2020年高考数学全真模拟卷(原卷版)5

合集下载

2020高考数学模拟试卷含答案

2020高考数学模拟试卷含答案

2020⾼考数学模拟试卷含答案2020⾼考虽然延迟,但是练习⼀定要跟上,加油,少年!第1卷(选择题共60分)⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分 1.若全集U=R,集合M ={}24x x >,N =301x xx ?-?>??+??,则()U M N I e=( )A.{2}x x <-B. {23}x x x <-≥或C. {3}x x ≥D.{23}x x -≤<2.若21tan(),tan(),544παββ+=-=则tan()4πα+=()A.1318B.318C.322D.13223.条件p :“直线l 在y 轴上的截距是在x 轴上的截距的两倍” ;条件q :“直线l 的斜率为-2” ,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.⾮充分也⾮必要4.如果212nx x ??-的展开式中只有第4项的⼆项式系数最⼤,那么展开式中的所有项的系数和是()A.0B.256C.64D.1645.12,e e u r u u r 为基底向量,已知向量121212,2,3AB e ke CB e e CD e e =-=+=-u u u r u r u u r u u u r u r u u r u u u r u r u u r,若A,B,D 三点共线,则k 的值为() A.2 B.-3 C.-2 D.36.⼀个单位有职⼯160⼈,其中有业务员120⼈,管理⼈员24⼈,后勤服务⼈员16⼈.为了了解职⼯的⾝体健康状况,要从中抽取⼀定容量的样本.现⽤分层抽样的⽅法得到业务⼈员的⼈数为15⼈,那么这个样本容量为() A.19 B.20 C.21 D.227.直线1y kx =+与曲线3y x ax b =++相切于点A (1,3),则b 的值为()A.3B.-3C.5D.-58.在⼀个45o 的⼆⾯⾓的⼀平⾯内有⼀条直线与⼆⾯⾓的棱成45o ⾓,则此直线与⼆⾯⾓的另⼀个⾯所成的⾓为() A.30oB.45oC.60oD.90o9.只⽤1,2,3三个数字组成⼀个四位数,规定这三个数必须同时使⽤,且同⼀数字不能相邻出现,这样的四位数有()t A.6个 B.9个 C.18个 D.36个10.若椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,线段12F F 被22y bx =的焦点分成53?的两段,则此椭圆的离⼼率为()A.1617B. 17C. 45D. 511.对任意两实数,a b ,定义运算“*”如下:()(),,a a b a b b a b ≤??*=?>??,则函数122()log (32)log f x x x =-*的值域为()xA.(,0]-∞B.22log ,03C.22log ,3??+∞D.R 12.⼀种专门占据内存的计算机病毒,开机时占据内存2KB ,然后每3分钟⾃⾝复制⼀次,复制后所占据内存是原来的2倍,那么开机后,该病毒占据64MB (1MB =102KB )内存需经过的时间为() A.15分钟 B.30分钟 C.45分钟 D.60分钟第II 卷(⾮选择题共90分)⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分. 13.若指数函数()()x f x a x R =∈的部分对应值如下表:则不等式1()0f x -<的解集为 . 14.数列{}n a 满⾜11200613,,,1nn na a a n N a a *++==∈-则= .15.已知实数x,y 满⾜约束条件1020()1x ay x y aR x ì--+澄í??£,⽬标函数3z x y =+只有当1x y ì=??í=时取得最⼤值,则a 的取值范围是 . 16.请阅读下列命题:①直线1y kx =+与椭圆22124x y +=总有两个交点;②函数3()2sin(3)4f x x p=-的图象可由函数()2sin 3f x x =按向量(,0)4a p=-r 平移得到;③函数2()2f x x ax b =-+⼀定是偶函数;④抛物线2(0)x ay a =?的焦点坐标是1(,0)4a.回答以上四个命题中,真命题是_______________(写出所有真命题的编号).三、解答题(共6⼩题,17—21题每题12分,第22题14分,共74分)17.已知向量,cos ),(cos ,cos ),a x x b x x c ===v v v(I )若//a c v v,求sin cos x x ×的值;(II) 若0,3x p18.在⼀次历史与地理两门功课的联合考试中,备有6道历史题,4道地理题,共10道题⽬可供选择,要求学⽣从中任意选取5道作答,答对4道或5道即为良好成绩.(I )设对每道题⽬的选取是随机的,求所选的5道题中⾄少选取2道地理题的概率;(II) 若学⽣甲随机选定了5道题⽬,且答对任意⼀道题的概率均为0.6,求甲没有取得良好成绩的概率(精确到⼩数点后两位).19.已知:如图,直三棱柱111ABC A B C -中,AC BC ^,D 为AB 的中点,1AC BC BB ==(I )求证:11BC AB ^; (II) 求证:1//BC 平⾯1CA D ;(III )求异⾯直线1DC 与1AB 所成⾓的余弦值.20.设12,x x 是函数322()(0)32a b f x x x a x a =+->的两个极值点,且122x x +=.(I )求证:01a(II) 求证:9b £.21.已知数列{}n a 的前n 项和为n S ,且n S =22(1,2,3)n a n L -=,数列{}n b 中,11b =,点1(,)n n P b b +在直线20x y -+=上.(I )求数列{}{},n n a b 的通项n a 和n b ;(II) 记1122n n n S a b a b a b =+++…,求满⾜167n S <的最⼤正整数n .22.⼀条斜率为1的直线l 与离⼼率为的双曲线E:22221(0,0)x y a b a b -=>>交于 ,P Q 两点,直线l 与y 轴交于R ,且3,4OP OQPQ RQ ?-=u u u r u u u r u u u r u u u r,求直线l 与双曲线E的⽅程.⾼三联考数学(⽂科)参考答案⼀、选择题:(每⼩题5分,共60分)⼆、填空题:(每⼩题4分,共16分)13.(0,1); 14.-2; 15.a>0; 16.①④. 14.提⽰:归纳法得到{}n a 是周期为4的数列,200622a a ==- 15.提⽰:直线10x ay --=过定点(1,0),画出区域201x y x +≥??≤?后,让直线10x ay --=绕(1,0)旋转得到不等式所表⽰的平⾯区域,平移直线30x y +=观察图象可知,必须满⾜直线10x ay --=的斜率10a>才符号题意.故a 的范围是0.a > t三、解答题:17.解:(I ),,tan 23a c x x x ==r rQ L L ∥分222sin cos tan 2sin cos 6sin cos 1tan 5x x x x x x x x ∴===++L L 分(II)21(cos cos 2(1cos 2)2f x a b x x x x x ?=+=++r r )=1sin(2)926x π=++L L 分50,2,3666x x ππππ<≤<+≤Q 则x13sin(2)1,1(262x f x π∴≤+≤≤≤于是:),故函数(f x )的值域为31122??L L ,分18.解: (I )法⼀:所选的5道题中⾄少有2道地理题的概率为5041646455101011031116424242C C C C P C C -L L =-=--=分法⼆:所选的5道题中⾄少有2道地理题的概率为3223146464645551010101020131642424242C C C C C C P C C C =++=++=L L 分(II)甲答对4道题的概率为:44150.60.40.25928P C =??L L =;分甲答对5道题的概率为:550150.60.40.0777610P C =??L L =分故甲没有获得良好成绩的概率为:121()1(0.25920.07776)P P P =-+=-+ 0.6612≈L 分19.⽅法⼀:(I )证明:111,,.AC BC AC CC AC CC B B ⊥⊥⊥则平⾯四边形11CC B B 为正⽅形,连1B C ,则11C B B C ⊥由三垂线定理,得114BC AB ⊥L L 分(II )证明:连11.AC CA E DE 交于,连在△1AC B 中,由中位线定理得1DE BC ∥. ⼜11111,.8DE CA D BC CA D BC CA D ??∴L L 平⾯平⾯,∥平⾯分(III )解:取1111,.,BB F DF C F DF AB C DF ∠的中点连和则∥或它的补⾓为所求. 令1 2.,AC BC BB ===111在直⾓△FB C 中可求出C F=5在直⾓△1AB B 中可求出221123, 3.2(2) 6.AB DF DC ==+=则=在△1DFC 中,由余弦定理,得12cos 12236C DF ∠==??L L 分⽅法⼆:如图建⽴坐标系.设12,AC BC BB ===则(I )证:11(0,2,2),(2,2,2),BC AB =--=--u u u u r u u u r11110440..4BC AB BC AB ?=-+=∴⊥u u u u r u u u rL L 分(II )证:取1AC 的中点E ,连DE.E(1,0,1),则(0,1,1),ED =u u u r 1(0,2,2).BC =--u u u u r有112..ED BC ED BC =-u u u r u u u u r1⼜与不共线,则DF ∥AB⼜11111,,.8DE CA D BC CA D BC CA D ??L L 平⾯平⾯则∥平⾯分(III )()11,(1,1,2)AB DC =---u u u r u u u u r=-2,2,-2 112242cos ,12444114DC AB -+∴=++?++u u u u r u u u rL L 分<>=20.(I )证明:22(),1f x ax bx a '=+-L L 分32212,((0)32a bx x f x x x a x a +->Q 是函数)=的两个极值点,221212120,2bx x ax bx a x x x x a a∴+-=?=-L L ,是的两个根,于是+=-分212121220,0,424b a x x a x x x x a a>∴=-<∴+=-=+=Q L L ⼜分 2223244,440,016b a b a a a a+=∴=-≥∴<≤L L 即:分 111(2,0,2),(0,2,2),(0,0,2),(2,0,0),(0,2,0),(0,0,0),(1,1,2),2A B C A B C D L L L L 分(II )证明:设232()44,()8124(23)7g a a a g a a a a a '=-=-=-L L 则分220()0,()0933a g a g a '<<>∴L L 当时,在(,)上是增函数;分21()0,(),1113a g a g a ??'<≤<∴L L 2当时,在上是减函数;分3max 216()(),12327g a g b ∴==∴≤L L L 分21.解(1)*11122,22,2,)n n n n n n n S a S a S S a n n N ---=-=-≥∈Q ⼜-=,({}*1122,0,2,(2,),nn n n n n n a a a a a n n N a a --∴=-≠∴=≥∈Q 即数列是等⽐数列. 11111,22,223n n a S a a a a =∴=-∴=Q L L 即=,分11,)20n n n n P b b b b ++∴-Q 点(在直线x-y+2=0上,+={}112,1216n n n n b b b b b n +∴-=∴=-L L 即数列是等差数列,⼜=,分(II )231122123252(21)2,n n n n S a b a b a b n +++=?+?+?++-L L =23121232(23)2(21)2n n n S n n +∴=?+?++-+-L因此:23112222222)(21)2n n n S n +-=--L +(+++即:341112(222(21)2n n n S n ++-=?++++--L 1(23)2610n n S n +∴=-+L L 分111516167,23)26167,(23)21614(23)2(24321605(23)2(2532448167412n n n n n n S n n n n n n S n ++++<-+<-<=-=?=-=?""故满⾜条件的最⼤正整数为分22.解:由222222231(),2,12b x y b a a a a=+=-=L 2=e 得双曲线的⽅程设为①2L 分设直线l 的⽅程为y x m =+,代⼊①,得:2222()2x x m a -+=,即:2222(2)0x mx m a --+=221,1221212(),(,),2,25P x y Q x y x x m x x m a +=?=--L L 设则分222222212121212()()()222()6y y x m x m x x m x x m m a m m m a =++=+++=--++=-L 分2222121234,430OP OQ x x y y m a a m ∴?=+=-∴--=u u u r u u u rL -=②7L 分4,30PQ RQ R PQ R m =∴u u u r u u u r u u u rQ 点分所成的⽐为,点的坐标为(,),则:12121233()391344y y x m x m x x m m +++++===++L L 分 1212123,2,3,10x x x x m x m x m ∴=-+===-L L 代⼊得分代⼊2222222122,32,,12x x m a m m a m a =--=--∴=L L 得-分代⼊②得21,1a m ==±从⽽221,1142y l y x x ∴=±-=L L 直线的⽅程为双曲线的⽅程为分。

