2021年九年级数学中考复习专题之圆的考察:垂径定理的运用(三)
新课标九年级数学中考复习强效提升分数精华版 (圆专项复习)
8
F
o
B
4
C
6
E
1 S △ABC= C △ABC· r内 2
2.△ABC中, ∠A=70°,⊙O截△ABC三条边所得的 弦长相等.则 ∠BOC=____. D A D F A.140°B.135°C.130°D.125°
R
1 ∠BOC=90°+ ∠A 2
E
O
Q
G
B
M
P
N C
3、边长分别为3,4,5的三角形的内切圆半径与外 接圆半径的比为( ) A.1∶5 B.2∶5 C.3∶5 D.4∶5
四,垂径定理
A
垂直于弦的直径平分 弦及弦所对的弧
. O
P
C B D
1.如图4,⊙M与x 轴相交于点A(2,0), B(8,0),与y轴相切于点C, 则圆心M的坐标是( )
y
C O A
M ?4 B
x
2.CD为⊙O的直径,弦AB⊥CD于 点E,CE=1,AB=10, 求CD的长. D
O
.
E
A
B
C
3.矩形ABCD与圆O交A,B,E,F DE=1cm,EF=3cm,则AB=___ D A E F C B
3、如图,A、B、C三点在圆上,若∠ABC=400, 则∠AOC=
O
A C B
4.如图,则∠1+∠2=__
1
.
2
5.( 苏州市 ) 如图,四边形 ABCD 内接于⊙ O , 若它的一个外角∠ DCE=70 °,则∠ BOD=( ) D A.35° C.110° B.70° D.140°
对的弧相等,所对的弦相等. (2)在圆中,如果弧相等,那么它所对的圆心角相 等,所对的弦相等. (3)在一个圆中,如果弦相等,那么它所对的弧相 等,所对的圆心角相等.
九年级圆垂径定理知识点
九年级圆垂径定理知识点圆垂径定理是数学中的一个重要定理,它是研究圆的性质和应用的基础。
本文将详细介绍九年级圆垂径定理的相关知识点,帮助你更好地理解和应用这一定理。
一、圆垂径定理的概述圆垂径定理是指:在一个圆中,如果一条直径垂直于另一条弦,那么它一定是这条弦的垂直平分线。
二、圆垂径定理的证明为了证明圆垂径定理,我们可以采用几何证明和代数证明两种方法。
1. 几何证明假设圆的中心为O,半径为r,直径AB垂直于弦CD。
我们需要证明AO = BO。
首先,连接AC和BC,并设AC = x,BC = y。
根据圆的性质,我们知道AO = r,BO = r,AC = BC = r。
又因为AO垂直于CD,所以∠ACO = ∠BCO = 90°。
由三角形的性质可知,AO² = AC² - CO²,BO² = BC² - CO²。
代入已知条件,我们可以得到r² = x² - CO²,r² = y² - CO²。
通过这两个等式,我们可以得到x² - CO² = y² - CO²,即x² = y²。
进而,我们可以得知x = y,即AC = BC。
所以,根据直角三角形的特性,AO = BO,也就是说AO = BO = r。
因此,根据圆的定义,我们可以得出圆垂径定理的结论。
2. 代数证明我们也可以采用代数方法证明圆垂径定理。
设圆的方程为x² + y² = r²(其中,O为坐标原点)。
直径AB垂直于弦CD,且AB的斜率k存在。
根据直线的斜率公式,可以得到直线AB的方程为y = kx。
将直线AB的方程代入圆的方程中,我们可以得到x² + (kx)² =r²。
简化这个方程,可以得到x² + k²x² = r²。
中考考点突破之圆的专题复习
中考考点突破之圆的专题复习考点精讲1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;2.探索并证明垂径定理;3.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论;考点解读考点1:垂径定理及其运用①与圆有关的概念和性质:(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O. (2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧. (4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.②垂径定理及其推论:(1)定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)延伸:根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧AD; ②弧B D=弧C B;③C E=D E; ④AB⊥CD; ⑤AB是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.考点2:圆周角定理及其运用①圆心角、弧、弦的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.②圆周角定理及其推论:(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a ,∠A =1/2∠O .图a 图b 图c( 2 )推论:① 在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b ,∠A =∠C .② 直径所对的圆周角是直角.如图c ,∠C =90°.圆内接四边形的对角互补.如图a ,∠A +∠C =180°,∠ABC +∠ADC =180°.考点3:点与圆的位置关系①点与圆的位置关系:设点到圆心的距离为d .(1)d <r ⇔点在⊙O 内;(2)d =r ⇔点在⊙O 上;(3)d >r ⇔点在⊙O 外.考点4:切线性质及其证明①切线的判定:(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.②切线的性质:(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径考点5:正多边形与圆①正多边形的有关概念:边长(a )、中心(O )、中心角(∠AOB )、半径(R ))、边心距(r ),如图所示①. 222⎪⎭⎫ ⎝⎛-=a R r 边心距n ︒=360中心角②内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.考点6:与圆有关的计算①弧长和扇形面积的计算:扇形的弧长l =180n r π;扇形的面积S =2360n r π=12lr②圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:2180n R l r ππ==, S 侧=12lR =πrl考点突破1.(2021秋•德城区校级期中)在平面直角坐标系中,⊙C 的圆心坐标为(1,0),半径为1,AB 为⊙C 的直径,若点A 的坐标为(a ,b ),则点B 的坐标为( )A .(﹣a ﹣1,﹣b )B .(﹣a +1,﹣b )C .(﹣a +2,﹣b )D .(﹣a ﹣2,﹣b )2.(2021秋•普兰店区期末)如图,⊙O 的半径为5,C 是弦AB 的中点,OC =3,则AB 的长是()A.6 B.8 C.10 D.123.(2021秋•禹州市期中)如图拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,这些钢索中最长的一根的长度为25m,那么其正下方的路面AB的长度为()A.100m B.130m C.150m D.180m4.(2020秋•永城市期末)如图,点A,B,C,D均在以点O为圆心的圆O上,连接AB,AC 及顺次连接O,B,C,D得到四边形OBCD,若OD=BC,OB=CD,则∠A的度数为()A.20°B.25°C.30°D.35°5.(2021秋•郾城区期末)如图,在⊙O中,=,直径CD⊥AB于点N,P是上一点,则∠BPD的度数是()A.30°B.45°C.60°D.15°6.(2022•泗洪县一模)圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,∠D 的度数为()A.60°B.80°C.100°D.120°7.(2016•中山市模拟)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC 于点Q.若QP=QO,则的值为()A.B.C.D.8.(2021秋•舞阳县期末)⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上9.(2021秋•丛台区校级期中)下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.同一平面内,过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在10.(2021秋•射阳县校级期末)下列语句中,正确的是()A.经过三点一定可以作圆B.等弧所对的圆周角相等C.相等的弦所对的圆心角相等D.三角形的外心到三角形各边距离相等11.(2021秋•禹州市期末)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.12.(2021•五通桥区模拟)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC =4,CD的长为.13.(2021秋•甘州区校级期末)在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.14.