第12章 应力状态分析和强度理论
材料力学应力状态和强度理论
x 122.5MPa x 64.6MPa
σy 0
τ y 64.6
(122.5 , 64.6)
D1
B2
o
C
B1
(0 , - 64.6)
由 x , x 定出 D1 点 由 y , y 定出 D2 点 以 D1D2 为直径作应力圆。
D2
A1,A2 两点的横坐标分别代表 a 点的两个主应力
1 oA1 150MPa
1 x 136.5MPa
σ x 136.5MPa σy 0
τx0 τy0
2 3 0
D2 (0,0)
D1(136.5,0)
x 136.5MPa
b
σ1
σ x 136.5MPa τ x 0
σy 0
τy0
1 所在的主平面就是 x 平面 , 即梁的横截面 C 。
解析法求 a 点的主平面和主应力
解: x 100MPa, y 20MPa, x 40MPa, 300
20
300
100 40
x 100MPa, y 20MPa, x 40MPa, 300
x
2
y
x
2
y
cos
2
x
sin
2
x
2
y
sin
2
x
cos
2
300
100
(20) 2
100
(20) 2
cos( 600)
m
F
A
F
m
A
F
F
A
A 点 横截面 m—m 上的应力为: F
A
n
m
F
A
F
m
n
F
A
2
应力状态与强度理论
理论理论能很好的解释石料或混凝土等脆性材 料受轴向压缩时的断裂破坏。
3、最大剪应力理论(第三强度理论):
理论认为最大剪应力是引起塑性屈服的主要 因素,只要最大剪应力τmax达到与材料性质 有关的某一极限值,材料就发生屈服。
单向拉伸下,当与轴线成45。的斜截面上的
τmax= s/2时
任意应力状态下
莫尔强度条件为:
1
Байду номын сангаас
t c
3
t
对于拉压强度不同的脆性材料,如铸铁、 岩石和土体等,在以压为主的应力状态下, 该理论与试验结果符合的较好。
综合以上强度理论所建立的强度条件, 可以写出统一的形式: σr≤[σ]
σr称为相当应力
r1 1
r2 1 2 3
r3 1 3
r4
1 2
理论理论能很好的解释石料或混凝土等脆性材 料受轴向压缩时,沿纵向发生的断裂破坏。
2、最大伸长线应变理论(第二强度理论):
理论认为最大伸长线应变是引起断裂的主要因素。
拉断时伸长线应变的极限值为
断裂准则为:
1
1 E
1
2
11
b
E
3
1 2 3 b
第二强度理论的强度条件:
1 2 3
max
1 3
2
屈服准则: 1 3 s
2
2
1 3 s
第三强度理论建立的强度条件为:
1 3
在机械和钢结构设计中常用此理论。
4、形状改变比能理论(第四强度理论):
第四强度理论认为: 形状改变比能是引起塑性屈服的主要因素。
单向拉伸时,
1
3E
s
2的形状改变比能。
工程力学 第12章 强度理论 习题及解析
工程力学(工程静力学与材料力学)习题与解答第12章 强度理论12-1 对于建立材料在一般应力状态下的失效判据与设计准则,试选择如下合适的论述。
(A )逐一进行试验,确定极限应力;(B )无需进行试验,只需关于失效原因的假说;(C )需要进行某些试验,无需关于失效原因的假说; (D )假设失效的共同原因,根据简单试验结果。
知识点:建立强度理论的主要思路 难度:一般 解答:正确答案是 D 。
12-2 对于图示的应力状态(y x σσ>)若为脆性材料,试分析失效可能发生在: (A )平行于x 轴的平面; (B )平行于z 轴的平面;(C )平行于Oyz 坐标面的平面; (D )平行于Oxy 坐标面的平面。
知识点:脆性材料、脆性断裂、断裂原因 难度:难 解答:正确答案是 C 。
12-3 对于图示的应力状态,若x y σσ=,且为韧性材料,试根据最大切应力准则,失效可能发生在: (A )平行于y 轴、其法线与x 轴的夹角为45°的平面,或平行于x 轴、其法线与y 轴的夹角为45°的平面内;(B )仅为平行于y 轴、法线与z 轴的夹角为45°的平面; (C )仅为平行于z 轴、其法线与x 轴的夹角为45°的平面; (D )仅为平行于x 轴、其法线与y 轴的夹角为45°的平面。
知识点:韧性材料、塑性屈服、屈服原因 难度:难 解答:正确答案是 A 。
