七年级数学相交线、平行线 提高测试.doc

合集下载

人教版七年级数学下册 第五章 相交线与平行线 单元综合能力提升测试卷含

人教版七年级数学下册 第五章 相交线与平行线  单元综合能力提升测试卷含

人教版七年级数学下册第五章相交线与平行线单元综合能力提升测试卷含答案一、选择题(每小题3分,共36分)1、如图,直线AB,CD相交于点O,若∠1+∠2=100°,则∠BOC等于()A.130°B.140°C.150°D.160°2、若α和β是同旁内角,且α=50°时,则β的度数为()A.50°B.130°C.50°或130°D.无法确定3、如图,已知AB∥CD,直线MN分别交AB、CD于点M、N,NG平分MND∠,若170∠=°,则2∠的度数为()A.10°B.15°C.20°D.35°4、将命题“对顶角相等”写成“如果……,那么……”的形式,正确的是()A.如果两个角相等,那么它们是对顶角B.如果两个角是对顶角,那么它们相等C.如果对顶角,那么相等D.如果两个角不是对顶角,那么这两个角不相等5、如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠56、如图,AB//CD,∠AGE=1280,HM平分∠EHD,则∠MHD的度数是()A.460B.230C.260D.2407、如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠4=∠5C.∠2=∠3D.∠2+∠4=180°8、如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.60°B.65°C.70°D.80°9、如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°10、如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°11、如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN 翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°12、如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40ºD.30º二、填空题(每小题4分,共24分)13、如图,将△ABC沿B C′方向平移4cm,得到△A′B′C′,那么CC′= cm.14、将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是______.15、如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF=.16、如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直线分别交直线b于B、C两点.若∠1=42°,则∠2的度数是.17、如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________18、如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1= °(用含n的代数式表示).三、解答题(60分)19、(7分)完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求证:∠EGF=90°证明:∵HG∥AB(已知)∴∠1=∠3______又∵HG∥CD(已知)∴∠2=∠4∵AB∥CD(已知)∴∠BEF+______=180°______又∵EG平分∠BEF(已知)∴∠1=∠______又∵FG平分∠EFD(已知)∴∠2=∠______∴∠1+∠2=(______)∴∠1+∠2=90°∴∠3+∠4=90°______即∠EGF=90°.20、(8分)如图是一个汉字“互”字,其中,∥,∠1=∠2,∠=∠.求证:∠=∠.21、(10分)如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠B=∠ADG;(2)求∠BCA的度数.22、(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.23、(12分)如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.24、(13分)如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.参考答案1、A;2、D.3、D.4、B5、A.6、C7、C8、C9、B.10、B11、D12、D13、4;14、36°.15、答案为:110°;16、480 ;17、400;18、180°n;19、答案分别为:两直线平行、内错角相等,∠EFD,两直线平行、同旁内角互补,∠BEF,∠EFD,∠BEF+∠EFD,等量代换.20、证明:延长交于点∵∥∴∠1=∠3又∵∠1=∠2∴∠2=∠3∴∥∴∠=∠又∵∠=∠∴∠=∠21、(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG;(2)解:∵DG∥BC,∴∠3=∠BCG,∵∠3=80°,∴∠BCA=80°.22、解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.23、 (1) DC∥AB;(2)求∠PFH=26 º。

(完整版)平行线与相交线提高训练

(完整版)平行线与相交线提高训练

平行线与相交线提高训练1.如图,直线a∥b,那么∠x的度数是.2.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=.3.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.4.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.5.已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上,∠1=∠2=∠E,∠3=∠4.求证:AB∥CD.6.已知,如图,AE∥BD,∠1=3∠2,∠2=26°,求∠C.7.直线l1∥l2,∠A=125°,∠B=105°,求∠1+∠2的度数(提示:要作辅助线哟!)8.已知:射线OP∥AE(1)如图1,∠AOP的角平分线交射线AE与点B,若∠BOP=58°,求∠A的度数.(2)如图2,若点C在射线AE上,OB平分∠AOC交AE于点B,OD平分∠COP交AE于点D,∠ADO=39°,求∠ABO﹣∠AOB的度数.(3)如图3,若∠A=m,依次作出∠AOP的角平分线OB,∠BOP的角平分线OB1,∠B1OP的角平分线OB2,∠B n﹣1OP的角平分线OB n,其中点B,B1,B2,…,B n﹣1,B n都在射线AE上,试求∠AB n O 的度数.9.数学思考:(1)如图1,已知AB∥CD,探究下面图形中∠APC和∠P AB、∠PCD的关系,并证明你的结论推广延伸:(2)①如图2,已知AA1∥BA1,请你猜想∠A1,∠B1,∠B2,∠A2、∠A3的关系,并证明你的猜想;②如图3,已知AA1∥BA n,直接写出∠A1,∠B1,∠B2,∠A2、…∠B n﹣1、∠A n的关系拓展应用:(3)①如图4所示,若AB∥EF,用含α,β,γ的式子表示x,应为A.180°+α+β﹣γB.180°﹣α﹣γ+βC.β+γ﹣αD.α+β+γ②如图5,AB∥CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,请你根据上述结论直接写出∠GHM的度数是.10.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC 之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.11.如图,已知AM∥BN,∠A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP 和∠PBN,交射线AM于C、D.(1)求∠CBD的度数;(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.12.如图1,AB∥CD,直线EF交AB于点E,交CD于点F,点G在CD上,点P在直线EF左侧、且在直线AB和CD之间,连接PE、PG.(1)求证:∠EPG=∠AEP+∠PGC;(2)连接EG,若EG平分∠PEF,∠AEP+∠PGE=110°,∠PGC=∠EFC,求∠AEP的度数;(3)如图2,若EF平分∠PEB,∠PGC的平分线所在的直线与EF相交于点H,则∠EPG与∠EHG 之间的数量关系为.13.已知E、D分别在∠AOB的边OA、OB上,C为平面内一点,DE、DF分别是∠CDO、∠CDB的平分线.(1)如图1,若点C在OA上,且FD∥AO,求证:DE⊥AO;(2)如图2,若点C在∠AOB的内部,且∠DEO=∠DEC,请猜想∠DCE、∠AEC、∠CDB之间的数量关系,并证明;(3)若点C在∠AOB的外部,且∠DEO=∠DEC,请根据图3、图4分别写出∠DCE、∠AEC、∠CDB 之间的数量关系(不需证明).14.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.15.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ 于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.16.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=;(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=42°,则∠OGA=;(3)将(2)中的“∠OBA=42°”改为“∠OBA=α”,其它条件不变,求∠OGA的度数.(用含α的代数式表示)(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA的度数.(用含α的代数式表示)17.已知直线AB∥CD,E是直线AB的上方一点,连接AE、EC(1)如图1,求证:∠AEC+∠EAB=∠ECD(2)如图2,AF平分∠BAE,CF平分∠DCE,且∠AFC比∠AEC的倍少40°,直接写出∠AEC的度数18.直线MN与直线PQ相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,若∠AOB=80°,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=;DE、CE又分别是∠ADC和∠BCD 的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为:∠CED=.(3)如图3,若∠AOB=90°,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=;(4)如图3,若AF,AE分别是∠GAO,∠BAO的角平分线,∠AOB=90°,在△AEF中,如果有一个角是另一个角的4倍,则∠ABO的度数=.20.如图,点D、点E分别在△ABC边AB,AC上,∠CBD=∠CDB,DE∥BC,∠CDE的平分线交AC 于F点.(1)求证:∠DBF+∠DFB=90°;(2)如图②,如果∠ACD的平分线与AB交于G点,∠BGC=50°,求∠DEC的度数.(3)如图③,如果H点是BC边上的一个动点(不与B、C重合),AH交DC于M点,∠CAH的平分线AI交DF于N点,当H点在BC上运动时,的值是否发生变化?如果变化,说明理由;如果不变,试求出其值.。

第五章 相交线与平行线(提高卷)(解析版)

第五章 相交线与平行线(提高卷)(解析版)

2020-2021学年下学期七年级数学单元提升卷【人教版】第五章相交线与平行线(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题2分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【分析】根据对顶角的概念判断即可.【解答】解:A、∠1与∠2不是对顶角;B、∠1与∠2不是对顶角;C、∠1与∠2不是对顶角;D、∠1与∠2是对顶角;故选:D.【知识点】对顶角、邻补角2.如图,能判定DE∥AC的条件是()A.∠3=∠C B.∠1=∠3C.∠2=∠4D.∠1+∠2=180°【答案】A【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:A、当∠3=∠C时,DE∥AC,符合题意;B、当∠1=∠3时,EF∥BC,不符合题意;C、当∠2=∠4时,无法得到DE∥AC,不符合题意;D、当∠1+∠2=180°时,EF∥BC,不符合题意;故选:A.【知识点】平行线的判定3.如图,已知AB∥CD.直线EF分别交AB、CD于点E、F,EG平分∠AEF,若∠1=65°,则∠2的度数是()A.70°B.65°C.60°D.50°【答案】D【分析】根据平行线及角平分线的性质即可求解.【解答】解:∵AB∥CD,∴∠AEG=∠1(两直线平行,内错角相等),∵EG平分∠AEF,∴∠GEF=∠AEG=∠1,∵∠1=65°,∴∠GEF=∠1=65°,∴∠2=180°﹣∠GEF﹣∠1=180°﹣65°﹣65°=50°,故选:D.【知识点】平行线的性质4.如图,一个直角三角板的直角顶点落在直尺上的一条边上,若∠1=58°,则∠2的大小为()A.48°B.38°C.42°D.32°【答案】D【分析】根据对顶角相等和直角三角形的性质,可以得到∠2的度数.【解答】解:∵∠1=58°,∠1=∠3,∴∠3=58°,∵∠3+∠2=90°,∴∠2=32°,故选:D.【知识点】平行线的性质5.如图,已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数为()A.28°B.34°C.56°D.46°【答案】B【分析】延长DC交AE于F,利用平行线的性质可得∠EFC的度数,然后再利用三角形外角的性质计算出∠E的度数即可.【解答】解:延长DC交AE于F,∵AB∥CD,∴∠A=∠EFC=87°,∵∠DCE=121°,∴∠E=121°﹣87°=34°,故选:B.【知识点】平行线的性质6.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°【答案】D【分析】过点G作HG∥BC,则有∠HGB=∠B,∠HGE=∠E,又因为△DEF和△ABC都是特殊直角三角形,∠F=30°,∠C=45°,可以得到∠E=60°,∠B=45°,有∠EGB=∠HGE+∠HGB即可得出答案.【解答】解:过点G作HG∥BC,∵EF∥BC,∴GH∥BC∥EF,∴∠HGB=∠B,∠HGE=∠E,∵在Rt△DEF和Rt△ABC中,∠F=30°,∠C=45°∴∠E=60°,∠B=45°∴∠HGB=∠B=45°,∠HGE=∠E=60°∴∠EGB=∠HGE+∠HGB=60°+45°=105°故∠EGB的度数是105°,故选:D.【知识点】平行线的性质、三角形内角和定理7.如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.130°B.115°C.110°D.125°【答案】D【分析】分别过E,F两点作AB∥ME,FN∥AB,根据平行线的性质可得∠BED+∠ABE+∠CDE=360°,∠BFD=∠ABF+∠CDF,再根据∠BED=110°,结合角平分线的定义可求解.【解答】解:分别过E,F两点作AB∥ME,FN∥AB,∴∠ABE+∠BEM=180°,∠ABF=∠BFN,∵AB∥CD,∴CD∥ME,FN∥CD,∴∠CDE+∠DEM=180°,∠CDF=∠DFN,∴∠BED+∠ABE+∠CDE=360°,∠BFD=∠ABF+∠CDF,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠ABF,∠CDE=2∠CDF,∴∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)=125°.故选:D.【知识点】平行线的性质8.下列说法正确的个数有()①不相交的两条直线叫做平行线;②过一点有且只有一条直线垂直于已知直线;③同一平面内,过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段叫做这点到这条直线的距离.A.0个B.1个C.2个D.3个【答案】A【分析】根据各个小题中的说法,可以判断各个小题中的说法是否正确,从而可以解答本题.【解答】解:在同一个平面内,不相交的两条直线叫做平行线,如果不在同一个平面内,不相交的两条直线不一定是平行线,故①错误;在同一个平面内,过一点有且只有一条直线垂直于已知直线,故②错误;同一平面内,过直线外一点有且只有一条直线与已知直线平行,故③错误;直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故④错误;故选:A.【知识点】平行公理及推论、点到直线的距离、平行线、平行线的性质、垂线9.如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,则以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有()A.4个B.3个C.2个D.0个【答案】B【分析】由∠AOB=∠COD=90°根据等角的余角相等得到∠AOC=∠BOD,而∠COE=∠BOE,即可判断①正确;由∠AOD+∠COB=∠AOD+∠AOC+90°,而∠AOD+∠AOC=90°,即可判断,②确;由∠COB﹣∠AOD=∠AOC+90°﹣∠AOD,没有∠AOC≠∠AOD,即可判断③不正确;由OF平分∠AOD得∠AOF=∠DOF,由①得∠AOE=∠DOE,根据周角的定义得到∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,又∠COE=∠BOE,即可判断④正确.【解答】解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,而∠COE=∠BOE,∴∠AOE=∠DOE,所以①正确;∠AOD+∠COB=∠AOD+∠AOC+90°=90°+90°=180°,所以②正确;∠COB﹣∠AOD=∠AOC+90°﹣∠AOD,而∠AOC≠∠AOD,所以③不正确;∵OF平分∠AOD,∴∠AOF=∠DOF,而∠AOE=∠DOE,∴∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,∵∠COE=∠BOE,∴∠COE+∠BOF=180°,所以④正确.故选:B.【知识点】垂线、角平分线的定义10.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EF A=25°,∠FGH=90°,∠HMN=25°,∠CNP=30°,则∠GHM=()A.45°B.50°C.55°D.60°【答案】D【分析】延长HG交直线AB于点K,延长PM交直线AB于点S.利用平行线的性质求出∠KSM,利用邻补角求出∠SMH,利用三角形的外角与内角的关系,求出∠SKG,再利用四边形的内角和求出∠GHM.【解答】解:延长HG交直线AB于点K,延长PM交直线AB于点S.∵AB∥CD,∴∠KSM=∠CNP=30°.∵∠EF A=∠KFG=25°,∠KGF=180°﹣∠FGH=90°,∠SMH=180°﹣∠HMN=155°,∴∠SKH=∠KFG+∠KGF=25°+90°=115°.∵∠SKH+∠GHM+∠SMH+∠KSM=360°,∴∠GHM=360°﹣115°﹣155°﹣30°=60°.故选:D.【知识点】平行线的性质11.如图,△ABC中,C、C′关于AB对称,B、B′关于AC对称,D、E分别在AB、AC上,且C′D∥BC∥B′E,BE,CD交于点F,若∠BFD=α,∠A=β,则α与β之间的关系为()A.2β+α=180°B.α=2βC.α=D.α=180°﹣【答案】B【分析】利用四边形内角和定理,三角形内角和定理,平行线的性质解决问题即可.【解答】解:在△ABC中,∵∠A=β,∴∠ABC+∠ACB=180°﹣β,∵C′D∥BC∥B′E,∴∠ABC=∠C′DB,∠ACB=∠B′EC,∵C、C′关于AB对称,∴AB垂直平分线段CC′,∴∠C′DB=∠CDB,同理∠B′EC=∠BEC,∴∠CDB+∠BEC=180°﹣β,∵∠ADC+∠CDB=180°,∠AEB+∠BEC=180°,∴∠ADC+∠AEB=180°+β,∵∠ADE+∠A+∠AEB+∠DFE=360°,∠DFE=180°﹣α,∴180°+β+β+180°﹣α=360°,∴α=2β,故选:B.【知识点】轴对称的性质、平行线的性质12.如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°【答案】B【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°﹣∠AED﹣∠BEG=180°﹣2β,在△AEF 中,100°+2α+180°﹣2β=180°,故β﹣α=40°,即可求解.【解答】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEG=∠F AE=100°,∠AEF=180°﹣∠AED﹣∠BEG=180°﹣2β,在△AEF中,100°+2α+180°﹣2β=180°,故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.【知识点】平行线的性质二、填空题(本大题共4小题,每小题2分,共8分.不需写出解答过程,请把答案直接填写在横线上)13.过平面上一点O作三条射线OA、OB和OC,已知OA⊥OB,∠AOC:∠AOB=1:2,则∠BOC=°.【答案】135或45【分析】根据题意画出图形,再结合垂直定义进行计算即可.【解答】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOC:∠AOB=1:2,∴∠AOC=45°,如图1:∠BOC=90°+45°=135°,如图2:∠BOC=90°﹣45°=45°,故答案为:135或45.【知识点】垂线、角的计算14.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.【答案】76°【分析】根据平行线的性质和三角形的内角和解答即可.【解答】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案为:76°.【知识点】平行线的性质15.如图,直线MN分别与直线AB,CD相交于点E,F,EG平分∠BEF,交直线CD于点G,若∠MFD=∠BEF=62°,射线GP⊥EG于点G,则∠PGF的度数为度.【答案】59或121【分析】分两种情况:①当射线GP⊥EG于点G时,∠PGE=90°,②当射线GP′⊥EG于点G时,∠P′GE=90°,根据平行线的判定与性质和角平分线定义即可求出∠PGF的度数.【解答】解:如图,①当射线GP⊥EG于点G时,∠PGE=90°,∵∠MFD=∠BEF=62°,∴CD∥AB,∴∠GEB=∠FGE,∵EG平分∠BEF,∴∠GEB=∠GEF=BEF=31°,∴∠FGE=31°,∴∠PGF=∠PGE﹣∠FGE=90°﹣31°=59°;②当射线GP′⊥EG于点G时,∠P′GE=90°,同理:∠P′GF=∠PGE+∠FGE=90°+31°=121°.则∠PGF的度数为59或121度.故答案为:59或121.【知识点】平行线的判定与性质16.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于点F,交AC于点E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E、F分别是AC、BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab,其中正确的是.【答案】①②④【分析】根据角平分线的定义和三角形内角和定理判断①;根据角平分线的定义和平行线的性质判断②;根据三角形三边关系判断③;根据角平分线的性质判断④.【解答】解:∵∠BAC和∠ABC的平分线相交于点O,∴∠OBA=∠CBA,∠OAB=∠CAB,∴∠AOB=180°﹣∠OBA﹣∠OAB=180°﹣∠CBA﹣∠CAB=180°﹣(180°﹣∠C)=90°+∠C,①正确;∵EF∥AB,∴∠FOB=∠ABO,又∠ABO=∠FBO,∴∠FOB=∠FBO,∴FO=FB,同理EO=EA,∴AE+BF=EF,②正确;当∠C=90°时,AE+BF=EF<CF+CE,∴E,F不是AC,BC的中点,③错误;作OH⊥AC于H,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OD=OH,∴S△CEF=×CF×OD+×CE×OH=ab,④正确.故答案为①②④.【知识点】角平分线的性质、平行线的性质、等腰三角形的判定与性质三、解答题(本大题共7小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,直线AB,CD相交于点O,射线OF⊥CD于点O,∠BOF=30°,求∠BOD,∠AOD的度数.【分析】利用垂直的定义可得∠DOF=90°,再结合条件∠BOF=30°,可求出∠BOD的度数,利用邻补角互补可得∠AOD的度数.【解答】解:∵OF⊥CD,∴∠DOF=90°,∵∠BOF=30°,∴∠BOD=60°,∴∠AOD=180°﹣60°=120°.【知识点】对顶角、邻补角、垂线18.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由∠2=145°得出∠1=35°,得出∠AFG的度数.【解答】解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°﹣35°=55°.【知识点】平行线的判定与性质19.完成推理填空.填写推理理由:如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.∵EF∥AD,∴∠2=,()又∵∠1=∠2,∴∠1=∠3,∴AB∥,()∴∠BAC+=180°,()又∵∠BAC=70°,∴∠AGD=110°.【答案】【第1空】∠3【第2空】两直线平行,同位角相等【第3空】DG【第4空】内错角相等,两直线平行【第5空】∠DGA【第6空】两直线平行,同旁内角互补【分析】根据平行线的性质和已知求出∠1=∠3,根据平行线的判定推出AB∥DG,根据平行线的性质推出∠BAC+∠DGA=180°即可.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=110°,故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补.【知识点】平行线的判定与性质20.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.【分析】(1)根据平行线的判定与性质和角平分线定义即可证明;(2)根据平行线的判定与性质、角平分线定义和邻补角互补即可得结论.【解答】(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,同理:∠AEM=∠GEM=135°.∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.【知识点】平行线的判定与性质21.(1)如图1,已知射线BC,MA⊥BC,DF⊥BC,垂足分别为E和F,若∠BAM+∠D=180°,请判断AB和CD的位置关系,并说明理由.(2)在(1)的条件下,连接DE,直接写出∠BAE,∠EDC,∠AED之间的数量关系.(3)如图2,AB∥CD,EF∥CG,若∠A=32°,∠E=60°,请求出∠C的度数.【分析】(1)根据平行线的判定定理和垂直的定义即可得到结论;(2)根据平行线的性质和三角形外角的性质即可得到结论;(3)根据平行线的判定和性质定理即可得到结论.【解答】解:(1)AB∥CD,理由如下:∵∠BAM+∠D=180°,又∵∠BAM+∠BAE=180°,∴∠D=∠BAE,∵MA⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,∴∠BAE+∠B=90°,∠D+∠DCF=90°,∴∠B=∠DCF,∴AB∥CD;(2)∵AB∥CD,∴∠DCF=∠B,∵∠DCF=∠DEC+∠EDC,∴∠B=∠DEC+∠EDC,∵∠AEB=∠AEC=90°,∴∠BAE=90°﹣∠B,∵∠DEC=90°﹣∠AED,∴90°﹣∠BAE=∠EDC+∠90°﹣∠AED,∴∠BAE+∠EDC=∠AED;(3)延长CD至点N交EF于点H,过E作EM∥CN,∵EM∥CN,∴∠MEF=∠EHC,∵AB∥CD,∴AB∥EM,∴∠A=∠AEM,∵∠AEF=∠AEM+∠MEF,∴∠AEF=∠A+∠EHC,∴∠EHC=60°﹣32°=28°,∵EF∥CG,∴∠C=∠EHC=28°.【知识点】平行线的判定与性质22.三角形ABC中,D是AB上一点,DE∥BC交AC于点E,点F是线段DE延长线上一点,连接FC,∠BCF+∠ADE=180°.(1)如图1,求证:CF∥AB;(2)如图2,连接BE,若∠ABE=40°,∠ACF=60°,求∠BEC的度数;(3)如图3,在(2)的条件下,点G是线段FC延长线上一点,若∠EBC:∠ECB=7:13,BE平分∠ABG,求∠CBG的度数.【分析】(1)根据平行线的判定与性质即可完成证明;(2)如图2,过点E作EK∥AB,可得CF∥AB∥EK,再根据平行线的性质即可得结论;(3)根据∠EBC:∠ECB=7:13,可以设∠EBC=7x°,则∠ECB=13x°,然后根据∠AED+∠DEB+∠BEC=180°,13x+7x+100=180,求出x的值,进而可得结果.【解答】(1)证明:∵DE∥BC,∴∠ADE=∠B,∵∠BCF+∠ADE=180°.∴∠BCF+∠B=180°.∴CF∥AB;(2)解:如图2,过点E作EK∥AB,∴∠BEK=∠ABE=40°,∵CF∥AB,∴CF∥EK,∴∠CEK=∠ACF=60°,∴∠BEC=∠BEK+∠CEK=40°+60°=100°;(3)∵BE平分∠ABG,∴∠EBG=∠ABE=40°,∵∠EBC:∠ECB=7:13,∴设∠EBC=7x°,则∠ECB=13x°,∵DE∥BC,∴∠DEB=∠EBC=7x°,∠AED=∠ECB=13x°,∵∠AED+∠DEB+∠BEC=180°,∴13x+7x+100=180,解得x=4,∴∠EBC=7x°=28°,∵∠EBG=∠EBC+∠CBG,∴∠CBG=∠EBG﹣∠EBC=40°﹣28°=12°.【知识点】平行线的判定与性质23.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,∠AMP=∠PQN=α,PQ平分∠MPN.(1)如图①,求∠MPQ的度数(用含α的式子表示);(2)如图②,过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F.请你判断EF与PQ的位置关系,并说明理由;(3)如图③,在(2)的条件下,连接EN,若NE平分∠PNQ,请你判断∠NEF与∠AMP的数量关系,并说明理由.【分析】(1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可得结论.【解答】解:(1)如图①,过点P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,∴∠MPQ=∠MPR+∠RPQ=2α;(2)如图②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=2α,∵QE∥PN,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;(3)如图③,∠NEF=∠AMP,理由如下:由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=(180°﹣∠NQE)=(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+α=α=∠AMP.∴∠NEF=∠∠AMP.【知识点】平行线的判定与性质。