(2021秋•西峡县期末)如图,ABCD是⊙O的内接四边形,AD=CD,点E在AD的延长线上,∠CDE=52°,则∠AOD=.15.(2021秋•郾城区期末)如图,在⊙O中,AB为直径,∠ACB的平分线交⊙O于D,AB=6,则BD=.16.(2021•内乡县二模)婆罗摩笈多(公元598﹣660),印多尔北部乌贾因地方人(现巴基斯坦信德地区),在数学、天文学方面有所成就.他编著了《婆罗摩修正体系》《肯达克迪迦》等著作,他还提出了几何界的“婆罗摩笈多定理”.该定理可概述如下:如图,圆O的两条弦AB和CD互相垂直,垂足为E,连接BC,AD,若过点E作BC的垂线EF,延长FE与AD相交于点G,则G为AD的中点.为了说明这个定理的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图,在圆O的内部,AB⊥CD,垂足为E,.求证:.17.(2021秋•长垣市期末)豫东北机场待建在即,国道515围机场绕道而行.如图是公路转弯处的一段圆弧,点O是这段圆弧的圆心.直径CD⊥AB于点F.BE平分∠ABC交CD 于点E,AB=3km,DF=450m.(1)求圆的半径;(2)请判断A、B、E三点是否在以点D为圆心DE为半径的圆上?并说明理由.18.(2022•眉山模拟)如图所示,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD,BC,求证:(1)=;(2)AE=CE.19.(2021秋•内乡县期末)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=3,CE=4,求AC的长.20.(2021•信阳模拟)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.。
2021年九年级数学中考复习专题之圆的考察:垂径定理的运用(一)
2021年九年级数学中考复习专题之圆的考察:垂径定理的运用(一)一.选择题1.一根水平放置的圆柱形输水管横截面如图所示,其中有水部分水面宽8米,最深处水深2米,则此输水管道的半径是()A.8米B.6米C.5米D.4米2.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,∠AOB=60°,点C是的中点,且CD=5m,则这段弯路所在圆的半径为()A.(20﹣10)m B.20m C.30m D.(20+10)m 3.如图是一个隧道的横截面,它的形状是以O为圆心的圆的一部分,CM=DM=2,直线MO交圆于E,EM=8,则圆的半径为()A.4 B.3 C.D.4.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为()A.13 B.24 C.26 D.285.我国古代数学著作《九章算术》中记载了弓形面积的计算方法.如图,弓形的弦长AB 为30cm,拱高(弧的中点到弦的中点之间的距离)CD为15cm,则这个弓形的面积是()cm2.A.300π﹣450B.900π﹣225C.900π﹣450D.300π﹣225 6.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm7.《九章算术》总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响.在《九章算术》中有很多名题,下面就是其中的一道.原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,CD为⊙O的直径,弦AB⊥CD于点E.CE=1寸,AB=10寸,则可得直径CD的长为()A.13寸B.26寸C.18寸D.24寸8.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水面AB的宽度是()cm.A.6 B.C.D.9.小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160mm,直角顶点到轮胎与底面接触点AB长为320mm,请帮小名计算轮胎的直径为()mm.A.350 B.700 C.800 D.40010.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的直径是()A.cm B.5cm C.6cm D.10cm二.填空题11.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=2cm,则球的半径为cm.12.《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE =1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为寸.13.“美丽乡村“的建设行动,让我们的家园拥有了靓丽的风景.如图1,是某乡村一角的草坪,草坪是由一块弓形草地和一块三角形草地组成.为了更科学地管理草坪,现需要给草坪装上自动喷灌装置,并且用喷灌龙头浇水时,既要保证草坪的每个角落都能浇上水,又能最大化的节约水,于是选择了一种转角在0°~180°内(含180°)可以自由设定(按设定的转角可以往复转动喷灌)、射程长短也可以自主设定的喷灌龙头.如图2,已知弓形高DE=6米,弓形宽AB=24米.△ABC的边BC=12米,AC=12米.若经测算,将喷灌龙头安装在△ABC的顶点C时为最优方案,则:(1)喷灌龙头的最小转角应设置为度;(2)喷灌龙头的最短射程应设置为米.14.《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“如右图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该内切圆的直径为步.15.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为m.三.解答题16.在直径是52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度CD 为16cm,求油面宽度AB的长.17.如图,将一个两边带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆交于点D、E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.18.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?19.如图,一圆弧形桥拱的圆心为E,拱桥的水面跨度AB=80米,桥拱到水面的最大高度DF为20米.求:(1)桥拱的半径;(2)现水面上涨后水面跨度为60米,求水面上涨的高度为米.20.图1是某奢侈品牌的香水瓶.从正面看上去(如图2),它可以近似看作⊙O割去两个弓形后余下的部分与矩形ABCD组合而成的图形(点B、C在⊙O上),其中BC∥EF;从侧面看,它是扁平的,厚度为1.3cm.(1)已知⊙O的半径为2.6cm,BC=2cm,AB=3.02cm,EF=3.12cm,求香水瓶的高度h.(2)用一张长22cm、宽19cm的矩形硬纸板按照如图3进行裁剪,将实线部分折叠制作成一个底面积为S MNPQ=9cm2的有盖盒子(接缝处忽略不计).请你计算这个盒子的高度,并且判断上述香水瓶能否装入这个盒子里.参考答案一.选择题1.解:连接OA,作OC⊥AB交AB于C,交圆于D,由题意得,AB=8,CD=2,∵OC⊥AB,∴AC=AB=4,设圆的半径为r米,则OC=(r﹣2)米,由勾股定理得,OA2=OC2+AC2,即r2=(r﹣2)2+42,解得,r=5,即此输水管道的半径是5米,故选:C.2.解:∵点O是这段弧所在圆的圆心,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB,设AB=OB=OA=rm,∵点C是的中点,∴OC⊥AB,∴C,D,O三点共线,∴AD=DB=rm,在Rt△AOD中,∴OD=r,∵OD+CD=OC,∴r+5=r,解得:r=(20+10)m,∴这段弯路的半径为(20+10)m故选:D.3.解:连接OC,∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,设圆的半径是x米,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+(8﹣x)2,解得:x=,所以圆的半径长是.故选:C.4.解:设圆心为O,过O作OC⊥AB于C,交⊙O于D,连接OA,如图所示:∴AC=AB=×10=5,设⊙O的半径为r寸,在Rt△ACO中,OC=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.5.解:设弧ACB所在圆的圆心为O,连接OC、OA、OB,则OC与AB的交点即为D 点,如图所示:在Rt△OAD中,设OA=x,则OD=x﹣CD=x﹣15,AD=AB==15,∴OA2=OD2+AD2,即x2=(x﹣15)2+(15)2,解得x=30,∴OA=30,∴OD=30﹣15=15,∴OD=OA,∴∠AOD=60°,∴∠AOB=120°∴弓形的面积=S扇形AOB﹣S△AOB=﹣×15=300π﹣225,故选:D.6.解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.7.