用MATLAB求解非线性规划
matlab解决非线性规划问题(凸优化问题)
matlab解决⾮线性规划问题(凸优化问题)当⽬标函数含有⾮线性函数或者含有⾮线性约束的时候该规划问题变为⾮线性规划问题,⾮线性规划问题的最优解不⼀定在定义域的边界,可能在定义域内部,这点与线性规划不同;例如:编写⽬标函数,定义放在⼀个m⽂件中;编写⾮线性约束条件函数矩阵,放在另⼀个m⽂件中;function f = optf(x);f = sum(x.^2)+8;function [g, h] = limf(x);g = [-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %⾮线性不等式约束h = [-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %⾮线性等式约束options = optimset('largescale','off');[x y] = fmincon('optf',rand(3,1),[],[],[],[],zeros(3,1),[],...'limf',options)输出为:最速下降法(求最⼩值):代码如下:function [f df] = detaf(x);f = x(1)^2+25*x(2)^2;df = [2*x(1)50*x(2)];clc,clear;x = [2;2];[f0 g] = detaf(x);while norm(g)>1e-6 %收敛条件为⼀阶导数趋近于0p = -g/norm(g);t = 1.0; %设置初始步长为1个单位f = detaf(x+t*p);while f>f0t = t/2;f = detaf(x+t*p);end %这⼀步很重要,为了保证最后收敛,保持f序列为⼀个单调递减的序列,否则很有可能在极值点两端来回震荡,最后⽆法收敛到最优值。
x = x+t*p;[f0,g] = detaf(x);endx,f0所得到的最优值为近似解。
MATLAB优化应用非线性规划
MATLAB优化应用非线性规划非线性规划是一类数学优化问题,其中目标函数和约束条件都是非线性的。
MATLAB作为一种强大的数值计算软件,提供了丰富的工具和函数,可以用于解决非线性规划问题。
本文将介绍如何使用MATLAB进行非线性规划的优化应用,并提供一个具体的案例来演示。
一、MATLAB中的非线性规划函数MATLAB提供了几个用于解决非线性规划问题的函数,其中最常用的是fmincon函数。
fmincon函数可以用于求解具有等式约束和不等式约束的非线性规划问题。
其基本语法如下:x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)其中,fun是目标函数,x0是变量的初始值,A和b是不等式约束的系数矩阵和右端向量,Aeq和beq是等式约束的系数矩阵和右端向量,lb和ub是变量的上下界,nonlcon是非线性约束函数,options是优化选项。
二、非线性规划的优化应用案例假设我们有一个工厂,需要生产两种产品A和B,目标是最大化利润。
产品A 和B的生产成本分别为c1和c2,售价分别为p1和p2。
同时,我们需要考虑两种资源的限制,分别是资源1和资源2。
资源1在生产产品A和B时的消耗分别为a11和a12,资源2的消耗分别为a21和a22。
此外,产品A和B的生产量有上下限限制。
我们可以建立以下数学模型来描述这个问题:目标函数:maximize profit = p1 * x1 + p2 * x2约束条件:c1 * x1 + c2 * x2 <= budgeta11 * x1 + a12 * x2 <= resource1a21 * x1 + a22 * x2 <= resource2x1 >= min_production_Ax2 >= min_production_Bx1 <= max_production_Ax2 <= max_production_B其中,x1和x2分别表示产品A和B的生产量,budget是预算,min_production_A和min_production_B是产品A和B的最小生产量,max_production_A和max_production_B是产品A和B的最大生产量。
非线性规划的MATLAB解法及其应用
题 目 非线性规划的MATLAB 解法及其应用(一) 问题描述非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划是20世纪50年代才开始形成的一门新兴学科。
70年代又得到进一步的发展。
非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。
在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。
例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存 费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。
对于静态的最优化 问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。