第5章相交线与平行线提升练习2022--2023学年人教版七年级数学下册

第5章相交线与平行线提升练习2022--2023学年人教版七年级数学下册

第5章相交线与平行线(提升练习)-人教版七年级下册一.选择题1.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于()A.20°B.25°C.30°D.35°2.如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为()A.40°B.35°C.30°D.25°3.下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.如图,点E在CD的延长线上,下列条件中能判定BC∥AD的是()A.∠1=∠2B.∠3=∠4C.∠5=∠A D.∠A+∠ADC=180°5.如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为()A.110°B.120°C.130°D.140°6.如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是()A.3.5B.4.1C.5D.5.57.平面内两两相交的4条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.6B.11C.7D.178.如图,BC⊥AE,垂足为C,过C作CD∥AB.若∠ECD=43°,则∠B的度数是()A.43°B.45°C.47°D.57°9.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行10.如图,∠1=60°,下列推理正确的是()①若∠2=60°,则AB∥CD;②若∠5=60°,则AB∥CD;③若∠3=120°,则AB∥CD;④若∠4=120°,则AB∥CD.A.①②B.②④C.②③④D.②③二.填空题11.如图,直线AB、CD相交于点O,过点O作EO⊥AB.若∠1=55°,则∠2的大小为度.12.如图,将△ABO沿着射线AD的方向平移5cm得到△DCE,连接OE,则OE=cm.13.如图,将一张长方形纸片ABCD沿EF折叠,点C、D分别到C′、D′的位置,D′E与BC相交于G,若∠1=40°,则∠2=°.14.如图,把△ABC沿AC方向平移1cm得到△FDE,AE=6cm,则FC的长是cm.15.如图,长方形纸片ABCD,M为AD边的中点,将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠BMC=110°,则∠1的度数为.三.解答题16.如图,已知直线AB∥CD,直线MN分别交AB、CD于点G、E,EF平分∠GED,交直线AB于点F,且GE平分∠BGI,GH平分∠AGE.(1)求证:GH∥FE;(2)若∠FED=68°,求∠HGI的度数.17.判断下列命题是真命题还是假命题.如果是假命题,请举出一个反例.(1)两个钝角的和一定大于180°;(2)异号两数相加和为零;(3)若a2=b2,则a=b.18.如图,在平面直角坐标系中,点A(﹣1,4),B(﹣2,1),C(﹣4,1),将△ABC向右平移3个单位再向下平移2个单位得到△A1B1C1,点A、B、C的对应点分别为点A1、B1、C1.(1)在图上画出△A1B1C1,并写出点A1,B1,C1的坐标;(2)设点P(m,n)为△ABC内一点,经过平移后,请写出点P在△A1B1C1内的对应点P1的坐标.19.如图,已知直线AB、CD相交于点O,射线OD平分∠BOF,OE⊥CD于点O,∠AOC =35°.(1)求∠EOF的度数;(2)试判断射线OE是否平分∠AOF,并说明理由.20.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)填空:∠1=°,∠2=°(2)如图2,现把三角板绕B点逆时针旋转n°,当0<n<90,且点C恰好落在DG边上时,①请直接写出∠1=°,∠2=°(结果用含n的代数式表示);②若∠2恰好是∠1的倍,求n的值.(3)如图1三角板ABC的放置,现将射线BF绕点B以每秒2°的转速逆时针旋转得到射线BM,同时射线QA绕点Q以每秒3°的转速顺时针旋转得到射线QN,当射线QN旋转至与QB重合时,则射线BM、QN均停止转动,设旋转时间为t(s).①在旋转过程中,若射线BM与射线QN相交,设交点为P.当t=20(s)时,则∠QPB =°②在旋转过程中,是否存在BM∥QN.若存在,求出此时t的值;若不存在,请说明理由.。

人教版七年级数学下册《第五章相交线与平行线》能力提升卷-附答案

人教版七年级数学下册《第五章相交线与平行线》能力提升卷-附答案

人教版七年级数学下册《第五章相交线与平行线》能力提升卷-附答案班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分试题共23题其中选择10道、填空6道、解答7道.答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题每小题3分共30分)在每小题所给出的四个选项中只有一项是符合题目要求的.1.(2022秋•唐河县期末)如图下列图形中的∠1和∠2不是同位角的是()A.B.C.D.【分析】根据同位角的意义逐项进行判断即可.【解答】解:选项A中的∠1与∠2 是直线AB、BC被直线EF所截的同位角因此选项A不符合题意;选项B中的∠1与∠2 是直线AB、MG被直线EM所截的同位角因此选项B不符合题意;选项C中的∠1与∠2 没有公共的截线因此不是同位角所以选项C符合题意;选项D中的∠1与∠2 是直线CD、EF被直线AB所截的同位角因此选项D不符合题意;故选:C.2.(2022秋•长春期末)如图测量运动员跳远成绩选取的是AB的长度其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短【分析】利用垂线段最短求解.【解答】解:该运动员跳远成绩的依据是:垂线段最短;故选:D.3.(2020秋•射洪市期末)如图所示下列结论中正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是内错角D.∠3和∠4是对顶角【分析】根据同位角内错角同旁内角以及对顶角的定义进行解答.【解答】解:A、∠1和∠2是同旁内角故本选项错误;B、∠2和∠3是同旁内角故本选项正确;C、∠1和∠4是同位角故本选项错误;D、∠3和∠4是邻补角故本选项错误;故选:B.4.(2018秋•龙岗区期末)下列四个命题中真命题是()A.两条直线被第三条直线所截内错角相等B.如果∠1和∠2是对顶角那么∠1=∠2C.三角形的一个外角大于任何一个内角D.如果x2>0 那么x>0【分析】利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、两条直线被第三条直线所截内错角相等错误为假命题;B、如果∠1和∠2是对顶角那么∠1=∠2 正确为真命题;C、三角形的一个外角大于任何一个内角错误为假命题;D、如果x2>0 那么x>0 错误为假命题故选:B.5.(2022秋•玉泉区期末)如图直线AB、CD相交于点O OA平分∠EOC∠EOC:∠EOD=1:2 则∠BOD等于()A.30°B.36°C.45°D.72°【分析】根据邻补角的定义求出∠EOC再根据角平分线的定义求出∠AOC然后根据对顶角相等解答.【解答】解:∵∠EOC:∠EOD=1:2∴∠EOC=180°×=60°∵OA平分∠EOC∴∠AOC=∠EOC=×60°=30°∴∠BOD=∠AOC=30°.故选:A.6.(2022秋•宛城区期末)如图下列能判定AB∥CD的条件有()个(1)∠1=∠2;(2)∠3=∠4;(3)∠B=∠5;(4)∠B+∠BCD=180°.A.1B.2C.3D.4【分析】根据平行线的判定方法对四个条件分别进行判断即可.【解答】解:(1)∵∠1=∠2∴AD∥BC;(2)∵∠3=∠4∴AB∥CD;(3)∵∠B=∠5∴AB∥CD;(4)∵∠B+∠BCD=180°∴AB∥CD.故选:C.7.(2022秋•卧龙区校级期末)如图所示下列推理正确的个数有()①若∠1=∠2 则AB∥CD②若AD∥BC则∠3+∠A=180°③若∠C+∠CDA=180°则AD∥BC④若AB∥CD则∠3=∠4.A.0个B.1个C.2个D.3个【分析】根据平行线的判定(内错角相等两直线平行同位角相等两直线平行同旁内角互补两直线平行)和平行线的性质(两直线平行内错角相等两直线平行同位角相等两直线平行同旁内角互补)判断即可.【解答】解:∵∠1=∠2∴AB∥DC∴①正确;∵AD∥BC∴∠CBA+∠A=180°∠3+∠A<180°∴②错误;∵∠C+∠CDA=180°∴AD∥BC∴③正确;由AD∥BC才能推出∠3=∠4 而由AB∥CD不能推出∠3=∠4 ∴④错误;正确的个数有2个故选:C.8.(2022秋•市中区校级期末)如图在下列给出的条件中不能判定AB∥CD的是()A.∠BAD+∠ADC=180°B.∠ABD=∠BDCC.∠ADB=∠DBC D.∠ABE=∠DCE【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、正确∵∠BAD+∠ADC=180°∴AB∥CD(同旁内角互补两直线平行);B、正确∵∠ABD=∠BDC∴AB∥CD(内错角相等两直线平行);C、∠ADB=∠DBC判定的是AD∥BC所以不符合要求;D、正确∵∠ABE=∠DCE∴AB∥CD(同位角相等两直线平行);故选:C.9.(2022秋•兴宁区校级期中)如图某校区2号楼楼梯的示意图现在要在楼梯上铺一条地毯如果楼梯的宽度是1.8米那么地毯的面积为()A.(a+1.8)h m2B.(h+1.8)a m2C.1.8(h+a)m2D.1.8ah m2【分析】根据图形可得地毯长度为(a+h)米再根据长方形的面积公式解答即可.【解答】解:由题意得地毯的长度为(a+h)米故地毯的面积为:1.8(h+a)m2.故选:C.10.(2022秋•南岗区校级期中)如图AB∥CD∥EF则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行同旁内角互补可得∠2+∠BDC=180°再根据两直线平行内错角相等可得∠3=∠CDE而∠CDE=∠1+∠BDC整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF∴∠2+∠BDC=180°∠3=∠CDE又∠BDC=∠CDE﹣∠1∴∠2+∠3﹣∠1=180°.故选:D.二、填空题(本大题共6小题每小题4分共24分)请把答案直接填写在横线上11.(2022•东阳市校级开学)如图所示图中用数字标出的角中∠2的内错角是∠6.【分析】两条直线被第三条直线所截形成的角中若两个角都在两直线的之间并且在第三条直线(截线)的两旁则这样一对角叫做内错角由此即可判断.【解答】解:图中用数字标出的角中∠2的内错角是∠6.故答案为:∠6.12.(2022秋•姜堰区期中)如图△ABC经过平移得到△A'B'C' 连接BB'、CC' 若BB'=1.2cm则CC'= 1.2cm.【分析】根据平移的性质即可得到结论.【解答】解:∵△ABC经过平移得到△A'B'C' 连接BB'、CC' BB'=1.2cm∴CC'=BB′=1.2cm故答案为:1.2.13.(2022春•和平区校级月考)如图CD⊥AD BE⊥AC AF⊥CF CD=2cm BE=1.5cm AF=4cm则点A到直线BC的距离是4cm点B到直线AC的距离是 1.5cm点C到直线AB的距离是2 cm.【分析】根据点到直线的距离:直线外一点到直线的垂线段的长度叫做点到直线的距离解答即可.【解答】解:∵CD⊥AD BE⊥AC AF⊥CF CD=2cm BE=1.5cm AF=4cm∴点A到直线BC的距离是4cm点B到直线AC的距离是1.5cm点C到直线AB的距离是2cm.故答案为:4、1.5、2.14.(2022春•新乐市校级月考)如图直线EF CD相交于点O OA⊥OB垂足为O且OC平分∠AOF.(1)若∠AOE=40°则∠DOE的度数为70°;(2)∠AOE与∠BOD的数量关系为∠AOE=2∠BOD.【分析】(1)利用邻补角的定义进行计算即可;(2)利用第一步的步骤和思路推理即可.【解答】解:(1)∵OA⊥OB∴∠AOB=90°∵∠AOF+∠AOE=180°∠AOE=40°∴∠AOF=140°∵OC平分∠AOF∴∠AOC=∠COF=70°∵∠BOD+∠AOB+∠AOC=180°∴∠DOE=∠COF=70°.故答案为:70°;(2)∵∠AOE+∠AOF=180°∠AOC=∠COF∴∠AOC=(180°﹣∠AOE)=90°﹣∠AOE∵∠BOD+∠AOB+∠AOC=180°∴∠BOD=180°﹣90°﹣∠AOC=90°﹣(90°﹣∠AOE)=﹣∠AOE∴∠AOE=2∠BOD.故答案为:∠AOE=2∠BOD.15.(2022秋•南岗区校级期中)已知两个角的两边分别互相平行其中一个角的度数比另一个角度数的多15°则这个角为20°或48°.【分析】由两个角的两边都平行可得此两角互补或相等然后设其中一个角为x°分别从两角相等或互补去分析由其中一个角的度数是另一个角的3倍少20°列方程求解即可求得答案.【解答】解:∵两个角的两边都平行∴此两角互补或相等设其中一个角为x°∵其中一个角的度数比另一个角度数的多15°∴①若两角相等则x=x+15 解得:x=20②若两角互补则x=(180﹣x)+15 解得:x=48∴两个角的度数分别是20°或48°.故答案为:20°或48.16.(2022秋•香坊区校级期中)如图已知AB∥CD∠P AQ=2∠BAQ∠PCD=3∠QCD∠P=75°则∠AQC=95°.【分析】先根据平行线的性质求出∠APC+∠P AB+∠PCD=360°由∠APC=75°求出∠P AB+∠PCD=285°根据∠P AQ=2∠BAQ可得∠P AB=3∠BAQ由∠PCD=3∠QCD可得∠BAQ+∠QCD=95°最后证∠AQC=∠BAQ+∠QCD即可得出答案.【解答】解:过点P作PE∥AB过点Q作QF∥AB如图:∵AB∥CD QF∥AB∴AB∥QF∥CD∴∠BAQ=∠AQF∠QCD=∠CQF∴∠BAQ+∠QCD=∠AQF+∠CQF即∠BAQ+∠QCD=∠AQC∵AB∥CD PE∥AB∴AB∥PE∥CD∴∠APE+∠P AB=180°∠CPE+∠PCD=180°∴∠APE+∠CPE+∠P AB+∠PCD=360°即∠APC+∠P AB+∠PCD=360°∵∠APC=75°∴∠P AB+∠PCD=285°∵∠P AQ=2∠BAQ∴∠P AB=3∠BAQ∵∠PCD=3∠QCD∴3∠BAQ+3∠QCD=285°∴∠BAQ+∠QCD=95°∴∠AQC=95°.故答案为:95°.三、解答题(本大题共7小题共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•金东区期末)如图△ABC△A1B1C1的顶点都在边长为1个单位长度的小正方形组成的网格线交点上.(1)将△ABC向右平移4个单位得到△A2B2C2请画出△A2B2C2.(2)试描述△A1B1C1经过怎样的平移可得到△A2B2C2.【分析】(1)利用平移的性质可画出△A2B2C2;(2)根据平移的特征可得答案.【解答】解:(1)如图△A2B2C2即为所求;(2)将△A1B1C1向左平移2个单位再向下平移4个单位可得到△A2B2C2.18.(2021春•新市区校级期末)如图点G在CD上已知∠BAG+∠AGD=180°EA平分∠BAG FG 平分∠AGC请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知)∠AGC+∠AGD=180°(邻补角的定义)所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG所以∠1=∠BAG(角平分线的定义).因为FG平分∠AGC所以∠2=∠AGC得∠1=∠2(等量代换)所以AE∥GF(内错角相等两直线平行).【分析】根据邻补角的定义及题意得出∠BAG=∠AGC再根据角平分线的定义得到∠1=∠2 即可判定AE∥GF.【解答】解:因为∠BAG+∠AGD=180°(已知)∠AGC+∠AGD=180°(邻补角的定义)所以∠BAG=∠AGC(同角的补角相等)因为EA平分∠BAG所以∠1=∠BAG(角平分线的定义)因为FG平分∠AGC所以∠2=∠AGC得∠1=∠2(等量代换)所以AE∥GF(内错角相等两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等两直线平行.19.判断下列命题是真命题还是假命题;如果是假命题举一个反例.(1)同旁内角互补;(2)如果a>b那么ac>bc;(3)两个锐角的和是钝角.【分析】(1)根据平行线的性质判断即可;(2)根据不等式的性质判断即可;(3)根据角的分类判断即可.【解答】解:(1)同旁内角互补是假命题如两直线不平行同旁内角不能互补;(2)如果a>b那么ac>bc是假命题如c=0时ac=bc;(3)两个锐角的和是钝角是假命题如30°+30°=60°.20.(2022秋•中山市期末)如图已知直线AB CD相交于点O OE平分∠BOD OF平分∠COB∠BOE =36°求∠AOF的度数.【分析】根据角平分线可得∠BOE=∠DOE根据邻补角可得∠BOC的度数根据角平分线的定义可得∠COF再根据对顶角及角的和差可得答案.【解答】解:∵直线AB CD相交于点O OE平分∠BOD OF平分∠COB∴∠BOE=∠DOE=36°∠BOF=∠COF∴∠BOD=∠AOC=2∠BOE=72°∴∠BOC=180°﹣∠BOD=108°∴∠COF==54°∴∠AOF=∠AOC+∠COF=72°+54°=126°.21.(2022秋•皇姑区校级期末)如图已知直线AB∥DF∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°求∠AGC的度数.【分析】(1)根据平行线的性质得出∠D+∠BHD=180°求出∠B=∠DHB根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°根据邻补角的定义求出即可.【解答】(1)证明:∵AB∥DF∴∠D+∠BHD=180°∵∠D+∠B=180°∴∠B=∠DHB∴DE∥BC;(2)解:∵DE∥BC∠AMD=70°∴∠AGB=∠AMD=70°∴∠AGC=180°﹣∠AGB=180°﹣70°=110°.22.(2022秋•二道区校级期末)如图点O在直线AB上OC⊥OD∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F若∠OFD=65°补全图形并求∠1的度数.【分析】(1)根据垂直的定义、余角的概念推出∠D=∠DOB即可判定ED∥AB;(2)根据平行线的性质、角平分线的定义求出∠AOD=2∠AOF=130°根据角的和差即可求解.【解答】(1)证明:∵OC⊥OD∴∠COD=90°∴∠1+∠DOB=90°∵∠D与∠1互余∴∠D+∠1=90°∴∠D=∠DOB∴ED∥AB;(2)解:如图∵ED∥AB∠OFD=65°∴∠AOF=∠OFD=65°∵OF平分∠AOD∴∠AOD=2∠AOF=130°∵∠COD=90°∠AOD=∠1+∠COD∴∠1=40°.23.(2022秋•朝阳区校级期末)(1)问题发现:如图①直线AB∥CD连接BE CE可以发现∠B+∠C =∠BEC.请把下面的证明过程补充完整:证明:过点E作EF∥AB∵AB∥DC(已知)EF∥AB(辅助线的作法)∴EF∥DC(平行于同一直线的两直线平行).∴∠C=∠CEF.(两直线平行内错角相等).∵EF∥AB∴∠B=∠BEF(同理).∴∠B+∠C=∠BEF+∠CEF.即∠B+∠C=∠BEC.(2)拓展探究:如果点E运动到图②所示的位置其他条件不变说明:∠B+∠BEC+∠C=360°.(3)解决问题:如图③AB∥DC E、F、G是AB与CD之间的点直接写出∠1 ∠2 ∠3 ∠4 ∠5之间的数量关系∠1+∠3+∠5=∠2+∠4.【分析】(1)过点E作EF∥AB根据平行线的性质及角的和差求解即可;(2)过点E作EF∥AB根据平行线的性质及角的和差求解即可;(3)过点F作FM∥AB根据(1)求解即可.【解答】(1)证明:如图①过点E作EF∥AB∵AB∥DC(已知)EF∥AB(辅助线的作法)∴EF∥DC(平行于同一直线的两直线平行)∴∠C=∠CEF(两直线平行内错角相等)∵EF∥AB∴∠B=∠BEF(同理)∴∠B+∠C=∠BEF+∠CEF(等量代换)即∠B+∠C=∠BEC故答案为:平行于同一直线的两直线平行;两直线平行内错角相等;∠BEF+∠CEF;(2)解:如图②过点E作EF∥AB∵AB∥CD EF∥AB∴EF∥CD∴∠C+∠CEF=180°∠B+∠BEF=180°∴∠B+∠C+∠AEC=360°∴∠B+∠C=360°﹣(∠BEF+∠CEF)即∠B+∠C=360°﹣∠BEC;∠B+∠BEC+∠C=360°.(3)解:∠1+∠3+∠5=∠2+∠4 理由如下:如图过点F作FM∥AB则AB∥FM∥CD由(1)得∠1+∠3+∠5=∠2+∠4.故答案为:∠1+∠3+∠5=∠2+∠4.。