解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r寸,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26寸.故选:B.8.解:作OD⊥AB于C,交小圆于D,连接OA,则CD=2,AC=BC,∵OA=OD=4,CD=2,∴OC=2,∴AC==2,∴AB=2AC=4.故选:C.9.解:如图,连接OB,OC,作CD⊥OB于D.设⊙O半径为xmm,在Rt△OCD中,由勾股定理得方程,(x﹣160)2+3202=x2,解得,x=400,∴2x=800,答:车轱辘的直径为800mm.故选:C.10.解:∵把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,∴线段MN的就是该圆的直径,∵OM=8cm,ON=6cm,∠MON=90°,∴MN=10cm,故选:D.二.填空题(共5小题)11.解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=2设OF=x,则ON=OF,∴OM=MN﹣ON=2﹣x,MF=1,在直角三角形OMF中,OM2+MF2=OF2,即:(2﹣x)2+12=x2,解得:x=,故答案为:.12.解:连接OC,∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸,故答案为:26.13.解:(1)∵AB=24米,BC=12米,AC=12米,∴BC2+AC2=122+(12)2=576=242=AB2,∴∠ACB=90°,∴喷灌龙头的最小转角应设置为90°;(2)如图3,作射线ED交AC于点M∵AD=DB,ED⊥AB,是劣弧,∴所在圆的圆心在射线DC上,假设圆心为O,半径为r,连接OA,则OA=r,OD=r﹣6,AD=AB=12,在Rt△AOD中,r2=122+(r﹣6)2,解得:r=7,∴OD=,过点C作CN⊥AB,垂足为N,∵∠ACB=90°,AB=24,BC=12,∴sin∠BAC=,∴∠BAC=30°,∴CN=AC=6,AN=18,BN=6,∴DM=×AD=4,∴OD<MD,∴点O在△ACB内部,∴连接CO并延长交于点F,则CF为草坪上的点到C点的最大距离,∵在上任取一点异于点F的点G,连接GO,GC,∴CF=OC+OF=OC+OG>CG,即CF>CG,过O作OH⊥CN,垂足为H,则OH=DN=6,CH=6﹣=5,∴OC===,∴CF=OC+r=7+(米),答:喷灌龙头的射程至少为(7+)米,故答案为:(1)90;(2)7+.14.解:根据勾股定理得:斜边AB==17,∴内切圆直径=8+15﹣17=6(步),故答案为:6.15.解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.故答案为:25.三.解答题(共5小题)16.解:由题意得出:OC⊥AB于点D,由垂径定理知,点D为AB的中点,AB=2AD,∵直径是52cm,∴OB=26cm,∴OD=OC﹣CD=26﹣16=10(cm),由勾股定理知,BD==24(cm),∴AB=48cm.17.解:过点O作OM⊥DE于点M,连接OD.∴DM=DE.∵DE=8(cm)∴DM=4(cm)在Rt△ODM中,∵OD=OC=5(cm),∴OM===3(cm)∴直尺的宽度为3cm.18.解:(1)连结OA,由题意得:AD=AB=30(米),OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34(米);(2)连结OA′,∵OE=OP﹣PE=30米,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16(米).∴A′B′=32(米).∵A′B′=32>30,∴不需要采取紧急措施.19.解:(1)如图,设点E是拱桥所在的圆的圆心,作EF⊥AB于F,延长EF交圆于点D,则由垂径定理知,点F是AB的中点,AF=FB=AB=40,EF=ED﹣FD=AE﹣DF,由勾股定理知,AE2=AF2+EF2=AF2+(AE﹣DF)2,设圆的半径是r,则:r2=402+(r﹣20)2,解得:r=50;即桥拱的半径为50米;(2)设水面上涨后水面跨度MN为60米,MN交ED于H,连接EM,如图2所示则MH=NH=MN=30,∴EH==40(米),∵EF=50﹣20=30(米),∴HF=EH﹣EF=10(米);故答案为:10.20.解:(1)作OG⊥BC于G,延长GO交EF于H,连接BO、EO.∵EF∥BC,∴OH⊥EF,∴BG=BC,EH=EF∴GO==2.4;OH==2.08,∴h=2.4+2.08+3.02=7.5cm.(2)设盒子的高为xcm.由题意:(22﹣2x)•=9解得x=8或12.5(舍弃),∴MQ=6,MN=1.5∵2.6×2=5.2<6;1.3<1.5;7.5<8,∴能装入盒子.。
九年级圆的垂径定理知识点
九年级圆的垂径定理知识点在九年级的数学学习中,圆的垂径定理是一个非常重要的概念,也是学习圆形的几何性质的关键之一。
在这篇文章中,我们将深入探讨圆的垂径定理的知识点,了解其背后的原理和应用。
一、圆的定义和性质首先,我们需要回顾一下圆的定义和基本性质。
在数学中,圆是由平面上所有到一个固定点的距离相等的点的集合组成。
而这个固定点被称为圆心,半径则是圆心到圆上任意一点的距离。
圆具有很多重要性质,例如任意两点到圆心的距离相等,直径是圆的特殊弦,且它的长度是半径的两倍,而弧则是圆上的一段曲线,它与圆心对应的角叫做圆心角。
二、垂径定理的表述圆的垂径定理是指,如果一个直径和一个弦垂直相交,那么它就是弦的垂径,且它把弦分为两个相等的部分。
或者反过来说,如果一个弦被圆心角所分为两个相等的部分,那么它就与直径垂直相交。
这个定理的表述可能有点晦涩难懂,但是我们可以通过几何图形来直观地理解。
三、垂径定理的证明圆的垂径定理是可以通过简单的几何推导证明的。
假设有一个圆,圆心为O,直径为AB,弦为CD垂直于直径AB于点E。
我们需要证明CE = DE。
首先,连接AC和BD,并假设它们交于点F。
由于CD垂直于AB,所以CDE是一个直角三角形。
而由于圆心角的性质,角COD的度数是弦CD对应的角,即∠COE。
由于COE和COD是同位角,所以它们的度数相等,即∠COE = ∠COD。
而∠COD是一个直角,所以∠COE也是一个直角。
因此,我们可以得出结论,CE与DE相等,即CE = DE,证明了定理。
四、垂径定理的应用垂径定理在实际学习和应用中非常有用。
例如,在解决证明问题时,我们可以利用垂径定理来简化问题和推导证明过程。
此外,垂径定理还与圆的切线有着密切的关系。
当一个直径与一个切线相交时,由于切线与半径垂直,我们可以通过垂径定理得出切线与直径相交的两点的性质。
最后,垂径定理也与三角形的性质相关。
当我们在一个三角形内有一个圆时,利用垂径定理可以推导得出一些重要的三角形性质,如内切圆和外接圆的性质等。
中考数学之圆的公式定理整理
中考数学之圆的公式定理整理初中数学学习中,大家首先必须搞懂的就是公式定理,只有先记住了公式,才有可能在运算中活学活用。
下面是小编给大家带来的中考数学复习资料之圆的公式定理,欢迎大家阅读参考,我们一起来看看吧!中考数学复习资料之圆的基本性质与定理1。
点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO2。
圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
3。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4。
在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5。
一条弧所对的圆周角等于它所对的圆心角的一半。
6。
直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
7。
不在同一直线上的3个点确定一个圆。
8。
一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9。
直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO10。
圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11。
圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):外离P>R+r;外切P=R+r;相交R-r中考数学复习资料之圆的定义1。
平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2。
圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
(完整版)初三数学圆知识点复习专题经典
A
D
E
O
C
B
线长是这点到割
( 4 )割线定理 :从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长的积相等
(如上图) 。
即:在⊙ O 中,∵ PB 、 PE 是割线
∴PC PB PD PE
例 1. 如图 1,正方形 ABCD的边长为 1,以 BC为直径。在正方形内作半圆 于 E,求 DE: AE的值。
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称 1
