中考数学_微测试系列专题04_二次根式(含解析)新人教版

合集下载

人教版初中数学二次根式经典测试题含答案解析

人教版初中数学二次根式经典测试题含答案解析

人教版初中数学二次根式经典测试题含答案解析一、选择题1.式子12aa-+有意义,则实数a的取值范围是()A.a≥-1 B.a≤1且a≠-2 C.a≥1且a≠2D.a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】式子12aa-+有意义,则1-a≥0且a+2≠0,解得:a≤1且a≠-2.故选:B.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.下列计算正确的是()A.+=B.﹣=﹣1 C.×=6 D.÷=3【答案】D【解析】【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A、B与不能合并,所以A、B选项错误;C、原式= ×=,所以C选项错误;D、原式==3,所以D选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列各式计算正确的是()A22221081081082-==-=B.()()()()4949236-⨯-=-⨯-=-⨯-= C .11111154949236+=+=+= D .9255116164-=-=- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式=36=6,所以A 选项错误;B 、原式=49⨯=49⨯=2×3=6,所以B 选项错误;C 、原式=1336=13,所以C 选项错误;D 、原式255164=-=-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b -=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.5.12a=-,则a的取值范围是()A.12a≥B.12a>C.12a≤D.无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a,∴2a-1≤0,∴12a≤.故选:C.【点睛】此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质. 6.下列计算结果正确的是()A3B±6CD.3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A、原式=|-3|=3,正确;B、原式=6,错误;C、原式不能合并,错误;D、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.7.若代数式1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】∵代数式1x -在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.8.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.9.(的结果在( )之间.A .1和2B .2和3C .3和4D .4和5【答案】B【解析】【分析】 先根据二次根式的运算法则进行计算,再估算出24的范围,再求出答案即可. 【详解】()2232262242⨯-=-=-∵4245<< ∴22423<-<∴()2232⨯-的结果在2和3之间故选:B【点睛】本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.10.5x +有意义,那么x 的取值范围是( )A .x≥5B .x>-5C .x≥-5D .x≤-5【答案】C【解析】【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】 Q 式子5x +有意义,∴x+5≥0,解得x≥-5.故答案选:C.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.11.下列运算正确的是( )A .B .C .(a ﹣3)2=a 2﹣9D .(﹣2a 2)3=﹣6a 6 【答案】B【解析】【分析】各式计算得到结果,即可做出判断.【详解】解:A 、原式不能合并,不符合题意;B 、原式=,符合题意;C 、原式=a 2﹣6a +9,不符合题意;D 、原式=﹣8a 6,不符合题意,故选:B .【点睛】考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法,熟练掌握运算法则是解本题的关键.12.在下列各组根式中,是同类二次根式的是( )A 212B 212C 4ab 4abD 1a -1a + 【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A 1223=212不是同类二次根式;B 1222=212是同类二次根式; C 442,ab ab ab b a ==4ab 4abD 1a -1a +不是同类二次根式;故选:B .【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.13.下列计算错误的是( )A .22B 82C 236D 82-2【答案】A【解析】【分析】【详解】选项A ,不是同类二次根式,不能够合并;选项B,原式=2÷=选项C,原式=选项D,原式==.故选A.14.a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.15.下列各式中,运算正确的是()A2=C=D.2= =-B4【答案】B【解析】【分析】=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】=,故原题计算错误;A2B=,故原题计算正确;C=D、2不能合并,故原题计算错误;故选B.【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.16.下列二次根式中,属于最简二次根式的是()A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.17.下列二次根式是最简二次根式的是( )A B C D【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.18.当实数x 41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥,419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.20.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .223355=D 632=【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A、a6÷a3=a3,故不对;B、(a3)2=a6,故不对;C、和不是同类二次根式,因而不能合并;D、符合二次根式的除法法则,正确.故选D.。

2024中考数学一轮复习专题精练专题04 二次根式(学生版)

2024中考数学一轮复习专题精练专题04 二次根式(学生版)

知识点01:二次根式的基本性质与化简【高频考点精讲】1.二次根式有意义的条件(1)二次根式中的被开方数必须是非负数;(2)如果所给式子中含有分母,那么除了保证被开方数为非负数外,还必须保证分母不为零。

2.二次根式的基本性质(1)≥0;a≥0(双重非负性)。

(2)()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式)。

(3)=a=3.二次根式的化简(1)利用二次根式的基本性质进行化简。

(2)利用积的算术平方根的性质和商的算术平方根的性质进行化简。

=•(a≥0,b≥0)=(a≥0,b>0)知识点02:同类二次根式及分母有理化【高频考点精讲】1.同类二次根式(1)一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,那么把这几个二次根式叫做同类二次根式。

(2)合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变。

2.分母有理化(1)分母有理化是指把分母中的根号化去,分母有理化是乘二次根式本身(分母只有一项)或与原分母组成平方差公式。

①==;②==.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式互为有理化因式。

知识点03:二次根式混合运算与化简求值【高频考点精讲】1.二次根式的混合运算顺序:先乘方再乘除,最后加减,有括号的先算括号里面的。

2.在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。

3.二次根式的运算结果要化为最简二次根式。

四、二次根式的应用【高频考点精讲】二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念,性质和运算方法。

检测时间:90分钟试题满分:100分难度系数:0.61一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•烟台)下列二次根式中,与是同类二次根式的是()A.B.C.D.2.(2分)(2023•西宁)下列运算正确的是()A.B.C.D.3.(2分)(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.4.(2分)(2023•巴中)下列运算正确的是()A.x2+x3=x5B.×=C.(a﹣b)2=a2﹣b2D.|m|=m5.(2分)(2022•广州)代数式有意义时,x应满足的条件为()A.x≠﹣1 B.x>﹣1 C.x<﹣1 D.x≤﹣16.(2分)(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2 B.x≥0 C.x≥2 D.x≥0且x≠27.(2分)(2023•内蒙古)不等式x﹣1<的正整数解的个数有()A.3个B.4个C.5个D.6个8.(2分)(2023•内蒙古)下列运算正确的是()A.+2=2B.(﹣a2)3=a6C.+=D.÷=9.(2分)(2021•荆门)下列运算正确的是()A.(﹣x3)2=x5B.=xC.(﹣x)2+x=x3D.(﹣1+x)2=x2﹣2x+110.(2分)(2020•呼伦贝尔)已知实数a在数轴上的对应点位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1 C.1 D.2a﹣3二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•哈尔滨)计算的结果是.12.(2分)(2022•济宁)若二次根式有意义,则x的取值范围是.13.(2分)(2021•哈尔滨)计算﹣2的结果是.14.(2分)(2023•绥化模拟)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记,那么三角形的面积为.如果在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为.15.(2分)(2023•池州模拟)要使式子有意义,则x的取值范围为.16.(2分)(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.17.(2分)(2023•潍坊)从﹣,,中任意选择两个数,分别填在算式(□+〇)2÷里面的“□”与“〇”中,计算该算式的结果是.(只需写出一种结果)18.(2分)(2023•临汾模拟)计算:=.19.(2分)(2023•锦江区校级模拟)已知实数m=﹣1,则代数式m2+2m+1的值为.20.(2分)(2023•大同模拟)计算()()的结果等于.三.解答题(共8小题,满分60分)21.(6分)(2023•陕西)计算:.22.(6分)(2023•金昌)计算:÷×2﹣6.23.(8分)(2023•龙岩模拟)(1)计算:;(2)解不等式组:.24.(8分)(2023•晋城模拟)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响,g≈10m/s2).(1)求从60m高空抛物到落地的时间.(结果保留根号)(2)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m),某质量为0.2kg 的玩具被抛出后经过3s后落在地上,这个玩具产生的动能会伤害到楼下的行人吗?请说明理由.(注:伤害无防护人体只需要65J的动能)25.(8分)(2023•张家界)阅读下面材料:将边长分别为a,a+,a+2,a+3的正方形面积分别记为S1,S2,S3,S4.则S2﹣S1=(a+)2﹣a2=[(a+)+a]•[(a+)﹣a]=(2a+)•=b+2a例如:当a=1,b=3时,S2﹣S1=3+2根据以上材料解答下列问题:(1)当a=1,b=3时,S3﹣S2=,S4﹣S3=;(2)当a=1,b=3时,把边长为a+n的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1﹣S n等于多少吗?并证明你的猜想;(3)当a=1,b=3时,令t1=S2﹣S1,t2=S3﹣S2,t3=S4﹣S3,…,t n=S n+1﹣S n,且T=t1+t2+t3+…+t50,求T的值.26.(8分)(2023•晋城模拟)阅读与思考请仔细阅读下列材料,并完成相应的任务.=,===3+像上述解题过程中,与、﹣与+相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程被称为分母有理化.任务:(1)的有理化因式;﹣2的有理化因式是.(2)写出下列式子分母有理化的结果:①=;②=.(3)计算:+……+.27.(8分)(2023•晋城模拟)问题:先化简,再求值:2a+,其中a=3.小宇和小颖在解答该问题时产生了不同意见,具体如下.小宇的解答过程如下:解:2a+=2a+……(第一步)=2a+a﹣5……(第二步)=3a﹣5.……(第三步)当a=3时,原式=3×3﹣5=4.……(第四步)小颖为验证小宇的做法是否正确,她将a=3直接代入原式中:2a+=6+=6+2=8.由此,小颖认为小宇的解答有错误,你认为小宇的解答错在哪一步?并给出完整正确的解答过程.28.(8分)(2023•天山区校级模拟)计算:(1);(2).。

2020年中考数学必考专题04 二次根式的运算(解析版)

2020年中考数学必考专题04 二次根式的运算(解析版)

专题04 二次根式的运算1.二次根式:形如式子a (a ≥0)叫做二次根式。

(或是说,表示非负数的算术平方根的式子,叫做二次根式)。

2.二次根式有意义的条件:被开方数≥0 3.二次根式的性质: (1)是非负数;(2)(a )2=a (a ≥0);(3)==a a 2(4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即=·(a ≥0,b ≥0)。

(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a ≥0,b>0)。

反之,4.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

6.分母有理化:分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。

7.分母有理化的方法:分子分母同乘以分母的有理化因式。

8.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

())0,0(0,0>≥=≥≥=⨯b a b ab a b a ab b a 专题知识回顾(>0)(<0)0 (=0);9.找有理化因式的方法:(1)分母为单项式时,分母的有理化因式是分母本身带根号的部分。

如:①的有理化因式为,②的有理化因式为。

(2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分。

即的有理化因式为,的有理化因式为,的有理化因式为10.二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。

一般地,二次根式的加减法可分以下三个步骤进行:(1)将每一个二次根式都化简成最简二次根式(2)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组(3)合并同类二次根式11.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