初一数学下册相交线与平行线专项提升训练(含答案详解)

初一数学下册相交线与平行线专项提升训练(含答案详解)

一.选择题(共20 小题)相交线与平行线专题提升训练1.如图,直线AB 与CD 相交于点O,射线OE 平分∠BOC,且∠BOC=70°,则∠AOE的度数为()A.145°B.155°C.110°D.135°2.如图,直线AB 与直线CD 相交于点O,OE⊥AB,垂足为O,若∠EOD=∠AOC,则∠BOC=()A.112.5°B.135°C.140°D.157.5°3.如图所示,直线AB、CD 交于点O,OE、OF 为过点O 的射线,则对顶角有()A.1 对B.2 对C.3 对D.4 对4.如图,直线AB、CD、EF 相交于O,图中对顶角共有()A.3 对B.4 对C.5 对D.6 对5.4 条直线交于一点,则对顶角有()A.4 对B.6 对C.8 对D.12 对6.如图所示,直线AB,CD,EF,MN,GH 相交于点O,则图中对顶角共有()A.3对B.6 对C.12 对D.20 对7.如图,直线AB、CD 相交于点O,作射线OE,则图中邻补角有()A.4对B.6 对C.7 对D.8 对8.某城市有四条直线型主干道分别为l1,l2,l3,l4,l3 和l4 相交,l1 和l2 相互平行且与l3、l4 相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.169.如图,下列四个条件中,能判断DE∥AC 的是()A.∠2=∠4 B.∠3=∠4 C.∠AFE=∠ACB D.∠BED=∠C10.如图,若∠3=∠4,则下列条件中,不能判定AB∥CD 的是()A.∠1=∠2 B.∠1=∠3 且∠2=∠4C.∠1+∠3=90°且∠2+∠4=90°D.∠1+∠2=90°11.如图,能够证明a∥b 的是()A.∠1=∠2 B.∠4=∠5 C.∠4=∠3 D.∠1=∠5 12.如图,已知:∠1=∠2,∠3=∠4,那么下列结论成立的是()A.∠l=∠3 B.∠2=∠3 C.AB∥CD D.AE∥DF 13.如图,∠1 与∠2 互补,∠2 与∠3 互补,那么()A.L1∥L2 B.L1⊥L5 C.L3∥L4 D.L3∥L514.将AD 与BC 两边平行的纸条ABCD 按如图所示折叠,则∠1 的度数为()A.72°B.45°C.56°D.60°15.如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2 的度数为()A.68°B.58°C.48°D.32°16.如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED'=40°,则∠EFB的度数为()A.40°B.50°C.60°D.70°17.如图,将一张矩形纸片折叠,若∠1=80°,则∠2 的度数是()A.50°B.60°C.70°D.80°18.如图,将长方形纸条ABCD 沿EF 折叠后,ED 与BF 交于G 点,若∠EFC=130°,则∠AED 的度数为()A.55°B.70°C.75°D.80°19.如图,将一张对边互相平行的纸条沿EF 折叠,若∠EFB=32°,则①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°,则下列结论正确的有()11.1个B.2 个C.3 个D.4 个20.如图,将矩形ABCD 沿EF 折叠,点C 落在点H 处,点D 落在AB 边上的点G 处,若∠AEG=30°,则∠EFC 等于()A.115°B.75°C.105°D.150°二.填空题(共13 小题)21.如图,P 是直线l 外一点,从点P 向直线l 引PA,PB,PC,PD 几条线段,其中只有PA 与l 垂直.这几条线段中,最短的是,依据是.22.如图,为了把河中的水引到C 处,可过点C 作CD⊥AB 于D,然后沿CD 开渠,这样做可使所开的渠道最短,这种设计的依据是.23.如图,将直尺一边与量角器的零刻度线对齐,则图中线段OA,OB、OC 中最短的线段是,你的依据是和.24.(1)两条直线相交于一点有2组不同的对顶角;(2)三条直线相交于一点有6 组不同的对顶角;(3)四条直线相交于一点有12 组不同的对顶角;(4)n条直线相交于同一点有组不同对顶角.(如图所示)25.如图,直线l1、l2、l3 相交于一点O,对顶角一共有对.26.如图,直线a,b,c 两两相交于A,B,C 三点,则图中有对对顶角;有对同位角;有对内错角;有对同旁内角.27.图中,与∠1 成同位角的角的个数是.28.四条直线,每一条都与另外三条相交,且四条直线不相交于同一点,每条直线交另外两条直线,都能组成组同位角,这个图形中共有组同位角.29.平面内5 条直线两两相交,且没有3 条直线交于一点,那么图中共有对同旁内角.30.如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2 等于.31.有一条长方形纸带,按如图所示沿AB 折叠,若∠1=40°,则纸带重叠部分中∠CAB=°.32.如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是.33.将一条两边互相平行的纸带沿EF折叠,如图(1),AD∥BC,ED'∥FC',设∠AED'=x°(1)∠EFB=.(用含x的代数式表示)(2)若将图1继续沿BF折叠成图(2),∠EFC″=.(用含x的代数式表示).三.解答题(共10 小题)34.如图,直线AB、CD 相交于O,OE⊥CD,且∠BOD 的度数是∠AOD 的5倍.求:(1)∠AOD、∠BOD的度数;(2)∠BOE 的度数.35.如图,直线AB 和CD 相交于点O,OE 把∠AOC 分成两部分,且∠AOE:∠EOC=2:5(1)如图1,若∠BOD=70°,求∠BOE;(2)如图2,若OF 平分∠BOE,∠BOF=∠AOC+10°,求∠EOF.36.如图,直线AB、CD 相交于点O,OE 平分∠BOC,∠COF=90°.(1)若∠AOF=70°,求∠BOE 的度数;(2)若∠BOE:∠BOD=3:2,求∠AOF 的度数.37.如图,已知∠A=∠C,∠1+∠2=180°,试猜想AB 与CD 之间有怎样的位置关系?并说明理由.38.(1)如图,已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.探究:∠ABC 与∠DEF 分别有怎样的数量关系?并选择一种情况说明理由.图1 中∠ABC 与∠DEF 数量关系为;图2 中∠ABC 与∠DEF 数量关系为.选择一种情况说明理由:(2)由(1)你得出的结论是.(3)若两个角的两边互相平行,且一个角比另一个角的2 倍少30°,直接写出这两个角的度数.39.如图,已知∠AED=∠ACB,CD⊥AB,HF⊥AB,猜想∠1 与∠2 的数量关系并说明的理由.40.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG 是∠ADC 的平分线,∠2=150°,求∠B 的度数.41.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB 与∠DEB 的大小关系,并证明.42.如图,在△ABC 中,CD⊥AB,垂足为D,点E 在BC 上,EF⊥AB,垂足为F.∠1=∠2,试判断DG 与BC 的位置关系,并说明理由.43.综合与探究如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC,BD 别平分∠ABP 和∠PBN,分别交射线AM 于点C,D.(1)求∠ABN、∠CBD 的度数;根据下列求解过程填空.解:∵AM∥BN,∴∠ABN+∠A=180°∵∠A=60°,∴∠ABN=,∴∠ABP+∠PBN=120°,∵BC 平分∠ABP,BD 平分∠PBN,∴∠ABP=2∠CBP、∠PBN=,()∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=.(2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使∠ACB=∠ABD 时,直接写出∠ABC 的度数.相交线与平行线必备参考答案与试卷解析一.选择题(共20 小题)1.如图,直线AB 与CD 相交于点O,射线OE 平分∠BOC,且∠BOC=70°,则∠AOE的度数为()A.145°B.155°C.110°D.135°【分析】依据∠BOC=70°,OE 平分∠BOC,即可得到∠COE=35°,∠AOC=180°﹣70°=110°,进而得出∠AOE 的度数.【解答】解:∵∠BOC=70°,OE 平分∠BOC,∴∠COE=35°,∠AOC=180°﹣70°=110°,∴∠AOE=∠AOC+∠COE=110°+35°=145°.故选:A.【点评】本题主要考查了对顶角与邻补角,解题时注意:对顶角相等,邻补角互补,即和为180°.2.如图,直线AB 与直线CD 相交于点O,OE⊥AB,垂足为O,若∠EOD=∠AOC,则∠BOC=()A.112.5°B.135°C.140°D.157.5°【分析】根据平角、直角及角的和差关系可求出∠AOC+∠EOD=90°,再与已知∠EOD =∠AOC 联立,求出∠AOC,利用互补关系求∠BOC.【解答】解:∵∠COD=180°,OE⊥AB,∴∠AOC+∠AOE+∠EOD=180°,∠AOE=90°,∴∠AOC+∠EOD=90°,①又∵∠EOD=∠AOC,②由①、②得,∠AOC=67.5°,∵∠BOC 与∠AOC 是邻补角,∴∠BOC=180°﹣∠AOC=112.5°.故选:A.【点评】此题主要考查了对顶角、余角、补角的关系.解题时注意运用邻补角的性质:邻补角互补,即和为180°.3.如图所示,直线AB、CD 交于点O,OE、OF 为过点O 的射线,则对顶角有()A.1 对B.2 对C.3 对D.4 对【分析】据对顶角的定义对各图形判断即可.【解答】解:图中的对顶角有:∠AOC 与∠BOD,∠AOD 与∠BOC 共2对.故选:B.【点评】本题考查了对顶角的定义,是基础题,熟记概念并准确识图是解题的关键.4.如图,直线AB、CD、EF 相交于O,图中对顶角共有()A.3 对B.4 对C.5 对D.6 对【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【解答】解:图中对顶角有:∠AOF 与∠BOE、∠AOD 与∠BOC、∠FOD 与∠EOC、∠FOB 与∠AOE、∠DOB 与∠AOC、∠DOE 与∠COF,共6对.故选:D.【点评】本题考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.5.4 条直线交于一点,则对顶角有()A.4 对B.6 对C.8 对D.12 对【分析】每两条直线交于一点,形成两对对顶角,4 条直线交于一点,则有6 条直线形成两对对顶角,那么对顶角的个数有12 对.【解答】解:根据对顶角的定义可知:4 条直线交于一点,则对顶角有12 对.故选D.【点评】本题考查对顶角的概念,两直线相交形成两对对顶角.6.如图所示,直线AB,CD,EF,MN,GH 相交于点O,则图中对顶角共有()A.3对B.6 对C.12 对D.20 对【分析】n 条不同直线相交于一点,可以得到n(n﹣1)对对顶角,依据规律可得结果.【解答】解:2 条直线交于一点,对顶角有 2 对,2=2×1;3条直线交于一点,对顶角有6 对,6=3×2;4条直线交于一点,对顶角有12 对,12=4×3;由规律可得,n 条不同直线相交于一点,可以得到n(n﹣1)对对顶角,∴直线AB,CD,EF,MN,GH 相交于点O,对顶角共有5×4=20 对,故选:D.【点评】本题考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.7.如图,直线AB、CD 相交于点O,作射线OE,则图中邻补角有()A.4对B.6 对C.7 对D.8 对【分析】根据邻补角定义,两个角的和等于180°,并且有一条边是公共边的两个角互为邻补角,进行解答.【解答】解:如图,邻补角有:∠AOC 与∠AOD,∠AOD 与∠BOD,∠BOD 与∠BOC,∠BOE 与∠AOE,∠BOC 与∠AOC,∠COE 与∠DOE.所以共 6 对.故选:B.【点评】本题主要考查邻补角的定义,注意按一定顺序寻找方能做到不重不漏.8.某城市有四条直线型主干道分别为l1,l2,l3,l4,l3 和l4 相交,l1 和l2 相互平行且与l3、l4 相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.16【分析】观察图形,确定不同的截线分类讨论,如分l1、l2 被l3 所截,l1、l2 被l4 所截,l1、l3 被l4 所截,l2、l3 被l4 所截,l3、l4 被l1 所截,l3、l4 被l2 所截l1、l4 被l3 所截、l2、l4 被l3 所截来讨论.【解答】解:l1、l2 被l3 所截,有两对同旁内角,其它同理,故一共有同旁内角2×8=16 对.故选:D.【点评】在较复杂图形中确定“三线八角”可从截线入手,分类讨论,做到不重复不遗漏.9.如图,下列四个条件中,能判断DE∥AC 的是()A.∠2=∠4 B.∠3=∠4 C.∠AFE=∠ACB D.∠BED=∠C 【分析】根据平行线的判定方法一一判断即可.【解答】解:∵∠3=∠4,∴DE∥AC,故选:B.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10.如图,若∠3=∠4,则下列条件中,不能判定AB∥CD 的是()A.∠1=∠2 B.∠1=∠3 且∠2=∠4C.∠1+∠3=90°且∠2+∠4=90°D.∠1+∠2=90°【分析】利用平行线的判定方法一一判断即可.【解答】解:A、由∠1=∠2,∠3=∠4,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.B、由∠1=∠3,∠2=∠4,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.C、由∠1+∠3=90°,∠2+∠4=90°,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.D、由∠1+∠2=90°无法推出∠ABC=∠DCB,故本选项符合题意.故选:D.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图,能够证明a∥b 的是()第18 页(共41 页)A.∠1=∠2 B.∠4=∠5 C.∠4=∠3 D.∠1=∠5【分析】根据平行线的判定一一判断即可.【解答】解:∵∠4=∠5,∴a∥b(内错角相等两直线平行).故选:B.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,已知:∠1=∠2,∠3=∠4,那么下列结论成立的是()A.∠l=∠3 B.∠2=∠3 C.AB∥CD D.AE∥DF【分析】证明∠BAD=∠CDA 即可判断.【解答】解:∵∠1=∠2,∠3=∠4,∴∠BAD=∠CDA,∴AB∥CD,故选:C.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,∠1 与∠2 互补,∠2 与∠3 互补,那么()A.L1∥L2 B.L1⊥L5 C.L3∥L4 D.L3∥L5【分析】因为∠1 与∠2 互补,∠2 与∠3 互补,根据同一个角的补角相等,得∠1=∠3;所以根据内错角相等,两直线平行,可知L3∥L5.【解答】解:∵∠1 与∠2 互补,∠2 与∠3 互补,∴∠1=∠3(同角的补角相等).∴L3∥L5(内错角相等,两直线平行).故选:D.【点评】本题要会运用补角的性质:“同一个角的补角相等”,找到内错角的相等关系,从而证明出两直线平行.14.将AD 与BC 两边平行的纸条ABCD 按如图所示折叠,则∠1 的度数为()A.72°B.45°C.56°D.60°【分析】根据折叠的性质得出∠C'EF=62°,利用平行线的性质进行解答即可.【解答】解:∵一张长方形纸条ABCD 折叠,∴∠C'EF=∠FEC=62°,∵AD∥BC,∴∠1=∠C'FB=180°﹣62°﹣62°=56°,故选:C.【点评】本题考查了平行线的性质、翻折变换(折叠问题).正确观察图形,熟练掌握平行线的性质是解题的关键.15.如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2 的度数为()A.68°B.58°C.48°D.32°【分析】因直尺和三角板得AD∥FE,∠BAC=90°;再由AD∥FE 得∠2=∠3;平角构建∠1+∠BAC+∠3=180°得∠1+∠3=90°,已知∠1=32°可求出∠3=58°,即∠2=58°.【解答】解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.【点评】本题综合考查了平行线的性质,直角,平角和角的和差相关知识的应用,重点是平行线的性质.16.如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED'=40°,则∠EFB的度数为()A.40°B.50°C.60°D.70°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠AED′的度数求出∠DED′,即可求出∠DEF 的度数,进而得到答案.【解答】解:由翻折的性质得:∠DED′=2∠DEF,∵∠AED′=40°,∴∠DED′=180°﹣∠AED′=140°,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=∠DEF=70°.故选:D.【点评】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图,将一张矩形纸片折叠,若∠1=80°,则∠2 的度数是()A.50°B.60°C.70°D.80°【分析】利用平行线的性质解决问题即可.【解答】解:∵a∥b,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=(180°﹣80°)=50°,故选:A.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.18.如图,将长方形纸条ABCD 沿EF 折叠后,ED 与BF 交于G 点,若∠EFC=130°,则∠AED 的度数为()A.55°B.70°C.75°D.80°【分析】求出∠DEF,根据∠AED=180°﹣2∠AED 即可解决问题.【解答】解:∵DE∥CF,∴∠EFC+∠DEF=180°,∵∠EFC=130°,∴∠DEF=50°,∴∠AED=180°﹣2×50°=80°,故选:D.【点评】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.19.如图,将一张对边互相平行的纸条沿EF 折叠,若∠EFB=32°,则①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°,则下列结论正确的有()11.1个B.2 个C.3 个D.4 个【分析】根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可.【解答】解:①∵AE∥BG,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;②∵AE∥BG,∠EFB=32°,∴∠AEF=180°﹣∠EFB=180°﹣32°=148°,∵∠AEF=∠AEC+∠GEF,∴∠AEC<148°,故本小题错误;③∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;④∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵DF∥CG,∴∠BFD=180°﹣∠CGF=180°﹣64°=116°,故本小题正确.故选:C.【点评】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.20.如图,将矩形ABCD 沿EF 折叠,点C 落在点H 处,点D 落在AB 边上的点G 处,若∠AEG=30°,则∠EFC 等于()A.115°B.75°C.105°D.150°【分析】利用翻折变换的性质求出∠DEF,再利用平行线的性质解决问题即可.【解答】解:∵∠AEG=30°,∴∠DEG=150°,由翻折的性质可知:∠DEF=∠FEG=∠DEG=75°,∵AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=105°,故选:C.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共13 小题)21.如图,P 是直线l 外一点,从点P 向直线l 引PA,PB,PC,PD 几条线段,其中只有PA 与l 垂直.这几条线段中,最短的是PA ,依据是垂线段最短.【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【解答】解:直线外一点与直线上各点连接的所有线段中,最短的是PA,依据是垂线段最短,故答案为:PA,垂线段最短.【点评】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.22.如图,为了把河中的水引到C 处,可过点C 作CD⊥AB 于D,然后沿CD 开渠,这样做可使所开的渠道最短,这种设计的依据是垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【解答】解:过D 点引CD⊥AB 于D,然后沿CD 开渠,可使所开渠道最短,这种设计的依据是垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线的性质在实际生活中的运用,属于基础题.23.如图,将直尺一边与量角器的零刻度线对齐,则图中线段OA,OB、OC 中最短的线段是OB ,你的依据是垂线段最短和平行线的性质.【分析】依据垂线段最短,即可得到图中线段OA,OB、OC 中最短的线段;依据平行线的性质,即可得到∠OBC=90°,进而得出OB⊥AC.【解答】解:由题可得,图中线段OA,OB、OC 中最短的线段是OB,依据为垂线段最短和平行线的性质.故答案为:OB,垂线段最短,平行线的性质.【点评】本题主要考查了垂线段最短,垂线段最短指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.24.(1)两条直线相交于一点有2组不同的对顶角;(2)三条直线相交于一点有6 组不同的对顶角;(3)四条直线相交于一点有12 组不同的对顶角;(4)n条直线相交于同一点有n(n﹣1)组不同对顶角.(如图所示)【分析】根据(1)(2)(3)得出规律,可求n条直线相交于同一点有多少组不同对顶角.【解答】解:观察图形可知,n 条直线相交于同一点有(1+2+…+n﹣1)×2=×2=n(n﹣1)组不同对顶角.故答案为:n(n﹣1).【点评】考查了对顶角的定义,关键是熟悉对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.25.如图,直线l1、l2、l3 相交于一点O,对顶角一共有6 对.【分析】识别图中的对顶角应从这个较复杂的图形中分解出三个基本图形(即定义图形)即直线AB、CD 相交于O;直线AB,EF 相交于O;直线CD,EF 相交于O.由于两条直线相交组成对顶角,所以上述图中共有6 对对顶角.【解答】解:如图,图中共有 6 对对顶角:∠AOC 和∠BOD,∠AOD 和∠BOC;∠AOF 和∠BOE,∠AOE 和∠BOF;∠COF 和∠DOE,∠COE 和∠DOF.故答案为:6【点评】本题考查了对顶角的定义,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.26.如图,直线a,b,c 两两相交于A,B,C 三点,则图中有 6 对对顶角;有12 对同位角;有6 对内错角;有6 对同旁内角.【分析】根据3 条直线两两相交,共有3 个点,每个点有两对对顶角,得出对顶角、内错角、同旁内角的对数.【解答】解:3 条直线两两相交,共有3 个点,每个点有两对对顶角,任意两条直接被第三条截有12 对同位角,6 对内错角,6 对同旁内角,所以对顶角有6 对,12 对同位角,6 对内错角,6 对同旁内角;故答案为:6 12 6 6【点评】本题考查了同位角、内错角、同旁内角的定义.注意在截线的同旁找同位角,在被截直线之间找内错角、同旁内角.要结合图形,熟记同位角、内错角、同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有4 组同位角.27.图中,与∠1 成同位角的角的个数是3 .【分析】据五条直线相交关系分别讨论:l1、l2 被b 所截,与∠1 成同位角的角的有1 个;a、b 被l2 所截,与∠1 成同位角的角的有1 个;c、b 被l2 所截,与∠1 成同位角的角的有1 个.共计3 个.【解答】解:据同位角定义,l1l2 被 b 所截,与∠1 成同位角的角的有 1 个;a、b 被l2 所截,与∠1 成同位角的角的有1 个;c、b 被l2 所截,与∠1 成同位角的角的有1 个.一共有3 个,故填3.【点评】本题考查了同位角的定义,注意不要漏解.28.四条直线,每一条都与另外三条相交,且四条直线不相交于同一点,每条直线交另外两条直线,都能组成4 组同位角,这个图形中共有48 组同位角.【分析】每条直线都与另3 条直线相交,有3 个交点.每2 个交点决定一条线段,共有3条线段.4 条直线两两相交且无三线共点,共有3×4=12 条线段.每条线段各有4 组同位角,可知同位角的总组数.【解答】解:∵平面上4 条直线两两相交且无三线共点,∴共有3×4=12 条线段.又∵每条线段各有 4 组同位角,∴共有同位角12×4=48 组.故每条直线交另外两条直线,都能组成4 组同位角.这个图形中共有48 组同位角.故答案为:4,48.【点评】本题考查了同位角的定义.注意在截线的同旁找同位角.要结合图形,熟记同位角的位置特点.两条直线被第三条直线所截所形成的八个角中,有4 组同位角.29.平面内5 条直线两两相交,且没有3 条直线交于一点,那么图中共有60 对同旁内角.【分析】每条直线都与另4 条直线相交,且没有3 条直线交于一点,共有30 条线段.每条线段两侧各有一对同旁内角内角,可知同旁内角的总对数.【解答】解:如图所示:∵平面上5 条直线两两相交且无三线共点,∴共有30 条线段.又∵每条线段两侧各有一对同旁内角,∴共有同旁内角30×2=60对.故答案为:60.【点评】本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.注意按顺序一个点一个点的数,不要重复也不要遗漏.30.如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2 等于58°.【分析】依据平行线的性质以及折叠的性质,即可得到∠2 的度数.【解答】解:如图,∵AB∥CD,∴∠1=∠BAC=116°,由折叠可得,∠BAD=∠BAC=58°,∵AB∥CD,∴∠2=∠BAD=58°,故答案为:58°.【点评】本题考查平行线的性质,翻折变换知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.有一条长方形纸带,按如图所示沿AB 折叠,若∠1=40°,则纸带重叠部分中∠CAB=70 °.【分析】可利用平行线的性质求出∠FAC 的大小,进而可求∠CAB 的大小.【解答】解:∵长方形纸带,∴BE∥AF,∴∠1=∠CAF=40°,由于折叠可得:∠CAB=,故答案为:70【点评】此题考查平行线的性质,熟练掌握平行线的性质,会求解一些简单的计算问题.32.如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是140°.【分析】先根据平行线的性质得出∠DEF=∠EFB,根据图形折叠的性质得出∠EFC 的度数,进而得出∠CFG 即可.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,由折叠可得:∠EFC=180°﹣20°=160°,∴∠CFG=160°﹣20°=140°,故答案为:140°.【点评】本题考查了平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.33.将一条两边互相平行的纸带沿EF折叠,如图(1),AD∥BC,ED'∥FC',设∠AED'=x°(1)∠EFB=90°﹣x° .(用含x的代数式表示)(2)若将图1继续沿BF折叠成图(2),∠EFC″=﹣90° .(用含x的代数式表示).【分析】(1)由平行线的性质得∠DEF=∠EFB,∠AEH+∠EHB=180°,折叠和三角形的外角得∠D'EF=∠EFB,∠EFB=∠EHB,最后计算出∠EFB=90°﹣x°;(2)由折叠和平角的定义求出∠EFC'=90°+ ,再次折叠经计算求出∠EFC''=.【解答】解:(1)如图1所示:∵AD∥BC,∴∠DEF=∠EFB,∠AEH+∠EHB=180°,又∵∠DEF=∠D'EF,∴∠D'EF=∠EFB,又∵∠EHB=∠D'EF+∠EFB,∴∠EFB=∠EHB,又∵∠AED'=x°,∴∠EHB=180°﹣x°∴∠EFB==90°﹣x°(2)如图2 所示:∵∠EFB+∠EFC'=180°,∴∠EFC'=180°﹣(90°﹣°)=90°+ ,又∵∠EFC'=2∠EFB+∠EFC'',∴∠EFC''=∠EFC'﹣2∠EFB=90°+ ﹣2(90°﹣°)=,故答案为.【点评】本题综合考查了平行线的性质,折叠问题,等腰三角形的性质,三角形的外角定理,平角的定义和角的和差等相关知识,重点掌握平行线的性质,难点是折叠前后的变及不变的问题,二次折叠角的前后大小等量关系.三.解答题(共10 小题)34.如图,直线AB、CD 相交于O,OE⊥CD,且∠BOD 的度数是∠AOD 的5倍.求:(1)∠AOD、∠BOD的度数;(2)∠BOE 的度数.【分析】(1)根据∠BOD+∠AOD=180°和∠BOD=5∠AOD 求出即可;(2)求出∠BOC,∠EOC,代入∠BOE=∠EOC﹣∠BOC 求出即可.【解答】解:(1)∵AB是直线(已知),∴∠BOD+∠AOD=180°,∵∠BOD 的度数是∠AOD 的 5 倍,∴∠AOD=×180°=30°,∠BOD=×180°=150°.(2)∵∠BOC=∠AOD=30°,OE⊥DC,∴∠EOC=90°,∴∠BOE=∠EOC﹣∠BOC=90°﹣30°=60°.【点评】本题考查了垂直定义,邻补角,对顶角,角的有关计算的应用,主要考查学生的计算能力.35.如图,直线AB 和CD 相交于点O,OE 把∠AOC 分成两部分,且∠AOE:∠EOC=2:5(1)如图1,若∠BOD=70°,求∠BOE;(2)如图2,若OF 平分∠BOE,∠BOF=∠AOC+10°,求∠EOF.【分析】(1)依据对顶角相等以及邻补角,即可得到∠AOC=70°,∠BOC=110°,再根据∠AOE:∠EOC=2:5,即可得到∠COE 的度数,进而得出∠BOE 的度数;(2)设∠AOE=2α,∠EOC=5α,则∠BOF=7α+10°,∠BOF=∠BOE=(180°﹣∠AOE)=(180°﹣2α),根据7α+10°=(180°﹣2α),即可得到α的值,进而得到∠EOF 的度数.【解答】解:(1)∵∠BOD=70°,直线AB和CD相交于点O,∴∠AOC=70°,∠BOC=110°,又∵∠AOE:∠EOC=2:5,∴∠COE=70°×=50°,∴∠BOE=50°+110°=160°;(2)设∠AOE=2α,∠EOC=5α,则∠BOF=7α+10°,∵OF 平分∠BOE,∴∠BOF=∠BOE=(180°﹣∠AOE)=(180°﹣2α),∴7α+10°=(180°﹣2α),解得α=10°,∴∠EOF=∠BOF=70°+10°=80°.【点评】本题考查了对顶角、邻补角以及角平分线的定义,解决问题的关键是利用了对顶角相等,邻补角互补的关系.36.如图,直线AB、CD 相交于点O,OE 平分∠BOC,∠COF=90°.(1)若∠AOF=70°,求∠BOE 的度数;(2)若∠BOE:∠BOD=3:2,求∠AOF 的度数.【分析】(1)先根据余角的概念求出∠AOC 的度数,再根据邻补角的性质求出∠BOC 的度数,最后根据角平分线的定义计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.【解答】解:(1)∵∠COF=90°,∠AOF=70°,∴∠AOC=90°﹣70°=20°,∴∠BOC=180°﹣20°=160°,∵OE 平分∠BOC,∴∠BOE=∠BOC=80°;(2)∵∠BOE:∠BOD=3:2,OE 平分∠BOC,∴∠EOC:∠BOE:∠BOD=3:3:2,∵∠EOC+∠BOE+∠BOD=180°,∴∠BOD=45°,∴∠AOC=∠BOD=45°,又∵∠COF=90°,∴∠AOF=90°﹣45°=45°.【点评】本题考查的是对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.37.如图,已知∠A=∠C,∠1+∠2=180°,试猜想AB 与CD 之间有怎样的位置关系?并说明理由.【分析】由∠1+∠2=180°可证得AD∥BC,得∠ADE=∠C,已知∠A=∠C,等量代换后可得∠ADE=∠A,即AB、CD 被直线AD 所截形成的内错角相等,由此可证得AB 与CD 平行.【解答】证明:AB∥CD,理由如下:∵∠1+∠2=180°(已知)∴AD∥BC(同旁内角互补,两直线平行)(2分)∴∠EDA=∠C(两直线平行,同位角相等)(3分)又∵∠A=∠C(已知)∴∠A=∠EDA(等量代换)(5分)∴AB∥CD.(内错角相等,两直线平行)(6分)【点评】此题主要考查平行线的判定和性质.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.38.(1)如图,已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.探究:∠ABC 与∠DEF 分别有怎样的数量关系?并选择一种情况说明理由.图1 中∠ABC 与∠DEF 数量关系为∠ABC+∠DEF=180°;图2 中∠ABC 与∠DEF 数量关系为∠ABC=∠DEF .选择一种情况说明理由:(2)由(1)你得出的结论是如果两个角的两边互相平行,那么这两个角相等或互补.(3)若两个角的两边互相平行,且一个角比另一个角的2 倍少30°,直接写出这两个角的度数.【分析】(1)利用平行线的性质即可判断.(2)根据平行线的性质解决问题即可.(3)设两个角分别为x 和2x﹣30°,由题意x=2x﹣30°或x+2x﹣30°=180°,解方程即可解决问题.【解答】解:(1)如图1中,∠ABC+∠DEF=180°.如图2中,∠ABC=∠DEF,故答案为∠ABC+∠DEF=180°,∠ABC=∠DEF.理由:①如图1 中,∵BC∥EF,∴∠DPB=∠DEF,∵AB∥DE,∴∠ABC+∠DPB=180°,∴∠ABC+∠DEF=180°.②如图2 中,∵BC∥EF,∴∠DPC=∠DEF,∵AB∥DE,∴∠ABC=∠DPC,∴∠ABC=∠DEF.(2)结论:如果两个角的两边互相平行,那么这两个角相等或互补.故答案为如果两个角的两边互相平行,那么这两个角相等或互补.(3)设两个角分别为x 和2x﹣30°,由题意x=2x﹣30°或x+2x﹣30°=180°,解得x=30°或x=70°,∴这两个角的度数为30°,30°或70°和110°.【点评】本题考查平行线的判定和性质,一元一次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.39.如图,已知∠AED=∠ACB,CD⊥AB,HF⊥AB,猜想∠1 与∠2 的数量关系并说明的理由.。

人教版初中七年级数学下册第五章《相交线与平行线》提高卷(含答案解析)(1)

人教版初中七年级数学下册第五章《相交线与平行线》提高卷(含答案解析)(1)

