V ⋅≤+=得:1213V V ⋅≤,当且仅当点P 为1OO 的中点时等号成立,∴12V V ⋅的最大值为13, 故选:A.13.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )A .1B .2C 6D .23【答案】D 【详解】借助于边长为2的正方体画出该三棱锥,如图所示,11212ABD BDC S S ==⨯⨯=△△ ,ABC 是边长为22的等边三角形,()2322234ABC S =⨯=△,ACD △是等腰三角形,腰长为5,底边长为22, ()()221225262ACD S =⨯⨯-=△∴该几何体的各个面中最大面的面积为23. 故选:D.14.日常生活中,有各式各样精美的糖果包装礼盒某个铁皮包装礼盒的平面展开图是由两个全等的矩形,两个全等的三角形和一个正方形所拼成的多边形(如图),矩形的长为12cm ,矩形的宽和正方形的边长均为8cm .若该包装盒内有一颗球形硬糖的体积为V 3cm ,则V 的最大值为( )A .6423π B .3223π C .32π D .2563π 【答案】A 【详解】根据题意作出礼盒的直观图如下图所示:由图可知该几何体为直三棱柱,设等腰三角形的内切圆半径为R ,又因为等腰三角形的高为2212482-=, 所以根据等面积法可知:121288822R ++⨯⋅=,所以22R =, 又因为正方形的边长为8,所以82242R =<=, 所以球形硬糖的半径最大值为22,所以体积V 的最大值为()3464222=3ππ,故选:A.15.如图,正四棱锥P ABCD -的底面边长和高均为2,M 是侧棱PC 的中点,若过AM 作该正四棱锥的截面,分别交棱PB 、PD 于点E 、F (可与端点重合),则四棱锥P AEMF -的体积的取值范围是( )A .1,12⎡⎤⎢⎥⎣⎦B .14,23⎡⎤⎢⎥⎣⎦C .41,3⎡⎤⎢⎥⎣⎦D .8,19⎡⎤⎢⎥⎣⎦【答案】D【详解】 设,PE PFx y PB PD==,则,PE xPB PF yPD == 所以412,323P AEF P ABD P MEF P BCD V xy V xy V xyV xy ----=⋅===, 1212,2323P AFM P ACD P AEM P ABC V y V y V x V x ----=⋅==⋅=, ()223P AEMF P AEF P EMF P AFM P AEM V V V V V xy x y -----=+=+==+, 所以3x y xy +=,则331yx y =-, 令31y t -=,因为1,12y ⎡⎤∈⎢⎥⎣⎦,所以1,22t ⎡⎤∈⎢⎥⎣⎦,所以()221311412,319992t y t y tt +⎛⎫⎡⎤==++∈ ⎪⎢⎥-⎝⎭⎣⎦, 所以2238,13319P AEMF y V y -⎡⎤=⋅∈⎢⎥-⎣⎦,。
空间几何体与三视图、体积表面积(含答案)
1.几种常凸多面体间的关系2.一些特殊棱柱、棱锥、棱台的概念和主要性质名称棱柱直棱柱正棱柱图形定义有两个面互相平行,而其余每相邻两个面的侧棱垂直于底面的棱柱底面是正多边形的直棱柱有一个底面是用一个由正棱的高要保持平齐相等长度变为原来的一半;④擦去辅助线,图画好后,要擦去X 轴、Y 轴及为画图添加的辅助线(虚线)。
(2)平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点投影线垂直于投影面产生的投影叫做正投影,投影线不垂直于投影面产生的投影叫做斜投影。
物体投影的形状、大小与它相对于投影面的位置和角度有关。
三视图指正投影(3)射影:所谓射影,就是正投影其中,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。
一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影题型1.空间几何体的结构例题1正方体ABCD—1A 1B 1C 1D 的棱上到异面直线AB ,C 1C 的距离相等的点的个数为(c )A .2B .3 C. 4 D. 5【答案】:C【解析】解析如图示,则BC 中点,1B 点,D 点,A1D1的中点分别到两异面直线的距离相等。
即满足条件的点有四个,故选C 项变式练习:到两互相垂直的异面直线的距离相等的点(A )只有1个 (B )恰有3个(C )恰有4个(D )有无穷多个①②:当截面与正方体的某一面平行时,可得①,将截面旋转可得点时可得③,即正方体的对角面,不可能得④.答案:( )【答案】2、一个几何体的三视图如图积为10A. 28+65B. 30+6 D.读出的长度,黑色数字【答案】D的体。
8.1 空间几何体的三视图、表面积和体积(讲解部分)
S表=πr(r+l)
S表=π(r'2+r2+r'l+rl)
S表=4πR2
2.多面体的表面积 多面体的表面积就是各个面的面积之和,也就是展开图的面积. 注意 (1)几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与 所有底面面积之和. (2)组合体的表面积应注意重合部分的处理.
栏目索引
3.柱体、锥体、台体、球的体积
栏目索引
考向突破 考向一 空间几何体的表面积 例1 (2019安徽黄山二模,6)某空间几何体的三视图如图所示,其中正视图 和俯视图均为边长是1的等腰直角三角形,则此空间几何体的表面积是( )
3
A. 2 + 2
3
B.1+ 2
3 1
C. 2 + 2
D. 2+ 3
栏目索引
解析 由题意可知几何体的直观图是如图所示正方体的一部分,即三棱锥
栏目索引
例1 (1)(2019陕西宝鸡一模,6)某几何体的三视图如图,其中正视图的轮廓 是等腰三角形,俯视图的轮廓是正三角形,侧视图是直角三角形,则这个几 何体的体积等于 ( )
2
A.16
2
B.24
3
C.24
3
D.16
栏目索引
(2)(2019安徽六校第二次联考,6)一个几何体的三视图如图所示,其中俯视 图是半径为r的圆,若该几何体的体积为9 π,则它的表面积是 ( )
A-BCD,正方体的棱长为1,
所以几何体的表面积为 1 × 2 ×1+1 ×1×1+ 3 ×( 2 )2+1 × 2 ×1= 2 + 3 1 .
2
2
4
2
专题八 立体几何 第二十二讲 空间几何体的三视图、表面积和体积答案
专题八 立体几何第二十二讲 空间几何体的三视图、表面积和体积答案部分1.B 【解析】∵过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为2212ππ⨯⨯+⨯=.故选B .2.B 【解析】由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长16.画出该圆柱的侧面展开图,如图②所示,连接MN ,则2=MS ,4=SN ,则从M 到N=B .SNM图① 图②3.C 【解析】连接1BC ,因为AB ⊥平面11BB C C ,所以130AC B ∠=,1AB BC ⊥,所以1ABC ∆为直角三角形.又2AB =,所以1BC =,又112B C =,所以1BB==。
故该长方形的体积22V =⨯⨯4.A 【解析】由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A .5.B 【解析】设等边三角形ABC 的边长为x ,则21sin 60932x =,得6x =. 设ABC ∆的外接圆半径为r ,则62sin 60r =,解得r =ABC ∆所在平面的距离2d ==,则点D 到平面ABC 的最大距离146d d =+=,所以三棱锥D ABC -体积的最大值max 116633ABC V S ∆=⨯=⨯=B . 6.C 【解析】由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积1(12)2262V =⨯+⨯⨯=.故选C .7.C 【解析】解法一 将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示,DBA P易知,BC AD ∥,1BC =,2AD AB PA ===,AB AD ⊥,PA ⊥平面ABCD ,故PAD ∆,PAB ∆为直角三角形,∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,PA BC ⊥,又BC AB ⊥,且PA AB A =,∴BC ⊥平面PAB ,又PB ⊂平面PAB .BC PB ⊥,∴PBC ∆为直角三角形,容易求得3PC =,CD =,PD =故PCD ∆不是直角三角形,故选C .解法二 在正方体中作出该几何体的直观图,记为四棱锥P ABCD -,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C .PDCBA8.B 【解析】圆柱的轴截面如图,1AC =,12AB =,所以圆柱底面半径r BC ==,那么圆柱的体积是22314V r h πππ==⨯⨯=,故选B . CBA9.D 【解析】借助立方体可知所求三棱锥为下图粗线部分该几何体的体积为11(35)41032V =⨯⨯⨯=.选D . 10.A 【解析】该几何体是由一个高为3的圆锥的一半,和高为3的三棱锥组成(如图),其体积为:21111(13)(213)132322ππ⨯⨯⨯+⨯⨯⨯=+.选A .11.B 【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为221π36π3463π2V =⋅⋅⋅+⋅⋅=,故选B . 12.C 【解析】由三视图可知,四棱锥的底面是边长为1的正方形,高为1,其体积21111133V =⨯⨯=.设半球的半径为R,则2R =2R =,所以半球的体积3214(2326V π=⨯⨯=.故该几何体的体积12136V V V =+=+.故选C . 13.A 【解析】由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r ,故37428833r ππ⨯=,所以2r =,表面积227341784S r r πππ=⨯+=,选A . 14.C 【解析】该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l =,21π2S r ch cl =++表4π16π8π=++28π=,故选C .15.B 【解析】由三视图可得该几何体是平行六面体,上下底面是边长为3的正方形,故面积都是9,前后两个侧面是平行四边形,一边长为3、该边上的高为6,故面积都为18,左右两个侧面是矩形,边长为3,故面积都为2(9+18+16.C 【解析】由题意得,该几何体为一立方体与四棱锥的组合,∴体积3322231223=⨯⨯+=V ,故选C . 17.D 【解析】由三视图知:该几何体是半个圆柱,其中底面圆的半径为1,母线长为2,所以该几何体的表面积是()1211222342ππ⨯⨯⨯++⨯=+,故选D . 18.A 【解析】这是一个三棱锥与半个圆柱的组合体,2111112(12)12323V ππ=⨯⨯+⨯⨯⨯⨯⨯=+,选A .19.D 【解析】如图,设正方形的棱长为1,则截取部分为三棱锥111A A B D -,其体积为16,又正方体的体积为1,则剩余部分的体积为56,故所求比值为15.A 1AC20.B【解析】在长、宽、高分别为2、1、1的长方体中,该四面体是如图所示的三棱锥P ABC-,表面积为21122222⨯⨯⨯⨯=21.A 【解析】由圆锥的对称性可知,要使其内接长方体最大,则底面为正方形,令此长方体底面对角线长为2x ,高为h ,则由三角形相似可得,212xh-=,所以22h x =-,(0,1)x ∈,长方体体积2232216)2(22)2()327x x x V h x x ++-==-=长方体≤,当且仅当22x x =-,即23x =时取等号,2121233V ππ=⨯⨯=圆锥,故材料利用率为16827293ππ=,选A . 