中考数学复习二次函数的性质1[人教版]

合集下载

人教版九年级数学上册二次函数的图象和性质复习同步练习题

人教版九年级数学上册二次函数的图象和性质复习同步练习题

22.1 二次函数的图象和性质1.抛物线y=-3x 2上两点A (x ,-27),B (2,y ),则x= ,y= .2.抛物线y=-4x 2-4的开口向 ,当x= 时,y 有最 值,y = . 3.当m= 时,y=(m -1)xmm +2-3m 是关于x 的二次函数.4.当m= 时,抛物线y=(m +1)x mm +2+9开口向下,对称轴是 .在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 . 5.抛物线y=3x 2与直线y=kx +3的交点为(2,b ),则k= ,b= .6.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-1,-2),则抛物线的表达式为.7.在同一坐标系中,图象与y=2x 2的图象关于x 轴对称的是( )A .y=21x 2B .y=-21x 2C .y=-2x 2D .y=-x 28.抛物线,y=4 x 2,y=-2x 2的图象,开口最大的是( )A .y=41x 2B .y=4x 2C .y=-2x 2D .无法确定9.对于抛物线y=31x 2和y=-31x 2在同一坐标系里的位置,下列说法错误的是( )A .两条抛物线关于x 轴对称B .两条抛物线关于原点对称C .两条抛物线关于y 轴对称D .两条抛物线的交点为原点10.二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )错误!未找到引用源。

11.已知函数y=ax 2的图象与直线y=-x +4在第一象限内的交点和它与直线y=x 在第一 象限内的交点相同,则a 的值为( )A .4 B .2 C .21D .4112.求符合下列条件的抛物线y=ax 2的表达式:(1)y=ax 2经过(1,2); (2)y=ax 2与y=21x 2的开口大小相等,开口方向相反;(3)y=ax 2与直线y=21x +3交于点(2,m ).13已知错误!未找到引用源。

是二次函数,且当错误!未找到引用源。

中考数学复习二次函数的图像与性质1[人教版]

中考数学复习二次函数的图像与性质1[人教版]
ps://
[单选]在双代号网络计划中,如果其计划工期与计算工期相等,且工作i-j的完成节点在关键线路上,则工作i-j的自由时差()。A.等于零B.小于零C.小于其相应的总时差D.等于其相应的总时差 [多选]下列哪些描述用于防火分隔的下沉广场的语句是正确的?()A.下沉广场的宽度不应小于13mB.下沉广场的面积不应小于169m2C.下沉广场内应设置不少于1部直通地面的疏散楼梯D.下沉广场疏散楼梯的总净宽度不应小于通向下沉广场的设计疏散总净宽度E.防风雨篷开口的面积不应小于室 [单选,A型题]关于剂型的分类,下列叙述错误的是A、溶胶剂为液体剂型B、软膏剂为半固体剂型B.C、栓剂为半固体剂型D、气雾剂为气体分散型C.E、气雾剂、吸入粉雾剂为经呼吸道给药剂型 [单选]所有地面电台覆盖整个调度区间的可靠概率在地形复杂地区应不小于()A.90%B.95%C.99% [单选]根据《循环经济促进法》,下列关于发展区域循环经济的表述,不正确的是()。A.市级以上人民政府应当统筹规划区域经济布局,合理调整产业结构B.各类产业园区应当组织区内企业进行资源综合利用,促进循环经济发展C.国家鼓励各类产业园区的企业进行废物交换利用和能量梯级利用 [单选]关于单发性骨软骨瘤的临床表现,下列不正确的是()A.多见于年轻人B.好发于干骺端C.随年龄增长而持续发展D.1%的病人可有恶化E.较多发性骨软骨瘤恶化机会少 [单选]自体微粒皮植皮,供受区面积最大宜在()A.1:5之内B.1:20之内C.1:15之内D.1:25之内E.1:40之内 [单选]患者,60岁,男性,突发头痛、呕吐、视物旋转伴行走不稳2小时。查体:一侧肢体共济失调,眼球震颤,构音障碍。最可能的诊断是()A.脑栓塞B.小脑出血C.脑叶出血D.蛛网膜下腔出血E.壳核出血 [单选,A2型题,A1/A2型题]在性成熟期,中医认为:乳头属()A.心B.肝C.脾D.肺E.肾 [单选]飞机在地面连接上地面电源车时,GPCU(地面电源控制组件)由谁供电()A.地面电源车和直流电瓶汇流条;B.只由直流电瓶汇流条供电;C.只由地面电源车供电。 [单选]某患者进食后发生恶心、呕吐、腹泻。关于该菌生化反应,叙述错误的是()A.在3%、7%氯化钠中生长良好B.在10%氯化钠中不生长C.无氯化钠的培养基中生长良好D.神奈川现象阳性E.碱性蛋白胨水可做该菌增菌培养 [多选]某变电所10kV电容器组为中性点不接地星形接线装置,按规程应该装设下列哪些保护()?A.电流速断保护B.过励磁保护C.中性点电压不平衡保护D.过电压保护 [单选]以下哪条不符合主动脉瓣关闭不全超声表现A.左心室增大B.左室流出道变窄C.室壁活动幅度增大D.主动脉运动幅度增大E.主动脉瓣关闭呈双线 [单选]在内燃机中柴油机的本质特征是()。A.内部燃烧B.压缩发火C.使用柴油做燃料D.用途不同 [单选,A1型题]产程中胎心监护,下列哪项是不恰当的()A.不能分辨与宫缩的关系B.潜伏期应每1~2小时听胎心1次C.听诊胎心应在宫缩间歇期宫缩刚结束时进行D.活跃期应每15~30分钟听胎心1次E.每次听胎心应听1分钟 [单选,A3型题]某网吧内,上百台电脑前几乎坐满了人,近半数年轻人嘴里叼着香烟,空气中弥漫着呛人的烟草味。室内还连续不断的传来聊天声和游戏者的喊叫声。乳白色的键盘早已是油迹斑斑,常用的字母键呈现出清晰的手指形状的黑印,这些黑印正是长时间未擦拭留下的。透过键盘按键的 [问答题,案例分析题]B企业拟在A市郊区原A市卷烟厂厂址处(现该厂已经关闭)新建屠宰量为120万头猪/年的项目(仅屠宰,无肉类加工),该厂址紧临长江干流,A市现有正在营运的日处理规模为3万t的城市污水处理厂,距离B企业1.5km。污水处理厂尾水最终排入长江干流(长江干流在A市段 [单选]某建设项目从美国进口的设备重100吨,装运港船上交货价为1000万美元,海运费为300美元/吨,海运保险费为2万美元,美元兑人民币汇率按l:7计算。该设备的到岸价格为人民币()万元。A.7000B.7014C.7021D.7035 [单选,A2型题,A1/A2型题]一般血清总钙是下列哪项时,有临床症状()。A.≤2.8mmoL/LB.≤2.2mmol/LC.≤0.95mmol/LD.≤1.88mmol/LE.≤2.5mmoL/L [单选]道路运输管理机构收到道路旅客运输经营申请后,应当自受理申请之日起()内审查完毕,作出许可或者不予许可的决定。A、40日B、30日C、20日 [单选]肾毒性急性肾衰竭形态学变化最明显的部位是()A.近端肾小管曲部和直部B.肾小囊C.近端肾小管和集合管D.肾间质E.髓襻 [单选]感染过程的各种表现中,以不出现临床症状而能排出病原体为特点的是()A.隐性感染B.轻型病例C.病原携带者D.潜伏性感染E.亚临床感染 [填空题]枣属于().无花果属于().草莓属于(). [单选]由于价格与供给量之间存在正相关关系,产品或服务的价格越高,其供给量越多,所以供给曲线是一条向()倾斜的曲线。A.右上方B.右下方C.左上方D.左下方 [问答题,论述题]试述减速器的日常检查检查方法。 [单选,A2型题,A1/A2型题]DSA的中文全称叫做()A.数字减影成像B.数字血管成像C.数字减影血管造影D.数字造影血管减影E.数字血管断层成像 [单选,A2型题,A1/A2型题]下列CT叙述中,错误的是()A.CT图像是数字图像B.CT成像仍使用X射线CT是多参数成像D.CT扫描层是二维体积E.CT可以进行薄层扫描 [单选]关节镜检查手术常见的并发症有()。A.伤口疼痛,关节积血、积液B.关节感染C.关节内韧带、软骨、半月板损伤D.深静脉血栓形成E.腓总神经损伤 [问答题,简答题]简述汽油机和柴油机的着火和燃烧方式。 [单选]制图物体的形状概括通过合并、()和夸大来实现。A.选取B.删除C.修改 [单选]慢性毒性实验所需试验动物数量与亚慢性毒性试验所需要的动物数量相比()。A.不应有明显差别,二者可相同B.慢性毒性试验动物数要稍多于亚慢性毒性试验动物数即可C.慢性毒性试验动物数要明显多于亚慢性毒性试验动物数D.慢性毒性试验动物数要少于亚慢性毒性试验动物数量E.慢性 [多选]下面哪几项是酒店运管七定式“对你人生受用4W”?()A、第一问:我要什么?B、第二问:我有什么?C、第三问:我缺什么?D、第四问:我要做什么? [单选]治疗大头瘟毒,头面红肿,咽喉不利,宜首选()A.穿心莲B.板蓝根C.金银花D.山豆根E.蒲公英 [问答题,简答题]简述起升、变幅制动常见故障现象、原因、排查方法。 [单选]肾前性急性肾衰竭尿沉渣镜检常见管型()A.红细胞管型B.白细胞管型C.棕色管型D.上皮细胞管型E.蜡样管型 [单选,A2型题,A1/A2型题]遗传性出血性毛细血管扩张症属于()。A.常染色体显性遗传病B.常染色体隐性遗传病C.X连锁显性遗传病D.X连锁隐性遗传病E.Y连锁遗传病 [单选,A2型题,A1/A2型题]患者男性,58岁,银屑病4年,加重3天,查体见四肢伸侧及背部雨滴状红斑丘疹,色鲜红,有皮屑,抓破出现同样皮损,瘙痒较著,予PUVA治疗的叙述中正确的是()A.可予PUVA全身治疗或PUVC的局部治疗B.可在服用8-MOP后2小时UVA全身照射C.PUVA法取得成功的关键是 [填空题]世界上第一套邮票()的发行日期是1840年5月1日。 [单选,A2型题,A1/A2型题]常用的HRP发光底物为()A.吖啶酯B.三联吡啶钌C.鲁米诺或其衍生物D.4-MUPE.AMPPD [判断题]一般来说,人们随着知识,能力的提高和增强,会自己作出肯定的回答和评价,也希望别人认可并得到他人,集体和社会的尊重与爱护,这就产生了自尊心理.在这里,自我承认往往比社会承认更重要.A.正确B.错误