一、选择题1.如图,若1234//,//l l l l ,则图中与1 互补的角有( )A .1个B .2个C .3个D .4个D解析:D【分析】 直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【详解】解:解:∵1234//,//l l l l ,∴∠1+∠2=180°,∠2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D .【点睛】本题主要考查了平行线的性质,注意不要漏角是解题的关键.2.在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题; 故选:B .【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.3.下列语句中不是命题的有()(1)两点之间,线段最短;(2)连接A、B两点;(3)鸟是动物;(4)不相交的两条直线叫做平行线;(5)无论a为怎样的有理数,式子a2+1的值都是正数吗?A.1个B.2个C.3个D.4个C解析:C【分析】根据命题的定义对各语句进行判断.【详解】两点之间,线段最短,所以(1)为命题;连接A、B两点,它为描述性语言,所以(2)不是命题;鸟是动物,所以(3)为命题;不相交的两条直线叫做平行线,所以(4)为命题;无论a为怎样的有理数,式子a2+1的值都是正数吗?它为疑问句,所以(5)不是命题.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.如图,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.9 C.10 D.11D解析:D【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【详解】解:根据题意,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,∴AD=2,BF=BC+CF=BC+2,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D .【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°C 解析:C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】A 、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A 选项错误;B 、不满足条件,故B 选项错误;C 、满足条件,不满足结论,故C 选项正确;D 、不满足条件,也不满足结论,故D 选项错误.故选:C .【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键. 6.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b C 解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.7.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.8.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④D解析:D【分析】 根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB ∥CD ,不符合题意;②∵∠3=∠4,∴BC ∥AD ,符合题意;③∵AB ∥CD ,∴∠B+∠BCD =180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.9.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.10.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A.75︒B.120︒C.135︒D.无法确定A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.二、填空题11.如图,点A在直线m上,点B在直线l上,点A到直线l的距离为a,点B到直线m 的距离为b,线段AB的长度为c,通过测量等方法可以判断在a,b,c三个数据中,最大的是_____________.【分析】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB根据点到直线垂线段最短可知AB >ADAB>BH可得最大【详解】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB由题意得解析:c【分析】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,根据点到直线垂线段最短,可知AB>AD,AB>BH,可得c最大.【详解】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,由题意得:AD=a, BH=b,AB=c;根据点到直线垂线段最短,可知AB>AD,AB>BH∴c>a,c>b;∴c最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.∠=∠=∠=︒,则∠4的度数是___________.12.已知:如图,12354126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.13.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A、B两地和公路l之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB;(2)过点A画线段AC⊥直线l于点C,所以线段BA和线段AC即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A到直线l的最短距离为AC由两点之间线段最短可解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.14.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本 解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.15.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___ 130cm2【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD 那么GH=CDBC=FG 观察可知梯形EFMD 是两个梯形的公共部分那么阴影部分的面积就等于梯形MGHD 再根据梯形的面积计算公式计算即可【解析:130cm 2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH是由直角梯形ABCD平移得到的,∴梯形EFGH≌梯形ABCD,∴GH=CD,BC=FG,∵梯形EFMD是两个梯形的公共部分,∴S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD,∴S阴影=S梯形MGHD=12(DM+GH)•GM=12(28-4+28)×5=130(cm2).故答案是130cm2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.16.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.17.用反证法证明“三角形中至少有一个内角不大于60°,应先假设这个三角形中____________________.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于60解析:三角形的三个内角都大于60°【分析】根据反证法的步骤,先假设结论不成立,即否定命题即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°.故答案为:三角形的三个内角都大于60°.【点睛】本题考查了反证法的知识,掌握反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立是解题的关键.18.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD -1)×2,又∵长AB =50米,宽BC =25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.19.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC 可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE ∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC ,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.20.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,DH=4,平移距离为8,则阴影部分的面积是_______________.64【分析】根据平移变化只改变图形的位置不改变图形的形状可得出两个三角形大小一样阴影部分面积等于梯形ABEH的面积;DE=AB根据线段的和差关系可求出HE的长度再根据梯形的面积公式即可得答案【详解】解析:64【分析】根据平移变化只改变图形的位置,不改变图形的形状,可得出两个三角形大小一样,阴影部分面积等于梯形ABEH的面积;DE=AB,根据线段的和差关系可求出HE的长度,再根据梯形的面积公式即可得答案.【详解】∵两个三角形大小一样,∴S△ABC=S△DEF,∴S△ABC-S△HEC=S△DEF-S△HEC,∴S阴影=S梯形ABEH,∵其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,∴DE=AB=10,∵DH=4,∴HE=DE-DH=6,∵平移距离是8,∴BE=8,∴S阴影=S梯形ABEH=12(HE+AB)·BE=12×(10+6)×8=64,故答案为:64【点睛】本题主要考查了平移的性质,通过观察图形把阴影部分的面积转化为熟知图形的面积是关键的一步.三、解答题21.在一张地图上有、、A B C三地,但地图被墨迹污染,C地具体位置看不清楚,但知道C地在A地的北偏东30°方向,在B地南偏东45°方向.(1)根据以上条件,在地图上画出C地的位置;(2)直接写出ACB的度数.解析:(1)见详解;(2)105°.【分析】(1)过点A、B作正北方向,再据方位角的含义画射线BX和AY,两射线之交点即是C 地;(2)记过点A的正北方向线与射线BX之交点为D,先求得∠CDA的度数,最后由三角形内角和为180°计算得∠ACB的度数.【详解】(1)如下图,第一步过B作m的平行线BS,以B为顶点作射线BX,使∠SBX=45°;第二步过A作m的平行线AN交BX于点D,以A为顶点作射线AY,使∠NAY=30°;则射线BX与射线AY的交点就是C地.(2)如上图,由C 地在B 地南偏东45°方向得∠SBX=45°∵SB ∥m ,AN ∥m∴SB ∥AN∴∠ADC=∠SBX=45°由C 地在A 地的北偏东30°方向得∠NAY=30°,∴∠ACB=180°-∠ADC-∠NAY=180°-45°-30°=105°.【点睛】此题考查方位角、平行线等知识,其中理解方位角正确画出图形是关键.22.如图,有三个论断:①12∠=∠;②B C ∠=∠;③A D ∠=∠,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.解析:答案见解析【分析】先从①②③中任选两个作为条件,另一个作为结论构成一个命题,然后根据平行线的判定和性质及对顶角相等进行证明即可.【详解】已知:12∠=∠,B C ∠=∠求证:A D ∠=∠证明:如图:13∠=∠ 又12∠=∠32∴∠=∠//EC BF ∴AEC B ∴∠=∠又B C ∠=∠AEC C ∴∠=∠//AB CD ∴A D ∴∠=∠.【点睛】本题主要考查了平行线的判定与性质以及命题与定理的证明问题,证明的一般步骤包括写出已知、求证、画出图形和证明.23.如图,DE 平分∠ADF ,DF ∥BC ,点E ,F 在线段AC 上,点A ,D ,B 在一直线上,连接BF .(1)若∠ADF =70°,∠ABF =25°,求∠CBF 的度数;(2)若BF 平分∠ABC 时,求证:BF ∥DE .解析:(1)∠CBF =45°;(2)见解析.【分析】(1)根据平行线的性质和已知条件即可求出∠CBF 的度数;(2)根据平行线的性质可得∠ABC =∠ADF ,再根据BF 平分∠ABC ,DE 平分∠ADF ,可得∠ADE =∠ABF ,再根据同位角相等,两直线平行即可证明BF ∥DE .【详解】解:(1)∵DF ∥BC ,∴∠ABC =∠ADF =70°,∵∠ABF =25°,∴∠CBF =70°﹣25°=45°;(2)证明:∵DF ∥BC ,∴∠ABC =∠ADF ,∵BF 平分∠ABC ,DE 平分∠ADF ,∴∠ADE 12=∠ADF ,∠ABF 12=∠ABC , ∴∠ADE =∠ABF ,∴BF ∥DE .【点睛】 本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.24.如图,//,//DE BC EF AB ,图中与∠BFE 互补的角有几个,请分别写出来.解析:∠EFC 、∠DEF 、∠ADE 、∠B .【分析】根据平行的性质得EFC DEF ADE B ∠=∠=∠=∠,由180BFE EFC ∠+∠=︒,可知这些角与BFE ∠都互补.【详解】解:180BFE EFC ∠+∠=︒,∵//DE BC ,∴DEF EFC ∠=∠,∴180BFE DEF ∠+∠=︒,∵//EF AB ,∴DEF ADE ∠=∠,∴180BFE ADE ∠+∠=︒,∵//DE BC ,∴ADE B ∠=∠,∴180BFE B ∠+∠=︒,与∠BFE 互补的角有4个,分别为:∠EFC 、∠DEF 、∠ADE 、∠B .【点睛】本题考查平行线的性质,解题的关键利用平行线的性质找相等的角.25.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F . (1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B 的度数.解析:(1)CD 与EF 平行.理由见解析;(2)∠B=35°【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF ∥CD ;(2)由EF ∥CD ,根据平行线的性质得∠2=∠BCD ,而∠1=∠2,所以∠1=∠BCD ,根据内错角相等,两直线平行得到DG ∥BC ,所以∠ACB=∠3=115°,根据三角形的内角和即可得到结论.【详解】(1)CD 与EF 平行.理由如下:∵CD ⊥AB ,EF ⊥AB ,∴∠CDB=∠EFB=90°,∴EF ∥CD ;(2)∵EF ∥CD ,∴∠2=∠BCD ,∵∠1=∠2,∴∠1=∠BCD ,∴DG ∥BC ,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质,注意:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.26.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.解析:(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键27.如图所示,在平面直角坐标系中,已知A (0,1)、B (2,0)、C (4,3).(1)在平面直角坐标系中画出△ABC ,作出△ABC 向下平移3格后的△A 1B 1C 1; (2)求△ABC 的面积;(3)已知点Q 为y 轴上一点,若△ACQ 的面积为8,求点Q 的坐标.解析:(1)见解析;(2)4;(3)(0,5)或(0,-3).【分析】(1)先在平面直角坐标系中描点,再连接,然后分别作出平移后的对应点,再顺次连接即可得;(2)利用割补法求解可得;(3)根据三角形面积公式求出AQ 的长,即可确定点Q 的坐标.【详解】解:(1)如图所示,(2)△ABC 的面积=111342421234222⨯-⨯⨯-⨯⨯-⨯⨯= (3)∵Q 为y 轴上一点,△ACQ 的面积为8, ∴1||482AQ ⨯⨯=, ∴AQ=4 ∴点Q 的纵坐标为:4+1=5或1-4=-3,故Q 点坐标为:(0,5)或(0,-3).【点睛】本题主要考查的是作图-平移变换、点的坐标与图形的性质,明确△ABC 的面积=四边形的面积-3个直角三角形的面积是解题的关键.28.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,FO ⊥CD 于点O ,若∠BOD ∶∠EOB=2∶3,求∠AOF 的度数.解析:45︒.【分析】设2BOD x ∠=,从而可得3EOB x ∠=,先根据角平分线的定义3EOC EOB x ∠=∠=,再根据平角的定义可得求出x 的值,然后根据垂直的定义可得90DOF ∠=︒,最后根据平角的定义即可得.【详解】设2BOD x ∠=,则3EOB x ∠=,∵OE 平分BOC ∠,∴3EOC EOB x ∠=∠=,180BOD EOB EOC ∠+∠+∠=︒,233180x x x ∴++=︒,解得22.5x =︒,45BOD ∴∠=︒,FO CD ⊥,90DOF ∴∠=︒,又180BOD DOF AOF ∠+∠+∠=︒,4590180AOF ∴︒+︒+∠=︒,解得45AOF ∠=︒.【点睛】本题考查了角平分线的定义、平角的定义、垂直的定义等知识点,熟练掌握并理解各定义是解题关键.。

初一下册数学-相交线与平行线-难题-提高题-中考题

初一下册数学-相交线与平行线-难题-提高题-中考题

初一下册数学-相交线与平行线-难题-提高题-中考题1.根据题目描述,需要在角钢上截去一个缺口使其弯成120°的钢架。

缺口的角度应该是60度(120度-60度=60度)。

2.根据题目描述,矩形ABCD沿EF对折后使两部分重合。

由于对折后两部分重合,因此∠AEF=∠FEC=50°。

3.根据题目描述,将三角尺的直角顶点放在直尺的一边上,且∠1=30°,∠2=50°。

根据三角形内角和公式可得,∠3=100°。

4.1) 当动点P落在第①部分时,由于直线AC∥BD,因此∠PAC和∠PBD是同旁内角,即∠PAC=∠PBD。

又因为∠APB是一条直线的内角,因此∠APB=180°。

因此,∠APB=∠PAC+∠PBD。

2) 当动点P落在第②部分时,由于P点在直线AC上,因此∠PAC=180°-∠ACB。

同理,由于P点在直线BD上,因此∠PBD=180°-∠CBD。

因此,∠APB=∠PAC+∠PBD成立。

3) 当动点P在第③部分时,由于直线AC∥BD,因此∠PAC和∠PBD是同旁内角,即∠PAC=∠PBD。

又因为∠APB是一条直线的内角,因此∠APB=180°。

由于P点在第③部分,因此∠ACB和∠CBD是同旁外角,即∠ACB=∠CBD。

因此,∠PAC=∠PBD=180°-∠ACB=180°-∠CBD。

因此,∠APB=2∠PAC成立。

7.根据题目描述,已知∠1=55°,∠3=75°,且光线在平面镜AB和CD之间来回反射。

由于光线的入射角等于反射角,因此∠2=∠4=75°。

根据三角形内角和公式可得,∠5=55°。

由于∠1和∠5是同旁内角,因此∠2=∠6=55°。

8.根据题目描述,刀柄外形是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1、∠2.由于刀柄外形是一个直角梯形,因此∠1=90°。

(完整word)相交线和平行线测试题及答案(七年级),推荐文档

(完整word)相交线和平行线测试题及答案(七年级),推荐文档

1. 2. 七年级相交线与平行线测试题、选择题 下列正确说法的个数是 ①同位角相等 ③等角的补角相等 A . 1, B. 下列说法正确的是( A. 两点之间,直线最短; B. 过一点有一条直线平行于已知直线; C. 和已知直线垂直的直线有且只有一条;D. 在平面内过一点有且只有一条直线垂直于已知直线 下列图中/ 1和/ 2是同位角的是()) ②对顶角相等④两直线平行, C. 3, )同旁内角相等D.AABC9.三条直线相交于一点,构成的对顶角共有( )A 、3对B 、4对C 、5对D 、6对10. 如图,已知 AB // CD // EF , BC // AD , AC 平分/ BAD ,那么图中与/AGE 相等的角有( )A.5个B.4个C.3个D.2个11. 如图 6, BO 平分/ ABC , CO 平分/ ACB ,且 MN // BC ,设 AB = 12, BC =24 , AC = 18U MMN 的周长为( )。

A 、30 B 、36 C 、42 D 、18 12. 如图,若 AB // CD ,则/ A 、/ E 、/ D 之间的关系是 ( )3. A. / A + Z E+ / D=180° B. Z A — Z E + Z D=180°C. Z A + Z E —Z D=180°D. Z A + Z E+ Z D=270°、填空题4. 如果一个角的补角是 150°那么这个角的余角的度数是 ()A.30 °B.60 °C.90 °D.120 ° 5. 下列语句中,是对顶角的语句为 ( ) A. 有公共顶点并且相等的两个角B. 两条直线相交,有公共顶点的两个角C. 顶点相对的两个角D. 两条直线相交,有公共顶点没有公共边的两个角6. 下列命题正确的是 () A. 内错角相等 B. 相等的角是对顶角 C. 三条直线相交,必产生同位角、内错角、同旁内角 D. 同位角相等,两直线平行 7. 两平行直线被第三条直线所截,同旁内角的平分线 ( )A.互相重合B.互相平行C.互相垂直D.无法确定13. 一个角的余角是30o ,则这个角的补角是 _. 14. 一个角与它的补角之差是 20o ,则这个角的大小是 _____________ . 15. 时钟指向3时30分时,这时时针与分针所成的锐角是 _. 16. 如图②,Z 1 = 82o , Z 2 = 98o , Z 3 = 80o ,则Z 4 = _________ 度.17. 如图③,直线 AB , CD , EF 相交于点 0, AB 丄CD , OG 平分Z AOE , Z FOD=28o ,则Z BOE = _________ 度,Z AOG =18.如图④,AB 度. // CD , Z BAE = 120o , _______ 度.19.把一张长方形纸条按图⑤中,那样折叠后,若得到Z AOB = 70o ,则Z OGC8.在平面内,将一个图形绕一个定点沿某个方向转动一个角度, 为旋转。

七年级数学下册-相交线与平行线测试题及答案

七年级数学下册-相交线与平行线测试题及答案

七年级数学下册-相交线与平行线测试题及答案.doc相交线与平行线测试题一、填空题1.60º2.70º3.75º4.100º5.∠BOE = 76º。

∠AOG = 52º6.30º7.110º8.109.60π10.3cm11.∠3的同位角 = 140º。

∠3的内错角 = 40º。

∠3的同旁内角 = 140º12.4二、选择题1.D.42.D.在平面内过一点有且只有一条直线垂直于已知直线.3.B.⑵、⑶、⑷4.C.90°5.对顶角相等的语句为“对顶角互相相等”。