22.B 【解析】由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为22222422016r r r r ππππ+++=+,所以2r =.23.B 【解析】如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A BCD -,最长的棱为6AD ==,选B .24.C 【解析】原毛坯的体积2(3)654V ππ=⨯⨯=,由三视图可知该零件为两个圆柱的组合体,其体积2212(2)4(3)234V V V πππ'=+=⨯⨯+⨯⨯=, 故所求比值为10127V V '-=. 25.A 【解析】如图,将边长为2的正方体截去两个角,∴212261122124S =⨯⨯-⨯⨯+⨯=表26.A 【解析】圆柱的正视图是矩形,∴选A .27.D 【解析】由三视图画出几何体的直观图,如图所示,则此几何体的表面积1232S S S S S S =-+++正方形斜面,其中1S 是长方体的表面积,2S 是三棱柱的水平放置的一个侧面的面积,3S 是三棱柱的一个底面的面积,可求得2138()S cm =,选D .28.C 【解析】由题意可知AD BC ⊥,由面面垂直的性质定理可得AD ⊥平面11DB C ,又2sin 603AD =⋅=111111121332A B DC B DC V AD S -∆=⋅=⨯=, 故选C .29.A 【解析】圆柱的底面半径为1,母线长为1,2112S ππ=⨯⨯=侧. 30.B 【解析】直观图为棱长为2的正方体割去两个底面半径为l 的14圆柱,所以该几何体的体积为321221284ππ-⨯⨯⨯⨯=-. 31.C 【解析】由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积22S rh ππ==.32.B 【解析】由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.33.A 【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A . 34.A 【解析】还原后的直观图是一个长宽高依次为10,6 ,5的长方体上面是半径为3高为2的半个圆柱.35.C 【解析】几何体是圆柱与圆锥叠加而成它的体积为221353573V πππ=⨯⨯+⨯=36.B 【解析】由三视图可知该几何体的体积:221121232V πππ=⨯⨯+⨯⨯⨯=. 37.D 【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥的组合体,故侧视图可以为D .38.C 【解析】由三视图可知该几何体是底面为等腰梯形的放倒的一个直四棱柱,如图,所以该四棱柱的表面积12(24)444242S =⨯⨯+⨯+⨯+⨯24+48=+39.D 【解析】选项A 正确,∵SD ⊥平面ABCD ,而AC 在平面ABCD 内,所以AC SD ⊥.因为ABCD 为正方形,所以AC BD ⊥,而BD 与SD 相交,所以AC ⊥平面SBD ,所以AC SB ⊥;选项B 正确,因为AB CD ,而CD 在平面SCD 内,AB不在平面SCD 内,所以AB平面SCD ;选项C 正确,设AC 与BD 的交点为O ,连结SO ,则SA 与平面SBD 所成的角ASO ∠,SC 与平面SBD 所成的角CSO ∠,易知这两个角相等;选项D 错误,AB 与SC 所成的角等于SCD ∠,而DC 与SA 所成的角等于SAB ∠,易知这两个角不相等.40.C 【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和.2(10810282)2(6882)360S =⨯+⨯+⨯+⨯+⨯=. 41.B 【解析】该几何体上半部是底面边长为4cm ,高为2cm ,的正四棱柱,其体积为344232()cm ⨯⨯=;下半部分是上、下底面边长分别为4cm ,8cm ,高为2cm 的正四棱台,其体积为1224(164864)233⨯+⨯+⨯=,故其总体积为2243203233+=.42.13【解析】解法一 连接11AC ,交11B D 于点E ,则111AE BD ⊥,11A E BB ⊥,则1A E ⊥平面11BB D D ,所以1A E 为四棱锥111A BB D D -的高,且12A E =,矩形11BB D D 的1,故111111323A BB D D V -=⨯=. 解法二 连接1BD ,则四棱锥111A BB D D -分成两个三棱锥111B A DD -和111B A B D -111111111111111111132323A BB D D B A DD B A B D V V V ---=+=⨯⨯⨯⨯+⨯⨯⨯⨯=.43.43【解析】正方体的棱长为2,以其所有面的中心为顶点的多面体是正八面体,其中正214233⨯⨯=. 44.36π【解析】取SC 的中点O ,连接,OA OB ,因为,SA AC SB BC ==,所以,OA SC OB SC ⊥⊥. 因为平面SAC ⊥平面SBC ,所以OA ⊥平面SBC . 设OA r =,3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=.45.14π【解析】球的直径是长方体的体对角线,设球O 的半径为R ,所以224π14π.R S R ====46.9π2【解析】设正方体边长为a ,则226183a a =⇒= ,外接球直径为34427923,πππ3382R V R ====⨯=. 47.22π+【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以2π1π21121242V ⨯=⨯⨯+⨯⨯=+. 48.32【解析】设球的半径为r ,则213223423V r r V r ππ⨯==. 49.3.2【解析】通过俯视图可知该四棱柱的底面为等腰梯形,则四棱柱的底面积(12)1322S +⨯==,通过侧视图可知四棱柱的高1h =, 所以该四棱柱的体积32V Sh ==.50.80 ;40【解析】由三视图知该组合体是一个长方体上面放置了一个小正方体,22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.51.83π【解析】由三视图可知,该几何体是中间为一个底面半径为1,高为2的圆柱,两端是底面半径为1,高为1的圆锥,所以该几何体的体积22181221133V πππ=⨯⨯+⨯⨯⨯⨯=.52.12【解析】由题意知,该六棱锥是正六棱锥,设该六棱锥的高为h ,则216234h ⨯⨯⨯=1h =2=,该六棱锥的侧面积为1122122⨯⨯=. 53.结合三视图有PA ⊥平面ABC ,2PA =,AB BC ==2CA =,所以PB ==PC ==∴三棱锥最长棱的棱长为54.32【解析】设甲、乙两个圆柱的底面半径分别是12,r r ,母线长分别是12,l l .则由1294S S =,可得1232r r =.又两个圆柱的侧面积相等,即112222rl r l ππ=,则112223l r l r ==, 所以111222923432V S l V S l ==⨯=. 55.a2r =,即球半径r =.若球的体积为92π,即349)32ππ=,解得a =56.1:24【解析】三棱锥ADE F -与三棱锥ABC A -1的 相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24. 另:112211111334224ADE ABC V S h S h V ==⨯⨯=,所以121:24V V =.57.38【解析】由三视图知,此几何体为一个长为4,宽为3,高为1的长方体中心,去除一个半径为1的圆柱,所以表面积为()243+41+31+2-2=38ππ⨯⨯⨯⨯. 58.92【解析】该几何体是底面是直角梯形,高为4的直四棱柱几何体的表面积是12(25)4(2544922S =⨯⨯+⨯++++⨯=.59111322sin 603332ABC VPA S ∆=⋅=⋅⋅⋅⋅⋅=60.13【解析】由圆锥底面面积是这个球面面积的316,得223416r R ππ=,所以r R =,则小圆锥的高为2R ,大圆锥的高为32R ,所以比值为13.61.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .EMP Q DCBA(2)由已知可得,3===DC CM AB ,=DA . 又23BP DQ DA ==,所以BP =. 作QE ⊥AC ,垂足为E ,则QE=13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC,1=QE . 因此,三棱锥Q ABP -的体积为11113451332-=⨯⨯=⨯⨯⨯⨯︒=△Q ABP ABP V QE S .62.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .PACD E(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD . 设AB x =,则由已知可得AD =,2PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,AD BC ==,PB PC ==. 可得四棱锥P ABCD -的侧面积为21111sin 6062222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+ 63.【解析】(Ⅰ)证明:PD ⊥平面,,ABCD PD PCD ⊂∴平面PCD ⊥平面ABCD ,平面PCD平面,ABCD CD MD =⊂平面ABCD ,MD CD ⊥,∴MD ⊥平面PCD ,,,,,,CF PCD CF MD CF MF MD MF MDF ⊂∴⊥⊥⊂平面又平面MDMF M =,∴CF MDF ⊥平面.(Ⅱ)00,,60,30,CF MDF CF DF PCD CDF ⊥∴⊥∠=∴∠=平面又易知11==,22CF CD 从而12,,,2DE CFEF DC DE PEDP CP∴=∴=∴=∥12CDES CD DE∆=⋅=2MD====11.33M CDE CDEV S MD-∆∴=⋅==64.【解析】(Ⅰ)由已知得ABC DBC∆≅∆,因此AC DC=,又G为AD的中点,CG AD⊥;同理BG AD⊥;因此AD⊥平面BCG,又EF AD∥,∴EF⊥平面BCG.CD(Ⅱ)在平面ABC内,做AO CB⊥,交CB的延长线于O,由平面ABC⊥平面BCD,知AO⊥平面BCD,又G为AD的中点,因此G到平面BCD 的距离h是AO的一半,在AOB∆中,sin603AO AB=⋅=1132D BCG G BCD DBGV V S h--∆==⨯⨯=.65.【解析】(Ⅰ)连结1AC,交1AC于点O,连结DO,则O为1AC的中点,因为D为AB的中点,所以OD∥1BC,又因为OD⊂平面1ACD,1BC⊄平面1ACD,所以1BC//平面1ACD;(Ⅱ)由题意知CD⊥平面11ABB A.再由12AA AC CB===,AB=90ACB∠=,CD=1A D=DE,13A E=.故22211A D DE A E+=,即1DE A D⊥所以111132C A DEV-=⨯.66.【解析】(Ⅰ)证明:连接AC ,交于BD 于O 点,连接PO .因为底面ABCD 是菱形,所以,AC BD BO DO ⊥=,由PB PD =知,PO BD ⊥.