推 3 定理,即上述四个结论中, 只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ; ③ OC OF ;④ 弧 BA 弧 BD
O A
C
E F D
∴C D
推论 2 :半圆或直径所对的圆周角是直角;圆周角是直角所对的弧
C
是半圆,所对的弦是直径。
即:在⊙ O 中,∵ AB 是直径
或∵ C 90
B
A
O
∴ C 90
∴AB 是直径
推论 3 :若三角形一边上的中线等于这边的一半,那么这个三角形是
C
直角三角形。
即:在△ ABC 中,∵ OC OA OB
B
A
推论 1:( 1 )平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2 )弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3 )平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结
中考数学专题复习圆
第六章圆第二十三讲圆的有关概念及性质【基础知识回顾】一、圆的定义及性质:1、圆的定义:⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合2、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类3、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径;3、圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】二、垂径定理及推论:1、垂径定理:垂直于弦的直径,并且平分弦所对的。
2、推论:平分弦()的直径,并且平分弦所对的。
【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其余三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线(即弦心距)。
3、垂径定理常用作计算,在半径r、弦a、弦心d和弓高h中已知其中两个量可求另外两个量。
】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是,900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,是类,它们的关系是,2、作直径所对的圆周角是圆中常作的辅助线】五、圆内接四边形:定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。
新课标九年级数学中考复习强效提升分数精华版《圆》要点分析
九年级数学专题复习---《圆》要点分析一、关于圆的主干知识点为:垂径定理;圆心角圆周角;切线的性质和判定;圆中线段、角弧长、扇形的计算。
故计划用3个课时完成圆一章的复习:第1课时《圆的有关概念及计算和应用》——包括求边和角的简单计算、弧长、扇形面积、正多边形的简单计算。
第2课时《与圆有关的三种位置关系》——会利用数量关系准确判断三种与圆有关的位置关系。
第3课时《切线性质与判定的应用》——切线的性质和判定定理的应用及归纳判定切线证明的基本方法。
二、关于与圆进行单元间综合的知识点有:等腰、直角三角形的重要性质等。
针对涉及本单元外的知识点,要计划在单元外复习时加强落实,以确保单元复习的延续性和完整性。
【示例】(07年)21、如图,在△ABC中,AB=AC,内切圆O与边BC、AC、AB分别切于D、E、F.(1)求证:BF=CE;(2)若∠C=30°,CE AC.【分析】本题在运用切线的有关性质得出线段相等的条件后,若在图形中隐去了圆,则解题过程中所用到的全是关于等腰三角形三线合一、三角函数的相关知识。
因此,在进行《三角形》复习时必须注意落实相关内容的复习,让单元外知识成为本章复习的枝节内容,更好地突出圆复习的重点内容。
三、通性、通法分析“问题是数学的心脏”,可见学习数学不能不解题,九年级数学总复习的最终目标就是学生能顺利解答出试题。
所以提高学生解决问题的能力也就成为数学教学的重要组成部分。
近年来考试命题不仅注重基础知识的覆盖面和主干知识的重点考查,而且更重视数学思想方法的考查,强调淡化特殊技巧、注重通性通法。
所以通性通法成为九年级数学复习的重要内容。
所谓“通性”是处理数学题的共通思维意识和策略,“通法”是一类题的共性特征,有普遍意义,【示例】《切线的性质和判定的应用》:在△ABC中,CA=CB,AB的中点为点D,(1)如图3,当点D恰好在⊙C上时,图3求证:直线AB 是⊙C 的切线。
(2)如图4,当⊙D 恰与CA 相切于E 点,求证:BC 也是⊙D 的切线。
2021年数学人教版九年级中考复习专题之圆:垂径定理
2021年数学人教版九年级中考复习专题之圆:垂径定理一.选择题(共10小题)1.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.2.如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,﹣3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.103.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.如图,点C是⊙O上一点,⊙O的半径为,D、E分别是弦AC、BC上一动点,且OD =OE=,则AB的最大值为()A.B.C.D.5.如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=8,BE=2,则CD=()A.5 B.8 C.2D.46.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A.3B.4C.5D.67.如图,⊙O的直径AB=10,E在⊙O内,且OE=4,则过E点所有弦中,长度为整数的条数为()A.4 B.6 C.8 D.108.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.119.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B.C.D.10.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2二.填空题(共6小题)11.如图,有半径分别为2和4的两个同心圆,矩形ABCD的边AB,CD分别为两圆的弦,那么矩形ABCD面积的最大值为.12.如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=cm.13.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为.14.如图,射线PB,PD分别交圆O于点A,B和点C,D,且AB=CD=8.已知圆O半径等于5,OA∥PC,则OP的长度为.15.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.①AD AN(填“>”,“=”或“<”);②AB=8,ON=1,⊙O的半径为.16.如图,已知AB是圆O的直径,PQ是圆O的弦,PQ与AB不平行,R是PQ的中点.作PS ⊥AB,QT⊥AB,垂足分别为S,T,并且∠SRT=60°,则的值等于.三.解答题(共4小题)17.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.18.如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.19.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为E、F.(1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么与的大小有什么关系?AB与CD的大小有什么关系?为什么?∠AOB与∠COD呢?20.如图,已知在四边形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O交边DC于E、F两点,AD=1,BC=5,设⊙O的半径长为r.(1)联结OF,当OF∥BC时,求⊙O的半径长;(2)过点O作OH⊥EF,垂足为点H,设OH=y,试用r的代数式表示y;(3)设点G为DC的中点,联结OG、OD,△ODG是否能成为等腰三角形?如果能,试求出r的值;如不能,试说明理由.参考答案一.选择题1.解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选:A.2.解:过P作弦AB⊥OP,则AB是过P点的⊙O的最短的弦,连接OB,则由垂径定理得:AB=2AP=2BP,在Rt△OPB中,PO=3,OB=5,由勾股定理得:PB=4,则AB=2PB=8,故选:C.3.解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选:D.4.解:如图,当OD⊥AC、OE⊥BC时∠ACB最大,AB最大,连接OC,∵⊙O的半径为2,OD=,∴∠ACO=30°,∴AC=2CD=2=2=2,同理可得∠BCO=30°,∴∠ACB=60°,∵OD=OE,OD⊥AC、OE⊥BC,∴AC=BC,∴△ABC是等边三角形,∴AB=AC=2,即AB的最大值为2.故选:A.5.解:连接OD,∵AB为⊙O的直径,弦CD⊥AB于点E,∴CD=2DE.