___(a)所示,五边形ABCDE是___十年前承包的一块土地示意图。

经过多年开垦荒地,现已变成图(b)所示的形状,但承包土地与开垦荒地的分界小路(即图(b)中折线CDE)还保留着。

___想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多。

请你用有关知识,按___的要求设计出修路方案。

(不计分界小路与直路的占地面积)1) 设计方案如下:首先,连接AE和BD,将五边形ABCDE分成三个部分。

然后,连接DE并延长到直路的位置,再连接CE和BC。

如图(c)所示,直路的位置为EF,其中EF与DE平行,且EF与BC垂直。

此时,EF将五边形分为左右两部分,且左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多。

2) 设计理由如下:首先,连接AE和BD是为了将五边形ABCDE分成三个部分,方便后续的计算。

连接DE并延长到直路的位置是为了确定直路的位置,使得EF与DE平行,方便计算面积。

连接CE和BC是为了确定EF与BC垂直,使得右边的土地面积与开垦的荒地面积一样多。

因此,这个修路方案符合___的要求。

解:(1) 根据已知条件,∠1=118°,∠2=∠3,a∥b,因此可以得出∠3=180°-∠1=62°。

七年级下数学《相交线与平行线》单元能力提升测试卷

七年级下数学《相交线与平行线》单元能力提升测试卷

七年级下数学《相交线与平行线》单元能力提升测试卷一.选择题(共10小题)1.如图所示,给出下列条件:①∠1=∠B;②∠EFD+∠B=180°;③∠B=∠D;④∠E =∠B;⑤∠BFD=∠B.其中,一定能判断AB∥CD的条件的个数为()A.2个B.3个C.4个D.5个2.两个同学在课堂上互相命题挑战,小明画了这样一个图,你帮对手判断下列选项中正确的是()A.如果∠3+∠2=180°,那么AB∥CDB.如果∠1=∠5,那么AB∥CDC.如果∠2=∠4,那么AB∥CDD.如果∠1+∠3=180°,那么AB∥CD3.下列命题为假命题的是()A.三角形的三个内角的和等于180度B.三角形的任意两边之和大于第三边C.三角形的角平分线是一条射线D.三角形的面积等于一条边上的长与该条边上的高的乘积的一半4.一把直尺与一块直角三角板按如图方式摆放,若∠2=37°,则∠1=()A.52°B.53°C.54°D.63°5.能说明命题“如果a是任意实数,那么=a”是假命题的反例是()A.a=﹣1B.a=0C.a=D.a=26.下列命题:①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的面积相等;④全等三角形的高相等.其中正确的命题个数是()A.4个B.3个C.2个D.1个7.直线l1、l2、l3的位置关系如图,下列说法错误的是()A.∠2与∠1互为邻补角,若∠1=111°54',则∠2=68.1°B.∠1与∠3互为对顶角,若∠1=111.9°,则∠3=111.9°C.若l2⊥l3,则∠1=∠2=90°;若∠1=90°,则l2⊥l3D.若∠3+∠4=180°或∠4+∠6=180°,则l1∥l2.8.命题是能够判断真假的语句,命题一般都有题设与结论.命题“垂直于同一条直线的两条直线互相平行”的题设是()A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线9.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=78°,则∠BOM=()A.39°B.102°C.141°D.143°10.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B,C两点,连结AC,BC.若∠1=40°,则∠ABC的大小为()A.20°B.40°C.70°D.80°二.填空题(共6小题)11.命题“两个全等三角形的周长相等”的逆命题是.12.如图,直线a、b被c所截,∠1=130°,当∠2=°时,a∥b.13.小明用两张完全相同的长方形纸片按如图所示的方式摆放,一张纸片压住射线OB,另一张纸片压住射线OA且与第一张纸片交于点P,若∠BOP=25°,则∠AOB=.14.把一块直尺与一块直角三角板如图放置,若∠1=38°,则∠2的度数为.15.如图,某酒店重新装修后,准备在大厅主楼梯上铺设红色地毯.已知这种地毯每平方米售价160元,主楼梯道宽2.5m,其侧面如图所示,则购买地毯至少需要元.16.如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要米.三.解答题(共6小题)17.如图是由相同边长的小正方形组成的网格图形,每个小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,三角形ABC的三个顶点都在格点上,利用网格画图.(1)画出三角形ABC向右平移8个单位长度后三角形A′B′C′的位置;(2)过点A画BC的平行线,并标出平行线所过格点Q;(3)过点A画BC的垂线,并标出垂线所过格点P;(4)三角形A′B′C′的面积为.18.如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为.19.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=60°,∠ABC=40°,求∠BED的度数;(3)如图3,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=α,∠ABC=β,请你求出∠BED的度数(用含α,β的式子表示).20.如图1,AB∥CD,点E、F分别在直线AB、CD上,点O在直线AB、CD之间.(1)若∠AEO=40°,∠CFO=60°,求∠EOF的度数;(2)若∠AEO=α,∠CFO=β,直接写出∠EOF的度数为;(3)如图2,∠BEO、∠DFO的角平分线交于点M,∠EOF的角平分线交EM于点N,试探索∠NOF、∠NMF之间的数量关系,并说明理由.21.如图,已知MN∥BF,AB∥DE,AC∥DF,点E在点C右侧.(1)如图1,求证:∠ABC=∠ADE;(2)如图2,点G是DE上一点,连接AG,已知AC⊥BF,AG⊥DE.①若AD=EG,且DE=7,AG=3,求线段DG的长;②若AD=20,点E到AD的距离与线段AG的长度之比为5:4,求线段DE的长.22.如图1,T,Z为直线UV同侧的两点,W为直线UV上的一点,连接WT,WZ.若∠UWT=∠VWZ,则称点W为T,Z两点关于直线UV的反射点.(1)如图2,点O是A,B两点关于CD的反射点.若∠BOD=35°,直接写出射线OA 的方向;(2)如图3,A,B为CD同侧的两点,点O为CD上的一点,AC∥BO,AO∥BD.若∠C=∠D,求证:点O是A,B两点关于CD的反射点;(3)如图4,点G是M,N两点关于EF的反射点,GP,GQ分别平分∠FGN,∠FGM.若∠PGQ=50°,请补全图形并求∠EGQ的度数.。

七年级数学相交线、平行线 提高测试

七年级数学相交线、平行线 提高测试

相交线、平行线提高测试(一)判断题(每题2分,共10分)1.过线段外一点画线段的中垂线……………………………………………………()【提示】线段外一点不一定在线段的中垂线上,所以过线段外一点画线段的垂线,不一定平分这条线段如图PQ⊥AB,垂足为O.但PQ不平分AB.【答案】×.2.如果两个角互为补角,那么它们的角平分线一定互相垂直……………………()【提示】两个角互为补角时,这两个角可以是邻补角,也可以不是邻补角.当两角互补但不是邻补角时,则它们的角平分线不互相垂直.如图:∠AOB与∠AOC互补,OM平分∠AOC、ON平分∠AOB.显然OM与ON不垂直.【答案】×.3.两条直线不平行,同旁内角不互补………………………………………………()【提示】如图,AB与CD不平行,EF与AB交于点G.与CD交于点H.过点G作PQ∥CD.∴∠QGF+∠GHD=180°.∵∠BGF<∠QGF,∴∠BGF+∠GHD<180°;又∠PGH+∠GHC=180°,∵∠AGH>∠PGH,∴∠AGH+∠GHC>180°.即两直线不平行,同旁内角不互补.【答案】√.4.错误地判断一件事情的语句不叫命题……………………………………………()【提示】判断一件事情的语句叫做命题.错误地判断得到的是假命题.假命题也是命题.【答案】×.5.如图,AB∥CD,那么∠B+∠F+∠D=∠E+∠G …………………………()【提示】过点E、F、G分别画EP∥AB,PQ∥AB,GM∥AB.则AB∥EP∥FQ∥GM∥CD.∴∠B=∠1,∠3=∠2,∠4=∠5,∠D=∠6.∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6.即∠B+∠EFG+∠D=∠BEF+∠FG(D)【答案】√.(二)填空题(每小题2分,共18分)6.如图,当∠1=∠时,AB∥DC;当∠D+∠=180°时,AB∥DC;当∠B=∠时,AB∥CD.【提示】把题中的“AB∥CD”视作条件去找∠1的内错角、∠D的同旁内角和∠B的同位角.即得要填的角.【答案】4,DAB,5.7.如图,AB∥CD,AD∥BC,∠B=60°,∠EDA=50°.则∠CDF=.【提示】由AB∥CD,得∠DCF=∠B=60°,由AD∥BC得∠ADC=∠DCF=60°,∴∠ADE+∠ADC=50°+60°=110°,∴∠CDF=180°-110°=70°.【答案】70°.8.如图,O是△ABC内一点,OD∥AB,OE∥BC,OF∥AC,∠B=45°,∠C=75°,则∠DOE=,∠EOF=,∠FOD=.【提示】由OD∥AB,∠B=45°,得∠ODC=∠B=45°.由OE∥DC,∠DOE+∠ODC=180°,∴∠DOE=180°-45°=135°.同理可求∠EOF=105°.由周角的定义可求∠FOD=120°.【答案】135°,105°,120°.9.两个角的两边分别平行,其中一个角比另一个角的3倍少20°.则这两个角的度数分别是.【提示】如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.设一个角为x 度.则另一个角为(3x -20)度.依据上面的性质得,3x -20=x ,或3x -20+x =180°.∴x =10,或x =50.当x =50时,3x -20=3×50-20=130.【答案】10°、10°或50°、130°.【点评】通过列方程(或方程组)解题是几何计算常用的方法.10.如图,AB ∥EF ∥CD ,EG 平分∠BEF ,∠B +∠BED +∠D =192°,∠B -∠D =24°,则∠GEF =.【提示】由AB ∥EF ∥CD ,可知∠BED =∠B +∠D .已知∠B +∠BED +∠D =192°.∴ 2∠B +2∠D =192°,∠B +∠D =96°.又 ∠B -∠D =24°.于是可得关于∠B 、∠D 的方程组⎩⎨⎧︒=∠-∠︒=∠+∠2496D B D B 解得 ∠B =60°.由AB ∥EF 知∠BEF =∠B =60°.因为EG 平分∠BEF ,所以∠GEF =21∠BEF =30°. 【答案】30°.11.如图,AD ∥BC ,点O 在AD 上,BO 、CO 分别平分∠ABC 、∠DCB ,若∠A +∠D =m °.则∠BOC =______.【提示】由AD ∥BC ,BO 平分∠ABC ,可知∠AOB =∠CBO =21∠ABC . 同理∠DOC =∠BCO =21∠DCB . ∵AD ∥BC ,∴∠A +∠ABC =180°,∠D +∠DCB =180°,∴∠A +∠D +∠ABC +∠DCB =360°.∵∠A +∠D =m °,∴∠ABC +∠DCB =360°-m °. ∴∠AOB +∠DOC =21(∠ABC +∠DCB )=21(360°-m °)=180°-21m °. ∴∠BOC =180°-(∠AOB +∠DOC )=180°-(180°-21m °)=21m °. 【答案】21m °. 12.有一条直的等宽纸带,按图(1)折叠时,纸带重叠部分中的∠ =度.图(1)【提示】裁一X等宽纸带按图示折叠,体会一下题目的含义.将等宽纸带展平,便得图(2).由此图可知∠DAC=30°.AB是∠C′AC的平分线.∴∠ =75°.图(2)【答案】75°.【点评】解类似具有操作性的实际问题时,不妨动手做一做,从中感受一下题目的意义,进而将实际问题转化成数学问题.用数学知识解决实际问题.这样做不仅能培养我们抽象思维和空间想象能力,而且能提高我们解决实际问题的能力.13.把命题“在同一平面内垂直于同一直线的两直线互相平行”写成“如果…那么…”的形式是:如果______________,那么_____________.【答案】在同一平面内两条直线垂直于同一条直线,这两条直线互相平行.14.如图,在长方体中,与面BCC′B′平行的面是面;与面BCC′B′垂直的面是,与棱A′A平行的面有,与棱A′A垂直的面有.【答案】面ADD′A;面ABB′A′,面ABCD,面A′B′C′D′,面DCC′D′;面DCC′D′,面BCC′B′;面ABCD,面A′B′C′D′.(三)选择题(每小题3分,共21分)15.如图,已知直线AB与CD相交于点O,OE⊥CD.垂足为O,则图中∠AOE和∠DOB的关系是……………………………………………………………………()(A)同位角(B)对顶角(C)互为补角(D)互为余角【提示】由OE⊥CD,知:∠AOE与∠AOC互余.∠AOC与∠BOD是对顶角.所以∠AOE与∠DOB互为余角.【答案】D.16.如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有…………………………………………………………()(A)1条(B)3条(C)5条(D)7条【提示】CD的长表示点C到AB的距离;AC的长表示点A到BC的距离;BC的长表示点B到AC的距离;AD的长表示点A到CD的距离,BD的长表示点B到CD的距离.共5条.【答案】C.17.若AO⊥BO,垂足为O,∠AOC︰∠AOB=2︰9,则∠BOC的度数等于……()(A)20°(B)70°(C)110°(D)70°或110°【提示】OC可在∠AOB内部,也可在∠AOB外部,如图可示,故有两解.设∠AOC=2x°,则∠AOB=9x°.∵AO⊥BO,∴∠AOB=90°.∵9x=90°,x=10°,∠AOC=2x=20°.(1)∠BOC=∠AOB-∠AOC=90°-20°=70°;(2)∠BOC=∠AOB+∠AOC=90°+20°=110°.【答案】D.18.下列命题中,真命题是……………………………………………………………()(A)同位角相等工(B)同旁内角相等,两直线平行(C)同旁内角互补(D)同一平面内,平行于同一直线的两直线平行【提示】两直线不平行,则同位角不相等,同旁内角不互补,所以A、C错误,B也不一定成立.如图所示直线a、b被直线c所截.∠1=∠2,∠3=∠4.显然a与b不平行.【答案】D.19.直线AB∥CD,且与EF、GH相交成如图可示的图形,则共得同旁内角…()(A)4对(B)8对(C)12对(D)16对【提示】该图可分离出四个基本图形,如图所示.第三条直线截两平行线,此时图形呈“”型,有同旁内角两对;第三条直线截两相交线,此时图形呈“”型,有同旁内角六对.故图中共有同旁内角2×2+6×2=16(对).【答案】D.20.如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是………………………………………………………………………………()(A)2 (B)4 (C)5 (D)6【提示】由AD∥EF∥BC,且EG∥AC可得:∠1=∠DAH=∠FHC=∠HCG=∠EGB=∠GEH除∠1共5个.【答案】C.21.某人从A点出发向北偏东60°方向速到B点,再从B点出发向南偏西15°方向速到C点,则∠ABC等于……………………………………………………………()(A)75°(B)105°(C)45°(D)135°【提示】按要求画出图形再计算∵NA∥BS,∴∠NAB=∠SBA=60°.∵∠SBC=15°,∴∠ABC=∠SBA-∠SBC=60°-15°=45°.【答案】C.(四)解答题(本题5分)22.根据命题“角平分线上的点到角的两边距离相等”,画出图形,并结合图形写出已知、求证(不证明).【答案】已知:OC平分∠AOB,P是OC上任意一点.PD⊥OB,PE⊥OA,垂足分别是D、E.求证:PE=PD.五、计算题(第23、24题,每题5分.第25、26题每题6分,共22分)23.如图,AB∥CD∥PN,∠ABC=50°,∠CPN=150°.求∠BCP的度数.【提示】由AB∥CD,∠ABC=50°可得∠BCD=50°.由PN∥CD,∠CPN=150°,可得∠PCD=30°.∴∠BCP=∠BCD-∠PCD=50°-30°=20°.【答案】20°.24.如图,∠CAB=100°,∠ABF=110°,AC∥PD,BF∥PE,求∠DPE的度数.【提示】由AC∥PD,∠CAB=100°,可得∠APD=80°.同理可求∠BPE=70°.∴∠DPE=180°-∠APD-∠BPE=180°-80°-70°=30°.【答案】30°.25.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠P AG的度数.【提示】由DB ∥FG ∥EC ,可得∠BAC =∠BAG +∠CAG=∠DBA +∠ACE =60°+36°=96°. 由AP 平分∠BAC 得∠CAP =21∠BAC =21×96°=48°. 由FG ∥EC 得∠GAC =ACE =36°. ∴∠P AG =48°-36°=12°. 【答案】12°.26.如图,AB ∥CD ,∠1=115°,∠2=140°,求∠3的度数.【提示】过点E 作EG ∥AB .∵AB ∥CD 由平行公理推论可得EG ∥CD .由此可求得∠AEC 的度数.由平角定义可求得∠3的度数.【答案】75°.(五)证明题(每题6分,共24分)27.已知:如图.AB∥CD,∠B=∠C.求证:∠E=∠F.【提示】证明AC∥BD.【答案】证明:∵AB∥CD(已知),∴∠B=∠CDF(两直线平行,同位角相等).∵∠B=∠C(已知),∴∠CDF=∠C(等量代换).∴AC∥BD(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).28.已知:如图,AC∥DE,DC∥EF,CD平分∠BCD.求证:EF平分∠BED.【提示】由AC∥DE.DC∥EF证∠1=∠3.由DC∥EF证∠2=∠4.再由CD平分∠BCA,即可证得∠3=∠4.【答案】证明:∵AC∥DE(已知),∴∠1=∠5(两直线平行,内错角相等).同理∠5=∠3.∴∠1=∠3(等量代换).∵DC∥EF(已知),∴∠2=∠4(两直线平行,同位角相等).∵CD平分∠ACB,∴∠1=∠2(角平分线定义),∴∠3=∠4(等量代换),∴EF平分∠BED(角平分线定义).29.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.【提示】过点E作EF∥AB,证明∠BED=90°.【答案】证明:过点E作EF∥AB.∴∠BEF=∠B(两直线平行,内错角相等).∵∠B=∠1,∴∠BEF=∠1(等量代换).同理可证:∠DEF=∠2.∵∠1+∠BEF+∠DEF+∠2=180°(平角定义),即2∠BEF+2∠DEF=180°,∴∠BEF+∠DEF=90°(等式性质).即∠BED=90°.∴BE⊥DE(垂直的定义).30.已知:如图,AB∥CD,请你观察∠E、∠B、∠D之间有什么关系,并证明你所得的结论.【提示】结论:∠B+∠E=∠D.过点E作EF∥AB.【答案】结论:∠B+∠E=∠D.证明:过点E作EF∥AB,∴∠FEB=∠B(两直线平行,内错角相等).∵AB∥CD,EF∥AB,∴EF ∥CD(平行公理推论),∴∠FED=∠D(两直线平行,内错角相等).∵∠FED=∠FEB+∠BED=∠B+∠BED,∴∠B+∠BED=∠D(等量代换).本题还可添加如图所示的辅助线,请你证明∠B+∠E=∠D.【点评】这是一道探索结论型的问题.要通过对直观图形仔细观察,大胆猜想,设定结论,再进行推理,验证结论.直观图形是观察思考的依据,准确的直观图形可引发正确的直觉思维.所以作图不可忽视.直觉思维是正确,还必须用相关的理论来验证.这样得到的结论方可靠.。

北师大版数学七年级下平行线与相交线提高篇.docx

北师大版数学七年级下平行线与相交线提高篇.docx

初中数学试卷桑水出品平行线与相交线提高篇【基础诊断】1.( 2014广西贺州)如图,OA ⊥OB ,若∠1=55°,则∠2的度数是( ) A . 35°B . 40°C . 45°D . 60°2. (2011湖南娄底) 如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB=12,AC=8,则CD=. 3.(2012重庆)已知:如图,BD 平分∠ABC ,点E 在BC 上,EF//AB .若∠CEF=100°,则∠ABD 的度数为( )A.060B.050C.040D.030【精典例题】 例1:(2014年广东汕尾)如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB . ∠A =∠EBDC . ∠C =∠ABCD .∠A =∠ABE【点拨】考查了平行线的性质。

正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.例2:(2012荷泽)已知线段AB=8cm ,在直线AB 上画线段BC ,使BC=3cm ,则线段AC=________. 【点拨】由于在直线上画线段,所以要分类讨论,这条线段是画在线段的外部或线段两种情况. 例3:如图,已知直线a ∥b ,0401=∠,0602=∠,则3∠等于( ) A .100° B .60° C .40° D .20° 【点拨】本题考查了平行线的性质。

【自测训练】 A —基础训练一、选择题(每小题有四个选项,只有一个选项是正确的.)1.(2012滨州)借助一副三角尺,你能画出下面哪个度数的角()A.65°B.75°C.85°D.95°2.(2011广东茂名)如图,已知AB∥CD, 则图中与∠1互补的角有()A.2个B.3 个C.4 个D.5个3.(2010广西柳州)如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条4.(2014•襄阳)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°5.(2014•滨州)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50 B.60 C.65 D.706.(2014·浙江金华)如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是【】A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直二、填空题7.(2014•浙江湖州)计算:50°﹣15°30′=.8. (2014•福建泉州)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=.9.(2014•孝感)如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数()A.46°B.44°C.36°D.22°10.(2014•德州)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°11.(2012泰州)如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB 的距离是.第9题第10题12.(2012长沙)如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=度.三、解答题13. (2014•广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).14.直线AB.CD相交于点O,OE⊥AB,O为垂足,如果∠EOD = 38°,求∠AOC 和∠COB 的度数.15.(2011山东淄博))如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.B提升训练一、选择题(每小题有四个选项,只有一个选项是正确的.)1.(2014•菏泽)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()2.(2012广元)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为( )A. 先向左转130°,再向左转50°B. 先向左转50°,再向右转50°C. 先向左转50°,再向右转40°D. 先向左转50°,再向左转40°3.(2012•内江)如图,=∠=∠=∠3,1402,651,//00则b a ( ) A.0100 B.0105 C.0110 D.0115二、填空题4. (2010湖南娄底)如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,若∠BOD =100°,则∠AOE =_____.第6题5.(2011辽宁本溪)如图:AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠AEF .EG ⊥FG 于点G ,若∠BEM=50°,则∠CFG= 度。