再由PO AC O ⋂=知, BD ⊥面APC ,因此BD PC ⊥.(Ⅱ)解:因为E 是P A 的中点,所以1122P BCE C PEB C PAB B APC V V V V ----=== 由2PB PD AB AD ====知,ABD PBD ≅ 因为60BAD ∠=,所以1PO AO AC BO ===.又222,PA PO AO PA PO AC +=⊥即. 故132APCSPO AC =∙=. 由(1)知,1111,2232P BCE B APC APCBO APC V V BO S --⊥==∙∙∙=面因此. 67.【解析】(1)由已知可得AE =3,BF =4,则折叠完后EG =3,GF =4,又因为EF =5,所以可得EG GF ⊥,又因为CF EGF ⊥底面,可得CF EG ⊥,即EG CFG ⊥面所以平面DEG ⊥平面CFG .(2)过G 作GO 垂直于EF ,GO 即为四棱锥G -EFCD 的高, 所以所求体积为11124516335CDEF S GO ⋅=⨯⨯⨯=. 68.【解析】(I )由条件知PDAQ 为直角梯形因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD .又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC .在直角梯形PDAQ 中可得DQ =PQ ,则PQ ⊥QD所以PQ ⊥平面DCQ . (II )设AB =a .由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积311.3V a =由(I )知PQ 为棱锥P —DCQ 的高,而PQ ,△DCQ 的面积为22a , 所以棱锥P —DCQ 的体积为321.3V a =故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.。
空间几何体的三视图-表面积和体积经典讲义(学生版)
空间几何体的三视图,表面积和体积考点一空间几何体的三视图1.如图是一正方体被过棱的中点M、N和顶点A、D、C1的两个截面截去两个角后所得的几何体,则该几何体的主视图为( )2.一个四面体的顶点在空间直角坐标系O xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( )3. 在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四面体的正视图和俯视图分别为( )(A)①和②(B)③和① (C)④和③ﻩ(D)④和②4.如图所示,在正方体ABCD A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P ABC的正视图与侧视图的面积的比值为.5.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( )(A)1(B(C6.一条长为2的线段,的三条线段,则ab的最大值为()ﻩﻩ(C)52ﻩ (D)3考点二空间几何体的表面积和体积1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,由此几何体的体积为( )(A)6 (B)9 (C)12 (D)182.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 cm3.3.一个四面体的三视图如图所示,则该四面体的表面积是( ) (A)1+3(B)2+3 (C)1+22 (D )224.有一个棱长为1的正方体,按任意方向正投影,其投影面积的最大值是( )(A)1 ﻩ(B)32ﻩ (C )2 (D)35.某几何体的三视图如图所示,则该几何体的体积为( )(A )16+8π ﻩ(B)8+8π (C )16+16πﻩ(D)8+16π6.一四面体的三视图如图所示,则该四面体四个面中最大的面积是( )(A)2 (B)2(C) (D)27.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为() (A)6+4+2ﻩ(B)8+4 (C)6+6ﻩ(D)6+2+48.已知三棱锥SABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( )(A)错误!ﻩ9.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为_____________.10.如图所示,已知正四棱锥S ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V (x),则函数y=V(x)的图象大致为( )考点三与球有关的表面积和体积问题1.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为( )(A)πa2ﻩ(B)73πa2(C)113πa2ﻩ (D)5πa22.设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于7π4,则球O的表面积等于 .3.已知球的直径SC=4,A,B是该球球面上的两点,AB=3,∠ASC=∠BSC=30°,则棱锥S ABC的体积为( )(A)(B)ﻩ(C (D)14.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )(A)81π4错误!未定义书签。
专题八 立体几何 第二十二讲 空间几何体的三视图表面积和体积答案
专题八立体几何第二十二讲空间几何体的三视图、表面积和体积答案部分2019 年1.解析:该半正多面体共有888 2 26 个面,设其棱长为x,则2 2 x2 1 xx ,解得x 2 1.2 2.解:(1)由已知得B1C1⊥平面ABB1A1,BE 平面ABB1A1,故 B C BE . 1 1 又BE EC ,所以BE⊥平面EB C . 1 1 1 (2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以1 1 45AEB A EB故AE=AB=3,AA AE . 1 ,2 6 13 6 3 18 V3. 1 1 1作EF BB ,垂足为F,则EF⊥平面BB C C ,且EF AB 3. 1 所以,四棱锥E BB C C 的体积1 F3.解析该模型为长方体ABCD A1B1C1D1 ,挖去四棱锥O EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,AB BC 6cm ,AA1 ,所以该模型体积为:4cm 1VV1 1 ,6 6 4 (4 6 4 3 2) 3 144 12 132(cm )3 ABCD A B C D1 1 1 1 O EFGH3 2 3D 打印所用原料密度因为为0.9g / cm3 ,不考虑打印损耗,所以制作该模型所需原料的质量为:1320.9 118.8(g) .4.解析因为长方体ABCD A B C D 的体积是120,E 为CC 的1 1 1 1 1 中点,所以V1 1 1 1 ABCD A B C DAB BC D D1 120 ,所以三棱锥E BCD 的体积:1 VE BCDSVBCD1 1 CE BC DC CE3 2 AB BC DD 10. 1 3 1 12 5.解析由题可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得,正四棱锥的高为2.因为圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,则圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于1,由相似比可得圆柱的高为正四棱锥高的一半,为1.2 12 .所以该圆柱的体积为1 24 V Sh6.解析三视图对应的几何体,是在棱长为4 的正方体上,去掉一个底面为梯形(上底为2,下底为4,高为2)、高为4 的四棱柱而得到,1 故其体积V4 4 4 2. 2 4 2 4 64 24 407.解析:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即S五边形ABCDE1 1 (4 6)3 (2 6)3 27 ,高为6,2 2 则该柱体的体积是V 276 162 .故选B.2010-2018 年1.B【解析】∵过直线O1O2 的平面截该圆柱所得的截面是面积为8 的正方形,所以圆柱的高为2 2 ,底面圆的直径为2 2 ,所以该圆柱的表面积为2 ( 2)2 2 2 2 2 12 .故选B.2.B【解析】由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长16.画出该圆柱的侧面展开图,如图②所示,连接MN ,则MS 2 ,SN 4,则从M 到N 的路径中,最短路径的长度为MS2 SN2 22 42 2 5 .故选B.MNSN图①3.C【解析】连接BC1 ,因为AB 平面B B1C1C ,所以图②1 30 AB BC ,所1 AC B o ,以ABC1 为直角三角形.又AB2 ,所以BC ,又 B C ,所以1 12 1 23 BB1(2 3) 2 2 2 。
高考数学空间几何体三视图表面积与体积专题测试(含答案解析)
高考数学空间几何体三视图表面积与体积专题测试(含答案解析)试题可以协助考生停止查缺补漏,为此查字典数学网整理了空间几何体三视图、外表积与体积专题测试,请考生停止练习。
一、选择题1.(2021武汉调研)一个几何体的三视图如下图,那么该几何体的直观图可以是()解析 A、B、C与仰望图不符.答案 D2.将长方体截去一个四棱锥,失掉的几何体如下图,那么该几何体的侧(左)视图为()解析抓住其一条对角线被遮住应为虚线,可知正确答案在C,D中,又结合直观图知,D正确.答案 D3.(2021安徽卷)一个多面体的三视图如下图,那么该多面体的外表积为()A.21+3B.18+3C.21D.18解析由三视图知,该多面体是由正方体割去两个角所成的图形,如下图,那么S=S正方体-2S三棱锥侧+2S三棱锥底=24-231211+234(2)2=21+3.答案 A4.S,A,B,C是球O外表上的点,SA平面ABCD,ABBC,SA=AB=1,BC=2,那么球O的外表积等于()A.4B.3C.2解析如下图,由ABBC知,AC为过A,B,C,D四点小圆直径,所以ADDC.又SA平面ABCD,设SB1C1D1-ABCD为SA,AB,BC为棱长结构的长方体,得体对角线长为12+12+22=2R,所以R=1,球O的外表积S=4.故选A.答案 A5.(2021湖南卷)一块石材表示的几何体的三视图如下图.将该石材切削、打磨,加工成球,那么能失掉的最大球的半径等于()A.1B.2C.3D.4解析由三视图可得原石材为如下图的直三棱柱A1B1C1-ABC,且AB=8,BC=6,BB1=12.假定要失掉半径最大的球,那么此球与平面A1B1BA,BCC1B1,ACC1A1相切,故此时球的半径与△ABC内切圆的半径相等,故半径r=6+8-102=2.应选B.答案 B6.点A,B,C,D均在同一球面上,其中△ABC是正三角形,AD平面ABC,AD=2AB=6,那么该球的体积为()A.323B.48C.643D.163解析如下图,O1为三角形ABC的外心,过O做OEAD,OO1面ABC,AO1=33AB=3.∵OD=O A,E为DA的中点.∵AD面ABC,AD∥OO1,EO=AO1=3.DO=DE2+OE2=23.R=DO= 23.V=43(23)3=323.答案 A二、填空题7.某四棱锥的三视图如下图,该四棱锥的体积是________. 