具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
目标函数和约束条件都是线性函数的情形则属于线性规划。
本实验就是用matlab 软件来解决非线性规划问题。
(二) 基本要求掌握非线性规划的MATLAB 解法,并且解决相关的实际问题。
题一 :对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?题二: 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x 1,x 2)表示总利润;p 1,q 1,x 1分别表示甲的价格、成本、销量; p 2,q 2,x 2分别表示乙的价格、成本、销量; a ij ,b i ,λi ,c i (i ,j =1,2)是待定系数.题三:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.(三) 数据结构题一:设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-;建立无约束优化模型为:min y=-x x )23(2-, 0<x<1.5题二:总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,λ1=0.015,c1=20, r2=100,λ2=0.02,c2=30,则问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z 最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我们把它作为原问题的初始值.题三:设变量i x 表示第i 年所使用的资金数,则有 4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max 43213212114321=≥≤+++≤++≤+≤+++=i x x x x x x x x x x x t s x x x x z i(四) 源程序题一:编写M 文件fun0.m:function f=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval题二:建立M-文件fun.m:function f = fun(x)y1=((100-x(1)- 0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1); y2=((280-0.2*x(1)- 2*x(2))-(100*exp(-0.02*x(2))+30))*x(2); f=-y1-y2;输入命令:x0=[50,70];x=fminunc(‘fun ’,x0),z=fun(x)题三:建立M 文件 fun44.m,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));建立M 文件mycon1.m 定义非线性约束:function [g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0主程序youh4.m 为:x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];A=[];b=[];Aeq=[];beq=[];[x,fval]=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,'mycon1')(五) 运行结果题一:运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.题二:运行结果为:x=23.9025, 62.4977, z=6.4135e+003即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.题三:运行结果为:x1=86.2;x2=104.2;x3=126.2;x4=152.8;z=43.1(六) 相关知识用Matlab 解无约束优化问题一元函数无约束优化问题21),(m in x x x x f ≤≤常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)[x ,fval]= fminbnd (...)(4)[x ,fval ,exitflag]= fminbnd (...)(5)[x ,fval ,exitflag ,output]= fminbnd (...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。
Matlab中的数学优化与非线性规划方法
Matlab中的数学优化与非线性规划方法数学优化和非线性规划是数学领域中的重要分支,广泛应用于各个科学领域和工程实践中。
Matlab作为一种常用的数学建模和计算软件,对于解决优化和非线性规划问题具有强大的功能和丰富的工具包。
本文将介绍Matlab中的数学优化和非线性规划方法,探讨其原理和应用。
一、Matlab中的数学优化方法数学优化方法旨在寻找一个函数的最大值或最小值,常用的方法包括线性规划、整数规划和非线性规划等。
在Matlab中,优化问题可以通过建立目标函数和约束条件的数学模型来求解。
