北师大版数学必修二课件-第一章 立体几何初步 8

合集下载

北师大版必修2高中数学第一章《立体几何初步》ppt章末归纳提升课件

北师大版必修2高中数学第一章《立体几何初步》ppt章末归纳提升课件
图 1-4
【证明】 ∵E,F分别是B1B和D1D的中点,∴D1F綊BE, ∴BED1F是平行四边形, ∴D1E∥BF, 又∵D1 E 平面BGF,BF 平面BGF, ∴D1E∥平面BGF. ∵FG是△DAD1的中位线, ∴FG∥AD1, 又AD1 平面BGF,FG 平面BGF, ∴AD1∥平面BGF. 又∵AD1∩D1E=D1, ∴平面AD1E∥平面BGF.
如图1-5所示,在正三棱柱ABC-A1B1C1中, AB=3,AA1=4,M为AA1中点,P是BC上一点,且由P沿棱 柱侧面过棱CC1到M的最短距离为 29 ,设这条最短路线与 CC1的交点为N.求:
图1-5 (1)该三棱柱的侧面展开图的对角线长; (2)PC与NC的长.
【思路点拨】 借助于侧面展开图计算最短路线问题. 【规范解答】 (1)三棱柱ABC-A1B1C1侧面展开图是一 个长为9,宽为4的矩形,其对角线长为 92+42= 97. (2)如图,将侧面BB1C1C绕CC1旋转120°使其与侧面 AA1C1C在同一平面上,点P运动到点P1的位置,连接MP1, 则MP1就是由点P沿棱柱侧面经过棱CC1到点M的最短路线.
一个圆锥底面半径为R,高为 3 R,求此圆锥 的内接正四棱柱表面积的最大值.
【思路点拨】 画出其轴截面,转化为平面问题.
【规范解答】
设正四棱柱高为h,底面正方形边长为a,则DE=
2 2 a.
∵△SDE∽△SAO,∴DAOE=SSOE .
∵AO=R,SO=
2
3 R,∴
2a = R
3R-h, 3R
∴h=
几何体的结构、表面积与体积
准确理解几何体的定义,熟练掌握直观图与三视图的画 法,能更好地把握几何体的特征.三视图是几何体的平面表 示形式,常与几何体的结构、表面积与体积结合命题,是高 考命题的热点,解决此类问题的关键是利用三视图获取表面 积、体积公式中所涉及的基本量的有关信息,进而解决问题.

2016-2017学年高中数学 第一章立体几何初步 1.1.2 简单多面体课件 北师大版必修2

2016-2017学年高中数学 第一章立体几何初步 1.1.2 简单多面体课件 北师大版必修2

探究一
探究二
探究三
探究四
思想方法
解:(1)错误.棱锥的侧面一定是三角形,可以是等腰三角形,也可以 是正三角形,例如棱长均相等的正三棱锥的各个面都是正三角形.
(2)正确.在三棱锥中,共有4个面,每一个面均可作为底面,每一个 顶点均可作为棱锥的顶点.
(3)错误.只有当棱锥被与其底面平行的平面所截时,才能截得一 个棱锥和一个棱台.
4.棱台 (1)棱台的定义:用一个平行于棱锥底面的平面去截棱锥,底面与截 面之间的部分叫作棱台.原棱锥的底面和截面叫作棱台的下底面和 上底面,其他各面叫作棱台的侧面,相邻侧面的公共边叫作棱台的 侧棱.如图所示.
(2)表示:用表示底面各顶点的字母表示棱台.如上图中的棱台可记 作:四棱台ABCD-A'B'C'D'. (3)分类:按底面多边形的边数分为三棱台、四棱台、五棱台…… (4)特殊的棱台:用正棱锥截得的棱台叫作正棱台.正棱台的侧面是 全等的等腰梯形.
锥的顶点,于是棱台的侧棱所在的直线均相交于同一点,故命题④
为真命题.故选A. 答案:A
探究一
探究二
探究三
探究四
思想方法
探究一
探究二
探究三
探究四
思想方法
变式训练1 下列说法中正确的是
.
①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4
个顶点;
②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
其中假命题的个数是( )
A.0 B.1 C.2 D.3
探究一
探究二
探究三
探究四
思想方法
解析:解答本题可先根据棱柱、棱锥、棱台的结构特征进行详细
分析,再结合已知的各个命题具体条件进行具体分析.显然命题① ②③均是真命题.对于命题④,棱台的侧棱所在的直线就是截得原

北师大版高中数学必修2第一章《立体几何初步》简单几何体

北师大版高中数学必修2第一章《立体几何初步》简单几何体

9
问题4: 如图所示:把矩形 问题 如图所示 把矩形ABCD绕着其一边 绕着其一边 把矩形 AB所在的直线在空间中旋转一周,则矩形的 所在的直线在空间中旋转一周, 所在的直线在空间中旋转一周 其它三条边在旋转的过程中所形成的曲面围 成的几何体会是什么呢? 成的几何体会是什么呢?
C
B
A
D
10
四、圆柱的结构特征
27
2、棱柱的分类:棱柱的底面可以是三角形、四 、棱柱的分类:棱柱的底面可以是三角形、 边形、五边形、 边形、五边形、 …… 我们把棱柱按照底面多边 形边数的多少,可分三棱柱、四棱柱、 形边数的多少,可分三棱柱、四棱柱、五棱 柱、……
三棱柱 四棱柱
五棱柱
28
3、棱柱的表示法(下图 、棱柱的表示法 下图 下图)
相邻侧面的公共边叫做棱柱的侧棱。 相邻侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点。 侧面与底的公共顶点叫做棱柱的顶点。
24
底面
侧面 侧棱 顶点
底 面
25
观察下列几何体并思考:棱柱(1), 一、 观察下列几何体并思考:棱柱(1), (3)与棱柱(2)的不同之处? 与棱柱(2)的不同之处? 的不同之处
1、定义:以矩形的一边所在直线为 、定义: O1 旋转轴,把它在空间中旋转一周后, 旋转轴,把它在空间中旋转一周后,其余 三边旋转形成的曲面所围成的几何体叫做 圆柱。 圆柱。
矩形
O
圆柱的轴。 (1)旋转轴叫做圆柱的轴。 )旋转轴叫做圆柱的轴 (2) 垂直于轴的边旋转而成 ) 的圆面叫做圆柱的底面 圆柱的底面。 的圆面叫做圆柱的底面。 (3)由平行于轴的边旋转而 ) 成的曲面叫做圆柱的侧面 圆柱的侧面。 成的曲面叫做圆柱的侧面。 (4)无论旋转到什么位置不 ) 11 垂直于轴的边都叫做圆柱的母线 圆柱的母线。 垂直于轴的边都叫做圆柱的母线。