解析由三视图可知,四棱锥的高为2,底面为直角梯形ABCD.其中DC=2,AB=3,BC=3,所以四棱锥的体积为132+3322=533. 答案 5338.如图,在三棱柱A1B1C1-ABC中,D,E,F区分是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC 的体积为V2,那么V1V2=________.解析设三棱柱A1B1C1-ABC的高为h,底面三角形ABC的面积为S,那么V1=1314S12h=124Sh=124V2,即V1V2=124. 答案 1249.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,那么四面体ABCD的外接球的外表积为________.解析结构一个长方体,使得它的三条面对角线区分为4、5、6,设长方体的三条边区分为x,y,z,那么x2+y2+z2=772,而长方体的外接球就是四面体的外接球,所以S=4R2=772. 答案 772三、解答题10.以下三个图中,左边是一个正方体截去一个角后所得多面体的直观图.左边两个是其正(主)视图和侧(左)视图. (1)请在正(主)视图的下方,依照画三视图的要求画出该多面体的仰望图(不要求表达作图进程).(2)求该多面体的体积(尺寸如图).解 (1)作出仰望图如下图.(2)依题意,该多面体是由一个正方体(ABCD-A1B1C1D1)截去一个三棱锥(E-A1B1D1)失掉的,所以截去的三棱锥体积VE-A1B1D1=13S△A1B1D1A1E=1312221=23,正方体体积V正方体AC1=23=8,所以所求多面体的体积V=8-23=223.11.(2021安徽卷)如图,四棱柱ABCD-A1B1C1D1中,A1A底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过 A1,C,D三点的平面记为,BB1与的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面所分红上下两局部的体积之比.解 (1)证明:由于BQ∥AA1,BC∥AD,BCBQ=B,ADAA1=A,所以平面QBC∥平面A1AD.从而平面A1CD与这两个平面的交线相互平行,即QC∥A1D.故△QBC与△A1AD的对应边相互平行,于是△QBC∽△A1AD.所以BQBB1=BQAA1=BCAD=12,即Q为BB1的中点.(2)如图,衔接QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面所分红上下两局部的体积区分为V上和V下,BC=a,那么AD=2a.VQ-A1AD=13122ahd=13ahd,VQ-ABCD=13a+2a2d12h=14ahd,所以V下=VQ-A1AD+VQ-ABCD=712ahd,又V四棱柱A1B1C1D1-ABCD=32ahd,所以V上=V四棱柱A1B1C1D1-ABCD-V下=32ahd-712ahd=1112ahd.故V上V下=117.B级才干提高组1.(2021北京卷)在空间直角坐标系Oxyz中,A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).假定S1,S2,S3区分是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,那么()A.S1=S2=S3B.S2=S1且S2S3C.S3=S1且S3 S2D.S3=S2且S3S1解析作出三棱锥在三个坐标平面上的正投影,计算三角形的面积.如下图,△ABC为三棱锥在坐标平面xOy上的正投影,所以S1=1222=2.三棱锥在坐标平面yOz上的正投影与△DE F(E,F 区分为OA,BC的中点)全等,所以S2=1222=2.三棱锥在坐标平面xOz上的正投影与△DGH(G,H区分为AB,OC 的中点)全等,所以S3=1222=2.所以S2=S3且S1S3.应选D. 答案 D2.(2021山东卷)三棱锥P-ABC中,D,E区分为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,那么V1V2=________.解析由于VP-ABE=VC-ABE,所以VP-ABE=12VP-ABC,又因VD-ABE=12VP-ABE,所以VD-ABE=14VP-ABC,V1V2=14.答案 143.(理)(2021课标全国卷Ⅱ)如图,四棱锥P-ABCD中,底面ABCD 为矩形,PA平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60,AP=1,AD=3,求三棱锥E-ACD的体积.解 (1)衔接BD交AC于点O,衔接EO.由于ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO平面AEC,PB平面AEC,所以PB∥平面AEC.(2)由于PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB的方向为x轴的正方向,|PA|为单位长,树立空间直角坐标系A-xyz.那么D(0,3,0),E0,32,12, AE=0,32,12.设B(m,0,0)(m0),那么C(m,3,0),AC=(m,3,0),设n1=(x,y,z)为平面ACE的法向量,那么n1AC=0,n1AE=0,即mx+3y=0,32y+12z=0,可取n1=3m,-1,3.又n2=(1,0,0)为平面DAE的法向量,由题设|cos〈n1,n2〉|=12,即 33+4m2=12,解得m=32.由于E为PD的中点,所以三棱锥E-ACD的高为12.三棱锥E-ACD的体积V=131233212=38.3.(文)如图,在Rt△ABC中,AB=BC=4,点E在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF 的位置(点A与P重合),使得PEB=30.(1)求证:EF(2)试问:当点E在何处时,四棱锥P-EFCB的正面PEB的面积最大?并求此时四棱锥P-EFCB的体积.解 (1)证明:∵AB=BC,BCAB,又∵EF∥BC,EFAB,即EFBE,EFPE.又BEPE=E,EF平面PBE,EFPB.(2)设BE=x,PE=y,那么x+y=4.S△PEB=12BEPEsinPEB=14xy14x+y22=1.当且仅当x=y=2时,S△PEB的面积最大.此时,BE=PE=2.由(1)知EF平面PBE,平面PBE平面EFCB,在平面PBE中,作POBE于O,那么PO平面EFCB.即PO为四棱锥P-EFCB的高.又PO=PEsin30=212=1.S梯形EFCB =12(2+4)2=6.VP-BCFE=1361=2.空间几何体三视图、外表积与体积专题测试的答案和解析希望考生好好应用,提高效果。
空间几何体的三视图、表面积及体积
2022年高考数学总复习:空间几何体的三视图、表面积及体积1.柱体、锥体、台体、球的表面积与体积(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.画三视图的基本要求:正(主)俯一样长,俯侧(左)一样宽,正(主)侧(左)一样高.三视图排列规则:俯视图放在正(主)视图的下面;侧(左)视图放在正(主)视图的右面.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.Y易错警示i cuo jing shi1.未注意三视图中实、虚线的区别在画三视图时应注意看到的轮廓线画成实线,看不到的轮廓线画成虚线.2.不能准确分析组合体的结构致误对简单组合体表面积与体积的计算要注意其构成几何体的面积、体积是和还是差.3.台体可以看成是由锥体截得的,此时截面一定与底面平行.4.空间几何放置的方式不同时,对三视图可能会有影响.1.(2018·全国卷Ⅲ,3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( A )[解析]选A.由直观图可知选A.2.(文)(2018·全国卷Ⅰ,5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B ) A.122π B.12πC.82π D.10π[解析]截面面积为8,所以高h=22,底面半径r=2,所以该圆柱表面积S=π·(2)2·2+2π·2·22=12π.(理)(2018·全国卷Ⅰ,7)某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( B )A.217 B.25C.3 D.2[解析]选B.将三视图还原为圆柱,M,N的位置如图1所示,将侧面展开,最短路径为M,N连线的距离,所以MN=42+22=2 5.3.(2018·浙江卷,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( C )A .2B .4C .6D .8[解析] 选C . 由三视图可知,该几何体是底面为直角梯形的直四棱柱,底面面积S =(1+2)×22=3,高h =2,所以V =Sh =6.4.(2018·北京卷,5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( C )A .1B .2C .3D .4[解析] 选C .将四棱锥三视图转化为直观图,如图,侧面共有4个三角形,即△P AB ,△PBC ,△PCD ,△P AD , 由已知,PD ⊥平面ABCD ,又AD ⊂平面ABCD ,所以PD ⊥AD ,同理PD ⊥CD ,PD ⊥AB , 所以△PCD ,△P AD 是直角三角形.因为AB ⊥AD ,PD ⊥AB ,PD ,AD ⊂平面P AD ,PD ∩AD =D , 所以AB ⊥平面P AD ,又P A ⊂平面P AD , 所以AB ⊥P A ,△P AB 是直角三角形. 因为AB =1,CD =2,AD =2,PD =2,所以P A =PD 2+AD 2=22,PC =PD 2+CD 2=22, PB =P A 2+AB 2=3,在梯形ABCD 中,易知BC =5,△PBC 三条边长为22,3,5,△PBC 不是直角三角形. 综上,侧面中直角三角形个数为3.5.(文)(2018·全国卷Ⅰ,10)在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( C )A .8B .6 2C .8 2D .83[解析]选C .如图,连接AC 1和BC 1,因为AB ⊥平面BB 1C 1C ,AC 1与平面BB 1C 1C 所成角为30°,所以∠AC 1B =30°, 所以AB BC 1=tan30°,BC 1=23,所以CC 1=22,所以V =2×2×22=8 2.(理)(2018·全国卷Ⅲ,10)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( B )A .12 3B .18 3C .24 3D .543[解析] 设△ABC 的边长为a ,则S △ABC =12a 2sin C =34a 2=93,解得a =6,如图所示,当点D 在底面上的射影为三角形ABC 的中心H 时,三棱锥D ABC 的体积最大,设球心为O ,则在直角三角形AHO 中,AH =23×32×6=23,OA =R =4,则OH=OA 2-AH 2=16-12=2,所以DH =2+4=6,所以三棱锥D ABC 的体积最大值为V =13S △ABC ×DH =13×93×6=18 3. 6.(文)(2018·天津卷,11)如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为13.