高等数学下天津大学课后习题详解答案

合集下载

天津大学线性代数答案

天津大学线性代数答案
解方程组为
x4 , x1 1 1 x2 2 2 x4 , x 1 1 x , 3 2 2 4
故方程组的全部解为
[ x1 , x2 , x3 , x4 ]T [0, 1 , 1 ,0]T k[ 1, 1 , 1 ,1]T , k P . 2 2 2 2
(3) 对方程组的系数矩阵作初等行变换,有
3 1 2 1 0 2 . 有限次 A 1 2 4 初等行变换 0 1 1 3 8 2 0 0 0
) 2 3 ,所以方程组有无穷多解. 其同解方程组为 由于 r ( R) r ( R
0 0 3 2
1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0 r2 r1 0 r4 2 r3 3 1 1
0
1 1 7 3
0 0 2 0
0 1 0 1 3 0 1 0
0 0 0
0 0 1 0 0 1 0 1
2 1
0 0 0 2
习 题 一
1/4
——————————————————————————————————————————
3 1 0 0 1 2 3 1 0 0 1 2 r2 2 r1 1、解 (1) [ A, E3 ] 2 2 1 0 1 0 r3 3r1 0 2 5 2 1 0 3 4 3 0 0 1 0 2 6 3 0 1 1 0 2 1 1 0 1 0 0 1 3 2 r 2 r 1 3 0 2 0 3 6 5 r2 5 r3 0 2 5 2 1 0 0 0 1 1 1 1 0 0 1 1 1 1

高等数学(下)课后习题答案

高等数学(下)课后习题答案

高等数学(下)习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s=(4) s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).s==故s==xs==ys==.5z6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则222222-++-=++--(4)1(7)35(2)z z解得149z=即所求点为M(0,0,149).7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()++=++a b c a b c.证明:利用三角形法则得证.见图7-1图7-19. 设2,3.u v=-+=-+-a b c a b c 试用a, b, c表示23.u v-解:232(2)3(3)2243935117u v-=-+--+-=-++-+=-+a b c a b ca b c a b ca b c10. 把△ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A 连接,试以AB=c,BC=a表示向量1D A,2D A,3D A和4D A.解:1115D A BA BD=-=--c a2225D A BA BD=-=--c a3335D A BA BD=-=--c a444.5D A BA BD=-=--c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M的投影为M',则1Pr j cos604 2.2uOM OM=︒=⨯=12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A的坐标.解:设此向量的起点A的坐标A(x, y, z),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP == (3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PPPP ===-e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos coscos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17. 向量r 与三坐标轴交成相等的锐角,求这向量的单位向量e r .解:因αβγ==,故23cos 1 α=,cos αα==则{cos ,cos ,cos })r αβγ===++e i j k . 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4a b ==,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 设重量为100kg 的物体从点M 1(3, 1, 8)沿直线移动到点M 2(1,4,2),计算重力所作的功(长度单位为m ).解:取重力方向为z 轴负方向,依题意有f ={0,0, -100×9.8}s = 12M M ={-2, 3,-6}故W = f ·s ={0,0,-980}·{-2,3,-6}=5880 (J)24. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b )=227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 25. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y-1)-4(z-1)=0整理得:2x +3y-4z-1=0即为动点M 的轨迹方程.26. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a-b ={-6,10,14}又(a +b )·(a-b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a-b ).27. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ;(2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .28. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 29. 求垂直于向量3i-4j-k 和2i-j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 30. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.31. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =- 22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k 故 1()4MN MP AC BC ⨯=⨯. 32. 求同时垂直于向量a =(2,3,4)和横轴的单位向量.解:设横轴向量为b =(x ,0,0)则同时垂直于a ,b 的向量为3442230000x x ⨯=++a b i j k =4x j -3x k故同时垂直于a ,b 的单位向量为1(43)||5⨯=±=±-⨯a b e j k a b . 33. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 34. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.35. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.36. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=037. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2. 故所求平面方程为1424x y z ++= 38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.39. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x –y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 40. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面. 解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A BA B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.41. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角. 解:(1)因平面过点(5,-4,6)故有 5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且122123π2cos cos||||42514kkθ⋅-====+⋅n nn n解得2k =±42. 确定下列方程中的l 和m :(1) 平面2x +ly +3z -5=0和平面mx -6y -z +2=0平行; (2) 平面3x -5y +lz -3=0和平面x +3y +2z +5=0垂直. 解:(1)n 1={2,l ,3}, n 2={m ,-6,-1}12232,18613l m l m ⇒==⇒=-=--n n (2) n 1={3, -5, l }, n 2={1,3,2}12315320 6.l l ⊥⇒⨯-⨯+⨯=⇒=n n43. 通过点(1,-1,1)作垂直于两平面x -y +z -1=0和2x +y +z +1=0的平面.解:设所求平面方程为Ax +By +Cz +D =0 其法向量n ={A ,B ,C }n 1={1,-1,1}, n 2={2,1,1}12203203A C A B C A B C CB ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n 又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033CCx y Cz -++= 即2x -y -3z =044. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 45. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 46. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-i j ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离. 55. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为22213(2)14.R =++-=设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-12 59. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22220x y z -+=; (6)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的椭圆锥面,其中心轴是y 轴,如图7-17. (6) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-18.图7-17 图7-1860. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-19,7-20,7-21,7-22所示.图7-19 图7-20图7-21 图7-22 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线.解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.66. 求单叶双曲面22211645x y z +-=与平面x -2z +3=0的交线在xOy 平面,yOz 平面及xOz 平面上的投影曲线. 解:以32x z +=代入曲面方程得 x 2+20y 2-24x -116=0.故交线在xOy 平面上的投影为2220241160x y x z ⎧+--=⎨=⎩ 以x =2z -3代入曲面方程,得 20y 2+4z 2-60z -35=0.故交线在yOz 平面上的投影为2220460350y z z x ⎧+--=⎨=⎩ 交线在xOz 平面上的投影为230,0.x z y -+=⎧⎨=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界:(1) {(x ,y )|x ≠0};(2) {(x ,y )|1≤x 2+y 2<4};(3) {(x ,y )|y <x 2};(4) {(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集,聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集,聚点集:{(x ,y )|y ≤x 2},边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2. 已知f (x ,y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f (x +y , x -y , xy ) =(x +y )xy+(xy )x +y +x -y=(x +y )xy +(xy )2x.4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z=+(3)z =(4)u =+(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→22001(2)lim;x y x y →→+00x y →→0x y →→00sin (5)lim ;x y xyx →→222222001cos()(6)lim .()e x y x y x y x y +→→-++ 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z =x 2y +2xy;(2)s =22u v uv+;(3)z =x(4)z =lntan x y; (5)z =(1+xy )y; (6)u =z xy;(7)u =arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ 222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yzzyy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(yf x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z =x 4+ y 4-4x 2y 2; (2)z=arctan y x; (3)z =y x ;(4)z =2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z =x ln(xy ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =; (4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d0.05d0.07(4.05,2.93)(4,3)d(4,3)0.053(0.07)]15(0.01)54.998xyf f f==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=x y,则d f(x,y)=yx y-1d x+x y ln x d y,取x=2,y=1,d x=-0.03,d y=0.05,则1.05d0.03d0.05(1.97)(1.97,1.05)(2,1)d(2,1)20.0393 2.0393.xyf f f=-==≈+=+=19.矩型一边长a=10cm,另一边长b=24cm,当a边增加4mm,而b边缩小1mm时,求对角线长的变化.解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0.4,d y=-0.1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20. 1mol理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT得V=RTP,且在标准状态下,R=8.20568×10-2,ΔV≈d v=-2d dRT Rp TP P+=d dV RP TP P-+222.48.20568100.01530.0911-⨯=-⨯+⨯≈-故体积改变量大约为0.09.21. 测得一物体的体积V=4.45cm3,其绝对误差限是0.01cm3,质量m=30.80g,其绝对误差限是0.01g,求由公式mvρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m=30.80,d v=0.01,d m=0.01时,22130.801d d d0.010.014.45 4.450.01330.0133mv mv vρ==-+-⨯+⨯≈=-当v=4.45, m=30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2) z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v∂∂; (3) ln(e e )xyu =+,y =x 3,求d d ux; (4) u =x 2+y 2+z 2,x =e cos tt ,y =e sin tt ,z =e t,求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =-(2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xyz xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+ 25. 设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.z f y f y∂'''=+∂27. 设f 是c 2类函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,。

高数下课后题答案

高数下课后题答案

13. 试证明以三点 A(4,1,9), B(10, −1,6),C(2, 4,3) 为顶点的三角形是等腰直角三角形。
解 因为

| AB|= (10−4)2 +(−1−1)2 +(6−9)2 =7 ,

| AC|= (2−4)2 +(4−1)2 +(3−9)2 =7 ,

|BC|= (2−10)2 +(4+1)2 +(3−6)2 =7 2 ,
解 (1) 点 (a,b,c) 关于 xOy 面的对称点为 (a,b, −c) ;关于 yOz 面的对称点为 (−a,b, c) ;关
于 zOx 面的对称点为 (a, −b, c) 。
(2) 点 (a,b,c) 关于 x 轴的对称点为 (a, −b, −c) ;关于 y 轴的对称点为 (−a,b, −c) ;关于



→→
所以 |BC |2=| AB|2 +| AC |2 , | AB|=| AC| 。
14. 已知两点 P(2,0,3) 和 Q(1, 2, 4) ,计算向量 PQ 的模、方向余弦和方向角。
⎯⎯→
解 PQ = (1− 2, 2 − 0, 4 − 3) = (−1, 2, 1)
⎯⎯→
| PQ |= (−1)2 + ( 2)2 +12 = 2
点的坐标为 (x, 0, z) 。
在 x 轴上的点的坐标为 (x, 0, 0) ;在 y 轴上的点的坐标为 (0, y, 0) ;在 z 轴上的点的坐标为
(0, 0, z) 。
A 在 xOy 面上, B 在 yOz 面上, C 在 x 轴上, D 在 y 轴上。
7.求点 (a,b,c) 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标。

高等数学下教材答案详解

高等数学下教材答案详解
1.ห้องสมุดไป่ตู้.2习题二
题目:证明函数$f(x)=\begin{cases}x^2-1,\quad x<1\\3x+2,\quad x\geq1\end{cases}$在$x=1$处连续。
解析:要证明函数在$x=1$处连续,需要分别讨论左极限、右极限和函数值是否相等。首先计算左极限,即$$\lim_{x\to1^-}(x^2-1)=(1)^2-1=0$$。然后计算右极限,即$$\lim_{x\to1^+}(3x+2)=3(1)+2=5$$。最后计算$x=1$时的函数值,即$f(1)=3(1)+2=5$。由于左极限、右极限和函数值都相等,因此可以得出结论:函数$f(x)$在$x=1$处连续。
解析:要求函数的极值点,需要先求得函数的导数$f'(x)$。根据乘法法则和指数函数和三角函数求导法则,可以得到$f'(x)=2e^{2x}\sin x+e^{2x}\cos x$。然后,令$f'(x)=0$,解得$x=\frac{3\pi}{2}+k\pi$,其中$k$为整数。将这些解代入原函数$f(x)$,可以得到对应的极值点。
……
通过对高等数学下教材中习题的解析,我们可以更加深入地理解每个章节的内容和知识点。同时,这些答案的详细解析也有助于同学们发现自己在学习过程中的盲点和薄弱环节,从而进行有针对性的补充和提高。希望本文对同学们在学习高等数学下教材时有所帮助,让大家能够更好地掌握这门重要的学科。
总结
通过对高等数学下教材的答案进行详解,本文旨在提供同学们学习和理解教材内容的参考和指导。在学习过程中,同学们可以根据本文的解析,进一步掌握和巩固相关知识点,提升数学能力。当然,本文只是对部分习题进行了解析,同学们在学习过程中还需要充分理解教材中的其他内容,并进行适当的练习和实践。希望本文能够对同学们的学习有所帮助,让大家在高等数学下取得优秀的成绩!

大学所有课程课后答案

大学所有课程课后答案

天天learn为大家收集了大学所有课程的课后答案,这里只列出了一部分,要想找到更多的答案,请到 查找。

资料打开方法:按住 Ctrl键,在你需要的资料上用鼠标左键单击资料搜索方法:Ctrl+F 输入关键词查找你要的资料【数学】∙01-08数值分析清华大学出版社第四版课后答案∙01-08微分几何第三版梅向明黄敬之主编课后答案∙01-07高等代数与解析几何陈志杰主编第二版课后答案∙01-07高等代数第三版北京大学数学系主编高等教育出版社出版课后答案∙01-07数学分析陈纪修主编第二版课后答案∙01-07数学分析华东师大第三版课后答案∙12-27高等数学同济大学出版社第五版课后答案∙12-08积分变换(第四版)东南大学数学系张元林编高等教育出版社课后答案∙11-30微积分复旦大学出版社曹定华主编课后答案∙11-21人大-吴赣昌-高等数学/微积分(经管类)课后答案∙11-09概率统计简明教程同济版课后答案∙11-09复变函数钟玉泉课后答案∙11-09微积分范培华章学诚刘西垣中国商业出版社课后答案∙11-09线性代数同济大学第四版课后答案∙11-08概率论与数理统计浙大版盛骤谢式千课后答案∙11-08复变函数西安交通大学第四版高等教育出版社课后答案∙11-07离散数学教程肖新攀编著课后习题答案∙11-07离散数学(第三版)清华大学出版社(耿素云,屈婉玲,张立昂)课后习题答案∙11-04高等数学同济大学出版社第六版课后答案∙10-27高等数学北大版课后答案∙【通信/电子/电气/自动化】∙01-08信号与线性系统分析吴大正第4版课后答案∙01-08信号与系统刘泉主编课后答案∙01-08信号与系统奥本海姆英文版课后答案∙01-08数字信号处理吴镇扬高等教育出版社课后答案∙01-08通信原理樊昌信第六版国防大学出版社课后答案∙01-08通信原理北京邮电大学课后答案∙12-10数字逻辑第四版(毛法尧著) 高等教育出版社∙12-10数字逻辑第二版(毛法尧著) 高等教育出版社课后答案∙12-08电路第五版邱关源罗先觉高等教育出版社课后答案∙12-03数字信号处理教程(程佩青第二版) 清华大学出版社课后答案∙12-02数字信号处理教程程佩青(第三版)清华大学出版社课后答案∙11-09模拟电子技术基础童诗白第三版习题答案∙11-09数字电子技术基础阎石第五版课后答案∙11-06信号与系统郑君里主编第二版课后答案∙11-06信号与系统哈工大课后答案∙10-31模拟电子技术基础(第四版童诗白、华成英主编)习题答案∙10-29模拟电路康华光【计算机/网络/信息】∙01-08数据结构(C语言版) 李春葆主编课后答案∙12-05计算机网络教程第五版谢希仁电子工业出版社课后答案∙11-09c程序设计谭浩强主编清华大学出版社习题答案及上机指导∙10-26C语言程序设计教程习题参考答案∙10-26MATLAB程序设计与应用(第二版)刘卫国主编实验答案【经济/金融/营销/管理/电子商务】∙01-06现代西方经济学(宏观)尹伯平主编课后答案∙01-06现代西方经济学(微观经济学) 宋承先主编第3版笔记和课后习题详解∙01-06微观经济学:现代观点范里安主编第5版课后答案∙01-05微观经济学平狄克主编第4和5版笔记和课后习题详解∙01-05宏观经济学曼昆主编第五版课后答案∙01-05宏观经济学多恩布什主编课后习题答案∙01-05企业会计学赵惠芳主编课后答案∙12-05市场调研与预测习题与实例陈启杰上海财经大学出版社课后答案∙11-28西方经济学高鸿业第四版(微观宏观)课后答案∙11-10中级财务会计刘兵初宜红山东人民出版社课后答案∙11-09经济法概论课后答案∙11-08中级财务会计(第二版)刘永泽东北财经大学课后答案【物理/光学/声学/热学/力学】∙01-19机电传动控制华中科技大学出版社邓星钟主编课后答案∙01-05量子力学张永德主编课后答案∙01-04量子力学导论曾谨言著第二版课后答案∙01-04量子力学曾谨言著高等教育出版社第三版第一卷课后答案∙01-04量子力学教程周世勋著高等教育出版社课后答案∙01-04量子力学教程曾谨言著课后答案∙01-04电动力学郭硕鸿主编第三版课后答案∙01-04理论力学卢圣治著课后答案∙01-03理论力学周衍柏著第二版课后答案∙11-09普通物理学程守洙江之咏第五版习题分析与解答∙11-09物理学马文蔚(第五版) 习题分析与解答∙11-09大学基础物理学.2版.清华.张三慧习题答案∙11-06大学物理学赵近芳主编第二版课后答案【土建/机械/车辆/制造/材料】∙01-08机械设计基础(第五版) 高等教育出版社课后答案∙01-07材料力学单辉祖主编课后答案∙01-06材料力学刘鸿文主编哈工大第四版课后答案∙11-11机械原理第六版课后答案【化学/环境/生物/医学/制药】∙01-03高分子化学潘祖仁著第四版课后答案∙01-03物理化学辅导与习题详解第五版傅献彩著∙01-02物理化学南开大学第五版课后答案∙01-02物理化学周亚平天津大学第四版课后答案∙01-02分析化学武汉大学第四版思考题答案∙01-02分析化学武汉大学第四版课后答案∙01-02基础有机化学邢其毅著课后答案∙01-01有机化学莫里森著课后答案∙12-31有机化学(第四版)高鸿宾著课后答案∙12-31有机化学(汪小兰著) 课后答案∙12-31无机化学第三版武汉大学吉林大学编高等教育出版社课后答案∙12-31中级无机化学(朱文祥著) 高等教育出版社课后答案∙12-31无机化学第三版(宋天佑著) 高等教育出版社课后答案∙12-30生物化学解题指导与测验张楚富高等教育出版社课后答案∙12-30生物化学简明教程第四版(张丽萍著) 高等教育出版社课后答案∙12-30生物化学原理(张洪渊著) 科学出版社课后答案∙12-30生物化学第三版(沈同王镜岩著) 高等教育出版社课后答案∙10-31有机化学第三版(胡宏纹著) 高等教育出版社课后答案∙10-29有机化学第四版答案曾昭琼主编高等教育出版社【法学/哲学/心理学/政治学】∙12-29实验心理学杨治良版练习题及答案07年心理学考研∙12-29《心理学》考试题库及答案程素萍浙江大学出版社∙12-29教育心理学第三版(皮连生著) 上海教育出版社课后答案∙12-04毛邓三(2007 华中科技大学版)(毛邓三编写组著) 高等教育出版社课后答案∙11-07毛邓三课后简答题答案∙10-29逻辑学参考答案∙10-26思想道德修养与法律基础罗国杰主编高教版课后答案∙10-26毛泽东思想和中国特色社会主义理论体系概论(吴树青等著) 高等教育出版社课后答案∙10-25马克思主义基本原理概论左伟清华南理工大学出版社课后答案∙10-25毛邓三思考题课后答案【英语/文学/史学/外语/教育】∙01-30step_by_step 2000 第四册听力答案课后答案∙01-30step_by_step 2000 第三册听力答案课后答案∙01-30step_by_step 2000 第二册听力答案课后答案∙01-30step_by_step 2000 第一册听力答案课后答案∙01-09大学体验英语综合教程第四册课后答案及课文翻译∙01-09大学体验英语综合教程第三册课后答案及课文翻译∙01-09大学体验英语综合教程第二册课后答案及课文翻译∙01-09大学体验英语综合教程第一册课后答案及课文翻译∙01-09新视野大学英语第五册课后答案∙01-09新视野大学英语第四册课后答案及课文翻译∙01-09新视野大学英语第三册课后答案及课文翻译∙01-09新视野大学英语第二册课后答案及课文翻译∙01-09新视野大学英语第一册课后答案及课文翻译∙01-05文学理论童庆炳主编修订二版课后答案∙01-05语言学教程胡壮麟主编课后答案[适合背诵]∙11-08中国近代史纲要沙健孙高等教育出版社课后答案∙11-07全新版大学英语综合教程第四册课后答案及课文翻译∙11-07全新版大学英语综合教程第三册课后答案及课文翻译∙11-06全新版大学英语综合教程第二册课后答案及课文翻译∙11-06全新版大学英语综合教程第一册课后答案及课文翻译∙11-06新世纪大学英语综合教程3 课后答案∙11-06新世纪大学英语综合教程2 课后答案∙11-06新世纪大学英语综合教程1 课后答案∙10-25新编大学英语(第一册)习题答案第二版∙10-25新编大学英语(第二册)习题答案∙10-25新编大学英语(第三册)习题答案∙10-25新编大学英语(第四册)课文翻译及课后习题答案。