2020精品高考数学全真模拟试卷含详细答案

2020精品高考数学全真模拟试卷含详细答案

2020高考虽然延迟,但是练习一定要跟上,加油,孩子们!第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B), 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B), 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()(1)k k n k n n P k C P P -=-.一、选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中,有且只有一项是符合题目要求的.1.设集合{}{}P Q ==3454567,,,,,,,定义P ※Q ={}Q b P a b a ∈∈,|),(,则P※Q中元素的个数为( )A .3B .4C .7D .122.下列判断错误的是 ( )A .命题“若q 则p ”与命题“若p 则q ”互为逆否命题B .“am 2<bm 2”是“a<b ”的充要条件C .“矩形的两条对角线相等”的否命题为假D .命题“}2,1{4}2,1{∈⊂或φ”为真(其中φ为空集)3.若复数312a i i++(i 是虚数单位)是纯虚数,则实数a 的值为 ( ) A .-2 B .4 C .-6 D .6 4.已知映射B A f →:,其中A=B=R,对应法则x x y f 2:2+-=,对于实数B k ∈,在集合A中不存在原象,则k的取值范围是( )A .1>kB .1≥kC .1<kD . 1≤k 5.某工厂六年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂六年来这种产品的可用图像表示的是 ( )A .B . C. D . 6.已知函数f (x ) =3 - 2|x |,g (x ) = x 2- 2x ,构造函数F (x ),定义如下:当f (x )≥g (x )时,F (x ) = g (x );当f (x )<g (x )时,F (x ) =f (x ),那么F (x ) ( )A .有最大值3,最小值-1B .有最大值3,无最小值C .有最大值7-27 ,无最小值D .无最大值,也无最小值7.记二项式(1+2x )n 展开式的各项系数和为a n ,其二项式系数和为b n ,则lim n nn n nb a b a →∞-+等于 ( )A .1B .-1C .0D .不存在8.已知数列{}n x 满足212x x =,)(2121--+=n n n x x x ,Λ,4,3=n .若2lim n n x →∞=,则=1x ()A .23B .3C .4D .59.设函数)(x f y =满足1)()1(+=+x f x f ,则方程x x f =)(根的个数可能是( )A .无穷个B .没有或者有限个C .有限个D .没有或者无穷多10.将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为( ) A .561B .701 C .3361 D .4201 11.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a ,b 的值分别为 ( )A .0,27,78B .0,27,83C .2.7,78D .2.7,8312.已知函数)(()(x f x f x y ''=其中的图象如右图所示))(的导函数是函数x f ,下面四个图象中)(x f y =的图象大致是( )第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上)13.右图是某保险公司提供的资料,在1万元以上的保险单中,有218少于2.5万元,那么不少于2.5万元的保险单有 万元.14.已知项数为8的等比数列的中间两项是方程22740x x ++=的两根,则数列的各项积是 .15.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%,一旦失败,一年后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望 是__________(元).16.已知n 次式项式n n n n n a x a x a x a x P ++++=--1110)(Λ. 如果在一种算法中,计算),,4,3,2(0n k x k Λ=的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P 10(x 0)的值共需要 次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=x P k (x )+a k +1投资成功 投资失败 192次8次2000元 以下46%不少于1万元21% 保险单数目(总数700万元)5000~9999元19%2000~4999元14%(k=0,1,2,…,n-1).利用该算法,计算P3(x0)的值共需要6次运算,计算P10(x0)的值共需要次运算.三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(Ⅰ)求ξ的分布及数学期望;(Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率.18.(本小题满分12分)设数列{a n}和{b n}满足a1=b1=6, a2=b2=4, a3=b3=3, 且数列{a n+1-a n }(n∈N*)是等差数列,数列{b n-2}(n∈N*)是等比数列.(Ⅰ)求数列{a n}和{b n}的通项公式;1)?若存在,求出k;若不存(Ⅱ)是否存在k∈N*,使a k-b k∈(0,2在,说明理由.19.(本小题满分12分)某企业有一条价值a 万元的生产流水线,要提高该生产流水线的生产能力,提高产品的增加值,就要对流水线进行技术改造.假设增加值y 万元与技改投入x 万元之间的关系满足: ①y与2()a x x -成正比例;②当2ax =时,32a y =;③0≤2()xa x -≤t .其中t 为常数且t ∈(0,2].(Ⅰ) 设()y f x =,求出()f x 的表达式,并求其定义域; (Ⅱ) 求出增加值y 的最大值,并求出此时的x 的值.20.(本小题满分12分)已知函数1ln(1)()(0).x f x x x++=> (Ⅰ)函数)(x f 在区间(0,+∞)上是增函数还是减函数?证明你的结论; (Ⅱ)若当0>x 时,1)(+>x kx f 恒成立,求正整数k 的最大值.21.(本小题满分12分)设函数y =f ( x )定义在R 上, 对任意实数m , n 恒有f ( m +n )=f ( m )·f ( n ),且当x >0时, 0<f ( x )<1. (Ⅰ)求证: f (0 )=1; (Ⅱ)求证: 当x <0时, f ( x )>1;(Ⅲ) 求证: f ( x )在R 上是减函数;(Ⅳ) A ={ (x , y ) | f ( x 2 )·f ( y 2 )>f (1) } , B ={( x, y ) | f ( ax -y +2 )=1, a ∈R},若A ∩B =∅, 求a 的取值范围.22.(本小题满分14分)已知数列:,}{且满足的各项都是正数n a0111,(4),.2n n n a a a a n N +==-∈ (Ⅰ)证明;,21N n a a n n ∈<<+ (Ⅱ)求数列}{n a 的通项公式a n .数学科试题(理科)详细答案选择题一、填空题13.91万元14.1615.4760n n+次,2n次.16.(3)2详细参考答案一、选择题1.解: ∵P※Q={},,∴P※Q的元素(,)∈∈(,)|a b a P b Qa b有3⨯4=12个,故选D.2.解:用淘汰法验证可知“am 2<bm 2”是“a<b ”的充分不必要条件,注意m=0的特殊情况,选B .3.解法一:设312a iki i+=+,则()3122a i ki i k ki +=+=-+,得:3k =,26a k =-=-,选C .解法二:非零向量1z ,2z 满足12z z 是纯虚数的意即,这两个非零向量互相垂直. 根据题意得:1320a ⨯+⨯=,从而6a =-,选C .说明:复数四则运算,复数a bi +为实数、纯虚数的充要条件,复数的模作为复数内容的重点.4.解:可以判定对应法则x x y f 2:2+-=是从A 到C 的函数(C B ⊆,且C 是该函数的值域),于是对于实数B k ∈,在集合A 中不存在原象,则k 的取值范围构成集合B C ð,注意到()222111y x x x =-+=--+≤,故(],1C =-∞,()1,B C =+∞ð.从而答案为A .5.解:前三年年产量的增长速度越来越快,总产量C 与时间t (年)的函数关系,在图上反映出来,当[]0,3t ∈时是选项A 、C 中的形状;又后三年年产量保持不变,总产量C 与时间t (年)的函数关系应如选项A 所示,于是选A. 说明:本题很容易错选C ,这是由于没有看清题中函数关系是总产量...C 与的时间t (年),而不是年产量C 与的时间t (年)的函数关系.6.解:选C . 利用图象法求之.其中F(x)= 232(232(22(22x x x x x x x ⎧+≤⎪⎪-≥+⎨⎪-<<⎪⎩.7.解:由题意得()123n n n a =+=,2n n b = ,于是lim n nn n n b a b a →∞-+21233lim lim 123213nn nn n n n n →∞→∞⎛⎫- ⎪-⎝⎭===-+⎛⎫+ ⎪⎝⎭,因此,选B8.解法一:特殊值法,当31=x 时,3263,1633,815,49,2365432=====x x x x x 由此可推测2lim n n x →∞=,故选B .解法二:∵)(2121--+=n n n x x x ,∴)(21211-----=-n n n n x x x x ,21211-=-----n n n n x x x x 即,∴{}n n x x -+1是以(12x x -)为首项,以21-为公比6的等比数列, 令n n n x x b -=+1,则11111211)21()21(2)21)((x x x x q b b n n n n n -=-⋅-=--==--- +-+-+=)()(23121x x x x x x n …)(1--+n n x x+-+-+-+=121211)21()21()2(x x x x …11)21(x n --+3)21(32)21(1)21(12111111x x x x n n ---+=--⎥⎦⎤⎢⎣⎡---+=∴1111221()23233lim lim n n n n x x x x -→∞→∞⎡⎤=+-==⎢⎥⎣⎦,∴31=x ,故选B.解法三:∵)(2121--+=n n n x x x ,∴0221=----n n n x x x , ∴其特征方程为0122=--a a , 解得 211-=a ,12=a ,nn n a c a c x 2211+=,∵11x x =,212x x =,∴3211x c -=,3212xc =,∴3)21(3232)21(3211111xx x x x n n n --+=+-⋅-=,以下同解法二.9.解:当x x f =)(时,满足条件,此时方程x x f =)(根有无数个,故B 、C 错 当1)(+=x x f 时,也满足条件,此时方程x x f =)(没有根,故A 错选D .10.本题主要考查平均分组问题及概率问题.解:将1,2,3,---,9平均分成三组的数目为33396333280C C C A =,又每组的三个数成等差数列的种数为4,选B .说明:这是一道概率题,属于等可能事件,在求的过程中,先求出不加条件限制的所有可能性a ,然后再根据条件,求出满足题目要求的可能种数b ,最后要求的概率就是b a.11.本题涉及数理统计的若干知识.解:由图象可知,前4组的公比为3,最大频率40.130.10.27a =⨯⨯=,设后六组公差为d ,则560.010.030.090.27612d ⨯+++⨯+=,解得:0.05d =-, 后四组公差为-0.05, 所以,视力在4.6到5.0之间的学生数为(0.27+0.22+0.17+0.12)×100=78(人),选A .说明:本题是一道数理统计图象题,关于统计一般可分为三步,第一步抽样,第二步根据抽样所得结果,画成图形,第三步根据图形,分析结论.本题是统计的第二步,在此类问题中,可画成两种图形,一个是频率分布直方图,另一个是频率分布条形图,两者有很大的不同,前者是以面积表示频数,频率分布条形图是以高度表示频数.12.本题考查导函数的图象及其性质,由图象得(1)(1)0f f ''=-=,从而导出1x =±是函数f(x)极值点是解本题的关健.解:由图象知,(1)(1)0f f ''=-=,所以1x =±是函数()f x 的极值点,又因为在(1,0)-上,()0f x '<,在(0,1)上,()0f x '<,因此在(1,1)-上,()f x 单调递减,故选C . 