[解析] 连接A 1C 1,交B 1D 1于O 1点,依题意得A 1O 1⊥平面BB 1D 1D ,即A 1O 1为四棱锥A 1BB 1D 1D 的高,且A 1O 1=22,而四棱锥A 1BB 1D 1D 的底面为矩形,其面积为2,所以四棱锥A 1BB 1D 1D 的体积V =13Sh =13×2×22=13.(理)(2018·天津卷,11)已知正方体ABCD A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH 的体积为112.[解析] 依题意得:该四棱锥M EFGH 为正四棱锥,其高为正方体棱长的一半,即为12,正方形EFGH 的边长为22,其面积为12,所以四棱锥M EFGH 的体积V M EFGH =13Sh =13×12×12=112. 7.(2018·全国卷Ⅱ,16)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为402π.[解析] 如图:设SA =SB =l ,底面圆半径为r ,因为SA 与圆锥底面所成角为45°,所以l =2r ,在△SAB 中,AB 2=SA 2+SB 2-2SA ·SB ·cos ∠ASB =12r 2,AB =22r ,AB 边上的高为(2r )2-⎝⎛⎭⎫24r 2=304r ,△SAB 的面积为515, 所以12·22r ·304r =515,解得r =210,所以该圆锥的侧面积为πrl =π2r 2=402π.8.(2017·全国卷Ⅰ,16)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为36π.[解析] 如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r , ∴三棱锥S -ABC 的体积V =13×(12SC ·OB )·OA =r 33,即r 33=9, ∴r =3,∴S 球表=4πr 2=36π.。
2021届高考数学 8.1空间几何体的三视图、直观图、表面积与体积配套文档 理
§8.1空间几何体的三视图、直观图、表面积与体积1.多面体的结构特点2.3.空间几何体的直观图经常使用斜二测画法来画,其规那么:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中维持原长度不变,平行于y轴的线段长度在直观图中长度为原先的一半.4.空间几何体的三视图(1)三视图的主视图、俯视图、左视图别离是从物体的正前方、正上方、正左方看到的物体轮廓线的正投影围成的平面图形.(2)三视图的特点:三视图知足“长对正、高平齐、宽相等”或说“主左一样高、主俯一样长、俯左一样宽”.5.柱、锥、台和球的侧面积和体积1. (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,假设∠A 的两边别离平行于x 轴和y 轴,且∠A =90°,那么在直观图中,∠A =45°.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × ) (5)圆柱的侧面展开图是矩形.( √ ) (6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2. (2021·四川)一个几何体的三视图如下图,那么该几何体的直观图能够是 ( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2021·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,若是不计容器的厚度,那么球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图象如下图,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5, 因此V =43πR 3=500π3. 4. 一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,因此原三角形的面积为62.5. 假设一个圆锥的侧面展开图是面积为2π的半圆面,那么该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一 空间几何体的结构特点 例1 (1)以下说法正确的选项是( )A .有两个平面相互平行,其余各面都是平行四边形的多面体是棱柱B .四棱锥的四个侧面都能够是直角三角形C .有两个平面相互平行,其余各面都是梯形的多面体是棱台D .棱台的各侧棱延长后不必然交于一点 (2)给出以下命题:①在圆柱的上、下底面的圆周上各取一点,那么这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面能够不相似,但侧棱长必然相等. 其中正确命题的个数是( )A .0B .1C .2D .3思维启发 从多面体、旋转体的概念入手,能够借助实例或几何模型明白得几何体的结构特点. 答案 (1)B (2)A解析 (1)A 错,如图1;B 正确,如图2,其中底面ABCD 是矩形,可证明∠PAB ,∠PCB 都是直角,如此四个侧面都是直角三角形;C 错,如图3;D 错,由棱台的概念知,其侧棱必相交于同一点.(2)①不必然,只有这两点的连线平行于轴时才是母线;②不必然,因为“其余各面都是三角形”并非等价于“其余各面都是有一个公共极点的三角形”,如图1所示;③不必然,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,可是侧棱长不必然相等. 思维升华 (1)有两个面相互平行,其余各面都是平行四边形的几何体不必然是棱柱. (2)既然棱台是由棱锥概念的,因此在解决棱台问题时,要注意“还台为锥”的解题策略. (3)旋转体的形成不仅要看由何种图形旋转取得,还要看旋转轴是哪条直线.如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,那么在正方体盒子中,∠ABC 的值为 ( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如下图,连接AB ,BC ,AC ,可得△ABC 是正三角形,那么∠ABC =60°. 题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,那么该几何体的俯视图能够是( )(2)正三角形AOB 的边长为a ,成立如下图的直角坐标系xOy ,那么它的直观图的面积是________.思维启发 (1)由主视图和左视图可知该几何体的高是1,由体积是12可求出底面积.由底面积的大小可判定其俯视图是哪个.(2)依照直观图画法规那么确信平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,应选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一样在已知图形中成立直角坐标系,尽可能运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(1)(2021·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,那么该正方体的主视图的面积不可能等于( )A .1 B.2 C.2-12D.2+12(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,那么原图形是 ( ) A .正方形 B .矩形C .菱形D .一样的平行四边形答案 (1)C (2)C解析 (1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.(2)如图,在原图形OABC 中, 应有OD =2O ′D ′=2×22=42 cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=422+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形. 题型三 空间几何体的表面积与体积例3 (1)一个空间几何体的三视图如下图,那么该几何体的表面积为 ( )A .48B .32+817C .48+817D .80(2)已知某几何体的三视图如下图,其中主视图、左视图均由直角三角形与半圆组成,俯视图由圆与内接三角形组成,依照图中的数据可得几何体的体积为 ( ) A.2π3+12B.4π3+16 C.2π6+16D.2π3+12思维启发 先由三视图确信几何体的组成及气宇,然后求表面积或体积. 答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如下图,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.因此S表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确信该几何体是一个半球体与三棱锥组成的组合体,如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1,故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,因此三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt△ABC 是半球底面的内接三角形,因此球的直径2R =BC =2,解得R =22,因此半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.思维升华 解决此类问题需先由三视图确信几何体的结构特点,判定是不是为组合体,由哪些简单几何体组成,并准确判定这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.(2021·课标全国)已知三棱锥S -ABC 的所有极点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,那么此棱锥的体积为 ( ) A.26 B.36 C.23 D.22答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,因此三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如下图, S △ABC =34×AB 2=34,高OD = 12-⎝ ⎛⎭⎪⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿 棱柱侧面通过棱CC ′到M 的最短线路长为29,设这条最短线路与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长;(3)三棱锥C —MNP 的体积.思维启发 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现如何的形式;(3)三棱锥以谁做底好. 标准解答解 (1)该三棱柱的侧面展开图为一边长别离为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如以下图,设PC =x ,那么MP 2=MA 2+(AC +x )2. ∵MP =29,MA =2,AC =3,∴x =2,即PC =2.又NC ∥AM ,故PC PA =NCAM ,即25=NC 2.∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离, 即h =32×3=332.∴V C —MNP =V M —PCN =13·h ·S △PCN=13×332×45=235.[12分] 温馨提示 (1)解决空间几何体表面上的最值问题的全然思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)若是已知的空间几何体是多面体,那么依照问题的具体情形能够将那个多面体沿多面体中某条棱或两个面的交线展开,把不在一个平面上的问题转化到一个平面上.若是是圆柱、圆锥那么可沿母线展开,把曲面上的问题转化为平面上的问题.(3)此题的易错点是,不明白从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方式与技术1.棱柱、棱锥要把握各部份的结构特点,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界限和可见轮廓线用实线,看不见的轮廓线用虚线;(2)明白得“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规那么的几何体通过度割或补形将其转化为规那么的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确信有关元素间的数量关系,并作出适合的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的极点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体能够看成是由锥体截得的,但必然强调截面与底面平行.2.注意空间几何体的不同放置对三视图的阻碍.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时刻:40分钟)一、选择题1.正五棱柱中,不同在任何侧面且不同在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10答案D解析如图,在正五棱柱ABCDE-A1B1C1D1E1中,从极点A动身的对角线有两条:AC1,AD1,同理从B,C,D,E点动身的对角线均有两条,共2×5=10(条).2.(2021·福建)一个几何体的三视图形状都相同、大小均相等,那么那个几何体不能够是( )A .球B .三棱锥C .正方体D .圆柱答案 D解析 考虑选项中几何体的三视图的形状、大小,分析可得. 球、正方体的三视图形状都相同、大小均相等,第一排除选项A 和C. 关于如下图三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都可不能完全相同, 故答案选D.3. (2021·重庆)某几何体的三视图如下图,那么该几何体的体积为( )A.5603B.5803 C .200 D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =2+8×42=20.又棱柱的高为10,因此体积V =Sh =20×10=200.4. 如图是一个物体的三视图,那么此三视图所描述物体的直观图是( ) 答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5. 某几何体的三视图如下图,其中俯视图是个半圆,那么该几何体的表面积为( )A.32π B .π+3C.32π+ 3D.52π+3答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.二、填空题6. 如下图,E 、F 别离为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,那么四边形BFD 1E 在该正方体的面DCC 1D 1上的正投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的正投影为②:B 在面DCC 1D 1上的正投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7. 已知三棱锥A —BCD 的所有棱长都为2,那么该三棱锥的外接球的表面积为________. 答案 3π 解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,因此正方体ANDM —FBEC 的棱长为1.因此该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球确实是正方体ANDM —FBEC 的外接球,因此三棱锥A —BCD 的外接球的半径为32.因此三棱锥A —BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎪⎫322=3π. 8. (2021·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 别离是AB ,AC ,AA 1的中点,设三棱锥F -ADE的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,那么V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝ ⎛⎭⎪⎫12AD ·AE ·sin∠DAE 2h 122AD 2AE sin∠DAE=124. 三、解答题9.一个几何体的三视图及其相关数据如下图,求那个几何体的表面积.解 那个几何体是一个圆台被轴截面割出来的一半.依照图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故那个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个正三棱台的两底面边长别离为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如下图,三棱台ABC —A 1B 1C 1中,O 、O 1别离为两底面中心,D 、D 1别离为BC和B 1C 1的中点,那么DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-OD -O 1D 12=43,因此棱台的高为4 3 cm. B 组 专项能力提升(时刻:30分钟)1. 在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( )A.25VB.13VC.23VD.310V 答案 D解析 设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2.连接MD .因为M 是AE 的中点,因此V M —ABCD =12V . 因此V E —MBC =12V -V E —MDC . 而V E —MBC =V B —EMC ,V E —MDC =V D —EMC ,因此V E —MBCV E —MDC =V B —EMC V D —EMC =h 1h 2.因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,因此h 1h 2=32. 因此V E —MBC =V M -EBC =310V .2. 某三棱锥的三视图如下图,该三棱锥的表面积是( ) A .28+6 5 B .30+65C .56+125 D .60+125 答案 B 解析 由几何体的三视图可知,该三棱锥的直观图如下图,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,因此AC =41且S △ACD =10.在Rt△ABE 中,AE =4,BE =2,故AB =25. 在Rt△BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+65. 3. 表面积为3π的圆锥,它的侧面展开图是一个半圆,那么该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .那么12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4. 如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)依照图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD ,因此在Rt△APD 中,PA =PD 2+AD 2=622+62=6 3 cm.5. 在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a ,假设在那个四棱锥内放一球,求此球的最大半径.解 当球内切于四棱锥,即与四棱锥各面均相切时球半径最大,设球的半径为r ,球心为O ,连接OP 、OA 、OB 、OC 、OD ,那么把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面别离为原四棱锥的侧面和底面,则V P -ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意,知PD ⊥底面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PD =13a 3. 由体积相等, 得13r (2+2)a 2=13a 3,解得r =12(2-2)a .。
§8.1 空间几何体的三视图、表面积与体积(讲解部分)
在已知图形中过点O作z轴垂直于平面xOy,在直观图中画出对应的z'轴,垂 直于平面x'O'y',已知图形中平行于z轴的线段,在直观图中平行于z'轴且 ⑩ 长度不变 .
考点二 空间几何体的体积
名称
体积
柱体 锥体
V=Sh
1
V= 3Sh
台体
1
V= 3(S+S'+ SS' )h
球体
4
V=3 πR3
考点三 空间几何体的表面积
112.5.
(2)包装盒子的体积V=(a-2x)(b-2x)x=x[ab-2(a+b)x+4x2],x∈
0,
b 2
,b≤60,V=x
[ab-2(a+b)x+4x2]≤x(ab-4 ab x+4x2)=x(3 600-240x+4x2)=4x3-240x2+3 600x.当
且仅当a=b=60时等号成立,设f(x)=4x3-240x2+3 600x,x∈(0,30),则f '(x)=12(x-
②半径:r= a2 b2 c2 (a,b,c为长方体的长、宽、高).
2
(2)正方体的外接球、内切球及与各条棱都相切的球:
①外接球:球心是正方体的中心,半径r= 3 a(a为正方体的棱长);
2
②内切球:球心是正方体的中心,半径r= a (a为正方体的棱长);
2
③与各条棱都相切的球:球心是正方体的中心,半径r= 2 a(a为正方体的棱
考点清单
考点一 三视图与直观图
1.多面体的结构特征
名称
棱柱
棱锥
棱台
图形
结构特征 (1)有两个面互相平行,其余各个 有一个面(即底面)是多边 用一个平行于棱锥底面
2023版高考数学一轮总复习专题检测8-1空间几何体的三视图表面积和体积