12-4 铸铁处于图示应力状态下,试分析最容易失效的是: (A )仅图c ; (B )图a 和图b ; (C )图a 、b 和图c ; (D )图a 、b 、c 和图d 。
知识点:脆性材料、脆性断裂、断裂准则 难度:一般 解答:正确答案是 C 。
12-5低碳钢处于图示应力状态下,若根据最大切应力准则, 试分析最容易失效的是: (A )仅图d ; (B )仅图c ; (C )图c 和图d ; (D )图a 、b 和图d 。
应力状态的概念
应力状态与强度理论\应力状态的概念
应力状态的概念
1.1 一点处的应力状态
在工程中,只知道杆件横截面上的应力是不够的。例如,在铸 铁试件压缩时,沿与轴线大约成45°左右的斜截面发生破坏(如 图),这是由于在与轴线成45°的斜截面上存在最大切应力所引起 的。
目录
应力状态与强度理论\应力状态的概念
力的影响。
为了分析破坏现象以及解决复杂受力构件的强度问题,必须首
先研究通过受力构件内一点处所有截面上应力的变化规律。我们把
通过受力构件内一点处不同方位的截面上应力的大小和方向情况,
称为一点处的应力状态。
目录
应力状态与强度理论\应力状态的概念
1.2 应力状态的表示
为了研究受力构件内一点处的应力状态,可围绕该点取出一个 微小的正六面体,称为单元体,并分析单元体六个面上的应力。由 于单元体的边长无限小,可以认为在单元体的每个面上应力都是均 匀分布的;且在单元体内相互平行的截面上应力都是相同的。
力状态。例如从地层深处某点取出的单元体,它在三个方向都受到 压力的作用,处于空间应力状态(如图)。
目录
应力状态与强度理论\应力状态的概念 若平面应力状态的单元体中,正应力都等于零,仅有切应力作
用,称为纯剪切应力状态,例如图所示的应力状态。
目录
应力状态与强度理论\应力状态的概念 应力状态也可以按主应力的情况分类。若单元体的三个主应力
如果知道了单元体的三个互相垂直平面上的应力,则其他任意 截面上的应力都可以通过截面法求得(详见8.2.1),那末该点处的 应力状态就可以确定了。因此,可用单元体的三个互相垂直平面上 的应力来表示一点处的应力状态。
目录
应力状态与强度理论\应力状态的概念
材料力学应力状态分析强度理论
断裂力学用于研究材料发生断裂时的力学行为,包括断裂韧性和断裂韧性指标。
断裂模式分析
通过对材料断裂模式的分析,了解材料在受到外力作用时如何发生破裂。
材料的强度
应力。 材料在受力过程中开始产生塑性变形的应力值。
材料在受到大幅度应力作用时发生破裂的强度。
由强度理论推导的材料设计
根据材料的强度特性,可以进行材料设计,以确保材料在使用过程中不超过其强度极限。
考虑材料疲劳的应力分析
1
疲劳寿命评估
扭转应力分析
扭转应力是材料在受扭转力作 用下的应力分布,对材料的扭 转能力和疲劳寿命影响较大。
应力分布分析
1 梁的应力分布
梁的应力分布分析可以 帮助了解梁在受力过程 中的强度和变形情况。
2 压力容器的应力分析 3 板的应力分布
压力容器的应力分析是 为了确保容器在承受压 力时不会发生破裂或变 形。
板的应力分布分析可用 于评估板在受力状态下 的强度和变形性能。
材料力学应力状态分析强 度理论
材料力学应力状态分析强度理论是研究材料受力情况及其强度特性的理论体 系,包括弹性理论、横向状态分析、应力分布分析等内容。
弹性理论
基本原理
材料在受力过程中 会发生变形,弹性 理论用于描述材料 的弹性性质和应变 的产生与传递。
弹性模量
弹性模量是衡量材 料对应力的响应能 力,不同材料具有 不同的弹性模量。
应力-应变关 系
弹性理论可以通过 应力-应变关系来描 述材料受力后的变 形情况。
限制条件
弹性理论是在一定 条件下适用的,需 要考虑材料的线性 弹性和小变形假设。
横向状态分析
横向力
横向状态分析用于研究材料在 受横向力作用下的变形和应力 分布。
应力分析和强度理论
应力分析和强度理论
应力分析是研究物体受力状态的一种方法,通过应力分析可以了解物体在受力时的应力分布情况、应力大小以及应力的变化规律,从而判断物体的强度和稳定性。
强度理论是根据材料的强度性能,通过分析受力物体的承载能力和失效形式来评估其使用性能。
应力分析的基本原理是基于力学的平衡原理和材料的本构关系,通过求解物体内部的应力分布来确定物体受力的情况。