说明:要注意,若00(,)p x y 是函数y=f(x)的极值点,则有()0f x '=,但是若0()0f x '=,则是00(,)p x y 不一定是函数y=f(x)极值点,所以要判断一个点是否为极值点,还要检验点P 的两侧的单调性是否不同.二、填空题13.解:不少于1万元的占700万元的21%,为700×21%=147万元.1万元以上的保单中,超过或等于2.5万元的保单占2113, 金额为2113×147=91万元,故不少于2.5万元的保险单有91万元.14. 解:由等比数列性质知254637281====a a a a a a a a ,故各项的积是16.15.解:投资成功的概率是192200,失败的概率是8200,所以所求的数学期望应该是:()19285000012%50%512964504760200200⎛⎫⨯⨯-⨯=⨯⨯-⨯=⎪⎝⎭故答案为:4760.16.解:由题意知道0k x 的值需要1k -次运算,即进行1k -次0x 的乘法运算可得到0k x 的结果,对于32300010203()P x a x a x a x a =+++这里300a x =0000a x x x ⨯⨯⨯进行了3次运算,210100a x a x x =⨯⨯进行了2次运算,20a x 进行1次运算,最后320010203,,,a x a x a x a 之间的加法运算进行了3次这样30()P x 总共进行了3213+++9=次运算对于0()n P x 10010...n n n a x a x a -=+++总共进行了(1)12 (12)n nn n n ++-+-++=次 乘法运算及n 次加法运算所总共进行了(1)(3)22n n n n n +++=次 由改进算法可知:0010()()n n n P x x P x a -=+,100201()()n n n P x x P x a ---=+...10001()()P x P x a =+,000()P x a =,运算次数从后往前算和为:22...22n +++=次说明:本题目属于信息题,做此类题需要认真分析题目本身所给的信息.三、解答题17.解:(I )分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点”为事件A 1,A 2,A 3. 由已知A 1,A 2,A 3相互独立,P (A 1)=0.4,P (A 2)=0.5, P (A 3)=0.6.客人游览的景点数的可能取值为0,1,2,3. 相应地,客人没有游览的景点数的可能取 值为3,2,1,0,所以ξ的可能取值为1,3.P (ξ=3)=P (A 1·A 2·A 3)+ P (321A A A ⋅⋅)= P (A 1)P (A 2)P (A 3)+P ()()()321A P A P A ) =2×0.4×0.5×0.6=0.24,P (ξ=1)=1-所以ξE ξ(Ⅱ)解法一 因为,491)23()(22ξξ-+-=x x f所以函数),23[13)(2+∞+-=ξξ在区间x x x f 上单调递增, 要使),2[)(+∞在x f 上单调递增,当且仅当.34,223≤≤ξξ即 从而.76.0)1()34()(===≤=ξξP P A P ………………12分 解法二:ξ的可能取值为1,3.当ξ=1时,函数),2[13)(2+∞+-=在区间x x x f 上单调递增, 当ξ=3时,函数),2[19)(2+∞+-=在区间x x x f 上不单调递增.0 所以.76.0)1()(===ξP A P ………………12分18.解:(I )由已知a 2-a 1=-2, a 3-a 2=-1, -1-(-2)=1 ∴a n+1-a n =(a 2-a 1)+(n -1)·1=n -3n ≥2时,a n =( a n -a n -1)+( a n -1-a n -2)+…+( a 3-a 2)+( a 2-a 1)+ a 1 =(n -4)+(n -5) +…+(-1)+(-2)+6=21872+-n n ,对n=1也合适.∴a n =21872+-n n (n ∈N*) ……………………3分又b 1-2=4、b 2-2=2 .而2142= ∴b n -2=(b 1-2)·(21)n -1即b n =2+8·(21)n …6分∴数列{a n }、{b n }的通项公式分别为:a n =21872+-n n , b n =2+(21)n -3(II )设k k k k k k k b a k f )21(887)27(21)21(872721)(22⋅-+-=⋅-+-=-=当k ≥4时87)27(212+-k 为k 的增函数,-8·(21)k 也为k 的增函数,而f (4)= 21∴当k ≥4时a k -b k ≥21………………10分又f(1)=f(2)=f(3)=0, ∴不存在k ,使f(k)∈(0,21)…………12分19.解:(Ⅰ)设2()()y f x k a x x ==-,∵当2ax =时,32a y =,∴()()23222a aak a =-∴4k =.从而有24()y a x x =-. …………3分 ∵0≤2()xa x -≤t ,得0≤x ≤212ta t+. ∴2()4()f x a x x =-(0≤x ≤212ta t+). …………6分 (Ⅱ)∵23()44f x ax x =-,∴2()8124(23)f x ax x x a x '=-=-.令()0f x '=,得x =0,23x a =. (1)当212at t +≥23a ,即当1≤t ≤2时, 若()20,3ax ∈,()f x '>0,由于()f x 在20,3a ⎡⎤⎢⎥⎣⎦上连续,∴()f x 在20,3a⎡⎤⎢⎥⎣⎦上为增函数;若()22,321a atx t ∈+,()f x '<0,()f x 在22,321a at t ⎡⎤⎢⎥⎣⎦+上为减函数. ∴对于1≤t ≤2的情况,当23a x =时,f (x )的最大值为()3216327af a =.……9分(2)当212att<+23a ,即当0≤t ≤1时,仿(1)得()f x 在20,21at t ⎡⎤⎢⎥⎣⎦+上是增函数, ∴对于0≤t ≤1的情况,当221at x t =+时,f (x )的最大值是()2216(1)221(12)a t t atf t t -=++.…………11分综上可知:当1≤t ≤2时,增加值y 的最大值是31627a ,此时技改投入为23ax =. 当0≤t ≤1时,增加值y的最大值是2216(1)(12)a t tt -+,此时技改投入为221atx t =+. …………12分说明:本题属经济类应用题,是近年高考的热点与重点,主要考查函数、导数的知识及运用这些知识解决问题的能力.20.解:(Ⅰ)22111()[1ln(1)][ln(1)]11x f x x x x x x x '=--+=-++++ 210,0,0.ln(1)0.()01x x x f x x '>∴>>+>∴<+Q .因此函数)(x f 在区间(0,+∞)上是减函数. ……6分(Ⅱ)解法一:当0>x 时,1)(+>x kx f 恒成立,令1=x 有]2ln 1[2+<k 又k 为正整数. k ∴的最大值不大于3. ……8分下面证明当3,()(0)1kk f x x x ∴=>>+时恒成立. 即证当0>x 时,021)1ln()1(>-+++x x x 恒成立. 令,1)1ln()(,21)1ln()1()(-+='-+++=x x g x x x x g 则 当.0)(,10;0)(,1<'-<<>'->x g e x x g e x 时当时)(,1x g e x 时当-=∴取得最小值.03)1(>-=-e e g0>∴x 当时,021)1ln()1(>-+++x x x 恒成立,因此正整数k 的最大值为3.……12分(Ⅱ)解法二:当0>x 时,1)(+>x k x f 恒成立, 即0)]1ln(1)[1()(>>+++=x k xx x x h 对恒成立. 即)0)((>x x h 的最小值大于.k)0()1ln(1)(,)1ln(1)(2>⋅+--=+--='x x x x x x x x h φ记 ),0()(,01)(+∞∴>+='在x x xx φφ上连续递增,又,02ln 22)3(,03ln 1)2(>-=<-=φφ0)(=∴x φ存在唯一实根a ,且满足:(2,3),1ln(1).a a a ∈=++由,()0,()0;0,()0,()0x a x h x x a x h x φφ''>>><<<<时时知:)0)((>x x h 的最小值为).4,3(1)]1ln(1)[1()(∈+=+++=a aa a a h因此正整数k的最大值为3. ……12分说明:本题体现出在研究函数的单调性等性质时,用初等方法往往技巧性要求较高(有时甚至不能求解),而导数方法显得简捷方便.因此,在研究函数性质时,要优先考虑使用求导的方法.21.解: (Ⅰ)令0n ,1m ==0]1)0(f )[1(f )0(f )1(f )1(f =-⇒⋅=⇒0x >Θ时, ,1)x (f 0<<1)0(f ,0)1(f =∴≠∴…………………2分 (Ⅱ) 0x <时, 0x >-, 1)x (f 0<-<∴又1)0(f =, ,1)x (f )x (f 1)x x (f =-⋅⇒=-∴)x (f 1)x (f =-∴ 1)x (f 10<<∴, 1)x (f >∴. …………………4分(Ⅲ)设21x x <, )x (f )x (f )x x (f )x (f )x x x (f )x (f )x (f 2221222121--=-+-=-]1)x x (f )[x (f 212--= …………………6分,x x 21< Θ1)x x (f 21>-∴又0x ,0x >< 均有0)x (f >, 01)x f(x ,0)x (f 212>-->∴0)x (f )x (f 21>-∴ …………………7分)x (f 在R 上为单调减函数. …………………8分(Ⅳ) )1(f )y x (f )1(f )y (f )x (f 2222>⇒>⋅Θ …………………9分Θ)x (f 在R 上为单调减函数, 1y x 22<+∴ …………………10分又02y ax )0(f )2y ax (f 1)2y ax (f =+-⇒=+-⇒=+-Θ∅=⋂B A , ⎩⎨⎧>+-<+∴02y ax 1y x 22无解(即无交点).圆心到直线的距离大于等于1, 有: 3a 311a 2d 2≤≤-⇒≥+=,]3,3[a -∈∴ …………………12分22.本题考查数列的基础知识,考查运算能力和推理能力.第(1)问是证明递推关系,联想到用数学归纳法,第(2)问是计算题,也必须通过递推关系进行分析求解.解:(Ⅰ)方法一 用数学归纳法证明: 1°当n=1时,,23)4(21,10010=-==a a a a ∴210<<a a ,命题正确. 2°假设n =k 时有.21<<-k k a a则)4(21)4(21,1111k k k k k k a a a a a a k n ---=-+=--+时).4)((21))((21)(211111k k k k k k k k k k a a a a a a a a a a ---=+---=-----而.0,04.0111<-∴>--<----k k k k k k a a a a a a又.2])2(4[21)4(2121<--=-=+k k k k a a a a ∴1+=k n 时命题正确.由1°、2°知,对一切n ∈N 时有.21<<+n n a a ……6分 方法二:用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a ∴2010<<<a a ;2°假设n =k 时有21<<-k k a a 成立,令)4(21)(x x x f -=,)(x f 在[0,2]上单调递增,所以由假设 有:),2()()(1f a f a f k k <<-即),24(221)4(21)4(2111-⨯⨯<-<---k k k k a a a a也即当n=k+1时 21<<+k k a a 成立,所以对一切2,1<<∈+k k a a N n 有 ……6分(Ⅱ)下面来求数列的通项:],4)2([21)4(2121+--=-=+n n n n a a a a所以21)2()2(2--=-+n n a ann n n n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-=ΛΛ则令,又b n =-1,所以1212)21(22,)21(---=+=-=nnn n n b a b 即. ……14分说明:数列是高考考纲中明文规定必考内容之一,必须理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.数列与不等式的给合往往得高考数学的热点之一,也成为诸多省份的最后压轴大题,解决此类问题,必须有过硬的数学基础知识与过人的数学技巧,同时运用数学归纳法也是比较好的选择,不过在使用数学归纳法的过程中,一定要遵循数学归纳法的步骤.。