专题04二次根式-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

专题04二次根式-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

备战2023年中考数学必刷真题考点分类专练(全国通用)专题04二次根式一.选择题(共15小题)1.(2022•苏州)下列运算正确的是()A.√(−7)2=−7B.6÷23=9C.2a+2b=2ab D.2a•3b=5ab【分析】直接利用二次根式的性质以及有理数的除法运算法则、合并同类项、单项式乘单项式,分别计算判断即可.【解析】A.√(−7)2=7,故此选项不合题意;B.6÷23=9,故此选项,符合题意;C.2a+2b,无法合并,故此选项不合题意;D.2a•3b=6ab,故此选项不合题意;故选:B.【点评】此题主要考查了二次根式的性质以及有理数的除法运算、合并同类项、单项式乘单项式,正确掌握相关运算法则是解题关键.2.(2022•云南)下列运算正确的是()A.√2+√3=√5B.30=0C.(﹣2a)3=﹣8a3D.a6÷a3=a2【分析】根据二次根式的加减法判断A选项;根据零指数幂判断B选项;根据积的乘方判断C选项;根据同底数幂的除法判断D选项.【解析】A选项,√2和√3不是同类二次根式,不能合并,故该选项不符合题意;B选项,原式=1,故该选项不符合题意;C选项,原式=﹣8a3,故该选项符合题意;D选项,原式=a3,故该选项不符合题意;故选:C.【点评】本题考查了二次根式的加减法,零指数幂,幂的乘方与积的乘方,同底数幂的除法,掌握a0=1(a ≠0)是解题的关键.3.(2022•台州)无理数√6的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】根据无理数的估算分析解题.【解析】∵4<6<9,∴2<√6<3.故选:B .【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.4.(2022•眉山)实数﹣2,0,√3,2中,为负数的是( )A .﹣2B .0C .√3D .2【分析】根据负数的定义,找出这四个数中的负数即可.【解析】∵﹣2<0∴负数是:﹣2,故选A .【点评】本题主要考查实的分类,区分正负,解题的关键是熟知实数的性质:负数小于零.5.(2022•株洲)在0、13、﹣1、√2这四个数中,最小的数是( ) A .0 B .13 C .﹣1 D .√2【分析】根据负数小于0,正数大于0比较实数的大小即可得出答案.【解析】∵﹣1<0<13<√2,∴最小的数是﹣1,故选:C .【点评】本题考查了实数大小比较,掌握负数小于0,正数大于0是解题的关键.6.(2022•江西)下列各数中,负数是( )A .﹣1B .0C .2D .√2 【分析】根据负数的定义即可得出答案.【解析】﹣1是负数,2,√2是正数,0既不是正数也不是负数,故选:A .【点评】本题考查了实数,掌握在正数前面添加“﹣”得到负数是解题的关键.7.(2022•金华)在﹣2,12,√3,2中,是无理数的是( ) A .﹣2 B .12 C .√3 D .2【分析】利用有理数,无理数的概念对每个选项进行判断即可得出结论.【解析】﹣2,12,2是有理数,√3是无理数, 故选:C .【点评】本题主要考查了有理数,无理数的意义,掌握上述概念并熟练应用是解题的关键.8.(2022•舟山)估计√6的值在( )A .4和5之间B .3和4之间C .2和3之间D .1和2之间【分析】根据无理数的估算分析解题.【解析】∵4<6<9,∴√4<√6<√9,∴2<√6<3,故选:C .【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.9.(2022•安徽)下列为负数的是( )A .|﹣2|B .√3C .0D .﹣5【分析】根据实数的定义判断即可.【解析】A .|﹣2|=2,是正数,故本选项不合题意;B .√3是正数,故本选项不合题意;C .0既不是正数,也不是负数,故本选项不合题意;D .﹣5是负数,故本选项符合题意.故选:D .【点评】本题考查了有理数,绝对值以及算术平方根,掌握负数的定义是解答本题的关键.10.(2022•凉山州)化简:√(−2)2=( )A .±2B .﹣2C .4D .2【分析】根据算术平方根的意义,即可解答.【解析】√(−2)2=√4=2,故选:D .【点评】本题考查了算术平方根,熟练掌握算术平方根的意义是解题的关键.11.(2022•泸州)−√4=()A.﹣2B.−12C.12D.2【分析】根据算术平方根的定义判断即可.【解析】−√4=−√22=−2.故选:A.【点评】本题考查了算术平方根,掌握算术平方根的定义是解答本题的关键.12.(2022•泸州)与2+√15最接近的整数是()A.4B.5C.6D.7【分析】估算无理数√15的大小,再确定√15更接近的整数,进而得出答案.【解析】∵3<√15<4,而15﹣9>16﹣15,∴√15更接近4,∴2+√15更接近6,故选:C.【点评】本题考查估算无理数的大小,理解算术平方根的定义以及数的大小关系是正确解答的前提.13.(2022•重庆)估计√3×(2√3+√5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【分析】先计算出原式得6+√15,再根据无理数的估算可得答案.【解析】原式=√3×2√3+√3×√5=6+√15,∵9<15<16,∴3<√15<4,∴9<6+√15<10.故选:B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.14.(2022•重庆)估计√54−4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【分析】用夹逼法估算无理数的大小即可得出答案.【解析】∵49<54<64,∴7<√54<8,∴3<√54−4<4,故选:D.【点评】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.15.(2022•天津)估计√29的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】估算确定出所求数的范围即可.【解析】∵25<29<36,∴5<√29<6,即5和6之间,故选:C.【点评】此题考查了估算无理数的大小,以及算术平方根,熟练掌握估算的方法是解本题的关键.二.填空题(共20小题)16.(2022•武汉)计算√(−2)2的结果是2.【分析】利用二次根式的性质计算即可.【解析】法一、√(−2)2=|﹣2|=2;法二、√(−2)2=√4=2.故答案为:2.【点评】本题考查了二次根式的性质,掌握“√a2=|a|”是解决本题的关键.17.(2022•常德)要使代数式有意义,则x的取值范围为x>4.√x−4【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解析】由题意得:x﹣4>0,解得:x>4,故答案为:x>4.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.18.(2022•天津)计算(√19+1)(√19−1)的结果等于18.【分析】根据平方差公式即可求出答案.【解析】原式=(√19)2﹣12=19﹣1=18,故答案为:18.【点评】本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.19.(2022•新疆)若√x−3在实数范围内有意义,则实数x的取值范围为x≥3.【分析】根据二次根式的被开方数是非负数即可得出答案.【解析】∵x﹣3≥0,∴x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.20.(2022•杭州)计算:√4=2;(﹣2)2=4.【分析】根据二次根式的性质、有理数的乘方法则计算即可.【解析】√4=2,(﹣2)2=4,故答案为:2,4.【点评】本题考查的是二次根式的化简、有理数的乘方,掌握二次根式的性质是解题的关键.21.(2022•泰安)计算:√8•√6−3√43=2√3.【分析】化简二次根式,然后先算乘法,再算减法.【解析】原式=√8×6−3×2√3 3=4√3−2√3=2√3,故答案为:2√3.【点评】本题考查二次根式的混合运算,理解二次根式的性质,准确化简二次根式是解题关键.22.(2022•云南)若√x+1有意义,则实数x的取值范围为x≥﹣1.【分析】根据二次根式的被开方数是非负数即可得出答案.【解析】∵x+1≥0,∴x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.23.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|−√(b−1)2+√(a−b)2=2.【分析】根据数轴可得:﹣1<a<0,1<b<2,然后即可得到a+1>0,b﹣1>0,a﹣b<0,从而可以将所求式子化简.【解析】由数轴可得,﹣1<a<0,1<b<2,∴a+1>0,b﹣1>0,a﹣b<0,∴|a+1|−√(b−1)2+√(a−b)2=a+1﹣(b﹣1)+(b﹣a)=a+1﹣b+1+b﹣a=2,故答案为:2.【点评】本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.24.(2022•滨州)若二次根式√x−5在实数范围内有意义,则x的取值范围为x≥5.【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.【解析】要使二次根式√x−5在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.【点评】本题考查了二次根式有意义的条件和解一元一次不等式,能得出关于x的不等式是解此题的关键.25.(2022•扬州)若√x−1在实数范围内有意义,则x的取值范围是x≥1.【分析】直接利用二次根式有意义的条件进而得出答案.【解析】若√x−1在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.26.(2022•邵阳)若√x−2有意义,则x 的取值范围是 x >2 .【分析】先根据二次根式及分式有意义的条件列出x 的不等式组,求出x 的取值范围即可. 【解析】∵√x−2有意义,∴{x −2≥0x −2≠0,解得x >0. 故答案为:x >2.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.27.(2022•山西)计算:√18×√12的结果为 3 .【分析】按照二次根式的乘法法则计算即可.【解析】原式=√9=3.故答案为:3.【点评】本题主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则√a ⋅√b =√ab .28.(2022•衡阳)计算:√2×√8= 4 .【分析】原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.【解析】原式=√2×8=√16=4.故答案为:4【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.29.(2022•随州)已知m 为正整数,若√189m 是整数,则根据√189m =√3×3×3×7m =3√3×7m 可知m 有最小值3×7=21.设n 为正整数,若√300n是大于1的整数,则n 的最小值为 3 ,最大值为 75 . 【分析】先将√300n 化简为10√3n ,可得n 最小为3,由√300n 是大于1的整数可得√300n 越小,300n 越小,则n 越大,当√300n =2时,即可求解. 【解析】∵√300n =√3×100n =10√3n ,且为整数, ∴n 最小为3, ∵√300n 是大于1的整数, ∴√300n 越小,300n 越小,则n 越大,当√300n =2时, 300n =4,∴n =75,故答案为:3;75.【点评】本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.30.(2022•宿迁)满足√11≥k 的最大整数k 是 3 .【分析】根据无理数的估算分析解题.【解析】∵3<√11<4,且k ≤√11,∴最大整数k 是3.故答案为:3.【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.31.(2022•湘潭)四个数﹣1,0,12,√3中,为无理数的是 √3 . 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可解答.【解析】四个数﹣1,0,12,√3中,为无理数的是√3. 故答案为:√3.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽得到的数;以及像0.1010010001…等有这样规律的数.32.(2022•陕西)计算:3−√25= ﹣2 .【分析】首先利用算术平方根的定义化简,然后加减即可求解.【解析】原式=3﹣5=﹣2.故答案为:﹣2.【点评】本题主要考查了实数的运算,主要利用算术平方根的定义.33.(2022•重庆)|﹣2|+(3−√5)0= 3 .【分析】根据绝对值的性质和零指数幂的性质计算可得答案.【解析】原式=2+1=3.故答案为:3.【点评】本题考查实数的运算,熟练掌握实数的运算性质是解题关键.34.(2022•南充)若√8−x为整数,x为正整数,则x的值是4或7或8.【分析】利用二次根式的性质求得x的取值范围,利用算术平方根的意义解答即可.【解析】∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵√8−x为整数,∴√8−x=0或1或2,当√8−x=0时,x=8,当√8−x=1时,x=7,当√8−x=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【点评】本题主要考查了算术平方根的意义,二次根式的性质,利用二次根式的性质求得x的取值范围是解题的关键.35.(2022•连云港)写出一个在1到3之间的无理数:√2(符合条件即可).【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【解析】1到3之间的无理数如√2,√3,√5.答案不唯一.【点评】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分.三.解答题(共9小题)36.(2022•武威)计算:√2×√3−√24.【分析】根据二次根式的乘法法则和二次根式的化简计算,再合并同类二次根式即可.【解析】原式=√6−2√6=−√6.【点评】本题考查了二次根式的混合运算,掌握√a•√b=√ab(a≥0,b≥0)是解题的关键.37.(2022•广元)计算:2sin60°﹣|√3−2|+(π−√10)0−√12+(−12)﹣2.【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可.【解析】原式=2×√32+√3−2+1﹣2√3+1(−12)2=√3+√3−2+1﹣2√3+4=3.【点评】本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,掌握a ﹣p =1a p (a ≠0)是解题的关键.38.(2022•宿迁)计算:(12)﹣1+√12−4sin60°. 【分析】先计算(12)﹣1、√12,再代入sin60°算乘法,最后加减. 【解析】原式=2+2√3−4×√32=2+2√3−2√3=2.【点评】本题考查了实数的运算,掌握负整数指数幂的意义、二次根式的化简及特殊角的函数值是解决本题的关键.39.(2022•娄底)计算:(2022﹣π)0+(12)﹣1+|1−√3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减.【解析】原式=1+2+√3−1﹣2×√32=1+2+√3−1−√3=2.【点评】本题考查了实数的运算,掌握零指数幂、负整数指数幂、绝对值的意义及特殊角的函数值是解决本题的关键.40.(2022•台州)计算:√9+|﹣5|﹣22.【分析】先化简各式,然后再进行计算即可解答.【解析】√9+|﹣5|﹣22=3+5﹣4=8﹣4=4.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.41.(2022•新疆)计算:(﹣2)2+|−√3|−√25+(3−√3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案.【解析】原式=4+√3−5+1=√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.42.(2022•株洲)计算:(﹣1)2022+√9−2sin30°.【分析】根据有理数的乘方,算术平方根,特殊角的三角函数值计算即可.【解析】原式=1+3﹣2×1 2=1+3﹣1=3.【点评】本题考查了实数的运算,特殊角的三角函数值,掌握(﹣1)的偶次幂等于1,(﹣1)的奇次幂等于﹣1是解题的关键.43.(2022•怀化)计算:(3.14﹣π)0+|√2−1|+(12)﹣1−√8.【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可.【解析】原式=1+√2−1+2﹣2√2=2−√2.【点评】本题考查了实数的运算,零指数幂,绝对值,负整数指数幂,考查学生的运算能力,掌握a0=1(a≠0),a﹣p=1a p(a≠0)是解题的关键.44.(2022•遂宁)计算:tan30°+|1−√33|+(π−√33)0﹣(13)﹣1+√16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解析】tan30°+|1−√33|+(π−√33)0﹣(13)﹣1+√16=√33+1−√33+1﹣3+4=3.【点评】本题考查实数的运算、特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根,熟练掌握运算法则是解答本题的关键.。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.二次根式中字母x的取值范围是()A.x<1B.x≤1C.x>1D.x≥1【答案】D.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 因此,二次根式中字母x的取值范围是x≥1. 故选D.【考点】二次根式有意义的条件.2.函数中,自变量x的取值范围是.【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.实数-8的立方根是【答案】-2.【解析】利用立方根的定义即可求解.试题解析:∵(-2)3=-8,∴-8的立方根是-2.【考点】立方根.4.计算:+(﹣1)0=.【答案】3【解析】原式=2+1=3故答案为:3.【考点】1、立方根;2、零指数幂;3、实数的运算5.若二次根式有意义,则x的取值范围是.【答案】.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】二次根式有意义的条件.6.已知实数x,y满足x+y=-2a,xy=a(a≥1),则的值为A.a B.2a C.a D.2【答案】D.【解析】解:∵x+y=-2a,xy=a(a≥1),∴x,y均为负数,∵∴===2.故选:D.【考点】二次根式的化简求值.7.计算:.【答案】.【解析】根据二次根式、负整数指数幂以及零次幂的意义进行计算即可求出答案.原式=.【考点】实数的混合运算.8.方程的根是.【答案】.【解析】∵,∴.∴.【考点】解方程.9.观察分析下列数据,寻找规律:0,,,3,2,…,那么第10个数据应是________.【答案】3【解析】观察可知规律:被开数依次是0,3,6,9,12,…,按规律可知,第10个数据应该是=3,填3.10.。

【答案】【解析】根据二次根式的乘法法则计算.试题解析:.考点: 二次根式的乘除法.11.计算:.【答案】.【解析】先化成最简二次根式,再合并同类二次根式即可得出答案.试题解析:.考点: 二次根式的加减法.12.下列属于最简二次根式的是()A.B.C.D.【答案】B.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.A、,被开方数含能开得尽方的因数,不是最简二次根式;B、是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含能开得尽方的因数,不是最简二次根式.故选B.【考点】最简二次根式.13.计算:【答案】0.【解析】根据二次根式运算法则计算即可.试题解析:.【考点】二次根式计算.14.下列计算正确的是()A.B.C.D.【答案】A.【解析】二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式,,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式,由题,,A正确,不能合并,,不能合并,B错误,C不能合并,错误,,D错误,故选A.【考点】根式的计算.15.的值是()A.4B.2C.±2D.【答案】B.【解析】首先应弄清所表示的意义:求的算术平方根.根据一个正数的平方等于,那么这个正数就叫做的算术平方根.因为,所以的算术平方根为,故应选B.【考点】算术平方根的定义.16.计算【答案】.【解析】原式=.【考点】 1.实数的运算;2.零指数幂;3.负整数指数幂.17.下列根式中属最简二次根式的是()A.B.C.D.【答案】A【解析】最简二次根式的是满足两个条件:1.被开方数中不含分母.2.被开方数中不能含有开得方的因数或因式.故符合条件的只有A.故选A【考点】最简二次根式18.若x,y为实数,且,则的值为A.1B.C.2D.【答案】B.【解析】∵,∴根据绝对值和二次根式的非负数性质,得.∴.故选B.【考点】1.绝对值和二次根式的非负数性质;2.乘方.19.若,则m-n的值为.【答案】4.【解析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.试题解析:根据题意得:,解得:,则m+n=3-(-1)=4.考点: (1)算术平方根;(2)绝对值.20.已知,则有()A.B.C.D.【答案】A.【解析】,∵,∴,即.故选A.【考点】1.估算无理数的大小;2.实数的运算.21.若使二次根式在实数范围内有意义,则x的取值范围是()A.B.C.D.【答案】B【解析】根据题意,a-1…0,a…1.当被开方数为非负数时,二次根式有意义,根据题意,得到a的不等式.【考点】二次根式有意义的条件(被开方数为非负数).22.计算:.【答案】或者.【解析】此题是二次根式的加减乘除运算和化简,首先要弄明白二次根式加减的法则和乘除的公式,对于二次根式的加减来说,首先要把各项化为最简二次根式,然后是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式,,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式.试题解析:解:原式=.【考点】二次根式的加减乘除运算和化简.23.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为.【答案】.【解析】如图,经过等积转换:平行四边形BNME与平行四边形NFDM等积;△AHM与△CGN 等积.∴阴影部分的面积其实就是原矩形ABCD面积的一半.∴阴影部分的面积=.【考点】1.矩形的性质;2.面积割补法的应用,3.全等图形的判定;4.二次根式的运算;5.转换思想和整体思想的应用.24.计算与化简(1)(2)【答案】(1);(2).【解析】(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1).(2).【考点】1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.25.要使二次根式有意义,字母x必须满足的条件是.【答案】【解析】二次根式有意义的条件:二次根号下的式子为非负数,即,.【考点】二次根式有意义的条件26.若x3=8,则x=.【答案】2【解析】根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a的一个立方根:∵23=8,∴8的立方根是2。