人教版高一数学必修2(B版)全册完整课件

人教版高一数学必修2(B版)全册完整课件

1.1.6 棱柱、棱锥、棱台和球的表面积
实习作业
1.2.2 空间中的平行关系
本章小结
ห้องสมุดไป่ตู้
第二章 平面解析几何初步
2.1.2 平面直角坐标系中的基本公式
2.2.2 直线方程的几种形式
2.2.4 点到直线的距离
2.3.2 圆的一般方程
2.3.4 圆与圆的位置关系
2.4.2 空间两点的距离公式
阅读与欣赏
笛卡儿
人教版高一数学必修2(B版)全册完 整课件
1.1.6 棱柱、棱锥、棱台和球 的表面积
人教版高一数学必修2(B版)全册完 整课件
1.1.7 柱、锥、台和球的体积
人教版高一数学必修2(B版)全册完 整课件
后记
第一章 立体几何初步
人教版高一数学必修2(B版)全册完 整课件
1.1 空间几何体
1.1.1
构成空间几何体的基本元素
人教版高一数学必修2(B版)全册完 整课件
1.1.2 棱柱、棱锥和棱台的结 构特征
人教版高一数学必修2(B版)全册完 整课件
人教版高一数学必修2(B版)全册 完整课件目录
0002页 0040页 0102页 0185页 0223页 0295页 0343页 0365页 0411页 0460页 0490页 0520页 0548页 0570页 0601页 0603页
第一章 立体几何初步
1.1.2 棱柱、棱锥和棱台的结构特征
1.1.4 投影与直观图
1.1.3 圆柱、圆锥、圆台和球
人教版高一数学必修2(B版)全册完 整课件
1.1.4 投影与直观图
人教版高一数学必修2(B版)全册完 整课件
1.1.5 三视图

第1章 §2 直观图-2020秋北师大版高中数学必修二课件(共55张PPT)

第1章 §2 直观图-2020秋北师大版高中数学必修二课件(共55张PPT)

小 结
·


新 你发现直观图的面积与原图形面积有何关系?
















返 首 页
·
32
·









提示:由题意,易知在△ABC 中,AC⊥AB,且 AC=6,AB=3, 提
·



∴S△ABC=12×6×3=9.



作 探 究

S△A′B′C′=12×3×(3sin
45°)=9 4 2,∴S△A′B′C′=


OB=2O′B′=2 2,OC=O′C′=AB=
·



知 A′B′=1,

·
·

且 AB∥OC,∠BOC=90°.
BC = B′C′ = 1 +
2,在
y
轴上截取线段
BA =
课 堂


习 2B′A′=2.
·



新 知
过 A 作 AD∥BC,截取 AD=A′D′=1.
素 养
·
·

连接 CD,则四边形 ABCD 就是四边形 A′B′C′D′的平面图 课


探 形.



释 疑
四边形 ABCD 为直角梯形,上底 AD=1,下底 BC=1+







2020年高中数学第一章立体几何初步77.1柱、锥、台的侧面展开与面积课件北师大版必修2

2020年高中数学第一章立体几何初步77.1柱、锥、台的侧面展开与面积课件北师大版必修2

正四棱台 ABCD-A1B1C1D1 的两底面的边 长分别是 4 cm 和 16 cm,高是 12 cm.求这个棱台的侧面积.
解:如图,由题意得 O1M1=12×4=2 cm,
OM=12×16=8 cm,OO1=12 cm.
过点 M1 作 M1N⊥OM 交 OM 于 N 点. 在 Rt△M1NM 中, M1M= M1N2+NM2= 122+8-22=6 5 cm. 即该正四棱台的斜高 h′=6 5 cm.
答案:A
知识点三 组合体的表面积 4.如果一个几何体的三视图如图所示(单位长度:cm),则此 几何体的表面积是( ) A.(20+4 2) cm2 B.21 cm2 C.(24+4 2) cm2 D.24 cm2
解析:此几何体为四棱锥与正方体的组合体.
∴S=2×2×5+4×12×2×
2=20+4
【解】 如图,设正三棱锥底面边长为 a,斜高为 h′,过 O 作 OE⊥AB 于 E,连接 SE,则 SE⊥AB,即 SE=h′.
∵S 侧=2S 底, ∴12·3a·h′=2·43a2,a= 3h′. ∵SO⊥平面 ABC 且 OE 平面 ABC,
∴SO⊥OE,则 OS2+OE2=SE2,
∴32+13× 23a2=h′2,
∴该棱台的侧面积
S


1 2
(c

c′)h′

1 2
×(16

64)×6
5=
240 5 cm2.
已知一个圆锥的底面半径为 R,高为 H,在其中有 一个高为 x 的内接圆柱.
(1)求圆柱的侧面积; (2)x 为何值时,圆柱的侧面积最大?
【解】 (1)圆锥及圆柱的轴截面如图所示,设所求圆柱底面半 径为 r.由截面图可得线段成比例,即Rr =H-H x,

2014届北师大版高中数学必修二(高一)课件 第一章§1.1

2014届北师大版高中数学必修二(高一)课件 第一章§1.1

圆锥;若绕其斜边所在的直线旋转得到的是两个同底面圆锥
构成的一个几何体,如图(1).B项错误,没有说明这两个平行 截面的位置关系,当这两个平行截面与底面平行时正确,其他
情况则结论是错误的,如图 (2) . D 项错误,通过圆台侧面上
一点,只有一条母线,如图(4).C项正确,如图(3).
栏目 导引
第一章
由圆柱、圆锥、圆台定义可知,三者分别为矩形、
三角形、直角梯形旋转而得,所以其上、下底面都是圆面, 故正确; B 圆台的母线是直角梯形不垂直于旋转轴的边,不
是上、下底面圆周上任意两点的连线,故错误; C 球的截面
一定是圆,用平行于圆柱底面的面截圆柱得到的截面是圆, 其他平面截得的截面不是圆,故错误; D 以直角三角形的一 条直角边所在的直线为轴旋转,其余各边旋转而成的旋转面 形成的曲面所围成的几何体叫作圆锥,以斜边为轴旋转形成
第一章
立体几何初步
第一章 立体几何初步
栏目 导引
第一章
立体几何初步
§1 简单几何体
1.1 简单旋转体栏目 导引Fra bibliotek第一章
立体几何初步
学习导航
学习目标
理解
实例 ― ― → 旋转体
了解
― ― → 圆柱、圆锥、圆台和球的结构特征 重点难点 重点:圆柱、圆锥、圆台和球的结构特征.
难点:多面体和旋转体概念的理解及几何体形状的判断.
栏目 导引
第一章
立体几何初步
想一想 2.“ 直角三角形绕其一边旋转一周所形成的几何体必是圆
锥”,这种说法正确吗?
提示:不正确,当以斜边所在直线为轴旋转时,其余各边 旋转形成的曲面所围成的几何体不是圆锥.如图所示,是
由两个同底圆锥组成的几何体.