在应力分析中,通常使用应力矢量、应力张量、应变张量等量来描述物体在各个方向上的受力情况。
根据受力情况的不同,可以将应力分析分为静力学分析、力学性能分析、疲劳分析等。
强度理论是根据材料的强度性能,通过对物体的受力状态和承载能力的分析来评估物体的使用性能。
常用的强度理论有极限强度理论、最大剪应力理论、最大正应力理论、能量理论等。
这些理论基于不同的假设和数学模型,对物体的失效形式和破坏条件进行研究,从而为工程设计提供参考依据。
在工程实践中,应力分析和强度理论常常结合使用。
首先,通过应力分析可以了解物体在各个方向上的应力分布情况,从而确定物体的受力状态。
其次,通过强度理论可以评估物体的承载能力和失效形式,从而选择合适的材料和结构设计方案。
最后,通过对应力分析和强度理论的不断优化和改进,可以提高物体的使用性能和结构的安全性。
总之,应力分析和强度理论是研究物体受力状态和评估物体使用性能的基本方法。
通过这两种方法的应用,可以了解物体受力的情况、评估物体的承载能力和失效形式,从而为工程设计提供科学的依据。
在未来的研
究中,应力分析和强度理论还有很大的发展空间,可以继续深入研究不同材料和工况下的应力分布和强度性能,为工程设计提供更加准确的参考。
应力状态分析及强度理论习题讲解
答案:
D
四、计算
1. 构件内危险点应力状态如图所示,试作强度校核: 1)材料为铸铁,已知许用拉应力 t 30MPa,压应力 90MPa;3)材料仍为铸铁,应力分量中 为压应力。
15MPa
c 90MPa,泊松比 =0.25;2)材料为铝合金,
15MPa
45 , 45
90 90
45 45
45
x
O
45 , 45
(b)
45
45
x
(c)
(d)
4.用电阻应变仪测得空心钢轴表面一点与母线成45 方向 上的正应变 45 200 103。已知该轴转速为120r / min , 外径D 120mm,内径d 80mm,钢材E 210GPa, =0.28, 求轴传递的功率。
45
a b
1
45
1
3
O
45 3
x
(b)
4 WP D 1 12 10 1 8 /12 16 16 272.3 106 m 3 n E 所以 N WP 45 9550 1 120 210 109 272.3 106 200 103 112kW 9550 1 0.28 3 4 3 6
n
dA
y
30
120
1
t
30
20
1 2
x
2
40 30
(b)
4 5,26 B C
68
240
3)作应力圆(图(c)) (1)取比例尺,1cm-20MPa,在 - 坐标平 面内作点1(+20,0)、2(-40,0);
应力状态分析和强度理论
03
弹性极限
材料在弹性范围内所能承受的最大应力状态,当超过这一极限时,材料会发生弹性变形。
01
屈服点
当物体受到一定的外力作用时,其内部应力状态会发生变化,当达到某一特定应力状态时,材料会发生屈服现象。
02
强度极限
材料所能承受的最大应力状态,当超过这一极限时,材料会发生断裂。
应力状态对材料强度的影响
形状改变比能准则
04
弹塑性材料的强度分析
屈服条件
屈服条件是描述材料在受力过程中开始进入屈服(即非弹性变形)的应力状态,是材料强度分析的重要依据。
根据不同的材料特性,存在多种屈服条件,如Mohr-Coulomb、Drucker-Prager等。
屈服条件通常以等式或不等式的形式表示,用于确定材料在复杂应力状态下的响应。
最大剪切应力准则
总结词
该准则以形状改变比能作为失效判据,当形状改变比能超过某一极限值时发生失效。
详细描述
形状改变比能准则基于材料在受力过程中吸收能量的能力。当材料在受力过程中吸收的能量超过某一极限值时,材料会发生屈服和塑性变形,导致失效。该准则适用于韧性材料的失效分析,尤其适用于复杂应力状态的失效判断。
高分子材料的强度分析
01
高分子材料的强度分析是工程应用中不可或缺的一环,主要涉及到对高分子材料在不同应力状态下的力学性能进行评估。
02
高分子材料的强度分析通常采用实验方法来获取材料的应力-应变曲线,并根据曲线确定材料的屈服极限、抗拉强度等力学性能指标。
03
高分子材料的强度分析还需要考虑温度、湿度等环境因素的影响,因为高分子材料对环境因素比较敏感。
02
强度理论
总结词
该理论认为最大拉应力是导致材料破坏的主要因素。
应力分析和强度理论
要点二