2023年海南省高考数学全真模拟卷(五)+答案解析(附后)

2023年海南省高考数学全真模拟卷(五)+答案解析(附后)

2023年海南省高考数学全真模拟卷(五)1. 若复数为纯虚数,则实数a的值为( )A. 2B. 2或C.D.2. 已知集合,,若,则实数m的取值范围为( )A. B. C. D.3. 已知,则( )A. B. C. 2 D. 44. 已知直线与圆C:交于A,B两点,且线段AB关于圆心对称,则( )A. 1B. 2C. 4D. 55. 家庭农场是指以农户家庭成员为主要劳动力的新型农业经营主体,某家庭农场从2019年开始逐年加大投入,加大投入后每年比前一年增加相同额度的收益,已知2019年的收益为30万元,2021年的收益为50万元,照此规律,从2019年至2026年该家庭农场的总收益为( )A. 630万元B. 350万元C. 420万元D. 520万元6. 若函数,则的图象大致为( )A. B.C. D.7. 如图,点P是棱长为2的正方体表面上的一个动点,直线AP与平面ABCD所成的角为,则点P的轨迹长度为( )A.B.C.D.8. 设,,,则a,b,c的大小关系是( )A. B. C. D.9. 某网友随机选取了某自媒体平台10位自媒体人,得到其粉丝数据单位:万人:,,,,,,,,,若该平台自媒体人的粉丝数其中和分别为上述样本的平均数和标准差,根据上述数据,则下列说法正确的是( )附:若随机变量X服从正态分布,则,,A. 这10位自媒体人粉丝数据的平均数为B. 这10位自媒体人粉丝数据的标准差为C. 这10位自媒体人粉丝数据的第25百分位数为D. 用样本估计总体,该平台自媒体人的粉丝数不超过万的概率约为10. 已知抛物线C的方程为,F为焦点,O为坐标原点,S表示面积,直线l:与抛物线交于A,B两点,且A在第一象限,则下列说法正确的是( )A. B. C. D.11. 若函数的图象如图,且,,则下列说法正确的是( )A. 函数的周期为5B. 函数的对称轴为,C. 函数在内没有单调性D. 若将的图象向左平移个单位长度,得到的函数图像关于y轴对称,则的最小值为112. 如图所示,在边长为3的等边三角形ABC中,,且点P在以AD的中点O为圆心,OA为半径的半圆上,若,则( )A.B.C. 存在最大值D. 的最大值为13. 已知向量,,定义,,则______ .14. 已知6名同学国庆假期相约去珠海野狸岛游玩,途中6名同学排成一排照相留念,若甲、乙、丙3人互不相邻,则不同的排法共有______ 种.15. 在平面内,设一动点P到点,的距离差的绝对值等于,若动点P的轨迹是曲线C,则曲线C的离心率的最小值为______ .16. 已知母线AD的长为的圆锥,其侧面积为,P是该圆锥内切球球面上一动点,则的最大值为______ .17. 已知等差数列中,,,数列的前n项和为,满足求数列,的通项公式;记,求数列的前20项的和18. 在圆内接四边形ABCD中,已知,,,为锐角.求及AD的长;求四边形ABCD周长的最大值.19. 某商场对M、N两类商品实行线上销售以下称“A渠道”和线下销售以下称“B 渠道”两种销售模式类商品成本价为元/件总量中有将按照原价200元/件的价格走B渠道销售,有将按照原价折的价格走A渠道销售;N类商品成本价为160元/件,总量中有将按照原价300元/件的价格走B渠道销售,有将按照原价折的价格走A渠道销售,这两种商品剩余部分促销时按照原价6折的价格销售,并能全部售完.通过计算比较这两类商品中哪类商品单件收益的均值更高收益=售价-成本;某商场举行让利大甩卖活动,全场M,N两类商品走A渠道销售,假设每位线上购买M,N商品的顾客只选其中一类购买,每位顾客限购1件,且购买商品的顾客中购买M类商品的概率为已知该商场当天这两类商品共售出5件,设X为该商场当天所售N类商品的件数,Y为当天销售这两类商品带来的总收益,求Y的期望,以及当时,n可取的最大值.20. 如图所示的多面体由正四棱柱与正四棱锥组合而成,与交于点,,,证明:平面平面;求平面PAD与平面夹角的余弦值.21. 已知椭圆C:的离心率为,且过点求椭圆C的标准方程;设Q为椭圆C上一动点,且Q不与顶点重合,M为椭圆C的右顶点,N为椭圆C的上顶点,直线QM与y轴交于点E,直线QN与x轴交于点F,求的值.22. 已知函数,求的单调区间;若,证明:;对于任意正整数n,,求t的最小正整数值.答案和解析1.【答案】C【解析】解:复数为纯虚数,则,解得故选:根据纯虚数的定义,得到方程组,求解即可.本题考查纯虚数的定义,属于基础题.2.【答案】B【解析】解:集合,,若,则,,解得,则实数m的取值范围为故选:由,得,从而,由此能求出实数m的取值范围.本题考查集合的运算,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3.【答案】A【解析】解:因为,所以故选:由已知利用同角三角函数基本关系式,二倍角的正弦公式化简所求即可求解.本题考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.4.【答案】D【解析】解:由圆C:,可得圆心,线段AB关于圆心对称,直线过圆心,,解得故选:由题意可得直线过圆心,即可求解.本题考查直线与圆的位置关系,属基础题.5.【答案】D【解析】解:根据题意,加大投入后每年比前一年增加了相同额度的收益,故每年增加的收益为万元从2019年至2026年每年的收益分别为30、40、50、60、70、80、90、100万元,总收益万元故选:根据题中条件先算出每年增加的收益,然后计算出从2019年至2026年每年的收益,最后算出总收益即可.本题考查函数模型的应用,属于中档题.6.【答案】B【解析】解:函数,定义域为R,,即为奇函数,图像关于原点对称,排除AC,当时,,,可得,排除故选:判断函数的奇偶性和对称性,利用函数符号,结合排除法进行判断即可.本题主要考查函数图象的识别和判断,利用函数的奇偶性和对称性,以及函数符号关系是解决本题的关键,是基础题.7.【答案】A【解析】解:若直线AP与平面ABCD所成的角为,则点P的轨迹为圆锥的侧面与正方体的表面的交轨,在平面内,点P的轨迹为对角线除掉A点,不影响;在平面内,点P的轨迹为对角线除掉A点,不影响;在平面内是以点为圆心2为半径的圆弧,如图,故点P的轨迹长度为故选:由题意易得点P的轨迹为圆锥的侧面与正方体的表面的交轨,进而求解即可.本题考查轨迹的长度的计算,属中档题.8.【答案】C【解析】解:因为,,,所以令,则,,,,令得,所以在上,单调递增,在上,单调递减,因为,所以,所以,故选:,,,令,则,,,求导分析单调性,即可得出答案.本题考查导数的综合应用,解题中需要理清思路,属于中档题.9.【答案】AD【解析】解:计算平均数为,选项A正确;计算方差为,所以标准差为,选项B错误;因为,所以这组数据的第25百分位数是第3个数据,为,选项C 错误;因为,且,所以,选项D 正确.故选:根据题意计算平均数和方差、标准差以及百分位数和正态分布,再判断即可.本题主要考查了平均数与方差、标准差和百分位数和正态分布的应用问题,是基础题.10.【答案】AC【解析】解:抛物线C 的方程为,为焦点,O 为坐标原点,S 表示面积,直线l :与抛物线交于A ,B 两点,可得,解得,,所以,所以A 正确;,所以B 不正确;C 正确;所以D 不正确.故选:联立直线与抛物线方程,求解A ,B 坐标,然后求解判断选项的正误即可.本题考查直线与抛物线的位置关系的应用,抛物线的简单性质的应用,是中档题.11.【答案】BD【解析】解:根据函数的图象,且,,可得,即,再根据五点法作图,可得,,可得函数的的周期为,故A 错误;令,,求得,,故函数的对称轴为,,故B正确;当,,函数单调递增,故C错误;若将的图象向左平移个单位长度,得到的函数的图像关于y轴对称,则的最小值为1,故D正确,故选:由特殊点B求出,由五点法作图求出的值,可得的解析式,再根据正弦函数的图象和性质,得出结论.本题主要考查由函数的部分图象求解析式,由特殊点求出,由五点法作图求出的值,正弦函数的图象和性质,属于中档题.12.【答案】ABC【解析】解:对于选项A,,且点P在以AD的中点O为圆心,OA为半径的半圆上,,,故A正确;对于选项B,,,故B正确;对于选项C,以点O为原点建立平面直角坐标系,如图所示:则,,,点P在以AD的中点O为圆心,OA为半径的半圆上,点P的轨迹方程为,且在x轴的下半部分,设,,则,,,,又,,当时,取得最大值9,故C正确;对于选项D,,,,,又,当时,取得最大值,故D错误.故选:对于AB,将,分别用表示,再结合数量积的运算律即可判断;对于CD,以点O为原点建立平面直角坐标系,设,,根据平面向量的坐标表示及坐标运算即可判断.本题主要考查了平面向量基本定理,考查了平面向量数量积的运算和性质,属于中档题.13.【答案】3【解析】解:,,,,,,,又,,,,故答案为:根据向量的模的定义,向量夹角公式,即可求解.本题考查向量的模的定义,向量夹角公式,属基础题.14.【答案】144【解析】解:先将除甲、乙、丙3人外的另外三个人排成一排,再将甲、乙、丙3人插入到已经排好的三个人形成的四个空中,共有种.故答案为:利用插空法可求出结果.本题考查不相邻的排列问题,属于基础题.15.【答案】2【解析】解:在平面内,设一动点P到点,的距离差的绝对值等于,可得曲线的离心率为:,当且仅当时,取等号,所以曲线C的离心率的最小值为故答案为:列出离心率的表达式,利用基本不等式求解最小值即可.本题考查双曲线的离心率的求法,基本不等式的应用,是基础题.16.【答案】【解析】解:设圆锥底面圆心为C,半径为r,该圆锥内切球球心为O,作出过母线AD的轴截面ABD,如图所示,,且圆锥侧面积为,,,圆锥底面直径,为正三角形,大圆O切AD于中点E,设EO交大圆于点F,又易知,球的半径,,,两式相减可得极化恒等式:,的最大值为故答案为:设圆锥底面圆心为C,半径为r,该圆锥内切球球心为O,作出过母线AD的轴截面ABD,根据题意易得,从而得为正三角形,且大圆O切AD于中点E,最后再利用向量极化恒等式,即可求解.本题考查圆锥的内切球问题,向量数量积的最值的求解,极化恒等式的应用,属中档题.17.【答案】解:由题意,设等差数列的公差为d,则,整理,得,解得,,,当时,,解得,当时,由,可得,两式相减,可得,整理,得,数列是以为首项,为公比的等比数列,,由可得,,则【解析】先设等差数列的公差为d,再根据题干已知条件列出关于首项与公差d的方程组,解出与d的值,即可计算出等差数列的通项公式,对于数列,先将代入题干表达式计算出的值,当时,由,可得,两式相减进一步推导即可发现数列是以为首项,为公比的等比数列,计算出数列的通项公式;先根据第题的结果计算出数列的通项公式,再运用分组求和法,等差数列和等比数列的求和公式即可计算出前20项的和本题主要考查等差数列和等比数列的基本运算,以及数列求和问题.考查了方程思想,分类讨论,转化与化归思想,分组求和法,等差数列和等比数列的求和公式的运用,以及逻辑推理能力和数学运算能力,属中档题.18.【答案】解:在中,,,,由余弦定理可得,即,整理可得:,可得或,当时,由余弦定理可得,可得为钝角,与题意相矛盾,当时,,所以,,符合条件,所以,;由四边形ABCD为圆内接四边形,,所以,在中,由余弦定理可得,当且仅当时取等号,所以,所以四边形的周长的最大值为,即四边形ABCD的周长的最大值为【解析】在中,由余弦定理可得AD的值,再由为锐角,确定AD的值,再由勾股定理可得的大小;由圆内接四边形可得B角的大小,再由余弦定理及均值不等式可得的最大值,进而求出四边形ABCD的周长的最大值.本题考查余弦定理及圆内接四边形的性质的应用,均值不等式的应用,属于中档题.19.【答案】解:设M类服装,N类服装的单件收益分别为元,元,则,,,故N类服装单件收益的期望更高;由题意可知,元,又,所以元,,,,因为,所以当时,n可取的最大值为【解析】结合期望公式由单件总盈利减去成本即可计算;由题知N类服装的销售件数符合二项分布,求出对应,,⋯⋯,的值,可确定n的最大值;先列出这5件衣服总收益关丁X的关系式,得,结合化简即可求解.本题考查了二项分布和离散型随机变量的期望计算,属于中档题.20.【答案】证明:多面体由正四棱柱与正四棱锥组合而成,与交于点,,,,,平面,,以为坐标原点,所在直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,,,,,,,,,设平面PCB的法向量为,则,取,得,设平面的法向量,则,取,得,,平面平面;解:,,设平面PAD的法向量为,则,取,则,设平面的法向量为,则,取,得,设平面PAD与平面夹角为,则平面PAD与平面夹角的余弦值为:【解析】以为坐标原点,所在直线为x轴,所在直线为y轴,所在直线为z 轴,建立空间直角坐标系,利用向量法能证明平面平面;求出平面PAD的法向量和平面的法向量,利用向量法能求出平面PAD与平面夹角的余弦值.本题考查了面面平行的证明和二面角的计算,属于中档题.21.【答案】解:由,,,,,又点在椭圆上,,,,椭圆C的标准方程为;,,则,,直线QM的方程为:,令,得,直线QN的方程:,令,得,则,,的值为【解析】由已知可得,,求解即可;写出直线QM、QN的方程,得E,F的坐标,进而可得本题考查椭圆的方程的求法,考查直线与椭圆的位置关系,考查运算求解能力,属中档题.22.【答案】解:因为,所以,若,则当时,,函数单调递增;若,则当时,,函数单调递增,当时,,函数单调递减,综上所述,当时,函数的单调递增区间为;当时,函数的单调递增区间为,单调递减区间为证明:由知,当时,函数的单调递增区间为,单调递减区间为所以,即,所以当时,,故当,,且,又,即,故由知,当时,,即,则有,当且仅当时等号成立,一方面:,即另一方面:当时,,当时,,,的最小正整数值为【解析】利用导数的正负与函数单调性的关系及对参数进行讨论即可求解;根据的结论及函数的单调性与最值的关系即可求解;将不等式恒成立问题转化为最值问题,根据的结论及不等式放缩,再利用对数不等式求解.本题主要考查了导数与单调性及极值关系的应用,还考查了由不等式恒成立求参数范围,属于中档题.。