初中数学 中考复习二次根式专题练习(含答案)

初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。

(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。

满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。

(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。

中考数学最新真题专项汇总—二次根式(含解析)

中考数学最新真题专项汇总—二次根式(含解析)

中考数学最新真题专项汇总—二次根式(含解析)一.选择题1.(2022·湖北武汉)下列各式计算正确的是( )A=B .1= C =D 2=【答案】C【分析】由合并同类二次根式判断A ,B ,由二次根式的乘除法判断C ,D .【详解】解:A ≠B 、=C=D22==C .【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键.2.(2022·山东聊城)射击时,子弹射出枪口时的速度可用公式v 其中a 为子弹的加速度,s 为枪筒的长.如果52510m /s a =⨯,0.64m s =,那么子弹射出枪口时的速度(用科学记数法表示)为( )A .20.410m /s ⨯B .20.810m /s ⨯C .2410⨯m /sD .28s 10m /⨯【答案】D【分析】把a =5×105m/s 2,s =0.64m 代入公式=v 化简即可.【详解】解:()2810m /s v =⨯,故选:D .【点睛】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2022·|2|cos45-⨯︒的结果,正确的是()B.C.D.2A【答案】B【分析】化简二次根式并代入特殊角的锐角三角比,再按照正确的运算顺序进行计算即可.-⨯︒|2|cos45=2==B【点睛】此题考查了二次根式的运算、特殊角的锐角三角比等知识,熟练掌握运算法则是解题的关键.4.(2022·山东青岛)计算)AB.1C D.3【答案】B再合并即可.【详解】解:94321故选:B.【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.5.(2022·2x -在实数范围内有意义,则x 的取值范围是( )A .1x >-B .1x -C .1x -且0x ≠D .1x -且0x ≠【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.6.(2022·山东潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛,下列估算正确的是( )A .205<<B .2152<< C .12<<1 D 1> 【答案】C【分析】用夹逼法估算无理数即可得出答案.【详解】解:4<5<9,∴23,∴1∴1<1,故选:C.2【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.7.(2022·湖北恩施)函数y的自变量x的取值范围是()A.3x≥-x≠D.1x≥-且3x≠B.3x≥C.1【答案】C【分析】根据分式有意义的条件与二次根式有意义的条件得出不等式组,解不等式组即可求解.【详解】解:∴10,30+≥-≠,x x解得1x≠,故选C.x≥-且3【点睛】本题考查了求函数自变量的取值范围,掌握分式有意义的条件与二次根式有意义的条件是解题的关键.8.(2022·)A.B.3C.D.2【答案】A【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为故选:A.【点睛】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.9.(2022·x的取值范围是()A.1≥x B.1x>x>C.0x≥D.0【答案】A0)进行计算即可.【详解】解:由题意得:10x-,∴,1x故选:A.0)是解题的关键.10.(2022·山东临沂)满足1m>的整数m的值可能是()A.3B.2C.1D.0【答案】A11的范围,再确定m的范围即可确定答案.【详解】3104<<,∴<,2131011m>,-,1∴≥,故选:A.3m【点睛】本题考查了绝对值的化简,无理数的估算和不等式的求解,熟练掌握知识点是解题的关键.11.(2021·)A.±3B.3C.±9D.9【答案】A【详解】解:,9的平方根是±3,±3,故选:A.【点睛】本题考查了算术平方根,平方根,熟练掌握相关知识是解题的关键.12.(2022·四川广安)下列运算中,正确的是()A.3a2 +2a2 =5a4B.a9÷a3=a3C=D.(﹣3x2)3=﹣27x6【答案】D【分析】根据合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,逐项分析判断即可求解.【详解】解:A. 3a2 +2a2 =5 a 2,故该选项不正确,不符合题意;B. a9÷a3=a6,故该选项不正确,不符合题意;C.D. (﹣3x2)3=﹣27x6,故该选项正确,符合题意;故选D【点睛】本题考查了合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,正确的计算是解题的关键.13.(2022·x的取值范围是A .x≥3B .x≤3C .x >3D .x <3【答案】A 【详解】解:由题意得30x -≥.解得x≥3,故选:A .14.(2022·内蒙古呼和浩特)下列运算正确的是( )A2± B .222()m n m n +=+ C .1211-=--x x x D .2229332-÷=-y x xy x y【答案】D【分析】分别根据二次根式乘法法则,完全平方公式,异分母分式加减法法则以及分式除法法则计算出各项结果后,再进行判断即可.【详解】解:A. 2,故此计算错误,不符合题意; B. 222()2m n m mn n +=++,故此计算错误,不符合题意; C. 1221(1)x x x x x --=---,故此计算错误,不符合题意; D. 22223933322y x x xy xy =x y y-÷=--,计算正确,符合题意,故选:D . 【点睛】本题主要考查了二次根式乘法,完全平方公式,异分母分式加减法以及分式除法,熟练掌握相关运算法则是解答本题的关键.15.(2022·湖南郴州)下列运算正确的是( )A .325a a a +=B .632a a a ÷=C .()222a b a b +=+ D 5 【答案】D【分析】根据合并同类项、同底数幂的除法法则,完全平方公式以及二次根式的计算法则进行计算即可.【详解】A.32a a+不能合并,故A错误;B.633a a a÷=,故B错误;C.()2222a b a ab b+=++,故C错误;5=,故D正确;故答案为:D.【点睛】本题考查合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则等知识.掌握合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则是解答本题的关键.16.(2022·四川雅安)下列计算正确的是()A.32=6B.(﹣25)3=﹣85C.(﹣2a2)2=2a4D【答案】D【分析】由有理数的乘方运算可判断A,B,由积的乘方运算与幂的乘方运算可判断C,由二次根式的加法运算可判断D,从而可得答案.【详解】解:239=,故A不符合题意;328,5125故B不符合题意;22424,a a故C不符合题意;2333,故D符合题意;故选D【点睛】本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.17.(2022·湖南永州)下列各式正确的是()A=B .020= C .321a a -= D .()224--=【答案】D 【分析】利用二次根式性质化简、零指数幂、合并同类项、有理数减法运算即可判断。

中考数学专题练习 二次根式及一元二次方程(含解析)-人教版初中九年级全册数学试题

中考数学专题练习 二次根式及一元二次方程(含解析)-人教版初中九年级全册数学试题

《二次根式及一元二次方程》一、选择题1.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤33.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.某某市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)26.下列各式计算正确的是()A.B.(a<1)C.D.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.20169.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=010.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题13.化简=.14.计算的结果是.15.计算: +=.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值X围是.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.19.请你写出一个有一根为1的一元二次方程:.(答案不唯一)20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=.22.将根号外面的因式移进根号后等于.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC 的面积为1,则k的值为;点E的坐标为.三、解答题24.计算:.25.用配方法解方程:2x2+1=3x.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的X围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值X围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.《二次根式及一元二次方程》参考答案与试题解析一、选择题1.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间【考点】估算无理数的大小.【专题】应用题.【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断的X围,再估算的X围即可.【解答】解:∵5<<6∴3<<4故选C.【点评】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算的整数部分和小数部分.2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义,把x=﹣a代入方程,即可求解.【解答】解:∵方程x2+bx+a=0有一个根是﹣a(a≠0),∴(﹣a)2+b(﹣a)+a=0,又∵a≠0,∴等式的两边同除以a,得a﹣b+1=0,故a﹣b=﹣1.故本题选D.【点评】本题考查的重点是方程根的定义,分析问题的方向比较明确,就是由已知入手推导、发现新的结论.4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式;三角形三边关系.【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.能够根据三角形的三边关系,得到关于a,b,c的式子的符号.【解答】解:∵△=(2c)2﹣4(a+b)2=4[c2﹣(a+b)2]=4(a+b+c)(c﹣a﹣b),根据三角形三边关系,得c﹣a﹣b<0,a+b+c>0.∴△<0.∴该方程没有实数根.故选A.【点评】本题是方程与几何的综合题.主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对(2c)2﹣4(a+b)(a+b)进行因式分解.5.某某市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),然后用平均增长率和实际增长率分别求出今年的国内生产总值,由此可得到一个方程,即x%满足的关系式.【解答】解:若设2015年的国内生产总值为y,则根据实际增长率和平均增长率分别得到2010年和今年的国内生产总值分别为:2016年国内生产总值:y(1+x%)或y(1+12%),所以1+x%=1+12%,今年的国内生产总值:y(1+x%)2或y(1+12%)(1+7%),所以(1+x%)2=(1+12%)(1+7%).故选D.【点评】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程.6.下列各式计算正确的是()A.B.(a<1)C.D.【考点】二次根式的混合运算;立方根.【分析】A、根据二次根式的乘法运算法则的逆运算直接计算就可以;B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;C、先将被开方数进行乘方运算再合并最后化简就可以了;D、先进行分母有理化,再进行合并同类二次根式就可以了.【解答】解:A、≠,本答案错误;B、(a<1),本答案正确;C、,本答案错误;D、==4≠2,本答案错误.故选B.【点评】本题考查了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值X围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值X围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.2016【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.【解答】解:∵a是方程x2+x﹣2016=0的根,∴a2+a=2016;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=(a2+a)+(a+b)=2016﹣1=2015.故选:C.【点评】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.9.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=0【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.【分析】此题可以采用因式分解法,此题的公因式为(x﹣3),提公因式,降次即可求得.【解答】解:∵(x﹣3)(x+1)=x﹣3∴(x﹣3)(x+1)﹣(x﹣3)=0∴(x﹣3)(x+1﹣1)=0∴x1=0,x2=3.故选D.【点评】此题考查了学生的计算能力,注意把x﹣3当作一个整体,直接提公因式较简单,选择简单正确的解题方法可以达到事半功倍的效果.10.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.【点评】本题考查了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.二、填空题13.化简= 0 .【考点】二次根式有意义的条件.【分析】由1﹣x≥0,x﹣1≥0,得出x﹣1=0,从而得出结果.【解答】解:∵1﹣x≥0,x﹣1≥0,∴x﹣1=0,∴=0.【点评】二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.计算的结果是 4 .【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.【解答】解: ==4.故答案为:4.【点评】此题主要考查了算术平方根的定义,本题易错点在于符号的处理.15.计算: += 3.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.【解答】解:原式=2+=3.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值X围是a<1且a≠0 .【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出不等式组,解之得a<1且a≠0.故答案为:a<1且a≠0.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为7 .【考点】根与系数的关系.【分析】根据根与系数的关系,可求出x1+x2以及x1x2的值,然后根据x12+3x1x2+x22=(x1+x2)2+x1x2进一步代值求解.【解答】解:由题意,得:x1+x2=3,x1x2=﹣2;原式=(x1+x2)2+x1x2=9﹣2=7.故答案为:7.【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为 1 .【考点】一元二次方程的解;完全平方公式.【分析】首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=(m+n)2=(﹣1)2=1.故答案为:1.【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.19.请你写出一个有一根为1的一元二次方程:x2=1 .(答案不唯一)【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.【解答】解:根据题意x=1得方程式x2=1.故本题答案不唯一,如x2=1等.【点评】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如(y﹣1)(y+2)=0,后化为一般形式为y2+y﹣2=0.20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是13 .【考点】根与系数的关系;根的判别式.【分析】首先根据根与系数的关系,得出x1+x2和x1x2的值,然后根据x12+x22的值求出m(需注意m 的值应符合此方程的根的判别式);然后再代值求解.【解答】解:由题意,得:x1+x2=m,x1x2=2m﹣1;则:(x1+x2)2=x12+x22+2x1x2,即m2=7+2(2m﹣1),解得m=﹣1,m=5;当m=5时,△=m2﹣4(2m﹣1)=25﹣4×9<0,不合题意;故m=﹣1,x1+x2=﹣1,x1x2=﹣3;∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=1+12=13.【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.本题需注意的是在求出m值后,一定要用根的判别式来判断所求的m是否符合题意,以免造成多解、错解.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k= ﹣3 .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.22.将根号外面的因式移进根号后等于.【考点】二次根式的性质与化简.【专题】计算题.【分析】先根据二次根式定义得到a<0,然后根据二次根式的性质把﹣a转化为,再利用乘法公式运算即可.【解答】解:∵﹣≥0,∴a<0,∴原式=﹣(﹣a)•=﹣=﹣.故答案为﹣.【点评】本题考查了二次根式的性质与化简:(a≥0)为二次根式; =|a|; =•(a≥0,b≥0)等.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为 1 ;点E的坐标为(+,﹣).【考点】反比例函数系数k的几何意义.【分析】(1)根据正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC 的边长为1,得出B点坐标,即可得出反比例函数的解析式;(2)由于D点在反比例函数图象上,用a和正方形OABC的边长表示出来E点坐标,代入y=(x >0)求得a的值,即可得出D点坐标.【解答】解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:( +,﹣).【点评】本题考查了反比例函数与正方形性质结合的综合应用,考查了数形结合的思想,利用xy=k 得出是解题关键.三、解答题24.计算:.【考点】二次根式的混合运算;负整数指数幂.【分析】本题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】原式=3+4﹣2﹣2+=5﹣2+2﹣2=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.25.用配方法解方程:2x2+1=3x.【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】首先把方程的二次项系数变成1,然后等式的两边同时加上一次项系数的一半,则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得,配方,,由此可得,∴x1=1,.【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0(a ≠0)的形式,然后再配方求解.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.【分析】(1)根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.【解答】解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2,∵b+c=2k+1>0即k>﹣.bc=4k﹣3>0即k>,∴k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.【点评】本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明(1),再根据勾股定理和根与系数的关系列出方程组进行解答.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的X围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的X围;(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.【解答】解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.【点评】本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值X围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,可求出m的取值X围;(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值X围,即可求出y的最小值及对应的m值.【解答】解:(1)将原方程整理为x2+2(m﹣1)x+m2=0;∵原方程有两个实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,得m≤;(2)∵x1,x2为一元二次方程x2=2(1﹣m)x﹣m2,即x2+2(m﹣1)x+m2=0的两根,∴y=x1+x2=﹣2m+2,且m≤;因而y随m的增大而减小,故当m=时,取得最小值1.【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答(2)题的关键.。