北师大版2018-2019学年高中数学必修2全册习题含解析

北师大版2018-2019学年高中数学必修2全册习题含解析

北师大版高中数学必修二全册同步习题含解析目录第1章立体几何初步 1.1.1习题第1章立体几何初步 1.1.2习题第1章立体几何初步 1.2习题第1章立体几何初步 1.3.1习题第1章立体几何初步 1.3.2习题第1章立体几何初步 1.4.1习题第1章立体几何初步 1.4.2习题第1章立体几何初步 1.5.1.1习题第1章立体几何初步 1.5.1.2习题第1章立体几何初步 1.5.2习题第1章立体几何初步 1.6.1.1习题第1章立体几何初步 1.6.1.2习题第1章立体几何初步 1.6.2习题第1章立体几何初步 1.7.1习题第1章立体几何初步 1.7.2习题第1章立体几何初步 1.7.3习题第1章立体几何初步习题课习题第1章立体几何初步检测习题第2章解析几何初步 2.1.1习题第2章解析几何初步 2.1.2.1习题第2章解析几何初步 2.1.2.2习题第2章解析几何初步 2.1.3习题第2章解析几何初步 2.1.4习题第2章解析几何初步 2.1.5.1习题第2章解析几何初步 2.1.5.2习题第2章解析几何初步 2.2.1习题第2章解析几何初步 2.2.2习题第2章解析几何初步 2.2.3.1习题第2章解析几何初步 2.2.3.2习题第2章解析几何初步 2.3.1-2.3.2习题第2章解析几何初步 2.3.3习题第2章解析几何初步检测习题模块综合检测习题北师大版2018-2019学年高中数学必修2习题01第一章立体几何初步§1简单几何体1.1简单旋转体1.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心答案:D2.下面左边的几何体是由选项中的哪个图形旋转得到的()解析:选项B中的图形旋转后为两个共底面的圆锥;选项C中的图形旋转后为一个圆柱与一个圆锥的组合体;选项D中的图形旋转后为两个圆锥与一个圆柱的组合体.答案:A3.用一个平面去截一个几何体,得到的截面一定是圆面,则这个几何体是()A.圆锥B.圆柱C.球D.圆台答案:C4.AB为圆柱下底面内任一不过圆心的弦,过AB和上底面圆心作圆柱的一截面,则这个截面是()A.三角形B.矩形C.梯形D.以上都不对解析:如图所示,由于圆柱的上下底面相互平行,故过AB和上底面圆心作圆柱的一截面与上底面的交线CD 必过上底面圆心,且CD∥AB,在圆柱的侧面上,连接A,C(或B,D)两点的线是曲线,不可能是直线.故这个截面是有两条边平行、另两边是曲线的曲边四边形.故选D.答案:D5.以钝角三角形的较短边所在的直线为轴,其他两边旋转一周所得的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:如图所示.旋转一周后其他两边形成的几何体为在圆锥AO的底部挖去一个同底的圆锥BO.答案:D6.点O1为圆锥高上靠近顶点的一个三等分点,过O1与底面平行的截面面积是底面面积的()A.13B.23C.14D.19解析:如图所示,由题意知SO1∶SO=1∶3,∴O1B∶OA=1∶3,∴S☉O1∶S☉O=1∶9,故选D.答案:D7.下列说法中错误的是.①过圆锥顶点的截面是等腰三角形;②过圆台上底面中心的截面是等腰梯形;③圆柱的轴截面是过母线的截面中面积最大的一个.答案:②8.若过轴的截面是直角三角形的圆锥的底面半径为r,则其轴截面的面积为.解析:由圆锥的结构特征,可知若过轴的截面为直角三角形,则为等腰直角三角形,其斜边上的高为r,所以S=12×2r2=r2.答案:r29.已知圆锥的母线与旋转轴所成的角为30°,母线的长为2,则其底面面积为.解析:如图所示,过圆锥的旋转轴作截面ABC,设圆锥的底面半径为r,底面圆心为O.∵△ABC为等腰三角形,∴△ABO为直角三角形.又∠BAO=30°,∴BO=r=1AB=2.∴底面圆O的面积为S=πr2=π2.答案:π10.把一个圆锥截成圆台,已知圆台的上、下底面的半径比是1∶4,母线长是10 cm,求这个圆锥的母线长.分析:处理有关旋转体的问题时,一般要作出其过轴的截面,在这个截面图形中去寻找各元素之间的关系.解:设圆锥的母线长为y cm,圆台上、下底面的半径分别为x cm,4x cm.作圆锥过轴的截面如图所示.在Rt△SOA中,O'A'∥OA,则SA'SA =O'A'OA,即y-10y =x4x,解得y=403.故圆锥的母线长为40cm.11.圆锥的底面半径为r,母线长是底面半径的3倍,在底面圆周上有一点A,求一个动点P自点A出发在侧面上绕一周回到点A的最短路程.解:沿圆锥的母线SA将侧面展开,如图所示.则线段AA1就是所求的最短路程.∵弧A1A的长为2πr,SA=3r,设弧A1A所对的圆心角为α,∴απ·3r=2πr,∴α=120°.∴AA1=SA·cos30°×2=3r×3×2=33r,即所求最短路程是33r.1.2简单多面体1.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行解析:正方体可以有六个面平行,故选项A错误;长方体并不是所有的棱都相等,故选项B错误;三棱柱的底面是三角形,故选项C错误;由棱柱的概念知,两底面平行,侧棱也互相平行,故选项D正确.答案:D2.一个正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥解析:由于正六边形的中心到顶点的距离与边长都相等,故正六棱锥的侧棱长必大于底面边长.答案:D3.棱台不一定具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析:由棱台的定义可知,棱台是用平行于棱锥底面的平面去截棱锥而得到的,所以A,B,D选项都成立,只有选项C不一定成立.答案:C4.下列图形中,不是三棱柱的展开图的是()解析:根据三棱柱的结构特征知,A,B,D中的展开图都可还原为三棱柱,但是C中展开图还原后的几何体没有下底面,故不是三棱柱的展开图.答案:C5.下列说法正确的个数为()①存在斜四棱柱,其底面为正方形;②存在棱锥,其所有面均为直角三角形;③任意的圆锥都存在两条母线互相垂直;④矩形绕任意一条直线旋转都可以形成圆柱.A.1B.2C.3D.4解析:①存在斜四棱柱,其底面为正方形,正确.②正确.如图所示.③不正确,圆锥轴截面的顶角小于90°时就不存在.④不正确,矩形绕其对角线所在直线旋转,不能围成圆柱.故答案为B.答案:B6.用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面的面积之比为1∶4,截去的棱锥的高是3 cm,则棱台的高是()A.12 cmB.9 cmC.6 cmD.3 cm解析:棱台的上、下底面的面积之比为1∶4,则截去的棱锥的高与原棱锥的高的比为1∶2,棱台的高是3cm.答案:D7.有下列四个结论:①各侧面是全等的等腰三角形的四棱锥是正四棱锥;②底面是正多边形的棱锥是正棱锥;③三棱锥的所有面可能都是直角三角形;④四棱锥中侧面最多有四个直角三角形.其中正确的有(填正确结论的序号).答案:③④8.如图所示,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是.解析:如图所示,假设以AB边固定进行倾斜,则几何体BB2C2C-AA2D2D一定为棱柱.答案:棱柱9.在侧棱长为23的正三棱锥P−ABC中,∠APB=40°,E,F分别是PB,PC上的点,过点A,E,F作截面AEF,则△AEF周长的最小值是.解析:将正三棱锥的三个侧面展开,如图所示.则当E,F为AA1与PB,PC的交点时,△AEF的周长最小,最小值为2AP·cos30°=2×23×3=6.答案:610.把右图中的三棱台ABC-A1B1C1分成三个三棱锥.解:如图所示,分别连接A1B,A1C,BC1,则将三棱台分成了三个三棱锥,即三棱锥A-A1BC,B1-A1BC1,C-A1BC1.(本题答案不唯一)11.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥.(2)四个面都是等边三角形的三棱锥.(3)三棱柱.解:(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).★12.如图所示,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由点P沿棱柱侧面经过棱CC1到M的最短路线的长为设这条最短路线与CC1的交点为N.求:(1)该三棱柱的侧面展开图的对角线的长;(2)求PC和NC的长.解:(1)正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为92+42=97.(2)如图所示,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,则点P旋转到点P1的位置,连接MP1交CC1于点N,则MP1的长等于由点P沿棱柱侧面经过棱CC1到点M的最短路线的长.设PC=x,则P1C=x.在Rt△MAP1中,由勾股定理,得(3+x)2+22=29,解得x=2,所以PC=P1C=2,又NCMA =P1CP1A=25,所以NC=45.§2直观图1.