二次函数的图象和性质(第1课时 )九年级数学上册课件(人教版)

二次函数的图象和性质(第1课时 )九年级数学上册课件(人教版)

然后描点、连线,得到图象如下图.
y
-4 -2 O 2 4
-2 4 6 8
由图象可知,这个函数 具有如下性质: 当x<-1时,函数值y随x
x
的增大而增大; 当x>-1时,函数值y随x 的增大而减小; 当x=-1时,函数取得最 大值,最大值y=3.
练一练 已知二次函数y=x2﹣6x+5. (1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式; (2)求该二次函数的图象的对称轴和顶点坐标; (3)当x取何值时,y随x的增大而减小.
( C) A.直线x=2
B.直线x=-2
C.直线x=1
D.直线x=-1
4.【2020·温州】已知(-3,y1),(-2,y2),(1,y3)是抛 物线y=-3x2-12x+m上的点,则( B )
A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y2
5.【2020·河北】如图,现要在抛物线y=x(4-x)上找点 P(a,b),针对b的不同取值,所找点P的个数,三人的 说法如下,
6.【中考·温州】已知二次函数y=x2-4x+2,关于该函 数在-1≤x≤3的取值范围内,下列说法正确的是( D)
A.有最大值-1,有最小值-2 B.有最大值0,有最小值-1 C.有最大值7,有最小值-1 D.有最大值7,有最小值-2
7.【中考·成都】在平面直角坐标系xOy中,二次函数y= ax2+bx+c的图象如图所示,下列说法正确的是( B)
(1)求 b、c 的值;
解:把 A(0,3),B-4,-92的坐标分别代入
y=-136x2+bx+c,得 c-=1336,×16-4b+c=-92,解得bc==398.,
(2)二次函数 y=-136x2+bx+c 的图象与 x 轴是否有公共点? 若有,求出公共点的坐标;若没有,请说明理由.

中考数学复习二次函数的图像与性质1[人教版]

中考数学复习二次函数的图像与性质1[人教版]

bbin帐号被冻结了怎么办
[单选]按照规定不需要在工商管理机关办理注销登记的,应当自有关机关批准或者宣告终止之日起(),持有关证件向原税务登记管理机关申报办理注销税务登记。A.10日内B.15日内C.30日内D.45日内 [单选]温病卫分证的辨证要点是:().A.发热,微恶寒,口微渴B.寒热头痛,呕恶不食,舌红,脉浮数C.发热而渴,不恶寒D.恶寒发热,头痛无汗,脉浮紧 [填空题]做直流耐压试验,升压速度一般为()。 [填空题]钻头的切削刃对称于()分布,径向切削力相互抵消,所以钻头不易弯曲。 [名词解释]宏观市场营销 [单选,A2型题,A1/A2型题]对注意缺陷多动障碍患儿的量表评定下列说法不正确的是()A.瑞文测试B.感觉统合核对表C.Achenbach儿童行为量表D.FIM量表E.希内智测法 [单选,A2型题,A1/A2型题]女性,66岁,糖尿病病史10余年,长期口服降糖药治疗,血糖控制差。查体:身高158cm,体重76kg,给予人胰岛素(总量60U/d)治疗2周后,血糖仍为11.3~18.6mmol/L。目前首先考虑患者存在()。A.胰岛素抵抗B.胰岛素抗药性C.胰岛素过敏D.胰岛素过量E.黎明 [单选]以下跳汰机是按矸石的运动方向加以区分的()。A、单槽跳汰机B、正排矸跳汰机C、块煤跳汰机D、三段跳汰机 [问答题,简答题]如遇分离机漏母液现象如何操作? [问答题,简答题]高空作业时的安全注意事项是什么? [单选,A2型题,A1/A2型题]酒渣鼻红斑期,毛细血管扩张最明显的部位是()。A.鼻翼、鼻尖B.面颊部C.额部D.唇周E.唇红 [单选,A1型题]新生儿是指出生至生后()A.7天B.14天C.28天D.30天E.60天 [单选]《合同法》的公平原则中不包括()。A.根据公平原则分配利润B.根据公平原则确定违约责任C.根据公平原则合理地分配风险D.在订立合同时,要根据公平原则确定双方的权利和义务,不得滥负载两端直流电压为变压器二次绕组电压的()倍。 [单选]个体发展心理学的研究对象是()。A.人生全过程各个年龄阶段的心理发展特点B.人生全过程各个年龄阶段的认知发展特点C.从动物到人的心理变化D.从幼儿到成人的心理变化 [单选]下列关于会计凭证,表述错误的是()。A.会计凭证是记录经济业务、明确经济责任的书面证明B.会计凭证是登记账簿的依据C.填制原始凭证是会计处理程序的第一个关键步骤D.会计凭证根据填制的程序和用途不同分为原始凭证和记账凭证 [单选]单手摇壶的操作要领是()A.尽量使手腕用力,做到动作连贯B.摇动的力量要小,节奏要慢C.尽量使手臂用力,摇动的力量要小D.摇动的速度要慢,节奏要慢 [单选]吸入性损伤的治疗下列哪项最关键()A.住层流病房B.应用广谱抗生素C.严格消毒隔离制度D.湿化气道E.高营养支持 [单选]泵的管路特性曲线在纵坐标上的起点高表明()。A.吸、排液面间的压力差大B.吸、排液面间的高度差大C.管路流动阻力损失大D.A或B或A和B [单选,A2型题,A1/A2型题]《素问·上古天真论》曰:"女子七岁,肾气盛",表现为()A.月事以时下B.真牙生而长极C.齿更发长D.身体盛壮E.筋骨坚 [单选]心室颤动电除颤采用()A.非同步200J以上B.同步200J以上C.非同步150JD.同步150JE.交流电200J以上 [单选]关于胎动次数,下述哪项提示胎儿缺氧()A.胎动<30次/12hB.胎动<25次/12hC.胎动<20次/12hD.胎动<15次/12hE.胎动<10次/12h [单选]酒店管理者在工作中能够妥善解决所遇到的问题,克服所遇到的困难,处理好酒店横向和纵向的人际关系,树立为宾客及员工服务的理念描述的是下面哪个?()A、职业认识B、职业感情C、职业意志D、职业信念 [单选,A2型题,A1/A2型题]下列哪一项不是自发性蛛网膜下腔出血的原因()。A.颅内动脉瘤B.动静脉畸形C.烟雾病D.动脉硬化E.抗纤溶治疗 [单选]何处病变可见肌纤维震颤()A.肌病B.神经肌肉结合部位C.前角细胞D.上运动神经元病变E.锥体外系统 [单选]我国目前的基本建设程序主要包括项目建议书、可行性研究、相关审批或核准、工程勘察与设计、工程施工、竣工验收和交付等阶段。项目立项完成后,()是建设实施阶段首要和主导的环节。A.项目建议书B.可行性研究C.工程勘察与设计D.工程施工 [单选,A2型题,A1/A2型题]分消走泄法的代表方剂为()。A.蒿芩清胆汤B.温胆汤C.三仁汤D.王氏连朴饮E.石膏滑石汤 [单选]用于公路路基的填料要求强度高,其强度要求是按()指标确定。A.密度B.回弹模量C.弯沉D.CBR值 [问答题][综合分析题]RB制造公司是一家位于华中某省的皮鞋制造公司,拥有近400名工人。大约在一年前,公司因产品有过多的缺陷而失去了两个较大的客户。RB公司领导研究了这个问题之后,一致认为:公司的基本工程技术方面还是很可靠的,问题出在生产线上的工人,质量检查员以及管理 [单选]小肠肠壁组织结构由内向外依次为()。A.黏膜层、黏膜下层、肌层、浆膜层B.黏膜层、黏膜下层、黏膜肌层、肌层、浆膜层C.黏膜层、黏膜肌层、黏膜下层、固有肌层、浆膜层D.黏膜层、黏膜肌层、浆膜层E.黏膜层、肌层、浆膜层 [问答题,简答题]计算题:某企业单步骤生产甲产品,该产品按实际成本计价。该企业采用定额比例法将产品生产成本在完工产品与月末在产品之间进行分配。2010年12月份有关甲产品成本资料如下:本月完工产品直接材料定额成本31500元、直接人工定额成本19600元、定额制造费用16800元;月 [单选]黑色素瘤是()A.一种良性肿瘤B.最多见的良性肿瘤之一C.一个高度恶性肿瘤D.一种最多见的眼睑病变之一E.以上均不是 [多选]双代号网络图中虚工作的特点有()。A.虚工作要占用时间B.虚工作不消耗资源C.实际工作中不存在虚工作D.工作用虚箭线表示E.虚箭线和实箭线不可以交叉 [单选]采用同高并列式的催化裂化装置反应器压力与再生器压力相比()。A、相近B、高C、低D、无法确定 [单选]甲厂自1995年起在其生产的炊具上使用“红灯笼”商标,并于1997年8月向商标局提出该商标的注册申请。乙厂早在1997年6月商标局申请为其炊具产品注册“红灯笼”商标。该“红灯笼”商标专用权就应归属于()。A.甲B.乙C.甲和乙D.甲乙协商确定的一方 [单选,A型题]患者男性,38岁,因突发心悸、头晕1小时就诊。既往心电图检查提示为A型预激综合征。查体:血压为70/40mmHg,心界不大,无杂音。心悸时记录的心电图如图3-16-2所示,最可能的诊断是()。A.多形性室性心动过速B.预激综合征合并心房颤动C.阵发性室上性心动过速D.心房颤 [判断题]接地装置引下线的导通检测应5年进行一次。A.正确B.错误 [单选]无线电波实际上是()。A.电磁波B.电场C.磁场D.以上都不对 [判断题]银行卡按性质不同可分为准贷记卡和借记卡。A.正确B.错误 [单选]一般电气设备铭牌上的电压和电流值的数值是()。A.瞬时值;B.最大值;C.有效值;D.平均值。

【中考一轮复习】二次函数的图象与性质课件(1)

【中考一轮复习】二次函数的图象与性质课件(1)

当堂训练---二次函数的图象的变换
1.如图,在平面直角坐标系中,抛物线y=0.5x2经过平移得到抛物
线y=0.5x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面
积为( B )
A.2
B.4
C.8
D.16
2.将抛物线y=0.5x2-6x+21向左平移2个
单位后,得到抛物线的解析式为( D )
A.y=0.5(x-8)2+5 B.y=0.5(x-4)2+5
人教版中考数学第一轮总复习
第三单元 函数及其图象
•§3.6 二次函数图象与性质(2)
目录
01 二次函数的图象的变换
02 二次函数与一元二次方程
03 二次函数图象的最值问题
考点聚焦---二次函数的图象的变换
二次函数图 平 移 ①先求出原抛物线的顶点;
象的平移