详细描述
在机械工程领域,应力分析用于研究 机械零件和结构在各种工况下的受力 情况,以及由此产生的内部应力分布 。强度理论则用于评估这些应力是否 在材料的承受范围内,以确定结构是 否安全可靠。
要点三
应用举例
在机械设计中,通过对发动机、传动 系统、轴承等关键部件进行应力分析 ,可以优化设计,提高其承载能力和 可靠性。
该理论认为最大拉应力是导致材料破坏的 主要因素,当最大拉应力达到材料的极限 抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大剪应力理论
详细描述
该理论认为最大剪应力是导致材料破坏的主 要因素,当最大剪应力达到材料的极限抗剪 强度时,材料发生断裂。
第三强度理论
总结词
最大应变能密度理论
详细描述
该理论认为最大应变能密度是导致材料破坏 的主要因素,当最大应变能密度达到材料的
应力分析
目录
• 应力分析概述 • 应力分析方法 • 材料力学中的应力分析 • 强度理论 • 实际应用中的应力分析与强度理
论
01
应力分析概述
定义与目的
定义
应力分析是研究物体在受力状态下应 力分布、大小和方向的一种方法。
目的
评估物体的强度、刚度、稳定性以及 预测可能的破坏模式,为结构设计提 供依据。
平衡方程
根据力的平衡原理,物体内部的应力分布满足平衡方程。
应变与应力的关系
通过材料的力学性能试验,可以得到应变与应力的关系,即应力-应变曲线。
弹性力学基本方程
根据弹性力学的基本原理,建立物体内部的应力、应变和位移之间的关系。
02
应力分析方法
有限元法
总结词
有限元法是一种广泛应用于解决复杂工程问题的数值分析方法。
第十二章 应力状态和强度理论习题
试题答案:
解:(1)
(2)
(3)
, ,
8、求图示木梁截面 上点 与轴线成 角方向的线应变 。已知 , , ,材料的弹性模量 ,泊松比 。
试题答案:
解:在点B,正应力为零,只有切应力,为纯剪切应力状态。
,
9、设地层由石灰岩组成,其密度 ,泊松比 。计算离地面 深处的地压应力。
(2)
(3)
12、受内压的薄壁圆筒,已知内压为 ,平均直径为 ,壁厚为 ,弹性常数为 、 。试确定圆筒薄壁上任一点的主应力、主应变及第三、第四强度理论的相当应力。
解: , ,
13、构件中危险点的应力状态如图所示。试选择合适的准则对以下两种情形作强度校核:1.构件为钢制
= 45MPa, = 135MPa, = 0, = 0,
1、层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。若已知胶层剪应力不得超过1MPa。试分析是否满足这一要求。
解:
MPa
MPa,不满足。
2从构件中取出的微元受力如图所示,其中AC为无外力作用的自由表面。试求:x和xy。
解:应用应力解析公式,有
MPa
据此,解得
MPa
Mpa
3、已知一点的应力状态如图。试求其主应力及其方向角,并确定最大切应力值。
许用应力 = 160MPa。
2.构件材料为铸铁
= 20MPa, =25MPa, = 30MPa, = 0, = 30MPa。
解:
1. 强度满足。
2. 强度满足。
14、炮筒横截面如图示。在危险点处 , ,第二个主应力 ,且垂直于图面。材料的 ,试用第三强度和第四强度理论进行强度校核。
材料力学:应力状态
p
n
图(d)研究对象的剖面图,其上的外力为压强 p。
n n
p
n (C)
研究对象
n n (d)
压强 p的合力为 F 。则横截面上只有正应力 。 假设 正应力沿壁厚均匀分布。
n
n p
F
n
研究对象
n n (d)
(C)
F
D
4
2
n
.p
p F 4 ' D 2 A 2 ( D 2t ) 4 4
平面和空间应力状态称为复杂应力状态
10
梁上取单元体
11
图(a)为汽包的剖面图。内壁受压强 p 的作用 。 图(b)给出尺寸。
y
t p z
D
(a)
(b)
解:
包围内壁任一点,沿直径方向
取一单元体,单元体的侧面为 横截面,上,下面为含直径的 纵向截面,前面为内表面。 包含直径的纵向截面
横截面
内表面
(1)横截面上的应力 假想地,用一垂直于轴线的平面将汽包分成两部分,取右边为研 究对象。n— n面为横截面 。
包含直径的纵向平面
直径平面
研究对象