关于用斜二测画法所得的直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:根据斜二测画法的规则知,正方形的直观图为平行四边形.答案:B2.水平放置的△ABC,有一条边在水平线上,它的斜二测直观图是正三角形A'B'C',则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形解析:根据斜二测画法的规则,可知△ABC中有一个角是钝角,所以△ABC是钝角三角形.答案:C3.如图所示为一平面图形的直观图,则此平面图形可能是()答案:C4.对于一条边在x轴上的三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.2倍B.2C.2D.1解析:由于平行于y轴的线段其平行性不变,长度变为原来的一半,又直观图中∠x'O'y'=45°,设原三角形的面积为S,其直观图的面积为S',则S'=1×2S=2S.答案:B5.一个水平放置的三角形的直观图是等腰直角三角形A'B'O',如图所示,若O'B'=1,那么原△ABO的面积是()A.12B.22C.2D.22解析:由斜二测画法,可知原三角形为直角三角形,且∠AOB=90°,OB=1,OA=2O'A'=22,∴S△AOB=12×1×22= 2.故选C.答案:C6.已知△A'B'C'为水平放置的△ABC的直观图,如图所示,则在△ABC的三边及中线AD中,最长的线段是()A.ABB.ADC.BCD.AC解析:由斜二测画法,可知原图形为直角三角形.AC为斜边,D为BC的中点,故AC>AD,故最长线段为AC.答案:D7.一个平面图形的斜二测直观图是腰长为2的等腰直角三角形,如图,则其平面图形的面积为.答案:48.已知正三角形ABC的边长为a,则水平放置的△ABC的直观图△A'B'C'的面积为.解析:图①、图②分别为实际图形和直观图.由图可知A'B'=AB=a,O'C'=1OC=3a,在图②中作C'D'⊥A'B'于点D',则C'D'=2O′C′=6a.所以S△A'B'C'=12A′B′·C'D'=12×a×68a=616a2.答案:616a29.在等腰梯形ABCD中,上底边CD=1,AD=CB=2,下底边AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为.解析:等腰梯形ABCD的高为1,且直观图A'B'C'D'仍为梯形,其高为1sin45°=2,故面积为1×(1+3)×2= 2.答案:2210.画出如图所示放置的直角三角形的直观图.解:画法:(1)画x'轴和y'轴,使∠x'O'y'=45°(如图②所示);(2)在原图中作BD⊥x轴,垂足为D(如图①所示);(3)在x'轴上截取O'A'=OA,O'D'=OD,在y'轴上截取O'C'=12OC,过D'作B'D'∥y'轴,使D'B'=1BD;(4)连线成图(擦去辅助线)(如图③所示).11.用斜二测画法得到一水平放置的Rt△ABC,AC=1,∠ABC=30°,如图所示,试求原三角形的面积.解:如图所示,作AD⊥BC于点D,令x'轴与y'轴的交点为E,则DE=AD,在Rt△ABC中,由∠ABC=30°,AC=1,可知BC=2,AB= 3.由AD⊥BC,AD=DE,可知AD=32,AE=62,由斜二测画法可知,原三角形A'B'C'中,B'C'=BC=2,A'E'=2AE=6,且A'E'⊥B'C',所以S△A'B'C'=1B′C′·A'E'=1×2×6= 6.★12.画水平放置的圆锥的直观图.分析用斜二测画法画水平放置的圆锥的直观图,由于圆锥底面可以看作是水平放置的,因此,只需先画轴,再画底面和高即可.解:(1)画轴,如图所示,画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°;(2)画圆锥的底面,画出底面圆的直观图,与x轴交于A,B两点;(3)画圆锥的顶点,在Oz上截取点P,使得PO等于圆锥的高;(4)连线成图,连接P A,PB,并加以整理(擦去辅助线,将被遮挡的部分改为虚线),得圆锥的直观图.§3三视图3.1简单组合体的三视图1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:截去的平面在俯视图中看不到,故用虚线,因此选B.答案:B2.下列各几何体的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④解析:①中正方体的三视图均相同;②中圆锥的主视图和左视图相同;③中三棱台的三视图各不相同;④中正四棱锥的主视图和左视图相同.答案:D3.某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能是()解析:D选项的主视图为,故不可能是D选项.答案:D4.如图所示,若△A'B'C'为正三角形,与底面不平行,且CC'>BB'>AA',则多面体的主视图为()解析:因为△A'B'C'为正三角形,面A'B'BA向前,所以主视图不可能是A,B,C三个选项,只能是D.答案:D5.“牟台方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线.当其主视图和左视图完全相同时,它的俯视图可能是()答案:B6.如图所示,画出四面体AB1CD1三视图中的主视图,若以面AA1D1D为投影面,则得到的主视图为()解析:显然AB1,AC,B1D1,CD1分别投影得到主视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.答案:A★7.如图所示,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,若用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()设过点A,E,C1的截面与棱DD1相交于点F,且F是棱DD1的中点,该正方体截去上半部分后,剩余几何体如图所示,则它的左视图应选C.答案:C8.如图所示,图①②③是图④表示的几何体的三视图,其中图①是,图②是,图③是(填写视图名称).解析:由三视图可知,①为主视图,②为左视图,③为俯视图.答案:主视图左视图俯视图9.如图(a)所示,在正方体ABCD-A1B1C1D1中,P为正方体的中心,则△P AC在该正方体各个面上的射影可能是图(b)中的(把可能的序号都填上).图(a)图(b)解析:要考虑△P AC在该正方体各个面上的射影,在上、下两个面上的射影是①,在前后左右四个面上的射影是④.答案:①④10.(1)画出如图①所示组合体的三视图;(2)图②所示的是一个零件的直观图,试画出这个几何体的三视图.图①图②解(1)该组合体是由一个四棱柱和一个圆锥拼接而成,其三视图如图所示.(2)作出三视图如图所示.★11.如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm).试画出它的三视图.解这个几何体是由一个长方体挖去一个圆柱体构成的,三视图如图所示.3.2由三视图还原成实物图1.若一个几何体的主视图和左视图都是等腰梯形,俯视图是两个同心圆,则这个几何体可能是()A.圆柱B.圆台C.圆锥D.棱台答案:B2.某几何体的三视图如图所示,则该几何体是()A.棱台B.棱柱C.棱锥D.以上均不对解析:由相似比,可知几何体的侧棱相交于一点.答案:A3.如图所示是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,则该四棱锥的直观图是下列各图中的()解析:由俯视图排除B,C选项;由主视图、左视图可排除A选项,故选D.答案:D4.某几何体的三视图如图所示,则这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析:因为主视图和左视图为三角形,可知几何体为锥体.又俯视图为四边形,所以该几何体为四棱锥,故选B.答案:B5.如图所示,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.答案:B6.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4解析:由三视图画出直观图如图所示,判断这个几何体是底面边长为6,8,10的直角三角形,高为12的躺下的直=2,这就是做成的最大球的半径.三棱柱,直角三角形的内切圆的半径为r=6+8-102答案:B7.把边长为2的正方形ABCD沿对角线BD折起,连接AC,得到三棱锥C-ABD,其主视图、俯视图均为全等的等腰直角三角形(如图所示),其左视图的面积为.解析:如图所示,根据两个视图可以推知折起后∠CEA=90°,其侧视图是一个两直角边长为1的等腰直角三.角形,所以左视图的面积为12答案:18.用n个体积为1的正方体搭成一个几何体,其主视图、左视图都是如图所示的图形,则n的最大值与最小值之差是.解析:由主视图、左视图可知,正方体个数最少时,底层有3个小正方体,上面有2个,共5个;个数最多时,底层有9个小正方体,上面有2个,共11个.故n的最大值与最小值之差是6.答案:69.下图是一个几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.解由于俯视图中有一个圆和一个四边形,则该几何体是由旋转体和多面体构成的组合体,结合左视图和主视图,可知该几何体是由上面一个圆柱、下面一个四棱柱拼接成的组合体.