中考数学二次根式(讲义及答案)及解析

中考数学二次根式(讲义及答案)及解析

一、选择题1.下列二次根式中是最简二次根式的为( ) A .12B .30C .8D .122.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数3.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是4.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .1015.下列计算或判断:(1)±3是27的立方根;(2)33a =a ;(3)64的平方根是2;(4)22(8)±=±8;(5)65- =65+,其中正确的有( ) A .1个B .2个C .3个D .4个6.如果2a a 2a 1+-+=1,那么a 的取值范围是( ) A .a 0= B .a 1=C .a 1≤D .a=0a=1或7.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 8.下列运算中错误的是( ) A 235=B 236=C 822÷=D .2 (3)3-=9.已知0xy <,化简二次根式2yx - ) A y B y -C .y -D .y --10.下列计算正确的是( ) A 235=B .332-= C .222= D 393=二、填空题11.化简并计算:()()()()()()()...112231920xx x x x x x x +=+++++++________.(结果中分母不含根式)12.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①f =z __________;②f =z __________;+=__________.13.已知,-1,则x 2+xy +y 2=_____.14.÷=________________ .15.已知:可用含x =_____.16..17.计算:2015·2016=________.18.===据上述各等式反映的规律,请写出第5个等式:___________________________.19.化简:=_____. 20.x 的取值范围是_____. 三、解答题21.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==22.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3 ∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1 请你根据小明的分析过程,解决如下问题:(1(2)若,求4a 2﹣8a+1的值. 【答案】(1)9;(2)5. 【解析】 试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a 1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.23.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.24.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+, 当,b=1时, 原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.一样的式子,其实我3==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n +++【答案】(1-2. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)===== (2)原式2n +++=12. 考点:分母有理化.26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案. 【详解】解:(1)原式=-(2)原式=3434++-=6+. 【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.28.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A =不是最简二次根式,本选项错误;BC =不是最简二次根式,本选项错误;D 2=故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.B解析:B 【分析】直接利用二次根式有意义的条件进而分析得出答案. 【详解】有意义的x 的取值范围是:x ≥3. 故选:B . 【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.C解析:C 【分析】根据二次根式的性质分析即可得出答案. 【详解】解:∵m 、n 是正整数, ∴m=2,n=5或m=8,n=20, 当m=2,n=5时,原式=2是整数; 当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20), 故选:C . 【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.4.B解析:B 【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99. 【详解】∵==()211n n n n ++=+ =111+1n n -+,∴=1111111+11122399100-++-+++- =199+1100- =100-1100,∴不大于S 的最大整数为99. 故选B. 【点睛】1111n n =+-+是解答本题的基础.5.B解析:B 【解析】根据立方根的意义,可知27的立方根是3,故(1a =正确,故(2)正=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知8=,故(4=,故(5)正确. 故选B.6.C解析:C 【解析】试题解析:∵a1, a ∴1-a ≥0, a ≤1,故选C .7.B解析:B 【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.8.A解析:A 【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断. 【详解】23 23236=⨯=828242÷÷===,故此项正确,不符合要求;D. 2 (3)3-=,故此项正确,不符合要求; 故选A . 【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.B解析:B 【分析】先根据xy <0,考虑有两种情况,再根据所给二次根式可确定x 、y 的取值,最后再化简即可. 【详解】 解:0xy <,0x ∴>,0y <或0x <,0y >,又2yx x -有意义, 0y ∴<,0x ∴>,0y <,当0x >,0y <时,2yx y x -- 故选B . 【点睛】本题考查了二次根式的性质与化简.解题的关键是能根据已知条件以及所跟二次根式来确定x、y的取值.10.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题11.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式====220400xx x-.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.12.3 【解析】 1、;2、根据题意,先推导出等于什么, (1)∵, ∴,(2)再比较与的大小关系, ①当n=0时,; ②当为正整数时,∵, ∴, ∴,综合(1)、(2)可得:,解析:3 20172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么, (1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->,∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n>-,综合(1)、(2)可得:1122n n-<+,∴f n=z,∴3f=z.3、∵f n=z,∴(2017zf+111112233420172018=++++⨯⨯-⨯111111112233420172018=-+-+-++-112018=-20172018=.故答案为(1)2;(2)3;(3)20172018.点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n为非负整数时,1122n n-<+,从而得到f n=z;(2)解题③的要点是:当n为正整数时,111(1)1n n n n=-++.13.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.14.【解析】=,故答案为.解析:【解析】÷====-,故答案为15.【解析】 ∵=, ∴== = -==﹣x3+x , 故答案为:﹣x3+x.解析:211166x x -+【解析】∵x =-3==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x ,故答案为:﹣16x3+116x. 16.【解析】 【详解】根据二次根式的性质和二次根式的化简,可知==. 故答案为. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可. 解析:2【解析】 【详解】22.故答案为2. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.【解析】 原式=. 故答案为.【解析】原式=20152015=18.【解析】上述各式反映的规律是 (n ⩾1的整数),得到第5个等式为: (n ⩾1的整数). 故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.19.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.20.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式考点1二次根式一、单选题1.(2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解∶∵160020232025<<.即4045<,40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.2.(2023年江苏省无锡市中考数学真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.3=,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2023年重庆市中考数学真题(A卷)的值应在()A .7和8之间B .8和9之间C .9和10之间D .10和11之间【答案】B【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.4.(2019·广东·的结果是()A .4-B .4C .4±D .2【答案】B【分析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.5.(2020·广西贵港·在实数范围内有意义,则实数x 的取值范围是()A .1x <-B .1x ≥-C .0x ≥D .1x ≥【答案】B【分析】根据二次根式的被开方数为非负数即可得出的取值范围.∴x+1≥0∴x≥﹣1故选:B【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.6.(2020·山东聊城·÷).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.÷==1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.(2023年辽宁省大连市中考数学真题)下列计算正确的是()A.0=B.+=C=D)26=-【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=C.=D.)26=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.8.(2021·广东·统考中考真题)若0a =,则ab =()AB .92C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∵0a ≥0≥,且0a =∴0a =0==即0a =,且320a b -=∴a =b∴92ab ==故选:B .【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.9.(2022·河北·统考中考真题)下列正确的是()A23=+B 23=⨯CD 0.7=【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;=⨯,故正确;23=≠≠,故错误;0.7故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(2023()A.点P B.点Q C.点R D.点S【答案】B<<【详解】解:∵479<<,<<23Q,故选:B.11.(2023年河北省中考数学真题)若a b===()A.2B.4C D【答案】A【分析】把a b【详解】解:∵a b==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.12.(2019·四川资阳·统考中考真题)设x=x的取值范围是()A.23x<<B.34x<<C.45x<<D.无法确定【答案】B【分析】根据无理数的估计解答即可.【详解】解:∵91516<<,∴34<<,故选B.【点睛】此题考查估算无理数的大小,关键是根据无理数的估计解答.13.(2021·广东·统考中考真题)设6a,小数部分为b,则(2a b+的值是()A.6B.C.12D.【答案】A的整数部分可确定a的值,进而确定b的值,然后将a与b的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<<,∴62a=,∴小数部分624b==∴(((22244416106a b+=⨯+-=+-=-=.故选:A.【点睛】本题考查了二次根式的运算,正确确定6a与小数部分b的值是解题关键.二、填空题14.(2019·江苏苏州·x的取值范围为.【答案】6x≥【分析】根据根式有意义的条件,得到不等式,解出不等式即可.-60x≥,解出得到6x≥.【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键.15.(2020·广西·=.【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.16.(2021·天津·统考中考真题)计算1)的结果等于.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题的关键.17.(2023年湖北省武汉市数学真题)写出一个小于4的正无理数是.【分析】根据无理数估算的方法求解即可.<4<..【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.18.(2023x 的取值范围是.【答案】13x ≥-【分析】根据二次根式有意义的条件得到130x +≥,解不等式即可得到答案.∴130x +≥,解得13x ≥-,故答案为:13x ≥-【点睛】此题考查了二次根式有意义的条件,熟知被开方式为非负数是解题的关键.19.(2019·河南·12--==.【答案】112【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.12--122=-112=.故答案为11 2.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.20.(2021·安徽·统考中考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1-,它介于整数n和1n+之间,则n的值是.【答案】11即可完成求解.2.236≈;1 1.236≈;因为1.236介于整数1和2之间,所以1n=;故答案为:1.分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.21.(20231+=.【答案】3【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.22.(2023年上海市中考数学真题)已知关于x2=,则x=【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.23.(2023年黑龙江省绥化市中考数学真题)若式子x有意义,则x 的取值范围是.【答案】5x ≥-且0x ≠/0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.24.(2023年黑龙江省齐齐哈尔市中考数学真题)在函数12y x +-中,自变量x 的取值范围是.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x ->-≠,即可求解.【详解】解:依题意,10,20x x ->-≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.三、解答题25.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -21xx-),其中x【答案】1x x -,1+2【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式=(x−1)÷221x x x-+()()211xx x =-⋅-1x x =-当x +1时,12=+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.26.(2022·福建·统考中考真题)先化简,再求值:2111aa a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -.【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案.【详解】解:原式()()111a a a a a+-+=÷()()111a a a a a +=⋅+-11a =-.当1a =时,原式2=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.27.(2023年安徽中考数学真题)先化简,再求值:2211x x x +++,其中1x =.【答案】1x +【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解:2211x x x +++()211x x +=+1x =+,当1x =-时,∴原式11+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.28.(20232133-⎛⎫- ⎪⎝⎭【答案】6-【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=-+6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.29.(2023年吉林省长春市中考数学真题)先化简.再求值:2(1)(1)a a a ++-,其中3a =.【答案】31a +1+【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.30.(2023年内蒙古通辽市中考数学真题)计算:21tan 453-⎛⎫+︒-⎪⎝⎭【答案】0【分析】根据负整数次幂、特殊角的三角函数值、算术平方根化简,然后在计算即可.【详解】解:21tan 453-⎛⎫+︒-⎪⎝⎭9110=+-,0=.【点睛】本题主要考查了负整数次幂、特殊角的三角函数值、算术平方根等知识点,掌握基本的运算法则是解答本题的关键.31.(2019·河南·统考中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭322x x x-=⋅-3x=,当x ===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.32.(2023年辽宁省营口市中考数学真题)先化简,再求值:524223m m m m-⎛⎫++⋅⎪--⎝⎭,其中tan 45m =︒.【答案】26--m ,原式16=-【分析】先根据分式的混合计算法则化简,然后根据特殊角三角函数值和二次根式的性质求出m 的值,最后代值计算即可.【详解】解:524223m m m m-⎛⎫++⋅⎪--⎝⎭()22245223m m m m m-⎛⎫-=-⋅⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵tan 45m =︒,∴415m =+=,∴原式25610616=-⨯-=--=-.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,化简二次根式等等,正确计算是解题的关键.33.(2023·重庆九龙坡·的值应在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】A【分析】根据二次根式的乘法进行计算,以及估算无理数的大小的方法解答即可.=6=∵91416<<,∴34<,∴43-<<-,∴263<<,故选:A .【点睛】本题考查了估算无理数的大小和二次根式的运算.解题的关键是掌握二次根式的运算方法,以及估算无理数的大小的方法.34.(2023·辽宁丹东·统考二模)在函数y =x 的取值范围是()A .12x -<≤B .21x -<≤C .12x ≤≤D .12x <≤【答案】D【分析】根据函数有意义的条件得到2010x x -≥⎧⎨->⎩,解不等式组即可得到自变量x 的取值范围.【详解】解:由题意得2010x x -≥⎧⎨->⎩,解不等式组得12x <≤,故选:D .【点睛】此题考查了自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.35.(2023·安徽蚌埠·统考三模)下列运算正确的是()A 3=B .()3328a a -=-C =D .112235+=【答案】B【分析】根据二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则依次判断即可得出答案.【详解】解:A 333==B .()3328a a -=-,故此选项符合题意;CD .11522365+=≠,故此选项不符合题意.故选:B .【点睛】本题考查二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则.掌握相应的运算法则和性质是解题的关键.36.(2023·河北沧州·校考模拟预测)下列运算中,正确的是().A3=±B 2=C 2=D 8=-【答案】C【分析】利用二次根式的化简的法则对各项进行运算即可.【详解】解答:解:A 3=,故A 不符合题意;B 2=-,故B 不符合题意;C 2=,故C 符合题意;D 8=,故D 不符合题意;故选:C .【点睛】本题主要考查二次根式的化简,解答的关键是对相应的运算法则的掌握.37.(2023·四川泸州·四川省泸县第一中学校考三模)实数2的平方根为()A .2B .2±C D .【答案】D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是.故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.38.(2023·西南大学附中校考三模)估计(3-)A .0和1之间B .2和3之间C .3和4之间D .4和5之间【答案】A【分析】由题意知(34-,由1.4 1.5=<<=,可得4.2 4.5<<,0.240.5<<,然后判断作答即可.【详解】解:(34-⨯,∵1.4 1.5=<<=,∴4.2 4.5<<,∴0.240.5<<,∴估算(3-0和1之间,故选:A .39.(2023·河北石家庄·校联考一模)下列计算正确的是()A =B1=-C =D 23=【答案】C【分析】根据二次根式加法、二次根式减法、二次根式乘法、二次根式除法分别进行判断即可.【详解】解:AB 0-=,故选项错误,不符合题意;C =D 1=,故选项错误,不符合题意.故选:C .【点睛】此题考查了二次根式的加法、减法、乘法、除法,熟练掌握运算法则是解题的关键.40.(2023·江苏无锡·校考二模)函数y x的取值范围是()A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤【答案】C【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数x 50x 5-≥⇒≥.故选C.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.41.(2023·湖南长沙·校联考二模)4的算术平方根是()A .2B .2±C .8D .16【答案】A【分析】如果一个数x 的平方等于(0)a a ≥,那么这个数x 叫做a 的平方根,可以表示为平方根叫做a 的算术平方根.正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.【详解】解:42=,故选:A .【点睛】本题考查算术平方根的定义,明确平方根与算术平方根的区别与联系是本题的关键.42.(2023·重庆九龙坡·重庆市育才中学校考一模)x)A .0B .2C .3D .5【答案】D【分析】根据二次根式有意义的条件进行求解即可.∴40x -≥,即4x ≥,∴四个选项中只有D 选项中的5符合题意,故选:D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零是解题的关键.43.(2023·甘肃平凉·的结果是.【答案】2【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.44.(2021·黑龙江大庆·=【答案】4【分析】先算4(2)-,再开根即可.==4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.45.(2023·广东茂名·校考一模)已知实数x,y |4|0y -=,则1x y -=⎛⎫⎪⎝⎭.【答案】2【分析】根据算术平方根的非负性,绝对值的非负性得出24x y ==,,进而根据负整数指数幂进行计算即可求解.40y -=0≥,40y -≥,∴20x -=,40y -=,∴24x y ==,,∴11112422x y ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭===.故答案为:2.【点睛】本题主要考查了算术平方根和绝对值的非负性、负整数次幂等知识点,根据非负性正确求得x 、y 的值是解答本题的关键.46.(2023·福建福州·校考二模)已知2a =2b =22a b ab -的值等于.【答案】【分析】先求出a b -=1ab =,再由()22a b ab ab a b -=-进行求解即可.【详解】解:∵2a =2b =∴22a b -=++=((22431ab =+⨯-=-=,∴22a b ab -()ab a b =-1=⨯=故答案为:【点睛】本题主要考查了二次根式的混合运算、求代数式的值,正确得到a b -=1ab =是解题的关键47.(2023·山东聊城·x 的取值范围是.【答案】12x ≥【分析】根据二次根式有意义的条件可得210x -≥,即可.【详解】解:由题意得:210x -≥,解得:12x ≥,故答案为:12x ≥.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.48.(2023·安徽滁州·校考模拟预测)计算)11-的结果等于.【答案】22【分析】直接利用平方差公式进行简便运算即可.【详解】解:)2211123122=-=-=,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.49.(2023·陕西西安·校考模拟预测)-64的立方根是.【答案】-4【分析】直接利用立方根的意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.50.(2023·云南昭通·x 的取值范围是.【答案】x>8【分析】由分式的分母不等于零和二次根式的被开方数是非负数得到x﹣8>0.【详解】解:由题意,得x﹣8>0,解得x>8.故答案是:x>8.【点睛】考查了分式有意义的条件和二次根式有意义的条件,注意,二次根式在分母上,所以不能取到0.51.(2023·四川泸州·四川省泸县第一中学校考三模)函数y=x的取值范围是.【答案】x>3【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.x30x3x>3x30x3-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩.52.(2023·河南洛阳·统考一模)计算:22-=.【答案】74-【分析】先计算22-,再算减法.【详解】解:原式17244=-=-.故答案为:74-.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键.53.(2023·安徽蚌埠·统考三模)计算:212022--=.【答案】2023【分析】根据有理数的乘方,二次根根式的性质,化简绝对值进行计算即可求解.【详解】解:212022--=122022-++2023=,故答案为:2023.【点睛】本题考查了有理数的乘方,二次根根式的性质,化简绝对值,正确的计算是解题的关键.54.(2022·新疆·x的取值范围是.【答案】x≥3【分析】直接利用二次根式有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x—3≥0,解得:x≥3,故答案为:x≥3【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.55.(2023·黑龙江哈尔滨·统考三模)计算=.【答案】【分析】先根据二次根式的性质化简,然后根据二次根式的加减法则求解即可.【详解】解:=-2=-=故答案为:【点睛】本题主要考查了二次根式的性质、二次根式的加减运算等知识点,灵活运用二次根式的的性质化简是解题的关键.x的取值范围是.56.(2023·云南昆明·一模)要使式子3有意义,x≥【答案】5【分析】二次根式中的被开方数是非负数,依此即可求解.x-≥,【详解】解:依题意有:50x≥.解得5x≥.故答案为:5【点睛】本题考查了二次根式有意义的条件,关键是熟悉二次根式中的被开方数是非负数的知识点.57.(云南省丽江市华坪县2020-2021=.【答案】6【分析】利用二次根式的乘法法则进行求解即可.==.6故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.58.(2023·山西·模拟预测)计算:=.【答案】【分析】先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:3=⨯=+=故答案为:【点睛】本题主要考查了二次根式的加减计算,二次根式的化简,正确计算是解题的关键.59.(2023·重庆沙坪坝·重庆八中校考模拟预测)如果2y=+,那么yx的值是.【答案】225【分析】根据二次根式有意义的条件,求出,x y的值,进而求出y x的值即可.【详解】解:∵2y=,∴150,150x x -≥-≥,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.【点睛】本题考查二次根式有意义的条件,代数式求值.熟练掌握二次根式的被开方数是非负数,是解题的关键.60.(江西省崇仁县第二中学2016-2017学年八年级上学期第二次月考数学试题)计算:=【答案】61.(2015年初中毕业升学考试(山东滨州卷)数学(带解析))计算的结果为.【答案】﹣1【分析】此题用平方差公式计算即可.【详解】22=-23=-1=-62.(2023·黑龙江哈尔滨·=.【答案】3【分析】根据二次根式的化简方法和运算法则进行计算.【详解】解:原式33==【点睛】本题考查二次根式的计算,在化简二次根式的基础上再把同类二次根式合并.63.(福建省永春县第一中学2017【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.64.(2023·广东茂名·校考一模)先化简,再求值:2121211x x x x +⎛⎫÷+ ⎪-+-⎝⎭其中1x +.【答案】11x -;2【分析】先通分算括号内的,把除化为乘,再约分,化简后将x 的值代入计算.【详解】解:212(1)211x x x x +÷+-+-211(1)1x x x x ++=÷--211(1)1x x x x +-=⋅-+11x =-,当1x =+时,原式=2=.【点睛】本题考查了分式化简求值,掌握分式的基本性质,将分式通分和约分进行化简是关键.65.(2023·四川泸州·011+()3-23-【答案】【分析】根据实数的混合运算法则即可求解.011+()3-23-=(1+32-=1+32-+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及运算法则.66.(2023·安徽六安·1+【分析】先计算算术平方根.化简绝对值,求解立方根,再合并即可.1+=+-413=【点睛】本题考查是算术平方根的含义,化简绝对值,求解立方根,实数的混合运算,掌握“算术平方根与立方根的含义”是解本题的关键.67.(2022·新疆·统考中考真题)计算:20-+(2)|(3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=++=【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是=.解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a。