②后求出变换后的抛物线的顶点; ③写出变换的抛物线的解析式。
【例1】将抛物线y=x2+2x-3,化成顶点式为_y_=_(_x_+_1_)_2_-_4__; (1)该抛物线是由y=x2_向__左__1_个__单__位__,_再__向__下__4_个___单__位__平移得到的;
(2)写出该抛物线关于x轴,y轴,原点和(1,1)对称的抛物线解析式: 关于 x 轴对称:_y_=_-_x_2_-_2_x_+_3___;_y_=_-_(_x_+_1_)_2_+_4___。 关于 y 轴对称:_y_=__x_2_-_2_x_-_3___;_y_=__(_x_-_1_)_2_-_4___。 关于 x=2 对称:_y_=_x_2_-_1_0_x_+_2_1__;_y_=_(_x_-_5_)_2_-_4____。 关于原 点对称:_y_=_-_x_2_+_2_x_+_3___;_y_=_-_(_x_-_1_)_2_+_4___。 关于(1,1)对称:_y_=_-_x_2_+_6_x_-_9___;_y_=_-_(_x_-_3_)_2_+_6___。

中考数学二次函数

中考数学二次函数

中考数学二次函数一、二次函数的定义与表示1.二次函数是指形如y = ax² + bx + c (a, b, c是常数,a≠0)的函数。

2.二次函数的表示方法:用y = ax² + bx + c 表示,其中a、b、c分别是二次函数的一般形式中的二次项系数、一次项系数和常数项。

二、二次函数的性质与图像1.二次函数的性质:根据a、b、c的符号,可以判断出函数的开口方向、对称轴和顶点坐标。

当a>0时,开口向上,对称轴为x=-b/2a,顶点坐标为(-b/2a,(4ac-b²)/4a);当a<0时,开口向下,对称轴为x=-b/2a,顶点坐标为(-b/2a,(4ac-b²)/4a)。

2.二次函数的图像:二次函数的图像是一条抛物线,根据a、b、c的符号可以判断出抛物线的开口方向和对称轴。

三、二次函数与一元二次方程1.二次函数与一元二次方程的联系:二次函数y=ax²+bx+c的图像与x轴的交点坐标就是一元二次方程ax²+bx+c=0的根。

2.二次函数与一元二次方程的转化:将二次函数转化为顶点式或因式分解后,即可得到一元二次方程,从而可以求解出函数的零点或与x轴的交点坐标。

四、二次函数的应用1.利用二次函数解决实际问题:通过建立二次函数模型,解决生活中的最优化问题、经济问题、行程问题等。

2.利用二次函数解决几何问题:利用二次函数的图像和性质解决几何中的最值问题、面积问题等。

五、二次函数的综合题1.结合其他知识考查二次函数:例如与一元二次方程、不等式、因式分解等相关知识结合考查二次函数。

2.二次函数的实际应用:结合实际应用背景考查二次函数的相关知识,如最大利润、最大面积等。

3.二次函数的图像信息题:通过给出二次函数的图像或部分信息,让考生根据图像或信息解决问题,例如求抛物线的顶点坐标、对称轴等。

(中考数学复习)第16讲 二次函数的图象与性质(一) 课件 解析

(中考数学复习)第16讲 二次函数的图象与性质(一) 课件 解析

坐标为(-2,0),则抛物线y=ax2+bx的对称轴为直线
( C )
A.x=1
B.x=-2
C.x=-1
D.x=-4
4.(2013·陕西)已知两点A(-5,y1),B(3,y2)均在抛物线y=
ax2+bc+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若
y1>y2≥y0,则x0的取值范围是
( B )
而增大 减小
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
1.(2013·河南)在二次函数y=-x2+2x+1的图象中,若y随的x
增大而增大,则x的取值范围是
( A )
A.x<1
B.x>1
C.x<-1
D.x>-1
2.(2013·内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),
基础知识 · 自主学习 题组分类 · 深度剖
图16-2
课堂回顾 · 巩固提升
∴B(10,0),而A、B关于对称轴对称,
浙派名师中考
要使y1随着x的增大而减小,则a<0, ∴x>2; (2)n=-8时,易得A(6,0),如图16-3所示, ∵抛物线过A、C两点,且与x轴交点A,B在原点两侧, ∴抛物线开口向上,则a>0, ∵AB=16,且A(6,0), ∴B(-10,0),而A、B关于对称轴对称,
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 ·0,a(x-m)2-a(x-m)=0, Δ=(-a)2-4a×0=a2, ∵a≠0, ∴a2>0, ∴不论a与m为何值,该函数的图象与x轴总有两个公共点; (2)解:①y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0, 解得x1=m,x2=m+1, ∴AB=(m+1)-m=1,

2021年河北省数学中考《二次函数的图象及性质》专题复习(人教版)(Word版附答案)

2021年河北省数学中考《二次函数的图象及性质》专题复习(人教版)(Word版附答案)