高等数学天大教材答案

高等数学天大教材答案

高等数学天大教材答案高等数学是大学数学课程中的一门重要学科,它包含了微积分、线性代数、概率统计等内容。

对于天大(天津大学)的学生们来说,掌握高等数学的知识是非常重要的。

然而,由于课程内容繁杂,有时候学生在学习过程中可能会遇到一些困难,需要参考教材答案来帮助自己理解和解决问题。

以下是《高等数学》天大教材中的一些习题的答案,供学生们参考和学习。

1. 微积分1.1. 极限与连续1.1.1. 习题一:(1) 设函数\[f(x) = \begin{cases} x^2+1, & x<0 \\ 2x+3, & x \geq 0\end{cases}\],求极限\[\lim_{x \to 0} f(x)\]的值。

答案:由于\[x \to 0^- \]时,函数\[f(x) = x^2+1 \];而\[x \to 0^+ \]时,函数\[f(x) = 2x+3 \]。

因此,\[\lim_{x \to 0^-} f(x) = 0^2+1 = 1 \],\[\lim_{x \to 0^+} f(x) = 2 \cdot 0 + 3 = 3 \]。

由左右极限相等,则\[\lim_{x \to 0} f(x) = 1 = 3 \]。

1.1.2. 习题二:(1) 已知函数\[f(x) = \frac{x^2-x}{x-1} \],求\[\lim_{x \to 1} f(x)\]的值。

答案:将函数\[f(x) = \frac{x^2 - x}{x - 1} \]进行因式分解,得\[f(x)= \frac{x(x-1)}{x-1} = x \]。

因此,\[\lim_{x \to 1} f(x) = \lim_{x \to 1} x= 1 \]。

1.2. 导数与微分1.2.1. 习题一:(1) 求函数\[f(x) = x^3 - 3x^2 + 2x - 1 \]的导函数。

答案:对函数\[f(x) = x^3 - 3x^2 + 2x - 1 \]逐项求导,得\[f'(x) = 3x^2 - 6x + 2 \]。

各大学教材课后习题答案网址[1]1

各大学教材课后习题答案网址[1]1

各大学教材课后习题答案网址【千份热门课后习题答案大全】▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆《线性代数》(同济第四版)课后习题答案(完整版)/viewthread.php?tid=17&fromuid=164951高等数学(同济第五版)课后答案(PDF格式,共527页)/viewthread.php?tid=18&fromuid=164951中国近现代史纲要课后题答案/viewthread.php?tid=5900&fromuid=164951曼昆《经济学原理》课后习题解答/viewthread.php?tid=85&fromuid=16495121世纪大学英语读写教程(第三册)参考答案/viewthread.php?tid=5&fromuid=164951谢希仁《计算机网络教程》(第五版)习题参考答案(共48页)/viewthread.php?tid=28&fromuid=164951《概率论与数理统计》习题答案/viewthread.php?tid=57&fromuid=164951《模拟电子技术基础》详细习题答案(童诗白,华成英版,高教版)/viewthread.php?tid=42&fromuid=164951《机械设计》课后习题答案(高教版,第八版,西北工业大学)/viewthread.php?tid=96&fromuid=164951《大学物理》完整习题答案/viewthread.php?tid=217&fromuid=164951《管理学》课后答案(周三多)/viewthread.php?tid=304&fromuid=164951机械设计基础(第五版)习题答案[杨可桢等主编]/viewthread.php?tid=23&fromuid=164951程守洙、江之永主编《普通物理学》(第五版)详细解答及辅导/viewthread.php?tid=3&fromuid=164951新视野大学英语课本详解(四册全)/viewthread.php?tid=1275&fromuid=16495121世纪大学英语读写教程(第四册)课后答案/viewthread.php?tid=7&fromuid=164951新视野大学英语读写教程3册的课后习题答案/viewthread.php?tid=805&fromuid=164951新视野大学英语第四册答案(第二版)/viewthread.php?tid=5310&fromuid=164951《中国近现代史》选择题全集(共含250道题目和答案)/viewthread.php?tid=181&fromuid=164951《电工学》课后习题答案(第六版,上册,秦曾煌主编)/viewthread.php?tid=232&fromuid=164951完整的英文原版曼昆宏观、微观经济学答案/viewthread.php?tid=47&fromuid=164951《数字电子技术基础》习题答案(阎石,第五版)/viewthread.php?tid=90&fromuid=164951《电路》习题答案上(邱关源,第五版)/viewthread.php?tid=137&fromuid=164951《电工学》习题答案(第六版,秦曾煌)/viewthread.php?tid=112&fromuid=16495121世纪大学英语读写教程(第三册)课文翻译/viewthread.php?tid=6&fromuid=164951《生物化学》复习资料大全(3套试卷及答案+各章习题集)/viewthread.php?tid=258&fromuid=164951《模拟电子技术基础》课后习题答案(共10章)/viewthread.php?tid=21&fromuid=164951《概率论与数理统计及其应用》课后答案(浙江大学盛骤谢式千编著)/viewthread.php?tid=178&fromuid=164951《理论力学》课后习题答案(赫桐生,高教版)/viewthread.php?tid=119&fromuid=164951《全新版大学英语综合教程》(第四册)练习答案及课文译文/viewthread.php?tid=78&fromuid=164951《化工原理答案》课后习题答案(高教出版社,王志魁主编,第三版)/viewthread.php?tid=195&fromuid=164951《国际贸易》课后习题答案(海闻P.林德特王新奎)/viewthread.php?tid=290&fromuid=164951大学英语综合教程1-4册练习答案/viewthread.php?tid=1282&fromuid=164951《流体力学》习题答案/viewthread.php?tid=83&fromuid=164951《传热学》课后习题答案(第四版)/viewthread.php?tid=200&fromuid=164951高等数学习题答案及提示/viewthread.php?tid=260&fromuid=164951《高分子化学》课后习题答案(第四版,潘祖仁主编)/viewthread.php?tid=236&fromuid=164951马·克思主·义基本原理概论答案/viewthread.php?tid=6417&fromuid=164951《计算机网络》课后习题解答(谢希仁,第五版)/viewthread.php?tid=3434&fromuid=164951《概率论与数理统计》优秀学习资料/viewthread.php?tid=182&fromuid=164951《离散数学》习题答案(高等教育出版社)/viewthread.php?tid=102&fromuid=164951《模拟电子技术基础简明教程》课后习题答案(杨素行第三版)/viewthread.php?tid=41&fromuid=164951《信号与线性系统分析》习题答案及辅导参考(吴大正版)/viewthread.php?tid=74&fromuid=164951《教育心理学》课后习题答案(皮连生版)/viewthread.php?tid=277&fromuid=164951《理论力学》习题答案(动力学和静力学)/viewthread.php?tid=221&fromuid=164951选修课《中国现当代文学》资料包/viewthread.php?tid=273&fromuid=164951机械设计课程设计——二级斜齿圆柱齿轮减速器(WORD+原图)/viewthread.php?tid=35&fromuid=164951《成本会计》配套习题集参考答案/viewthread.php?tid=300&fromuid=164951《概率论与数理统计》8套习题及习题答案(自学推荐)/viewthread.php?tid=249&fromuid=164951《现代西方经济学(微观经济学)》笔记与课后习题详解(第3版,宋承先)/viewthread.php?tid=294&fromuid=164951《计算机操作系统》习题答案(汤子瀛版,完整版)/viewthread.php?tid=262&fromuid=164951《毛·泽东思想和中国特色社会主·义理论体系概论》有史以来最全面的复习资料!!!/viewthread.php?tid=6423&fromuid=164951《线性代数》9套习题+9套相应答案(自学,复习推荐)/viewthread.php?tid=244&fromuid=164951《管理理论与实务》课后题答案(手写版,中央财经大学,赵丽芬)/viewthread.php?tid=287&fromuid=164951统计学原理作业及参考答案/viewthread.php?tid=13&fromuid=164951机械设计课程设计——带式运输机的传动装置的设计/viewthread.php?tid=222&fromuid=164951《物理学》习题分析与解答(马文蔚主编,清·华大学,第五版)/viewthread.php?tid=50&fromuid=164951《新编大学英语》课后答案(第三册)/viewthread.php?tid=168&fromuid=164951《通信原理》课后习题答案及每章总结(樊昌信,国防工业出版社,第五版)/viewthread.php?tid=203&fromuid=164951《c语言程序与设计》习题答案(谭浩强,第三版)/viewthread.php?tid=59&fromuid=164951《微生物学》课后习题答案(周德庆版)/viewthread.php?tid=291&fromuid=164951新视野第二版全四册听说教程答案/viewthread.php?tid=6959&fromuid=164951《宏观经济学》课后答案(曼昆,中文版)/viewthread.php?tid=138&fromuid=164951《电力电子技术》习题答案(第四版,王兆安,王俊主编)/viewthread.php?tid=164&fromuid=164951《土力学》习题解答/课后答案/viewthread.php?tid=43&fromuid=164951《公司法》课后练习及参考答案/viewthread.php?tid=307&fromuid=164951 《全新版大学英语综合教程》(第二册)练习答案及课文译文/viewthread.php?tid=76&fromuid=164951新视野大学英语视听说第三册答案/viewthread.php?tid=5161&fromuid=164951 《工程力学》课后习题答案(梅凤翔主编)/viewthread.php?tid=191&fromuid=164951 《理论力学》详细习题答案(第六版,哈工大出版社)/viewthread.php?tid=2445&fromuid=164951 《成本会计》习题及答案(自学推荐,23页)/viewthread.php?tid=301&fromuid=164951 《自动控制原理》课后题答案(胡寿松,第四版)/viewthread.php?tid=52&fromuid=164951 《复变函数》习题答案(第四版)/viewthread.php?tid=118&fromuid=164951 《信号与系统》习题答案(第四版,吴大正)/viewthread.php?tid=268&fromuid=164951 《有机化学》课后答案(第二版,高教版,徐寿昌主编)/viewthread.php?tid=3830&fromuid=164951 《电工学——电子技术》习题答案(下册)/viewthread.php?tid=237&fromuid=164951 《财务管理学》章后练习参考答案(人大出版,第四版)/viewthread.php?tid=292&fromuid=164951现代汉语题库(语法部分)及答案/viewthread.php?tid=211&fromuid=164951 《概率论与数理统计》习题详解(浙大二、三版通用)/viewthread.php?tid=80&fromuid=164951 《有机化学》习题答案(汪小兰主编)/viewthread.php?tid=69&fromuid=164951 《微机原理及应用》习题答案/viewthread.php?tid=261&fromuid=164951 《管理运筹学》第二版习题答案(韩伯棠教授)/viewthread.php?tid=34&fromuid=164951 《古代汉语》习题集(附习题答案)福建人民出版社/viewthread.php?tid=1277&fromuid=164951 《金融市场学》课后习题答案(张亦春,郑振龙,第二版)/viewthread.php?tid=279&fromuid=164951 《公共关系学》习题及参考答案(复习必备)/viewthread.php?tid=308&fromuid=164951现代汉语通论(邵敬敏版)词汇语法课后练习答案/viewthread.php?tid=1429&fromuid=164951 《国际经济学》教师手册及课后习题答案(克鲁格曼,第六版)/viewthread.php?tid=281&fromuid=164951/viewthread.php?tid=199&fromuid=164951《金融市场学》课后答案(郑振龙版)/viewthread.php?tid=24&fromuid=164951《组织行为学》习题集答案(参考下,还是蛮好的)/viewthread.php?tid=297&fromuid=164951《分析化学》课后习题答案(第五版,高教版)/viewthread.php?tid=122&fromuid=164951大学英语精读第3册答案(外教社)/viewthread.php?tid=9&fromuid=164951《国际经济学》习题答案(萨尔瓦多,英文版)/viewthread.php?tid=155&fromuid=164951《复变函数与积分变换》习题答案/viewthread.php?tid=70&fromuid=164951《信息论与编码》辅导PPT及部分习题答案(曹雪虹,张宗橙,北京邮电大学出版社)/viewthread.php?tid=136&fromuid=164951《宏观经济学》习题答案(第七版,多恩布什)/viewthread.php?tid=293&fromuid=164951《物理化学》习题解答(天津大学, 第四版,106张)/viewthread.php?tid=2647&fromuid=164951新视野大学英语视听说教程第一册/viewthread.php?tid=5901&fromuid=164951《机械制造技术》习题集与答案解析/viewthread.php?tid=219&fromuid=164951新视野大学英语听说教程2册听力原文及答案下载/viewthread.php?tid=2532&fromuid=164951管理学试题(附答案)/viewthread.php?tid=1087&fromuid=164951《材料力学》详细辅导及课后答案(PDF格式,共642页)/viewthread.php?tid=31&fromuid=164951六级词汇注解/viewthread.php?tid=4893&fromuid=164951《大学基础物理学》课后答案(共16个单元)/viewthread.php?tid=25&fromuid=164951《管理学——原理与方法》课后习题答案/viewthread.php?tid=303&fromuid=164951新视野2版第三册(大2上学期用)/viewthread.php?tid=1438&fromuid=164951曼昆《经济学原理》中文第四版.课后习题答案-清晰图片版/viewthread.php?tid=1131&fromuid=164951《数据库系统概论》课后习题(第四版)/viewthread.php?tid=240&fromuid=164951大学数学基础教程课后答案(微积分)/viewthread.php?tid=8&fromuid=164951/viewthread.php?tid=284&fromuid=164951流体力学课后答案(高教版,张也影,第二版)/viewthread.php?tid=22&fromuid=164951 《语言学概论》习题答案(自考,新版教材)/viewthread.php?tid=313&fromuid=164951 《统计学》各章练习题答案/viewthread.php?tid=458&fromuid=164951 《数字电子技术基础》课后习题答案(完整答案版)/viewthread.php?tid=197&fromuid=164951 《积分变换》习题答案(配套东南大学张元林编的)/viewthread.php?tid=103&fromuid=164951 《中级财务会计》习题答案(第二版,刘永泽)/viewthread.php?tid=163&fromuid=164951 《计算机网络》课后习题答案(第5版和第4版)/viewthread.php?tid=132&fromuid=164951 《单片机原理及应用》课后习题答案(张毅刚主编,高教版)/viewthread.php?tid=36&fromuid=164951 《金融工程》课后题答案(郑振龙版)/viewthread.php?tid=288&fromuid=164951 《液压传动》第2版思考题和习题解答(共36页)/viewthread.php?tid=20&fromuid=164951 《动物学》习题集与答案(资料相当丰富)/viewthread.php?tid=315&fromuid=164951 《高频电子线路》习题参考答案(第四版)/viewthread.php?tid=142&fromuid=164951 《国际经济法》课后参考答案/viewthread.php?tid=306&fromuid=164951大学英语四级十年真题+听力/viewthread.php?tid=2454&fromuid=164951 《信号与系统》习题详解(奥本海姆版)/viewthread.php?tid=79&fromuid=164951 《电路分析》课后答案及学习指导(第二版,胡翔骏,高教版)/viewthread.php?tid=177&fromuid=164951 《C语言设计》(谭浩强,第三版)227页/viewthread.php?tid=129&fromuid=164951新视野大学英语课后习题答案1-4册全集/viewthread.php?tid=7083&fromuid=164951 《数字电路与逻辑设计》课后习题答案,讲解详细/viewthread.php?tid=233&fromuid=164951 《电路》第五版课后答案/viewthread.php?tid=1678&fromuid=164951 《材料力学》详细习题答案及辅导(第四版,刘鸿文)/viewthread.php?tid=88&fromuid=164951《传播学教程》课后答案(郭庆光主编,完整版)/viewthread.php?tid=252&fromuid=164951《物理化学》习题答案与课件集合(南大)/viewthread.php?tid=205&fromuid=164951《金融市场学》电子书(张亦春,郑振龙,第二版)/viewthread.php?tid=278&fromuid=164951毛邓三95%考点/viewthread.php?tid=6802&fromuid=164951高等教育出版社《毛·泽东思想和中国特色社会主·义道路》(09版,原毛邓三)课后题答案/viewthread.php?tid=6874&fromuid=164951《线性代数》课后习题答案(陈维新,科学出版社)/viewthread.php?tid=156&fromuid=164951自动控制原理习题集(自学辅导推荐)/viewthread.php?tid=53&fromuid=164951《现代通信原理》习题答案(曹志刚版)/viewthread.php?tid=44&fromuid=164951高等数学上下《习题PPT》/viewthread.php?tid=66&fromuid=164951《数据结构习题集》答案(C版,清·华大学,严蔚敏)/viewthread.php?tid=173&fromuid=164951《大学物理学》习题解答/viewthread.php?tid=114&fromuid=164951《物理化学》习题答案(南大,第五版)/viewthread.php?tid=143&fromuid=164951《机械原理》复习精要与习题精解(第7版,西北大学)/viewthread.php?tid=179&fromuid=164951《宏观经济学》答案(曼昆,第五版,英文版)pdf格式/viewthread.php?tid=134&fromuid=164951《化工热力学》习题与习题答案(含各种版本)/viewthread.php?tid=235&fromuid=164951《材料力学》习题答案/viewthread.php?tid=230&fromuid=164951教育统计与测量管理心理学(自考必备资料,牛逼打印版)/viewthread.php?tid=264&fromuid=164951离散数学习题解答(第四版)清·华大学出版社/viewthread.php?tid=46&fromuid=164951货币银行学/viewthread.php?tid=5074&fromuid=164951《技术经济学概论》(第二版)习题答案/viewthread.php?tid=109&fromuid=164951《毛·泽东思想和社会主·义建设理论题概论》精炼考试题目,耐心整理/viewthread.php?tid=6062&fromuid=164951《数字信号处理》课后答案及详细辅导(丁美玉,第二版)《语言学概论练习题》答案/viewthread.php?tid=312&fromuid=164951《会计电算化》教材习题答案(09年)/viewthread.php?tid=296&fromuid=164951《数据库系统概论》习题答案(第四版)/viewthread.php?tid=86&fromuid=164951《微观经济学》课后答案(平狄克版)/viewthread.php?tid=254&fromuid=164951《控制工程基础》课后习题解答(清·华版)/viewthread.php?tid=127&fromuid=164951《高分子化学》习题答案(第四版)/viewthread.php?tid=144&fromuid=164951《电机与拖动基础》课后习题答案(第四版,机械工业出版社,顾绳谷主编)/viewthread.php?tid=45&fromuid=164951《机械工程测试技术基础》(第三版,熊诗波等主编)课后答案/viewthread.php?tid=27&fromuid=164951《宏观经济学》课后答案(布兰查德版)/viewthread.php?tid=286&fromuid=164951《机械原理》习题答案和超多例题(西北工业大学,第六版)/viewthread.php?tid=239&fromuid=164951《大学物理基础教程》课后习题答案(第二版,等教育出版社)/viewthread.php?tid=172&fromuid=164951简明乐谱基础知识/viewthread.php?tid=762&fromuid=164951《语言学教程》课后答案/viewthread.php?tid=309&fromuid=164951《公司理财》课后答案(英文版,第六版)/viewthread.php?tid=282&fromuid=164951《信息论与编码》学习辅导及习题详解(傅祖芸版)/viewthread.php?tid=238&fromuid=164951《遗传学》课后习题答案(朱军主编,完整版)/viewthread.php?tid=317&fromuid=164951现代人心理实战700题处世韬略/viewthread.php?tid=770&fromuid=164951《自动控制原理》习题答案/viewthread.php?tid=117&fromuid=164951《普通动物学》完整课后答案(刘凌云,郑光美版)/viewthread.php?tid=316&fromuid=164951《微机原理》作业答案(李继灿版)/viewthread.php?tid=218&fromuid=164951尼尔·波兹曼《娱乐至死》/viewthread.php?tid=5129&fromuid=164951《电力电子技术》习题答案(第4版,西安交通大学)大学英语四级(CET-4)历年真题大全[89-07年39套](精品级)753页word /viewthread.php?tid=809&fromuid=164951《通信原理》习题答案/viewthread.php?tid=190&fromuid=164951《普通化学(第五版)》习题详解(配套浙大编的)/viewthread.php?tid=94&fromuid=164951经济法课后复习及思考答案/viewthread.php?tid=5406&fromuid=164951《结构化学基础》习题答案(周公度,北大版)/viewthread.php?tid=212&fromuid=164951财务管理学课后答案荆新王化成/viewthread.php?tid=5414&fromuid=164951《C++程序设计》课后习题答案(第2版,吴乃陵,高教版)/viewthread.php?tid=161&fromuid=164951药用植物的两份习题(自己感觉比较有用)/viewthread.php?tid=270&fromuid=164951《数学物理方法》习题解答案详细版(梁昆淼,第二版)/viewthread.php?tid=38&fromuid=164951《机械制图》习题册答案(近机类、非机类,清·华大学出版社)/viewthread.php?tid=158&fromuid=164951《控制工程基础》习题答案(第二版,燕山大学)/viewthread.php?tid=126&fromuid=164951《画法几何》资料包(含习题答案,自学辅导课件)/viewthread.php?tid=216&fromuid=164951《畜禽解剖学与组织胚胎学》习题答案参考/viewthread.php?tid=314&fromuid=164951《统计学》课后习题答案(周恒彤编)/viewthread.php?tid=3022&fromuid=164951《西方经济学简明教程》课后习题全解(尹伯成,上海人民出版社)/viewthread.php?tid=2569&fromuid=164951《汽车理论》课后答案详细解答(余志生,机械工业出版社)/viewthread.php?tid=123&fromuid=164951《数学物理方法》(第三版)习题答案/viewthread.php?tid=101&fromuid=164951新视野听力原文及课后答案/viewthread.php?tid=1401&fromuid=164951新编大学英语4(外研版)课后练习答案/viewthread.php?tid=61&fromuid=164951《材料力学》习题答案(单辉祖,北京航空航天大学)/viewthread.php?tid=187&fromuid=164951大学英语精读第3册课文及课后答案/viewthread.php?tid=1640&fromuid=164951《自动控制原理》课后习题答案———胡寿松,第五版《数据库系统原理与设计》课后答案(第四版,王珊,萨师煊)/viewthread.php?tid=150&fromuid=164951《数字电子技术基础》详细习题答案(阎石第四版)/viewthread.php?tid=167&fromuid=164951财经应用文笔记/viewthread.php?tid=1088&fromuid=164951《管理学》课后习题答案(罗宾斯,人大版,第7版)/viewthread.php?tid=302&fromuid=164951《概率论与数理统计》习题答案(复旦大学出版社)/viewthread.php?tid=82&fromuid=164951《数字信号处理——基于计算机的方法》习题答案(第二版)/viewthread.php?tid=174&fromuid=164951《传热学》课后答案(杨世铭,陶文铨主编,高教版)/viewthread.php?tid=33&fromuid=164951C语言资料大全(有课后答案,自学资料,C程序等)/viewthread.php?tid=170&fromuid=164951毛邓三重点归纳/viewthread.php?tid=6816&fromuid=164951《电力拖动自动控制系统》习题答案/viewthread.php?tid=115&fromuid=164951逄锦聚《政治经济学》(第3版)笔记和课后习题详解/viewthread.php?tid=2185&fromuid=164951《概率论与数理统计》课后习题解答(东南大学出版社)/viewthread.php?tid=206&fromuid=164951《有机化学》课后习题答案(胡宏纹,第三版)/viewthread.php?tid=72&fromuid=164951《常微分方程》习题解答(王高雄版)/viewthread.php?tid=162&fromuid=164951▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆【因为太多了,没办法再粘贴到这里了,更多答案,直接进入下面这个搜索就好】/?fromuid=164951。