2020高考数学全真模拟试卷含答案

2020高考数学全真模拟试卷含答案

考试说明:1、本试卷分为A卷和第B卷两部分,共30个小题,满分150分,考试时间120分钟.2、A卷分为第Ⅰ卷和第Ⅱ卷两部分,答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目准确填涂在答题卡上,请注意答题卡的横竖格式.3、第Ⅰ卷选择题共15个小题,选出答案后用铅笔把答题卡上对应题目的答案标号涂黑,若需改动,用橡皮擦擦干净后,再选涂其它答案,不准答在试卷上.4、第Ⅱ卷共6个小题,B卷共9个小题,用钢笔或圆珠笔直接答在试卷上,答题前将密封线内的项目填写清楚.A卷(100分)第Ⅰ卷选择题(60分)一、择题题(每小题4分,在给出的四个选项中,只有一项是符合题目要求的.)1.在实数范围内,下列各数没有平方根的是()A.0 B. (-2)-1 C. –(-2)3 D. (-2005)02.下列运算中,正确的是( )A. (-a3)2=a5B. a3+a4=a7C. (a+b)2=a2+b2D. 9xy2÷(-3xy)=-3y3.已知点p(a , b)是平面直角坐标系中第四象限内的点,那么化简: |a-b|+|b-a|的结果是( )A.-2a+2b B. 2a C. 2a-2b D. 04.函数中,自变量的取值范围为( )A. x>35B. x≥35C` x≠35D. x>35且x≠25.空气的体积质量是0.001239克/厘米3,此数保留三个有效数字的近似数用科学记数法表示为( )A. 1.239×10-3 B. 1.23×10-3 C. 1.24×10-3 D.1.24×1036.某商品经过两次降价,由原来每件100元调至81元,则平均每次降价的百分率是( )A.8.5% B. 9% C. 9.5% D. 10%7.如下图,观察前两行图形,第三行“?”处应填( )?A. B. C D8.下列命题正确的是( )A.对角线相等且平分的四边形是菱形;B.对角线相等且垂直的四边形是菱形。

2020最新高考数学模拟测试含解答(20200404103106)

2020最新高考数学模拟测试含解答(20200404103106)

平面 PAD
∴ BG ∥ 平 面 PAD
∵ EF ∥ BG ∴ EF ∥ 平 面 PAD
(7 分)
(II)∵ BG⊥平面 PDC,EF∥BG ∴EF⊥平面 PDC
2
(B) cos
1
2
1 sin
2
(D) sin
1
2
( C)
(文)已知曲线 C 与 C′ 关于直线 x y 2 0对称,若 C 的方程为
, x2 y2 4x 4y 7 0
则 C′的方程为
()
(A ) x 2 y2 8x 8y 31 0
(B) x 2 y2 8x 8y 31 0
(C) x2 y 2 8x 8 y 31 0
又 CD=2a, DP=a,
CP CD 2 DP2 5a
△ PBC 中, G 为 PC 中点,∴ BG⊥PC
易得 BG 3 a, HG 1 a, BH a
2
2
∴ △ BGH 为直角三角形,且
BG ⊥ GH ∴ GB ⊥平面 PDC
(5 分)
∴GB⊥CD 又 CD⊥HB ∴CD⊥平面 BGH ∴平面 BGH ∥
( 12 )有一位同学写了这样一个不等式: x 2 1 c 1 c ( x R) ,他发现,
x2 c
c
当 c=1 ,2 ,
3 时,不等式对一切实数 x 都成立,由此他作出如下猜测:
①当 c 为所有自然数时,不等式对一切实数 x 都成立;
②只存在有限个自然数 c,对 x R不等式都成立;
③当 c 1时,不等式对一切 x R都成立;
已 知 z1=3+4 i , z2=65 cos i sin ) (
2
5
sin(

2024年高考数学全真模拟试卷五(新高考、新结构)(全解全析)

2024年高考数学全真模拟试卷五(新高考、新结构)(全解全析)