二次函数的图象及性质二次函数的图象及性质1.(2020·河北中考)如图,现要在抛物线y=x(4-x)上找点P(a,b),针对b 的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对 B.甲和乙都错C.乙对,丙错 D.甲错,丙对2.(2018·河北中考)对于题目“一段抛物线L:y=-x(x-3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点.若c为整数,确定所有c的值.”甲的结果是c =1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确3.(2017·河北中考)如图,若抛物线y=-x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=kx(x>0)的图象是()二次函数图象与性质的综合4.(2019·河北中考)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx的顶点为C,且L与x 轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2 019和b=2 019.5时“美点”的个数.考点解析二次函数的概念及表达式1.已知二次函数图象经过原点,对称轴是y轴,且经过点(-2,-8),则这个二次函数的表达式为y=;2.已知抛物线的顶点坐标为点M(1,-2),且经过点N(2,3),则此二次函数的表达式为y=;3.已知二次函数图象经过点P(3,4)且与x轴两个交点的横坐标为1和-2,则这个二次函数的表达式为y=.二次函数的图象及性质4.(2020·秦皇岛市一模)二次函数y=x2+2x+2的图象是一条抛物线,则下列说法不正确的是()A.抛物线开口向上B.抛物线的顶点坐标是(1,1)C.抛物线与x轴没有交点D.当x>-1时,y随x的增大而增大5.(2020·石家庄市模拟)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是()A.2>y1>y2 B.2>y2>y1C.y1>y2>2 D.y2>y1>26.若二次函数y=kx2+2x-1的图象与x轴仅有一个公共点,则常数k的值为( )A .1B .±1C .-1D .-12 二次函数图象的平移7.将抛物线y =12 x 2+1绕顶点旋转180°,则旋转后的抛物线的解析式为( )A .y =-2x 2+1B .y =-2x 2-1C .y =-12 x 2+1D .y =-12 x 2-18.(2020·河北一模)在平面直角坐标系中,有两条抛物线关于x 轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y =-x 2+4x +2m ,则m 的值是( )A .-72B .-12C .1D .-12 或-72二次函数与一元二次方程、不等式的关系9.若二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为x 1= ,x 2= .10.(2020·石家庄市模拟)二次函数y =ax 2+bx +c (a ≠0)的部分对应值如下表:x -3 -2 -1 0 1 2y -12 -5 0 3 4 3利用二次函数的图象可知,当函数值y >0时,x 的取值范围是 .考点专练1.(2020·河北模拟)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+b2a与反比例函数y=abx在同一坐标系内的大致图象是()2.(2020·石家庄市模拟)如图,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3.其中正确的是()A.①② B.③④ C.②③ D.①③3..(2020·石家庄市模拟)二次函数y=x2-2的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下B.当x=0时,函数的最大值是-2C.抛物线的对称轴是直线x=2D.抛物线与x轴有两个交点4.一次函数y=ax+b与反比例函数y=cx的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()5.(2020·唐山路北区一模)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③b2-4ac<0;④4a+2b+c>0.其中正确的是()A.①③ B.② C.②④ D.③④6.(2020·石家庄长安区模拟)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③2a+b=0;④4a+2b+c<0.其中正确结论的序号是.5.(2020·秦皇岛市一模)如图,将抛物线y=12 x2平移得到抛物线m,抛物线m经过点A(-6,0)和点O(0,0),它的顶点为P,它的对称轴与抛物线y=1 2x2交于点Q.(1)点P的坐标为;(2)图中阴影部分的面积为.7.(2020·石家庄28中一模)如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围;③直接写出点Q与直线y=x+5的距离小于2时m的取值范围.8.将抛物线y=x2-2x+3先沿水平方向向右平移1个单位,再沿竖直方向向上平移3个单位,则得到的新抛物线的解析式为()A.y=(x-2)2+3 B.y=(x-2)2+5C.y=x2-1 D.y=x2+49.(2020·唐山市一模)如图,已知二次函数L:y=mx2+2mx+k(其中m,k 是常数,k为正整数).(1)若L经过点(1,k+6),求m的值.(2)当m=2时,若L与x轴有公共点且公共点的横坐标为非零的整数,确定k的值;(3)在(2)的条件下将L:y=mx2+2mx+k的图象向下平移8个单位,得到函数图象M,求M的解析式;(4)将M的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象N,请结合新的图象解答问题,若直线y=12 x+b与N有两个公共点时,请直接写出b的取值范围.二次函数的图象及性质二次函数的图象及性质1.(2020·河北中考)如图,现要在抛物线y=x(4-x)上找点P(a,b),针对b 的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是(C)A.乙错,丙对 B.甲和乙都错C.乙对,丙错 D.甲错,丙对2.(2018·河北中考)对于题目“一段抛物线L:y=-x(x-3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点.若c为整数,确定所有c的值.”甲的结果是c =1,乙的结果是c=3或4,则(D)A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确3.(2017·河北中考)如图,若抛物线y=-x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=kx(x>0)的图象是(D)二次函数图象与性质的综合4.(2019·河北中考)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx的顶点为C,且L与x 轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2 019和b=2 019.5时“美点”的个数.解:(1)当x=0时,y=x-b=-b,∴B(0,-b).又∵AB=8,A(0,b),∴b-(-b)=8.∴b=4.∴L的表达式为y=-x2+4x,a的表达式为y=x-4.∴L 的对称轴为x =2. 当x =2时,y =x -4=-2.∴L 的对称轴与a 的交点坐标为(2,-2);(2)∵y =-x 2+bx =-⎝ ⎛⎭⎪⎫x -b 2 2 +b24 ,∴L 的顶点为C ⎝ ⎛⎭⎪⎫b 2,b 24 . ∵点C 在l 下方,∴点C 与l 的距离为b -b 24 =-14 (b -2)2+1≤1. ∴点C 与l 距离的最大值为1;(3)由题意,得y 3=y 1+y 22 ,即y 1+y 2=2y 3,得b +x 0-b =2(-x 20 +bx 0). 解得x 0=0或x 0=b -12 .又x 0≠0,∴x 0=b -12 . 对于L ,当y =0时,即0=-x 2+bx ,∴0=-x (x -b ). 解得x 1=0,x 2=b .∵b >0,∴右交点D 为(b ,0). ∴点(x 0,0)与点D 的距离为b -⎝ ⎛⎭⎪⎫b -12 =12 ;(4)4 040;1 010.考点解析二次函数的概念及表达式 例如,(1)已知二次函数图象经过原点,对称轴是y 轴,且经过点(-2,-8),则这个二次函数的表达式为y =-2x 2;(2)已知抛物线的顶点坐标为点M(1,-2),且经过点N(2,3),则此二次函数的表达式为y=5(x-1)2-2;(3)已知二次函数图象经过点P(3,4)且与x轴两个交点的横坐标为1和-2,则这个二次函数的表达式为y=25 x2+25 x-45.二次函数的图象及性质例如,(1)(2020·秦皇岛市一模)二次函数y=x2+2x+2的图象是一条抛物线,则下列说法不正确的是(B)A.抛物线开口向上B.抛物线的顶点坐标是(1,1)C.抛物线与x轴没有交点D.当x>-1时,y随x的增大而增大(2)(2020·石家庄市模拟)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是(A)A.2>y1>y2 B.2>y2>y1C.y1>y2>2 D.y2>y1>2例如,(1)根据二次函数的大致图象得出结论:a>0,a<0,a>0,a<0,(2)若二次函数y =kx 2+2x -1的图象与x 轴仅有一个公共点,则常数k 的值为(C )A .1B .±1C .-1D .-12 二次函数图象的平移(5)将抛物线y =12 x 2+1绕顶点旋转180°,则旋转后的抛物线的解析式为(C )A .y =-2x 2+1B .y =-2x 2-1C .y =-12 x 2+1D .y =-12 x 2-1(6)(2020·河北一模)在平面直角坐标系中,有两条抛物线关于x 轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y =-x 2+4x +2m ,则m 的值是(D )A .-72B .-12C .1D .-12 或-72二次函数与一元二次方程、不等式的关系 例如,(1)若二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为x 1=-1,x 2=5.(2)(2020·石家庄市模拟)二次函数y =ax 2+bx +c (a ≠0)的部分对应值如下表:利用二次函数的图象可知,当函数值y>0时,x的取值范围是-1<x<3.二次函数的综合考点专练二次函数的图象与性质及与各项系数的关系【例1】(2020·河北模拟)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+b2a与反比例函数y=abx在同一坐标系内的大致图象是(B)【解析】根据二次函数图象与系数的关系,由抛物线对称轴的位置(在y轴右侧)确定ab<0,由抛物线与y轴的交点位置(在x轴下方)确定c<0.对于一次函数y=cx+b2a,由于c<0,图象必经过第二、四象限,又0<-b2a<1,即b2a<0,图象与y轴的交点在x轴下方;对于反比例函数y=abx,ab<0,图象分布在第二、四象限.【例2】(2020·石家庄市模拟)如图,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3.其中正确的是(B)A.①② B.③④ C.②③ D.①③【解析】∵抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间.∴b2-4ac>0,故①错误;当x=1时,y=a+b+c<0,故②错误;由-b2a=-1,得b=2a,2a-b=0,故③正确;当x=-1时,y=a-b+c=a-2a +c=-a+c=3,即c-a=3,故④正确.1.(2020·石家庄市模拟)二次函数y=x2-2的图象是一条抛物线,下列关于该抛物线的说法正确的是(D)A.抛物线开口向下B.当x=0时,函数的最大值是-2C.抛物线的对称轴是直线x=2D.抛物线与x轴有两个交点2.一次函数y=ax+b与反比例函数y=cx的图象如图所示,则二次函数y=ax2+bx+c的大致图象是(A)3.(2020·唐山路北区一模)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③b2-4ac<0;④4a+2b+c>0.其中正确的是(C)A.①③ B.② C.②④ D.③④4.(2020·石家庄长安区模拟)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③2a+b=0;④4a+2b+c<0.其中正确结论的序号是①②③.5.(2020·秦皇岛市一模)如图,将抛物线y=12 x2平移得到抛物线m,抛物线m经过点A(-6,0)和点O(0,0),它的顶点为P,它的对称轴与抛物线y=1 2x2交于点Q.(1)点P 的坐标为⎝ ⎛⎭⎪⎫-3,-92 ;(2)图中阴影部分的面积为272 . 二次函数表达式的确定及综合【例3】(2020·石家庄28中一模)如图,已知二次函数y =x 2+ax +3的图象经过点P (-2,3).(1)求a 的值和图象的顶点坐标; (2)点Q (m ,n )在该二次函数图象上. ①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围; ③直接写出点Q 与直线y =x +5的距离小于2 时m 的取值范围.【解答】解:(1)将P (-2,3)代入y =x 2+ax +3,得 3=(-2)2-2a +3,解得a =2.∴y =x 2+2x +3=(x +1)2+2. ∴顶点坐标为(-1,2);(2)①将x =2代入y =x 2+2x +3,解得y =11. ∴当m =2时,n =11;②2≤n <11;③-1-72 <m <-1或0<m <-1+72. 6.将抛物线y =x 2-2x +3先沿水平方向向右平移1个单位,再沿竖直方向向上平移3个单位,则得到的新抛物线的解析式为(B )A.y=(x-2)2+3 B.y=(x-2)2+5C.y=x2-1 D.y=x2+47.(2020·唐山市一模)如图,已知二次函数L:y=mx2+2mx+k(其中m,k 是常数,k为正整数).(1)若L经过点(1,k+6),求m的值.(2)当m=2时,若L与x轴有公共点且公共点的横坐标为非零的整数,确定k的值;(3)在(2)的条件下将L:y=mx2+2mx+k的图象向下平移8个单位,得到函数图象M,求M的解析式;(4)将M的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象N,请结合新的图象解答问题,若直线y=12 x+b与N有两个公共点时,请直接写出b的取值范围.解:(1)将点(1,k+6)代入y=mx2+2mx+k,解得m=2;(2)当m=2时,y=mx2+2mx+k=2x2+4x+k.令y=0,即2x2+4x+k=0.由题意,得Δ=b2-4ac=16-8k≥0.解得k≤2.又k为正整数,且k=1时,方程没有整数解,故舍去.∴k=2;(3)在m=2,k=2时,y=2x2+4x+2,向下平移8个单位,平移后M的表达式为y =2x 2+4x +2-8=2x 2+4x -6;(4)-12 <b <32 或b >27332 .[由(3)知,M 的表达式为y =2x 2+4x -6.① 则翻折后抛物线的表达式为y ′=-2x 2-4x +6.② 设直线m 为y =12 x +b .③Ⅰ)当直线m 与翻折后的图象有一个交点(点H )时,如图,联立②③并整理得2x 2+92 x +b -6=0.则Δ=814 -8(b -6)=0.解得b =27332 ;Ⅱ)当直线m 过点A (-3,0)时,将点A 的坐标代入③,得0=12 ×(-3)+b .解得b =32 ;Ⅲ)当直线m 过点B (1,0)时,同理可得,b =-12 .综上所述,直线y =12 x +b 与N 有两个公共点时,b 的取值范围为-12 <b <32 或b >27332 .]。

中考数学复习二次函数的性质1[人教版]

中考数学复习二次函数的性质1[人教版]