高数下课本详解答案(合工大版)

高数下课本详解答案(合工大版)

习题8-11.自点(),,P a b c 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解在,,xoy yoz zox 坐标面上的垂足坐标分别为(),,0a b 、()0,,b c 、(),0,a c ,在x 轴、y 轴、z 轴上垂足的坐标分别为(),0,0a 、()0,,0b 、()0,0,c .2.已知三角形个的三个顶点的坐标分别为()4,1,9A 、()10,1,6B -、()2,4,3C ,求该三角形的三边长度,此三角形由何特点?解7AB ==,7AC ==,BC =由于AB AC =,且222AB ACBC +=,故此三角形为等腰直角三角形.3.在z 轴上求与点()4,1,7P -和点()3,5,2Q -等距离的点的坐标.解设z 轴上的点为()0,0,M z,则MP MQ=即=,解得149z =,故点为140,0,9M ⎛⎫ ⎪⎝⎭.4.求到两定点()1,2,1A -和()2,1,2B -等距离的点(),,M x y z 的轨迹.解由于MA MB =,从而有=解得26630x y z +--=.5.设平行四边形的两条对角线向量为a 和b,求其四条边向量.解如意8-1所示,由向量加减法的平行四边形法则有,,c d a c d b ⎧+=⎪⎨-=⎪⎩ 故2a b c += ,2a b d -=,即平行四边形的四条边向量为2a b + 、2a b + 、2a b - 、2a b- .(图8-1)(图8-2)6.设A 、B 、C 、D 是一个四面体的顶点,M 、N 分别是边AB 、CD 的中点,证明:()12MN AD BC =+.证如图8-2所示,AD DN AN +=,BC CN BN += ,AN AM MN -= ,BN BM MN -= ,又DN CN =- ,AM BM =- ,于是22AN BN AD BC MN ++==.7.已知两点()A 和()3,0,2B ,计算向量AB 的模、方向余弦、方向角及与AB平行的单位向量.解由于{}1,AB =-,则有2AB = ,1cos 2α=-,cos 2β-,1cos 2γ=-,方向角为23πα=,34πβ=,3πγ=,与AB 平行的单位向量为121,,222⎧⎫⎪⎪±--⎨⎬⎪⎪⎩⎭.8.设358a i j k =++,27b i j k =--,求向量23c a b =+在x 轴上的投影及在z 轴上的分向量.解23945c a b i j k =+=+-,故c 在x 轴上的投影为9,在z 轴上的分向量为5k - .9.一向量的终点在点()2,1,7B -,它在x 轴、y 轴及z 轴上的投影依次为4,4-和7,求这向量的起点A 的坐标.解设起点(),,A x y z ,由{}{}2,1,74,4,7AB x y z =----=-解得()2,3,0A -.10.设{}3,5,1a =- ,{}2,2,3b = ,{}4,1,3c =-- ,求与a b c +-平行的单位向量.解{}1,8,5a b c +-=,故与a b c +-平行的单位向量为±.11.设5AB a b =+ ,618BC a b =-+ ,()8CD a b =-,试证A 、B 、D 三点共线.证因为()()6188210BD BC CD a b a b a b=+=-++-=+()252a b AB=+=所以AB平行BD ,即A 、B 、D 三点共线.12.已知向量AB 的模为10,与x 轴正向夹角为4π,与y 轴正向夹角为3π,求向量AB .解设向量AB的方向余弦为cos α、cos β、cos γ,由于4πα=,3πβ=,222cos cos cos 1αβγ++=,得1cos 2γ=±于是向量{}211cos ,cos ,cos 10,,222AB AB αβγ⎫⎪==±⎨⎬⎪⎪⎩⎭.习题8-21.设4a i j k =+-,22b i j k =-+ ,求(1)()()22a b a b +⋅-;(2)()()22a b a b +⨯- ;(3)a 与b 夹角.解(1)a =,3b =,4a b ⋅=-()()222223230a b a b a a b b +⋅-=-⋅-=;(2)114794221i j k a b i j k⨯=-=----()()225354520a b a b a b i j k +⨯-=-⨯=++;(3)设a 与b夹角为θ,则cos9a ba bθ⋅===-arccos9θ⎛⎫=-⎪⎪⎝⎭.2.已知向量a 和b相互垂直,且1a=,b=,求(1)()()a b a b+⋅-;(2)()()a b a b+⨯-;(3)()a b+与()a b-夹角.解(1)()()22222a b a b a b a a b b a b+⋅-=+⋅-⋅-=-=-;(2)()()2a b a b a a b a a b b b a b+⨯-=⨯+⨯-⨯+⨯=-⨯=(3)()a b+与()a b-夹角为θ,则()()()()21cos42a b a ba b a bθ+⋅--===-+-,故23πθ=.3.已知13a=,19b=,24a b+=,求a b-.解()()2222a b a b a b a a b b+=+⋅+=+⋅+()()2222a b a b a b a a b b-=-⋅-=-⋅+两式相加,得()22222a b a b a b-=+-+()2222131924484=+-=,22a b-=.4.已知()1,1,2A-、()5,6,2B-、()1,3,1C-,求:(1)同时与AB及AC垂直的单位向量;(2)三角形ABC的面积ABCS∆;(3)B点到边AC的距离d.解(1){}4,5,0AB=-,{}0,4,3AC=-,450151216043i j kAB AC i j k⨯=-=++-故同时与AB 及AC 垂直的单位向量为{}115,12,1625AB AC AB AC⨯±=±⨯;(2)12522ABC S AB AC ∆=⨯=;(3)由于1122ABC S AB AC AC d ∆=⨯=⋅,且5AC = ,则5d =.5.设平行四边形的对角线2c a b =+ ,34d a b =- ,其中1a =,2b = ,且a b ⊥ ,求平行四边形的面积.解设平行四边形的两邻边分别为m 、n,则c m n =+ ,d m n =-,从而()()1142222m c d a b a b =+=-=-,()()1126322n c d a b a b =-=-+=-+ ,55sin 102S m n a b a b π=⨯=⨯== .6.已知向量a 、b 、c两两垂直,且1a = ,2b = ,3c = ,求向量s a b c =++ 的长度,以及s 分别与a 、b 、c的夹角.解()()222214s a b c a b c a b c =++⋅++=++=,于是s =cos ,s a s a s a⎛⎫⋅===⎪⎝⎭cos ,s b s b s b ⎛⎫⋅== ⎪ ⎪⎝⎭cos ,s c s c s c ⎛⎫⋅== ⎪⎝⎭所以,s a arc ⎛⎫= ⎪⎝⎭,s b arc ⎛⎫= ⎪ ⎪⎝⎭,,s c arc ⎛⎫= ⎪⎝⎭7.试用向量证明直径上的圆周角是直角.证取圆心为原点建立坐标系如图8-3所示,则圆周方程为222x y R +=,在圆周上任取一点(),A x y ,直径BC ,(),0B R -,(),0C R ,().AB R x y =--- ,().AC R x y =--则()()22220AB AC R x R x y R x y ⋅=---+=-++=故AB AC ⊥,即直径BC 所对应的圆周角为直角,由圆周关于任意一条直径都对称的性质知,直径所对应的圆周角是直角.(图8-3)8.判断下列两组向量a 、b 、c是否共面:(1){}2,1,3a =- ,{}1,0,5b =- ,{}1,1,4c =-;(2){}4,2,1a =- ,{}2,6,3b =- ,{}1,4,1c =-.解(1)21310540114abc -⎡⎤=-=≠⎣⎦- ,故a 、b 、c 不共面;(2)4212630141abc -⎡⎤=-=⎣⎦-,故a 、b 、c共面.9.计算顶点()2,1,1A -、()5,5,4B 、()3,2,1C -、()4,1,3D 的四面体的体积.解{}3,6,3AB = ,{}1,3,1AC =- ,{}2,2,2AD =,则四面体的体积为36311132366222V ABAC AD ⎡⎤==-=⎣⎦ .10.如果存在向量c同时满足11a c b ⨯= ,22a c b ⨯= ,证明:12210a b a b ⋅+⋅= .证由于()()12211221a b a b a a c a a c ⋅+⋅=⋅⨯+⋅⨯ ()()2112a c a a c a =⨯⋅+⨯⋅ [][]2112a ca a ca =+ [][]21210a ca a ca =-=习题8-3.1.求出满足下列条件的各平面方程:(1)过点()2,1,1-且与平面32120x y z -+-=平行;(2)过三点()1,1,1-、()2,2,2--、()1,1,2-;(3)过点()2,1,2,且分别垂直于平面32x y z ++=和平面3241x y z +-=;(4)平行x 轴且过两点()1,0,1和()1,1,0;(5)通过z 轴和点()3,1,2-.解(1)设所求平面的法向量n ,可取平面的法向量为{}3,2,1n =-故过点()2,1,1-平面方程为()()()322110x y z ---++=,即3230x y z -+-=;(2)由三点式平面方程知,所求平面方程为1113330023x y z --+--=-即320x y z --=;(3)设所求平面的法向量n ,{}11,3,1n = ,{}23,2,4n =-{}1213114,7,7324i j kn n n =⨯==---,则所求平面方程为()()()14271720x y z --+---=,即250x y z -+-=;(4)设平面的一般式方程为0Ax By Cz D +++=,由于平面平行x 轴,且点()1,0,1、()1,1,0在平面上,从而有000A A C D A B D =⎧⎪++=⎨⎪++=⎩解得0A =,B D =-,C D =-,且0D ≠,故平面方程为10y z +-=;(5)设过z 轴的平面为0Ax By +=,且点()3,1,2-在平面上,则由30A B -=,得3B A =,且0A ≠所以平面方程为30x y +=.2.求平面2260x y z -++=与各坐标面的夹角的余弦.解平面的法向量{}2,2,1n =- ,取xoy 坐标面的法向量{}10,0,1n =,yoz 坐标面的法向量{}21,0,0n = ,zox 坐标面的法向量{}30,1,0n =,则平面与xoy 、yoz 、zox 各坐标面的夹角余弦分别为1cos 3α=,2cos 3β=,22cos 33γ-==.3.求过点()0,1,0-和()0,0,1,且与xoy 坐标面成3π角的平面.解设平面的一般式方程为0Ax By Cz D +++=,从而有0,0,cos ,3B D C D π⎧⎪-+=⎪⎪+=⎨⎪⎪=⎪⎩得,A B D C D ⎧=⎪=⎨⎪=-⎩于是,所求平面方程为10y z +-+=.4.在z 轴上求一点P ,使它到点()1,2,0M -与到平面:32690x y z π-+-=有相等的距离.解设z 轴上点()0,0,P z,则PM =又()1,2,0M -到:3269x y z π-+-=的距离为697z d -=则有697z -=,即2131081640z z ++=,解得2z =-或8213z =-,故所求点为()0,0,2-或820,0,13⎛⎫-⎪⎝⎭.5.试求平面270x y z -+-=与平面2110x y z ++-=的夹角平分面的方程.解设(),,M x y z 为该平面上任取的一点,那么M到两平面的距离相等,即有于是有()27211x y z x y z -+-=±++-故所求平面方程为240x y z --+=或60x z +-=.6.设从原点到平面1x y za b c++=的距离为ρ,试证明:22221111a b c ρ++=,并由此求点(),,a b c 到该平面的距离.证由点到平面的距离公式知ρ=1ρ=,即22221111a b c ρ++=.点(),,a b c到平面的距离2d ρ=.7.判别平面:3210x y z π+-+=与下列各平面之间的位置关系:(1)1:3210x y z π+--=;(2)2:520x y z π-++=;(3)3:2310x y z π-+-=.解(1)取平面π法向量{}1,3,2n =- ,1π法向量{}11,3,2n =-,由于n与1n 的坐标成比例,故n 与1n平行,且d ==;(2)取平面2π法向量{}25,1,1n =-,由于20n n ⋅= ,故2n n ⊥,即两平面相互垂直;(3)取平面3π法向量{}32,3,1n =-,两平面夹角余弦339cos 14n n n n θ⋅==所以两平面斜交,夹角9arccos14θ=.习题8-4.1.求满足下列条件的各直线方程:(1)过两点()13,2,1M -和()21,0,2M -;(2)过点()4,2,1-且平行于直线230,510,x y y z --=⎧⎨--=⎩平行;(3)过点()1,2,2-且垂直于平面3210x y z +-+=.解(1)直线的方向向量可取{}124,2,1s M M ==-于是直线方程为321421x y z -+-==-,(2)直线的方向向量可取{}1202,1,5051i j k s =-=-则直线方程为421215x y z -+-==;(3)平面法向量{}3,2,1n =- ,直线的方向向量可取{}3,2,1sn ==-于是直线方程为122321x y z -+-==-.2.用对称式方程和参数方程表示下列直线10,2340.x y z x y z +++=⎧⎨-++=⎩解直线的方向向量{}1114,1,3213ij k s ==---,可在直线上取一点()1,0,2A -,则直线的对称式方程和参数方程分别为12413x y z -+==--,14,4,2 3.x t y z t =+⎧⎪=-⎨⎪=--⎩3.求过点()0,1,2M 且与直线11112x y z --==-垂直相交的直线方程.解过点()0,1,2M 且垂直直线L 的平面方程为()()()01220x y z ---+-=即230x y z -+-=解方程组230,11,112x y z x y z -+-=⎧⎪⎨--==⎪⎩-,得直线与平面的交点为131,,122M ⎛⎫⎪⎝⎭由此可得121,,122s MM ⎧⎫==--⎨⎬⎩⎭,故所求直线方程为12312x y z --==--.4.求直线240,3290.x y z x y z -+=⎧⎨---=⎩在平面41x y z -+=上的投影直线的方程.解设过直线240,3290.x y z x y z -+=⎧⎨---=⎩的平面束方程为()()243290x y z x y z λ-++---=,(λ为非零常数)即()()()2341290x y z λλλλ+-++--=,上述平面法向量为{}23,4,12n λλλ=+--- ,已知平面法向量为{}14,1,1n =-选择λ使1n n ⊥,即()()()()234411210λλλ+⋅-+⋅-+-⋅=,解得1311λ=-故得与已知平面垂直的平面为1731371170x y z +--=则所求投影直线为1731371170,4 1.x y z x y z +--=⎧⎨-+=⎩5.求过点()3,1,2M -且通过直线43521x y z-+==的平面方程.解()4,3,0P -为直线上的一点,直线的方向向量为{}5,2,1s =,则平面的法向量{}1428,9,22521i j kn MP s =⨯=-=- 故所求平面方程为()()()83912220x y z --+-++=即8922590x y z ---=.6.已知平面220x y z +--=及平面外一点()2,1,4M -,求点M 关于已知平面的对称点N .解过点()2,1,4M -且垂直于平面220x y z +--=的直线方程为214121x y z +--==-设M 关于已知平面的对称点(),,N x y z ,则有214,121x y z +--⎧==⎪-⎪=解得0,5,2,x y z =⎧⎪=⎨⎪=⎩即对称点()0,5,2N .7.设0M 是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为0d ⨯=MM s s.证设向量0MM 与直线L 的方向向量s 的夹角为θ,则00000sin MM s MM s MM MM MM ssd θ⨯⨯==⋅=.8.求点()03,1,2M -到直线10,240,x y z x y z +-+=⎧⎨-+-=⎩的距离.解直线的方向向量{}1110,3,3211=-=---ij ks ,在直线上取一点()1,2,0M -,则{}02,1,2=---MM ,{}02123,6,6033⨯=---=----i j kMM s 所以0322d ⨯===MM s s.习题8-51.指出下列方程在平面解析几何中和空间解析几何中分别表示什么图形:(1)1x y +=;(2)22y x =;(3)222x y R +=;(4)22149x y -=.解(1)在平面解析几何表示直线,空间解析几何中表示平面;(2)在平面解析几何表示抛物线,空间解析几何中表示抛物柱面;(3)在平面解析几何表示圆,空间解析几何中表示圆柱面;(4)在平面解析几何表示双曲线,空间解析几何中表示双曲柱面.2.说明下列旋转曲面是怎样形成的:(1)2221x y z --=;(2)()222z a x y -=+.解(1)将xoy 平面上双曲线221x y -=绕x 轴旋转一周;(2)将yoz 平面上直线z y a =+绕z 轴旋转一周.3.根据常数k 的不同取值,分别讨论下列方程所表示的曲面是什么曲面.(1)22x ky z +=;(2)222x y z k +-=.解(1)当0k >时,为椭圆抛物面,特别地当1k =时为旋转抛物面,当0k =时,为抛物柱面,当0k <时,为双曲面;(2)当0k >时,为旋转单叶双曲面,当0k =时,为圆锥面,当0k <时,为旋转双叶双曲面.4.作出下列曲面所围成的图形:(1)22,1z x y z =+=;(2)z =,z ;(3)0x =,0y =,0z =,1x y +=,226x y z +=-;(4)2y x =,1x y z ++=,0z =.解(1)见图8-4;(2)见图8-5(图8-4)(图8-5)(3)见图8-6;(4)见图8-7(图8-6)(图8-7)习题8-61.将空间曲线222,:1,z x y x z ⎧=+Γ⎨+=⎩转换成母线平行于坐标轴的柱面的交线方程.解曲线Γ等价于212,1,y x x z ⎧=-⎨+=⎩,表示母线平行于z 轴的柱面212y x =-与母线平行于y 轴的柱面1x z +=的交线,或等价于221,1,y z x z ⎧=-⎨+=⎩,表示母线平行于x 轴的柱面221y z =-与母线平行于y 轴的柱面1x z +=的交线.2.将下列曲线的一般方程转化为参数式方程:(1)()22221,11,z x y x y ⎧=--⎪⎨-+=⎪⎩(2)2229,,x y z y x ⎧++=⎨=⎩.解(1)曲线的参数方程为1cos ,sin ,2sin ,2x t y t t z ⎧⎪=+⎪=⎨⎪⎪=⎩(02t π≤≤);(2)曲线的参数方程为,,3sin ,2x t y t t z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩(02t π≤≤).3.试分别确定常数,,B C D 的各组值,使得平面0By Cz D ++=与圆锥面222z x y =+的截痕为:(1)一点;(2)一条直线;(3)两条相交直线(4)圆;(5)双曲线.解(1)取0B D ==,1C =,则平面0z =与圆锥面的截痕为一点()0,0,0;(2)取1B C ==,0D =,则平面0y z +=与圆锥面的截痕为一条直线0,0;y z x +=⎧⎨=⎩(3)取1B =,0C D ==,则平面0y =与圆锥面的截痕为为两条直线0,,y z x =⎧⎨=⎩和0,;y z x =⎧⎨=-⎩(4)取0B =,1C =,1D =-,则平面1z =与圆锥面的截痕为圆221,1;x y z ⎧+=⎨=⎩(5)取1B =,0C =,1D =-,则平面1y =与圆锥面的截痕为为双曲线221,1;z x y ⎧-=⎨=⎩4.求下列曲线在三个坐标面上的投影曲线方程:(1)22,1;z x y z x ⎧=+⎨=+⎩(2)cos ,sin ,2.x y z θθθ=⎧⎪=⎨⎪=⎩解(1)消去z 得曲线在xoy 面投影曲线方程:2210,0;y y x z ⎧+--=⎨=⎩消去x 得曲线在yoz 面投影曲线方程:22310,0;y z z x ⎧+-+=⎨=⎩消去y 得曲线在zox 面投影曲线方程:1,0;x z y +=⎧⎨=⎩(2)消去z 得曲线在xoy 面投影曲线方程:221,0;x y z ⎧+=⎨=⎩消去x 得曲线在yoz 面投影曲线方程:sin20;z y x ⎧=⎪⎨⎪=⎩消去y 得曲线在zox 面投影曲线方程:cos ,20.z x y ⎧=⎪⎨⎪=⎩5.求由旋转抛物面22z x y =+与222z x y =--围成的立体在三个坐标面上的投影区域.解立体在xoy 面投影区域(){}22,1xy D x y xy =+≤,立体在yoz 面投影区域(){}22,2,11yz D y z yz y y =≤≤--≤≤,立体在zox 面投影区域(){}22,2,11zx D x z xz x x =≤≤--≤≤总复习题八1.填空题(1)设()2a b c ⨯⋅= ,则()()()a b b c c a ⎡⎤+⨯+⋅+=⎣⎦;(2)设{}2,1,2a = ,{}4,1,10b =- ,c b a λ=- ,且a c ⊥,则λ=;(3)yoz 平面的圆()222,0,y b z a x ⎧-+=⎪⎨=⎪⎩(0b a >>)绕z 轴旋转一周所得环面的方程为;(4)点()2,1,0M 到平面3450x y z ++=的距离d=;(5)设有直线1158:121x y z L --+==-与26,:23,x y L y z -=⎧⎨+=⎩则1L 与2L 的夹角为.(1)答案“4”.解()()()()24a b b c c a a b c ⎡⎤+⨯+⋅+=⨯⋅=⎣⎦;(2)答案“3”.解{}42,1,102c b a λλλλ=-=---- ,由a c ⊥ ,()()()2421121020λλλ⋅-+⋅--+⋅-=,解得3λ=;(3)答案“()()2222222224x y z b a b x y +++-=+”.解绕z轴旋转环面的方程为()222b z a -+=,即222222x y b z a +±++=所以()()2222222224x y z b a b x y +++-=+(4)答案解d ;(5)答案“3π”.解1L 和2L 的方向向量分别为{}11,2,1s =-和{}21,1,2s =-- 则12121cos 2s s s s θ⋅== ,3πθ=.2.选择题(1)直线11:213x y z L +-==-与平面:1x y z π--=的关系为();(A )L 在π上(B )L 平行π但L 不在π上(C )L π⊥(D )一般斜交(2)两条直线111:201x y z L --==-与22:112x y z L +==的关系为();(A )平行(B )相交但不垂直(C )垂直相交(D )异面直线(3)直线方程23,1,x y z x y z --=⎧⎨+-=⎩可化为();(A )21213x y z -+==-(B )114213x y z +++==-(C )12213x y z ++==(D )122213x y z -+-==-(4)旋转曲面22z x y =+不是由平面曲线()旋转而成的.(A )2,0,z y x ⎧=⎨=⎩绕z 轴(B )2,0,z x y ⎧=⎨=⎩绕z 轴(C )2,,z xy x y =⎧⎨=⎩绕z 轴(D ),,z xy x y =⎧⎨=⎩绕z 轴.(1)答案选(B ).解直线L 的方向向量{}2,1,3s =-,()1,0,1M -为直线L 上一点,平面π的法向量为{}1,1,1n =--,显然0s n ⋅=,且点()1,0,1M -不在平面π上,故L 平行π但L 不在π上;(2)答案“C ”.解1L 、2L 的方向向量分别为{}12,0,1s =- 、{}21,1,2s = ,则120s s ⋅=,直线1L 与2L 垂直,又()11,1,0M 、()20,0,2M -分别为1L 、2L 上的点,且12122011120112s s M M -⎡⎤==⎣⎦---,即1L 、2L 在同一平面上;(3)答案选(C ).解直线的方向向量{}2112,1,3111i j k s =--=-,()0,1,2--为直线上一点,故选(C );(4)答案选(D ).解在曲线,:,z xy L x y =⎧⎨=⎩上任取一点()0000,,M x y z ,设(),,M x y z 是0M 绕z 轴旋转轨迹上任一点,则有20000,z z x y x ⎧===⎪==故得旋转曲面方程为()2212z x y =+.3.已知2c a b =+ ,d a b λ=+ ,2a = ,1b = ,且a b ⊥,求:(1)λ为何值时,c d ⊥;(2)λ为何值时,以,c d为邻边所围成的平行四边形的面积为6.解(1)由于c d ⊥ ,则0c d ⋅=,即()()22220a b a b a b λλ+⋅+=+= 解得2λ=-;(2)由题设条件知6c d ⨯=而()()()22c d a b a b a bλλ⨯=+⨯+=-⨯则有()22sin 222c d a b a b πλλλ⨯=-⨯=-=- 所以226λ-=,5λ=或1λ=-.4.设一平面通过从点()1,1,1-到直线10,0,y z x -+=⎧⎨=⎩的垂线,且与平面0z =垂直,求此平面方程.