该几何体的形状如图所示.★10.已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解由三视图可知其几何体是底面边长为2,高为3的正六棱锥,其直观图如图所示.§4空间图形的基本关系与公理第1课时平面性质1.两个平面重合的条件是()A.有四个公共点B.有无数个公共点C.有一条公共直线D.有两条相交公共直线解析:由两条相交直线确定一个平面知D选项正确.答案:D2.与“直线l上两点A,B在平面α内”含义不同的是()A.l⫋αB.直线l在平面α内C.直线l上只有这两个点在平面α内D.直线l上所有的点都在平面α内答案:C3.有下列说法:①梯形的四个顶点在同一平面内;②三条平行直线必共面;③有三个公共点的两个平面必重合.其中正确的个数是()A.0B.1C.2D.3解析:梯形是一个平面图形,所以其四个顶点在同一个平面内,故①正确;两条平行直线确定1个平面,三条平行直线确定1个或3个平面,故②错误;三个公共点可以同在两个相交平面的交线上,故③错误.答案:B4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⫋α;②a∩b=P,b⫋β⇒a⫋β;③a∥b,a⫋α,P∈b,P∈α⇒b⫋α;④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④答案:D5.三棱台ABC-A'B'C'的一条侧棱AA'所在直线与平面BCC'B'之间的关系是()A.相交B.平行C.直线在平面内D.平行或直线在平面内解析:棱台就是棱锥被一个平行于底面的平面截去一个棱锥得到的,所以延长棱台各侧棱可以恢复成棱锥的形状,由此可知三棱台的一条侧棱所在直线与其对面所在的平面相交.答案:A6.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,且C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线BCC.直线ABD.直线CD解析:由题意知,平面ABC与平面β有公共点C,根据公理3,这两平面必定相交,有且只有一条经过C的交线,由于两点确定一条直线,所以只要再找到两平面的另一个公共点即可.显然点D在直线AB上,从而它在平面ABC内,而点D又在直线l上,所以它又在平面β内,所以点D也是平面ABC与平面β的公共点.因此平面ABC 与平面β的交线是直线CD.答案:D7.已知点P在平面α外,点A,B,C在平面α内且不共线,A',B',C'分别在P A,PB,PC上,若A'B',B'C',A'C'与平面α分别交于D,E,F三点,则D,E,F三点()A.成钝角三角形B.成锐角三角形C.成直角三角形D.在一条直线上解析:本题考查三点关系,根据两平面公共点在其交线上,知D,E,F三点共线,故选D.答案:D8.在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么,正方体的过P,Q,R的截面图形是()A.三角形B.四边形C.五边形D.六边形解析:如图所示,作GR∥PQ交C1D1于G,延长QP与CB延长线交于M,连接MR交BB1于E,连接PE.同理延长PQ交CD延长线于点N,连接NG交DD1于F,连接QF.所以截面PQFGRE为六边形.故选D.答案:D9.四条线段首尾相接得到一个四边形,当且仅当它的两条对角线时,能得到一个平面图形.解析:由公理1,2知当两条对角线相交时为平面图形,当两条对角线不共面时为空间四边形.答案:相交10.一个平面内不共线的三点到另一个平面的距离相等且不为零,则这两个平面的位置关系是.解析:当三点在另一个平面同侧时,这两个平面平行,当三点不在另一个平面同侧时,这两个平面相交.答案:平行或相交11.过已知直线a外的一点P,与直线a上的四个点A,B,C,D分别画四条直线,求证:这四条直线在同一平面内.证明:如图所示,因为点P在直线a外,所以过直线a及点P可作一平面α,因为A,B,C,D均在a上,所以A,B,C,D均在α内,所以直线P A,PB,PC,PD上各有两个点在α内,由公理2可知,直线P A,PB,PC,PD均在平面α内,故这四条直线在同一平面内.12.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体下底面相交于直线l.试画出直线l的位置,并说明理由.解:如图所示,连接DM并延长,交D1A1的延长线于点P',连接NP',则直线NP'即为所求直线l.理由如下: 如图所示,连接DN,∵P'=DM∩D1A1,且DM⫋平面DMN,D1A1⫋平面A1B1C1D1,∴P'∈平面DMN∩平面A1B1C1D1.又N∈平面DMN∩平面A1B1C1D1,∴由公理3知,直线NP'为平面DMN与平面A1B1C1D1的交线.第2课时 异面直线所成的角1.若直线a ∥b ,b ∩c=A ,则直线a 与c 的位置关系是( ) A.异面 B.相交 C.平行 D.异面或相交答案:D2.在三棱锥A-BCD 中,E ,F ,G 分别是AB ,AC ,BD 的中点,如果AD 与BC 所成的角是60°,那么∠FEG 为( ) A .60° B .30°C .120°D .60°或120° 解析:异面直线AD 与BC 所成的角可能等于∠FEG ,也可能等于∠FEG 的补角.答案:D3.若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( ) A .l 1⊥l 4 B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定解析:因为l 2∥l 3,所以l 1⊥l 3,l 3⊥l 4.实质上就是l 1与l 4同垂直于一条直线,所以l 1⊥l 4,l 1∥l 4,l 1与l 4既不垂直也不平行都有可能成立,故l 1与l 4的位置关系不确定. 答案:D4.如图,在某个正方体的表面展开图中,l 1,l 2是两条面对角线,则在正方体中,l 1与l 2( ) A.互相平行 B.异面且互相垂直 C.异面且夹角为60° D.相交且夹角为60°解析:将表面展开图还原成正方体如图所示,则B ,C 两点重合.故l 1与l 2相交,连接AD ,△ABD 为正三角形,所以l 1与l 2的夹角为60°. 答案:D5.在三棱柱ABC-A 1B 1C 1中,若点E ,F 分别在AB ,AC 上,且AE=13AB ,AF=13AC ,则下列说法正确的是( ) A.EF ⊥BB 1 B.EF ∥A 1B 1 C.EF ∥B 1C 1D.EF ∥AA 1解析:∵AE=1AB ,AF=1AC ,∴EF ∥BC.又ABC-A1B1C1为棱柱,∴BC∥B1C1.∴EF∥B1C1.答案:C6.下列说法正确的是()A.空间中没有交点的两条直线是平行直线B.一条直线和两条平行直线中的一条相交,则它和另一条也相交C.空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥cD.分别在两个平面内的直线是平行直线解析:A,B选项中,两直线可能异面,D选项中两直线可能相交,也可能异面.答案:C7.如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对.解析:将图形还原成正方体,观察有AB与CD,AB与GH,EF与GH共3对异面直线.答案:38.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB,E,F分别是BD1和AD中点,则异面直线CD1,EF所成的角的大小为.答案:90°9.如图所示,在四棱锥C-ABED中,底面ABED是梯形.若AB∥DE,DE=2AB,且F是CD的中点,P是CE的中点,则AF与BP的位置关系是.解析:连接PF,∵P,F分别是CE,CD的中点,∴PF∥ED,且PF=1ED.2又AB∥ED,且DE=2AB,∴AB∥PF,且AB=PF,即四边形ABPF是平行四边形,∴BP∥AF.答案:平行10.如图所示,在三棱锥P-ABC中,D,E是PC上不重合的两点,F,H分别是P A,PB上的点,且与点P不重合.求证:EF和DH是异面直线.证明∵P A∩PC=P,∴P A,PC确定一个平面α.∵E∈PC,F∈P A,∴E∈α,F∈α,∴EF⫋α.∵D∈PC,∴D∈α,且D∉EF.又PB∩α=P,H∈PB,且点H与点P不重合,∴H∉α,DH∩α=D,且DH与EF不相交,于是直线EF和DH是异面直线.★11.如图所示,在空间四边形ABCD中,两条对边AB=CD=3,E,F分别是另外两条对边AD,BC上的点,且AE=BF=1,EF=5,求AB和CD所成的角的大小.解如图所示,过点E作EO∥AB,交BD于点O,连接OF,所以AEED =BOOD,所以BOOD=BFFC,所以OF∥CD.所以∠EOF或其补角是AB和CD所成的角.在△EOF中,OE=2AB=2,OF=1CD=1,又EF=5,所以EF2=OE2+OF2,所以∠EOF=90°.即异面直线AB和CD所成的角为90°.★12.在梯形ABCD中(如图①所示),AB∥CD,E,F分别为BC和AD的中点,将平面CDFE沿EF翻折起来,使CD到C'D'的位置,G,H分别为AD'和BC'的中点,得到如图②所示的立体图形.求证:四边形EFGH为平行四边形.。