全电动ቤተ መጻሕፍቲ ባይዱ运车/
[单选]含膳食纤维最多的食物是()A.木耳B.魔芋C.海带D.豆渣E.洋葱 [单选,A1型题]巨噬细胞对外源性抗原加工处理和递呈过程不包括()A.吞噬体形成B.吞噬溶酶体形成C.抗原降解成抗原肽D.抗原在内质网中加工修饰E.抗原肽与MHCⅡ类分子结合形成复合物 [填空题]真正的客户服务是根据客户()使他获得满足,而最终使客户感觉到他受到重视,把这种好感铭刻在他的心里,成为企业的忠实的客户。 [单选,A1型题]对头静脉不准确的描述是A.起自手背静脉网的桡侧B.借肘正中静脉与贵要静脉交通C.沿上肢外侧部上行D.注入肱静脉E.注入腋动脉或锁骨下静脉 [单选]下列关于类风湿因子说法正确的是()。A.在大部分正常人类风湿因子可以出现低滴度阳性B.其滴度与类风湿关节炎病情活动性、严重性无关C.是属于IgM型的自身抗体D.在某些慢性感染性疾病及恶性肿瘤的患者血清中可出现阳性E.类风湿因子阴性可以排除类风湿关节炎的诊断 [单选,A2型题,A1/A2型题]HbBarts见于下列哪种疾病()A.HbCB.&beta;珠蛋白生成障碍性贫血C.&alpha;珠蛋白生成障碍性贫血D.HbEE.HbS [单选]施工项目管理规划采用()方法,对施工过程的各项管理活动进行规划。A.成本管理B.目标管理C.进度管理D.质量管理 [问答题,案例分析题]某消防泵房动力安装工程如图6.Ⅲ所示。1.AP1、AP2为定型动力配电箱,落地式安装,电源由双电源切换箱引来。2.4台设备基础顶面标高均为0.3m,埋地管标高为-0.1m,其至设备电机的管高出基础顶面0.1m,均连接1根长0.8m同管径的金属软管,导线出管口后的预留长度 [单选]不行经肘窝内的结构有()A.肱二头肌腱B.正中神经C.桡动脉D.桡神经E.尺神经 [单选,A1型题]抗原递呈细胞所不具备的作用是()A.促进T细胞表达特异性抗原受体B.降解抗原为小分子肽段C.使MHC分子与抗原肽结合D.将抗原肽:MHC复合物递呈给T细胞E.为T细胞活化提供第二信号 [单选]下列关于隧道衬砌裂缝病害防治的说法错误的是()。A.设计时应根据围岩级别选取衬砌形式及衬砌厚度B.钢筋保护层必须保证不小于3cmC.混凝土宜采用较大的水灰比,降低骨灰比D.混凝土温度的变化速度不宜大于5&deg;C/h [多选]货币的演变形式是()。A.贵金属B.铸币C.纸币D.以信用工具为主的货币 [单选]利用8155芯片作为8031单片机的I/O口扩展,它可为系统提供()位I/O线。A、14;B、12;C、16;D、22。 [单选]建筑高度不超过32m的二类高层建筑应设()楼梯间。A、开敞楼梯间B、敞开楼梯间C、封闭楼梯间D、防烟楼梯间 [填空题]量臀围时应在臀围()部位量一周。 [单选]丙烯塔压力正常,丙烯质量不合格,下列哪项是正确的()。A、提高塔底蒸汽量B、提高回流量C、降低脱丙烷塔塔压D、提高脱丙烷塔塔底温度 [单选]患者,女,24岁。产后失血过多,突然晕眩,面色苍白,昏不知人,手撒肢冷,冷汗淋沥。舌淡无苔,脉微欲绝。治疗宜选用()A.参附汤B.生脉散C.当归补血汤D.夺命散E.生化汤 [名词解释]芽的晚熟性 [单选]在实施ERP时,企业方项目组的角色中,不存在的是:()A.项目领导小组B.项目经理C.用户组D.生产的一线工人 [单选]飞行器通电时间过长,执行以下动作的含义是什么:推上E杆,按一次shift键,拉下E杆。()A、清空机载航点B、校准遥控器C、重新初始化D、强行启动 [名词解释]次生异常 [单选]关于免疫学检查,错误的是()A.大多数用以检测抗体的方法都可以用于检测抗原B.特异性抗体检测可以反映人群的感染率C.恢复期特异性抗体都比急性期上升4倍有助于确诊D.皮肤试验不属于免疫学检查E.T细胞亚群检测常用于艾滋病的诊断 [判断题]作好新建装置的三查四定工作是对装置一次开车成功的有力保障。A.正确B.错误 [单选]脑梗死的病因中,最重要的是()A.动脉硬化B.高血压C.动脉壁炎症D.真性红细胞增多症E.血高凝状态 [单选]砂、石筛应采用()孔筛。A.方B.圆C.三角 [单选]下列有关颈丛哪项是正确()A.位于胸锁乳突肌下部的深面B.由1~4颈神经前支组成C.只有感觉神经D.只有运动神经E.位于中斜角肌起端的后方 [单选]某公司的经营杠杆系数为1.8,财务杠杆系数为1.5,则该公司销售额每增长1倍,就会造成每股收益增长()。A.1.2倍B.1.5倍C.0.3倍D.2.7倍 [单选]《建设工程施工合同(示范文本)》(GF-1999)规定,工程开工前,()应当为建设工程办理保险,并支付保费。A.发包人B.承包人C.发包人与承包人D.工程建设各方 [单选]若施工合同约定工程保修期间采用质量保证金方式担保,则建设单位应按工程价款()左右的比例预留保留金。A.结算总额5%B.预算总额5%C.预算总额10%D.结算总额10% [单选]下列关于股票回购方式的表述中,正确的是()。A.公开市场回购属于场外回购B.固定价格要约回购和荷兰式拍卖回购是按照股票回购的地点不同划分的C.股票回购容易造成资金紧张D.固定价格要约回购在回购价格确定方面给与公司更大的灵活性 [单选,A2型题,A1/A2型题]在使用药物进行治疗的过程中,医生恰当的做法是()。A.使用能为医院和医生带来较高回报的药物B.药物使用与选择是医生的权利,不用征求患者的意见C.为了尽快取得效果,加大药物剂量D.按需用药,考虑效价比E.联合使用多种药物,力求最佳效果 [单选,A2型题,A1/A2型题]对于一组正态分布的资料,样本含量为n,样本均数为X,标准差为S,该资料的医学参考值范围为()。A.X&plusmn;1.96SB.X&plusmn;t0.05,vS/nC.X&plusmn;1.96S/nD.P2.5~P97.5E.lg-1(X&plusmn;1.96S) [单选,A2型题,A1/A2型题]颈动脉听诊区位于()A.胸锁乳突肌外缘与甲状软骨连线的交点B.锁骨上窝C.胸锁乳突肌后缘上方2~3颈椎横突水平D.锁骨下窝E.胸锁乳突肌内缘与甲状软骨连线的交点 [单选]下列各项中,不应计入营业外收人的是()。A.债务重组利得B.处置固定资产净收益C.收发差错造成存货盘盈D.确实无法支付的应付账款 [单选]钻孔桩钢筋骨架的允许偏差以下说法正确的是()。A.钢筋骨架在承台底以下长度为&plusmn;100mmB.箍筋间距为&plusmn;10mmC.钢筋骨垂直度为2%D.加强筋间距为&plusmn;10mm [填空题]真误差为()减真值。 [单选]设立商业银行的注册资本最低限额为()元人民币。A.1亿B.5亿C.10亿D.20亿 [单选]心室颤动时,首次直流电除颤用()A.100JB.150JC.200JD.300JE.360J或以上 [问答题,简答题]为什么不能用清水冲洗电器设备及开关? [单选]将充有nmLNO和mmLNO2气体的试管倒立于盛水的水槽中,然后通入nmLO2。m>n,则充分反应后,试管中气体在同温同压下的体积为()。A.(m-n)/3mLB.(n-m)/3mLC.(4m-1)/13mLD.3/(m-n)mL

人教版初三数学下册 中考复习 二次函数

人教版初三数学下册 中考复习 二次函数

中考复习之二次函数二次函数的一般式为y=ax2+bx+c(a≠0)a控制开口方向a>0,开口向上;a<0,开口向下。

|a|越大,开口越小;|a|越小,开口越大b控制顶点坐标顶点坐标公式24 (,) 24b ac ba a--顶点坐标的横坐标决定对称轴,顶点坐标的纵坐标决定最值对称轴在y轴左边,a、b同号;对称轴在y轴右边,a、b异号,对称轴刚好是y轴,b=0。

口诀:左同右异c控制二次函数与y轴的交点二次函数与y轴一定有一个交点,这个交点坐标为(0,c)当c>0,二次函数与y轴交于正半轴当c<0,二次函数与y轴交于负半轴当c=0,二次函数经过原点(0,0)二次函数x轴的交点由Δ控制Δ>0,二次函数与x轴有2个交点Δ=0,二次函数与x轴有1个交点Δ_____,二次函数与x轴有交点Δ<0,二次函数与x轴无交点求函数与x 轴的交点=>令y=0求函数与y 轴的交点=>令x=01、抛物线y =x 2﹣4x+4的顶点坐标为( )A .(﹣4,4)B .(﹣2,0)C .(2,0)D .(﹣4,0)2、抛物线y =x 2+x ﹣1的对称轴是( )A .直线x =﹣1B .直线x =1C .直线x =﹣D .直线x =3、抛物线y =x 2+1的对称轴是( )A .直线x =﹣1B .直线x =1C .直线x =0D .直线y =14、抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)5、把抛物线y =﹣x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A .y =﹣(x ﹣1)2+3B .y =﹣(x+1)2+3C .y =﹣(x+1)2﹣3D .y =﹣(x ﹣1)2﹣36、函数y =kx 2﹣4x+2的图象与x 轴有公共点,则k 的取值范围是( )A .k <2B .k <2 且 k ≠0C .k ≤2D .k ≤2 且 k ≠07、二次函数y =kx 2﹣2x ﹣3的图象和x 轴有交点,则k 的取值范围是( )A .k >31- B .k >31-且k ≠0 C .k ≥31- D .k ≥31-且k ≠0例1、二次函数y=ax2+bx+c的图象如图所示,对称轴为x=1,给出下列结论:①abc<0 ②b2>4ac ③4a+2b+c<0 ④2a+b=0其中正确的结论有()A.4个B.3个C.2个D.1个例2、如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0②b﹣a>c ③4a+2b+c>0 ④3a>﹣c ⑤a+b>m(am+b)(实数m≠1)。

(完整版)中考数学一轮复习-二次函数的图像和性质(含答案),推荐文档

(完整版)中考数学一轮复习-二次函数的图像和性质(含答案),推荐文档
1、二次函数y=kx2+bx+c(a≠0)的同象是一条,其定点坐标为对称轴式
2、在抛物y=kx2+bx+c(a≠0)中:
①、当a>0时,y口向,当x< 时,y随x的增大而,当x时,y随x的增大而增大,
②、当a<0时,开口向当x< 时,y随x增大而增大,当x时,y随x增大而减小
注意2:注意几个特殊形式的抛物线的特点
a:开口方向向上则a0,向下则a0;|a|越大,开口越
b:对称轴位置,与a联系一起,用判断b=0时,对称轴是
c:与y轴的交点:交点在y轴正半轴上,则c0负半轴上则c0,当c=0时,抛物点过点
【名师提醒:在抛物线y= ax2+bx+c中,当x=1时,y=当x=-1时y=,经常根据对应的函数值判考a+b+c和a-b+c的符号】
综上,正确的结论有②④.
故选C
点评:此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).
③由两函数图象可知,抛物线y1=a(x+2)2-3过原点,当x=0时,y2= (0-3)2+1= ,故y2-y1= ,故本小题错误;
④∵物线y1=a(x+2)2-3与y2= (x-3)2+1交于点A(1,3),
∴y1的对称轴为x=-2,y2的对称轴为x=3,
∴B(-5,3),C(5,3)

2022年最新中考数学知识点梳理 考点11 二次函数(教师版)

2022年最新中考数学知识点梳理 考点11 二次函数(教师版)