专题04 二次根式的核心知识点精讲-备战2024年中考数学一轮复习考点帮 (2)

专题04 二次根式的核心知识点精讲-备战2024年中考数学一轮复习考点帮 (2)

专题04 二次根式的核心知识点精讲1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.【题型1:二次根式有意义的条件】【典例1】(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2B.x≥0C.x≥2D.x≥0且x≠21.(2023•金华)要使有意义,则x的值可以是()A.0B.﹣1C.﹣2D.22.(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.3.(2023•湘西州)若二次根式在实数范围内有意义,则x的取值范围是.【题型2:二次根式的性质】【典例2】(2023•泰州)计算等于()A.±2B.2C.4D.1.(2021•苏州)计算()2的结果是()A.B.3C.2D.92.(2023•青岛)下列计算正确的是()A.B.C.D.3.(2021•娄底)2、5、m是某三角形三边的长,则+等于()A.2m﹣10B.10﹣2m C.10D.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=2.【题型3:二次根式的运算】【典例3】(2023•金昌)计算:÷×2﹣6.1.(2023•聊城)计算:(﹣3)÷=.2.(2023•山西)计算:的结果为.3.(2023•兰州)计算:.4.(2023•陕西)计算:.1.(2023秋•福鼎市期中)下列各数不能与合并的是()A.B.C.D.2.(2023秋•云岩区校级期中)下列式子中,属于最简二次根式的是()A.B.C.D.3.(2022秋•泉州期末)若二次根式有意义,则x的取值范围是()A.x<3B.x≠3C.x≤3D.x≥3 4.(2023秋•龙泉驿区期中)下列运算中,正确的是()A.B.C.D.5.(2023秋•锦江区校级期中)若a>b>0,则的结果是()A.a B.2b﹣a C.a﹣2b D.﹣a6.(2023春•河东区期中)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣7.(2023春•铁岭县期末)计算:的结果是()A.2B.0C.﹣2D.﹣8.(2023春•抚顺月考)二次根式的计算结果是()A.B.C.±D.9.(2023春•西丰县期中)已知a=+2,b=﹣2,则a﹣b的值是()A.2B.4C.2+4D.2﹣410.(2023春•工业园区期末)下列各组二次根式中,是同类二次根式的是()A.与B.与C.与D.与11.(2023春•武昌区校级期中)若是整数,则满足条件的最小正整数n的值为.12.(2023春•固镇县月考)计算=.13.(2023春•高安市期中)化简计算:=.14.(2023秋•高新区校级期中)计算:(1)×;(2).15.(2023秋•秦都区校级期中)计算:﹣×.1.(2022秋•鼓楼区校级期末)实数a在数轴上的位置如图所示,则化简结果为()A.7B.﹣7C.2a﹣15D.无法确定2.(2023春•新郑市校级期末)若=在实数范围内成立,则x的取值范围是()A.x≥1B.x≥4C.1≤x≤4D.x>43.(2023秋•西安校级月考)若x,y都是实数,且,则xy的值是()A.0B.4C.2D.不能确定4.(2023•商水县一模)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积,这个公式也被称为海伦一秦九韶公式.若p=5,c=2,则此三角形面积的最大值为()A.B.C.D.55.(2023秋•闵行区期中)计算:=.6.(2023春•科左中旗校级期末)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…按上述规律,计算a1+a2+a3+…+a n=.7.(2023春•中江县月考)已知的值是.8.(2023春•禹州市期中)如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为,宽为,则这个大长方形的周长为.9.(2023春•宿豫区期末)计算的结果为.10.(2023秋•双流区校级期中)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2;(2)a2﹣3ab+b2.11.(2023春•双柏县期中)阅读下面问题:==﹣1;==﹣;==﹣2.(1)求的值;(2)计算:+++…++.12.(2023秋•二七区校级月考)阅读材料:我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样()2+()2=m,•=.那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,.∴,模型应用1:利用上述解决问题的方法化简下列各式:(1);(2).模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(直接写出结果,结果化成最简).1.(2022•桂林)化简的结果是()A.2B.3C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a3.(2022•河北)下列正确的是()A.=2+3B.=2×3C.=32D.=0.7 4.(2022•湖北)下列各式计算正确的是()A.B.C.D.5.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.36.(2022•安顺)估计(+)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(2023•绵阳)若式子在实数范围内有意义,则x的最小值为.8.(2023•丹东)若代数式在实数范围内有意义,则实数x的取值范围是.9.(2022•武汉)计算的结果是.10.(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.11.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.12.(2022•泰安)计算:•﹣3=.13.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.。

2023年中考数学微专题复习提升测试卷 分式及二次根式(含答案)

2023年中考数学微专题复习提升测试卷 分式及二次根式(含答案)

微专题复习提升测试卷——分式及二次根式(时间:60分钟 分数:100分)姓名: 分数:一、选择题(本题共8小题,共40分)1.(2021 )A .321-+B .321+-C .321++D .321--2.(2021 )A B C .2D 3.(2021·湖南衡阳)下列计算正确的是( )A 4=±B .()021-=C =D 3=4.(2021年广西桂林)若分式23x x -+的值等于0,则x 的值是( ) A .2 B .﹣2 C .3 D .﹣35.(2022年山东威海)试卷上一个正确的式子(11a b a b++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( ) A .a a b - B .a b a - C .a a b + D .224a a b - 6.(2020年山东淄博)化简222a b ab a b b a++--的结果是( ) A .a +b B .a ﹣b C .2()a b a b +- D .2()a b a b-+ 7.(2022年内蒙古乌海)若分式11x x --的值等于0,则x 的值为( ) A .﹣1B .0C .1D .±18.函数11=-+y x 中,自变量x 的取值范围是( ) A .23x ≤ B .23x ≥ C .23x <且1x ≠- D .23x ≤且1x ≠- 二、填空题(本题共5小题,每空3分,共15分) 9.计算:(1+a 1−a )÷1a 2−a = .10.计算:√92−√12+√8= .11.(2022年黑龙江哈尔滨)在函数53x y x =+中,自变量x 的取值范围是___________.12.(2020年湖北荆州)若()1012020,,32a b c π-⎛⎫=-=-=- ⎪⎝⎭,则a ,b ,c 的大小关系是_______.(用<号连接)13.(2021年湖北鄂州)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 三、解答题(本题共3小题,共45分)14.(2021年山东烟台)先化简,再求值:2225321121x x x x x x +-⎛⎫-÷ ⎪---+⎝⎭,从22x -<≤中选出合适的x 的整数值代入求值.15.(2020•滨州)先化简,再求值:1−y−x x+2y ÷x 2−y 2x 2+4xy+4y 2;其中x =cos30°×√12,y =(π﹣3)0﹣(13)﹣1.16.(2020•遂宁)先化简,(x 2+4x+4x 2−4−x ﹣2)÷x+2x−2,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值.参考答案:1.A2.D3.B4.A5.A6.B7.A8.D9.﹣a10.3√2 11.35x ≠- 12.b a c << 13.23- 14.11x x -+;-1. 15.yx y x ++32,0 16.-x+3,∵x ≠±2,∴可取x =1,则原式=﹣1+3=2.。