解过点()1,1,1M -且与直线10,:0,y z L x -+=⎧⎨=⎩垂直的平面1π的方程为()()()0111110x y z ⋅-+⋅++⋅-=,即y z +=解方程组10,0,0,y z x y z -+=⎧⎪=⎨⎪+=⎩得直线L 与平面1π的交点1110,,22M ⎛⎫ ⎪⎝⎭,平面0z =的法向量{}10,0,1n = ,则所求平面的法向量可取为111001,1,0211122ij kn n M M ⎧⎫=⨯==⎨⎬⎩⎭-所以所求平面方程为()()11102x y -++=,即210x y ++=.5.求通过直线3220,260,x y x y z -+=⎧⎨--+=⎩且与点()1,2,1的距离为1的平面方程.解设过直线3220,260,x y x y z -+=⎧⎨--+=⎩的平面束方程为()()322260x y x y z λ-++--+=(λ为非零常数)即()()321260x y z λλλλ+-+-++=,由点()1,2,1到平面的距离为1,即1d =解得2λ=-或3λ=-,所以所求平面方程为22100x y z ++-=或43160y z +-=.6.在xoy 面上求过原点,且与直线x y z ==的夹角为3π的直线方程.解设所求直线L 方程为,0,y Ax z =⎧⎨=⎩即10x y zA ==,直线L 的方向向量{}1,,0s A= 由题意知1cos32π==,得4A =-于是,所求直线方程为(40,0,xy z ⎧+=⎪⎨=⎪⎩或(40,0.x y z ⎧+=⎪⎨=⎪⎩7.求通过点()1,2,3--,平行于平面62350x y z --+=,且又与直线13x -=1325y z +-=-相交的直线方程.解过点()1,2,3M--作已知平面的平行平面,此平面方程为()()()6122330x y z +---+=即62310x y z --+=求此平面与已知直线的交点,由62310,113,325x y z x y z t --+=⎧⎪-+-⎨===⎪-⎩解得0t =,交点为()01,1,3M -,故所求直线的法向量为{}02,3,6s MM ==-所求直线方程为123236x y z +-+==-.8.确定常数k 的值,使得平面y kz =与椭球面222241xy z ++=的交线为圆.解平面与椭球面的交线222241,:,x y z y kz ⎧++=Γ⎨=⎩等价于方程组()22222241,:,x y k z y kz ⎧++-=⎪Γ⎨=⎪⎩要使交线为圆,只须242k-=,即k =,交线为2221,2.x y z y ⎧++=⎪⎨⎪=⎩9.求曲面2221x y z ++=和()()222111x y z -+-+=的交线在yoz 平面上的投影曲线方程.解由题设两曲面的方程消去x ,得交线在yoz 平面上的投影柱面方程22220y y z -+=所求投影曲线方程为22220,0.y y z x ⎧-+=⎨=⎩10.求两曲面22z x =与z =所围立体在三个坐标面上的投影区域.解两曲面的交线在xoy 面上的投影柱面为()2211x y -+=,则投影区域为()(){}22,11xy D x y x y =-+≤,两曲面的交线在yoz 面上的投影柱面为222112z y ⎛⎫-+=⎪⎝⎭,则投影区域为()222,112yz z D y z y ⎧⎫⎛⎫⎪⎪=-+≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,两曲面的交线在zox 面上的投影柱面为z 和z x =,则投影区域为(){,zx D x z x z =≤≤.11.画出下列曲面所围立体的图形:(1)22z xy =+,1x =,1y =,0z =;(2)z xy =,0z =,1x y +=;(3)22z xy =+,2y x =,1y =,0z =;(4)2y x =,212y x =,1x z +=,0z =.解(1)见图8-8;(2)见图8-9;(图8-8)(图8-9)(3)见图8-10;(4)见图8-11.(图8-10)(图8-11)习题9-11指出下列平面点集中,那些是开集、闭集、有界集、连通集、开区域以及闭区域?并分别求其聚点和边界点:(1)22{(,)|0<1}x y x +y <;(2){(,)|}x y y x >;(3){(,)|2,2,2}x y x y x y ≤≤+≥;(4)2222{(,)|1}{(,)|(1)1}x y x y x y x y +>⋂+-≤.解(1)为有界开区域;聚点为集合22{(,)|1}x y x +y ≤,边界点为集合22{(,)|=1}{(0,0)}x y x +y ⋃;(2)为无界的开区域;聚点为集合{(,)|}x y y x ≥,边界点为集合{(,)|,}x y y x x =-∞<<+∞;(3)为有界闭区域;聚点集合为该区域上所有点,边界点集合为三个直线段{(,)|2,02}x y x y =≤≤与{(,)|2,02}x y y x =≤≤及{(,)|2,02}x y x y x +=≤≤的并集;(4)为有界连通集合;聚点为2222{(,)|1}{(,)|(1)1}x y x y x y x y +≥⋂+-≤,边界点为圆弧221{(,)|1,2x y x y y +=≥及圆弧221{(,)|(1)1,}2x y x y y +-=≥的并集.2.证明:点0P 为点集E 的聚点的充分必要条件是点0P 的任意邻域内都至少含有一个点集E 中异于0P 的点.证明:“⇒”由聚点的定义即可得;“⇐”取101(,){|01}U P P P P δδ=<<=(其中0P P 表示点0P 与点P 的距离),则111(,)P U P E δ∃∈⋂,记20112P P δ=,则202(,)P U P E δ∃∈⋂ ,依此类推,由数学归纳法可知对于每个正整数n ,均可取到点01101111(,),22n n n n n P U P E P P δδ----∈⋂=≤ ,由此可得一个两两均不相同的点列{}n P ,若0δ>,因lim 0n n δ→∞=,则k δ∃使得k δδ<,那么当n k ≥时必有0(,)n P U P δ∈,即在0(,)U P δ中比含有集合E 的无穷多个点,因此点0P 为点集E 的聚点.3.求下列各函数值:(1)设22(,)2x y f x y xy-=,求(,1)x f y ;(2)设22(,)y xf x y x y xye =+-,求(,)f tx ty ;(3)设(,)3f x y x y =+,求(,(,))f x f x y ;(4)设(,,)v u v f u v w u w +=+,求(,,)f x y x y xy +-;(5)设22(,)y f x y x y x+=-,求(,)f x y .解(1)2221(,1)(,)22x y x x y f f x y x y xy y⎛⎫- ⎪-⎝⎭===;(2)222222(,)(,)yxf tx ty t x t y t xye t f x y =+-=;(3)(,(,))3(3)49f x f x y x x y x y =++=+;(4)2(,,)()()x y x f x y x y xy x y xy -+-=++;(5)设,,,11y u uv u x y v x y x v v =+===++,222(1)(,)111u uv u v f u v v v v -⎛⎫⎛⎫=-=⎪ ⎪+++⎝⎭⎝⎭,2(1)(,)1x y f x y y-=+.4.设1)z f =+-,若当1y =时,z x =,求函数()f u 及(,)z z x y =的表达式.解由题设有11),1)1x f f x =+=-,令1u =,则2(1)x u =+,所以有2()2f u u u =+,相应的有(,)1z z x y x ==-.5.求下列函数的定义域:(1)(,)f x y =;(2)(,)ln()f x y y x =-+;(3)22221(,)arcsin 4x y f x y x y+=+-;(4)(,,)f x y z =解(1){(,)|}D x y y x y =-<<;(2)22{(,)|0,,1}D x y x y x x y =≥>+<;(3)22{(,)|4,}D x y x y y x =+≤≠;(4)222{(,,)|1,D x y z x y z z =++<>.习题9-21.证明:2222001lim()sin0x y x y x y →→+=+.证明0ε∀>,因为2222221()sinx y x y x y+≤++,取δ=当0δ<<时,则有2222221()sin 0x y x y x y ε+-≤+<+,因此有2222001lim()sin 0x y x y x y →→+=+.2.求下列极限:(1)201ln()lim 2x x y e y x y →→++;(2)220x y →→(3)100lim(1sin )xyx y xy →→-;(4)22()lim ()x y x y x y e-+→+∞→+∞+解(1)原式0ln(1)ln 21e +==;(2)原式220220lim 21()2x y x y x y →→+==--+;(3)原式sin 11sin 00lim (1sin )xyxyxyx y xy e ---→→⎡⎤=-=⎢⎥⎢⎥⎣⎦;(4)原式222()()lim (2),lim lim 0,lim lim 0u x y x y x y x y u x y x x x x y y y x y x y x y u x ye e e e e e e =+++→+∞→+∞→+∞→+∞→+∞→+∞→+∞++=-⋅======,原式0=.3.证明下列极限不存在:(1)22400lim x y xy x y →→+;(2)2222200lim ()x y x y x y x y →→+-.解(1)当取点(,)P x y 沿曲线2:C y kx =趋于点(0,0)O 时则有222422000lim lim 1x x y xy kx k x y x kx k →→→==+++,k 取值不同,则该极限值不同,因此该极限不存在;(2)当取点(,)P x y 沿直线y x =趋于点(0,0)O 时则有2222200lim 1()x y x y x y x y →→=+-,而当取点(,)P x y 沿直线0y =趋于点(0,0)O 时则有2222200lim 0()x y x y x y x y →→=+-,因沿不同方向取极限,则该极限值不同,故该极限不存在.4.讨论下列函数的连续性:(1)22(,)y xf x y y x+=-;(2)22,(,)(0,0),(,)0,(,)(0,0);xyx y x yf x y x y ⎧≠⎪+=⎨⎪≠⎩(3),)(0,0),(,)0,(,)(0,0);x y f x y x y ≠=≠⎩(4)(,,)f x y z =.解(1)函数的定义域为2{(,)|}D x y y x =≠,它在D 内处处连续,抛物线2:C y x =上的点均为它的间断点;(2)函数在全平面内处处有定义,它在区域{(,)|(,)(0,0)}D x y x y =≠内处处连续,由于00lim (,)x y f x y →→不存在,故(0,0)O 是它的间断点;(3)当(,)(0,0)x y ≠时,函数显然是连续的,又00lim0(0,0)x y f →→==,所以它在(0,0)O 处也连续,因此该函数在全平面内处处连续;(4)函数(,,)f x y z 的定义域为222{(,,)|14}x y z x y z Ω=<++<,在定义域内(,,)f x y z处处连续,在球面2221x y z ++=及2224x y z ++=上函数间断.5.设二元函数(,)f x y 在有界闭区域E 上连续,点(,),1,2,,i i x y E i n ∈=⋅⋅⋅,证明至少存在一点(,)E ξη∈,使得1122(,)(,)(,)(,)n n f x y f x y f x y f nξη++⋅⋅⋅+=.证明令112211(,)min{(,)},(,)max{(,)}i i i i i i i i i ni nm f x y f x y M f x y f x y ≤≤≤≤====,则有(,),1,2,,i i m f x y M i n≤≤=⋅⋅⋅,由此可得1(,)ni i i mn f x y Mn=≤≤∑,即1(,)niii f x y m M n=≤≤∑.(1)若m M =,则1122(,)(,)(,)n n f x y f x y f x y ==⋅⋅⋅=,取11(,)(,)x y ξη=即可;(2)若m M <,则有1(,)niii f x y m M n=<<∑,由连续函数介值定理知至少存在一点(,)E ξη∈,使得1122(,)(,)(,)(,)n n f x y f x y f x y f nξη++⋅⋅⋅+=.习题9-31.求下列函数的一阶偏导数:(1)2tan()cos ()z x y xy =++;(2)arctanx yz x y+=-;(3)ln(z x =+;(4)(1)yz xy =+.解(1)22sec ()2cos()sin()sec ()sin(2)zx y y xy xy x y y xy x∂=+-=+-∂,由对称性可知2sec ()sin(2)zx y x xy y ∂=+-∂;(2)22222212,()1zy y z xxx y x y y x yx y x y ∂--∂=⋅==∂-+∂+⎛⎫++ ⎪-⎝⎭;(3)z z xy ∂∂==∂∂;(4)21(1),(1)[ln(1)]1y y z z xyy xy xy xy x y xy-∂∂=+=+++∂∂+.2.求下列函数在指定点的偏导数:(1)(,)sin(2)xf x y ex y -=+,求(0,)4x f π'及(0,)4y f π';(2)22(,)(2)arccos f x y x y x =++-,求(2,)y f y '.解(1)(0,)4(0,)[(cos(2)sin(2)]1,(0,)044x x y f e x y x y f πππ-''=+-+=-=;(2)()2(2,)42y f y yy ''=+=.3.求下列函数的二阶偏导数:(1)2cos ()z ax by =+;(2)z =;(3)arctan 1x yz xy+=-;(4)z yu x =,求2ux z ∂∂∂及22u y ∂∂.解(1)2cos()sin()sin 2(),sin 2()z za ax by ax by a ax byb ax by x y∂∂=-++=-+=-+∂∂,22222222cos 2(),2cos(),2cos 2()z z z a ax by ab ax by b ax by x x y y ∂∂∂=-+=-+=-+∂∂∂∂.(2)2222222222222222,,,()()z x z y z y x z xy x x y x x y x x y x y x y ∂∂∂-∂-====∂+∂+∂+∂∂+,2222222()z x y y x y ∂-=∂+;(3)22211()1(1)111z xy y x y xxy x x y xy ∂-++=⋅=∂-+⎛⎫++ ⎪-⎝⎭,由对称性可知211z y y ∂=∂+,22222222222,0,(1)(1)z x z z yx x x y y y ∂-∂∂-===∂+∂∂∂+;(4)2222112224ln ln 2ln ln ,,,zzzzy y y yu z u y z x u z x u yz x z x x x x x x y x z y y y y y --∂∂+∂∂+===-=∂∂∂∂∂.4.求下列函数的指定高阶偏导数:(1)ln()z x xy =,求32z x y ∂∂∂及32z x y ∂∂∂;(2)u x y z αβγ=,求3ux y z∂∂∂∂.解(1)23232222111ln()1,,0,,z z z z z xy x x x x y x y y x y y∂∂∂∂∂=+====-∂∂∂∂∂∂∂∂;(2)23111111,,u u u x y z x y z x y z x x y x y zαβγαβγαβγααβαβγ------∂∂∂===∂∂∂∂∂∂.5.设322,(,)(0,0),(,)20,(,)(0,0),xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩求(0,0)xyf ''及(0,0)yx f ''.解(,0)(0,0)(0,0)lim0,0x x f x f f y x →-'==≠时,0(,)(0,)1(0,)lim 2x x f x y f y f y y x →-'==,(0,)(0,0)1(0,0)lim 2x x xyy f y f f y →''-''==,0(0,)(0,0)(0,0)lim 0,0y x f y f f x y→-'==≠时,0(,)(,0)(,0)lim 0y y f x y f x f x y →-'==,0(,0)(0,0)(0,0)lim 0y y yx x f x f f x→''-''==.6.已知二元函数(,)z z x y =在区域{(,)|0}D x y x =>内有定义,且满足3,(1,)cos z x y z y y x x∂+==∂,试求(,)z x y .解由3z x yx x∂+=∂可得31(,)ln ()3z x y x y x C y =++,由(1,)cos z y y =可得1()cos 3C y y =-,因而31(,)(1)ln cos 3z x y x y x y =-++.7.分别讨论下列函数在点的连续性和可偏导性:(1)222,(,)(0,0),(,)0,(,)(0,0);xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩(2)(,)f x y =(3)2222,(,)(0,0),(,)1,(,)(0,0).x y x y f x y x yx y ⎧-≠⎪=+⎨⎪=⎩解(1)因为22212xy y x y ≤+,所以22200lim 0x y xy x y →→=+,因此该函数在点(0,0)处连续,又[][]0(0,0)(,0)0,(0,0)(0,)0x y x x f f x f f y ==''''====,因而该函数在(0,0)处存在偏导数;(2)因00(0,0)x y f →→==,因而该函数在点(0,0)处连续,而0(0,0)limx x x f x→'=不存在,同理(0,0)y f '也不存在,因而该函数在(0,0)处不存在偏导数;(3)当取点(,)P x y 沿直线y kx =趋于点(0,0)O 时,则有222222001lim 1x y x y k x y k →→--=++,由于k 取不同值时,上述极限不一样,故222200lim x y x y x y →→-+不存在,因而该函数点(0,0)处不连续,(,0)(0,0)(0,)(0,0)(0,0)lim0,(0,0)limx y x y f x f f y f f f xy→→--''===∞,故在点(0,0)处偏导数(0,0)x f '存在,而偏导数(0,0)y f '不存在.8.考察函数2244,(,)(0,0),(,)0,(,)(0,0),x y x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩并回答下列问题:(1)(,)f x y 在点(0,0)处是否有二阶偏导数;(2)(,)x f x y '与(,)y f x y '在点(0,0)处是否连续.解(1)2444422(3),(,)(0,0),(,)()0,(,)(0,0),x xy x y x y f x y x y x y ⎧-≠⎪'=+⎨⎪≠⎩2444422(3),(,)(0,0),(,)()0,(,)(0,0),y x y y x x y f x y x y x y ⎧-≠⎪'=+⎨⎪≠⎩0(,0)(0,0)(0,0)lim 0x x xx y f x f f x →''-''==0(0,)(0,0)(0,0)lim 0y yyy f y f f y→''-''==,0(0,)(0,0)(0,0)lim 0x x xyy f y f f y→''-''==.(2)当取点(,)P x y沿直线(y kx k =≠趋于点(0,0)O 时则有2442444242000002(3)2(13)lim (,)lim lim ()(1)x x x x y y xy x y k k f x y x y x k →→→→→--'===∞++,故(,)x f x y '在点(0,0)处不连续,同理可证(,)y f x y '点(0,0)处也不连续.9.设arctan y u z x =,证明2222220u u ux y z∂∂∂++=∂∂∂.证明222221,1uy yz z y xx x y x∂--=⋅⋅=∂++222222()u xyz x x y ∂=∂+,同理有222222()u xyzy x y ∂-=∂+,22arctan ,0u y uz x z∂∂==∂∂,所以有2222222222222200()()u u u xyz xyz x y z x y x y ∂∂∂++=-+=∂∂∂++.10.证明:如果(,)f x y 在区域D 内偏导数(,)x f x y '与(,)y f x y '有界,则函数(,)f x y 在区域D 内连续.证明因为(,)x f x y '与(,)y f x y '在D 内有界,所以0M ∃>,对(,)x y D ∀∈均有(,),(,)x y f x y M f x y M ''≤≤,设000(,)P x y D ∈,则0δ∃>,当ρδ=<时有00(,)x x y y D +∆+∆∈,记100200(,),(,)P x x y P x x y y +∆+∆+∆,则线段01P P 与12PP 必完全属于D 内,由Lagrange 中值定理知0000(,)(,)f x x y y f x y +∆+∆-00000000[(,)(,)][(,)(,)]f x x y y f x x y f x x y f x y =+∆+∆-+∆++∆-001020(,)(,)y x f x x y y y f x x y x θθ''=+∆+∆∆++∆∆,0000(,)(,)()f x x y y f x y M x y +∆+∆-≤∆+∆,由夹逼准则可知00000lim[(,)(,)]0x y f x x y y f x y ∆→∆→+∆+∆-=,即函数(,)f x y 在点000(,)P x y 处连续,由点000(,)P x y 的任意性可知,函数(,)f x y 在区域D 内处处连续.习题9-41.求函数22z x xy y =+-在点000(,)P x y 处当自变量,x y 分别取得增量,x y ∆∆时相应的全增量及全微分.解222200000000()()()()()z x x x x y y y y x x y y ∆=+∆++∆+∆-+∆--+2200000000(2)(2),d (2)(2)x y x x y y x x y y y x y x x y y =+∆+-∆+∆+∆∆-∆=+∆+-∆.2.求下列函数的全微分:(1)yz yx =;(2)arctan y z x=;(3)2222x y z x y-=+;(4)u =.解(1)21d d (1ln )d y y z y x x x x y -=++;(2)22d d d y x x yz x y -+=+;(3)2224(d d )d ()xy y x x y z x y -=+;(4)d u =3.试证:(,)f x y =在点(0,0)处连续,偏导数存在,但不可微.证明000(0,0)x y f →→==,因而函数(,)f x y 在点(0,0)处连续,00(,0)(0,0)(0,)(0,0)(0,0)lim0,(0,0)lim 0x y x y f x f f y f f f x y→→--''====,因而函数(,)f x y 在点(0,0)处偏导数存在,又00limx x y y →→→→''---=不存在,故该函数在点(0,0)处不可微.4.设221sin ,(,)(0,0),(,)0,(,)(0,0).xy x y x y f x y x y ⎧≠⎪+=⎨⎪=⎩证明:(1)(0,0),(0,0)x y f f ''存在;(2)(,),(,)x y f x y f x y ''在点(0,0)处不连续;(3)(,)f x y 在点(0,0)处可微.解(1)00(,0)(0,0)(0,)(0,0)lim0,(0,0)lim 0y x y f x f f y f f x y→→--'====,因此(0,0)x f ',(0,0)y f '存在;(2)222222220000121lim (,)lim[sin cos ]()x x x y y x y f x y y x y x y x y →→→→'=-+++不存在,因而(,)x f x y '在(0,0)处不连续,又222222220000121lim (,)lim[sin cos ]()y x x y y xy f x y x x y x y x y →→→→'=-+++不存在,因此(,)x f x y '在(0,0)处也不连续;(3)22001sin lim0x x y y xy x y →→→→''---==,因而函数(,)f x y 在点(0,0)处可微.5的近似值.解令22(,)(,)(,)x y f x y f x y f x y ''===,则有(1.02,1.97)(1,2)(1,2)0.02(1,2)(0.03)x y f f f f ''=≈+⨯+⨯-130.022(0.03) 2.952=+⨯+⨯-=.6.设有一无盖的圆柱形容器,容器的壁与底厚均为0.1cm ,内高为20cm ,内半径为4cm ,求容器外壳体积的近似值.解若圆柱体的底半径为r ,高为h ,则体积为2V hr π=,223d 22 3.144200.1 3.1440.155.3cm V V rh r r h ππ∆≈=∆+∆=⨯⨯⨯⨯+⨯⨯=.。