北师大版高中数学必修2第一章《立体几何初步》直线与平面平行的性质

北师大版高中数学必修2第一章《立体几何初步》直线与平面平行的性质

下面我们来证 明这一结论. 明这一结论.
7
探研新知
已知:如图,a∥α, 已知:如图,a∥α, α∩β= a ⊂β,α∩β=b。 求证:a∥b。 求证:a∥b。 证明:∵α∩β= 证明:∵α∩β=b,∴b⊂α ∴b⊂ a∥α,∴a与 无公共点, ∵ a∥α,∴a与b无公共点, ∵a⊂ ∴a∥b。 ∵a⊂β,b⊂β,∴a∥b。 我们可以把这个结论作定理来用. 我们可以把这个结论作定理来用.
b a
b c a α γ d δ β
15
例题示范 有一块木料如图, 例2:有一块木料如图,已知棱BC平行于面 (1)要经过木料表面 A′C′(1)要经过木料表面A′B′C′D′ 内的 一点P和棱BC将木料锯开,应怎样画线?(2)所 BC将木料锯开 一点P和棱BC将木料锯开,应怎样画线?(2)所 画的线和面AC有什么关系? AC有什么关系 画的线和面AC有什么关系? :(1 过点P EF∥B’C , 解:(1)过点P作EF∥B C’, 分别交棱A B , D 于点 于点E 分别交棱A’B’,C’D’于点E, 连接BE CF, BE, F。连接BE,CF,则 D1 E EF,BE,CF就是应画的线 就是应画的线。 EF,BE,CF就是应画的线。
结合实例(教室内的有关例子)得出结论: 结合实例(教室内的有关例子)得出结论: 如果一条直线与平面平行, 如果一条直线与平面平行,这条直线不会 与这个平面内的所有直线都平行, 与这个平面内的所有直线都平行,但在这个 平面内却有无数条直线与这条直线平行。 平面内却有无数条直线与这条直线平行。
5
探研新知 探究2.如果一条直线与一个平面平行, 2.如果一条直线与一个平面平行 探究2.如果一条直线与一个平面平行,那么这条 直线与这个平面内的直线有哪些位置关系? 直线与这个平面内的直线有哪些位置关系?

2020年新课标高中数学北师大版必修2课件1.5.2

2020年新课标高中数学北师大版必修2课件1.5.2

求证:AP∥GH.


必 修
[思路分析] 欲证线线平行,往往先证线面平行,再由线面平行的性质定理
·
② 可证得线线平行.




返回导航
第一章 立体几何初步
[解析] 连接 AC 交 BD 于 O,连接 MO ∵四边形 ABCD 是平行四边形 ∴O 是 AC 的中点.又 M 是 PC 的中点,∴AP∥OM.
②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;
③过直线外一点,有且仅有一个平面和已知直线平行;
④如果直线l和平面α平行,那么过平面α内一点和直线l平行的直线在α内.
A.①②③④
B.①②③
C.②④
D.①②④

[解析] 由线面平行的性质定理知①④正确;由直线与平面平行的定义知②
学 必
正确.因为经过一点可作一直线与已知直线平行,而经过这条直线可作无数个
返回导航
·
第一章 立体几何初步
(2)符号表示 a__∥____α a______ β⇒a∥b. α∩β=b
(3)图形表示
数 学 必
(4)简记为:线面平行⇒线线平行.


·
北 师 大 版
返回导航
第一章 立体几何初步
2.平面与平面平行的性质定理
(1)定理内容 如果两个__平__行____平面同时与第三个平面相交,那么它们的__交__线____平行.


返回导航
第一章 立体几何初步
(2)若 AB、CD 不共面,如图,过 A 作 AE∥CD 交 α 于 E,取 AE 中点 P,连
接 MP、PN、BE、ED.
∵AE∥CD,∴AE、CD 确定平面 AEDC.