1.1 线性规划线性规划是一种求解带有线性约束条件的优化问题的有效方法。
在Matlab中,可以使用linprog函数来求解线性规划问题。
该函数采用单纯形法或者内点法等算法,在给定线性约束条件下,寻找目标函数的最小值。
例如,我们考虑一个简单的线性规划问题:最小化目标函数 f = 3x1 + 4x2约束条件为:-5 <= x1 <= 5-3 <= x2 <= 32x1 + 3x2 >= 6首先,我们需要将目标函数和约束条件表示为Matlab中的向量和矩阵形式。
然后,使用linprog函数求解最小值。
1.2 整数规划整数规划是一种求解带有整数变量的优化问题的方法。
在Matlab中,可以使用intlinprog函数来求解整数规划问题。
该函数使用分支定界法或者割平面法等算法,在给定整数约束条件下,寻找目标函数的最小值。
例如,我们考虑一个简单的整数规划问题:最小化目标函数 f = 3x1 + 4x2约束条件为:0 <= x1 <= 50 <= x2 <= 5x1 + x2 = 5在Matlab中,我们可以定义目标函数和约束条件,并使用intlinprog函数求解最小值。
1.3 非线性规划非线性规划是一类求解带有非线性约束条件的优化问题的方法。
在Matlab中,可以使用fmincon函数来求解非线性规划问题。
非线性规划的MATLAB解法
非线性规划问题通常具有多个局部最 优解,解的稳定性与初始条件有关, 需要使用特定的算法来找到全局最优 解。
非线性规划的应用场景
数据拟合、模型选择、参 数估计等。
生产计划、物流优化、设 备布局等。
投资组合优化、风险管理、 资本预算等。
金融
工业
科研
非线性规划的挑战与解决方法
挑战
非线性规划问题可能存在多个局部最优解,且解的稳定性与初始条件密切相关,需要使用特定的算法来找到全局 最优解。
共轭梯度法
总结词
灵活、适用于大型问题、迭代方向交替
详细描述
共轭梯度法结合了梯度下降法和牛顿法的思 想,通过迭代更新搜索方向,交替使用梯度 和共轭方向进行搜索。该方法适用于大型非 线性规划问题,具有较好的灵活性和收敛性。
04
非线性规划问题的约束 处理
不等式约束处理
处理方式
在Matlab中,可以使用 `fmincon`函数来求解非线性规划 问题,该函数可以处理不等式约 束。
要点二
详细描述
这类问题需要同时考虑多个目标函数,每个目标函数可能 有不同的优先级和权重。在Matlab中,可以使用 `gamultiobj`函数来求解这类问题。该函数可以处理具有 多个目标函数的约束优化问题,并允许用户指定每个目标 函数的权重和优先级。
谢谢观看
具体操作
将等式约束条件表示为线性方程组,并使用`Aeq`参 数指定系数矩阵,使用`beq`参数指定常数向量。
注意事项
等式约束条件需要在可行域内满足,否则会 导致求解失败。
边界约束处理
处理方式
边界约束可以通过在目标函数中添加惩罚项来处理,或者使用专门的优化算法来处理。
具体操作
在目标函数中添加惩罚项时,需要在目标函数中添加一个与边界约束相关的项,并调整 其权重以控制边界约束的重要性。
MATLAB求解非线性规划
MATLAB求解非线性规划非线性规划是一类涉及非线性目标函数或非线性约束条件的数学规划问题。
MATLAB是一种强大的数学计算软件,可以用来求解非线性规划问题。
本文将介绍MATLAB中求解非线性规划问题的方法。
1. 目标函数和约束条件在MATLAB中,非线性规划问题可以表示为以下形式:minimize f(x)subject to c(x)≤0ceq(x)=0lb≤x≤ub其中f(x)是目标函数,c(x)和ceq(x)是不等式和等式约束条件,lb和ub是变量的下限和上限。
2. 求解器MATLAB提供了多种求解器可以用来求解非线性规划问题。
其中常用的有fmincon和lsqnonlin。
lsqnonlin可以用来求解非线性最小二乘问题。
它使用的是Levenberg-Marquardt算法,能够有效地求解非线性最小二乘问题,并且具有较好的收敛性。
3. 示例下面我们来看一个求解非线性规划问题的示例。
假设我们要求解以下非线性规划问题:首先,我们需要定义目标函数和约束条件。
在MATLAB中,我们可以使用anonymous function来定义目标函数和约束条件。
代码如下:f = @(x)x(1)^2+2*x(2)^2+3*x(3)^2;c = @(x)[x(1)+x(2)+x(3)-4, x(1)*x(2)+x(1)*x(3)+x(2)*x(3)-3];ceq = [];lb = [0,0,0];接下来,我们使用fmincon求解非线性规划问题。
代码如下:[x,fval,exitflag,output] = fmincon(f,[1,1,1],[],[],[],[],lb,[],@(x)c(x));其中,第一个参数是目标函数,第二个参数是变量的初值,第三个参数是不等式约束条件,第四个参数是等式约束条件,第五个参数是变量的下限,第六个参数是变量的上限,第七个参数是非线性约束条件,最后一个参数是opts,可以设置其他求解参数。
非线性规划matlab求解
在matlab 中非线性规划的数学模型可写成一下形式:minf(X)s.t. Ax ≪B Aeq .x =Beq C (x )≪0Ceq x =0其中,f(x)是标量函数;A,B,Aeq,Beq 是相应维数的矩阵和向量;C(x),Ceq(x)是非线性向量函数。