人教版七年级下册相交线与平行线提高题(可编辑修改word版)

人教版七年级下册相交线与平行线提高题(可编辑修改word版)


7.如图⑥,为了把 ABC 平移得到 A‘B’C‘ ,可以先将 ABC 向右平移
格,再向上平移 格。
8.已知直线 a、b 、c 在同一平面,若 a // b , b c ,则 a
c。
9.三条直线 AB 、 CD 、 EF 相交于点 O ,如图⑦所示, AOD 的对
C
顶角是
, FOB 的对顶角是
, EOB 的邻补角
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
1
7.如右图, AB // CD ,且 A 25 , C 45 ,则 E 的度数是(
A
B
E

A. 60
B. 70
C. 110
D. 80
C
D
8.如右图所示,已知 AC BC , CD AB ,垂足分别是 C 、 D ,那
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1 个
B. 2 个
C. 3 个
D. 4 个
6.下列说法中,正确的是( )
A. 图形的平移是指把图形沿水平方向移动。 B. 平移前后图形的形状和大小都没有发生改变。


A
三、解答题。
1.如图,已知 DE // BC , B 80 , C 56 ,求 ADE 和 DEC 的度数。
E
B O
D F
①①
A
D B
E C
2.如图,已知: 1=2 , D=50 ,求 B 的度数。
E
A
1B
G
H
C2

七年级数学相交线与平行线测试题.doc.docx

七年级数学相交线与平行线测试题.doc.docx

第五章《相交线与平行线》检测题一、 (第小3 分,共 30 分)1、已知∠ A = 40° , ∠ A 的 角等于( )A 、 50°B 、 90°C、140°D、 180°2、如 所示,直 a ∥ b, LA 的度数是()A 、 28°B 、 31°C 、39°D 、 42°A31°DaB70°bC3、如下 所示,∠ 1 是∠ 2 的 角的 形有( )11212221A 、1个B 、2个C 、3个D 、4个4、到直 L 的距离等于 2cm 的点有( )A 、0个B 、2个C 、3个D 、4个AD214 B355、如 ,下列条件不能断定AB ∥ CD 的是( ) A 、∠ 1=∠ 4B、∠ 2=∠ 3C、∠ 5=∠ BD、∠ BAD+L ∠ D=180°6、如 , AC ⊥ BC , CD ⊥ AB, 中互余的角有()CBACDA 、4B 、3C 、2D 、17、如 , AB ∥ CF ∥ DC,EG ∥ DB , 中与∠ 1 相等的角共有()CDA 、3个B 、4个C 、5个D 、6个EF8、在平移 程中, 段()1AGBA 、互相平行且相等B 、互相垂直且相等C 、互相平行(或在同一条直 上)且相等D 、互相平行9、若∠ A 和∠ B 是同旁内角,∠ A = 30°, ∠ B 的度数( )A 、 30°B 、 150°C 、30°或 150°D 不能确定10、如 , 2条直最多有2(2 1)= 1 个交点, 3 条直 最多有3(3 1)= 3 个交点, 422条直 最多有4(41)= 6 个交点,⋯⋯由此猜想,8 条直 最多有___个交点。

2A、32B、16C、28D、40二填空(每个空 3 分,共 30 分)A2D11、如 AB与 CD相交所成的四个角中,∠ 1 的角是___,∠1 的角是___。

七年级数学下册_平行线与相交线提高单元测试题

七年级数学下册_平行线与相交线提高单元测试题

14.已知:如图 2-86 , AB//CD,∠ 1=∠ A,∠ 2=∠ C, B、 E、 D 在一条直线上.求∠ AEC的度数.
11、图 11, BE∥ AO,∠ 1=∠2, OE⊥ OA于点 O,EH⊥ CO于点 H,那么∠ 5=∠6,为什么?
B
5A2 1 Nhomakorabea3 4
C
O
图( 11 )
E
6
H
12.已知:如图 2-82 , DE∥BC,∠ ADE=∠ EFC, 求证:∠ 1=∠ 2
13.已知:如图 2-85 , CD∥ AB, OE平分∠ AOD, OF⊥ OE,∠ D= 50°, 求∠ BOF度数.

E
A
D
D′
B
FC
C′
图1
3
l
2
1
l
图1
图5
图6
4、如图 7, AB∥ CD,∠ ABE=66°,∠ D= 54°,则∠ E 的度数为 _______________.
5、如图 8, AB//CD, 直线 EF 与 AB、 CD分别相交于 E、 F 两点, EP平分∠ AEF,过点 F 作 FP⊥ EP, 垂足为 P,
若∠ PEF=300 , 则∠ PFC=__________。
6、如图 9, AB ∥ CD, 1 50°, 2 110°,则 3 7、如图 10,已知 AE // BD ,∠ 1=130o,∠ 2=30o,则∠ C=
. .
A
E
B
P
300
A
B
13
图7
2
C
D
C
F
D
图7
图7
图8
图9
图 10