大学期间各科目的课后习题答案与模拟卷及往年原题

大学期间各科目的课后习题答案与模拟卷及往年原题

《新视野大学英语读写教程(第二版)第三册》课后答案新视野大学英语读写教程(第二版)第一册》课后答案《马·克思主·义大体原理概论》新版完整答案《毛·泽东思想和中国特色社会主·义理论体系概论》习题答案(2020年修订版的)21世纪大学实用英语综合教程(第一册)课后答案及课文翻译西方经济学(高鸿业版)教材详细答案《新视野大学英语读写教程(第二版)第二册》课后答案思想道德修养与法律基础课后习题答案《中国近代史纲要》完整课后答案(高教版)《全新版大学英语综合教程》(第三册)练习答案及课文译文《全新版大学英语综合教程》(第一册)练习答案及课文译文《会计学原理》同步练习题答案《微观经济学》课后答案(高鸿业版)《统计学》课后答案(第二版,贾俊平版)《西方经济学》习题答案(第三版,高鸿业)可直接打印毛邓三全部课后思考题答案(高教版)/毛邓三课后答案新视野大学英语听说教程1听力原文及答案下载西方宏观经济高鸿业第四版课后答案《管理学》经典笔记(周三多,第二版)《中国近代史纲要》课后习题答案《理论力学》课后习题答案《线性代数》(同济第四版)课后习题答案(完整版)高等数学(同济第五版)课后答案(PDF格式,共527页)中国近现代史纲要课后题答案曼昆《经济学原理》课后习题解答21世纪大学英语读写教程(第三册)参考答案谢希仁《计算机网络教程》(第五版)习题参考答案(共48页)《概率论与数理统计》习题答案《模拟电子技术基础》详细习题答案(童诗白,华成英版,高教版)《机械设计》课后习题答案(高教版,第八版,西北工业大学)《大学物理》完整习题答案《管理学》课后答案(周三多)机械设计基础(第五版)习题答案[杨可桢等主编]程守洙、江之永主编《普通物理学》(第五版)详细解答及辅导新视野大学英语课本详解(四册全)21世纪大学英语读写教程(第四册)课后答案新视野大学英语读写教程3册的课后习题答案新视野大学英语第四册答案(第二版)《中国近现代史》选择题全集(共含250道题目和答案)《电工学》课后习题答案(第六版,上册,秦曾煌主编)完整的英文原版曼昆宏观、微观经济学答案《数字电子技术基础》习题答案(阎石,第五版)《电路》习题答案上(邱关源,第五版)《电工学》习题答案(第六版,秦曾煌)21世纪大学英语读写教程(第三册)课文翻译《生物化学》复习资料大全(3套试卷及答案+各章习题集)《模拟电子技术基础》课后习题答案(共10章)《概率论与数理统计及其应用》课后答案(浙江大学盛骤谢式千编著)《理论力学》课后习题答案(赫桐生,高教版)《全新版大学英语综合教程》(第四册)练习答案及课文译文《化工原理答案》课后习题答案(高教出版社,王志魁主编,第三版)《国际贸易》课后习题答案(海闻P.林德特王新奎)大学英语综合教程1-4册练习答案《流体力学》习题答案《传热学》课后习题答案(第四版)高等数学习题答案及提示《高分子化学》课后习题答案(第四版,潘祖仁主编)马·克思主·义大体原理概论答案《计算机网络》课后习题解答(谢希仁,第五版)《概率论与数理统计》优秀学习资料《离散数学》习题答案(高等教育出版社)《模拟电子技术基础简明教程》课后习题答案(杨素行第三版)《信号与线性系统分析》习题答案及辅导参考(吴大正版)《教育心理学》课后习题答案(皮连生版)《理论力学》习题答案(动力学和静力学)选修课《中国现当代文学》资料包机械设计课程设计——二级斜齿圆柱齿轮减速器(WORD+原图)《成本会计》配套习题集参考答案《概率论与数理统计》8套习题及习题答案(自学推荐)《现代西方经济学(微观经济学)》笔记与课后习题详解(第3版,宋承先)《计算机操作系统》习题答案(汤子瀛版,完整版)《毛·泽东思想和中国特色社会主·义理论体系概论》有史以来最全面的温习资料!!!《线性代数》9套习题+9套相应答案(自学,复习推荐)《管理理论与实务》课后题答案(手写版,中央财经大学,赵丽芬)统计学原理作业及参考答案机械设计课程设计——带式运输机的传动装置的设计《物理学》习题分析与解答(马文蔚主编,清·华大学,第五版)《新编大学英语》课后答案(第三册)《通信原理》课后习题答案及每章总结(樊昌信,国防工业出版社,第五版)《c语言程序与设计》习题答案(谭浩强,第三版)《微生物学》课后习题答案(周德庆版)新视野第二版全四册听说教程答案《宏观经济学》课后答案(曼昆,中文版)《电力电子技术》习题答案(第四版,王兆安,王俊主编)《土力学》习题解答/课后答案《公司法》课后练习及参考答案《全新版大学英语综合教程》(第二册)练习答案及课文译文新视野大学英语视听说第三册答案《工程力学》课后习题答案(梅凤翔主编)《理论力学》详细习题答案(第六版,哈工大出版社)《成本会计》习题及答案(自学推荐,23页)《自动控制原理》课后题答案(胡寿松,第四版)《复变函数》习题答案(第四版)《信号与系统》习题答案(第四版,吴大正)《有机化学》课后答案(第二版,高教版,徐寿昌主编)《电工学——电子技术》习题答案(下册)《财务管理学》章后练习参考答案(人大出版,第四版)现代汉语题库(语法部分)及答案《概率论与数理统计》习题详解(浙大二、三版通用)《有机化学》习题答案(汪小兰主编)《微机原理及应用》习题答案《管理运筹学》第二版习题答案(韩伯棠教授)《古代汉语》习题集(附习题答案)福建人民出版社《金融市场学》课后习题答案(张亦春,郑振龙,第二版)《公共关系学》习题及参考答案(复习必备)现代汉语通论(邵敬敏版)词汇语法课后练习答案《国际经济学》教师手册及课后习题答案(克鲁格曼,第六版)《教育技术》课后习题答案参考(北师大)《金融市场学》课后答案(郑振龙版)《组织行为学》习题集答案(参考下,还是蛮好的)《分析化学》课后习题答案(第五版,高教版)大学英语精读第3册答案(外教社)《国际经济学》习题答案(萨尔瓦多,英文版)《复变函数与积分变换》习题答案《信息论与编码》辅导PPT及部分习题答案(曹雪虹,张宗橙,北京邮电大学出版社)《宏观经济学》习题答案(第七版,多恩布什)《物理化学》习题解答(天津大学, 第四版,106张)新视野大学英语视听说教程第一册《机械制造技术》习题集与答案解析新视野大学英语听说教程2册听力原文及答案下载管理学试题(附答案)《材料力学》详细辅导及课后答案(PDF格式,共642页)六级词汇注解《大学基础物理学》课后答案(共16个单元)《管理学——原理与方式》课后习题答案新视野2版第三册(大2上学期用)曼昆《经济学原理》中文第四版.课后习题答案-清晰图片版《数据库系统概论》课后习题(第四版)大学数学基础教程课后答案(微积分)《投资学》课后习题答案(博迪,第四版)流体力学课后答案(高教版,张也影,第二版)《语言学概论》习题答案(自考,新版教材)《统计学》各章练习题答案《数字电子技术基础》课后习题答案(完整答案版)《积分变换》习题答案(配套东南大学张元林编的)《中级财务会计》习题答案(第二版,刘永泽)《计算机网络》课后习题答案(第5版和第4版)《单片机原理及应用》课后习题答案(张毅刚主编,高教版)《金融工程》课后题答案(郑振龙版)《液压传动》第2版思考题和习题解答(共36页)《动物学》习题集与答案(资料相当丰富)《高频电子线路》习题参考答案(第四版)《国际经济法》课后参考答案大学英语四级十年真题+听力《信号与系统》习题详解(奥本海姆版)《电路分析》课后答案及学习指导(第二版,胡翔骏,高教版)《C语言设计》(谭浩强,第三版)227页新视野大学英语课后习题答案1-4册全集《数字电路与逻辑设计》课后习题答案,讲解详细《电路》第五版课后答案《材料力学》详细习题答案及辅导(第四版,刘鸿文)《传播学教程》课后答案(郭庆光主编,完整版)《物理化学》习题答案与课件集合(南大)《金融市场学》电子书(张亦春,郑振龙,第二版)毛邓三95%考点高等教育出版社《毛·泽东思想和中国特色社会主·义道路》(09版,原毛邓三)课后题答案《线性代数》课后习题答案(陈维新,科学出版社)自动控制原理习题集(自学辅导推荐)《现代通信原理》习题答案(曹志刚版)高等数学上下《习题PPT》《数据结构习题集》答案(C版,清·华大学,严蔚敏)《大学物理学》习题解答《物理化学》习题答案(南大,第五版)《机械原理》复习精要与习题精解(第7版,西北大学)《宏观经济学》答案(曼昆,第五版,英文版)pdf格式《化工热力学》习题与习题答案(含各种版本)《材料力学》习题答案教育统计与测量管理心理学(自考必备资料,牛逼打印版)离散数学习题解答(第四版)清·华大学出版社货币银行学《技术经济学概论》(第二版)习题答案《毛·泽东思想和社会主·义建设理论题概论》精炼考试题目,耐心整理《数字信号处理》课后答案及详细辅导(丁美玉,第二版)《语言学概论练习题》答案《会计电算化》教材习题答案(09年)《数据库系统概论》习题答案(第四版)《微观经济学》课后答案(平狄克版)《控制工程基础》课后习题解答(清·华版)《高分子化学》习题答案(第四版)《电机与拖动基础》课后习题答案(第四版,机械工业出版社,顾绳谷主编)《机械工程测试技术基础》(第三版,熊诗波等主编)课后答案《宏观经济学》课后答案(布兰查德版)《机械原理》习题答案和超多例题(西北工业大学,第六版)《大学物理基础教程》课后习题答案(第二版,等教育出版社)简明乐谱基础知识《语言学教程》课后答案《公司理财》课后答案(英文版,第六版)《信息论与编码》学习辅导及习题详解(傅祖芸版)《遗传学》课后习题答案(朱军主编,完整版)现代人心理实战700题处世韬略《自动控制原理》习题答案《普通动物学》完整课后答案(刘凌云,郑光美版)《微机原理》作业答案(李继灿版)尼尔·波兹曼《娱乐至死》《电力电子技术》习题答案(第4版,西安交通大学)大学英语四级(CET-4)历年真题大全[89-07年39套](精品级)753页word 《通信原理》习题答案《普通化学(第五版)》习题详解(配套浙大编的)经济法课后复习及思考答案《结构化学基础》习题答案(周公度,北大版)财务管理学课后答案荆新王化成《C++程序设计》课后习题答案(第2版,吴乃陵,高教版)药用植物的两份习题(自己感觉比较有用)《数学物理方法》习题解答案详细版(梁昆淼,第二版)《机械制图》习题册答案(近机类、非机类,清·华大学出版社)《控制工程基础》习题答案(第二版,燕山大学)《画法几何》资料包(含习题答案,自学辅导课件)《畜禽解剖学与组织胚胎学》习题答案参考《统计学》课后习题答案(周恒彤编)《西方经济学简明教程》课后习题全解(尹伯成,上海人民出版社)《汽车理论》课后答案详细解答(余志生,机械工业出版社)《数学物理方法》(第三版)习题答案新视野听力原文及课后答案新编大学英语4(外研版)课后练习答案《材料力学》习题答案(单辉祖,北京航空航天大学)大学英语精读第3册课文及课后答案《自动控制原理》课后习题答案———胡寿松,第五版《数据库系统原理与设计》课后答案(第四版,王珊,萨师煊)《数字电子技术基础》详细习题答案(阎石第四版)财经应用文笔记《管理学》课后习题答案(罗宾斯,人大版,第7版)《概率论与数理统计》习题答案(复旦大学出版社)《数字信号处理——基于运算机的方式》习题答案(第二版)《传热学》课后答案(杨世铭,陶文铨主编,高教版)C语言资料大全(有课后答案,自学资料,C程序等)毛邓三重点归纳《电力拖动自动控制系统》习题答案逄锦聚《政治经济学》(第3版)笔记和课后习题详解《概率论与数理统计》课后习题解答(东南大学出版社)《有机化学》课后习题答案(胡宏纹,第三版)《常微分方程》习题解答(王高雄版)▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆【因为太多了,没方法再粘贴到那个地址了,更多答案,直接进入下面那个搜索就好】源地址:||。