2022年最新中考数学知识点梳理考点总结+真题演练涵盖近年来的中考真题和中考模拟考点11 二次函数考点总结一、二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).(2)顶点式:y=a(x–h)2+k(a,h,k为常数,a≠0),顶点坐标是(h,k).(3)交点式:y=a(x–x1)(x–x2),其中x1,x2是二次函数与x轴的交点的横坐标,a≠0.三、二次函数的图象及性质1.二次函数的图象与性质开口向上开口向下2.二次函数图象的特征与a,b,c的关系四、抛物线的平移1.将抛物线解析式化成顶点式y=a(x–h) 2+k,顶点坐标为(h,k).2.保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.五、二次函数与一元二次方程的关系1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0)2.ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.3.(1)b2–4ac>0⇔方程有两个不相等的实数根,抛物线与x轴有两个交点;(2)b2–4ac=0⇔方程有两个相等的实数根,抛物线与x轴有且只有一个交点;(3)b2–4ac<0⇔方程没有实数根,抛物线与x轴没有交点.六、二次函数的综合1、函数存在性问题:解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;然后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.2、函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.真题演练一.选择题(共10小题)1.(2021•河北模拟)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣3(m≠0)与x轴交于点A,B.若线段AB上有且只有7个点的横坐标为整数,则m的取值范围是()A.m>0 B.316<m≤13C.m>316D.316<m<13【分析】先判断出x=4时,y≤0,当x=5时,y>0,解不等式,即可得出结论.【解答】解:∵抛物线y=mx2﹣2mx+m﹣3=m(x﹣1)2﹣3,∴顶点(1,﹣3),抛物线的对称轴为直线为x=﹣1,∵抛物线与x轴交于点A,B.∴抛物线开口向上,∵线段AB上有且只有7个点的横坐标为整数,∴这些整数为﹣2,﹣1,0,1,2,3,4,∵m>0,∴当x=4时,y=16m﹣8m+m﹣3≤0,∴m≤1 3,当x=5时,y=25m﹣10m+m﹣3>0,∴m>3 16,∴316<m≤13,故选:B.2.(2021•开平区一模)如图,已知抛物线y=ax(x+t)(a≠0)经过点A(﹣3,﹣3),t≠0,当抛物线的开口向上时,t的取值范围是()A.t>3 B.t>﹣3 C.t>3或t<﹣3 D.t<﹣3【分析】将A(﹣3,﹣3)代入y=ax(x+t),求得a=1t−3,根据抛物线开口向上,a>0,即可得出关于t的不等式,解不等式即可求解.【解答】解:将A(﹣3,﹣3)代入y=ax(x+t)得,﹣3=a(9﹣3t),∴a=1 t−3∵抛物线开口向上,∴a>0,∴1t−3>0,∴t﹣3>0,∴t>3.故选:A.3.(2021•河北模拟)对于题目,“线段y=−34x+94(−1≤x≤3)与抛物线y=ax2﹣2a2x(a≠0)有唯一公共点,确定a的取值范围”.甲的结果是a≤−32,乙的结果是a>32,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】分类讨论a>0,a<0两种情况,通过数形结合方法,列不等式求解.【解答】解:如图,点A坐标为(﹣1,3),点B坐标为(3,0),①a>0时,抛物线开口向上,经过定点(0,0),抛物线与直线x=﹣1交点坐标为C(﹣1,a+2a2),与直线x=3交点坐标为(3,9a﹣6a2),当点C在点A下方,点D在点B上方时满足题意,即{a+2a2<39a−6a2≥0 a>0,解得0<a<1,当点C 在点A 上方,点D 在点B 下方时也满足题意, {a +2a 2>39a −6a 2<0a >0, 解得a >32,②a <0时,抛物线开口向下,经过定点(0,0), 当点C 与点A 重合或在A 上方时满足题意, 即{a +2a 2≥3a <0, 解得a ≤−32.综上所述,0<a <1或a >32或a ≤−32. 故选:D .4.(2021•清苑区模拟)对于二次函数y =4(x +1)(x ﹣3)下列说法正确的是( )A.图象开口向下B.与x轴交点坐标是(1,0)和(﹣3,0)C.x<0时,y随x的增大而减小D.图象的对称轴是直线x=﹣1【分析】根据题目中的函数解析式,利用二次函数的性质可以判断各个选项是否正确.【解答】解:y=4(x+1)(x﹣3)=4(x﹣1)2﹣16,A、a=4>0,则该抛物线的开口向上,故选项A不符合题意,B、与x轴的交点坐标是(﹣1,0)、(3,0),故选项B不符合题意,C、当x<0时,y随x的增大而减小,故选项C符合题意,D、图象的对称轴是直线x=1,故选项D不符合题意,故选:C.5.(2021•衡水模拟)若二次函数y=ax2+2ax(a≠0)过P(1,4),则这个函数必过点()A.(﹣3,4)B.(﹣1,4)C.(0,3)D.(2,4)【分析】根据二次函数的对称性即可判断.【解答】解:∵二次函数的图象过点P(1,4),对称轴为直线x=﹣1,∴点P关于对称轴的对称点为(﹣3,4),∵点P关于对称轴的对称点必在这个函数的图象上,∴这个函数图象必过点(﹣3,4),故选:A.6.(2021•石家庄一模)在平面直角坐标系中,已知点A(4,2),B(4,4),抛物线L:y=﹣(x﹣t)2+t(t≥0),当L与线段AB有公共点时,t的取值范围是()A.3≤t≤4 B.5≤t≤6C.3≤t≤4,t=6 D.3≤t≤4或5≤t≤6【分析】把A、B的坐标分别代入抛物线解析式得到关于t的方程,解方程求得t的值,即可得到符合题意的t的取值范围.【解答】解:把A(4,2)代入y=﹣(x﹣t)2+t(t≥0)得2=﹣(4﹣t)2+t,解得t=3或t=6;把B(4,4)代入y=﹣(x﹣t)2+t(t≥0)得4=﹣(4﹣t)2+t,解得t=4或t=5;∴当L与线段AB有公共点时,t的取值范围是3≤t≤4或5≤t≤6,故选:D.7.(2021•邢台模拟)对于题目:“已知A(0,2),B(3,2),抛物线y=mx2﹣3(m﹣1)x+2m ﹣1(m≠0)与线段AB(包含端点A、B)只有一个公共点,求m的取值范围”.甲的结果是﹣3<m<0,乙的结果是0<m<32,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】根据题意和二次函数的性质,可以得到关于m的不等式组,从而可以求得m的取值范围,本题得以解决.【解答】解:当x=0时,y=2m﹣1,当x=3时,y=9m﹣9(m﹣1)+2m﹣1=2m+8,∵y=mx2﹣3(m﹣1)x+2m﹣1=m(x2﹣3x+2)+3x﹣1=m(x﹣2)(x﹣1)+3x﹣1,∴该函数和恒过点(2,5)、(1,2),当(1,2)为抛物线顶点时,该抛物线与线段AB一个交点,此时−−3(m−1)2m=1,得m=3;当抛物线过点A(0,2),则2m﹣1=2,此时m=32>0,抛物线开口向上,又∵抛物线恒过点(1,2),∴抛物线与线段AB一个交点时,2m﹣1<2,得m<3 2,∴0<m<3 2;当抛物线过点B(3,2)时,2m+8=2,得m=﹣3<0,此时抛物线开口向下,又∵抛物线恒过点(1,2),∴抛物线与线段AB一个交点时,2m+8>2,得m>﹣3,∴﹣3<m<0;由上可得,0<m<32或﹣3<m<0或m=3,故选:D.8.(2021•柳南区校级模拟)如图,现要在抛物线y=x(6﹣x)上找点P(a,b);针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=15,则点P的个数为0;乙:若b=9,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【分析】把点P的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断甲、乙、丙的判断对与错.【解答】解:∵点P(a,b),当b=15时,则15=a(6﹣a),整理得a2﹣6a+15=0,∵Δ=36﹣4×15<0,∴点P的个数为0;当b=9时,则9=a(6﹣a),整理得a2﹣6a+9=0,∵Δ=36﹣4×9=0,∴a有两个相同的值,∴点P的个数为1;当b=3时,则3=a(6﹣a),整理得a2﹣6a+3=0,∵Δ=36﹣4×3>0,∴有两个不相等的值,∴点P 的个数为2; 故甲、乙对,丙错, 故选:C .9.(2021•商河县一模)在平面直角坐标系xOy 中,抛物线y =mx 2﹣2mx +m ﹣3与x 轴交于点A 、B .下列结论正确的有( )个.①m 的取值范围是m >0;②抛物线的顶点坐标为(1,﹣3);③若线段AB 上有且只有5个点的横坐标为整数,则m 的取值范围是13<m ≤34;④若抛物线在﹣3<x <0这一段位于x 轴下方,在5<x <6这一段位于x 轴上方,则m 的值为316.A .1B .2C .3D .4【分析】根据抛物线与x 轴有两个交点,得出Δ>0,即可判断①;用配方法将抛物线解析式配成顶点式,即可判断②;先判断出x =3时,y ≤0,当x =4时,y >0,解不等式,即可判断③;先判断出抛物线在﹣4<x <﹣3这一段位于x 轴上方,结合抛物线在﹣3<x <0这一段位于x 轴下方,得出当x =﹣3时,y =0,即可得出判断④.【解答】解:①∵抛物线y =mx 2﹣2mx +m ﹣3与x 轴交于点A 、B , ∴Δ=(﹣2m )2﹣4m (m ﹣3)>0, ∴m >0,故①正确;②∵y =mx 2﹣2mx +m ﹣3=m (x 2﹣2x +1)﹣3=m (x ﹣1)2﹣3, ∴抛物线的顶点坐标为(1,﹣3),故②正确;③由②知,抛物线的对称轴为直线为x =1, ∵线段AB 上有且只有5个点的横坐标为整数, ∴这些整数为﹣1,0,1,2,3, ∵m >0,∴当x =3时,y =9m ﹣6m +m ﹣3≤0, ∴m ≤34,当x =4时,y =16m ﹣8m +m ﹣3>0,∴m >13,∴13<m ≤34,故③正确;④∵抛物线的对称轴为直线为x =1,且m >0,抛物线在5<x <6这一段位于x 轴上方, ∴由抛物线的对称性得,抛物线在﹣4<x <﹣3这一段位于x 轴上方, ∵抛物线在﹣3<x <0这一段位于x 轴下方, ∴当x =﹣3时,y =9m +6m +m ﹣3=0, ∴m =316,故④正确, 故选:D .10.(2021•河北模拟)对二次函数y =12x 2+2x +3的性质描述正确的是( ) A .该函数图象的对称轴在y 轴左侧 B .当x <0时,y 随x 的增大而减小 C .函数图象开口朝下D .该函数图象与y 轴的交点位于y 轴负半轴 【分析】根据二次函数图象与系数的关系判断.【解答】解:A 、y =12x 2+2x +3对称轴为x =﹣2,在y 轴左侧,故A 符合题意;B 、因y =12x 2+2x +3对称轴为x =﹣2,x <﹣2时y 随x 的增大而减小,故B 不符合题意; C 、a =12>0,开口向上,故C 不符合题意;D 、x =0是y =3,即与y 轴交点为(0,3)在y 轴正半轴,故D 不符合题意;故选:A .二.填空题(共5小题)11.(2021•河北模拟)在平面直角坐标系中,已知A (﹣1,m )和B (5,m )是抛物线y =x 2+bx +1上的两点,b = ﹣4 ;m = 6 ;将抛物线y =x 2+bx +1向上平移n (n 是正整数)个单位,使平移后的图象与x 轴没有交点,则n 的最小值为 4 .【分析】根据抛物线的对称性得到抛物线的对称轴为直线x =2,则−b2×1=2,解得b =﹣4,再把(﹣1,m )代入y =x 2﹣4x +1中求出m 的值;利用二次函数图象平移的规律得到抛物线向上平移n 个单位后的解析式为y =x 2﹣4x +1+n ,根据判别式的意义得到△=(﹣4)2﹣4(1+n)<0,然后解不等式后可确定n的最小值.【解答】解:∵A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,∴点A和点B为抛物线上的对称点,∴抛物线的对称轴为直线x=2,即−b2×1=2,解得b=﹣4,∴抛物线解析式为y=x2﹣4x+1,把(﹣1,m)代入得m=1+4+1=6;抛物线向上平移n个单位后的解析式为y=x2﹣4x+1+n,∵抛物线y=x2﹣4x+1+n与x轴没有交点,∴△=(﹣4)2﹣4(1+n)<0,解得n>3,∵n是正整数,∴n的最小值为4.故答案为﹣4,6;4.12.(2021•永德县模拟)抛物线y=x2+bx+c经过点A(0,3),B(2,3),抛物线的对称轴为直线x=1 .【分析】先根据抛物线上两点的纵坐标相等可知此两点关于对称轴对称,再根据中点坐标公式求出这两点横坐标的中点坐标即可.【解答】解:∵抛物线y=x2+bx+c经过点A(0,3)和B(2,3),∴此两点关于抛物线的对称轴对称,∴x=0+22=1.故答案为:直线x=1.13.(2020•秦皇岛一模)如图,将抛物线y=12x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q.(1)点P的坐标为(−3,−92 );(2)图中阴影部分的面积为272.【分析】(1)抛物线C 1与抛物线y =13x 2的二次项系数相同,利用待定系数法即可求得函数的解析式,进而即可求得顶点P 的坐标;(2)图中阴影部分的面积与△POQ 的面积相同,利用三角形面积公式即可求解. 【解答】解:(1)∵把抛物线y =12x 2平移得到抛物线m ,且抛物线m 经过点A (﹣6,0)和原点O (0,0),∴抛物线m 的解析式为y =12(x ﹣0)(x +6)=12x 2+3x =12(x +3)2−92. ∴P (−3,−92). 故答案是:(−3,−92);(2)把x =﹣3代入=12x 2得y =92, ∴Q (﹣3,92),∵图中阴影部分的面积与△POQ 的面积相同,S △POQ =12×9×3=272. ∴阴影部分的面积为272.故答案为:272.14.(2021•桥西区模拟)在平面直角坐标系中,函数y =x 2﹣4x 的图象为C 1,C 1关于原点对称的函数图象为C 2.①则C 2对应的函数表达式为 y =﹣x 2﹣4x ,②直线y =a (a 为常数)分别与C 1、C 2围成的两个封闭区域内(不含边界)的整点(横、纵坐标都是整数的点)个数之比为4:15时,a 的取值范围 ﹣2<a <﹣1 .【分析】(1)根据关于原点对称的关系,可得C2;(2)根据图象可得答案.【解答】解:(1)函数y=x2﹣4x的图象为C1,C1关于原点对称的图象为C2,C2图象是y =﹣x2﹣4x;故答案为y=﹣x2﹣4x;(2)由图象可知,直线y=a(a为常数)分别与C1、C2围成的两个封闭区域内(不含边界)的整点(横、纵坐标都是整数的点)个数之比为4:15时,a的取值范围﹣2<a<﹣1.故答案为﹣2<a<﹣1.15.(2021•石家庄模拟)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐很小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P 与加工煎炸时间t (单位:min )近似满足的函数关系为:p =at 2+bt +c (a ≠0,a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到P 与t 的解析式为 P =﹣0.2t 2+1.5t ﹣1.9 ;并得到加工煎炸臭豆腐的最佳时间为 3.75分钟 .【分析】将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p =at 2+bt +c 中,可得函数关系式为:p =﹣0.2t 2+1.5t ﹣1.9,再根据加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标,求出即可得结论.【解答】解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系P =at 2+bt +c 中,{9a +3b +c =0.816a +4b +c =0.925a +5b +c =0.6, 解得{a =−0.2b =1.5c =−1.9,所以函数关系式为:P =﹣0.2t 2+1.5t ﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t =−b 2a=−1.52×(−0.2)=3.75,则当t =3.75分钟时,可以得到最佳时间. 故答案为:P =﹣0.2t 2+1.5t ﹣1.9,3.75分钟. 三.解答题(共3小题)16.(2021•路北区一模)如图,抛物线L :y =﹣(x ﹣t )2+t +2,直线l :x =2t 与抛物线、x 轴分别相交于Q 、P 两点.(1)t =1时,Q 点的坐标为 (2,2) ;(2)当P、Q两点重合时,求t的值;(3)当Q点达到最高时,求抛物线解析式;(4)在抛物线L与x轴所围成的封闭图形的边界上,我们把横坐标是整数的点称为“可点”,直接写出1≤t≤2时“可点”的个数.【分析】(1)把t=1代入x=2t即可求出直线l的解析式,把x=2,t=1代入抛物线L的解析式得y=2,即可求出Q点的坐标;(2)由P、Q两点重合,可知直线与抛物线交于x轴,即交点的纵坐标为0,代入抛物线解析式,即可求得t的值;(3)由题意可知,直线与抛物线交于抛物线顶点,即可得到关于t的方程,求解方程得出t的值,代入y=﹣(x﹣t)2+t+2,即可得出抛物线解析式;(4)根据“可点”的定义,分t=1,t=2,1<t<2三种情况讨论,即可得出“可点”的个数.【解答】解:(1)当t=1时,x=2,∴直线l的解析式为:x=2,把x=2,t=1代入抛物线L的解析式得:y=﹣(2﹣1)2+1+2=2,∴Q点的坐标为(2,2),故答案为:(2,2);(2)∵P、Q两点重合,∴直线与抛物线交于x轴,∴交点为(2t,0),∴﹣(2t﹣t)2+t+2=0,解得:t=2或t=﹣1;(3)∵抛物线L:y=﹣(x﹣t)2+t+2,∴抛物线顶点坐标为(t,t+2),当Q点达到最高时,则直线与抛物线交于顶点,∴2t=t,解得:t=0,∴抛物线解析式为:y=﹣x2+2;(4)∵1≤t≤2时,∴分三种情况讨论,当t=1时,抛物线解析式为:y=﹣(x﹣1)2+3,令y=0,则﹣(x﹣1)2+3=0,解得:x=1±√3,∴“可点”在x轴上有3个,抛物线上有3个,共有6个,当t=2时,抛物线解析式为:y=﹣(x﹣2)2+4,令y=0,则﹣(x﹣2)2+4=0,解得:x=0或4,∴“可点”在x轴上有5个,抛物线上有3个,共有8个,当1<t<2时,抛物线与x轴的交点在1−√3和4之间,当L过(3,0)时,“可点”在x轴上有4个,抛物线上有3个,共有7个,综上所述,“可点”的个数为6或7或8.17.(2021•开平区一模)如图,一位运动员进行投篮训练,设篮球运行过程中的距离地面的高度为y,篮球水平运动的距离为x,已知y﹣3.5与x2成正比例,(1)当x=√5时,y=2.5,根据已知条件,求y与x的函数解析式;(2)直接写出篮球在空中运行的最大高度.(3)若运动员的身高为1.8米,篮球投出后在离运动员水平距离2.5米处到达最高点,球框在与运动员水平距离4米处,且球框中心到地面的距离为3.05米,问计算说明此次投篮是否成功?【分析】(1)设y﹣3.5=kx2,用待定系数法求函数解析式即可;(2)由(1)解析式求函数最大值即可;(3)根据题意球框距离篮球最高点的水平距离是1.5米,把x=1.5代入(1)中解析式得出y3.05米即可.【解答】解:(1)由题意可设y﹣3.5=kx2,∵当x=√5时,y=2.5,∴2.5﹣3.5=k×(√5)2,解得:k=−1 5,∴y与x的函数解析式为y=−15x2+3.5;(2)∵y=−15x2+3.5,∴篮球在空中运行的最大高度为3.5米;(3)此次投篮成功,理由:把x=4﹣2.5=1.5代入y=−15x2+3.5得:y=−15×1.52+3.5=3.05,∴(1.5,3.05)在抛物线y=−15x2+3.5上,∴此次投篮成功.18.(2021•海港区模拟)已知抛物线y=ax2﹣2ax+a2﹣2a(a≠0)与y轴交于点A,顶点为B.(1)若抛物线过点(1,4),求抛物线解析式.(2)设点A的纵坐标为y A,用含a的代数式表示y A,求出y A的最小值.(3)若a>0,随着a增大A点上升而B点下降,求a的取值范围.【分析】(1)把(1,4)代入抛物线解析式求解.(2)用含a代数式表示表示y A,并将解析式化为顶点式求解.(3)分别用含a代数式表示y A,y B,并将其化为顶点式求解.【解答】解:(1)把(1,4)代入y=ax2﹣2ax+a2﹣2a得4=a﹣2a+a2﹣2a,解得a1=﹣1,a2=4.∴抛物线解析式为y=﹣x2+2x+3或y=4x2﹣8x+8.(2)把x=0代入y=ax2﹣2ax+a2﹣2a,即y A=a2−2a=(a﹣1)2﹣1,∴y A的最小值为﹣1.(3)∵y=ax2﹣2ax+a2﹣2a=a(x﹣1)2+a2﹣3a,∴y A=a2−2a=(a﹣1)2﹣1,y B=a2−3a=(a−32)2−94,∴当a>1时,随着a增大A点上升;当a<1.5时,随着a增大B点下降.∴当1<a<1.5时,随着a增大A点上升而B点下降.。