七年级初一数学第二学期第五章 相交线与平行线单元达标提高题检测试卷

七年级初一数学第二学期第五章 相交线与平行线单元达标提高题检测试卷

七年级初一数学第二学期第五章 相交线与平行线单元达标提高题检测试卷一、选择题1.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A .0B .1C .2D .32.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°3.下列各命题中,原命题成立,而它逆命题不成立的是( )A .平行四边形的两组对边分别平行B .矩形的对角线相等C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和4.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65°5.如图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( )A .110°B .115°C .125°D .130° 6.如图,AB CD ∥,154FGB ∠︒=,FG 平分EFD ∠,则AEF ∠的度数等于( ).A .26°B .52°C .54°D .77° 7.如图,//,2,2,AB CD FEN BEN FGH CGH ∠=∠∠=∠则F ∠与H ∠的数量关系是( )A .90F H ︒∠+∠=B .2H F ∠=∠C .2180H F ︒∠-∠=D .3180H F ︒∠-∠= 8.一辆汽车在笔直的公路上行驶,两次拐弯后的方向与原来的方向相反,那么两次拐弯的角度可能是是( )A .第一次右拐60°,第二次左拐120°B .第一次左拐60°,第二次右拐60°C .第一次左拐60°,第二次左拐120°D .第一次右拐60°,第二次右拐60° 9.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标( )A .纵坐标不变,横坐标减2B .纵坐标不变,横坐标先除以2,再均减2C .纵坐标不变,横坐标除以2D .纵坐标不变,横坐标先减2,再均除以2 10.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个二、填空题11.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.12.如图, 已知//AB CF ,//CF DE , 90BCD ∠=︒,则D B ∠-∠=_________13.如图,在△ABC 中,6BC cm =,将△ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得图形对应为△DEF ,设平移时间为t 秒,若要使2AD CE =成立,则t 的值为_____秒.14.如图,两直线AB 、CD 平行,则12345∠+∠+∠+∠+∠=__________.15.已知:如图放置的长方形ABCD 和等腰直角三角形EFG 中,∠F=90°,FE=FG=4cm ,AB=2cm ,AD=4cm ,且点F ,G ,D ,C 在同一直线上,点G 和点D 重合.现将△EFG 沿射线FC 向右平移,当点F 和点C 重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm 2,则△EFG 向右平移了____cm .16.两个角的两边分别平行,一个角是50°,那么另一个角是__________.17.100条直线两两相交于一点,则共有对顶角(不含平角)_______对,邻补角________对.18.如图,已知EF ∥GH ,A 、D 为GH 上的两点,M 、B 为EF 上的两点,延长AM 于点C ,AB 平分∠DAC ,直线DB 平分∠FBC ,若∠ACB=100°,则∠DBA 的度数为________.19.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.20.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.三、解答题21.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.22.如图①,已知直线12l l //,且3l 和12,l l 分别相交于,A B 两点,4l 和12,l l 分别相交于,C D 两点,点P 在线段AB 上,记1 23ACP BDP CPD ∠∠∠∠∠∠=,=,=.(1)若120,355︒︒∠=∠=,则2∠=_____;(2)试找出123∠∠∠,,之间的数量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图②,点A 在B 处北偏东42︒的方向上, 若88BAC ︒∠=,则点 A 在C 处的北偏西_____的方向上;(4)如果点P 在直线3l 上且在,A B 两点外侧运动时,其他条件不变,试探究1 23∠∠∠,,之间的关系(点 P 和,A B 两点不重合),直接写出结论即可.23.在综合与实践课上,老师让同学们以“三条平行线m ,n ,l (即始终满足m ∥n ∥l )和一副直角三角尺ABC ,DEF (∠BAC =∠EDF =90°,∠FED =60°,∠DFE =30°,∠ABC =∠ACB =45°)”为主题开展数学活动.操作发现(1)如图1,展翅组把三角尺ABC 的边BC 放在l 上,三角尺DEF 的顶点F 与顶点B 重合,边EF 经过AB ,顶点E 恰好落在m 上,顶点D 恰好落在n 上,边ED 与n 相交所成的一个角记为∠1,求∠1的度数;(2)如图2,受到展翅组的启发,高远组把直线m 向下平移后使得两个三角尺的两个直角顶点A 、D 分别落在m 和l 上,顶点C 恰好落在n 上,边AC 与l 相交所成的一个角记为∠2,边DF 与m 相交所成的一个角记为∠3,请你说明∠2﹣∠3=15°;结论应用(3)老师在点评高远组的探究操作时提出,在(2)的条件下,若点N 是直线n 上一点,CN 恰好平分∠ACB 时,∠2与∠3之间存在一个特殊的倍数关系,请你直接写出它们之间的倍数关系,不需要说明理由.24.如图,已知//,60AM BN A ︒∠=,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点.C D 、()1CBD ∠=()2若点P 运动到某处时,恰有ACB ABD =∠∠,此时AB 与BD 有何位置关系?请说明理由.()3在点P 运动的过程中,APB ∠与ADB ∠之间的关系是否发生变化?若不变,请写出它们的关系并说明理由;若变化,请写出变化规律.25.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点.(1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.26.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质3.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.4.B解析:B【分析】l m,利用平行线的判定定理和性质定理进行分析即可得出答案.由题意过点B作直线//【详解】l m,解:如图,过点B作直线//l m,∵直线m//n,//l n,∴//∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,l m,∵//∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.5.C解析:C【分析】先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两直线平行,内错角相等,即可求得∠BFD的度数.【详解】解:如图,过点E作EM∥AB,过点F作FN∥AB,∵AB ∥CD ,∴EM ∥AB ∥CD ∥FN ,∴∠ABE+∠BEM =180°,∠CDE+∠DEM =180°,∴∠ABE+∠BED+∠CDE =360°,∵∠BED =110°,∴∠ABE+∠CDE =250°∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠ABF =12∠ABE ,∠CDF =12∠CDE , ∴∠ABF+∠CDF =12(∠ABE+∠CDE )=125°, ∵∠DFN =∠CDF ,∠BFN =∠ABF ,∴∠BFD =∠BFN+∠DFN =∠ABF+∠CDF =125°.故选:C .【点睛】此题考查了平行线的性质与角平分线的定义,解题的关键是注意数形结合思想的应用,注意辅助线的作法.6.B解析:B【分析】根据平行线的性质可得26GFD ︒∠= ,再根据角平分线的性质可得52ECD ︒∠=,因此可计算的AEF ∠的度数.【详解】解:∵AB CD ∥,∴180FGB GFD ∠+∠=︒,∴18026GFD FGB ∠=︒-∠=︒,∵FG 平分EFD ∠,∴252EFD GFD ∠=∠=︒,∵AB CD ∥,∴52AEF EFD ∠=∠=︒.故选B .【点睛】本题主要考查平行线的性质和角平分线的性质.平行线的性质 1.两直线平行,同位角相等;2.两直线平行,内错角相等;3.两直线平行,同旁内角互补. 角平分线的性质: 角平分线可以得到两个相等的角.7.D解析:D【分析】先设角,利用平行线的性质表示出待求角,再利用整体思想即可求解.【详解】设,NEB HGC αβ∠=∠=则2,2FEN FGH αβ∠=∠=∵//AB CD∴H AEH HGC ∠=∠+∠NEB HGC =∠+∠αβ=+F FEB FGD ∠=∠-∠()180FEB FGC =∠-︒-∠()31803αβ=-︒-()3180αβ=+-︒∴F ∠3180H =∠-︒3180H F ∴∠-∠=︒故选:D .【点睛】本题考查了平行线的性质,关键是熟练掌握平行线的性质,注意整体思想的运用.8.C解析:C【解析】试题分析:两次拐弯以后方向相反,那么2次同方向拐弯之和是180°.故选:C .9.D解析:D【解析】图案横向拉长2倍就是纵坐标不变,横坐标乘以2,又向右平移2个单位长度,就是纵坐标不变,横坐标加2,应该利用逆向思维纵坐标不变,横坐标先减2,再均除以2.故选:D .点睛:此题主要考查了坐标与图形变化-平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减10.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.二、填空题11.4【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答解析:4【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.12.90°【分析】根据AB∥CF,可得出∠B 和∠BCF 的关系,根据CF∥DE,可得出∠FED 和∠D 的关系,合并即可得出∠D―∠B 的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE解析:90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠FCD+∠D=180°∴∠FCD+∠D-∠B=180°-∠BCF,化简得:∠D-∠B=180°-(∠BCF+∠FCD)∵∠BCD=90°,∴∠BCF+∠FCD=90°∴∠D―∠B=90°故答案为:90°【点睛】本题考查平行线的性质,解题关键是将∠BCD分为∠BCF和∠FCD,然后利用平行线的性质进行角度转换.13.2或6.【解析】【分析】分两种情况:(1)当点E在C的左边时;(2)当点E在C的右边时.画出相应的图形,根据平移的性质,可得AD=BE,再根据AD=2CE,可得方程,解方程即可求解.【详解】解析:2或6.【解析】【分析】分两种情况:(1)当点E在C的左边时;(2)当点E在C的右边时.画出相应的图形,根据平移的性质,可得AD=BE,再根据AD=2CE,可得方程,解方程即可求解.【详解】解:分两种情况:(1)当点E在C的左边时,如图根据图形可得:线段BE和AD的长度即是平移的距离,则AD=BE,设AD=2tcm,则CE=tcm,依题意有解得t=2.(2)当点E 在C 的右边时,如图根据图形可得:线段BE 和AD 的长度即是平移的距离,则AD=BE ,设AD=2tcm ,则CE=tcm ,依题意有2t-t=6,解得t=6.故答案为2或6.【点睛】本题考查了平移的性质,解题的关键是理解平移的方向,由图形判断平移的方向和距离.注意分类讨论.14.【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个的角.【详解】分别过F 点,G 点,H 点作,,平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个的角, 解析:720【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个180的角.【详解】分别过F 点,G 点,H 点作2L ,3L ,4L 平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个180的角,1804720∴⨯=.故答案为720.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补,添加辅助线是解题关键.15.3或2+【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=DG2=4,解得DG=,而DC<,故这种情况不成立;②如图解析:3或2+22【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得DG=22,而DC<22,故这种情况不成立;②如图2,由平移的性质得到△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI,把各部分面积表示出来,解方程即可;③如图3,由平移的性质得到△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI,把各部分面积表示出来,解方程即可.详解:分三种情况讨论:①如图1.∵△EFG是等腰直角三角形,∴△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得:DG=22,而DC=2<22,故这种情况不成立;②如图2.∵△EFG是等腰直角三角形,∴△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI =12DG2-12CG2=4,即:12DG2-12(DG-2)2=4,解得:DG=3;③如图3.∵△EFG是等腰直角三角形,∴△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI =12EF2-12CG2=4,即:12×42-12(DG-2)2=4,解得:DG=222+或222-(舍去).故答案为:3或222+.点睛:本题主要考查了平移的性质以及等腰三角形的知识,解题的关键是分三种情况作出图形,并表示出重合部分的面积.16.130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是解析:130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是130°或50°.故答案为:130°或50°.17.19800【解析】100条直线两两相交,最多有个交点,每个交点处有两组对顶角,4对邻补角,故100条直线两两相交于一点共有4950×2=9900(对)对顶角,有4950×4=19800解析:19800【解析】100条直线两两相交,最多有100(1001)49502-=个交点,每个交点处有两组对顶角,4对邻补角,故100条直线两两相交于一点共有4950×2=9900(对)对顶角,有4950×4=19800(对)邻补角,故答案为:9900,19800.18.50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC 内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线解析:50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线BD平分∠FBC,∴∠5=12(180°﹣∠4)=12(180°﹣80°+2x)=50°+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(80°﹣2x)﹣(50°+x)=180°﹣x﹣80°+2x﹣50°﹣x=50°.故答案为50°.点睛:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.19.80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80解析:80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.20.65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.三、解答题21.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=12x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.【详解】解:(1)由题意知:a=−b,a−b+4=0,解得:a=−2,b=2,∴ A(−2,0),B(2,0),C(2,2),∴S△ABC=1AB BC=42⋅;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=12×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(−2,0)、C(2,2)代入得:-2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩,∴直线AC的解析式为y=12x+1,∴G点坐标为(0,1),∴S△PAC=S△APG+S△CPG=12|t−1|•2+12|t−1|•2=4,解得t=3或−1,∴P点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.22.(1)35︒;(2)123∠+∠=∠,理由见解析;(3)46︒;(4)当P点在A的上方时,321∠=∠-∠,当P 点在B 的下方时,312∠=∠-∠.【分析】(1)由题意直接根据平行线的性质和三角形内角和定理进行分析即可求解;(2)由题意过点P 作//PM AC ,进而利用平行线的性质进行分析证明即可;(3)根据题意过A 点作//AF BD ,则////A BD CE ,进而利用平行线的性质即可求解;(4)根据题意分当P 点在A 的上方与当P 点在B 的下方两种情况进行分类讨论即可.【详解】解:()1∵12l l //,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD 中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2,则有∠2=∠3-∠1=35︒,故答案为:35︒;()2123∠+∠=∠理由如下:过点P 作//PM AC//AC BD////AC PM BD ∴12CPM DPM ∴∠=∠∠=∠,12CPM DPM CPD ∴∠+∠=∠+∠=∠()3过A 点作//AF BD ,则////A BD CE ,则BAC DBA ACE ∠∠+∠=,故答案为:46︒;()4当P 点在A 的上方时,如图 2,∴∠1=∠FPC .∵14//l l ,∴2//PF l ,∴∠2=∠FPD∵∠CPD=∠FPD-∠FPC∴∠CPD=∠2-∠1,即321∠=∠-∠.