8.1 空间几何体的三视图、表面积和体积一、选择题1.(2022届山东烟台一中开学考,2)已知圆锥的表面积等于12πcm 2,其侧面展开图是一个半圆,则圆锥的底面半径为( ) A.1cm B.2cm C.3cm D.32cm答案 B 设圆锥的底面圆的半径为rcm,母线长为lcm,∵侧面展开图是一个半圆,∴πl=2πr ⇒l=2r,∵圆锥的表面积为12πcm 2,∴πr 2+πrl=3πr 2=12π,∴r=2,故圆锥的底面半径为2cm.故选B.2.(2022届黑龙江六校11月联考,4)已知圆锥的轴截面为等边三角形,且圆锥的表面积为3π,则圆锥的底面半径为( )A.12 B.1 C.√2 D.√3答案 B 设圆锥的母线长为l,底面半径为r,根据题意,得l=2r,所以圆锥的表面积S=πr 2+πrl=3πr 2=3π,解得r=1,故选B.3. (2022届河北邢台入学考,4)六氟化硫,化学式为SF 6,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体(每个面都是正三角形的八面体),如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点.若相邻两个氟原子间的距离为2a,则六氟化硫分子中6个氟原子构成的正八面体的体积是(不计氟原子的大小)( )A.4√23a 3B.8√23a 3C.4√2a 3D.8√2a 3答案 B 如图,连接AC,BD,设AC∩BD=O,则O 为正方形ABCD 的中心,连接OE.因为AE=CE,BE=DE,所以OE⊥AC,OE⊥BD,又AC∩BD=O,所以OE⊥平面ABCD.因为AB=BC=AE=2a,所以AC=√AA 2+B A 2=2√2a.因为四边形ABCD 是正方形,所以AO=12AC=√2a,则OE=√AA 2-A A 2=√2a,故该正八面体的体积为13×(2a)2×√2a×2=8√23a 3.4.(2022届河南焦作一模,6)底面是边长为1的正方形,侧面均是等边三角形的四棱锥的体积为( )A.√26 B.√24 C.√23 D.√22答案 A 由题意可知该四棱锥为正四棱锥,底面正方形对角线长为√2,则正四棱锥的高h=√12-(√22)2=√22,所以正四棱锥的体积V=13×12×√22=√26,故选A.5.(2022届河南洛阳期中,7)某四面体的三视图如图所示,已知其正视图、侧视图、俯视图是全等的等腰直角三角形,则该四面体的四个面中直角三角形的个数为( )A.1B.2C.3D.4答案 D 由三视图及已知可知该四面体可补形成正方体,如图所示.易知△DAB,△ABC 均为直角三角形.由正方体的性质可知CB⊥平面DAB,所以CB⊥BD,即△DBC 是直角三角形;又知DA⊥平面ABC,所以DA⊥AC,即△DAC 是直角三角形,所以该四面体的四个面中直角三角形的个数为4,故选D.6.(2022届江西吉安9月月考,8)如图,网格图中小正方形的边长为1,粗线是一个几何体的三视图,则该几何体的体积为( )A.2π+4B.2π+2C.π+4D.6π+12答案 A 由三视图可知,该几何体由半圆锥和三棱锥拼接而成,半圆锥的底面半径为2,高为3,三棱锥的底面是斜边长为4的等腰直角三角形,三棱锥的高为3,故该几何体的体积V=13×(12π×22+4×2×12)×3=2π+4,故选A.7.(2022届江苏海安高级中学期中,8)如图所示,在直三棱柱ABC-A 1B 1C 1中,AA 1=1,AB=BC=√3,cos∠ABC=13,P 是A 1B 上的一动点,则AP+PC 1的最小值为( )A.√5B.√7C.1+√3D.3答案 B 连接BC 1,得△A 1BC 1,以A 1B 所在直线为轴,将△A 1BC 1所在平面旋转到平面ABB 1A 1,设点C 1的新位置为C',连接AC', 则AC'的长即为AP+PC 1的最小值.∵AB=BC=√3,cos∠ABC=13,∴由余弦定理可得,AC=2,∴A 1C 1=2,即A 1C'=2,∵AA 1=1,AB=√3,∴A 1B=2,且∠AA 1B=60°.易求得C 1B=2,∵A 1B=BC 1=A 1C 1=2,∴△A 1BC 1为等边三角形,∴∠BA 1C 1=60°.∴在三角形AA 1C'中,∠AA 1C'=120°,又AA 1=1,A 1C'=2,∴AC'=√1+4−2×1×2×(-12)=√7.故选B.8.(2022届吉林顶级名校11月月考,10)已知球O,过球面上A,B,C 三点作截面,若点O 到该截面的距离是球半径的一半,且AB=BC=2,∠B=120°,则球O 的表面积为( ) A.643π B.83π C.323π D.169π答案 A 如图,设球的半径为r,O 1是△ABC 的外心,外接圆半径为R,连接OO 1,OB,O 1B,则OO 1⊥平面ABC,在△ABC 中,AB=BC=2,∠ABC=120°,则∠A=30°,由正弦定理得2sin A =2R,∴R=2,即O 1B=2.在Rt△OBO 1中,由已知得r 2-14r 2=4,得r 2=163,所以球O 的表面积S=4πr 2=4π×163=643π.故选A.9.(2022届合肥联考(一),9)一个四面体的三视图如图所示,则该四面体的表面积为( )A.2√3+√2+1B.√3+2√2+1C.√3+√2+2D.√3+√2+1答案 B 如图,在棱长等于√2的正方体ABCD-A 1B 1C 1D 1上取四面体ABB 1D 1,即为所求四面体,易得该四面体的表面积为12×√2×√2+12×√2×2×2+√34×22=√3+2√2+1.故选B.10.(2022届贵阳摸底,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的外接球的体积为( )A.13√136π B.13π C.9π D.92π答案 A 由三视图可知,此空间几何体是一放倒的圆柱,圆柱的底面半径为1,高为3,如图所示,该圆柱的上、下底面圆周在其外接球的表面上,外接球的半径为OA,因为OO 1=32,O 1A=1,所以OA=√(32)2+12=√132,所以圆柱外接球的体积为43π(√132)3=13√136π,故选A.11.张衡(78年—139年)是中国东汉时期伟大的天文学家、文学家、数学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A,B,若线段AB 的最小值为√3-1,利用张衡的结论可得该正方体的外接球的表面积为( )A.30B.10√10C.12√10D.36答案 C 设正方体的棱长为a,则正方体的内切球半径为r=A2,正方体的外接球半径R 满足:R 2=(A 2)2+(√22a )2,解得R=√32a,由题意知:R-r=√32a-A2=√3-1,则a=2,R=√3,则该正方体的外接球的表面积为12π,又因为圆周率的平方除以十六等于八分之五,即π216=58,所以π=√10,所以外接球的表面积为12√10.故选C.二、填空题12.(2022届甘肃九校联考,16)某零件的结构是在一个圆锥中挖去了一个正方体,且正方体的一个面在圆锥底面上,该面所对的面的四个顶点在圆锥侧面内.在图①②③④⑤⑥⑦⑧中选两个分别作为该零件的主视图和俯视图,则所选主视图和俯视图的编号依次可能为(写出符合要求的一组即可).答案⑤⑦(或①⑧)解析根据题意可知,圆锥和正方体的位置关系如图所示,当主视图为①时,俯视图为⑧;当主视图为⑤时,俯视图为⑦,故符合题意的编号为⑤⑦(或①⑧).13.(2022届浙江浙南名校联盟联考一,15)一圆锥母线长为定值a(a>0),母线与底面所成角),当圆锥体积V最大时,sinθ=.大小为θ(0<A<π2答案√33解析如图,设圆锥的高为h,底面半径为r,则h=asinθ,r=acosθ,∴V=13πr 2h=13πa 2cos 2θ·asinθ=π3a 3(1-sin 2θ)·sinθ=π3a 3(sinθ-s in 3θ),则V'=π3a 3(cosθ-3sin 2θ·cosθ)=π3a 3·cosθ(1-3sin 2θ),令V'=0, ∵0<θ<π2,∴1-3sin 2θ=0,即sin 2θ=13,∴sinθ=√33.∴当sinθ∈(0,√33)时,V'>0,V=π3a 3(sinθ-sin 3θ)单调递增;当sinθ∈(√33,1)时,V'<0,V=π3a 3(sinθ-sin 3θ)单调递减.∴sinθ=√33时,V 最大.14.(2022届河南洛阳期中,15)在三棱锥P-ABC 中,AB=2√6,BC=1,AC=5,侧面PAB 是以P 为直角顶点的直角三角形,若平面PAB⊥平面ABC,则该三棱锥体积的最大值为 . 答案 2解析 因为AB=2√6,BC=1,AC=5,所以AB 2+BC 2=AC 2,所以AB⊥BC,在Rt△PAB 中,过P 作PE⊥AB 交AB 于点E,又平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PE ⊂平面PAB,所以PE⊥平面ABC,所以PE 是三棱锥P-ABC 的高,设AE=x,则BE=2√6-x,在Rt△PAB 中,PE 2=AE·BE,所以PE=√A (2√6-x).所以V 三棱锥P-ABC =13S △ABC ·PE=13×12×2√6×1×√A (2√6-x)=√63√A (2√6-x),当x=√6时,三棱锥的体积取得最大值2.15.(2020甘肃金昌永昌一高期末,16)已知△ABC 中,P 在边BC 上且AP⊥BC,现以AP 为折痕将△ABC 折起,使得∠BPC=π2.若PA=2PB=2PC=4,则该三棱锥P-ABC 的外接球的体积是 ;内切球的表面积是 . 答案 8√6π;π解析 因为AP⊥BP 且AP⊥PC,且∠BPC=90°,所以PA,PB,PC 两两垂直,所以将三棱锥P-ABC 补成如图所示的长方体,设三棱锥P-ABC 的外接球的半径为R,则(2R)2=PA 2+PB 2+PC 2=16+4+4=24,解得R=√6,所以三棱锥P-ABC 的外接球的体积为43πR 3=43π(√6)3=8√6π.设三棱锥P-ABC 内切球的半径为r,三棱锥P-ABC 的表面积为S,由已知得BC=√22+22=2√2,AB=AC=√42+22=2√5,则S=12×4×2×2+12×2×2+12×2√2×√(2√5)2-(√2)2=16,所以V P-ABC =V B-APC =13×12×4×2×2=13×16r,解得r=12,所以三棱锥P-ABC 内切球的表面积为4πr 2=4π×(12)2=π.16.(2022届北京顺义一中期中,15)如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,点E是棱CC1上的一个动点,若平面BED1交棱AA1于点F,给出下列命题:①截面四边形BED1F可以是正方形;②三棱锥B1-BED1的体积恒为定值;③截面四边形BED1F周长的最小值为2√5a.其中是真命题的是(填写所有正确答案的序号).答案②③解析对于①,易得BD1=√3a,设C1E=b(0≤b≤a),则D1E=√A2+A2,BE=√A2+(A-A)2,假设截面四边形BED1F是正方形,则△BED1是以BD1为斜边的等腰直角三角形,从而有{√2·√A2+A2=√3a,√2·√A2+(A-A)2=√3a,由b=a-b得a=2b,则√2·√4A2+A2=2√3b,显然√2·√4A2+A2=2√3b不成立,所以截面四边形BED1F不可能是正方形,①错误;对于②,因为点E到平面BB1D1的距离为定值,又A A1-BE A1=A A-AA1A1,所以三棱锥B1-BED1的体积恒为定值,②正确;对于③,当点E与点C或C1重合时,截面四边形BED1F周长取得最大值2(a+√2a)=2(1+√2)a,当点E是CC1中点时,截面四边形BED1F周长取得最小值2×2·√A2+(A2)2=2√5a,③正确.综上②③正确.。
空间几何体三视图、表面积
【规范解答】(1)选A.由三视图可知原几何 体是一个正方体截去两个全等的小正三棱锥. 正方体的表面积为S=24,两个全等的三棱锥 是以正方体的相对顶点为顶点,侧面是三个 全等的直角边长为1的等腰直角三角形,其表面面积的和为3, 三棱锥的底面是边长为 2的正三角形,其表面积的和为 , 3 故所求几何体的表面积为24-3+ 3 =21+ 3 .