中考数学复习专题二次函数知识点归纳

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳一、二次函数概念1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:oo结论:a 的绝对值越大,抛物线的开口越小。

总结:2. 2y ax c =+的性质:结论:上加下减。

a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.总结:3. ()2y a x h =-的性质:结论:左加右减。

总结:4. ()2y a x h k =-+的性质:总结: a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0c ,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。

【2014中考复习方案】(人教版)中考数学复习权威课件 :13 二次函数的图象及其性质(一)

【2014中考复习方案】(人教版)中考数学复习权威课件 :13 二次函数的图象及其性质(一)
若已知二次函数图象与x轴的两个交点的坐标为(x1,0), (x2,0),设所求二次函数为y=a(x-x1)(x-x2),将第三点 交点式 (m,n)的坐标(其中m,n为已知数)或其他已知条件代入, 求出待定系数a,最后将解析式化为一般形式
考点聚焦 归类探究 回归教材
第13课时┃二次函数的图象及 其性质(一)
考点聚焦 归类探究 回归教材
a≠0, a≠0, 2 (-1)+c=0,解得b=-2a, ∴a·(-1) +b· a·32+b· c=-3a. 3+c=0,
考点聚焦 归类探究 回归教材
第13课时┃二次函数的图象及 其性质(一)
∴抛物线的解析式为 y=ax2-2ax-3a=a(x2-2x-3)=a(x-1)2 -4a(a≠0), ∴所求抛物线的对称轴为直线 x=1. 方法二:∵抛物线 y=ax2+bx+c 与 x 轴的交点坐标是(-1,0), (3,0), ∴抛物线的方程可设为 y=a(x+1)(x-3)(a≠0), 即 y=a(x2-2x-3)=a(x-1)2-4a(a≠0), ∴抛物线的对称轴为直线 x=1. 方法三: ∵抛物线是关于对称轴对称的, 且其对称轴 x=h 与 x 轴垂直, ∴对称轴必过点(-1,0),(3,0)的中点, -1+3 则 h-(-1)=3-h,得 h= =1. 2 即抛物线的对称轴为直线 x=1.
第13课时
二次函数的图象及 其性质(一)
第13课时┃二次函数的图象及 其性质(一)
考 点 聚 焦
考点1 二次函数的概念 定义:一般地,如果______________(a,b,c是常数, y=ax2+bx+c a≠0),那么y叫做x的二次函数. 考点2
图象
二次函数的图象及画法
二次函数y=ax2+bx+c(a≠0)的图象是以___________