高等数学第六版(下册)第十章课后习题答案

高等数学第六版(下册)第十章课后习题答案

高等数学第六版(下册)第十章课后习题答案习题 10-11. 设在xOy 面内有一分布着质量的曲线弧L , 在点(x , y )处它的线密度为μ(x , y ), 用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴、对y 轴的转动惯量I x , I y ; (2)这曲线弧的重心坐标x , y .解 在曲线弧L 上任取一长度很短的小弧段ds (它的长度也记做ds ), 设(x , y )为小弧段ds 上任一点.曲线L 对于x 轴和y 轴的转动惯量元素分别为 dI x =y 2μ(x , y )ds , dI y =x 2μ(x , y )ds . 曲线L 对于x 轴和y 轴的转动惯量分别为 ⎰=Lx ds y x y I ),(2μ, ⎰=Ly ds y x x I ),(2μ.曲线L 对于x 轴和y 轴的静矩元素分别为 dM x =y μ(x , y )ds , dM y =x μ(x , y )ds . 曲线L 的重心坐标为⎰⎰==L L y dsy x ds y x x M M x ),(),(μμ, ⎰⎰==LL x ds y x ds y x y M M y ),(),(μμ. 2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L 分为两段光滑曲线L 1和L 2, 则⎰⎰⎰+=12),(),(),(L L Lds y x f ds y x f ds y x f .证明 划分L , 使得L 1和L 2的连接点永远作为一个分点, 则 ∑∑∑+===∆+∆=∆111111),(),(),(n n i i i i ni n i i i i i i i s f s f s f ηξηξηξ.令λ=max{∆s i }→0, 上式两边同时取极限 ∑∑∑+=→=→=→∆+∆=∆nn i i i i n i i i i ni i i i s f s f s f 111011),(lim),(lim ),(lim ηξηξηξλλλ,即得 ⎰⎰⎰+=12),(),(),(L L Lds y x f ds y x f ds y x f .3. 计算下列对弧长的曲线积分:(1)⎰+Ln ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π);解 ⎰+Ln ds y x )(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n=⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n⎰++==ππ2012122n n a dt a .(2)⎰+Lds y x )(, 其中L 为连接(1, 0)及(0, 1)两点的直线段;解 L 的方程为y =1-x (0≤x ≤1);⎰⎰'-+-+=+12])1[(1)1()(dx x x x ds y x L22)1(1=-+=⎰dx x x .(3)xdx L⎰, 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界;解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) . xdx L⎰xdx xdx L L ⎰⎰+=21⎰⎰'++'+=121022)(1])[(1dx x x dx x x⎰⎰++=10102241xdx dx x x )12655(121-+=.(4)ds ey x L22+⎰, 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; 解 L =L 1+L 2+L 3, 其中L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤,因而 ds eds eds eds ey x L y x L y x L y x L 22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axa ax dx e dt t a t a e dx e 22022240222211)cos ()sin (01π2)42(-+=a e a π.(5)⎰Γ++ds z y x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t从0变到2的这段弧;解 dt dtdz dt dydt dx ds 222)()()(++=dt e t e t e t e t e t t t t t 222)cos sin ()sin cos (+++-=dt e t 3=,⎰⎰++=++Γ20222222223sin cos 11dt e e t e t e ds z y x tt t t ⎰----=-==2220)1(23]23[23e e dt e t t .(6)⎰Γyzds x 2, 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、 (0, 0, 2)、(1, 0, 2)、(1, 3, 2); 解 Γ=AB +BC +CD , 其中AB : x =0, y =0, z =t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤3), CD : x =1, y =t , z =2(0≤t ≤3), 故 yzds x yzds x yzds x yzds x CDBCAB2222⎰⎰⎰⎰++=Γ901020030222301=++++=⎰⎰⎰dt t dt dt .(7)⎰Lds y 2, 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解 ⎰⎰'+'--=Ldt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023cos 1)cos 1(2dt t t a315256a =.(8)⎰+Lds y x )(22, 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cost )(0≤t ≤2π).解 dt dtdydt dx ds 22)()(+=atdt dt t at t at =+=22)sin ()cos (atdt t t t a t t t a ds y x L])cos (sin )sin (cos [)(22202222-++=+⎰⎰π⎰+=+=πππ2023223)21(2)1(a tdt t a .4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心. 解 建立坐标系如图10-4所示, 由对称性可知0=y , 又 ⎰==Lx xds a M M x ϕ21⎰-⋅=ϕϕθθϕad a a cos 21ϕϕsin a =,所以圆弧的重心为)0 ,sin (ϕϕa5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心. 解 dt t z t y t x ds )()()(222'+'+'=dt k a 22+=. (1)⎰+=Lz ds z y x y x I ),,()(22ρds z y x y x L))((22222+++=⎰dt k a t k a a ⎰++=π20222222)()43(32222222k a k a a ππ++=.(2)⎰⎰++==LLds z y x ds z y x M )(),,(222ρ⎰++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=, ds z y x x M x L )(1222⎰++=⎰++=π2022222)(cos 1dt k a t k a t a M2222436k a akππ+=,ds z y x y M y L )(1222⎰++=⎰++=π2022222)(sin 1dt k a t k a t a M2222436ka ak ππ+-=, ds z y x z M z L )(1222⎰++=⎰++=π2022222)(1dt k a t k a kt M22222243)2(3k a k a k πππ++=,故重心坐标为)43)2(3 ,436 ,436(22222222222222k a k a k k a ak k a ak πππππππ+++-+.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明: ⎰=Ldx y x P 0),(.证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段, 则L : x =a , y =t , t 从b 1变到b 2. 于是00) ,())( ,(),(2121⎰⎰⎰=⋅==b b b b L dt t a P dt dtda t a P dx y x P .2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线,证明⎰⎰=Lbadx x P dx y x P )0 ,(),(.证明L : x =x , y =0, t 从a 变到b , 所以 ⎰⎰⎰='=baLbadx x P dx x x P dx y x P )0 ,())(0 ,(),(.3. 计算下列对坐标的曲线积分:(1)⎰-Ldx y x )(22, 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以 ⎰⎰-=-=-L dx x x dx y x 2042221556)()(.(2)⎰Lxydx , 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行); 解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π,L 2: x =x , y =0, x 从0变到2a , 因此 ⎰⎰⎰+=21L LL xydx xydx xydx⎰⎰+'++=adx dt t a a t a t a 200)cos (sin )cos 1(π3020232)sin sin sin (a t td tdt a πππ-=+-=⎰⎰.(3)⎰+Lxdy ydx , 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到2π的一段弧;解 ⎰⎰+-=+Ldt t tR R t R t R xdy ydx ]cos cos )sin (sin [20π⎰==20202cos πtdt R .(4)⎰+--+L yx dy y x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行); 解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以 ⎰+--+L y x dy y x dx y x 22)()(⎰---+=π202)]cos )(sin cos ()sin )(sin cos [(1dt t a t a t a t a t a t a a⎰-=-=ππ202221dt a a .(5)ydz zdy dx x -+⎰Γ2, 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧;解 ⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x233220331)(a k d a k ππθθπ-=-=⎰.(6)dz y x ydy xdx )1(-+++⎰Γ, 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1. ⎰Γ-+++dz y x ydy xdx )1(⎰-+++++++=1)]1211(3)21(2)1[(dt t t t t⎰=+=113)146(dt t .(7)⎰Γ+-ydz dy dx , 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1); 解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0, BC : x =0, y =1-z , z =z , z 从0变到1, CA : x =x , y =0, z =1-x , x 从0变到1,故⎰⎰⎰+-+'--+'--=101010)]1()1([])1(1[dx dt z z dx x 21=.(8)dy xy y dx xy x L)2()2(22-+-⎰, 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故 ⎰-+-Ldy xy y dx xy x )2()2(22⎰--+-=113432]2)2()2[(dx x x x x x1514)4(21042-=-=⎰dx x x 4. 计算⎰-++Ldy x y dx y x )()(, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧; 解 L : x =y 2, y =y , y 从1变到2, 故 ⎰-++Ldy x y dx y x )()(⎰=⋅-+⋅+=2122334]1)(2)[(dy y y y y y . (2)从点(1, 1)到点(4, 2)的直线段;解 L : x =3y -2, y =y , y 从1变到2, 故 ⎰-++Ldy x y dx y x )()(ydz dy dx ydz dy dx ydz dy dx ydz dy dx CABCAB+-++-++-=+-⎰⎰⎰⎰Γ11]1)23()23[(21=⋅+-+⋅+-=⎰dy y y y y y(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线; 解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2, L 2: x =x , y =2, x 从1变到4, 故 ⎰-++Ldy x y dx y x )()(dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰14)2()1(4121=++-=⎰⎰dx x dy y .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧. 解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故 ⎰-++Ldy x y dx y x )()(332]2)()14)(23[(1022=⋅--++++=⎰dt t t t t t t .5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时 场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为x =R cos θ, y =R sin θ, θ从0变到2π, 于是场力所作的功为R F d R F dx F d W LL||)sin (||||20-=-⋅==⋅=⎰⎰⎰πθθr F .6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1) 沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线, 则重力所作的功为⎰⎰⎰ΓΓ-==++=⋅=21)(0012z z z z mg dz mg mgdz dy dx d W r F .7. 把对坐标的曲线积分⎰+Ldy y x Q dx y x P ),(),(化成对弧长的曲线积分, 其中L 为:(1)在xOy 面内沿直线从点(0, 0)到(1, 1);解 L 的方向余弦214cos cos cos ===πβα,故 ⎰+Ldy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰+=L ds y x Q y x P 2),(),(.(2)沿抛物线y =x 2从点(0, 0)到(1, 1);解 曲线L 上点(x , y )处的切向量为τ=(1, 2x ), 单位切向量为)412,411()cos ,(cos 22x x x ++==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L ]cos ),(cos ),([βα+=⎰⎰++=L ds xy x xQ y x P 241),(2),(. (3)沿上半圆周x 2+y 2=2x 从点(0, 0)到(1, 1). 解 L 的方程为22x x y -=, 其上任一点的切向量为 )21 ,1(2x x x --=τ, 单位切向量为)1 ,2()cos ,(cos 2x x x --==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L ]cos ),(cos ),([βα+=⎰⎰-+-=Lds y x Q x y x P x x )],()1(),(2[2.8. 设Γ为曲线x =t , y =t 2, z =t 3上相应于t 从0变到1的曲线弧, 把对坐标的曲线积分⎰Γ++Rdz Qdy Pdx 化成对弧长的曲线积分.解 曲线Γ上任一点的切向量为 τ=(1, 2t , 3t 2)=(1, 2x , 3y ), 单位切向量为)3 ,2 ,1(9211)cos ,cos ,(cos 22y x yx ++==τγβαe , ds R Q P Rdz Qdy Pdx L]cos cos cos [γβα++=++⎰⎰Γ⎰++++=L ds y x yRxQ P 2294132.习题 10-31. 计算下列曲线积分, 并验证格林公式的正确性:(1)⎰++-ldy y x dx x xy )()2(22, 其中L 是由抛物线y =x 2及y 2=x 所围成的区域的正向边界曲线; 解 L =L 1+L 2, 故⎰++-Ldy y x dx x xy )()2(22⎰⎰++-+++-=21)()2()()2(2222L L dy y x dx x xy dy y x dx x xy⎰⎰++-+++-=1012243423)](2)2[(]2)()2[(dy y y y y y dx x x x x x301)242()22(1010245235=++--++=⎰⎰dy y y y dx x x x ,而 dxdy x dxdy yPx Q DD)21()(-=∂∂-∂∂⎰⎰⎰⎰⎰⎰-=102)21(y y dx x dy301)(42121=+--=⎰dy y y y y , 所以 ⎰⎰⎰+=∂∂-∂∂l DQdy Pdx dxdy yPx Q )(.(2)⎰-+-ldy xy y dx xy x )2()(232, 其中L 是四个顶点分别为(0, 0)、(2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界. 解 L =L 1+L 2+L 3+L 4, 故 ⎰-+-Ldy xy y dx xy x )2()(232dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰⎰⎰⎰⎰+-+-+=20200222222)8()4(dy y dx x x dy y y dx x848202=-+=⎰⎰ydy xdx ,而 dxdy xy y dxdy yPx Q DD)32()(2+-=∂∂-∂∂⎰⎰⎰⎰ ⎰⎰+-=20220)32(dy xy y dx 8)48(2=-=⎰dx x ,所以 ⎰⎰⎰+=∂∂-∂∂l DQdy Pdx dxdy yPx Q )(.2. 利用曲线积分, 求下列曲线所围成的图形的面积: (1)星形线x =a cos 3t , y =a sin 3t ;解 ⎰⎰-⋅⋅-=-=Ldt t t a t a ydx A π2023)sin (cos 3sin⎰==ππ20224283cos sin 3a tdt t a .(2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2 =144的参数方程为x =4cos θ, y =3sin θ, 0≤θ≤2π, 故 ⎰-=Lydx xdy A 21⎰-⋅-⋅=πθθθθθ20)]sin 4(sin 3cos 3cos 4[21d⎰==ππθ20126d .(3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π, 故 ⎰-=Lydx xdy A 21⎰-⋅-⋅+=πθθθθθ20)]sin (sin cos )cos 1([21d a a a a 2202)cos 1(2a d a ⎰=+=ππθθ.3. 计算曲线积分⎰+-L y x xdy ydx )(222, 其中L 为圆周(x -1)2+y 2=2, L 的方向为逆时针方向. 解 )(222y x y P +=, )(222y x x Q +-=. 当x 2+y 2≠0时y P x Q ∂∂=∂∂0)(2)(22222222222=+--+-=y x y x y x y x .在L 内作逆时针方向的ε小圆周 l : x =εcos θ, y =εsin θ(0≤θ≤2π), 在以L 和l 为边界的闭区域D ε上利用格林公式得0)(=∂∂-∂∂=+⎰⎰⎰-+dxdy yPx Q Qdy Pdx D l L ε, 即 ⎰⎰⎰+=+-=+-lLldy Pdx Qdy Pdx Qdy Pdx .因此 ⎰⎰+-=+-l L y x xdy ydx y x xdy ydx )(2)(22222⎰--=πθεθεθε20222222cos sin d ⎰-=-=ππθ2021d .4. 证明下列曲线积分在整个xOy 面内与路径无关, 并计算积分值: (1)⎰-++)3 ,2()1 ,1()()(dy y x dx y x ;解 P =x +y , Q =x -y , 显然P 、Q 在整个xOy 面内具有一阶连续偏 导数, 而且1=∂∂=∂∂xQy P , 故在整个xOy 面内, 积分与路径无关.取L 为点(1, 1)到(2, 3)的直线y =2x -1, x 从1变到2, 则 ⎰⎰-+-=-++)3 ,2()1 ,1(21)]1(2)13[()()(dx x x dy y x dx y x⎰=+=2125)1(dx x .(2)⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy ;解 P =6xy 2-y 3, Q =6x 2y -3xy 2, 显然P 、Q 在整个xOy 面内具有一阶连续偏导数, 并且2312y xy x Qy P -=∂∂=∂∂, 故积分与路径无关, 取路径 (1, 2)→(1, 4)→(3, 4)的折线, 则 ⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy236)6496()3642312=-+-=⎰⎰dx x dy y y .(3)⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy .解 P =2xy -y 4+3, Q =x 2-4xy 3, 显然P 、Q 在整个xOy 面内具有一阶连续偏导数, 并且342y x xQy P -=∂∂=∂∂, 所以在整个xOy 面内积分与 路径无关, 选取路径为从(1, 0)→(1, 2)→(2, 1)的折线, 则 ⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy⎰⎰=++-=12135)1(2)41(dx x dy y .5. 利用格林公式, 计算下列曲线积分:(1)⎰-+++-Ldy x y dx y x )635()42(, 其中L 为三顶点分别为(0, 0)、(3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂y Px Q , 故由格林公式,得⎰-+++-Ldy x y dx y x )6315()42(dxdy yPx Q D)(∂∂-∂∂=⎰⎰ 124==⎰⎰dxdy D.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正向星形线323232a y x =+(a >0);解 x e y x xy x y x P 22sin 2cos -+=, x ye x x Q 2sin 2-=,0)2cos sin 2()2cos sin 2(22=-+--+=∂∂-∂∂x x ye x x x x ye x x x x yPx Q , 由格林公式⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (2220)(=∂∂-∂∂=⎰⎰dxdy yPx Q D. (3)⎰+-+-Ldy y x x y dx x y xy )3sin 21()cos 2(2223, 其中L 为在抛物线2x =πy 2上由点(0, 0)到)1 ,2(π的一段弧;解 x y xy P cos 223-=, 223sin 21y x x y Q +-=,0)cos 26()6cos 2(22=--+-=∂∂-∂∂x y xy xy x y yPx Q , 所以由格林公式0)(=∂∂-∂∂=+⎰⎰⎰++-dxdy yPx Q Qdy Pdx DOBOA L , 其中L 、OA 、OB 、及D 如图所示. 故 ⎰⎰++=+ABOA LQdy Pdx Qdy Pdx4)4321(02201022πππ=+-+=⎰⎰dy y y dx . (4)⎰+--Ldy y x dx y x )sin ()(22, 其中L 是在圆周22x x y -=上由 点(0, 0)到点(1, 1)的一段弧.解 P =x 2-y , Q =-x -sin 2y ,0)1(1=---=∂∂-∂∂y Px Q , 由格林公式有 0)(=∂∂-∂∂-=+⎰⎰⎰++dxdy yPx Q Qdy Pdx DBOAB L , 其中L 、AB 、BO 及D 如图所示. 故 ⎰⎰++--=+--LOBBA dy y x dx y x dy y x dx y x )sin ()()sin ()(22222sin 4167)sin 1(102102+-=++-=⎰⎰dx x dy y .6. 验证下列P (x , y )dx +Q (x , y )dy 在整个xOy 平面内是某一函数u (x , y )的全微分, 并求这样的一个u (x , y ): (1)(x +2y )dx +(2x +y )dy ; 证明 因为yP x Q∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整 个xOy 面内的函数u (x , y )的全微分.⎰++++=),()0,0()2()2(),(y x C dy y x dx y x y x u C y xy x +++=22222. (2)2xydx +x 2dy ;解 因为yP x x Q∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整个 xOy 面内的函数u (x , y )的全微分. ⎰++=),()0,0(22),(y x C dy x xydx y x u ⎰⎰+=++=y yC y x C xydx dy 0220.(3)4sin x sin3y cos xdx –3cos3y cos2xdy 解 因为y P x y x Q∂∂==∂∂2sin 3cos 6, 所以P (x , y )dx +Q (x , y )dy 是某个 定义在整个xOy 平面内的函数u (x , y )的全微分.⎰+-=),()0,0(2cos 3cos 3cos 3sin sin 4),(y x C xdy y xdx y x y x uC y x C xdy y dx x y+-=+-+=⎰⎰3sin 2cos 2cos 3cos 300.(4)dy ye y x x dx xy y x y )128()83(2322++++ 解 因为yP xy x x Q∂∂=+=∂∂1632, 所以P (x , y )dx +Q (x , y )dy 是某个定 义在整个xOy 平面内的函数u (x , y )的全微分. ⎰+++++=),()0,0(232)128()823(),(y x y C dy ye y x x dx xy iy xh y x uC dx xy y x dy ye y x y+++=⎰⎰022)83(12 C e ye y x y x y y +-++=)(124223.(5)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++ 解 因为yP y x x y x Q∂∂=-=∂∂sin 2cos 2, 所以P (x , y )dx +Q (x , y )dy 是 某个函数u (x , y )的全微分⎰⎰+-+=xyC dy y x x y xdx y x u 02)sin sin 2(2),(C y x x y ++=cos sin 22.7. 设有一变力在坐标轴上的投影为X =x +y 2, Y =2xy -8, 这变力确 定了一个力场, 证明质点在此场内移动时, 场力所做的功与路径无关. 解 场力所作的功为⎰Γ-++=dy xy dx y x W )82()(2.由于y X y x Y ∂∂==∂∂2, 故以上曲线积分与路径无关, 即场力所作的功 与路径无关.习题10-41. 设有一分布着质量的曲面∑, 在点(x , y , z )处它的面密度为μ(x , y , z ), 用对面积的曲面积分表达这曲面对于x 轴的转动惯量. 解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为 dI x =(y 2+z 2)μ(x , y , z )dS , 对于x 轴的转动惯量为dS z y x z y I x ),,()(22μ+=∑⎰⎰.2. 按对面积的曲面积分的定义证明公式dS z y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅⋅⋅, ∆S m ;划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅⋅⋅, ∆S m +n , 则∆S 1, ⋅⋅⋅, ∆S m , ∆S m +1, ⋅⋅⋅, ∆S m +n 为∑的一个划分, 并且i i i i nm m i i i i i mi i i i i nm i S f S f S f ∆∑+∆∑=∆∑++==+=),,(),,(),,(111ζηξζηξζηξ.令}{max 11i mi S ∆=≤≤λ, }{max 12i nm i m S ∆=+≤≤+λ, } ,max{21λλλ=, 则当λ→0时, 有dS z y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=.3. 当∑是xOy 面内的一个闭区域时, 曲面积分dS z y x f ),,(∑⎰⎰与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,dxdy dxdy z z dS y x =++=221,故dxdy z y x f dS z y x f D),,(),,(⎰⎰⎰⎰=∑.4. 计算曲面积分dS z y x f ),,(∑⎰⎰, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下:(1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x 22224411++=++=.因此dxdy y x dS z y x f xyD 22441),,(++=⎰⎰⎰⎰∑⎰⎰+=πθ2020241rdr r d ππ313])41(121[2202/32=+=r . (2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x 22224411++=++=.因此dxdy y x y x dS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑⎰⎰+=πθ202241rdr r dππ30149412222=+=⎰rdr r r . (3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x 22224411++=++=.因此dS z y x f ),,(∑⎰⎰dxdy y x y x xyD 2222441)](2[3+++-=⎰⎰ ⎰⎰+-=πθ2022241)2(3rdr r r dππ1011141)2(62022=+-=⎰rdr r r . 5. 计算dS y x )(22+∑⎰⎰, 其中∑是:(1)锥面22y x z +=及平面z =1所围成的区域的整个边界曲面; 解 将∑分解为∑=∑1+∑2, 其中∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:22y x z +=, D 2: x 2+y 2≤1, dxdy dxdy z z dS y x 2122=++=.dS y x dS y x dS y x )()()(22222221+++=+∑∑∑⎰⎰⎰⎰⎰⎰ dxdy y x dxdy y x D D )()(222221+++=⎰⎰⎰⎰ ⎰⎰=πθ2013dr r d +⎰⎰πθ20132dr r dπππ221222+=+=. 提示: dxdy dxdy yx y y x x dS 21222222=++++=.(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:223y x z +=, D xy : x 2+y 2≤3,dxdy dxdy z z dS y x 2122=++=,因而πθπ922)()(32202222==+=+⎰⎰⎰⎰⎰⎰∑rdr r d dxdy y x dS y x xyD .提示: dxdy dxdy y x y y x x dS 2])(326[])(326[1222222=++++=.6. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z y x 在第一象限中的部分;解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤,dxdy z z dS y x 221++=dxdy 361=, 61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdy dxdy dS y x z xyxy D D .(2)dS z x x xy )22(2+--∑⎰⎰, 其中∑为平面2x +2y +z =6在第一象限中的部分;解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,dxdy dxdy z z dS y x 3122=++=,dS z x x xy )22(2+--∑⎰⎰ dxdy y x x x xy xyD 3)22622(2--+--=⎰⎰ ⎰⎰--+--=xdy y xy x x dx 30230)22236(3427)9103(3323-=+-=⎰dx x x .(3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;解 ∑:222y x a z --=, D xy : x 2+y 2≤a 2-h 2,dxdy z z dS y x 221++=dxdy yx a a 222--=,dxdy yx a a y x a y x dS z y x xyD 222222)()(----++=++⎰⎰⎰⎰∑)(||22h a a D a adxdy xy D xy-===⎰⎰π(根据区域的对称性及函数的奇偶性). 提示: dxdy yx a y y x a x dS 22222222)()(1+--++--+=dxdy y x a a 222--=, (4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax 所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax ,dxdy dxdy z z dS y x 2122=++=,dxdy y x y x xy dS zx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑⎰⎰++=-θππθθθθcos 202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a )cos sin cos cos (sin 24422554⎰-++= 421564a =.提示: dxdy yx y y x x dS 2222221++++=. 7. 求抛物面壳)10)((2122≤≤+=z y x z 的质量, 此壳的面密度为μ=z .解 ∑: )(2122y x z +=, D xy : x 2+y 2≤2, dxdy y x dxdy z z dS y x 222211++=++=.故 dxdy y x y x zdS M xyD 22221)(21+++==⎰⎰⎰⎰∑⎰⎰+=πθ202022121rdr r r d )136(152+=π. 8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量.解 ∑: 222y x a z --=, D xy : x 2+y 2≤a 2,dxdy z z dS y x 221++=dxdy yx a a 222--=, dxdy y x a a y x dS y x I z 222022022)()(--+=+=∑∑⎰⎰⎰⎰μμ ⎰⎰-=a dr ya r d a 0223200πθμ 4034a πμ=.提示:dxdy yx a y y x a x dS 22222222)()(1---+---+=dxdy y x a a 222--=.习题10-51. 按对坐标的曲面积分的定义证明公式:dydz z y x P z y x P )],,(),,([21±∑⎰⎰dydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点,λ是各小块曲面的直径的最大值, 则 dydzz y x P z y x P )],,(),,([21±∑⎰⎰yz i i i i i i i ni S P P ))](,(),([lim ,2,110∆±==→∑ζηξζηξλyz i i i i ni yz i i i i ni S P S P ))(,(lim ))(,(lim ,210,110∆±∆==→=→∑∑ζηξζηξλλdydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.2. 当∑为xOy 面内的一个闭区域时, 曲面积分dxdy z y x R ),,(∑⎰⎰与二重积分有什么关系?解 因为∑: z =0, (x , y )∈D xy , 故dxdy z y x R dxdy z y x R xyD ),,(),,(⎰⎰⎰⎰±=∑,当∑取的是上侧时为正号, ∑取的是下侧时为负号. 3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为222y x R z ---=, D xy : x 2+y 2≤R , 于是 zdxdy y x 22∑⎰⎰dxdy y x R y x xyD )(22222----=⎰⎰⎰⎰⋅-⋅⋅=πθθθ20222202sin cos rdr r R r r d R⎰⎰-=πθθ20052222sin 41Rdr r r R d 71052R π=.(2)ydzdx xdydz zdxdy ++∑⎰⎰, 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧; 解 ∑在xOy 面的投影为零, 故0=∑⎰⎰zdxdy .∑可表示为21y x -=, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故 ⎰⎰⎰⎰⎰⎰⎰-=-=-=∑3112221311dy y dy y dz dydz y xdyz yzD∑可表示为21x y -=, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故 dzdx x ydzdx zxD 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=3010122131dx x dx x dz .因此 ydzdx xdydz zdxdy ++∑⎰⎰)13(2102dx x ⎰-=ππ2346=⨯=.解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为 )0 , ,(1)cos ,cos ,(cos 22y x yx +=γβα, 由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy )cos cos cos (γβα++=++∑∑⎰⎰⎰⎰π23)(222222==+=+⋅++⋅=∑∑∑⎰⎰⎰⎰⎰⎰dS dS y x dS y x y y y x x x . 提示: dS ∑⎰⎰表示曲面的面积.(3)dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰, 其中f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧;解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为 )31 ,31 ,31()cos ,cos ,(cos -=γβα, 由两类曲面积分之间的联系可得dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰ dS z f y f x f ]31)()31()2(31)(⋅++-⋅++⋅+=∑⎰⎰ 2131)(31===+-=⎰⎰⎰⎰⎰⎰∑∑dxdy dS dS z y x xyD . (4)⎰⎰∑++yzdzdx xydydz xzdxdy , 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧.解 ∑=∑1+∑2+∑3+∑4, 其中∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z ,∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x ,∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x ,于是 ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑∑+++=4321xzdxdy xzdxdy 4000∑⎰⎰+++=dxdy y x x xy D )1(--=⎰⎰⎰⎰-=--=1010241)1(x dy y x xdx . 由积分变元的轮换对称性可知 241⎰⎰⎰⎰∑∑==yzdzdx xydydz .因此 ⎰⎰∑=⨯=++812413yzdzdx xydydz xzdxdy .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块;∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x .显然在∑1、∑2、∑3上的曲面积分均为零, 于是 ⎰⎰∑++yzdzdx xydydz xzdxdyyzdzdx xydydz xzdxdy ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰ dS xz yz xy )(34++=∑⎰⎰81)]1)(([3=--++=⎰⎰dxdy y x y x xy xyD . 4. 把对坐标的曲面积分dxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(++∑⎰⎰化成对面积的曲面积分:(1)∑为平面63223=++z y x 在第一卦限的部分的上侧;解 令63223),,(-++=z y x z y x F , ∑上侧的法向量为: )32 ,2 ,3(),,(==z y x F F F n ,单位法向量为 )32 ,2 ,3(51)cos ,cos ,(cos =γβα, 于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰dS R Q P )cos cos cos (γβα++=∑⎰⎰ dS R Q P )3223(51++=∑⎰⎰. (2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量n =(F x , F y , F z )=(2x , 2y , 1),单位法向量为)1 ,2 ,2(4411)cos ,cos ,(cos 22y x yx ++=γβα, 于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰dS R Q P )cos cos cos (γβα++=∑⎰⎰ dS R yQ xP yx )22(441122++++=∑⎰⎰.习题10-61. 利用高斯公式计算曲面积分: (1)⎰⎰∑++dxdy z dzdx y dydz x 222, 其中∑为平面x =0, y =0, z =0, x =a ,y =a , z =a 所围成的立体的表面的外侧;解 由高斯公式原式dv z y x dv z R y Q x P )(2)(++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰⎰⎰⎰===Ωaa a a dz dy xdx xdv 0400366(这里用了对称性). (2)⎰⎰∑++dxdy z dzdx y dydz x 333, 其中∑为球面x 2+y 2+z 2=a 2的外侧;解 由高斯公式原式dv z y x dv z R y Q x P )(3)(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ20004sin 3adr r d d 5512a π=. (3)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322, 其中∑为上半球体 x 2+y 2≤a 2, 2220y x a z --≤≤的表面外侧;解 由高斯公式原式dv y x z d z R y Q x P )()(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ2020022sin a dr r r d d 552a π=.(4)⎰⎰∑++zdxdy ydzdx xdydz 其中∑界于z =0和z =3之间的圆柱体x 2+y 2≤9的整个表面的外侧;解 由高斯公式原式π813)(==∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰dv dv z R y Q x P . (5)⎰⎰∑+-yzdxdy dzdx y xzdydz 24,其中∑为平面x =0, y =0, z =0, x =1,y =1, z =1所围成的立体的全表面的外侧.解 由高斯公式原式dv y y z dv z R y Q x P )24()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=-=10101023)4(dz y z dy dx . 2. 求下列向量A 穿过曲面∑流向指定侧的通量: (1)A =yz i +xz j +xy k , ∑为圆柱x +y 2≤a 2(0≤z ≤h )的全表面, 流向外侧; 解 P =yz , Q =xz , R =xy , ⎰⎰∑++=Φxydxdy xzdzdx yzdydz dv z xy y xz x yz ))()()((∂∂+∂∂+∂∂=Ω⎰⎰⎰00==Ω⎰⎰⎰dv . (2)A =(2x -z )i +x 2y j - xz 2k , ∑为立方体0≤x ≤a , 0≤y ≤a , 0≤z ≤a ,的全表面, 流向外侧;解 P =2x -z , Q =x 2y , R =-xz 2, ⎰⎰∑++=ΦRdxdy Qdzdx Pdydz dv xz x dv z r y Q x P )22()(2-+=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰-=-+=a a a a a dz xz x dy dx 023200)62()22(. (3)A =(2x +3z )i -(xz +y )j +(y 2+2z )k , ∑是以点(3, -1, 2)为球心,半径R =3的球面, 流向外侧.解 P =2x +3z , Q =-(xz +y ), R =y 2+2z , ⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv dv z R y Q x P )212()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰π1083==Ω⎰⎰⎰dv . 3. 求下列向量A 的散度:(1)A =(x 2+yz )i +(y 2+xz )j +(z 2+xy )k ;解 P =x 2+yz , Q =y 2+xz , R =-z 2+xy , )(2222div z y x z y x zR y Q x P ++=++=∂∂+∂∂+∂∂=A . (2)A =e xy i +cos(xy )j +cos(xz 2)k ;解 P =e xy , Q =cos(xy ), R =cos(xz 2), )sin(2sin div 2xz xz xy x ye zR y Q x P xy --=∂∂+∂∂+∂∂=A . (3)A =y 2z i +xy j +xz k ;解 P =y 2, Q =xy , R =xz , x x x zR y Q x P 20div =++=∂∂+∂∂+∂∂=A . 4. 设u (x , y , z )、v (x , y , z )是两个定义在闭区域Ω上的具有二阶连续 偏导数的函数, n u ∂∂, nv ∂∂依次表示u (x , y , z )、v (x , y , z )沿∑的外法线方向 的方向导数. 证明 dS n u v n v u dxdydz u v v u )()∂∂-∂∂=∆-∆⎰⎰⎰⎰⎰∑Ω, 其中∑是空间闭区间Ω的整个边界曲面, 这个公式叫作林第二公式.证明 由第一格林公式(见书中例3)知 dxdydz z v y v x v u )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ dxdydz z v z u y v y u x v x u dS n v u )(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω, dxdydz z u y u x u v )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ dxdydz z v z u y v y u x v x u dS n u v )(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω. 将上面两个式子相减, 即得 dxdyd z u y u x u v z v y v x v u )]()([222222222222∂∂+∂∂+∂∂-∂∂+∂∂+∂∂Ω⎰⎰⎰⎰⎰∑∂∂-∂∂=dS n u v n v u )(. 5. 利用高斯公式推证阿基米德原理: 浸没在液体中所受液体的压力 的合力(即浮力)的方向铅直向上, 大小等于这物体所排开的液体的重力. 证明 取液面为xOy 面, z 轴沿铅直向下, 设液体的密度为ρ, 在物体表面∑上取元素dS 上一点, 并设∑在点(x , y , z )处的外法线的方向余弦为cos α, cos β, cos则dS 所受液体的压力在坐标轴x , y , z 上的分量 分别为-z cos αdS , -z cos β dS , -z cos γ dS ,∑所受的压力利用高斯公式进行计算得 00cos ==-=Ω∑⎰⎰⎰⎰⎰dv dS z F x αρ, 00cos ==-=Ω∑⎰⎰⎰⎰⎰dv dS z F y βρ, ||cos Ω-=-=-=-=ΩΩ∑⎰⎰⎰⎰⎰⎰⎰⎰ρρργρdv dv dS z F z ,其中|Ω|为物体的体积. 因此在液体中的物体所受液体的压力的合力, 其方向铅直向上, 大小等于这物体所排开的液体所受的重力, 即阿基米德原理得证.习题10-71. 利用斯托克斯公式, 计算下列曲线积分: (1)⎰Γ++xdz zdy ydx , 其中Γ为圆周x 2+y 2+z 2=a 2, , 若从z 轴 的正向看去, 这圆周取逆时针方向;解 设∑为平面x +y +z =0上Γ所围成的部分, 则∑上侧的单位法向量为 )31,31,31()cos ,cos ,(cos ==γβαn . 于是 ⎰Γ++xdz zdy ydx dS xz y z y x ∂∂∂∂∂∂=∑⎰⎰γβαcos cos cos 2333)cos cos cos (a dS dS πγβα-=-=---=∑∑⎰⎰⎰⎰. 提示: dS ∑⎰⎰表示∑的面积, ∑是半径为a 的圆.(2)⎰Γ-+-+-dz y x dy x z dz z y )()()(, 其中Γ为椭圆x 2+y 2=a 2, 1=+bz a x (a >0, b >0), 若从x 轴正向看去, 这椭圆取逆时针方向;解 设∑为平面1=+bz a x 上Γ所围成的部分, 则∑上侧的单位法 向量为 ) ,0 ,()cos ,cos ,(cos 2222b a b b a b ++==γβαn . 于是 ⎰Γ-+-+-dz y x dy x z dx z y )()()(dS yx x z z y z y x ---∂∂∂∂∂∂=∑⎰⎰γβαcos cos cos dS b a b a dS ∑∑⎰⎰⎰⎰++-=---=22)(2)cos 2cos 2cos 2(γβα )(2)(2)(22222b a a dxdy a b a dxdy a b a b a b a xyxy D D +-=+-=+++-=⎰⎰⎰⎰π. 提示: ∑(即x ab b z -=)的面积元素为dxdy a b a dxdy a b dS 222)(1+=+=. (3)⎰Γ+-dz yz xzdy ydx 23, 其中Γ为圆周x 2+y 2=2z , z =2, 若从z 轴的 正向看去, 这圆周是取逆时针方向;解 设∑为平面z =2上Γ所围成的部分的上侧, 则 ⎰Γ+-dz yz xzdy ydx 2323yz xz y z y x dxdy dzdx dydz -∂∂∂∂∂∂=∑⎰⎰ ππ2025)3()(22-=⨯-=+-+=∑⎰⎰dxdy z dydz x z . (4)⎰Γ-+dz z xdy ydx 232, 其中Γ为圆周x 2+y 2+z 2=9, z =0, 若从z 轴 的正向看去, 这圆周是取逆时针方向.解 设∑为xOy 面上的圆x 2+y 2≤9的上侧, 则 ⎰Γ-+dz z xdy ydx 232232z x y z y x dxdy dzdx dydz -∂∂∂∂∂∂=∑⎰⎰。