∵AE=8,BE=2,∴⊙O的半径=5,∴OE=5﹣2=3,在Rt△ODE中,∵OE=3,OD=5,∴DE==4,∴CD=2DE=8.故选:B.6.解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣∠BOC)=30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.7.解:∵AB=10,∵OB=OA=OC=5,过E作CD⊥AB于E,连接OC,则CD是过E的⊙O的最短的弦,∵OB⊥CD,∴∠CEO=90°,由勾股定理得:CE===3,∵OE⊥CD,OE过O,∴CD=2CE=6,∵AB是过E的⊙O的最长弦,AB=10,∴过E点所有弦中,长度为整数的条数为1+2+2+2+1=8,故选:C.8.解:由题意可得,OA=13,∠ONA=90°,AB=24,∴AN=12,∴ON=,故选:A.9.解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.10.解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选:D.二.填空题(共6小题)11.解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N,根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD===6,S==×OM==,△AODOM=4,即AB=8.则矩形ABCD的面积的最大值是AB•AD=8×=48.故答案为:48.12.解:∵CD⊥OB,∴CE=DE=CD=4,在Rt△OCE中,OE==3,∴AE=AO+OE=5+3=8(cm).故答案为8.13.解:连接OC,∵CD⊥AB,∴CH=DH=CD=×8=4,∵直径AB=10,∴OC=5,在Rt△OCH中,OH==3,故答案为:3.14.解:作OE⊥AB于E,OF⊥CD于F,连接OP,如图,∴OE=OF,而OE⊥AB,OF⊥CD,∴PO平分∠BPD,∴∠APO=∠OPC,∵OA∥PC,∴∠AOP=∠OPC,∴∠APO=∠AOP,∴PA=AO=5,∵OE⊥AB,∴AE=BE=AB=4,在Rt△AOE中,OE==3,在Rt△POE中,PO==3.故答案为3.15.解:(1)AD=AN,证明:∵CD⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B∵∠CNM=∠AND∴∠AND=∠B,∵∠D=∠B,∴∠AND=∠D,∴AN=AD,(2)设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=或x=﹣3(不合题意,舍去),∴OA=2x+1=2×+1=,即⊙O的半径为,故答案为.16.解:连结OP,OQ,OR,如图,∵R是PQ的中点,∴OR⊥PQ,∵OP=OQ,∴∠POR=∠QOR,∵PS⊥AB,∴∠PSO=∠PRO=90°,∴点P、S、O、R四点在以OP为直径的圆上,∴∠PSR=∠POR,同理可得∠QTR=∠QOR,∴∠PSR=∠QTR,∴∠RST =∠RTS ,而∠SRT =60°,∴△RST 为等边三角形,∴∠RST =60°,∠RTS =60°,∴∠RPO =∠RSO =60°,∠RQO =∠RTO =60°,∴△OPQ 为等边三角形,∴PQ =OP ,∴AB =2PQ ,∴=.故答案为.三.解答题(共4小题)17.解:(1)连接AO ,如右图1所示,∵CD 为⊙O 的直径,AB ⊥CD ,AB =8,∴AG ==4,∵OG :OC =3:5,AB ⊥CD ,垂足为G ,∴设⊙O 的半径为5k ,则OG =3k ,∴(3k )2+42=(5k )2,解得,k =1或k =﹣1(舍去),∴5k =5,即⊙O 的半径是5;(2)如图2所示,将阴影部分沿CE 翻折,点F 的对应点为M , ∵∠ECD =15°,由对称性可知,∠DCM =30°,S 阴影=S 弓形CBM ,连接OM ,则∠MOD =60°,∴∠MOC =120°,过点M 作MN ⊥CD 于点N ,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.18.解:(1)如图(1),∵OD⊥BC,∴BD=BC=×6=3,∵∠BDO=90°,OB=5,BD=3,∴OD==4,即线段OD的长为4.(2)存在,DE保持不变.理由:连接AB,如图(2),∵∠AOB=90°,OA=OB=5,∴AB==5,∵OD⊥BC,OE⊥AC,∴D和E分别是线段BC和AC的中点,∴DE=AB=,∴DE保持不变.19.(1)解:OE=OF,理由是:∵OE⊥AB,OF⊥CD,OA=OB,OC=OD,∴∠OEB=∠OFD=90°,∠EOB=∠AOB,∠FOD=∠COD,∵∠AOB=∠COD,∴∠EOB=∠FOD,∵在△EOB和△FOD中,∴△EOB≌△FOD(AAS),∴OE=OF.(2)解:弧AB=弧CD,AB=CD,∠AOB=∠COD,理由是:∵OE⊥AB,OF⊥CD,∴∠OEB=∠OFD=90°,∵在Rt△BEO和Rt△DFO中,∴Rt△BEO≌Rt△DFO(HL),∴BE=DF,由垂径定理得:AB=2BE,CD=2DF,∴AB=CD,∴弧AB=弧CD,∠AOB=∠COD.20.解:(1)∵OF∥BC,OA=OB,∴OF为梯形ABCD的中位线,∴OF=(AD+BC)=(1+5)=3,即⊙O的半径长为3;(2)连接OD、OC,过点D作DM⊥BC于M,如图1所示:则BM=AD=1,∴CM=BC﹣BM=4,∴DC===2,∵四边形ABCD的面积=△DOC的面积+△AOD的面积+△BOC的面积,∴(1+5)×2r=×2×y+×r×1+×r×5,整理得:y=;(3)△ODG能成为等腰三角形,理由如下:∵点G为DC的中点,OA=OB,∴OG是梯形ABCD的中位线,∴OG∥AD,OG=(AD+BC)=(1+5)=3,DG=CD=,由勾股定理得:OD==,分三种情况:①DG=DO时,则=,无解;②OD=OG时,如图2所示:=3,解得:r=2;③GD=GO时,作OH⊥CD于H,如图3所示:∠GOD=∠GDO,∵OG∥AD,∴∠ADO=∠GOD,∴∠ADO=∠GDO,在△ADO和△HDO中,,∴△ADO≌△HDO(AAS),∴OA=OH,则此时圆O和CD相切,不合题意;综上所述,△ODG能成为等腰三角形,r=2.。
初中九年级圆垂径定理
初中九年级圆垂径定理
初中九年级圆垂径定理是初中数学中的一条重要定理,它指出:
如果一条直线垂直于圆的一条弦,那么这条直线就称为这条弦的垂径。
下面我们来总结一下这个定理的具体内容和证明方法。
一、圆垂径定理的具体内容:
对于任意一个圆,如果有一条直线垂直于圆上的一条弦,那么这
条直线就称为这条弦的垂径。
垂径与弦的关系是:垂径通过弦的中点,并且垂径两端与圆相交的点与该弦两端与圆相交的点构成的四个点构
成一个矩形。
二、圆垂径定理的证明方法:
1. 首先,连接圆心和垂足,将圆垂径问题转化成一个三角形和
一个圆交点的问题。
2. 然后,通过割圆等分弧的方法,证明垂线与弦长度相等。
3. 最后,根据直角三角形的性质,证明垂足在弦的中点上。
三、圆垂径定理的应用:
圆垂径定理在数学中有广泛的应用,例如:
1. 计算圆弧长度和面积,特别是在环形的测量问题中应用。
2. 解决不同形式的分割问题,例如分割圆弧使其长度达到所需
大小的问题。
3. 通过圆垂径定理,证明圆心角定理,从而推出其他的几何定理。
综上所述,初中九年级圆垂径定理是数学中的重要定理之一。
通
过学习和掌握这个定理,我们可以更好地理解和应用各种形式的几何
问题。
初中圆垂径定理技巧
需要注意的是,应用圆垂径定理时要注意题目中给出的条件和要求,灵活运用相关的几何 定理和性质,合理推理和证明结论。在解题过程中,可以画图、标注角度和线段长度等,以 帮助理解和推导。
初中圆垂径定理技巧
初中圆垂径定理是指在一个圆中,如果一条直径垂直于一条弦,那么这条直径就被称为这 条弦的垂径,且垂径把弦分成两段,其中一段是另一段的两倍。
下面是一些应用初中圆垂径定理的技巧:
1. 判断垂直关系:当给出一个圆和一条弦时,如果题目中明确指出这条直径垂直于这条弦 ,那么可以直接应用圆垂径定理来解题。
2. 利用比例关系:根据圆垂径定理,垂径把弦分成两段,其中一段是另一段的两倍。如果 已知一段弦的长度,可以通过比例关系计算另一段弦的长度。
初中圆垂径定理技巧
3. 解决几何问题:圆垂径定理可以应用于解决一些几何问题,如证明两条线段垂直、证明 四边形是矩形等。在这些问题中,通过应用圆垂径定理可以得到所需的垂直关系或长度比例 关系,从而推导
3.3垂径定理(教案)2021-2022学年北师大版九年级数学下册
2.教学难点
(1)垂径定理的发现和证明:学生需要通过观察、分析、推理等过程,理解并证明垂径定理。
(2)垂径定理在实际问题中的应用:如何将定理与实际问题相结合,建立数学模型,解决问题。
(3)对垂径定理的灵活运用:在解决复杂问题时,学生需要能将垂径定理与其他几何知识相结合,灵活运用。