中考数学复习二次函数的图像与性质1[人教版]

中考数学复习二次函数的图像与性质1[人教版]

wud116uip
(1)求抛物线 的解析式.
A
-1 O F
B3
C(2,3)
E
x
5、已知如图抛物线经过A、B、 C三点,顶点为D,且与x轴的 另一个交点为E. y D (2) ⊿AOB 与 3 C(2,3) B ⊿BDE是否相 G 似,如果相似 请予证明; E 如果不相似 A -1 x O F 请说明理由。
摩臣 摩臣
的图像如图所示,那么下列判 断中不正确的有( ) y A、aFra bibliotekc > 0
B、b2-4ac>0
C、2a+b>0 D、4a-2b+c<0
-1
O 1
x
3、已知二次函数y = 平移这个函数的图像才能使它 经过(0,0),(1,6)两点? 注意:抛物线的平行移动问题 一般应抓住“顶点”这个关键 点。
2 -2x 怎样
4、已知点A(-1,-1)在抛物线 2 2 y=(k -1)x -2(k-2)x+1上 (1)求抛物线的对称轴。
(2)若点B与点A关于抛物线的对 称轴对称,问是否存在与抛物 线只交于一点B的直线?若存在, 求符合条件的直线,若不存在, 说明理由。
5、已知如图抛物线经过A、B、 C三点,顶点为D,且与x轴的 另一个交点为E. y D
第二十四讲
二次函数的图 像与性质(一)
1.根据下列条件,求二次函数的 解析式: ⑴已知抛物线的顶点坐标为 (-1,-2),且通过点(1,10). ⑵ 已知抛物线经过 (2,0),(0,-2), (-2,3)三点. ⑶已知抛物线与x轴交点的横 坐标为-2和1,且通过点(2,8).
2 2、已知二次函数y=ax +bx+c

二次函数的图象与性质-中考数学知识点归纳总结(人教版)

二次函数的图象与性质-中考数学知识点归纳总结(人教版)
例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7.
开口
向上
向下
对称轴
x=
顶点坐标
增减性
当x> 时,y随x的增大而增大;当x< 时,y随x的增大而减小.
当x> 时,y随x的增大而减小;当x< 时,y随x的增大而增大.
最值
x= ,y最小= .
x= ,y最大= .
3.系数a、b、c
a
决定抛物线的开口方向及开口大小
(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.
若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.
知识点二:二次函数的图象与性质
3.二次函数的图象和性质
图象
(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.
失分点警示
(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
知识点四:二次函数与一元二次方程以及不等式
5.二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
a、b
决定对称轴(x=-b/2a)的位置

中考数学复习二次函数知识点

中考数学复习二次函数知识点

中考数学复习二次函数知识点二次函数是数学中的重要概念,它在高中数学以及各类数学竞赛中都有广泛的应用。

了解和掌握二次函数的知识点对于中考数学复习非常重要。

以下是关于二次函数的知识点的详细介绍:一、二次函数的定义和基本形式二次函数是指形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c是实数且a ≠ 0。

其中,a 称为二次函数的二次项系数,b 称为一次项系数,c 称为常数项。

二次函数的图像是一个拱形,开口的方向由二次项系数a的正负决定,当a>0时,图像开口朝上;当a<0时,图像开口朝下。

二、二次函数的顶点二次函数的顶点是图像的最高点或最低点,它的横坐标为x=-b/2a,纵坐标为y=f(-b/2a)。

顶点是对称轴x=-b/2a上的一个点,它将图像分为两部分。

三、二次函数的轴对称性二次函数的图像关于对称轴x=-b/2a对称,即对称轴左侧和右侧的部分是相同的。

四、二次函数的平移与伸缩在二次函数的基本形式上,通过变换可以得到平移和伸缩后的二次函数。

(1) 平移:将二次函数的图像沿着 x 轴或 y 轴平移。

在标准的二次函数 f(x) = ax^2 + bx + c 上平移 h 个单位,得到 f(x-h) = a(x-h)^2 + b(x-h) + c。

(2) 伸缩:将二次函数的图像横向或纵向拉长或缩短。

在标准的二次函数 f(x) = ax^2 + bx + c 上横向伸缩为 y = a(x-h)^2 + k。

五、二次函数的解析式二次函数的解析式是对二次函数 y = ax^2 + bx + c 进行化简得到的表达式。

(1) 一般形式:y = ax^2 + bx + c(2)顶点式:y=a(x-h)^2+k,其中(h,k)是函数的顶点坐标。

(3)因式分解式:y=a(x-x1)(x-x2),其中x1和x2是函数的零点或根。

(4)标准式:y=a(x-p)(x-q),其中p和q是函数的零点或根。

中考数学复习 二次函数的图象与性质 复习课 课件

中考数学复习 二次函数的图象与性质 复习课 课件
二次函数
二次函数的图象与性质
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图象和性质 用函数观点看方程与不等式
应用
1. 二次函数的定义
一般地,形如 y=ax2+bx+c(其中a,b,c为 常数,且a≠0)的函数, 叫做二次函数. 其中x是自 变量, a,b,c 分别是函数解析式的二次项系数、 一次项系数和常数项.
最大值为4ac b. 2 4a
【温馨提示】判断函数图象增减性时,可在旁边画出大致图象,数形结合更直观.
2. 二次函数的图象和性质
(4)根据函数图象判断相关结论
图象(示意图)
结论

a_____0
b__>___0
c<0 b2-4ac > 0
a_<____0
b=0 c>0
b2-4ac_>____0
a>0
B E
D
二次函数的对称性
例3.如图,在平面直角坐标系网格中,点Q,R,S,T 都在格点上,过点
P(1,2)的抛物线y=ax2+2ax+c(a<0)可能还经过( D )
A. 点Q
B. 点R
C. 点S
D. 点T
分析:由y=ax2+2ax+c得到对称轴为
P'
x b 2a 1 2a 2a
b_<____0
c_>____0
b2-4ac > 0
a<0
b_<____0
c<0
b2-4ac_=____0
2. 二次函数的图象和性质
图象(示意图) _________
_________
y=ax2+bx

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第13课时 二次函数的图象及其性质一

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第13课时 二次函数的图象及其性质一

回归教材
第13课时┃ 二次函数的图象及其性质(一)
解:(1)y=x2-4x+3=x2-4x+4-1 =(x-2)2-1, ∴其图象的顶点 C 的坐标为(2,-1), ∴当 x≤2 时,y 随 x 的增大而减小;当 x>2 时,y 随 x 的 增大而增大. (2)令 y=0,则 x2-4x+3=0,解得 x1=1,x2=3. ∴当点 A 在点 B 左侧时,A(1,0),B(3,0); 当点 A 在点 B 右侧时,A(3,0),B(1,0).
考点聚焦
归类探究
回归教材
第13课时┃ 二次函数的图象及其性质(一)
探究二
二次函数解析式的求法
命题角度: 1.一般式,顶点式,交点式; 2.用待定系数法求二次函数的解析式.
考点聚焦
归类探究
回归教材
第13课时┃ 二次函数的图象及其性质(一)
例 2 [2014· 宁波] 如图 13-1,已知二次函数 y=ax2+b x+c 的图象过 A(2,0),B(0,-1)和 C(4,5)三点. (1)求二次函数的解析式; (2)设二次函数的图象与 x 轴的另一个交点为 D,求点 D 的坐 标; (3)在同一平面直角坐标系中画出直线 y=x+1,并写出当 x 在什么范围内时,一次函数的值大于二次函数的值.
第13课时
二次函数的图象及其性质 (一 )
第13课时┃ 二次函数的图象及其性质(一)
考 点 聚 焦
考点1 二次函数的概念
定义:一般地,形如______________( a,B,c是常数, y=ax2+bx+c a≠0)的函数,叫做二次函数.
考点聚焦
归类探究
回归教材
第13课时┃ 二次函数的图象及其性质(一)
归类探究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高பைடு நூலகம்在线观看 https:///
[多选]规划体制涉及的方面可以有()。A.规划体系B.规划性质C.规划内容D.编制程序E.工作方案 [单选]18世纪一位英国学者针对圈地运动前后的变化指出:“过去小土地所有者和小租地农民,靠自己耕种土地的产品和公有土地上放养的羊、家禽、猪等维持自己和家庭的生活,几乎不必向市场购买,如果土地落到少数人租地农场主手中,他们就必须为别人劳动才能维持生活,而且不得不到市场 自己所需要的一切。”上述材料说明圈地运动()A.使资本主义经济深入农村,为工业革命打下基础B.使非农产业被高效的农业种植业取代,为工业革命准备了原材料C.使农民利益受到损害,是英国社会动乱的根源D.使农村劳动力移向城市,迅速推动了英国的城市化 [单选]男,68岁,胸闷,咳痰,咯血2月余,胸部CT如图,最可能的诊断为()A.右上肺不张B.右肺中央型肺癌C.右上肺炎D.右上肺肉瘤E.肺炎性假瘤 [问答题,简答题]什么是土壤耕作?主要内容有哪些? [单选]对于专利侵权而言,侵权行为人承担的主要责任是()A.行政责任B.民事责任C.刑事责任D.民事责任和刑事责任 [单选]债权与债务同归于一人而使合同关系终止的法律事实是()。A.免除B.抵销C.混同D.提存 [单选]下列几项中,属对因治疗功效的是()。A.止痛B.止咳C.止血D.止汗E.泻下 [单选]平性药的含义是()。A.寒、热之性不甚明显的药物B.作用比较缓和的药物C.升浮、沉降作用趋向不明显的药物D.性味甘淡的药物E.寒热之性均具备的药物 [单选,A1型题]关于散剂叙述不正确的是()A.散剂应为干燥、疏松的粉末B.液体药物不能制成散剂C.眼用散应为极细粉,并要求无菌D.单味化学毒剧药应制成倍散E.儿科及外用散应为最细粉 [单选,A2型题,A1/A2型题]血中还原血红蛋白超过多少时皮肤黏膜可出现发绀()A.50g/LB.55g/LC.60g/LD.65g/LE.70g/L
相关文档
最新文档