分式与二次根式(解析版)-中考数学必考考点与题型专训

分式与二次根式(解析版)-中考数学必考考点与题型专训

分式与二次根式命题趋势分式与二次根式是历年中考的考察重点,年年考查,分值为12分左右。

预计2023年各地中考还将继续重视对分式与根式的有关概念、分式与根式的性质和分式与根式的混合运算等的考查,且考查形式多样,为避免丢分,学生应扎实掌握。

知识梳理1、分式1)分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式.(2)分式AB中,A 叫做分子,B 叫做分母.【注】①若B ≠0,则A B 有意义;②若B =0,则A B 无意义;③若A =0且B ≠0,则AB =0.2)分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为A B =A ⋅C B ⋅C (C ≠0)或A B =A ÷CB ÷C (C ≠0),其中A ,B ,C 均为整式.3)约分及约分法则(1)约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.4)最简分式:分子、分母没有公因式的分式叫做最简分式.【注】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式.5)通分及通分法则(1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分.(2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;③若分母是多项式,则先分解因式,再通分.6)最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.7)分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示:a b ±c b =a ±cb.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a b ±c d =ad bd ±bc bd =ad ±bcbd.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示:a b ⋅cd=a ⋅cb ⋅d.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示:a b ÷c d =ab⋅d c =a ⋅d b ⋅c .(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示:a b n =a nb n (n 为正整数,b ≠0).(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.2、二次根式1)二次根式的有关概念(1)二次根式的概念:形如a (a ≥0)的式子叫做二次根式.其中符号“”叫做二次根号,二次根号下的数叫做被开方数.【注】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0.(2)最简二次根式:被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式: 化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式.2)二次根式的性质(1)a ≥0(a ≥0);(2)(a )2=a (a ≥0); (3)a 2=a =a (a >0)0(a =0)-a (a <0) ;3)二次根式的运算(1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.(2)二次根式的乘除乘法法则:a ⋅b =ab (a ≥0,b ≥0);除法法则:a b=a b(a ≥0,b >0).(3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.重点考向考向1分式的有关概念1.分式的三要素:(1)形如AB的式子;(2)A ,B 均为整式;(3)分母B 中含有字母.2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即B ≠0.(2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例引领1.(2022·湖南怀化·中考真题)代数式25x ,1π,2x 2+4,x 2-23,1x ,x +1x +2中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是2x 2+4,1x ,x +1x +2,∴分式有3个,故选:B .【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键.2.(2022·浙江湖州·中考真题)当a =1时,分式a +1a的值是.【答案】2【分析】直接把a 的值代入计算即可.【详解】解:当a =1时,a +1a =1+11=2.故答案为:2.【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可.3.(2023·河南·中考模拟)下列说法错误的是()A.当x ≠3时,分式4x +5x -3有意义 B.当x =1时,分式x +1x -1无意义C.不论a 取何值,分式a 2+1a2都有意义 D.当x =1时,分式x -1x +1的值为0【答案】C【分析】分母不为0时,分式有意义,分母为0时,分式无意义,分子等于0,分母不为0时分式值为0,由此判断即可.【解析】解:A 选项当x -3≠0,即x ≠3时,分式4x +5x -3有意义,故A 正确;B 选项当x -1=0,即x =1时,分式x +1x -1无意义,故B 正确;C 选项当a 2≠0,即a ≠0时,分式a 2+1a 2有意义,故C 错误;D 选项当x -1=0,且x +1≠0即x =1时,分式x -1x +1的值为0,故D 正确.故选C .【点睛】本题主要考查了分式有意义、无意义、值为0的条件,熟练掌握分式的分母不为0是确定分式有意义的关键.变式拓展1.(2022·湖北黄冈·中考真题)若分式2x -1有意义,则x 的取值范围是.【答案】x ≠1【分析】根据分式有意义的条件即可求解.【详解】解:∵分式2x -1有意义,∴x -1≠0,解得x ≠1.故答案为:x ≠1.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.2.(2022·广西·中考真题)当x =时,分式2xx +2的值为零.【答案】0【分析】根据分式值为零,分子等于零,分母不为零得2x =0,x +2≠0求解即可.【详解】解:由题意,得2x =0,且x +2≠0,解得:x =0,故答案为:0.【点睛】本题考查分式值为零的条件,熟练掌握分式值为零的条件“分子为零,分母不为零”是解题的关键.3.(2023·绵阳市·中考模拟)下列关于分式的判断,正确的是()A.当x =2时,x +1x -2的值为零B.无论x 为何值,4x 2+3的值总为正数C.无论x 为何值,3x +1不可能得整数值D.当x =3时,x -33无意义【答案】B【分析】分式有意义的条件是分母不等于0,分式值是0的条件是分子是0,分母不是0.【详解】解:A 、当x =2时,分母x -2=0,分式无意义,故A 错误;B 、分母中x 2+3≥3,因而第二个式子一定成立,故B 正确;C 、当x +1=1或-1时,3x +1的值是整数,故C 错误;D 、x -33不是分式,故D 错误.故选:B .【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式各种结果的判断标准:分式的值是正数的条件是分子、分母同号;值是负数的条件是分子、分母异号;分式值是0的条件是分子是0,分母不是0.考向2分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例引领1.(2020·河北中考真题)若a ≠b ,则下列分式化简正确的是()A.a +2b +2=abB.a -2b -2=abC.a 2b2=ab D.12a 12b =ab【答案】D【分析】根据a ≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题.【详解】∵a ≠b ,∴a +2b +2≠a b ,选项A 错误;a -2b -2≠ab,选项B 错误;a 2b 2≠a b ,选项C 错误;12a 12b =a b ,选项D 正确;故选:D .【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.2.(2022·广东·一模)如果把分式2yx +y中的x 和y 都扩大为原来的2倍,那么分式的值()A.不变B.缩小为原来的12C.扩大为原来的2倍D.扩大为原来的4倍【答案】A【分析】依题意,分别用2x 和2y 去代换原分式中的x 和y ,利用分式的基本性质化简即可.【详解】分别用2x 和2y 去代换原分式中的x 和y ,得:2×2y 2x +2y =4y 2(x +y )=2yx +y 化简后的结果和原式相同,故答案为:A .【点睛】本题主要考查了分式的基本性质,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.变式拓展1.(2022·河北·三模)下列各式从左到右的变形中,不正确的是()A.-23a =-23aB.-b -6a =b6aC.3a -4b =-3a4bD.--8a 3b =8a-3b【答案】D【分析】根据分式的基本性质逐个判断即可.【详解】解:A 、-23a =-23a ,故本选项不符合题意;B 、-b -6a =b6a,故本选项不符合题意;C 、3a -4b =-3a 4b ,故本选项不符合题意;D 、--8a 3b =8a 3b ,故本选项符合题意;故选:D【点睛】本题考查了分式的基本性质,能熟记分式的基本性质是解此题的关键,注意:①分式的基本性质是:分式的分子和分母都乘以或除以同一个不为0的整式,分式的值不变,②分式分子的符号,分式分母的符号,分式本身的符号,改变其中的两个符号,分式本身的值不变.2.(2022·浙江·一模)若把分式1x +1y中的x ,y 同时扩大2倍,则分式的值()A.是原来的2倍B.是原来的12C.是原来的14D.不变【答案】B【分析】根据分式的加法进行计算,再把x ,y 同时扩大2倍,观察分式值变化即可.【详解】解:1x +1y =x +y xy ,x ,y 同时扩大2倍得2x +2y 2x ×2y =2(x +y )4xy =12×x +y xy,分式的值是原来的12,故选:B .【点睛】本题考查了分式的加法和分式的基本性质,解题关键是熟练进行分式加法和约分.考向3分式的约分与通分约分与通分的区别与联系:1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值;2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例引领1.(2022·江苏·二模)分式m 2m -2n 和3nm -n的最简公分母为.【答案】2(m -n )【分析】利用最简公分母的定义求解,分式m 2m -2n 和3nm -n的分母分别是2(m -n )、(m -n ),故最简公分母是2(m -n )即是本题答案.【详解】解:∵分式m 2m -2n 和3nm -n的分母分别是2(m -n )、(m -n ).∴它们的最简公分母是2(m -n ).故答案为:2(m -n ).【点睛】本题考查最简公分母,将原式的分母正确进行因式分解并掌握最简公分母的定义是解题关键.2.(2022·上海崇明·二模)化简:xx 2-2x=.【答案】1x -2【分析】直接利用分式的性质化简得出答案.【详解】解:x x 2-2x=x x (x -2)=1x -2.故答案为:1x -2.【点睛】此题主要考查了分式的化简,熟练掌握运算法则是解答此题的关键.3.(2022·广西·二模)关于分式的约分或通分,下列哪个说法正确()A.x +1x 2-1约分的结果是1x B.分式1x 2-1与1x -1的最简公分母是x -1C.2xx2约分的结果是1D.化简x 2x 2-1-1x 2-1的结果是1【答案】D【分析】根据分式的基本性质将分式约分,即可判断A 与C ;根据确定最简公分母的方法判断B ;根据分式减法法则计算,即可判断D .【详解】A 、x +1x 2-1=1x -1,故本选项错误;B 、分式1x 2-1与1x -1的最简公分母是x 2-1,故本选项错误;C 、2x x 2=2x ,故本选项错误;D 、x 2x 2-1-1x 2-1=1,故本选项正确;故选D .【点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握.变式拓展1.(2023·河北·一模)要把分式32a 2b 与a -bab 2c通分,分式的最简公分母是()A.2a 2b 2cB.2a 3b 3C.2a 3b 3cD.6a 3b 3c【答案】A【分析】根据最简公分母定义是各分母的最小公倍数即可求解.【详解】解:根据最简公分母是各分母的最小公倍数,∵系数2与1的公倍数是2,a 2与a 的最高次幂是a 2,b 与b 2的最高次幂是b 2,对于只在一个单项式中出现的字母c 直接作公分母中的因式,∴公分母为:2a 2b 2c .故选择:A .【点睛】本题考查最简公分母,熟练掌握最简公分母是解题关键.2.(2023·河北滦州·一模)下列分式化简结果为ab的是()A.a +2b +2B.a -2b -2C.a +ab +bD.a ×ab ×b【答案】C【分析】根据分式的化简逐个判断即可.【详解】A .a +2b +2≠a b ,故选项A 错误;B .a -2b -2≠ab,故选项B 错误;C .a +a b +b =2a 2b =a b ,故选项C 正确;D .a ×a b ×b =a 2b 2≠a b ,故选项D 错误;故选:C .【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.熟练掌握分式的基本性质是解题的关键.3.(2022·上海·二模)计算:1a -1b=.【答案】b -aab【分析】将式子通分计算即可.【详解】1a -1b =b ab -a ab =b -aab【点睛】本题考查分式通分,正确寻找分母的最小公倍数是解题关键.考向4分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例引领1.(2022·广西玉林·中考真题)若x 是非负整数,则表示2x x +2-x 2-4(x +2)2的值的对应点落在下图数轴上的范围是()A.①B.②C.③D.①或②【答案】B【分析】先对分式进行化简,然后问题可求解.【详解】解:2x x +2-x 2-4(x +2)2=2x x +2 x +2 2-x 2-4(x +2)2=2x 2+4x -x 2+4x +2 2=x +2 2(x +2)2=1;故选B .【点睛】本题主要考查分式的运算,熟练掌握分式的减法运算是解题的关键.2.(2022·黑龙江牡丹江·中考真题)先化简,再求值:3x x -2-x x +2÷xx 2-4,在-2,0,1,2四个数中选一个合适的代入求值.【答案】2x +8,10.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =1代入计算即可求出值.【详解】解:原式=3x x +2 -x x -2 x -2 x +2⋅x 2-4x =2x x +4 x -2 x +2⋅x -2 x +2x =2(x +4)=2x +8当x =-2,0,2时,分式无意义当x =1时,原式=10.【点睛】本题主要考查了分式的化简和代入求值,关键是代入的时候要根据分式有意义的条件选择合适的值代入.3.(2022·山东聊城·中考真题)先化简,再求值:a 2-4a ÷a -4a -4a -2a -2,其中a =2sin45°+12-1.【答案】a a -2,2+1【分析】运用分式化简法则:先算括号里,再算括号外,然后把a ,b 的值代入化简后的式子进行计算即可解答.【详解】解:a 2-4a ÷a -4a -4a -2a -2=a +2 a -2 a ×a a -22-2a -2=a +2a -2-2a -2=aa -2,∵a =2sin45°+12-1=2×22+2=2+2,代入得:原式=2+22+2-2=2+1;故答案为:aa -2;2+1.【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.变式拓展1.(2022·山东威海·中考真题)试卷上一个正确的式子1a +b +1a -b ÷★=2a +b被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为()A.aa -bB.a -b aC.a a +bD.4a a 2-b 2【答案】A【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可.【详解】解:1a +b +1a -b ÷★=2a +b a -b +a +b a +b a -b÷★=2a +b ★=2a a +b a -b÷2a +b =aa -b ,故选A .【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键.2.(2022·江苏扬州·中考真题)计算:(1)2cos45°+π-3 0-8(2)2m -1+1÷2m +2m 2-2m +1【答案】(1)1-2(2)m -12【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可;(2)先合并括号里的分式,再对分子和分母分别因式分解即可化简;【详解】(1)解:原式=2×22+1-22=1-2.(2)解:原式=2m -1+m -1m -1 ⋅m -1 22m +1 =m +1m -1⋅m -1 22m +1 =m -12.【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.3.(2022·辽宁营口·中考真题)先化简,再求值:a +1-5+2a a +1 ÷a 2+4a +4a +1,其中a =9+|-2|-12-1.【答案】a -2a +2,15.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再利用算术平方根、绝对值、负整数指数幂计算出a 的值,代入计算即可求出值.【详解】解:a +1-5+2a a +1 ÷a 2+4a +4a +1=(a +1)2-5-2a a +1÷(a +2)2a +1=a2-4 a+1⋅a+1(a+2)2=(a+2)(a-2)a+1⋅a+1(a+2)2=a-2a+2,当a=9+|-2|-12-1=3+2-2=3时,原式=3-23+2=15.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.还考查了算术平方根、绝对值、负整数指数幂.考向5二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例引领1.(2022·广东广州·中考真题)代数式1x+1有意义时,x应满足的条件为()A.x≠-1B.x>-1C.x<-1D.x≤-1【答案】B【分析】根据分式分母不为0及二次根式中被开方数大于等于0即可求解.【详解】解:由题意可知:x+1>0,∴x>-1,故选:B.【点睛】本题考察了分式及二次根式有意义的条件,属于基础题.2.(2022·河北·中考真题)下列正确的是()A.4+9=2+3B.4×9=2×3C.94=32D. 4.9=0.7【答案】B【分析】根据二次根式的性质判断即可.【详解】解:A.4+9=13≠2+3,故错误;B.4×9=2×3,故正确;C.94=38≠32,故错误;D. 4.9≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.3.(2022·四川遂宁·中考真题)实数a,b在数轴上的位置如图所示,化简a+1-b-12+a-b2 =.【答案】2【分析】利用数轴可得出-1<a<0,1<b<2,进而化简求出答案.【详解】解:由数轴可得:-1<a<0,1<b<2,则a+1>0,b-1>0,a-b<0∴a+1-b-12+a-b2=|a+1|-|b-1|+|a-b|=a+1-(b-1)-(a-b)=a+1-b +1-a+b=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a,b的取值范围是解题关键.变式拓展1.(2020·山东济宁市·中考真题)下列各式是最简二次根式的是()A.13B.12C.a2D.53【答案】A【分析】根据最简二次根式的定义即可求出答案.【详解】解:A、13是最简二次根式,故选项正确;B、12=23,不是最简二次根式,故选项错误;C、a2=a ,不是最简二次根式,故选项错误;D、53=153,不是最简二次根式,故选项错误;故选A.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.(2022·四川南充·中考真题)若8-x为整数,x为正整数,则x的值是.【答案】4或7或8【分析】根据根号下的数大于等于0和x为正整数,可得x可以取1、2、3、4、5、6、7、8,再根据8-x为整数即可得x的值.【详解】解:∵8-x≥0∴x≤8∵x为正整数∴x可以为1、2、3、4、5、6、7、8∵8-x为整数∴x为4或7或8故答案为:4或7或8.【点睛】本题考查了利用二次根式的性质化简、解一元一次不等式等知识点,掌握二次根式的性质是解答本题的关键.3.(2022·山东聊城·中考真题)射击时,子弹射出枪口时的速度可用公式v=2as进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为()A.0.4×102m/sB.0.8×102m/sC.4×102m/sD.8×102m/s【答案】D【分析】把a=5×105m/s2,s=0.64m代入公式v=2as,再根据二次根式的性质化简即可.【详解】解:v=2as=2×5×105×0.64=8×102m/s,故选:D.【点睛】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.考向6二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号).2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较;(2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较.典例引领1.(2022·湖北武汉·中考真题)下列各式计算正确的是()A.2+3=5B.43-33=1C.2×3=6D.12÷2=6【答案】C【分析】由合并同类二次根式判断A,B,由二次根式的乘除法判断C,D.【详解】解:A、2+3≠5原计算错误,该选项不符合题意;B、43-33=3原计算错误,该选项不符合题意;C、2×3=6正确,该选项符合题意;D、12÷2=23÷2=3原计算错误,该选项不符合题意;故选:C.【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键.2.(2022·重庆·中考真题)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.3.(2022·上海·中考真题)计算:|-3|-13-12+23-1-1212【答案】1-3【分析】原式分别化简|-3|=3,1 3-12=3,23-1=3+1,1212=23,再进行合并即可得到答案.【详解】解:|-3|-13-12+23-1-1212=3-3+3+1-23=1-3【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则是解答本题的关键.变式拓展1.(2022·贵州毕节·中考真题)计算8+|-2|×cos45°的结果,正确的是()A.2B.32C.22+3D.22+2【答案】B【分析】化简二次根式并代入特殊角的锐角三角比,再按照正确的运算顺序进行计算即可.【详解】解:8+|-2|×cos45°=22+2×22=22+2=32.故选:B【点睛】此题考查了二次根式的运算、特殊角的锐角三角比等知识,熟练掌握运算法则是解题的关键.2.(2021·湖南常德市·中考真题)计算:5+12-1⋅5+12=()A.0B.1C.2D.5-12【答案】C 【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:5+12-1 ⋅5+12=5-12⋅5+12=5-12=2.故选:C .【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键.3.(2022·内蒙古通辽·中考真题)计算:2⋅6+41-3 sin60°-12-1.【答案】4【分析】根据二次根式的乘法,化简绝对值,特殊角的三角函数值,负整数指数幂进行计算即可求解.【详解】解:原式=23+43-1 ×32-2=23+6-23-2=4【点睛】本题考查了实数的混合运算,掌握二次根式的乘法,化简绝对值,特殊角的三角函数值,负整数指数幂是解题的关键.考向7二次根式与分式中的探究规律问题典例引领1.(2022·湖南常德·中考真题)我们发现:6+3=3,6+6+3=3,6+6+6+3=3,⋯,6+6+6+⋯+6+6+3=3n 个根号,一般地,对于正整数a ,b ,如果满足b +b +b +⋯+b +b +a =a n 个根号时,称a ,b 为一组完美方根数对.如上面3,6 是一组完美方根数对.则下面4个结论:①4,12 是完美方根数对;②9,91 是完美方根数对;③若a ,380 是完美方根数对,则a =20;④若x ,y 是完美方根数对,则点P x ,y 在抛物线y =x 2-x 上.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C 【分析】根据定义逐项分析判断即可.【详解】解:∵12+4=4,∴4,12 是完美方根数对;故①正确;∵91+9=10≠9∴9,91 不是完美方根数对;故②不正确;若a ,380 是完美方根数对,则380+a =a 即a 2=380+a 解得a =20或a =-19∵a 是正整数则a =20故③正确;若x ,y 是完美方根数对,则y +x =x ∴y +x =x 2,即y =x 2-x 故④正确故选C 【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.2.(2022·四川眉山·中考真题)将一组数2,2,6,22,⋯,42,按下列方式进行排列:2,2,6,22;10,23,14,4;⋯若2的位置记为(1,2),14的位置记为(2,3),则27的位置记为.【答案】(4,2)【分析】先找出被开方数的规律,然后再求得27的位置即可.【详解】数字可以化成:2,4,6,8;10,12,14,16;∴规律为:被开数为从2开始的偶数,每一行4个数,∵27=28,28是第14个偶数,而14÷4=3⋯2∴27的位置记为(4,2)故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.3.(2022·四川达州·中考真题)人们把5-12≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a=5-12,b=5+12,记S1=11+a+11+b,S2=21+a2+2 1+b2,⋯,S100=1001+a100+1001+b100,则S1+S2+⋯+S100=.【答案】5050【分析】利用分式的加减法则分别可求S1=1,S2=2,S100=100,•••,利用规律求解即可.【详解】解:∵a=5-12,b=5+12,∴ab=5-12×5+12=1,∵S1=11+a +11+b=2+a+b1+a+b+ab=2+a+b2+a+b=1,S2=21+a2+21+b2=2×2+a2+b21+a2+b2+a2b2=2×2+a2+b22+a2+b2=2,⋯,S100=1001+a100+1001+b100=100×1+a10+1+b101+a10+b10+a10b10=100∴S1+S2+⋯+S100=1+2+⋯⋯+100=5050故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得ab=1,找出的规律是本题的关键.变式拓展1.(2022·河南驻马店·模拟预测)斐波那契(约1170-1250)是意大利数学家,他研究了一列数,被称为“斐波那契数列”.他发现该数列中的每个正整数都可以用无理数的形式表示,如第n(n为正整数)个数a n可表示为15[1+52n-1-52 n,且连续三个数a n-1,a n,a n+1之间存在以下关系a n-1+a n=a n+1(n≥2).①第1个数a1=1;②第2个数:a2=2;③“斐波那契数列”中的前8个数是1,1,2,3,5,8,13,21;④若把“斐波那契数列”中的每一项除以4所得的余数按相对应的顺序组成一组新数列,在新数列中,第2017项的值是1.以上说法正确的有.(请把你认为正确的序号全都填上去)【答案】①②④【分析】将n=1和n=2代入15[1+52n-1-52 n即可求得a1和a2,再按照a n-1+a n=a n+1可以求得前八个数,根据“把‘斐波那契数列'中的每一项除以4所得的余数”求出来一部分特殊项,观察规律,即可得到第2017项的值.【详解】①a1=151+52-1-52=15×5=1,故正确;②a2=15[1+522-1-52 2=15×5=1,故错误;③“斐波那契数列”中的前8个数是1,1,2,3,5,8,13,21,故正确;④1,1,2,3,5,8,13,21除以4所得的余数分别是1,1,2,3,1,0,1,1,2,3,1,0,⋯,2017÷6=336⋯1,故在新数列中,第2017项的值是1,故正确.故答案为:①③④.【点睛】本题考查了规律探究题,读懂题意,列出特殊项,观察一般规律是解决本题的关键.2.(2021·四川眉山市·中考真题)观察下列等式:x 1=1+112+122=32=1+11×2;x 2=1+122+132=76=1+12×3;x 3=1+132+142=1312=1+13×4;⋯⋯根据以上规律,计算x 1+x 2+x 3+⋯+x 2020-2021=.【答案】-12016【分析】根据题意,找到第n 个等式的左边为1+1n 2+1(n +1)2,等式右边为1与1n (n +1)的和;利用这个结论得到原式=112+116+1112+⋯+112020×2021-2021,然后把12化为1-12,16化为12-13,12015×2016化为12015-12016,再进行分数的加减运算即可.【详解】解:由题意可知,1+1n 2+1(n +1)2=1+1n (n +1),x 2020=1+12020×2021x 1+x 2+x 3+⋯+x 2020-2021=112+116+1112+⋯+112020×2021-2021=2020+1-12+12-13+⋯+12015-12016-2021=2020+1-12016-2021=-12016.故答案为:-12016.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.热点必刷1.(2022·黑龙江绥化·中考真题)若式子x +1+x -2在实数范围内有意义,则x 的取值范围是()A.x >-1B.x ≥-1C.x ≥-1且x ≠0D.x ≤-1且x ≠0【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选:C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.2.(2022·广西桂林·中考真题)化简12的结果是()A.23 B.3C.22D.2【答案】A【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为23.【详解】解:12=4×3=22×3=23,故选:A .【点睛】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.。