最后,总结回顾环节,我觉得可以进一步优化。除了对知识点进行梳理外,我还可以让学生分享自己在学习过程中的收获和困惑。这样既能检验学生对知识点的掌握程度,也能帮助我发现教学中的不足,及时调整教学策略。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了垂径定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对垂径定理的理解。我希望大家能够掌握这些知识点,并在解决与圆有关的问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂径定理的基本概念。垂径定理是指在圆中,直径垂直于弦,并且平分弦。这个定理在解决与圆有关的问题时具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,展示垂径定理在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调垂径定理的内容和证明方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
3.3垂径定理(教案)2021-2022学年北师大版九年级数学下册
2021年数学中考复习专题之圆的考察:垂径定理的运用(二)
2021年九年级数学中考复习专题之圆的考察:垂径定理的运用(二)一.选择题1.为了测量一个铁球的直径,将该铁球放入工件槽内,测得的有关数据如图所示(单位:cm),则该铁球的直径为()A.12cm B.10cm C.8cm D.6cm2.已知水平放置的圆柱形排水管道,管道截面半径是1m,若水面高0.2m.则排水管道截面的水面宽度为()A.0.6m B.0.8m C.1.2m D.1.6m3.如图是一个隧道的横截面,它的形状是以O为圆心的圆的一部分,CM=DM=2,MO 交圆于E,EM=6,则圆的半径为()A.4 B.2C.D.4.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB的宽为8cm,水面最深的地方高度为2cm,则该输水管的半径为()A.3cm B.5cm C.6cm D.8cm5.某品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(⊙O直径)为10cm,弧AB的度数约为90°,则弓形铁片ACB(阴影部分)的面积约为()A.(π﹣)cm2B.(π﹣25)cm2C.(π﹣)cm2D.(25π﹣)cm26.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图.有如下四个结论:①勒洛三角形是中心对称图形;②图1中,点A到上任意一点的距离都相等;③图2中,勒洛三角形的周长与圆的周长相等;④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动.上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④7.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题即:“如图所示,CD垂直平分弦AB,CD=1寸,AB=10寸,求圆的直径”(1尺=10寸)根据题意直径长为()A.10寸B.20寸C.13寸D.26寸8.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了1.4m,则此时排水管水面宽为()A.1.2m B.1.4m C.1.6m D.1.8m9.如图,著名水乡乌镇的一圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则拱桥的半径OC为()A.4m B.5m C.6m D.8m10.《九章算术》是我国古代著名数学暮作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD 为⊙O的直径,弦AB⊥DC于E,ED=1寸,AB=10寸,求直径CD的长.”则CD =()A.13寸B.20寸C.26寸D.28寸二.填空题11.如图,在残破的圆形工件上量得一条弦BC=16,的中点D到BC的距离ED=4,则这个圆形工件的半径是.12.如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为cm.13.排水管的截面如图,水面宽AB=8dm,圆心O到水面的距离OC=3dm,则排水管的半径等于dm.14.(1)小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是.(2)如图,⊙O是△ABC的内切圆,与边BC,CA,AB的切点分别为D,E,F,若∠A=70°,则∠BOC=,∠EDF=.(3)边长为4的等边三角形内切圆半径和外接圆半径分别是.(4)等腰三角形ABC外接圆的半径是5,底边BC=4,则△ABC的面积为.15.如图,⊙O是一个油罐的截面图.已知⊙O的直径为5m,油的最大深度CD=4m(CD ⊥AB),则油面宽度AB为m.三.解答题16.如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于C,交弦AB于D.求作此残片所在的圆(不写作法,保留作图痕迹).17.如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由;18.一辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.19.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,CD=10,EM=25.求⊙O的半径.20.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC =80cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=40cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,求出D1D2的长度..参考答案一.选择题1.解:连接AB、CD交于点D,由题意得,OC⊥AB,则AD=DB=AB=4,设圆的半径为Rcm,则OD=(R﹣2)cm,在Rt△AOD中,OA2=AD2+OD2,即R2=42+(R﹣2)2,解得,R=5,则该铁球的直径为10cm,故选:B.2.解:作OC⊥AB于C,交⊙O于D,连接OB,如图所示:则AB=2BC,∠OCB=90°,OB=OD=1m,CD=0.2m,∴OC=OD﹣CD=0.8m,∴BC===0.6(m),∴AB=2AC=1.2m,∴排水管道截面的水面宽度为1.2m,故选:C.3.解:连接OC,∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,设圆的半径是x米,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+(6﹣x)2,解得:x=,所以圆的半径长是.故选:D.4.解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=4cm,设OA=rcm,则OD=(r﹣2)cm,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5.∴该输水管的半径为5cm;故选:B.5.解:连接OA、OB,∵品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(⊙O直径)为10cm,弧AB的度数约为90°,∴OA=OB=5cm,∠BOA=90°,∴阴影部分的面积S=S扇形BOA﹣S△BOA=﹣=(π﹣)cm2,故选:A.6.解:①勒洛三角形是轴对称图形,不是中心对称图形,故①错误;②图1中,点A到上任意一点的距离都相等,正确;③、设等边三角形DEF的边长为a,∴勒洛三角形的周长=3×=aπ,圆的周长=aπ,∴勒洛三角形的周长与圆的周长相等,故③正确.④夹在平行线之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误,故选:B.7.解:连接OD,OA,∵CD垂直平分弦AB,CD=1寸,AB=10寸,∴AD=5寸,在Rt△OAD中,OA2=OD2+AD2,即OA2=(OA﹣1)2+52,解得:OA=13,故圆的直径为26寸,故选:D.8.解:如图:作OE⊥AB于E,反向延长交CD于F,∵CD∥AB,∴EF⊥CD,∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了1.4m,∴OF=1.4﹣0.8=0.6m,∴CF===0.8m,∴CD=2CF=1.6m,∴此时排水管水面宽为1.6m,故选:C.9.解:连接BO,由题意可得:AD=BD=4m,设⊙O的半径OC=xm,则DO=(8﹣x)m,由勾股定理可得:x2=(8﹣x)2+42,解得:x=5.故选:B.10.解:连接OA,∵AB⊥CD,且AB=10,∴AE=BE=5,设圆O的半径OA的长为x寸,则OC=OD=x寸,∵DE=1,∴OE=x﹣1,在直角三角形AOE中,根据勾股定理得:x2﹣(x﹣1)2=52,化简得:x2﹣x2+2x﹣1=25,解得:x=13所以CD=26(寸).故选:C.二.填空题(共5小题)11.解:∵DE⊥BC,DE平分弧BC,∴圆心在直线DE上,设圆心为O,如图,连结OB,设圆的半径为R,则OE=R﹣DE=R﹣4,∵OE⊥BC,∴BE=CE=BC=×16=8,在Rt△OEB中,OB2=BE2+OE2,即R2=82+(R﹣4)2,解得R=10,即这个圆形工件的半径是10.故答案为:1012.