2024年高考数学全真模拟试卷五(新高考、新结构)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos 50cos 70sin 50cos160︒︒+︒︒=()A .BC .12-D .12【答案】C【解析】cos50cos70sin 50cos160︒︒+︒︒()cos 50cos 70sin 50cos 9070=︒︒+︒︒+︒cos50cos70sin 50sin 70=︒︒-︒︒()1cos 5070cos1202=︒+︒=︒=-.故选C.2.如图,已知集合{}2log 1,{1}A xx B x x =<=<∣∣,则阴影部分表示的集合为()A .()1,2B .[)1,2C .(]0,1D .()0,1【答案】B【解析】因为{}{}2log 102,{1}A x x x x B x x =<=<<=<∣∣∣,所以{}01A B xx =<< ∣,(){}12A A B x x ⋂=≤<∣ð,即阴影部分表示的集合为[)1,2,故选B3.已知443243210()x m a x a x a x a x a +=++++,若0123481++++=a a a a a ,则m 的取值可以为()A .2B .1C .1-D .2-【答案】A【解析】令1x =,有()443210118m a a a a a ++++==+,即2m =或4m =-.故选A.4.已知ABC 的内角,,A B C 的对边分别为,,a b c ,且3a =,cos (2)cos a B c b A =-,则ABC 面积的最大值为()A B .2C .94D .92【答案】A【解析】因为cos (2)cos a B c b A =-,由正弦定理可得:sin cos 2sin cos sin cos A B C A B A =-,即()sin 2sin cos A B C A +=,sin 2sin cos C C A =,又()0,πC ∈,sin 0C ≠,故1cos 2A =;由()0,πA ∈,解得π3A =;由余弦定理,结合3a =,可得2219cos 22b c A bc+-==,即2292b c bc bc +=+≥,解得9bc ≤,当且仅当3b c ==时取得等号;故ABC 的面积11sin 922S bc A bc ==⨯3b c ==时取得等号.即ABC 故选A.5.已知点()3,0A ,点P 是抛物线2:4C y x =上任一点,F 为抛物线C 的焦点,则1PA PF +的最小值为()A B C D 【答案】A【解析】由题意得()1,0F ,抛物线C 的准线方程为=1x -,设(),P x y ,则1PF x =+,PA =12PAPF x =++.令2x μ+=,则2x μ=-,由0x ≥,得2μ≥,所以1PAPF ==+,令1λμ=,则102λ<≤,所以1PA PF =+,故当317λ=,即113x =时,1PA PF +取得最小值17.故选A .6.如图,现有棱长为6cm 的正方体玉石缺失了一个角,缺失部分为正三棱锥1A EFG -,且,,E F G 分别为棱11111,,A A A B A D 靠近1A 的四等分点,若将该玉石打磨成一个球形饰品,则该球形饰品的体积的最大值为()A .3πcm 2B .336πcmC .3πcm 2D .372πcm【答案】B【解析】由题意1113 2A E A F AG===,设点1A到平面EFG的距离为d,而2 EF EG FG=== 122EFGS=⨯=11E AGF A EFGV V--=,得113331322223⨯⨯⨯⨯=,解得2d=,棱长为6的正方体的正方体的内切球的半径为3,棱长为6的正方体体对角线的长度为因为3,所以所求球形体积最大时即为棱长为6的正方体的正方体的内切球,则该球形饰品的体积的最大值为334π336πcm3⨯=.故选B.7.已知椭圆2222:1(0)x yC a ba b+=>>的左、右顶点分别为,A B,左焦点为,F P为椭圆上一点,直线AP与直线x a=交于点,M PFB∠的角平分线与直线x a=交于点N,若PF AB⊥,MAB△的面积是NFB面积的72倍,则椭圆C的离心率是()A.18B.17C.16D.13【答案】B【解析】根据题意可得()()(),0,,0,,0A aB a F c--,则2AB a=,FB a c=+,又PF AB⊥可得90PFB∠= ,设P点坐标为()0,P c y-,如下图所示:将()0,P c y-代入椭圆方程可得()220221c ya b-+=,解得2bya=;可得()22PAbbaka c a a c==--,直线PA方程为()()2by x aa a c=+-,联立()()2by x aa a cx a⎧=+⎪-⎨⎪=⎩,解得22,bM aa c⎛⎫⎪-⎝⎭,即()(),2M a a c+易知PFB∠的角平分线倾斜角为45 ,斜率为1k=,直线FN方程为y x c=-,联立y x cx a=+⎧⎨=⎩,解得(),N a a c+;所以MAB △的面积为()()1222MAB S AB BM a a c a a c ==⋅+=+ ,NFB 面积为()21122NFB S FB BN a c ==+ ;即()()()227172224a a c a c a c +=⨯+=+,即()724a a c =+,可得7a c =;所以离心率17c e a ==.故选B 8.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01g =-B .若()12024f =,则20241()2024n f n ==∑C .函数()21f x -的图像关于直线12x =对称D .()()111g g +-=-【答案】D【解析】对于A ,令0x y ==,可得()()()()()000000f f g g f =-=,得()00f =,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,所以()01g =,故A 错误;对于D ,因为()01g =,令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故D 正确;对于B ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即()()()12f x f x f x =-+-+,有()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()12024f =,所以()22024f -=,所以()()222024f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()202411232024n f n f f f f ==++++∑ ()()()()020********f f f f =++==,故B 错误;对于C ,取()2πsin3f x x =,()2πcos 3g x x =,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,所以()()2π21sin213f x x -=-,又()0sin 00f ==,所以函数()21f x -的图像不关于直线12x =对称,故C 错误;故选D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在复平面内,复数112z =对应的点为A ,复数211z z =-对应的点为B ,下列说法正确的是()A .121z z ==B .2121z z z ⋅=C .向量AB对应的复数是1D .12AB z z =- 【答案】AD【解析】因为112z =,所以212z =-,所以11,,,22A B ⎛⎛- ⎝⎭⎝⎭,121z z ==,A 正确;22121111222z z ⎡⎤⎛⎫⎛⎫⎫⎛⎫⎢⎥⋅=--=--=- ⎪⎪⎪ ⎪ ⎪⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,B 错误;由上可得()1,0AB =- ,对应复数为1-,C 错误;1211i i 12222z z ⎛⎫-=---= ⎪ ⎪⎝⎭,1AB = ,D 正确.故选AD10.已知二面角A CD B --的大小为2π3,AC CD ⊥,BD CD ⊥,且1CD =,2AC BD +=,则()A .ABD △是钝角三角形B .异面直线AD 与BC 可能垂直C .线段AB 长度的取值范围是⎡⎣D .四面体A BCD -【答案】AC【解析】对于选项A :由题意可知,0BD CD ⋅= ,二面角A CD B --的大小为2π3,AC CD ⊥,BD CD ⊥,所以2π,3CA DB = ,所以()2πcos 03DA DB DC CA DB CA DB CA DB ⋅=+⋅=⋅=< ,所以ADB ∠是钝角,即ABD △是钝角三角形,故A 正确;对于选项B :由题意知,0BD CD ⋅= ,0AC CD ⋅=,2π,3CA DB = ,1CD = ,所以()()22πcos 103AD BC AC CD BD CD AC BD CD AC BD ⋅=+⋅-=⋅-=-< ,所以异面直线AD 与BC 不可能垂直,故B 错误;对于选项C :由题意可知,0BD CD ⋅= ,0AC CD ⋅=,1CD = ,所以()222222AB AC CD DBAC CD DB AC DB =++=+++⋅ 221AC DB AC DB =+++()21AC DBAC DB =+-+.设AC x =,由2AC BD +=,得2BD x =-,其中02x <<,所以()2222514AB x x x =-+=-+ ,所以245AB ≤< ,则线段AB 长度的取值范围是⎡⎣,故C 正确;对于选项D :如图,过点A 作平面BCD 的垂线,垂足为E ,则πsin3AE AC =⋅,由题意,可知四面体A BCD -的体积为11πsin 323CD BD AC ⨯⨯⨯⨯⨯21212212AC BD AC BD +⎛⎫=⋅≤⨯= ⎪⎝⎭,当且仅当1AC BD ==时,等号成立,故D 错误.故选AC.11.已知函数()()212cos1tan 2xf x x =-+,则下列说法正确的是()A .π2是()f x 的一个周期B .()f x 的值域是⎡⎣C .若()f x 在区间π,4t ⎛⎫- ⎪⎝⎭上有最小值,没有最大值,则t 的取值范围是π0,4⎛⎤⎝⎦D .若方程()f x a =在区间ππ,42⎛⎫- ⎪⎝⎭上有3个不同的实根()123123,,x x x x x x <<,则()()12332x x x f x ++的取值范围是π44⎛⎫⎪ ⎪⎝⎭【答案】BC【解析】因为()()()212cos1tan cos 1tan sin cos 2xf x x x x x x =-+=+=+,由题意可知:()f x 的定义域为π|π,2A x x k k ⎧⎫=≠+∈⎨⎬⎩⎭Z ,关于原点对称,且()()()()sin cos sin cos f x x x x x f x -=-+-=+=,可得()f x 为偶函数,对于选项A :因为π0,2A A ∈∉,可知π2不是()f x 的一个周期,又因为()()()()πsin πcos πsin cos f x x x x x f x +=+++=+=,可知π是()f x 的一个周期,故A 错误;对于选项B :当π0,2x ⎡⎫∈⎪⎢⎣⎭,则sin 0,cos 0x x ≥>,可得()πsin cos 4f x x x x ⎛⎫=+=+ ⎪⎝⎭,因为π0,2x ⎡⎫∈⎪⎢⎣⎭,则ππ3π,444x ⎡⎫+∈⎪⎢⎣⎭,可知:当ππ44x +=,即0x =时,()f x ;当ππ42x +=,即π4x =时,()f x 取到最大值1;所以()f x ⎡∈⎣,结合偶函数和周期性可知()f x 的值域是⎡⎣,故B 正确;对于选项C :因为π,4x t ⎛⎫∈- ⎪⎝⎭,由选项B 可知:π04t <≤,故C 正确;对于选项D :方程()f x a =的实根即为()y f x =与y a =的交点横坐标,作出()f x 在ππ,42⎛⎫- ⎪⎝⎭的图象,如图所示:由题意结合图象可知:(12233πππ,0,,,242a x x x x x ⎛⎫∈+=+=∈ ⎪⎝⎭,则()()12333ππ2sin 24x x x f x x ⎛⎫++=+ ⎪⎝⎭,因为3ππ,42x ⎛⎫∈ ⎪⎝⎭,则3ππ3π,424x ⎛⎫+∈ ⎪⎝⎭,可得3πsin ,142x ⎫⎛⎫+∈⎪ ⎪⎪⎝⎭⎝⎭,所以()()12333πππ2sin ,2442x x x f x x ⎛⎫⎛⎫++=+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,故D 错误;故选BC.三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()1,0a = ,()1,1b = ,若a b λ+ 与b垂直,则λ=.【答案】12-【解析】因为()1,0a = ,()1,1b = ,所以()1,a b λλλ+=+ ,又a b λ+ 与b垂直,所以()10a b b λλλ+⋅=++= ,解得12λ=-.13.举重比赛的规则是:挑战某一个重量,每位选手可以试举三次,若三次均未成功则挑战失败;若有一次举起该重量,则无需再举,视为挑战成功,已知甲选手每次能举起该重量的概率是23,且每次试举相互独立,互不影响,设试举的次数为随机变量X ,则X 的数学期望()E X =;已知甲选手挑战成功,则甲是第二次举起该重量的概率是.【答案】139;313【解析】依题意随机变量X 的可能取值为1、2、3,则()213P X ==;()22221339P X ⎛⎫==-⨯= ⎪⎝⎭;()2213139P X ⎛⎫==-= ⎪⎝⎭,所以随机变量X 的概率分布为X123P232919所以随机变量X 的期望为()221131233999E X =⨯+⨯+⨯=.记“第i 次举起该重量”分别为事件,1,2,3i A i =,“甲选手挑战成功”为事件B ,则()3123226()111327P B P A A A ⎛⎫=-=--= ⎪⎝⎭,()()()21212222()1339P A B P A A P A P A ⎛⎫===-⨯= ⎪⎝⎭,所以()()()223|13P A B P A B P B ==,所以甲选手挑战成功,则甲是第二次举起该重量的概率为313.14.已知对任意()12,0,x x ∈+∞,且当12x x <时,都有:()212112ln ln 11a x x x x x x -<+-,则a 的取值范围是.【答案】(],2-∞【解析】因为对任意()12,0,x x ∈+∞,且当12x x <时()212112ln ln 11a x x x x x x -<+-恒成立,所以21212112ln ln x x a x a x x x x x --<-+恒成立,所以21211211ln ln a x a x x x x x -<-+-恒成立,所以22112111ln ln a x x a x x x x -+<-+恒成立①,令()()1ln ,0,f x a x x x x∞=-+∈+,由①式可得()()21f x f x <,所以()f x 在()0,∞+上单调递减,所以()2210x ax f x x-+'=-≤在()0,∞+上恒成立,所以210x ax -+≥在()0,∞+上恒成立,所以1a xx ≤+在()0,∞+上恒成立,又12x x +≥=,当且仅当1x x=,即1x =时取等号,2a ∴≤.三、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程和解题步骤.15.(13分)已如曲线()()22ln ,f x ax x x b a b =+-+∈R 在2x =处的切线与直线210x y ++=垂直.(1)求a 的值;(2)若()0f x ≥恒成立,求b 的取值范围.【解析】(1)由于210x y ++=的斜率为12-,所以()22f '=,(2分)又()221f x ax x '=+-,故()224122f a '=+-=,解得12a =。

2020高考数学全真模拟试卷含答案(1529)

2020高考数学全真模拟试卷含答案(1529)

的区域的面积是
(A) 1
2
(D) 9
2
10 、 若 函 数 y
(B)1 f (x) 的 反 函 数 为 y f 1(x) , 则 函 数 y
(C)2 f (x 1) 与 函 数
y f 1 ( x 1) 的图象 A .关于直线 y x 对称 B.关于直线 y x 1 对

C.关于直线 y x 1对称
x
,.
44
(Ⅰ)求向量 OP 与 OQ 的夹角 的余弦值用 x 表示的函数 f ( x) ;
(Ⅱ)求 的最值。
16 、(本小题满分 12 分)
已知数列 2n 1 an 的前 n 项和 Sn 9 6n .
(Ⅰ)求数列 an 的通项公式 ;
(Ⅱ)设 bn
n(3
log 2 an ) ,求数列
3
1 bn
的前 n 项和 .
17 .(本题满分 13 分)
甲、乙两个同学解数学题,他们答对
的概率分别是 0.5 与 0.8,如果每人都解两道题,
(Ⅰ)求甲两题都解对且乙至少解对一题的概率;
(Ⅱ)若解对一题得 10 分,未解对得 0 分、求甲、乙得分相等的概
率.
18 、(本小题满分 14 分)在三棱锥 P-ABC 中, AB AC , ACB 600 ,PA =
4 .两条异面直线 a 和 b 上分别有 5 和 4 个点,从中任选 4 点作为顶点
组成一个四面体的,这样的四面体的个数为( )。

A

C
4 9
(B) C
1 5
C
3 4
C
52C
2 4
C
53C
1 4

C)
C

2020年高三数学5月仿真模拟试卷

2020年高三数学5月仿真模拟试卷
2020年高三数学5月仿真模拟试卷
姓名:________班级:________ 成绩:________
一、 选择题(本大题共10小题,每小题4分,共40分.在每小题给出 (共10题;共40分)
1. (4分) (2017·天水模拟) 已知集合A={x|3x<16,x∈N},B={x|x2﹣5x+4<0},则A∩(∁RB)=( )
A . 120°
B . 60°
C . 30°
D . 45°
二、 填空题(本大题共7小题,多空题每小题6分,单空题每小题4分, (共7题;共36分)
11. (6分) 将 写成分数指数幂的形式为 . ________ .(判断对错)
12. (6分) 已知f(x)=ln(1+|x|)﹣ , 使f(x)>f(2x﹣1)成立的范围是________
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
三、 解答题(本大题共5小题,共74分。解答应写出文字说明、证明过 (共5题;共74分)
18-1、
18-2、
19-1、
19-2、
20-1、
20-2、
20-3、
21-1、
21-2、
22-1、
22-2、
C .
D .
8. (4分) (2019·浙江模拟) 随机变量ξ的分布列如表:
ξ
﹣1
0
1
2
P
a
b
c
其中a,b,c成等差数列,若 ,则D(ξ)=( )
A .
B .
C .
D .
9. (4分) (2019高一上·大庆月考) 函数 的零点个数为( )

2020高考数学全真模拟试题含答案

2020高考数学全真模拟试题含答案

二面角 D— AC1— C 的大小 .
19 .(本小题满分 14 分)
已知函数 f (x)
kx 1
lg
,(k
R且 k
0) .
x1
(1 )求函数 f(x)的定义域;
(2 )若函数 f(x)在 [10 ,+ ∞])上单调递增,求 k 的取值范围 .
20 . (本小题满分 14 分) 观察下列关于实数 a、b 、c 的命题
则 a、m 、h、d 的大小关系正确的是
()
A .a>m > h >d
B.a>h>m >d
C.a> h >d > m
D .a>d >h>m
8.在等差数列 {an}中, a1>0,5 a5=17 a9,则数列 {an}前 n 项和 sn 取最大值
A. 12
B.11
C. 10
D .9
9.艺术体操委员会由 10 位女性委员与 5 位男性委员组成,委员会要
log 2 cos 的值为