考点04 二次根式(精讲)(原卷版)

考点04 二次根式(精讲)(原卷版)

考点04.二次根式(精讲)【命题趋势】二次根式在各地中考中,每年考查2道题左右,分值为8分左右,对二次根式的考查主要集中在对其取值范围、化简、计算等方面,其中取值范围类考点多出选择题、填空题形式出现,而化简计算则多以解答题形式考察。

此外,二次根式还常和锐角三角函数、实数、其他几何图形等结合出题,难度不大,但是也多属于中考必考题。

【知识清单】1:二次根式的相关概念(☆☆)(1)二次根式的概念:形如)0(≥a a 的式子叫做二次根式。

其中符号“”叫做二次根号,二次根号下的数叫做被开方数。

注意:被开方数a 只能是非负数。

即要使二次根式a 有意义,则a ≥0。

(2)最简二次根式:被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。

(3)同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式。

2:二次根式的性质与化简(☆☆☆)(1)二次根式的性质:1)双重非负性:a ≥0(a ≥0);2))0()(2≥=a a a ;32(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩;(2)二次根式的化简方法:1)利用二次根式的基本性质进行化简;2)利用积的算术平方根的性质和商的算术平方根的性质进行化简。

(3)化简二次根式的步骤:1)把被开方数分解因式;2)利用积的算术平方根的性质,把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3)化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2。

3:二次根式的的运算(☆☆☆)(1)加减法法则:先把各个二次根式化为最简二次根式后,再将被开方数相同的二次根式合并。

口诀:一化、二找、三合并。

(2)乘法法则:两个二次根式相乘,把被开方数相乘,根指数不变.(3)除法法则:两个二次根式相除,把被开方数相除,根指数不变.(4)分母有理化:通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程。