【主干知识】 1.必记公式 (1)表面积公式: 表面积=侧面积+底面积,其中 ①多面体的表面积为各个面的_面__积__的__和__. ②圆柱的表面积公式:S=_2_π__r_2_+_2_π__r_l =__2_π__r_(_r_+_l)_(其中,_r_
为底面半径,_l 为圆柱的高).
③圆锥的表面积公式:S=_π__r_2_+_π__r_l =_π__r_(_r_+_l_)_(其中圆锥的 底面半径为_r_,母线长为_l_). ④圆台的表面积公式:S=__π__(_r_'_2_+_r_2+_r_'_l+_r_l_)_(其中圆台的上、 下底面半径分别为_r_'_和_r_,母线长为_l_). ⑤球的表面积公式:S=_4_π__R_2 (其中球的半径为_R_).
【规律方法】 1.由直观图确认三视图的策略 根据空间几何体三视图的定义及画法规则和摆放规则确认. 2.由三视图还原到直观图的思路 (1)根据俯视图确定几何体的底面. (2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特 征,调整实线和虚线所对应的棱、面的位置. (3)确定几何体的直观图形状.
则球的体积为 ( )
A .500 cm 3 3
B .866 cm 3 3
C .1 3 7 2 c m 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.1空间几何体的三视图、表面积和体积五年高考A组统一命题.课标卷题组1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A: B: C: D:答案详解B正确率: 67%, 易错项: C解析:本题主要考查空间几何体的三视图。
根据题意,该几何体的直观图如图所示。
可知该几何体的后侧面与右侧面均为上底为,下底为,高为的直角梯形,所以这两个直角梯形的面积和为。
故本题正确答案为B。
2.3.已知圆柱的高为,它的两个底面的圆周在直径为的同一个球的球面上,则该圆柱的体积为( )A: B: C: D:答案详解B正确率: 61%, 易错项: A解析:本题主要考查圆柱的体积公式及球的相关知识。
根据题意,球的半径,圆柱的底面圆的半径,所以该圆柱的体积为。
故本题正确答案为B。
4.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()。
A: B: C: D:答案详解C解析:本题主要考查空间几何体的三视图及表面积的计算。
将三视图还原成立体图如下:圆锥的母线长,圆的半径,所以该几何体的表面积。
5.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是,则它的表面积是()。
A: B: C: D:答案详解A正确率: 48%, 易错项: B解析:本题主要考查空间几何体。
该几何体形状如图所示,该几何体是一个球切掉左上角的后的部分,根据题中所给体积可列出等式:,可得。
所以表面积是的球面积和三个扇形面积之和,。
故本题正确答案为A。
6.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为()。
A: B: C: D:答案详解D正确率: 51%, 易错项: C解析:本题主要考查三视图与空间几何体。
空间几何体的直观图如下图所示:设正方体棱长为,可知被截去部分的体积为,所以剩余体积为,因此比值为。
故本题正确答案为D。
7.如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()。
A: B: C: D:答案详解B解析:本题主要考查空间几何体的三视图。
根据该三视图可知,该几何体如图所示:在这个三棱锥中平面平面,为等腰直角三角形,为等腰三角形,且,,所以,,所以该三棱锥棱长分别为,,,,,,则该三棱锥最长的棱长为。
故本题正确答案为B。
8.9.如图,圆形纸片的圆心为,半径为,该纸片上的等边三角形的中心为。
,,为圆上的点,,,分别是以,,为底边的等腰三角形。
沿虚线剪开后,分别以,,为折痕折起,,,使得,,重合,得到三棱锥。
当的边长变化时,所得三棱锥体积(单位:)的最大值为_____。
答案详解解析:本题主要考查空间几何体。
连接交线段于,设,根据等边三角形性质,,三角形ABC的面积。
又知,所以,三棱锥的高,所以三棱锥的体积,设,求导得,令,解得或(舍去),此时三棱锥的体积最大,最大体积为。
故本题正确答案为。
B 组自主命题.省(区、市)卷题组1.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()。
A: B: C: D:答案详解C正确率: 51%, 易错项: B解析:本题主要考查空间几何体的三视图。
由三视图画出立体图如下,底面是正方形,底面,所以最长的棱。
故本题正确答案为C。
2.3.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为()。
A. B. C. D.答案详解C正确率:59%,易错项:B解析:本题主要考查空间几何体的体积。
由三视图可以看出,该几何体是由底面边长为的正方形,高为的正四棱锥和半径为的半球组成的组合体,因此,所求体积。
故本题正确答案为C。
4.某几何体的三视图如图所示,则该几何体的体积为()。
A: B: C: D:答案详解A正确率: 60%, 易错项: B解析:本题主要考查立体几何三视图。
由题意可知该几何体是由一个三棱锥和一个半圆柱组合得到,。
故本题正确答案为A。
5.一个四面体的三视图如图所示,则该四面体的表面积是()。
A: B: C: D:答案详解C正确率: 58%, 易错项: B解析:本题主要考查三视图及几何体表面积的计算。
由三视图可知,该几何体是一个三棱锥。
如图所示,其中侧面底面,且,由已知可得,取中点,连接,,则在中,,得,所以和均为等边三角形。
所以。
故本题正确答案为C。
6.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为,则这个球的体积为_____。
答案详解解析:本题主要考查正方体及球的综合。
设正方体的棱长为,则正方体的表面积为。
因为这个正方体的表面积为,所以,解得。
则该正方体的体对角线的长度为。
设球的半径为,又正方体的所有顶点在一个球面上,所以正方体的体对角线的长度等于球的直径的长度,即,解得。
则球的体积为。
故本题正确答案为。
7.如图,圆柱内有一个球,该球与圆柱的上、下底面及母线均相切,记圆柱的体积为,球的体积为,则的值是_____。
答案详解解: 设球的半径为,则由球的体积公式得:,又由球与圆柱的上、下底面及母线均相切知,圆柱底面半径为,高为,则由圆柱的体积公式得:,所以.解析:本题主要考查球和圆柱的相关知识及球与圆柱的体积公式,,.8.已知某几何体的三视图如下,则该几何体体积为_____。
正视图侧视图俯视图答案详解解析:三视图及几何体的体积计算为本题主要考查点,认识几何体的特征是解答本题的关键。
观察三视图可知,该几何体是一个圆柱与长方体的组合体。
求出重叠部分的体积,再利用总体积减重叠部分体积即可得出。
观察三视图可知,该几何体是一个圆柱与长方体的组合体。
长方体长宽高分别为2、2、1;圆柱体底面半径为1,高为3;重合部分体积为:故组合体体积为:故本题答案为:。
9.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:),则该四棱锥的体积为。
突破方法方法1 几何体的三视图例1一个四面体的顶点在空间直角坐标系中的坐标分别是,,,,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为()。
A: B: C: D:答案详解A解析:本题主要考查空间几何体的建立和三视图的作图问题。
如图,将四点分别投影到平面上,易知四点投影形成一个正方形。
方法2几何体表面积的求解方法例2某三棱锥的三视图如图所示,该三棱锥的表面积是()。
A: B: C: D:答案详解B正确率: 50%, 易错项: A解析:本题主要考查三视图及空间几何体的表面积的求解。
据题意作出如下图的三棱锥,由三视图可得,三棱锥的高为4,所以高,俯视图中点的落点为,所以,,由俯视图可得:,所以,又平面,故,因此平面,故。
在三角形中,,底边,故底边上的高为,故三棱锥的表面积为故本题正确答案为B。
方法3 几何体体积的求解方法例3若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则该棱柱的体积为()A.B.C.D.6答案B解析分析试题:由三视图知该直三棱柱高为4,底面正三角形的高为3,所以正三角形边长为6,所以V=×36×4=36.故选B. 考点:1.三视图;2.柱体体积计算.A组2015-2017年高考模拟 .基础题组1.解析根据三视图的关系得出俯视图的边长,外接圆圆心为俯视图的中心,故俯视图对角线为外接球的直径,从而可得球的体积.2.已知某几何体的三视图如图所示,则该几何体的体积等于()。
A: B: C: D:答案详解A正确率: 64%, 易错项: C解析:本题主要考查三视图。
由三视图可以画出该几何体如下图,所以体积等于一个三棱柱的体积减去一个三棱锥的体积,即。
故本题正确答案为A。
3.某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为( )解析:由三视图知,几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,根据三棱柱的两个底面的中心的中点与三棱柱的顶点的连线就是外接球的半径,求出半径即可求出球的表面积.本题考查了由三视图求三棱柱的外接球的表面积,利用棱柱的几何特征求外接球的半径是解题的关键.4.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )A. B 64 C D答案详解D解:由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,其体积,所以D选项是正确的.解析:由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,代入棱锥体积公式,可得答案.本小题主要考查立体几何中的三视图问题,并且对考生的空间想象能力及利用三视图还原几何体的能力进行考查,同时考查简单几何体的体积公式. B组2015-2017年高考模拟 .综合题组1.2.C组2015-2017年高考模拟 .创新题组1.2.。