解:连接OA、如图,设⊙O的半径为R,∵CD为水深,即C点为弧AB的中点,CD⊥AB,∴CD必过圆心O,即点O、D、C共线,AD=BD=AB=40,在Rt△OAD中,OA=50,OD=50﹣x,AD=40,∵OD2+AD2=OA2,∴(50﹣x)2+402=502,解得x=20,即水深CD约为为20.13.解:连接OA,∵AB=8,OC⊥AB,∴AC=AB=4.∵OC=3,∴OA===5(dm).故答案为:5.14.解:(1)如图1所示,作AB,BD的中垂线,交点O就是圆心.连接OA、OB,∵OC⊥AB,OA=OB∴O即为此圆形镜子的圆心,∵AC=1,OC=2,∴OA===.故这个镜面的半径是,故答案为;(2)∵∠A=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∵⊙O是△ABC的内切圆,切点分别为D、E、F,∴BO,CO分别是∠ABC和∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=125°;如图所示;连接OE,OF.∵∠ABC=60°,∠ACB=70°,∴∠A=180°﹣60°﹣70°=50°.∵AB是圆O的切线,∴∠OFA=90°.同理∠OEA=90°.∴∠A+∠EOF=180°.∴∠EOF=110°.∴∠EDF=55°;故答案为:125°,55°;(3)如图3,设O为等边△ABC的内心(也是等边△AB的外心),连接OA、OC、OB,设AO交BC于D,则A D⊥BC,BD=DC,即OB是△ABC外接圆的半径,OD是△ABC内切圆的半径,∵BC=4,∴BD=DC=2,∵O为等边△ABC内切圆的圆心,∴∠OBD=∠ABC=×60°=30°,在Rt△OBD中,OD=BD•tan30°=2×=;∴OB=2OD=,∴正三角形的内切圆半径是,外接圆半径是.故答案为:,;(4)如图4,连接AO,并延长与BC交于一点D,连接OC,∵BC=4,⊙O的半径为5,AB=AC,∴CD=2,∴AD⊥BC,∴由勾股定理得:OD==,∴AD=5+,∴△ABC的面积为BC×AD=4×(5+)=10+2,同理当BC在圆心O的上方时,三角形的高变为5﹣,∴△ABC的面积为BC×AD=10﹣2.故答案为:10+2或10﹣2.15.解:连接OA,由题意得,OA=2.5m,OD=1.5m,∵CD⊥AB,∴AD==2m,∴AB=2AD=4m,故答案为:4.三.解答题(共5小题)16.解:作弦AC的垂直平分线交直线CD于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.17.解:(1)如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=12m,∴BD=AB=6m.又∵CD=4m,设OB=OC=ON=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+62,解得r=6.5.(2)∵CD=4m,船舱顶部为长方形并高出水面3.4m,∴CE=4﹣3.4=0.6(m),∴OE=r﹣CE=6.5﹣0.6=5.9(m),在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣5.92=7.44(m2),∴EN=(m).∴MN=2EN=2×≈5.4m>5m.∴此货船能顺利通过这座拱桥.18.解:这辆卡车能通过厂门.理由如下:如图M,N为卡车的宽度,过M,N作AB的垂线交半圆于C,D,过O作OE⊥CD,E为垂足,则CD=MN=1.6m,AB=2m,由作法得,CE=DE=0.8m,又∵OC=OA=1m,在Rt△OCE中,OE===0.6(m),∴CM=2.3+0.6=2.9m>2.5m.所以这辆卡车能通过厂门.19.解:如图,连接OC,∵M是弦CD的中点,EM过圆心O,∴EM⊥CD.∴CM=MD.∵CD=10,∴CM=5.设OC=x,则OM=25﹣x,在Rt△COM中,根据勾股定理,得52+(25﹣x)2=x2.解得x=13.∴⊙O的半径为13.20.解:(1)如图1中,连接B1C1交AD1于H.∵AD1=D1B1=40cm,∴D1是所在圆的圆心,在Rt△B1HD1中,HB1=40•sin60°=20,∴B 1C1=2HB1=40(cm),故答案为40.(2)如图2中,连接B1C1交AD1于H,连接B2C2交AD2于T.由题意:=π•B2T,∴AT=B2T=(cm),在Rt△B2TD2中,D2T==,∵AH=HD1=20,∴HT=﹣20=,∴D1D2=HD2﹣HD1=+﹣20=﹣.。
九年级数学圆第三节垂径定理知识梳理及典例分析
第三节垂径定理知识点梳理【知识点一】垂径定理1.圆的轴对称:圆是轴对称图形,每一条过圆心的直线都是它的对称轴。
2.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
3.弧的中点:分一条弦成相等的两条弧的点,叫做这条弧的中点。
4.弦心距:圆心到圆的一条弦的距离叫做弦心距。
【知识点二】垂径定理的逆定理1.定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
2.定理2:平分弧的直径垂直平分弧所对的弦。
典例分析【题型一】利用垂径定理进行计算【例1】如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD丄AB ,0E丄AC,垂足分别为D,E.若 AC=AB=2 cm,求⊙O的半径.【变式1】如图⊙O的直径AB =16 cm,P是0B的中点,∠APD=30°,求CD的长.【题型二】在直角坐标系中利用垂径定理求点的坐标【例1】如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2) ,点A的坐标为(2,0) ,则点B的坐标为_______【变式1】如图在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A 两点,点A的坐标为(6,0),⊙P的半径为13,则点P的坐标为_________【题型三】应用垂径定理等分弧【例1】如图为一自行车内胎的一部分,如何利用所学知识将它平均分给四个小朋友做玩具?【变式1】小云出黑板报时遇到了一个难题,在版面设计过程中需要将一个半圆面三等分.如图,请帮她设计一个合理的等分方案,要求尺规作图,保留作图痕迹。
【题型四】垂径定理的实际应用【例1】某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问:修理人员应准备内径多大的管道?【变式1】如图是一条水平铺设的直径为2 m的通水管道横截面,其水面宽1.6 m,则这条管道中此时最深为__________m【题型五】利用垂径定理求最值【例1】如图 , ⊙O的半径为5 ,弦AB 的长为8,M是弦AB上的一个动点,则线段0M长的最小值为( ).A.2B.3C.4D.5【变式1】如图,在⊙O 中,AB 是⊙O 的直径,AB = 8 cm,AC =CD =BD ,M 是AB 上一动点,CM十DM 的最小值为______cm【题型六】与垂径定理有关的分类讨论问题【例1】已知点 A,B,C 都在⊙O 上,且 AB=AC,圆心O 到BC 的距离为6 cm,圆的半径为l4 cm,求AB 的长.【变式1】已知⊙O 的直径CD=10 cm ,AB 是⊙O 的弦,AB= 8 cm,且AB 丄CD,垂足为点 M,则 AC 的长为( ). A.52cm B.54cm C.52cm 或54cm D.32cm 或34cm【变式2】已知,⊙O 的半径是5,AB, CD 为⊙O 的两条弦,且 AB ∥CD, AB=6, CD = 8,求 AB, CD 间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年九年级数学中考复习专题之圆的考察:垂径定理的运用(三)一.选择题1.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地的两个接触点之间的距离为400mm,则工件直径D (mm)用科学记数法可表示为()mm.A.4×104B.0.4×105C.20000 D.4×102 2.(古题今解)“今有圆材,埋在壁中,不知大小,以锯锯之,深﹣寸,锯道长一尺,问径几何”.这是《九章算术》中的问题,用数学语言可表述为:如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为()A.12.5寸B.13寸C.25寸D.26寸3.如图,用一块直径为a的圆桌布平铺在对角线长为a的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为()A.a B.a C.(﹣1)a D.(2﹣)a 4.如图,底面半径为5cm的圆柱形油桶横放在水平地面上,向桶内加油后,量得长方形油面的宽度为8cm,则油的深度(指油的最深处即油面到水平地面的距离)为()A.2cm B.3cm C.2cm或3cm D.2cm或8cm 5.每位同学都能感受到日出时美丽的景色.如图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A、B两点,他测得“图上”圆的半径为5厘米,AB=8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,则“图上”太阳升起的速度为()A.0.4厘米/分B.0.5厘米/分C.0.6厘米/分D.0.7厘米/分6.如图是一个小孩荡秋千的示意图,秋千链子OB的长度为2米,当秋千向两边摆动时,摆角∠BOD恰好为60°,且两边的摆动角度相同,则它摆至最高位置时与其摆至最低位置时的高度之差AC是()A.