(完整word版)大一下册高数习题册答案第9章

(完整word版)大一下册高数习题册答案第9章
(A)偏导数不连续,则全微分必不存在
(C)全微分存在,则偏导数必连续
2、求下列函数的全微分:
(B)偏导数连续,则全微分必存在
(D)全微分存在,而偏导数不一定存在
1)z
y
dz ex
2)z
3)u
sin (xy2)
y_
xz解:
解:dz
y
du x
z
*
x
2 2cos(xy ) (y dx
「•1
xdy)
2xydy)
答案:极小值f(1,3)10 18l n3
3.函数f (x, y) 2x2ax xy22y在点(1,1)处取得极值,求常数a (-5)
4、求函数z
解:
x2y21在条件x y 30下的条件极值
F(x, y, ) x2y21 (x y 3)
Fx0“22、+11
(,),极小值为-
Fy03 32
5、欲造一个无盖的长方体容器,已知底部造价为3元/平方,侧面造价均为1元/
\2x
y)
3yl n(x
z
2y-
y
y),
nz
2
y ,2xy),其中f具有二阶连续偏导数,求
2yf2
2xf2
2
—2x( fn ( 2y) f122x) x y
4(x2y2)f124xyf22
2
z
2
X
2
z
2
y
2f22y(f21(
2y) f222x)
5、
解:
6、
解:
7、设Z
其中
证明:
2
z
2
y
得:
2fi
4x f118xyf12