R 是外力在 y 轴上的投影, 包含直径的纵截面上的内力为轴力 FN 。 该截面上的应力为正应力 ”,且 假设为均匀分布。
FN FN
p R
O
y t
FN
R 2
FN
d O
FN
取圆心角为 d 的微元面积,其 弧上为 ds
ds R
D ds d 2
包含直径的纵向截面
σ p
'''
横截面
内表面
=
应力状态理论
'y
y
'x
x
z
z
y yx 'z xy x
x
'y
单元体应力状态如图
这时,独立的应力分量为 x , y , z 和 xy
与XY平面垂直的平面上的应力没有Z方向的分量,并且由
y
y
n
x ,y 及 xy 决定。 ——平面应力状态
'x z
yx xy x
x
已知 x ,y 及 xy , 求任意斜截面n上的 应力——平面应力 状态分析。
解出 x,y,xy 有
0 x
45
x
y 2
xy 2
90 y
x 0 xy 0 90 245
y 90
于是
主应变:
x 2y
(xy)2x2y
2
4
1 2 [0 (9)0 (04)2 5 (09 0 2 4)2 5 ]
主方向: ta2n0x xyy245 0 09 090
Ax(3.6 4,2)2
特殊应力状态单元体
2
2
2
( , ) 22
Ay (0,0)
2
2
2
( , )
22
“单向拉伸”应力状态单元体与应力圆
1;2 0 ;3 0
0 0
Ax(,0)
0
Ay(0,)
20
Ax(0,-)
“纯剪切”应力状态单元体与应力圆
1;2 0 ;3
0 45
3
1
Ay (0,)
3 0
0 1
3 0
0 1
已知一点A的应力状态如图,求:A点的主应力和主平面。 (应力单位为 MPa)
25
26
应力状态及强度理论
应力张量是一个二阶对称张量, 包含六个独立的分量,可以用 来描述物体的应力状态。
主应力和应力张量可以通过计 算得到,它们是描述物体应力 状态的重要参数。
02
强度理论
第一强度理论
总结词
最大拉应力准则
详细描述
该理论认为材料达到破坏是由于最大拉应力达到极限值,不考虑剪切应力和压 力的影响。
第二强度理论
05
实际应用
航空航天领域
飞机结构强度分析
利用应力状态及强度理论,对飞 机各部件的受力状态进行详细分 析,确保飞机在各种工况下的结 构安全。
航天器材料选择
根据材料的应力-应变关系,选择 适合航天器发射和运行阶段的材 料,确保航天器的可靠性和寿命。
航空材料疲劳寿命
评估
通过应力状态及强度理论,评估 航空材料的疲劳寿命,预防因疲 劳引起的结构失效。
03
材料失效分析
弹性失效
总结词
材料在弹性阶段发生的失效。
详细描述
当材料受到的应力超过其弹性极限时 ,会发生弹性失效。这种失效通常表 现为突然断裂或大幅度变形,且材料 不具有恢复原状的能力。
塑性失效
总结词
材料在塑性阶段发生的失效。
详细描述
当材料受到的应力超过其屈服点后,会发生塑性失效。这种 失效表现为材料发生较大的塑性变形,无法保持其原始形状 和尺寸。
土木工程领域
桥梁承载能力分析
通过对桥梁的应力分布和承载能力的分析,确保桥梁在设计寿命 内的安全性和稳定性。
建筑结构抗震设计
利用强度理论,对建筑结构进行抗震设计,提高建筑物的抗震能 力,减少地震灾害的影响。
岩土工程稳定性分析
通过对岩土工程的应力状态和强度理论的分析,评估岩土工程的 稳定性和安全性。
建筑力学第12章梁的应力
b1b2 yd bb2 dx
d 1 dx
m
o1 b m1
o2
y dx
y
b2
b1 n1
——纯弯曲时应变分布规律
y
z M
Hooke定律: E
E E
y
dA
——纯弯曲时应力分布规律
沿梁高线性分布,中性轴上为零,外边缘上最大
E 中性轴必然通过截面的形心
强度条件: 1- 2+ 3
适用于脆性材料
最大剪应力理论(第三强度理论) 破坏条件: max 达到危险值
max 1 3
2
强度条件: 1 3
适用于塑性材料
形状改变比能理论(第四强度理论)
引起单元体形状改变的能量超过危险值 破坏条件:
强度条件: + - 1 3
2 1 2 3
适用于塑性材料
l
+
100kN 100kN 2m 2m 2m
-
q
* z *
*
I z:横截面对中性轴的惯性矩
b:横截面的宽度
QS Izb
b h2 2 * * * Sz A y y 2 4 h 1 h b y 2 2 2 1 3 I z bh 12