人教版初中数学二次根式经典测试题附答案解析

人教版初中数学二次根式经典测试题附答案解析

人教版初中数学二次根式经典测试题附答案解析一、选择题1.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;B=是同类二次根式;C b==D不是同类二次根式;故选:B.【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2.(的结果在()之间.A.1和2 B.2和3 C.3和4 D.4和5【答案】B【解析】【分析】的范围,再求出答案即可.【详解】(==22∵45<∴223<<(的结果在2和3之间故选:B【点睛】本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.3.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.4.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.5. )A .±3B .-3C .3D .9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.6.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a的取值范围是解题的关键.7.若x、y4y=,则xy的值为()A.0 B.12C.2 D.不能确定【答案】C【解析】由题意得,2x−1⩾0且1−2x⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.8.若代数式1y x =-有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】 根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.9.下列计算错误的是( )A =B =C .3=D =【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:==,正确;==C. =D. ==故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k 【答案】D【解析】【分析】求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.11.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.12.下列各式中,是最简二次根式的是( )A B C D 【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A 被开方数含分母,错误.(2)B 满足条件,正确.(3) C 被开方数含能开的尽方的因数或因式,错误.(4) D 被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.13.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.14.下列各式中,运算正确的是( )A 2=-B 4=C =D .2=【答案】B【解析】【分析】=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】A 2=,故原题计算错误;B =,故原题计算正确;C =D 、2不能合并,故原题计算错误;故选B .【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.15.下列二次根式中,属于最简二次根式的是( )A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】C. 5,是最简二次根式;D. 4=2,故不是最简二次根式; 故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.16.已知1212a b ==+-,,则,a b 的关系是( ) A .a b = B .1ab =- C .1a b = D .=-a b 【答案】D【解析】【分析】根据a 和b 的值去计算各式是否正确即可.【详解】A. 1122212121212a b -+-+-=--==---,错误; B. 12112ab +=≠--,错误; C. 12112ab +=≠-,错误; D. 112221201212a b +-+-+=++==--,正确; 故答案为:D .【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.17.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B 6C .236223D .23225【答案】D【解析】【分析】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积=()()222323⨯-+⨯- =222233-+-=23225+-故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.18.如果2(2)2a a -=-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】 试题分析:根据二次根式的性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩可求解.19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】 ∵二次根式2x +在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.20.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】 2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .。

初中数学中考复习专题二次根式考点解析(含答案)

初中数学中考复习专题二次根式考点解析(含答案)

二次根式考点解析二次根式是中考考察的重点之一,在历年的中考试题中都有体现,现将年中考中关于这部分知识的考查点介绍如下.考点一、识别同类二次根式例1.下列根式中,与3是同类二次根式的是( ) A.8B.3.0C.32D.12解析:因822=,301013.0=,63132=,3212=.根据同类二次根式的定义可知本题选D.考点二、识别最简二次根式例2.下列二次根式是最简二次根式的为( ) A.23aB .28xC .3yD .4b解析:本题考查最简二次根式:符合条件(1)被开方式中不含有开得尽方的数或因式,(2)被开方式中不含有分母,符合以上两个条件的二次根式叫最简二次根式,只有23a 符合条件,故应选择A考点三、化简二次根式 例3.化简:123-= .解析:本题考查分母有理化:(1)互为有理化因式:•两个带有二次根式的代数式相乘不再含有二次根式,则这两个代数式叫做互为有理化因式,常见的有理化因式有:a 与±a ,a +b 与a -b ,a +b 与a -b ,m a +n b 与m a -n b ;(2)分母有理化:把分母中的根号化去过程,叫做分母有理化,•方法是在分子分母上同乘以分母的有理化因式.对该分式进行分母有理化,分子分母同乘以2-3的有理化因式2+3,化简得:2+3考点四、根据非负数的性质计算例4.若m 满足关系式385320062006y x a b a b -+-=+---g ,求53x y +的值.分析:二次根式的被开方数必须是非负数,因而本题存在隐含条件20060a b +-≥,20060a b --≥,由此求出a b +的值,问题也随之解决.解:由二次根式的意义可得2006020062006200602006a b a b a b a b a b +-+⎧⎧+=⎨⎨--+⎩⎩,, ..≥≥≥≤∴ ∴.53380x y -+-=∴, 530380x y -=-=∴,. 3853x y ==,∴,533811x y +=+=∴.考点五、求代数式的值例5.先化简下面的代数式,再求值:(2)(2)2(1)2x x x x +-++=,.解析:依据多项式的乘法法则得:22(2)(2)2(1)422222x x x x x x x x +-++=-++=+-=,,代入该式得:()2222222222x x +-=+⨯-=.考点六、根据规律判断两个二次根式的大小例6.用计算器计算:12122--,13132--,14142--,15152--,……,根据你发现的规律,判断211n P n -=-,与2(1)1(1)1n Q n +-=+-(n 为大于1的整数)的值的大小关系为( ) A.P Q <B.P Q =C.P Q >D.与n 的取值无关解析:借助计算器可得:222213141153 1.7322 1.414 1.2912131413---===---≈,≈,≈,25161.225512-=-≈,由上面求得的这些数据的大小变化规律可以猜想出P Q ,之间的关系为P Q <,故知本题选A.考点六、开放性问题 (1)探索规律所谓探索规律就是要通过由特殊推广到一般,并经过大胆地猜想、归纳和验证,从而获得正确的结果. 例7.观察下列各式:11111112,23,34, (33)4455+=+=+=请你将发现的规律用含自然数n(n ≥1)的等式表示出来 .解析:仔细观察寻找算式中变化的和没有改变的规律,很容易会得到结果为:12n n ++=1(1)2n n ++ (2)新定义运算定义的新运算,实质是给出了一种变换规则,以此考查学生的思维应变能力和演算能力.解这类题的关键是深刻理解所给的定义或规则,将它们转化成我们熟悉的运算例8.定义运算“@”的运算法则为: x@y = 4xy + ,则 (2@6)@8= .解析:观察所给的表达式的形式,可知新运算的结果等于两边的字母(或数字)的乘积加4的算术平方根,所以(2@6)@8=2×6+4@8=4@8=4×8+4=6注:题中在一定前提条件下,定义了不同的新运算,计算时,应看清条件,分别计算.。

人教版初中数学二次根式专项训练解析附答案

人教版初中数学二次根式专项训练解析附答案

人教版初中数学二次根式专项训练解析附答案一、选择题 1.使代数式a a +-有意义的a 的取值范围为()n nA .0a >B .0a <C .0a =D .不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .2.当3x =-时,二次根2257m x x ++式的值为5,则m 等于( )A .2B .22C .5D .5 【答案】B【解析】解:把x =﹣3代入二次根式得,原式=10m ,依题意得:10m =5,故m=52210=.故选B .3.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .4.已知n 45n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.5.m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】【详解】A. 18m =4,是同类二次根式,故此选项不符合题意;B. 4m = ,此选项符合题意C. 32m =,是同类二次根式,故此选项不符合题意;D. 627m = 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.6.已知3y =,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由3y =,得250{520x x -≥-≥,解得2.5 {3xy==-.2xy=2×2.5×(-3)=-15,故选A.7.化简2-2()的结果是A.-2 B.2 C.-4 D.4【答案】B【解析】2(2)22-=-=故选:B8.如图,数轴上的点可近似表示(4630-)6÷的值是()A.点A B.点B C.点C D.点D【答案】A【解析】【分析】先化简原式得45-,再对5进行估算,确定5在哪两个相邻的整数之间,继而确定45-在哪两个相邻的整数之间即可.【详解】原式=45-,由于25<<3,∴1<45-<2.故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.9.下列计算正确的是()A.+=B.﹣=﹣1 C.×=6 D.÷=3【答案】D【解析】【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A 、B 与不能合并,所以A 、B 选项错误; C 、原式= ×=,所以C 选项错误; D 、原式==3,所以D 选项正确.故选:D.【点睛】 本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.若2a a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.11.使代数式2x -有意义的x 的取值范围( ) A .x >2B .x≥2C .x >3D .x≥2且x≠3 【答案】D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数.根据题意,得20{30x x -≥-≠解得,x≥2且x ≠3. 考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件12.如果,则a 的取值范围是( ) A . B . C . D .【答案】B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.13.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.14.下列各式成立的是( )A .2-= B -=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式 B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.15.下列二次根式中,属于最简二次根式的是( )A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.16.计算201720192)2)的结果是( )A .B 2C .7D .7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B .6C .236223+--D .23225+-【答案】D【解析】【分析】 将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积((222323=222233+=23225故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.18.当实数x 2x -41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.19.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.20的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.。

人教版初中数学二次根式全集汇编附解析

人教版初中数学二次根式全集汇编附解析

人教版初中数学二次根式全集汇编附解析一、选择题1.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;B=是同类二次根式;C b==D不是同类二次根式;故选:B.【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2.已知n n的最小值是()A.3 B.5 C.15 D.45【答案】B【解析】【分析】由题意可知45n是一个完全平方数,从而可求得答案.【详解】=∵n∴n的最小值为5.故选:B.【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.3.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a的取值范围是解题的关键.4.若x、y4y=,则xy的值为()A.0 B.12C.2 D.不能确定【答案】C【解析】由题意得,2x−1⩾0且1−2x⩾0,解得x⩾12且x⩽12,∴x=12,y=4,∴xy=12×4=2.故答案为C.5.下列运算正确的是()A.B)2=2 CD==3﹣2=1【答案】B【解析】【分析】根据二次根式的性质和加减运算法则判断即可.【详解】根据二次根式的加减,可知A选项错误;根据二次根式的性质2=a(a≥02=2,所以B选项正确;(0)=0(=0)(0)a aa aa a⎧⎪=⎨⎪-⎩><﹣11|=11,所以C选项错误;DD选项错误.故选B.【点睛】此题主要考查了的二次根式的性质2=a(a≥0(0)=0(=0)(0)a aa aa a⎧⎪=⎨⎪-⎩><,正确利用性质和运算法则计算是解题关键.6.下列运算正确的是()A.1233x x-=B.()326a a a⋅-=-C.1)4=D.()422a a-=【答案】C【解析】【分析】根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A、1233x x x-=,故本选项错误;B、()325a a a⋅-=-,故本选项错误;C、1)514=-=,故本选项正确;D、()422a a-=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.7.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a . 8.下列各式中,不能化简的二次根式是( )A 12B 0.3C 30D 18【答案】C【解析】【分析】A 、B 选项的被开方数中含有分母或小数;D 选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有C 选项符合最简二次根式的要求.【详解】 解:A 1222=,被开方数含有分母,不是最简二次根式; B 300.310=,被开方数含有小数,不是最简二次根式;D=,被开方数含有能开得尽方的因数,不是最简二次根式;所以,这三个选项都不是最简二次根式.故选:C.【点睛】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.9.(的结果在()之间.A.1和2 B.2和3 C.3和4 D.4和5【答案】B【解析】【分析】的范围,再求出答案即可.【详解】(==22∵45<∴223<<(的结果在2和3之间故选:B【点睛】本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.10.1=-,那么x的取值范围是()xA.x≥1B.x>1 C.x≤1D.x<16【答案】A【解析】【分析】根据等式的左边为算术平方根,结果为非负数,即x-1≥0求解即可.【详解】由于二次根式的结果为非负数可知:x-1≥0,解得,x≥1,故选A.【点睛】本题利用了二次根式的结果为非负数求x 的取值范围.11.下列二次根式中是最简二次根式的是( )A B CD 【答案】B【解析】【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),判断即可.【详解】解:A ,故本选项错误;BCD,故本选项错误. 故选:B .【点睛】本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.12.a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.13.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.14.有意义时,a 的取值范围是( ) A .a ≥2B .a >2C .a ≠2D .a ≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a ≠2,∴a >2.故选B .15.下列各式成立的是( )A .2-= B -=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.16.下列二次根式中,属于最简二次根式的是( )A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.17.若a b>)A.-B.-C.D.【答案】D【解析】【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a3b≥0∵a>b,∴a>0,b<0=,故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.18.下列根式中属最简二次根式的是()A BC D【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A 、无法化简;B 、原式=;C 、原式=2;D 、原式=. 考点:最简二次根式19.估计26值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】 解:22612=∵91216<< 91216<<∴3124<< ∴估计226值应在3到4之间. 故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.20.一次函数y mx n =-+22()m n n -的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题04 二次根式
学校:___________姓名:___________班级:___________
1.【湖北武汉2015年考数学试卷】若代数式2-x 在实数范围内有意义,则x 的取值范为是( )
A .x ≥-2
B .x >-2
C .x ≥2
D .x ≤2
【答案】C
【解析】
考点:二次根式的性质.
2.【湖北荆门2015年中考数学试题】当12a <<10a -=的值是( )
A .1-
B .1
C .23a -
D .32a -
【答案】B .
【解析】
试题分析:∵1<a<2,∴a-2<0,1-a<0,∴
()22-a +|1-a|=2-a +a-1=1. 故选B . 考点:二次根式的性质与化简.
3.【2015届湖南省邵阳市邵阳县中考二模】下列二次根式中,最简二次根式是( )
A 【答案】A. 【解析】 试题解析:6是最简二次根式,A 正确;8=22,
B 不正确;12=23,
C 不正确;
2
221=,D 不正确,
故选A .
考点:最简二次根式.
4.【2015届四川省成都市外国语学校中考直升模拟】已知0<a <b ,x ,y 的大小关系是( )
A .x >y
B .x=y
C .x <y
D .与a 、b 的取值有关
【答案】C .
【解析】
考点:二次根式的化简求值.
5.【黑龙江哈尔滨2015-=
【解析】
试题分析:原式-3考点:二次根式的计算.
6.【辽宁葫芦岛2015年中考数学试题】有意义,则实数x 的取值范围是 . 【答案】x ≥0且x ≠1.
【解析】
x ≥0,x ﹣1≠0,∴实数x 的取值范围是:x ≥0且x ≠1.故答案为:x ≥0且x ≠1.
考点:1.二次根式有意义的条件;2.分式有意义的条件.
7.【2015届湖北省黄冈市启黄中学中考模拟】计算32278+-+的结果为 . 【答案】2+43.
【解析】:原式=22+33﹣2+3=2+43.
考点:二次根式的加减法.
8.【2015= .
【答案】23-2.
【解析】
考点:二次根式的混合运算.
9.【辽宁大连2015年中考数学试题】计算:
()()021241313⎪⎭⎫ ⎝⎛-+-+ 【答案】26+1.
【解析】
试题分析:先计算平方差、二次根式化简、0指数幂,然后按顺序计算即可; 试题解析:()()021241313⎪⎭⎫ ⎝⎛-+-+=()1621322-+-=3-1+26-1=26+1. 考点:1.实数的计算;2.二次根式的化简.
10.【2015-21--sin 602⎛⎫︒ ⎪⎝⎭
. 【答案】
2
3+4. 【解析】
考点:1.实数的运算;2.负整数指数幂;3.特殊角的三角函数值.。

相关文档
最新文档