12
12
1
13 .函数 y =
x4 的图象在点(
12
3 , y0 )处切线的倾斜角

.
14 .已知( 1+ x)+ (1+ x)2+ …+ (1+ x)n = a0+ a1x+ …+ an xn , 若
a1+ a2+ …+ an = 30 –n ,则正整数 n 的值为
.
15 .将圆 x2 y2 2 按向量 v =(2 ,1 )平移后,与直线 x y
0 相切,
则λ的值为
.
1
16 .已知函数 f(x)=

2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)

2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)
5.已知 是定义在R上的奇函数.当 时, ,若 ,则实数t的值为_____________.
6.为了践行“健康中国”理念更好地开展群众健身活动,某社区对居民的健身情况进行调查,统计数据显示,每天健身时间(单位:min)在 , , , , 内的共有600人,绘制成如图所示的频率分布直方图,则这600名居民中每天健身时间在 内的人数为_____________.
2020届江苏省高三高考全真模拟(一)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知集合 , ,则 _____________.
2.已知复数 (i为数单位)为纯虚数,则实数a的值为_____________.
(3)设 ,数列 为数列 的“偏差数列”, 、 且 ,若 ,( )对任意的 恒成立,求 的最小值.
21.已知矩阵 ,对应的变换把点 变成点 .
(1)求a,b的特征值;
(2)求矩阵M的特征值.
22.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线 的极坐标方程为 、直线 的极坐标方程为 .
(1)求函数 的极值;
(2)若函数 有2个不同的零点,求实数a的取值范围;
(3)若对任意的 , 恒成立,求实数a的最大值.
20.若数列 , 满足 ,则称数列 是数列 的“偏差数列”.
(1)若常数列 是数列 的“偏差数列”,试判断数列 是否一定为等差数列,并说明理由;
(2)若无穷数列 是各项均为正整数的等比数列,且 ,数列 为数列 的“偏差数列”,数列 为递减数列,求数列 的通项公式;
7.如图,在四棱锥 中,四边形 是矩形, 平面 ,E为PD的中点,已知 , , ,则三棱锥 的体积为_____________.

2020高考数学全真模拟试卷含答案

2020高考数学全真模拟试卷含答案

2020高考虽然延迟,但是练习一定要跟上,加油,少年! 一、选择题 (每小题5分,共10小题,50分)1.设I 为全集,M 、N 、P 都是它的子集,则图中阴影部分表示的集合是A. M ∩(N ∪P )B.M ∩[(I N )∩P ]C.[(I M )∩(I N )]∩PD.(M ∩N )∪(M ∩P ) ( ). 2.已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8等于 ( )A.18B.36C.54D.723.6名同学排成两排,每排3人,其中甲排在前排的概率是 ( )A.121B.21C.61D.31 4.函数)4sin()4sin()(x x x f -+=ππ是 ( ) A .周期为π2的奇函数; B .周期为π2的偶函数; C .周期为π的奇函数; D .周期为π的偶函数. 5.已知等差数列{a n }第一项、第三项、第七项分别是一个等比数列{b n }的连续三项,则数列{b n }的公比等于 ( )A.2 B.22 C.2 D.326.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-17.若2tan()45πα+=、1tan()44πβ-=,则tan()αβ+= ( )A .1B .1318 C.518 D.-1 8.若函数f(x)=1()cos 1x a x e +-是奇函数,则常数a 等于( )A.-1 B.1 C.12D.12-9.设)(x f 是定义在实数集R 上以2为周期的奇函数,已知)1,0(∈x 时,)1(log )(21x x f -=,则)(x f 在)2,1(上( )A .是减函数,且0)(>x f ;B .是增函数,且0)(>x f ;C .是减函数,且0)(<x f ;D .是增函数,且0)(<x f . 10.已知函数c bx ax x x f +++=23)(,∈x [-2,2]表示的曲线过原点,且在x =±1处的切线斜率均为-1,有以下命题:①f (x )的解析式为:x x x f 4)(3-=,∈x [-2,2] ②f (x )的极值点有且仅有一个③f (x )的最大值与最小值之和等于零 其中正确的命题个数为( ) A .0个 B .1个 C .2个 D .3个 二. 、填空题 ( 每小题4分,共4个小题,16分)11.过曲线y =x 3-x 上点(1,0)的切线方程的一般式是 .12.已知数列1,4,,21a a 成等差数列,4,,,,1321b b b 成等比数列,则221b a a +的值为13.设sin αβ==,α、β∈(0,)2π,则β-α= .a 114.已知数列{a n }中,a 1=1,a 6=32,a n+2=21nna a +,把数列{a n }的2a 3a 4a各项排成如图的三角形形状,记A(m,n)为第m 行从左5a 6a 7a 8a 9a…………………………… 起的第n 个数,则A(4,3)=;A(m,n)= .三、解答题( 共6 小题,总分84分,要求写出必要的解题过程 ) 15.(本题14分)已知△ABC 中,角A 、B 、C 对应的边为a 、b 、c ,A=2B ,cos B =,求sinC 的值. 16(本题14分).:已知函数3)2(cos 32)2cos()2sin(2)(2-++++=θθθx x x x f .(Ⅰ)求函数)(x f 的最大值和最小值; (6分)(Ⅱ)当θ=3π时,求函数)(x f 满足1)(≥x f 的x 的集合. (6分)17. (本题14分) 如图, 四棱锥P -ABCD 的底面是正方形, PA ⊥底面ABCD, PA =AD =2, 点M 、N 分别为棱PD 、PC 的中点. (1) 求证: PD ⊥平面AMN; (7分) (2) 求二面角P -AN -M 的大小. (7分)NMDCBAP18.(本题14分)已知定义域为(0,+∞)的函数f(x)满足:①对任意m、n,有f(m﹒n)=f(m)+f(n);②当x>1时,有f(x)<0. (1)求证:1()()=-(6分);(2)求证:f(x)在(0,+∞)上f f mm为减函数.(8分)19.(本题14分) 某校有教职员工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室,要求全体教职员工都参加其中的某一项目. 据调查统计,每次去健身房的人有10%下次去娱乐室,而去娱乐室的人有20%下次去健身房.(Ⅰ) 设第n次去健身房的人数为a,试用n a表示1 n a;n(Ⅱ) 随着时间的推移,去健身房的人数能否趋于稳定?说明理由.20.(本小题满分14分)已知定义域为R的二次函数f x()的最小值为0且有f x f x ()()11+=-,直线g x x ()()=-41被f x ()的图像截得的弦长为417,数列{}a n 满足a 12=,()()()()a a g a f a n N n n n n +-+=∈10*。

2020年高考理科数学模拟试题含答案及解析5套)

2020年高考理科数学模拟试题含答案及解析5套)

绝密★启用前2020 年高考模拟试题(一)理科数学时间:120 分钟分值:150 分注意事项:封号位座1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

密第Ⅰ卷(选择题共60 分)一、选择题:本大题共12 个小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一不号场考项是符合题目要求的.a b1.已知a,b 都是实数,那么“2 22 2”是“a b ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件订22.抛物线x 2py ( p 0) 的焦点坐标为()装号证考准p A.,0218p3 6 0 x y≤p218pB.,0C.0,D.0,3.十字路口来往的车辆,如果不允许掉头,则行车路线共有()A.24 种B.16 种C.12 种D.10 种只4.设x,y 满足约束条件x y 2≥0 ,则目标函数z 2x y 的最小值为()x≥0, y≥0A. 4 B. 2 C.0 D.2卷5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为()名姓A.5B.34 C.41 D.5 2 此6.sin xf x xx,0 U 0, 大致的图象是()A.B.C.D.级班7.函数 f x sin x cos x( 0)在,2 2上单调递增,则的取值不可能为()A.14B.15C.12D.348.运行如图所示的程序框图,设输出数据构成的集合为 A ,从集合 A 中任取一个元素 a ,则函数 ay x ,x 0, 是增函数的概率为()A.35B.45C.34D.37开始x 3否x≤ 3是2 2y x x结束输出yx x 11x9.已知A,B 是函数y 2 的图象上的相异两点,若点A,B 到直线y 的距离相等,2则点A,B 的横坐标之和的取值范围是()A., 1 B., 2 C., 3 D., 410.在四面体ABCD 中,若AB CD 3 ,AC BD 2,AD BC 5 ,则四面体ABCD的外接球的表面积为()A.2 B.4 C.6 D.811.设x 1是函数 3 2f x a 1x a x a 2x 1 n N 的极值点,n n n数列a n 满足a1 1 ,a2 2 ,b n log 2a n 1 ,若x 表示不超过x的最大整数,则2018 2018 2018L =()bb b b b b1 2 2 3 2018 2019A.2017 B.2018 C.2019 D.2020ax12.已知函数 f x e a R 在区间0,1 上单调递增,则实数a的取值范围()xeA.1,1 B.1, C.1,1 D.0,第Ⅱ卷(非选择题共90 分)二、填空题:本大题共 4 个小题,每小题 5 分,共20 分.13.命题“x0 0 , 2 x0 mx0 2 0”的否定是_________._C 2π314.在△ABC 中,角 B 的平分线长为 3 ,角,BC 2 ,则AB _________._15.抛物线 2 4y x 的焦点为 F ,过F 的直线与抛物线交于 A ,B 两点,且满足A FBF4,点O 为原点,则△AOF 的面积为_________._16.已知函数f xx x x22 3 sin cos 2cos 02 2 2的周期为2π3 ,当πx 0,3 时,函g x f x m数恰有两个不同的零点,则实数m 的取值范围是_________._三、解答题:共70 分。

2020高考数学全真模拟卷(理)含答案

2020高考数学全真模拟卷(理)含答案

利用多出来的一个月,多多练习,提升自己,加油!第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中只有一项是符合题目要求的。

1、下列各式:①2003⊆{x|x ≤2004};②2004∈{x|x<2004};③{2004}{x|x ≤2004};④ф∈{x|x<2004}( )A 、1个B 、2个C 、3个D 、4个 2、a=sin14°+cos14°, b= sin16°+cos16°, c=26,则a,b,c 的大小关系是 ( )A 、a<b<cB 、a<c<bC 、b<c<aD 、b<a<c 3、复数ia ai222+-的模为2,则实数 a 的值是( )A 、3B 、3C 、3±D 、3± 4、不等式组()()⎩⎨⎧≤≤≥+++3005x y x y x 表示的平面区域的面积为( )A 、12B 、16C 、24D 、285、已知ΔABC 的三个顶点A 、B 、C 及平面内一点P 满足→→→→=++ABPC PB PA ,则点P 与ΔABC 的关系为( )A 、P 在ΔABC 的内部B 、P 在ΔABC 的外部 C 、P 在AB 边所在的直线上D 、P 在AC 边所在的直线上6、已知数列()⎭⎬⎫⎩⎨⎧-+1122n 的前n 项和为S n ,则n n S +∞→lim 等于 ( )A 、0B 、1C 、23 D 、27、中心在原点,准线为x=±4,离心率为0.5的椭圆方程为 ( )A 、14322=+y xB 、13422=+y x C 、1422=+y x D 、1422=+y x8、下列四个命题中,正确命题的序号是 ( )①“直线a 、b 是异面直线”的充分而不必要条件是“直线a 、b 不相交”;②“直线l 垂直于平面α内所有直线”的充要条件是“l ⊥平面α”; ③“直线a ∥直线b ” 的充要条件是“a 平行于b 所在的平面”; ④“直线a ∥平面α”的必要而不充分条件是“直线a 平行于α内的一条直线”。