* z
* z
y
m2
3.6 kN
m
3.6 kN
m
max
5m
M max Wz
M max
1 2 1 ql 3.6 25 11.25 kN m 8 8
W z 2 39.7 103 79.4 106 m 3
强度理论课件
第三强度理论考虑了等效应力和等效应变的影响,认为当材料受到的等效应力或等效应变超过其等效 应力或等效应变极限时,材料会发生断裂。这种理论适用于各种类型的材料,包括脆性和塑性材料。
第四强度理论
总结词
基于形状改变比能或最大剪切应变能,当材料受到的形状改变比能或剪切应变能超过其形状改变比能极限或剪切 应变能极限时,材料发生断裂。
详细描述
第四强度理论考虑了形状改变比能和剪切应变能的影响,认为当材料受到的形状改变比能或剪切应变能超过其形 状改变比能极限或剪切应变能极限时,材料会发生断裂。这种理论适用于各种类型的材料,包括脆性和塑性材料 。
03
强度理论的计算方法
弹性力学方法
弹性力学是研究弹性物体在外力作用下的应力、应变和位移 的学科。在强度理论中,弹性力学方法通过建立物体的应力应变关系,推导出强度准则,用于评估结构在不同外力作用 下的稳定性。
非线性或复杂环境下的应用还存在局限性。
参数确定困难
02
强度理论中的一些参数,如材料的弹性模量、屈服强度等,在
实际应用中往往难以准确测定。
忽略微观结构影响
03
强度理论通常基于宏观尺度,忽略了材料的微观结构和缺陷对
强度的影响。
强度理论的发展趋势
多尺度分析
随着计算技术的发展,强度理论正朝着多尺度方向发展,以综合考 虑微观、细观和宏观尺度对材料强度的影响。
弹性力学方法基于连续介质力学的基本原理,通过求解微分 方程或积分方程来获得物体的应力分布和位移场,进而分析 结构的强度和稳定性。
有限元方法
有限元方法是数值分析中的一种方法,通过将连续的物体 离散化为有限个小的单元(如三角形、四边形等),然后 对每个单元进行求解,最后将所有单元的解组合起来得到 整个物体的解。
应力和应变分析和强度理论
机械设计
01
02
03
零件强度校核
通过应力和应变分析,可 以校核机械零件的强度, 确保零件在正常工作载荷 下不会发生破坏。
优化装配设计
通过应力和应变分析,可 以优化机械装配设计,减 少装配误差和应力集中, 提高装配质量和可靠性。
振动和噪声控制
通过应力和应变分析,可 以预测和控制机械系统的 振动和噪声,提高机械系 统的性能和舒适性。
总结词
最大拉应力理论
详细描述
该理论认为最大拉应力是导致材料破坏的主要因素,当最大 拉应力达到材料的极限抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大伸长应变理论
详细描述
该理论认为最大伸长应变是导致材料 破坏的主要因素,当最大伸长应变达 到材料的极限抗拉应变时,材料发生 断裂。
第三强度理论
总结词
03
应力和应变的应用
结构分析
结构稳定性
01
通过应力和应变分析,可以评估结构的稳定性,预测结构在不
同载荷下的变形和破坏模式。
结构优化设计
02
通过对应力和应变的精确计算,可以优化结构设计,降低结构
重量,提高结构效率。
结构疲劳寿命预测
03
通过应力和应变分析,可以预测结构的疲劳寿命,为结构的维
护和更换提供依据。
能量法
总结词
能量法是一种基于能量守恒和变分原理 的数值分析方法,通过将问题转化为能 量泛函的极值问题,并采用变分法或有 限元法进行求解。
VS
详细描述
在应力和应变分析中,能量法可以用于求 解各种力学问题,如弹性力学、塑性力学 等。通过构造合适的能量泛函和约束条件 ,能量法能够提供精确和高效的数值解。 同时,能量法还可以用于优化设计、稳定 性分析和控制等领域。
材料力学应力状态分析和强度理论
材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。
在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。
材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。
应力有三个分量:法向应力、剪应力和旋转应力。
法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。