高中数学北师大版必修二课件:第一章 立体几何初步

高中数学北师大版必修二课件:第一章 立体几何初步

向量的加法运算:向量加法遵循平行四边形 法则如(x1, y1, z1) + (x2, y2, z2) = (x1+x2, y1+y2, z1+z2)
添加 标题
向量的减法运算:向量减法遵循平行四边形 法则如(x1, y1, z1) - (x2, y2, z2) = (x1x2, y1-y2, z1-z2)
向量积的坐标表示:两个向量的向 量积的坐标表示为两个向量坐标的 乘积
添加标题
添加标题
添加标题
添加标题
混合积:三个向量的混合积是一个 向量其坐标表示为三个向量坐标的 乘积
混合积的坐标表示:三个向量的混 合积的坐标表示为三个向量坐标的 乘积
总结与展望
本章内容的总结与回顾
本章主要介绍了立体几何的基本概念和性质包括点、线、面、体等。 学习了立体几何的度量方法如长度、角度、体积等。 掌握了立体几何的证明方法如平行、垂直、相似等。 学习了立体几何的应用如空间图形的绘制、空间物体的测量等。 展望未来我们将继续深入学习立体几何掌握更多的知识和技能为未来的学习和工作打下坚实的基础。
棱锥的表面积和体积
棱锥的定义: 由一个多边 形底面和若 干个侧面组 成的几何体
棱锥的表面 积:底面积+ 侧面积
棱锥的体积: 底面积×高 ÷3
棱锥的表面 积和体积的 计算公式: S=πr²+n(l ×h)V=πr²h /3
棱锥的表面 积和体积的 应用:建筑、 工程等领域
球的表面积和体积
球的表面积:4πr^2 球的体积:4/3πr^3 球的表面积和体积公式推导 球的表面积和体积在实际生活中的应用
几何性质:立体几何具有空间位置、 形状、大小等性质平面几何具有位 置、形状等性质

北师大版高中数学必修2课件1.3简单组合体的三视图课件(北师大版)

北师大版高中数学必修2课件1.3简单组合体的三视图课件(北师大版)

平行投影
把在一束平行光线照射下形成的投影,叫平行投影
投影线平行
投影法分类 投影法
中心投影法 平行投影法 正投影 斜投影
一、三视图相关概念
视图
正投影
从上面看
主视图
正面
主视图 高 长
左视图 宽 宽
从左面看
俯视图
从正面看
你能总结出三视图的概念吗
三视图概念:
将空间图形分别从正面,左面和上面向三个两两 垂直的平面作正投影,然后把这三个投影按一定的布
作业
1.预习下一节“三视图的还原” 2.课本P22 习题1.2 A组 1、2
4.检查。
我相信你一定能画 出这个复杂几何体 的三视图!
巩固提高
10 6 12 8
组合体的三视图
归纳总结
1.三视图 主视图——从正面看到的图 左视图——从左面看到的图
俯视图——从上面看到的图
2.画物体的三视图时,要符合如下原则: 位置: 主视图 左视图 俯视图 大小:长对正,高平齐,宽相等。
北京师范大学出版社 | 必修二
第一章 · 立体几何初步
简单组合体的三视图
横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中。 ——苏轼
新课导入
中心投影
把光由一点向外散射形成的投影,叫做中心投影
投影线交于一点,随着 物体距离光源(屏幕) 的远近,形成的投影大 小不同,相似图形。
局放在一个平面内,这样构成的图形叫做空间图形的
三视图。
三视图的形成及其投影规则(1)
三视图的形成及其投影规则(2)
二、三视图的作图规则 主—俯:长对正 主—左:高平齐 左—俯:宽相等
主 视 图 左视图
俯视图

北师大版高中数学必修2第一章《立体几何初步》空间直线与直线的位置关系

北师大版高中数学必修2第一章《立体几何初步》空间直线与直线的位置关系
12
知识探究( ):等角定理 知识探究(三):等角定理
思考1:在平面上, 思考1:在平面上,如果一个角的两边与 1:在平面上 另一个角的两边分别平行, 另一个角的两边分别平行,那么这两个 角的大小有什么关系? 角的大小有什么关系?
13
思考2: 如图,四棱柱ABCD--A′B′C′D′ ABCD-思考2: 如图,四棱柱ABCD--A′B′C′D′
北师大版高中数学必修2第一 北师大版高中数学必修 第一 章立体几何初步
1
法门高中姚连省制作
一、教学目标 1、知识与技能:( )了解空间中两条直线的位置关系; :(1)了解空间中两条直线的位置关系; 、知识与技能:( (2)理解异面直线的概念、画法,培养学生的空间想象能 )理解异面直线的概念、画法, ;(3)理解并掌握公理4;( ;(4)理解并掌握等角定理; 力;( )理解并掌握公理 ;( )理解并掌握等角定理; (5)异面直线所成角的定义、范围及应用。 )异面直线所成角的定义、范围及应用。 2、过程与方法:( )师生的共同讨论与讲授法相结合; :(1)师生的共同讨论与讲授法相结合; 、过程与方法:( (2)让学生在学习过程不断归纳整理所学知识。 )让学生在学习过程不断归纳整理所学知识。 3、情感与价值: 3、情感与价值:让学生感受到掌握空间两直线关系的必要 提高学生的学习兴趣。 性,提高学生的学习兴趣。 教学重点、 二、教学重点、难点 重点: 、异面直线的概念; 、公理4及等角定理 及等角定理。 重点:1、异面直线的概念;2、公理 及等角定理。 难点:异面直线所成角的计算。 难点:异面直线所成角的计算。 三、学法与教法 1、学法:学生通过阅读教材、思考与教师交流、概括,从 、学法:学生通过阅读教材、思考与教师交流、概括, 而较好地完成本节课的教学目标。 、教法: 而较好地完成本节课的教学目标。2、教法:探究交流法 四、教学过程

2020_2021学年高中数学第一章立体几何初步1.7.2.2棱台与圆台的体积课件北师大版必修2

2020_2021学年高中数学第一章立体几何初步1.7.2.2棱台与圆台的体积课件北师大版必修2
【思路探究】 在求解公式中的未知量时,应注意运用平面 几何的有关知识.
【解】 设上、下底面半径分别为 r,R,过点 A1 作 A1D⊥ AB 于点 D,则 A1D=3,∠BA1A=90°.∵∠A1AB=60°,
∴∠BA1D=60°,∴AD=taAn16D0°= 3,即 R-r= 3. 又∵BD=A1D·tan60°=3 3, ∴R+r=3 3,∴R=2 3,r= 3.又∵h=3, ∴圆台的体积 V 圆台=13πh(R2+Rr+r2) =13π×3×[(2 3)2+2 3× 3+( 3)2]=21π.
于是 6πl=20π,解得 l=130,
∴圆台高 h= l2-R-r2= 1090-4=83,
∴圆台体积
V=
1 3
π·h·(R2
+r2

Rr)=13
π×
8 3
×(16

4

8)

224π 9.
类型三 实际应用问题 【例 3】 降雨量是指水平地面上单位面积降落雨水的深 度,今用上口直径为 32 cm,底面直径为 24 cm,深为 35 cm 的 水桶接收雨水,如果积水达到桶深的14处,则降雨量是多少毫米?
第一章
立体几何初步
§7 简单几何体的再认识
7.2 柱、锥、台的体积
第2课时 棱台与圆台的体积
01 预习篇
02课堂篇
03提高篇
04 巩固篇
课时作业
知识点 棱台和圆台的体积
[填一填] 1 台体(棱台和圆台)的体积公式:V 台体=3(S
上+S
下+
S上·S、下底面面积,h 为台体的高.特别
OE=12AB=10,∴O1O= E1E2-OE-O1E12=12, V 正四棱台=13×12×(102+202+10×20)=2 800(cm3). 故正四棱台的体积为 2 800 cm3.