2024年高考数学全真模拟试题

2024年高考数学全真模拟试题

2024年高考数学全真模拟试题一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={x | x² 3x + 2 = 0},B ={1, 2},则A ∩ B =()A {1}B {2}C {1, 2}D ∅2、复数 z =(1 + i)(2 i),则|z| =()A 2B 5C 10D 2 23、已知向量 a =(1,2),b =(2,-1),则 a·b =()A 0B 3C 4D 54、函数 f(x) = sin(2x +π/3)的最小正周期为()A πB 2πC π/2D 4π5、若直线 l₁:x + 2y 3 = 0 与直线 l₂:2x my + 1 = 0 平行,则 m =()A -4B -1C 1D 46、已知等差数列{aₙ}的前 n 项和为 Sₙ,若 a₁= 1,d = 2,则S₅=()A 25B 20C 15D 107、从 5 名男生和 3 名女生中选出 3 人参加某项活动,至少有 1 名女生的选法有()A 80 种B 70 种C 65 种D 60 种8、抛物线 y²= 8x 的焦点到准线的距离为()A 2B 4C 8D 169、已知函数 f(x) = x³ 3x + 1,则函数 f(x) 的单调递增区间是()A (∞,-1)和(1,+∞)B (-1,1)C (∞,-1)D (1,+∞)10、若函数 f(x) =logₐx(a > 0 且a ≠ 1)在区间2,4上的最大值与最小值之差为 1,则 a =()A 2B 4C 1/2D 1/411、若圆 C:x²+ y² 2x 4y + 1 = 0 关于直线 l:ax + by 1 = 0(a > 0,b > 0)对称,则 1/a + 2/b 的最小值为()A 4B 6C 8D 1012、已知函数 f(x) =2sin(ωx +φ)(ω > 0,|φ| <π/2)的图象过点(0,1),且在区间(π/12,5π/12)上单调递减,则ω 的最大值为()A 11B 9C 7D 5二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、曲线 y = x³ 3x²+ 1 在点(1,-1)处的切线方程为________。

2020高考数学(理科)全真模拟卷五(含答案解析)

2020高考数学(理科)全真模拟卷五(含答案解析)

2020高考全真模拟卷五数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|A x x a =>,{}2|430B x x x =-+≤,若A B B =I ,则实数a 的取值范围是( )A .3a >B .3a ≥C .1a ≤D .1a <2.在复平面内,复数(1i)(2i)z =+-对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.如图,四边形ABCD 为正方形,ADE ∆为等腰直角三角形,设向量BC a =u u u v v ,BA b =u u u v v ,则CE =uu u v ( )A .1322a b --v vB .1322a b -v vC .1322a b -+v vD .1322a b +v v4.巳知函数1(),2(){2(1),2x x f x f x x ≥=+<,则2(log 3)f =A .﹣32B .2C .16D .565.已知在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,π3A =,2b =,ABC ∆的面积等于23,则ABC ∆外接圆的面积为()A .16πB .8πC .6πD .4π6.已知实数,,a b c ,22log aa =-,121()log 2b b =-,231()2cc -=,则( )A .b c a >>B .c b a >>C .b a c >>D .c a b >>7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,点M 为椭圆上不同于A 1,A 2的一点,若直线M A 1与直线M A 2的斜率之积等于−12,则椭圆的离心率为( ) A .12B .13C .√22D .√338.如图所示是某个区域的街道示意图(每个小矩形的边表示街道),那么从A 到B 的最短线路有( )条A .100B .400C .200D .2509.已知函数()2ln ||f x x x =-,则()f x 的大致图象为( )A .B .C .D .10.如图,在平面内放置两个相同的直角三角板,其中30A ∠=︒,且,,B C D 三点共线,则下列结论不成立的是( )A .3CD BC =u u u r u u u rB .0CA CE ⋅=u u u r u u u rC .AB u u u r 与DE 共线D .CA CB CE CD ⋅=⋅u u u r u u u r u u u r u u u r11.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .64B .48C .40D .5612.已知函数()f x 是定义在R 上的奇函数,()20f =,当0x >时,有()()20xf x f x x '->成立,则不等式()20x f x >的解集是( )A .()()2,02,-+∞UB .()()2,00,2-UC .()2,+∞D .()(),22,-∞-+∞U第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。

2020年高考数学模拟试题(五)参考答案

2020年高考数学模拟试题(五)参考答案

中孝生墩湮化高考使用2020年7—8月鑿^郵嘶嘲璃矚—、选择题4-l-3i—1.A提示:z=4小=2一i,则z=2十i。

1十212.C提示:因为U={1,2,3,4,5},C u(A U B)={3,4},所以A U B={1,2,5}。

又B={2,},于是{1}U A U{1,2,5},所以集合A可以是{1}、{1,2}、{1,5}、{1,2,5}四种情况。

3.B提示:因为—=1(2十8+6十14十520)=10,回归直线过样本点的中心(x,y),所以y=1.6X10+32=48。

4.C提示:二项展开式的通项为T r+1 =c;(x2)6—r r=c a^x18—3',令12-3r=3,得r=3,故x3的系数为C3a3,于是12801280“C3a3=1280,即a3-12-==^=64,故面,如图1所示。

而2y—2A1,即y一—A0,所以y A x o当A J B W1时,2y—2A1表示的是图中阴影部分。

因为S圆=n Xn1o1=n,S阴影=4—2X1n——2 7T一2=-^,故所求事件的概率PS阴影S圆4n _11=4—2n。

8.B提示:第一次运行:s=2,k=2;第二次运行:s=6,k=3;…;第七次运行:s= 56,=8;第八次运行:=2+4+6--------16 =72,=9,输出结果。

故判断框中m的取值范围是(56,2]。

9.A提示:由题意知,缴纳的利息按日a=4o期构成等差数列,设a1=7,d>0,S”=55,所5.B提示:由题意可求得AB 2bca以有”a”(”一1)”(”一1)——-——・d=55,卩7”---------------bc则tan/AF1O=a=—=対,艮卩b=23a,2c2ab所以=23,于是双曲线的渐近线方程为ay=士23—o6.A提示:因为f(—)=x2一—+2,所以f(、—一a)=(—一a)2一(—一a)十2=—2一(2a+1)—十a2十a十2,则f(.—一a)的增区间为(a十2,十*),又f(x—a)在(1,+x)上是增函数,所以a+2W1,解得a W2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年全真模拟卷(1)
数学
(考试时间:120分钟 试卷满分:150分)
第Ⅰ卷
一、选择题:本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要
求的.
1.设全集U =R ,{|15}M x x =-≤<,{|0}N x x =<,则(M ⋂N C U )等于 A .{|10}x x -≤< B .{|05}x x << C .{|05}x x ≤<
D .{|05}x x ≤≤
2.设0.5log 3a =,0.2
13b =⎛⎫
⎪⎝⎭
,1
13c -⎛⎫= ⎪⎝⎭,则下列选项中正确的是 A .a b c <<
B .c a b <<
C .c b a <<
D .b a c <<
3.设,,a b c R ∈,则“1,,,,16a b c 为等比数列”是“4b =”的 A .充分非必要条件 B .必要非充分条件 C .充分必要条件
D .既非充分也非必要条件
4.从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是
A .抽出的100人中,年龄在40~45岁的人数大约为20
B .抽出的100人中,年龄在35~45岁的人数大约为30
C .抽出的100人中,年龄在40~50岁的人数大约为40
D .抽出的100人中,年龄在35~50岁的人数大约为50 5.已知偶函数
()f x 与奇函数()g x 的定义域都是()2,2-,它们在[]0,2上的图象如图所示,则使关于x 的
不等式
()()0f x g x ⋅<成立的x 的取值范围为
A .()()2,11,2--⋃
B .()()1,00,1-U
C .()()1,01,2-⋃
D .()()2,10,1--⋃
6.已知抛物线22(0)y px p =>上的点A 到焦点F 距离为4,若在y 轴上存点()0,2B 使得0BA BF ⋅=u u u r u u u r

则该抛物线的方程为 A .28y x =
B .26y x =
C .24y x =
D .22y x =
7.己知函数()cos (>0)f x x x ωωω=+的零点构成一个公差为2
π
的等差数列,把函数()f x 的图像沿x 轴向左平移
6
π
个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是 A .在[,]42
ππ
上是增函数
B .其图像关于4
π
x =-
对称 C .函数()g x 是奇函数 D .在区间2[
,]63
ππ
上的值域为[-2,1]
8.如图,各棱长均为a 的正三棱柱111ABC A B C -,M 、N 分别为线段1A B 、1B C 上的动点,且MN ∥平
面11ACC A ,M ,N 中点S 111ABC A B C -的体积为
A
B C .3
D .
9.已知函数()f x 是定义在[100,100]-的偶函数,且(2)(2)f x f x +=-.当[0,2]x ∈时,()(2)x
f x x e =-,
若方程2
[()]()10f x mf x -+=有300个不同的实数根,则实数m 的取值范围为 A .15,2e e

⎫---
⎪⎝

B .15,2e e ⎡⎤---⎢⎥⎣
⎦ C .(,2)-∞- D .1
,2e e
⎛⎫--- ⎪⎝

第Ⅱ卷
二、填空题:本题共6个小题,每小题5分,共30分. 10.已知复数12i
z i
+=
,则z =_____. 11.下列命题中真命题的序号为(少填或错填均不得分)______.
①若一个球的半径缩小为原来的一半,则其体积缩小为原来的八分之一;②若两组数据的平均值相等,则
它们的标准差也相等;③直线10x y ++=与圆22
1x y +=相切;④若两个平面都垂直于同一个平面,则这
两个平面平行.
12.已知随机变量ξ的分布列为P (ξ=k )=a
k
,其中k =1,2,3,4,5,6,则a =________,
E (ξ)=________.
13.二项式1)3n
x
的展开式中只有第四项的二项式系数最大,则展开式中的常数项是______. 14.已知四边形ABCD 中,3BC =,4AC =,M 为AB 中点且MD AB ⊥,则AB CD ⋅=u u u r u u u r
________.
15.甲乙两地相距500km ,汽车从甲地匀速行驶到乙地,速度v 不能超过120km/h .已知汽车每.小时运输成本为
2
9360250
v +元,则全程运输成本与速度的函数关系是y =______,当汽车的行驶速度为______km/h 时,全程运输成本最小.
四、解答题:本大题共5小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(14分)在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,且sin cos b A B =. (1)求角B 的大小;
(2)若∆=
=
ABC b S ()
>A B ,求a c 、的值. 17.(15分)如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=o ,
EC =2AB BD ==,直线EC 与平面ABC 所成的角等于30o .
(1)证明:平面EFC ⊥平面BCD ;
(2)求二面角A CE B --的余弦值.
18.(15分)如图,椭圆22
221(0)x y a b a b +=>>的左、右焦点分别为1(1,0)F -,2(1,0)F ,点1,2⎛ ⎝⎭
在椭圆上.
(1)求椭圆的方程;
(2)若A ,B 是椭圆上位于x 轴上方的两点,直线2AF 与直线1BF 交于点P ,
21||::||3:1PA PF PF PB ==,求直线2BF 的斜率.
19.(15分)数列{}n a 的前n 项和为n S ,且(1)n S n n =+,*n N ∈.
(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足:122313131
n n n b b b
a =++++++L ,求数列{}n
b 的通项公式; (3)令*,4
n n
n a b c n N =
∈,求数列{}n c 的前n 项和n T . 20.(16分)设函数()3()x
f x mx e m R =-+∈.
(1)讨论函数()f x 的极值;
(2)若a 为整数,0m =,且(0,)x ∀∈+∞,不等式()[()2]2x a f x x --<+成立,求a 的最大值.。

相关文档
最新文档