应力状态的描述可以用应力矢量来表示。
应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。
常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。
平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。
强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。
常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。
最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。
实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。
材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。
为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。
综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。
通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。
空间应力状态分析简介
目录
应力状态和强度理论\空间应力状态分析简介
最大切应力为
max
1
3
2
170 MPa
由单元体的三个主应力,绘出三向应力圆如图b所示。
目录
力学
综上可知,单元体任意 斜截面上的应力,总可以用
三个应力圆的圆周上某点或由它们围成的阴影线区域内某点的坐标
来表示。这三个应力圆称为三向应力圆。其中由1和3绘出的应力
圆①称为主应力圆。ຫໍສະໝຸດ 目录应力状态和强度理论\空间应力状态分析简介
1.2 最大正应力和最大切应力
由图示三向应力圆可见,在一点处
的三个主应力中,1是通过该点的
最大切应力为
max
1
3
2
90 MPa
目录
应力状态和强度理论\空间应力状态分析简介 【例7.6】 单元体各个面上的应力如图所示,试求主应力和最
大切应力,并绘出三向应力圆。
目录
应力状态和强度理论\空间应力状态分析简介
【解】 该单元体有一个已知主应力,
即z = 120 MPa。单元体的x平面(左、右
于1和3,相当于平面应力状态,如图c所示。
目录
应力状态和强度理论\空间应力状态分析简介
可用以(1,0)和 (3,0)两点间的线段为
直径绘出的应力圆①(图d) 上各点的坐标来表示。
理论分析证明:对于 与三个主应力均不平行的 任意斜截面,其上的应力 可用位于三个应力圆围成 的阴影线区域里某一相应 点的坐标来表示。
所有截面上的正应力中的最大值,
3是通过该点的所有截面上的正应
力中的最小值。即
max = 1,min = 3
而通过该点的所有截面上的切应
力中的最大值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§12-2 二向和三向应力状态实例 圆形薄壁容器(t<<D/20) 其内压为p,筒底总压力 σ"
F p D 2 pD ' A 4 Dt 4t
t
D p
σ´ p
p D 2 F 4
σ´
FN " tl
2 FN
0
1 plD sin d plD 2
p σ"
y
l
和 tg 2 0
2 xy
x y
2
2
2 ) 2 xy
1 0
4
(2)
1, 2 2,3 2 (
x y
max
1, 2 2,3
2
极大值
12
1 2
2
23
2 3
2
13
1 3
第12章
应力状态分析和强度理论
§12-1 应力状态概念 一 一点的应力状态 1 一点的应力状态概念. 点的概念:指明是哪点的应力 面的概念: 过一点哪个方向面上的的应力.
y
τyz
σy τyx
τxy
τzy
σz τzx
τxz
σx
x
一点的应力状态:
一个点各个方向面上的应力情况 2 一点的应力状态的表示方法 (1)空间应力状态:9个分量6个独立. (2)平面应力状态:4个分量3个独立. (3)单向应力状态:1个分量.