大学教材课后习题答案大全

大学教材课后习题答案大全

大学教材课后习题答案大全▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆《新视野大学英语读写教程(第二版)第三册》课后答案http:新视野大学英语读写教程(第二版)第一册》课后答案http:《马·克思主·义基本原理概论》新版完整答案http:《毛·泽东思想和中国特色社会主·义理论体系概论》习题答案(2008年修订版的)http:21世纪大学实用英语综合教程(第一册)课后答案及课文翻译http:西方经济学(高鸿业版)教材详细答案http:《新视野大学英语读写教程(第二版)第二册》课后答案http:思想道德修养与法律基础课后习题答案http:《中国近代史纲要》完整课后答案(高教版)http:《全新版大学英语综合教程》(第三册)练习答案及课文译文http:《全新版大学英语综合教程》(第一册)练习答案及课文译文http:《会计学原理》同步练习题答案http:《微观经济学》课后答案(高鸿业版)http:《统计学》课后答案(第二版,贾俊平版)http:《西方经济学》习题答案(第三版,高鸿业)可直接打印http:毛邓三全部课后思考题答案(高教版)/毛邓三课后答案http:新视野大学英语听说教程1听力原文及答案下载http:西方宏观经济高鸿业第四版课后答案http:《管理学》经典笔记(周三多,第二版)http:《中国近代史纲要》课后习题答案http:《理论力学》课后习题答案http:《线性代数》(同济第四版)课后习题答案(完整版)http:高等数学(同济第五版)课后答案(PDF格式,共527页)http:中国近现代史纲要课后题答案http:曼昆《经济学原理》课后习题解答http:21世纪大学英语读写教程(第三册)参考答案http:谢希仁《计算机网络教程》(第五版)习题参考答案(共48页)http:《概率论与数理统计》习题答案http:《模拟电子技术基础》详细习题答案(童诗白,华成英版,高教版)http:《机械设计》课后习题答案(高教版,第八版,西北工业大学)http:《大学物理》完整习题答案http:《管理学》课后答案(周三多)http:机械设计基础(第五版)习题答案[杨可桢等主编]http:程守洙、江之永主编《普通物理学》(第五版)详细解答及辅导http:新视野大学英语课本详解(四册全)http:21世纪大学英语读写教程(第四册)课后答案http:新视野大学英语读写教程3册的课后习题答案http:新视野大学英语第四册答案(第二版)http:《中国近现代史》选择题全集(共含250道题目和答案)http:《电工学》课后习题答案(第六版,上册,秦曾煌主编)http:完整的英文原版曼昆宏观、微观经济学答案http:《数字电子技术基础》习题答案(阎石,第五版)http:《电路》习题答案上(邱关源,第五版)http:《电工学》习题答案(第六版,秦曾煌)http:21世纪大学英语读写教程(第三册)课文翻译http:《生物化学》复习资料大全(3套试卷及答案+各章习题集)http:《模拟电子技术基础》课后习题答案(共10章)http:《概率论与数理统计及其应用》课后答案(浙江大学盛骤谢式千编著)http:《理论力学》课后习题答案(赫桐生,高教版)http:《全新版大学英语综合教程》(第四册)练习答案及课文译文http:《化工原理答案》课后习题答案(高教出版社,王志魁主编,第三版)http:《国际贸易》课后习题答案(海闻P.林德特王新奎)http:大学英语综合教程1-4册练习答案http:《流体力学》习题答案http:《传热学》课后习题答案(第四版)http:高等数学习题答案及提示http:《高分子化学》课后习题答案(第四版,潘祖仁主编)http:马·克思主·义基本原理概论答案http:《计算机网络》课后习题解答(谢希仁,第五版)http:《概率论与数理统计》优秀学习资料http:《离散数学》习题答案(高等教育出版社)http:《模拟电子技术基础简明教程》课后习题答案(杨素行第三版)http:《信号与线性系统分析》习题答案及辅导参考(吴大正版)http:《教育心理学》课后习题答案(皮连生版)http:《理论力学》习题答案(动力学和静力学)http:选修课《中国现当代文学》资料包http:机械设计课程设计——二级斜齿圆柱齿轮减速器(WORD+原图)http:《成本会计》配套习题集参考答案http:《概率论与数理统计》8套习题及习题答案(自学推荐)http:《现代西方经济学(微观经济学)》笔记与课后习题详解(第3版,宋承先)http:《计算机操作系统》习题答案(汤子瀛版,完整版)http:《毛·泽东思想和中国特色社会主·义理论体系概论》有史以来最全面的复习资料!!!http:《线性代数》9套习题+9套相应答案(自学,复习推荐)http:《管理理论与实务》课后题答案(手写版,中央财经大学,赵丽芬)http:统计学原理作业及参考答案http:机械设计课程设计——带式运输机的传动装置的设计http:《物理学》习题分析与解答(马文蔚主编,清·华大学,第五版)http:《新编大学英语》课后答案(第三册)http:《通信原理》课后习题答案及每章总结(樊昌信,国防工业出版社,第五版)http:《c语言程序与设计》习题答案(谭浩强,第三版)http:《微生物学》课后习题答案(周德庆版)http:新视野第二版全四册听说教程答案http:《宏观经济学》课后答案(曼昆,中文版)http:《电力电子技术》习题答案(第四版,王兆安,王俊主编)http:《土力学》习题解答/课后答案http:《公司法》课后练习及参考答案http:《全新版大学英语综合教程》(第二册)练习答案及课文译文http:新视野大学英语视听说第三册答案http:《工程力学》课后习题答案(梅凤翔主编)http:《理论力学》详细习题答案(第六版,哈工大出版社)http:《成本会计》习题及答案(自学推荐,23页)http:《自动控制原理》课后题答案(胡寿松,第四版)http:《复变函数》习题答案(第四版)http:《信号与系统》习题答案(第四版,吴大正)http:《有机化学》课后答案(第二版,高教版,徐寿昌主编)http:《电工学——电子技术》习题答案(下册)http:《财务管理学》章后练习参考答案(人大出版,第四版)http:现代汉语题库(语法部分)及答案http:《概率论与数理统计》习题详解(浙大二、"三版通用)http:《有机化学》习题答案(汪小兰主编)http:《微机原理及应用》习题答案http:《管理运筹学》第二版习题答案(韩伯棠教授)http:《古代汉语》习题集(附习题答案)福建人民出版社http:《金融市场学》课后习题答案(张亦春,郑振龙,第二版)http:《公共关系学》习题及参考答案(复习必备)http:现代汉语通论(邵敬敏版)词汇语法课后练习答案http:《国际经济学》教师手册及课后习题答案(克鲁格曼,第六版)http:《教育技术》课后习题答案参考(北师大)http:《金融市场学》课后答案(郑振龙版)http:《组织行为学》习题集答案(参考下,还是蛮好的)http:《分析化学》课后习题答案(第五版,高教版)http:大学英语精读第3册答案(外教社)http:《国际经济学》习题答案(萨尔瓦多,英文版)http:《复变函数与积分变换》习题答案http:《信息论与编码》辅导PPT及部分习题答案(曹雪虹,张宗橙,北京邮电大学出版社)http:《宏观经济学》习题答案(第七版,多恩布什)http:《物理化学》习题解答(天津大学,第四版,106张)http:新视野大学英语视听说教程第一册http:《机械制造技术》习题集与答案解析http:新视野大学英语听说教程2册听力原文及答案下载http:管理学试题(附答案)http:《材料力学》详细辅导及课后答案(PDF格式,共642页)http:六级词汇注解http:《大学基础物理学》课后答案(共16个单元)http:《管理学——原理与方法》课后习题答案http:新视野2版第三册(大2上学期用)http:曼昆《经济学原理》中文第四版.课后习题答案-清晰图片版http:《数据库系统概论》课后习题(第四版)http:大学数学基础教程课后答案(微积分)http:《投资学》课后习题答案(博迪,第四版)http:流体力学课后答案(高教版,张也影,第二版)http:《语言学概论》习题答案(自考,新版教材)http:《统计学》各章练习题答案http:《数字电子技术基础》课后习题答案(完整答案版)http:《积分变换》习题答案(配套东南大学张元林编的)http:《中级财务会计》习题答案(第二版,刘永泽)http:《计算机网络》课后习题答案(第5版和第4版)http:《单片机原理及应用》课后习题答案(张毅刚主编,高教版)http:《金融工程》课后题答案(郑振龙版)http:《液压传动》第2版思考题和习题解答(共36页)http:《动物学》习题集与答案(资料相当丰富)http:《高频电子线路》习题参考答案(第四版)http:《国际经济法》课后参考答案http:大学英语四级十年真题+听力http:《信号与系统》习题详解(奥本海姆版)http:《电路分析》课后答案及学习指导(第二版,胡翔骏,高教版)http:《C语言设计》(谭浩强,第三版)227页http:新视野大学英语课后习题答案1-4册全集http:《数字电路与逻辑设计》课后习题答案,讲解详细http:《电路》第五版课后答案http:《材料力学》详细习题答案及辅导(第四版,刘鸿文)http:《传播学教程》课后答案(郭庆光主编,完整版)http:《物理化学》习题答案与课件集合(南大)http:《金融市场学》电子书(张亦春,郑振龙,第二版)http:毛邓三95%考点http:高等教育出版社《毛·泽东思想和中国特色社会主·义道路》(09版,原毛邓三)课后题答案http:《线性代数》课后习题答案(陈维新,科学出版社)http:自动控制原理习题集(自学辅导推荐)http:《现代通信原理》习题答案(曹志刚版)http:高等数学上下《习题PPT》http:《数据结构习题集》答案(C版,清·华大学,严蔚敏)http:《大学物理学》习题解答http:《物理化学》习题答案(南大,第五版)http:《机械原理》复习精要与习题精解(第7版,西北大学)http:《宏观经济学》答案(曼昆,第五版,英文版)pdf格式http:《化工热力学》习题与习题答案(含各种版本)http:《材料力学》习题答案http:教育统计与测量管理心理学(自考必备资料,牛逼打印版)http:离散数学习题解答(第四版)清·华大学出版社http:货币银行学http:《技术经济学概论》(第二版)习题答案http:《毛·泽东思想和社会主·义建设理论题概论》精炼考试题目,耐心整理http:《数字信号处理》课后答案及详细辅导(丁美玉,第二版)http:《语言学概论练习题》答案http:《会计电算化》教材习题答案(09年)http:《数据库系统概论》习题答案(第四版)http:《微观经济学》课后答案(平狄克版)http:《控制工程基础》课后习题解答(清·华版)http:《高分子化学》习题答案(第四版)http:《电机与拖动基础》课后习题答案(第四版,机械工业出版社,顾绳谷主编)http:《机械工程测试技术基础》(第三版,熊诗波等主编)课后答案http:《宏观经济学》课后答案(布兰查德版)http:《机械原理》习题答案和超多例题(西北工业大学,第六版)http:《大学物理基础教程》课后习题答案(第二版,等教育出版社)http:简明乐谱基础知识http:《语言学教程》课后答案http:《公司理财》课后答案(英文版,第六版)http:《信息论与编码》学习辅导及习题详解(傅祖芸版)http:《遗传学》课后习题答案(朱军主编,完整版)http:现代人心理实战700题处世韬略http:《自动控制原理》习题答案http:《普通动物学》完整课后答案(刘凌云,郑光美版)http:《微机原理》作业答案(李继灿版)http:尼尔·波兹曼《娱乐至死》http:《电力电子技术》习题答案(第4版,西安交通大学)http:大学英语四级(CET-4)历年真题大全[89-07年39套](精品级)753页wordhttp:《通信原理》习题答案http:《普通化学(第五版)》习题详解(配套浙大编的)http:经济法课后复习及思考答案http:《结构化学基础》习题答案(周公度,北大版)http:财务管理学课后答案荆新王化成http:《C++程序设计》课后习题答案(第2版,吴乃陵,高教版)http:药用植物的两份习题(自己感觉比较有用)http:《数学物理方法》习题解答案详细版(梁昆淼,第二版)http:《机械制图》习题册答案(近机类、非机类,清·华大学出版社)http:《控制工程基础》习题答案(第二版,燕山大学)http:《画法几何》资料包(含习题答案,自学辅导课件)http:《畜禽解剖学与组织胚胎学》习题答案参考http:《统计学》课后习题答案(周恒彤编)http:《西方经济学简明教程》课后习题全解(尹伯成,上海人民出版社)http:《汽车理论》课后答案详细解答(余志生,机械工业出版社)http:《数学物理方法》(第三版)习题答案http:新视野听力原文及课后答案http:新编大学英语4(外研版)课后练习答案http:《材料力学》习题答案(单辉祖,北京航空航天大学)http:大学英语精读第3册课文及课后答案http:《自动控制原理》课后习题答案———胡寿松,第五版http:《数据库系统原理与设计》课后答案(第四版,王珊,萨师煊)http:《数字电子技术基础》详细习题答案(阎石第四版)http:财经应用文笔记http:《管理学》课后习题答案(罗宾斯,人大版,第7版)http:《概率论与数理统计》习题答案(复旦大学出版社)http:《数字信号处理——基于计算机的方法》习题答案(第二版)http:《传热学》课后答案(杨世铭,陶文铨主编,高教版)http:C语言资料大全(有课后答案,自学资料,C程序等)http:毛邓三重点归纳http:《电力拖动自动控制系统》习题答案http:逄锦聚《政治经济学》(第3版)笔记和课后习题详解http:《概率论与数理统计》课后习题解答(东南大学出版社)http:《有机化学》课后习题答案(胡宏纹,第三版)http:《常微分方程》习题解答(王高雄版)http:▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆【因为太多了,没办法再粘贴到这里了,更多答案,直接进入下面这个搜索就好】http:。

高等数学天大教材答案解析

高等数学天大教材答案解析

高等数学天大教材答案解析本文为《高等数学天大教材答案解析》。

一、导数在高等数学的学习中,导数是一个非常重要的概念。

导数可以描述函数在某一点的变化率,也可以用来求函数的最值、判断函数的单调性等。

导数的定义是:若函数f(x)在点x=x0处有定义,当自变量x绕x0做增量Δx时,相应的函数值增量Δy=f(x0+Δx)-f(x0),如果Δy/Δx当Δx趋于0时的极限存在,则称函数f(x)在点x=x0处可导。

这个极限称为函数f(x)在点x=x0处的导数,记作f'(x0)或dy/dx|x=x0。

二、积分积分是导数的逆运算。

它可以求函数的原函数,并且可以用来求解定积分,计算曲线下的面积等。

积分的定义是:函数f(x)的一个原函数是指它的导函数F(x)。

若F(x)是f(x)的一个原函数,则称函数F(x)在区间[a,b]上的定积分为函数f(x)在区间[a,b]上的积分,记作∫(a to b) f(x)dx=F(b)-F(a)。

三、微分方程微分方程是数学中研究变化率的方程。

它描述了函数的导数、函数本身以及自变量之间的关系。

常见的微分方程包括一阶线性微分方程、一阶非线性微分方程、二阶线性齐次微分方程等。

求解微分方程可以应用数学方法,如变量分离法、齐次方程法、常数变异法等。

四、多重积分多重积分是对多元函数在多维区域上的积分。

它可以用来计算多维空间中的体积、质量等物理量。

多重积分分为重积分和二重积分两种形式。

重积分包含三重积分、四重积分等。

求解多重积分可以通过转化为累次积分的形式,应用Fubini定理等方法来计算。

五、级数级数是由无穷多项求和而成的数列。

它在高等数学中有广泛的应用,如泰勒级数、傅里叶级数等。

级数的收敛性是判断级数和是否有限的重要性质,常用的判别方法有比较判别法、比值判别法、根值判别法等。

六、常微分方程常微分方程是描述未知函数的导数与函数本身的关系的方程。

常微分方程可以分为初值问题和边值问题两种形式。

求解常微分方程可以通过分离变量、齐次方程、常数变异法等方法来得到解析解,也可以应用数值方法进行数值求解。

天大公共基础习题答案-线性代数

天大公共基础习题答案-线性代数

天大公共基础习题—线性代数(QQ群 158313861 海阔天空)解:A 提示:进行9次行变换变换成对角行列式。

知识点:解:提示:对行列式进行初等列变换,变换成上三角行列式。

a11=1+….10=55,知识点:解:D 提示:此题书上答案有误,进行行变换后,11x-22f x =0x+21x-3×(),知识点:解:C 提示:所求31A B B =-18=−(),知识点:解:B 提示:方法一:求出A 让后计算A 3=AAA ,T T 010110=020 A=E+=0300-100-11αβαβ解:A 提示:|A|=0.5,矩阵 A 可逆,X=BA -1,-1100143A-1=020 BA =41060017169知识点:解: D 提示:知识点:A ij 为A 的二阶子式,R (A )=1所以矩阵A 的所有二阶子式均为0,所以R (A *)=0.解:D 提示:24αα与相同,所以向量组|A|=0,无论t 为何值,都线性相关。

知识点:解:B 提示:t=1 时 α1=α2,=α3,此时A 的秩为1,所以排除 A ,C ,D ,选B ,秩为2 ,则α1,α2,α3,必线性相关,可设α1=k1α2+k2α3 ,k1,K2 不全为零,解关于t 的方程组,解得t=1或t=-2,t=1需舍去.知识点,:解:C 提示:n=3,所以j ()=(A)<3R A R , 所以|A|=0, t=-1或t=4,t=-1时,R(A)=2, j ()R A =3,方程组无解,求法:把t=-1,t=4,分别代入,进行航变换j 211t |4()=1-12|-4-1t 1|t R A知识点:解:A 提示:Ax=0的基础解系含有4-3=1个向量,η1-η2是Ax=0的一个基础解,根据非其次方程解的结构选A 。

知识点:解:D 提示:A的特征只是2,则0.5必是A-1的特征值,设A*的特征多项式为f(λ)=|A*-λE|=0 则,||A|A-1-λE|=|5A-1-λE|=|5(A-1-(λ/5)E=0。

高等数学下天津大学课后习题详解答案

高等数学下天津大学课后习题详解答案

1.在空间直角坐标系中指出下列各点所在的卦限:A(3,-1,1),B(-3,2,-1),C(-3,-2,-1)D(3,-2,-1),E(-3,-2,1),F(-3,2,1)解:A.IV B.VI C.VII D.VIII E.III F.II查看全部文档,请关注微信公众号:高校课后习题2.指出下列各点在空间直角坐标系中所处的特殊位置:A(0,1,-2),B(-3,2,-1),C(-3,-2,-1)D(3,0,-2),E(-3,-2,1),F(0,-2,0)解:A.yoz 面 B.z 轴上C.xoy 面上D.zox 面上E.x 轴上F.y 轴上3.指出点P(3,-1,2)关于原点、各坐标轴、各坐标面的对称点的坐标.解:关于原点对称(-3,1,-2);关于x 轴对称(3,1,-2);关于y 轴对称(-3,-1,-2);关于z 轴对称(-3,1,2);关于xoy 面对称(3,-1,-2);关于zox 面对称(3,1,2);关于yoz 面对称(-3,-1,2).4.求点P(4,-3,5)到坐标原点、各坐标轴、各坐标面的距离.解:到原点255)3(4222=+-+,到x 轴345)3(22=+-,到y 轴415422=+,到z 轴54)3(22=+-,到xoy ,yoz ,zox 面的距离分别为5,4,3.5.在二轴上求一点P ,使它到点A(1,3,-4)的距离为5.解:设)0,0,(x ,25)4(3)1(222=-++-x ,1=x ,故为(1,0,0).6.在坐标面yOz 上求与三点A(3,1,2),B(4,-2,-2)和C(0,5,1)等距的点.解:设),,0(z y ,则222222)1()5()2()2(16)2()1(9-+-=++++=-+-+z y z y z y 得y=1,z=-2,故为(0,1,-2).7.证明以A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.解:)326(--=,,AB ,)632(,,-=CA ,||||CA AB =,)358(--=,,BC ,222||||||BC CA AB =+,故为等腰三角形.。

001011[线性代数] 天津大学考试参考资料答案 天津大学考试题库答案

001011[线性代数]  天津大学考试参考资料答案  天津大学考试题库答案

线性代数复习题填空题:1.行列式0111202233034440=。

答:-722.行列式0222303344045550=。

答:-3603.行列式2234567800230045=。

答:-44.行列式2345457900680057=。

答:-45.设123231312A⎛⎫⎪= ⎪⎪⎝⎭,202121B⎛⎫⎪=-⎪⎪-⎝⎭,则AB=,T TB A=。

答:125124123-⎛⎫⎪-⎪⎪-⎝⎭,121212543⎛⎫⎪---⎝⎭6.行列式12881318271432641550125= 。

答:247.设12,ξξ是非齐次线性方程组AX β=的两个解向量,则122133A ξξ⎛⎫+= ⎪⎝⎭ 。

答:β8.设3阶方阵222222a A a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭的秩为2,则a = 。

答:4-9.行列式111111111111x x x x= 。

答:()()331x x +-10.行列式1222212222122221x x x x --=-- 。

答:()()353x x +-11.行列式1300250024121347= 。

答:112.若行列式32222322022322223x x x x ++=++,则x = 。

答:-9或-113.设123a A a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,()123,,B b b b =,则AB = ,BA = 。

答:111213212223313233a b a b a b a b a b a b a b a b a b ⎛⎫⎪⎪ ⎪⎝⎭,()112233b a b a b a ++14.设112012112A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,120111B ⎛⎫⎪= ⎪ ⎪-⎝⎭,则AB = ,T T B A = 。

答:312331-⎛⎫ ⎪- ⎪ ⎪-⎝⎭,323131--⎛⎫ ⎪-⎝⎭。

15.设12,ηη是齐次线性方程组0AX =的两个解向量,则()1235A ηη-= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学下天津大学课后习题详解答案
1.在空间直角坐标系中指出下列各点所在的卦限:
A(3,-1,1),B(-3,2,-1),C(-3,-2,-1)
D(3,-2,-1),E(-3,-2,1),F(-3,2,1)
解:A.IV B.VI C.VII D.VIII E.III F.II
查看全部文档,请关注微信公众号:高校课后习题
2.指出下列各点在空间直角坐标系中所处的特殊位置:
A(0,1,-2),B(-3,2,-1),C(-3,-2,-1)
D(3,0,-2),E(-3,-2,1),F(0,-2,0)
解:A.yoz 面 B.z 轴上
C.xoy 面上
D.zox 面上
E.x 轴上
F.y 轴
上3.指出点P(3,-1,2)关于原点、各坐标轴、各坐标面的对称点的坐标.解:关于原点对称(-3,1,-2);关于x 轴对称(3,1,-2);关于y 轴对称(-3,-1,-2);关于z 轴对称(-3,1,2);关于xoy 面对称(3,-1,-2);关于zox 面对称(3,1,2);关于yoz 面对称(-3,-1,2).
4.求点P(4,-3,5)到坐标原点、各坐标轴、各坐标面的距离.
解:到原点
255)3(4222=+-+,到x 轴345)3(22=+-,到y 轴415422=+,到z 轴54)3(22=+-,到xoy ,yoz ,zox 面的距离分别为5,4,3.
5.在二轴上求一点P ,使它到点A(1,3,-4)的距离为5.
解:设)0,0,(x ,25)4(3)1(222=-++-x ,1=x ,故为(1,0,0).
6.在坐标面yOz 上求与三点A(3,1,2),B(4,-2,-2)和C(0,5,1)等距的点.
解:设),,0(z y ,则
222222)1()5()2()2(16)2()1(9-+-=++++=-+-+z y z y z y 得y=1,z=-2,故为(0,1,-2).
7.证明以A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.
解:)326(--=,,AB ,)632(,,-=CA ,||||CA AB =,)358(--=,,BC ,222||||||BC CA AB =+,故为等腰三角形.。

相关文档
最新文档