(2﹣)米B.米C.(2﹣)米D.米7.如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为()A.12.5寸B.13寸C.25寸D.26寸8.圆弧形蔬菜大棚的剖面如图所示,AB=8m,∠CAD=30°,则大棚高度CD约为()A.2.0m B.2.3m C.4.6m D.6.9m9.如图所示,一种花边是由如图弧ACB组成的,弧ACB所在圆的半径为5,弦AB=8,则弧形的高CD为()A.2 B.C.3 D.10.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A.2 B.C.2D.3二.填空题11.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是寸.12.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).弧田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB =8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.13.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.14.如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形玉片的外圆半径为cm.15.如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB =120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)16.如图,一块破残的轮片上,点O是这块轮片的圆心,AB=120mm,C是上的一点,OC⊥AB,垂足为D,CD=20mm,则原轮片的半径是mm.三.解答题17.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.18.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,OE⊥CD于点E.已测得sin∠DOE=.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?19.“五一”节,小雯和同学一起到游乐场玩大型摩天轮,摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m).(1)经过2min后小雯到达点Q,如图所示,此时他离地面的高度是多少?(2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m的空中?20.高致病性禽流感是比SARS病毒传染速度更快的传染病.(1)某养殖场有8万只鸡,假设有1只鸡得了禽流感,如果不采取任何防治措施,那么,到第2天将新增病鸡10只,到第3天又将新增病鸡100只,以后每天新增病鸡数依此类推,请问:到第4天,共有多少只鸡得了禽流感病?到第几天,该养殖场所有鸡都会被感染?(2)为防止禽流感蔓延,政府规定:离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄、道路实行全封闭管理.现有一条毕直的公路AB通过禽流感病区,如图,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在该免疫区内有多少千米?参考答案一.选择题1.解:根据图形可知,两圆相切,过点O作OP垂直O1O2于P,则:PO1=PO2=200PO=R﹣50根据勾股定理可得:2002+(R﹣50)2=(R+50)2解得:R=200∴D=2R=400=4×102.故选:D.2.解:∵弦AB⊥CD于点E,CE=1,AB=10,∴AE=5,OE=OA﹣1在Rt△OAE中,OA2=AE2+OE2,即:OA2=(OA﹣1)2+52,解得:OA=13 ∴直径CD=2OA=26寸故选:D.3.解:如图,正方形ABCD是圆内接正方形,BD=a,点O是圆心,也是正方形的对角线的交点,则OB=,△BOC是等腰直角三角形,作OF⊥BC,垂足为F,由垂径定理知,点F是BC的中点,∴OF=OB sin45°=,∴x=EF=OE﹣OF=a.故选:B.4.解:如图,已知OA=5cm,AB=8cm,OC⊥AB于D,求CD的长,理由如下:当油面位于AB的位置时∵OC⊥AB根据垂径定理可得,∴AD=4cm,在直角三角形OAD中,根据勾股定理可得OD=3cm,所以CD=5﹣3=2cm;当油面位于A'B'的位置时,CD′=5+3=8cm.故选:D.5.解:作垂直AB的直径交圆为C,D交AB于E,利用相交弦定理,得AE•BE=CE•(10﹣CE),解得CE=2或8,从图中可知这里选答案为8,从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,则“图上”太阳升起的速度为8÷16=0.5(分钟).故选:B.6.解:∵点A为弧BD的中点,O为圆心由垂径定理知:BD⊥OA,BC=DC,弧AB=弧AD∵∠BOD=60°∴∠BOA=30°∵OB=OA=OD=2∴CB=1在Rt△OBC中,根据勾股定理,知OC=∴AC=OA﹣OC=2﹣故选:A.7.解:设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.8.解:根据OC⊥AB,则AD=AB=4m.在直角△ACD中,∠CAD=30°,则CD=AD•tan30°=≈2.3m.则大棚高度CD约为2.3m.故选:B.9.解:如图所示,AB⊥CD,根据垂径定理,BD=AB=×8=4.由于圆的半径为5,根据勾股定理,OD===3,CD=5﹣3=2.故选:A.10.解:如图所示,作AB,BD的中垂线,交点O就是圆心.连接OA、OB,∵OC⊥AB,OA=OB∴O即为此圆形镜子的圆心,∵AC=1,OC=2,∴OA===.故选:B.二.填空题(共6小题)11.解:由题意可知OE⊥AB,∵OE为⊙O半径,∴尺=5寸,设半径OA=OE=r寸,∵ED=1,∴OD=r﹣1,则Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解得:r=13,∴木材直径为26寸;故答案为:26.12.解:∵弦AB=8米,半径OC⊥弦AB,∴AD=4,∴OD==3,∴OA﹣OD=2,∴弧田面积=(弦×矢+矢2)=×(8×2+22)=10,故答案为:10.13.解:设⊙O的半径为r.在Rt△ADO中,AD=5寸,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13寸,∴⊙O的直径为26寸,故答案为:26.14.解:如图,连接OA,∵CD=2cm,AB=8cm,∵CD⊥AB,∴OD⊥AB,∴AC=AB=4cm,∴设半径为r,则OD=r﹣2,根据题意得:r2=(r﹣2)2+42,解得:r=5.∴这个玉片的外圆半径长为5cm.故答案为:5.15.解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实仅仅少走了15步.故答案为15.16.解:在直角△OAD中,设半径是x,则OA=x,OD=x﹣20,AD=AB=60mm.根据勾股定理定理得到:x2=(x﹣20)2+602,解得x=100mm.所以原轮片的半径是100mm.三.解答题(共4小题)17.解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m,∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m.如图,设小桥的圆心为O,连接OM、OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m.在Rt△OGM中,由勾股定理得:∴OG2=OM2+42,∴r2=(r﹣2)2+16,解得:r=5,答:小桥所在圆的半径为5m.18.解:(1)∵OE⊥CD于点E,CD=24,∴ED=CD=12,在Rt△DOE中,∵sin∠DOE==,∴OD=13(m);(2)OE===5,∴将水排干需:5÷0.5=10(小时).19.解:(1)过点Q作QB⊥OA,垂足为B,交圆于点C,由题意知,匀速转动一周需要12min,经过2min后转周,∴∠AOQ=×360°=60°,∴OB=OQ cos60°=OQ=×20=10,BT=OT﹣OB=10,AB=BT+AT=10.5,此时他离地的高度为10.5m;(2)作GD⊥AO,交AO的延长线于点M,由题意知AM=30.5,OM=10,∴∠GOD=2∠DOM=120°,此时他离地的高度为10.5+20=30.5m,所以他有12÷3=4分时间在离地面不低于30.5m的空中.20.解:(1)由题意可知,到第4天得禽流感病鸡数为1+10+100+1000=1111,到第5天得禽流感病鸡数为10000+1111=11111到第6天得禽流感病鸡数为100000+11111=111111>80000所以,到第6天所有鸡都会被感染;(2)过点O作OE⊥CD交CD于E,连接OC、OA.∵OE⊥CD,∴CE=CD=2在Rt△OCE中,OE2=32﹣22=5(2分)在Rt△OAE中,,∴AC=AE﹣CE=∵AC=BD∴AC+BD=.答:这条公路在该免疫区内有()千米.。