2
τ
σ
yx
y
σ τ
xy
x
τ
E(σ
τ
max
α
τ
OA OB x y OC 2 2
) D(σ xτ
σ
xy)
O
σ
2
B
C FA σ 1σ
yx)
x y 2 2 CD (CA) ( AD) ( ) xy 2
2
D´(σ yτ
x y tg 21 2 xy
取极大极小剪应力所在平面方位角α1和α1+π/2 代入斜截面公式,求得极大极小剪应力
x y 2 2 max } ( ) xy min 2
4 讨论 x y tg 21 (1) 2 xy
2 1 2 0
dAsinα
ΣFN =0, σαdA+τxy dAcosαsinα-σxdAcosαcosα +τyx dAsinαcosα- σy dAsinα sinα=0 ΣFT=0, ταdA-τxy dAcosαcosα-σxdAcosαsinα +τyx dAsinα sinα+σy dAsinα cosα =0
ΣFN =0,
σαdA+τxy dAcosαsinα-σxdAcosαcosα +τyx dAsinαcosα- σy dAsinα sinαsα-σxdAcosαsinα +τyx dAsinα sinα+σy dAsinα cosα =0
x cos y sin 2 xy cos sin
令
d 0 d
x y
2
sin 2 0 xy cos 2 0 0
tg 2 0
2 xy
x y
取主方位角 α0和α0 +π/2
代入斜截面公式,求得主应力
1, 2 x y x y 2 max 2 } ( ) xy { 2,3 min 2 2
2 2
x cos sin y sin cos 2 xy cos sin
x y
2 x y
x y
2
cos 2 xy sin 2
2
sin 2 xy cos 2
2 主平面和主应力
2 " tl plD
pD " 2t
p σ" σ"
dφ φ
σ"
x
" 2 '
为二向应力状态 σ"= σ1
σ´= σ2
§12-3 二向应力状态分析—解析法
1 斜截面上的应力
σy τyx
α
τyx
σx
α
σy σx τxy τxy σx
α
n
τxy
σα dAcosα τα
t
α
dA
τyx σy
2
max
(3)
1, 2 23 x y
2
*§12.4 二向应力状态分析—图解法 1 应力圆(莫尔圆)
x y
2
x y
2
x y
2
cos 2 xy sin 2
sin 2 xy cos 2
) (
2
二式平方
(
2
x y
x y
2
(
x y
2
2
cos 2 xy sin 2 ) 2
sin 2 xy cos 2 ) 2
) (
2 2
相加得
(
x y
2
2
x y
2
(
) 2 ( xy ) 2
z
y σy
τyx τxy
σx
x
二 主平面和主应力 主平面:单元体上无剪应力作用的方向面. 主应力:主平面上的正应力. 约定 σ1≧ σ2 ≧ σ3 主方向:主平面外法线方向. 或平行于主应力的方向.
σ3
σ2
σ1
三 应力状态分类 按主应力不为零个数划分为: 简单应力状态:单向应力状态—1个主应力不为零. 复杂应力状态:二向应力状态—2个主应力不为零. 三向应力状态—3个主应力不为零.
主方位角和主应力的对应关系
的判定方法—直接判定法
τ´
τ´
τ τ σc σt
τ
τ´
直接判定法: 把单元体对称分为四个象限,剪应力箭头所指 交线象限内的主方位角对应的主应力为极大值,另一个为极 小值.
3 极大极小剪应力及其所在平面 令
d 0 d
x y
2 cos 2 1 xt sin 2 1 0
2 ) 2 xy
为圆心
(
x y
,0)
,半径
x y
2
的圆方程.
称为应力圆方程,也称为莫尔圆.其中σα,τα为变量.
2 应力圆的画法
(1) 确定x平面及其应力大小所在位置D 按比例量取OA=σx,AD=τxy,确定D点. (2) 确定y平面及其应力大小所在位置D´ 按比例量取OB=σy,BD´=τyx,确定D´点. (3) 确定圆心位置,画应力圆 连接DD´交σ轴于C,以为 CD半径画应力圆. 圆心座标 半径