北师大版高中数学必修二课件第一章《立体几何初步》平面

北师大版高中数学必修二课件第一章《立体几何初步》平面
14
思考3:经过任意三点都能确定一个平 面吗?由此可得什么结论?
公理2过不在一条直线上的三点,有且
只有一个平面.

B
.A .C
思考4:公理2可简述为“不共线的三点确 定一个平面”,它有什么理论作用?
15
知识探究(四):平面的基本性质3
思考1:如图,把三角板的一个角立在 课桌面上,三角板所在的平面与桌面 所在的平面是否只相交于一点B?为什 么?
思考2:将一条线段向两端无限伸展得到 的图形是什么?将课桌面、平静的水面、 田径场地面向四周无限伸展得到的图形 是什么?
5
思考3:直线是否有长短、粗细之分?平 面是否有大小、厚薄之别?
思考4:我们不可能把一条直线或一个平 面全部画在纸上,在作图时通常用一条 线段表示直线,你认为用一个什么图形 表示平面比较合适?
说明:为了表示和区分平面,我们可以 用适当的字母作为平面的名称,如
α
平面α
D
C
A
B
平面ABCD 或平面AC 或平面BD
9
思考7:直线和平面都可以看成点的集合. 那么“点P在直线l上”,“点A在平面α 内”,用集合符号可怎样表示?
P l, A
“点P在直线l外”,“点A在平面α 外” 用集合符号可怎样表示?
6
思考5:我们常常用平行四边形表示平 面,当平面水平放置时,平行四边形 的锐角通常画成45º,且横边长等于其 邻边长的2倍.下列平行四边形表示的 平面的大致位置如何?
7
思考6:当两个平面相交时,你认为下列 哪个图形的立体感强?你能指出其画法 要点吗?
(1)画出交线;(2)被遮挡部分画虚线.
8

19
(1)直线AC1在平面A1B1C1D1内; (2)设正方体上、下底面中心分别为O、

北师大版数学必修二:本章整合1ppt课件

北师大版数学必修二:本章整合1ppt课件
1
3
= × × × ×
3 2 3
3
2
1
3
× =
3
.
324
高考体验
知识网络
专题一
专题二
专题三
专题归纳
高考体验
专题四
1
2,一只
变式训练6如下图,在圆锥SO中,母线长为2,底面半径为
虫子从底面圆周上一点A出发沿圆锥外表爬行一周后又回到A点,
那么虫子所爬过的最短路程是多少?
解:如图,将圆锥的侧面沿母线SA展开成扇形,由条件易知扇形的
一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A,求:
(1)绳子的最短长度的平方f(x);
(2)绳子最短时,顶点到绳子的最短间隔;
(3)f(x)的最大值.
知识网络
专题一
专题二
专题三
专题归纳
高考体验
专题四
解:将圆锥的侧面沿SA展开在平面上,如图,那么该展开图为扇形,
且弧AA'的长度L就是☉O的周长,
所以L=2πr=2π.

π
所以∠ASA'= ×180°=90°.
(1)由题意知,绳长的最小值为展开图中线段AM的长度,
AM= 2 + 16(0≤x≤4),
所以f(x)=AM2=x2+16(0≤x≤4).
知识网络
专题一
专题二
专题三
专题归纳
专题四
(2)绳子最短时,在展开图中作SR⊥AM,垂足为R,
半圆锥和三棱锥的组合体,如下图,可知左视图为等腰三角形,且轮
廓线为实线,应选D.
答案:D
知识网络
专题一
专题二
专题三

专题归纳

2020-2021学年高中数学 第一章 立体几何初步 1.1 简单几何体 1.1.1 简单旋转体课件 北师大版必修2

2020-2021学年高中数学 第一章 立体几何初步 1.1 简单几何体 1.1.1 简单旋转体课件 北师大版必修2

所围成的几何体 侧面:不垂直于旋转
叫作圆柱
轴的边旋转而成的 ____曲__面_____;
名 称
定义
相关概念
圆 锥
以直角三角形的 __一__条__直__角__边___ 所在的直线为旋 转轴,其余各边 旋转而形成的曲 面所围成的几何 体叫作圆锥
高:在旋转轴上这 条边的长度; 底面:垂直于旋转 轴的边旋转而成的 ____圆__面_____; 侧面:不垂直于旋 转轴的边旋转而成 的__曲__面_______;

§1 简单几何体
1.1 简单旋转体
1.问题导航 (1)连接圆柱(圆台)两底面的圆心的连线与其底面有怎样的位 置关系? (2)有同学说:“直角三角形绕其一边所在的直线旋转一周所 形成的几何体是圆锥.”这种说法对吗? (3)圆台中,上底面半径r、下底面半径R、高h与母线l之间有 怎样的关系?
图形表示

定义
相关概念

以_直__角__梯__形__垂_直___ _于__底__边__的__腰___所
母线:无 论转到什
在的直线为旋转

么位置,
轴,其余各边旋

这条边都
转而形成的曲面
叫作侧面
所围成的几何体
的母线
叫作圆台
图形表示
1.判断正误.(正确的打“√”,错误的打“×”) (1)矩形绕其一边所在直线旋转一周而形成的曲面所围成的几何 体是圆柱.( √ ) (2)直角三角形绕其一边所在直线旋转一周而形成的曲面所围成 的几何体是圆锥.( × ) (3)直角梯形绕其腰所在直线旋转一周而形成的曲面所围成的几 何体是圆台.( × ) (4)圆以一条直径所在的直线为轴,旋转180°围成的几何体是 球.( √ )

2020年新课标高中数学北师大版必修2课件1.6.1

2020年新课标高中数学北师大版必修2课件1.6.1


学 必
(4)简记为:线线垂直⇒线面垂直


·
北 师 大 版
返回导航
第一章 立体几何初步
3.二面角及其平面角
(1)半平面的定义:一个平面内的__一__条__直__线____,把这个平面分成两部分,
其中的每一部分都叫作半平面.
(2)二面角的定义:从一条直线出发的_两__个__半__平__面__所__组__成__的_____图形,叫作
个平面互相垂直.
②符号表示

学 必 修 ②
aa____⊥________αβ⇒α⊥β.
·
北 师 大 版
返回导航
第一章 立体几何初步
③图形表示
④简记为:线面垂直⇒面面垂直.
特别提示:应用判定定理证明平面与平面垂直的关键是:在一个平面内找

学 必
一条直线垂直于另一个平面.


·
北 师 大 版
数 证得线面垂直,从而根据线面垂直的定义得出线线垂直,因此证明过程通常是

必 修
反复利用线面垂直的定义及线面垂直判定定理的过程.

·
北 师 大 版
返回导航
第一章 立体几何初步
〔跟踪练习2〕 已知四棱锥P-ABCD的底面是菱形,且∠ABC=60°, PA=PC=2,PB=PD.若O是AC与BD的交点,求证:PO⊥平 面ABCD.
与一平面不垂直,但该直线与无数条直线中有一条垂直即可,显然这是很容易
做到的,故(2)错误;(3)若平面的垂线与这个平面不相交,则该垂线在平面内或
与平面平行,显然与线面垂直的定义不符合,所以(3)正确;(4)若直线与平面相
交时,在交点的两侧各取一点使到交点的距离一样,则此时这两个点到该平面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档