当P 点在B 的下方时,如图 3,∴∠2=∠GPD∵12l l //,∴1//PG l ,∴∠1=∠CPG∵∠CPD=∠CPG-∠GPD∴∠CPD=∠1-∠2,即312∠=∠-∠.【点睛】本题考查平行线的判定与性质,利用了等量代换的思想,熟练掌握平行线的判定与性质是解答本题的关键.23.(1)75°;(2)见解析;(3)∠2=3∠3【分析】(1)利用三角板的度数,求出∠DBC 的度数,再利用平行线的性质得到∠BDN 的度数,由此得到∠1的度数;(2)过B 点作BG ∥直线m ,利用平行线的性质可得到∠3=DBG 和∠LAB =∠ABG ,再利用等量代换得到∠3+∠LAB =75°,利用余角性质得到∠LAB =90°-∠2,由此证明结论; (3)结论:∠2=3∠3.利用(2)中结论,结合平行线的性质得到∠2和∠3的度数由此证明结论.【详解】(1)∵直线n ∥直线l ,∴∠DBC =∠BDN ,又∵∠DBC =∠ABC ﹣∠ABD =45°﹣30°=15°,∴∠BDN =15°,∴∠1=90°﹣15°=75°.(2)如图所示,过B 点作BG ∥直线m ,∵BG ∥m ,l ∥m ,∴BG ∥l (平行于同一直线的两直线互相平行),∵BG ∥m ,∴∠3=DBG ,又∵BG ∥l ,∴∠LAB =∠ABG ,∴∠3+∠LAB =∠DBA =30°+45°=75°,又∵∠2和∠LAB 互为余角,∴∠LAB =90°﹣∠2,∴∠3+90°﹣∠2=75°,∴∠2﹣∠3=15°.(3)结论:∠2=3∠3.理由:在(2)的条件下,∠2﹣∠3=15°,又∵CN 平分∠BCA ,∴∠BCN =∠CAN =22.5°,又∵直线n ∥直线l ,∴∠2=22.5°,∴∠3=7.5°,∴∠2=3∠3.【点睛】考查平行线的性质并结合了三角板中的特殊角度,学生需要作辅助线利用平行线的传递性将特殊的角的关系联系起来,熟悉掌握平行线之间角的关系是解题的关键.24.(1)60°;(2)AB BD ⊥,证明详见解析;(3)不变,2APB ADB ∠=∠,理由详见解析【分析】(1)由平行线的性质可得∠ABN =120°,即∠ABP +∠PBN =120°,再根据角平分线的定义知∠ABP =2∠CBP 、∠PBN =2∠DBP ,可得2∠CBP +2∠DBP =120°,即∠CBD =∠CBP +∠DBP =60°;(2)由AM ∥BN 得∠ACB =∠CBN ,当∠ACB =∠ABD 时有∠CBN =∠ABD ,得∠ABC +∠CBD =∠CBD +∠DBN ,即∠ABC =∠DBN ,再根据角平分线的定义可得1 4ABC CBP DBP DBN ABN ∠=∠=∠=∠=∠,最后根据∠ABN =120°可得390ABD ABC ︒∠=∠=,进而可得答案;(3)由AM ∥BN 得∠APB =∠PBN 、∠ADB =∠DBN ,根据BD 平分∠PBN 知∠PBN =2∠DBN ,从而可得∠APB =2∠ADB .【详解】解:(1)∵AM ∥BN ,∠A =60°,∴∠A +∠ABN =180°,∴∠ABN =120°;∵AM ∥BN ,∴∠ABN +∠A =180°,∴∠ABN =180°﹣60°=120°,∴∠ABP +∠PBN =120°,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,∴2∠CBP +2∠DBP =120°,∴∠CBD =∠CBP +∠DBP =60°;()2AB BD ⊥理由: // AM BN,180ACB CBN A ABN ︒∴∠=∠∠+∠=ACB ABD ∠=∠CBN ABD ∴∠=∠CBN CBD ABD CBD ∴∠-∠=∠-∠,即DBN ABC ∠=∠BC BD 、分别平分ABP ∠和PBN ∠,,ABC CBP DBP DBN ∴∠=∠∠=∠1 4ABC CBP DBP DBN ABN ∴∠=∠=∠=∠=∠ 180A ABN ︒∠+∠=180 ********ABN A ︒︒︒︒∴∠=-∠=-=1304ABC ABN ︒∴∠=∠= 390ABD ABC ︒∴∠=∠=,即AB BD ⊥()3不变.且2APB ADB ∠=∠理由: // ,AM BN,APB PBN ADB DBN ∴∠=∠∠=∠BD 平分,PBN ∠2PBN DBN ∴∠=∠2.APB ADB ∴∠=∠【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.25.(1)∠A +∠C +∠APC =360°,证明详见解析;(2)∠APC =∠A −∠C ,证明详见解析;(3)55°.【分析】(1)首先过点P 作PQ ∥AB ,结合题意得出AB ∥PQ ∥CD ,然后由“两直线平行,同旁内角互补”进一步分析即可证得∠A+∠C+∠APC =360°;(2)作PQ ∥AB ,结合题意得出AB ∥PQ ∥CD ,根据“两直线平行,内错角相等”进一步分析即可证得∠APC =∠A −∠C ;(3)由(2)知,∠APC =∠PAB −∠PCD ,先利用平行线性质得出∠BEF =∠PQB =110°,然后进一步得出∠PEG =12∠FEG ,∠GEH =12∠BEG ,最后根据∠PEH =∠PEG −∠GEH 即可得出答案.【详解】(1)∠A+∠C+∠APC =360°,证明如下:如图1所示,过点P 作PQ ∥AB ,∴∠A+∠APQ =180°,又∵AB ∥CD ,∴PQ ∥CD ,∴∠C+∠CPQ =180°,∴∠A+∠APQ+∠C+∠CPQ =360°,即∠A+∠C+∠APC =360°;(2)∠APC =∠A −∠C ,证明如下:如图2所示,过点P 作PQ ∥AB ,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ−∠CPQ,∴∠APC=∠A−∠C;(3)由(2)知,∠APC=∠PAB−∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥PC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG−∠GEH=12∠FEG−12∠BEG=12∠BEF=55°.【点睛】本题主要考查了利用平行线性质与角平分线性质求角度的综合运用,熟练掌握相关概念是解题关键.26.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【分析】(1)过P作PE∥AB,先推出PE∥AB∥CD,再通过平行线性质可求出∠APC;(2)过P作PE∥AB交AC于E,先推出AB∥PE∥DC,然后根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE,β=∠CPE,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线、平行线提高测试(一)判断题(每题2分,共10分)1.过线段外一点画线段的中垂线……………………………………………………()【提示】线段外一点不一定在线段的中垂线上,所以过线段外一点画线段的垂线,不一定平分这条线段如图PQ⊥AB,垂足为O.但PQ不平分AB.【答案】×.2.如果两个角互为补角,那么它们的角平分线一定互相垂直……………………()【提示】两个角互为补角时,这两个角可以是邻补角,也可以不是邻补角.当两角互补但不是邻补角时,则它们的角平分线不互相垂直.如图:∠AOB与∠AOC互补,OM平分∠AOC、ON平分∠AOB.显然OM与ON不垂直.【答案】×.3.两条直线不平行,同旁内角不互补………………………………………………()【提示】如图,AB与CD不平行,EF与AB交于点G.与CD交于点H.过点G作PQ∥CD.∴∠QGF+∠GHD=180°.∵∠BGF<∠QGF,∴∠BGF+∠GHD<180°;又∠PGH+∠GHC=180°,∵∠AGH>∠PGH,∴∠AGH+∠GHC>180°.即两直线不平行,同旁内角不互补.【答案】√.4.错误地判断一件事情的语句不叫命题……………………………………………()【提示】判断一件事情的语句叫做命题.错误地判断得到的是假命题.假命题也是命题.【答案】×.5.如图,AB∥CD,那么∠B+∠F+∠D=∠E+∠G…………………………()【提示】过点E、F、G分别画EP∥AB,PQ∥AB,GM∥AB.则AB∥EP∥FQ∥GM∥CD.∴∠B=∠1,∠3=∠2,∠4=∠5,∠D=∠6.∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6.即∠B+∠EFG+∠D=∠BEF+∠FG(D)【答案】√.(二)填空题(每小题2分,共18分)6.如图,当∠1=∠时,AB∥DC;当∠D+∠=180°时,AB∥DC;当∠B=∠时,AB∥CD.【提示】把题中的“AB∥CD”视作条件去找∠1的内错角、∠D的同旁内角和∠B的同位角.即得要填的角.【答案】4,DAB,5.7.如图,AB∥CD,AD∥BC,∠B=60°,∠EDA=50°.则∠CDF=.【提示】由AB∥CD,得∠DCF=∠B=60°,由AD∥BC得∠ADC=∠DCF=60°,∴∠ADE+∠ADC=50°+60°=110°,∴∠CDF=180°-110°=70°.【答案】70°.8.如图,O是△ABC内一点,OD∥AB,OE∥BC,OF∥AC,∠B=45°,∠C=75°,则∠DOE=,∠EOF=,∠FOD=.【提示】由OD∥AB,∠B=45°,得∠ODC=∠B=45°.由OE∥DC,∠DOE+∠ODC=180°,∴∠DOE=180°-45°=135°.同理可求∠EOF=105°.由周角的定义可求∠FOD=120°.【答案】135°,105°,120°.9.两个角的两边分别平行,其中一个角比另一个角的3倍少20°.则这两个角的度数分别是.【提示】如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.设一个角为x度.则另一个角为(3x-20)度.依据上面的性质得,3x-20=x,或3x-20+x=180°.∴x=10,或x=50.当x=50时,3x-20=3×50-20=130.【答案】10°、10°或50°、130°.【点评】通过列方程(或方程组)解题是几何计算常用的方法.10.如图,AB ∥EF ∥CD ,EG 平分∠BEF ,∠B +∠BED +∠D =192°,∠B -∠D =24°,则∠GEF = .【提示】由AB ∥EF ∥CD ,可知∠BED =∠B +∠D .已知∠B +∠BED +∠D =192°.∴ 2∠B +2∠D =192°,∠B +∠D =96°.又 ∠B -∠D =24°.于是可得关于∠B 、∠D 的方程组⎩⎨⎧︒=∠-∠︒=∠+∠2496D B D B 解得 ∠B =60°.由AB ∥EF 知∠BEF =∠B =60°.因为EG 平分∠BEF ,所以∠GEF =21∠BEF =30°. 【答案】30°.11.如图,AD ∥BC ,点O 在AD 上,BO 、CO 分别平分∠ABC 、∠DCB ,若∠A +∠D =m °.则∠BOC =______.【提示】由AD ∥BC ,BO 平分∠ABC ,可知∠AOB =∠CBO =21∠ABC . 同理∠DOC =∠BCO =21∠DCB . ∵ AD ∥BC ,∴ ∠A +∠ABC =180°,∠D +∠DCB =180°,∴ ∠A +∠D +∠ABC +∠DCB =360°.∵ ∠A +∠D =m °,∴ ∠ABC +∠DCB =360°-m °.∴ ∠AOB +∠DOC =21(∠ABC +∠DCB )=21(360°-m °)=180°-21m °. ∴ ∠BOC =180°-(∠AOB +∠DOC )=180°-(180°-21m °)=21m °. 【答案】21m °. 12.有一条直的等宽纸带,按图(1)折叠时,纸带重叠部分中的∠α=度.图(1)【提示】裁一张等宽纸带按图示折叠,体会一下题目的含义.将等宽纸带展平,便得图(2).由此图可知∠DAC =30°.AB 是∠C ′AC 的平分线.∴ ∠α=75°.图(2)【答案】75°.【点评】解类似具有操作性的实际问题时,不妨动手做一做,从中感受一下题目的意义,进而将实际问题转化成数学问题.用数学知识解决实际问题.这样做不仅能培养我们抽象思维和空间想象能力,而且能提高我们解决实际问题的能力.13.把命题“在同一平面内垂直于同一直线的两直线互相平行”写成“如果…那么…”的形式是:如果______________,那么_____________.【答案】在同一平面内两条直线垂直于同一条直线,这两条直线互相平行.14.如图,在长方体中,与面BCC ′B ′平行的面是面;与面BCC ′B ′垂直的面是,与棱A ′A 平行的面有,与棱A ′A 垂直的面有.【答案】面ADD′A;面ABB′A′,面ABCD,面A′B′C′D′,面DCC′D′;面DCC′D′,面BCC′B′;面ABCD,面A′B′C′D′.(三)选择题(每小题3分,共21分)15.如图,已知直线AB与CD相交于点O,OE⊥CD.垂足为O,则图中∠AOE和∠DOB的关系是……………………………………………………………………()(A)同位角(B)对顶角(C)互为补角(D)互为余角【提示】由OE⊥CD,知:∠AOE与∠AOC互余.∠AOC与∠BOD是对顶角.所以∠AOE与∠DOB互为余角.【答案】D.16.如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有…………………………………………………………()(A)1条(B)3条(C)5条(D)7条【提示】CD的长表示点C到AB的距离;AC的长表示点A到BC的距离;BC的长表示点B到AC的距离;AD的长表示点A到CD的距离,BD的长表示点B到CD的距离.共5条.【答案】C.17.若AO⊥BO,垂足为O,∠AOC︰∠AOB=2︰9,则∠BOC的度数等于……()(A)20°(B)70°(C)110°(D)70°或110°【提示】OC可在∠AOB内部,也可在∠AOB外部,如图可示,故有两解.设∠AOC=2x°,则∠AOB=9x°.∵AO⊥BO,∴∠AOB=90°.∵9x=90°,x=10°,∠AOC=2x=20°.(1)∠BOC=∠AOB-∠AOC=90°-20°=70°;(2)∠BOC=∠AOB+∠AOC=90°+20°=110°.【答案】D.18.下列命题中,真命题是……………………………………………………………()(A)同位角相等工(B)同旁内角相等,两直线平行(C)同旁内角互补(D)同一平面内,平行于同一直线的两直线平行【提示】两直线不平行,则同位角不相等,同旁内角不互补,所以A、C错误,B也不一定成立.如图所示直线a、b被直线c所截.∠1=∠2,∠3=∠4.显然a与b不平行.【答案】D.19.直线AB∥CD,且与EF、GH相交成如图可示的图形,则共得同旁内角…()(A)4对(B)8对(C)12对(D)16对【提示】该图可分离出四个基本图形,如图所示.第三条直线截两平行线,此时图形呈“”型,有同旁内角两对;第三条直线截两相交线,此时图形呈“”型,有同旁内角六对.故图中共有同旁内角2×2+6×2=16(对).【答案】D.20.如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是………………………………………………………………………………()(A)2 (B)4 (C)5 (D)6【提示】由AD∥EF∥BC,且EG∥AC可得:∠1=∠DAH=∠FHC=∠HCG=∠EGB=∠GEH除∠1共5个.【答案】C.21.某人从A点出发向北偏东60°方向速到B点,再从B点出发向南偏西15°方向速到C点,则∠ABC等于……………………………………………………………()(A)75°(B)105°(C)45°(D)135°【提示】按要求画出图形再计算∵NA∥BS,∴∠NAB=∠SBA=60°.∵∠SBC=15°,∴∠ABC=∠SBA-∠SBC=60°-15°=45°.【答案】C.(四)解答题(本题5分)22.根据命题“角平分线上的点到角的两边距离相等”,画出图形,并结合图形写出已知、求证(不证明).【答案】已知:OC平分∠AOB,P是OC上任意一点.PD⊥OB,PE⊥OA,垂足分别是D、E.求证:PE=PD.五、计算题(第23、24题,每题5分.第25、26题每题6分,共22分)23.如图,AB∥CD∥PN,∠ABC=50°,∠CPN=150°.求∠BCP的度数.【提示】由AB∥CD,∠ABC=50°可得∠BCD=50°.由PN∥CD,∠CPN=150°,可得∠PCD=30°.∴∠BCP=∠BCD-∠PCD=50°-30°=20°.【答案】20°.24.如图,∠CAB=100°,∠ABF=110°,AC∥PD,BF∥PE,求∠DPE的度数.【提示】由AC∥PD,∠CAB=100°,可得∠APD=80°.同理可求∠BPE=70°.∴∠DPE=180°-∠APD-∠BPE=180°-80°-70°=30°.【答案】30°.25.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠P AG的度数.【提示】由DB ∥FG ∥EC ,可得∠BAC =∠BAG +∠CAG=∠DBA +∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP =21∠BAC =21×96°=48°. 由FG ∥EC 得∠GAC =ACE =36°.∴ ∠P AG =48°-36°=12°.【答案】12°.26.如图,AB ∥CD ,∠1=115°,∠2=140°,求∠3的度数.【提示】过点E 作EG ∥AB .∵ AB ∥CD 由平行公理推论可得EG ∥CD .由此可求得∠AEC 的度数.由平角定义可求得∠3的度数.【答案】75°.(五)证明题(每题6分,共24分)27.已知:如图.AB ∥CD ,∠B =∠C .求证:∠E =∠F .【提示】证明AC∥BD.【答案】证明:∵AB∥CD(已知),∴∠B=∠CDF(两直线平行,同位角相等).∵∠B=∠C(已知),∴∠CDF=∠C(等量代换).∴AC∥BD(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).28.已知:如图,AC∥DE,DC∥EF,CD平分∠BCD.求证:EF平分∠BED.【提示】由AC∥DE.DC∥EF证∠1=∠3.由DC∥EF证∠2=∠4.再由CD平分∠BCA,即可证得∠3=∠4.【答案】证明:∵AC∥DE(已知),∴∠1=∠5(两直线平行,内错角相等).同理∠5=∠3.∴∠1=∠3(等量代换).∵DC∥EF(已知),∴∠2=∠4(两直线平行,同位角相等).∵CD平分∠ACB,∴∠1=∠2(角平分线定义),∴∠3=∠4(等量代换),∴EF平分∠BED(角平分线定义).29.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.【提示】过点E 作EF ∥AB ,证明∠BED =90°.【答案】证明:过点E 作EF ∥AB .∴ ∠BEF =∠B (两直线平行,内错角相等).∵ ∠B =∠1,∴ ∠BEF =∠1(等量代换).同理可证:∠DEF =∠2.∵ ∠1+∠BEF +∠DEF +∠2=180°(平角定义),即2∠BEF +2∠DEF =180°,∴ ∠BEF +∠DEF =90°(等式性质).即∠BED =90°.∴ BE ⊥DE (垂直的定义).30.已知:如图,AB ∥CD ,请你观察∠E 、∠B 、∠D 之间有什么关系,并证明你所得的结论.【提示】结论:∠B +∠E =∠D .过点E 作EF ∥AB .【答案】结论:∠B +∠E =∠D .证明:过点E 作EF ∥AB ,∴ ∠FEB =∠B (两直线平行,内错角相等).∵ AB ∥CD ,EF ∥AB ,∴ EF ∥CD (平行公理推论),∴ ∠FED =∠D (两直线平行,内错角相等).∵ ∠FED =∠FEB +∠BED =∠B +∠BED ,∴ ∠B +∠BED =∠D (等量代换).本题还可添加如图所示的辅助线,请你证明∠B +∠E =∠D .【点评】这是一道探索结论型的问题.要通过对直观图形仔细观察,大胆猜想,设定结论,再进行推理,验证结论.直观图形是观察思考的依据,准确的直观图形可引发正确的直觉思维.所以作图不可忽视.直觉思维是正确,还必须用相关的理论来验证.这样得到的结论方可靠.。

相关文档
最新文档