Matlab 中的命令是X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)它的返回值是向量x 。
其中,FUN 是用M 文件定义的函数f(x)。
X0是X 的初始值。
A ,B ,Aeq ,Beq 定义了线性约束AX ≪B ,Aeq*X=Beq ,如果没有线性约束,则A=[],B=[],Aeq=[],Beq=[]。
LB 和UB 是变量x 的下界和上界,如果上界和下界没有约束,则LB=[],UB=[];如果X 无下界,则LB=-inf;如果X 无上界,则UB=inf 。
NONLCON 是用M 文件定义的非线性向量函数C(x),Ceq(x)。
OPTIONS 定义了优化函数,可以使用MATLAB 默认的参数设置。
例求解下列非线性规划问题:max z= X 1+ X 2+ X 3+ X 4 s.t.x 1≪4001.1x 1+x 2≪4401.21x 1+1.1x 2+x 3≪4841.331x 1+1.21x 2+1.1x 3+x 4≪532.4X i≫0,i =1,2,3,4(1)编写M 文件,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)) );(2)编写M 文件,定义约束条件function[g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0(3)编写主程序x0=[1;1;1;1];lb=[0;0;0;0];ub=[];A=[];b=[];Aeq=[];beq=[];[x,fval] = fmincon('fun44',x0,A,b,Aeq,beq,lb,ub,'mycon1')输出结果x =86.1883104.2879 126.1883 152.6879fval =-43.0860。
用MATLAB优化工具包解非线性规划
用MATLAB优化工具包解非线性规划2.8 用MATLAB优化工具包解非线性规划用MATLAB优化工具包求解非线性规划时必须先化为如下形式:(NLP)求解程序名为fmincon,其最简单的调用格式为:x = fmincon('fun',x0,A1,b1) (用于不含有等式约束和上下解约束的问题)其最复杂的调用格式为:[x,fval,exitflag,output,lambda,grad,hessian] =fmincon('fun',x0,A1,b1,A2,b2,v1,v2,'nlcon',options,P1,P2, ...)2.8.1 程序fmincon输出变量其中输出变量的含义为:1)x :最优解2)fval :最优解处的函数值3)exitflag :程序结束时的状态指示:>0:收敛0:函数调用次数或迭代次数达到最大值(该值在options中指定)<0:不收敛4) Output: 包含以下数据的一个结构变量funcCount 函数调用次数iterations 实际迭代次数cgiterations 实际PCG迭代次数(大规模计算用)algorithm 实际使用的算法stepsize 最后迭代步长(中等规模计算用)firstorderopt 一阶最优条件满足的情况(目标函数梯度的范数)5) lambda: 包含以下数据(LAGRANGE乘子)的一个结构变量,总维数等于约束条件的个数,其非零分量对应于起作用的约束条件:ineqlin 不等式约束的LAGRANGE乘子eqlin 等式约束的LAGRANGE乘子upper 上界约束的LAGRANGE乘子lower 下界约束的LAGRANGE乘子6) grad: 目标函数梯度7) hessian: 目标函数的hessian矩阵2.8.2 程序fmincon输入参数其中输入变量的含义为:x0为初始解(缺省时程序自动取x0=0)A1,b1,A2,b2,v1,v2:含义见模型(NLP)Fun.m给出目标函数,当GradObj='on'时必须给出其梯度,当Hessian='on'时还必须给出其Jacobi矩阵,一般形式为function [f,g,H] = fun(x)f = ... % objective function valueif nargout > 1g = ... % gradient of the functionif nargout > 2H = ... % Hessian of the functionendnlcon.m给出非线性约束,GradConstr='on'时还给出梯度,一般形式为function [c1,c2,GC1,GC2] = nlcon(x)c1 = ... % nonlinear inequalities at xc2 = ... % nonlinear equalities at xif nargout > 2GC1 = ... % gradients of c1GC2 = ... % gradients of c2endoptions:包含算法控制参数的结构设定(或显示)控制参数的命令为Optimset,有以下一些用法:Optimset //显示控制参数optimset optfun //显示程序'optfun'的控制参数opt=optimset //控制参数设为[](即缺省值opt=optimset(optfun)// 设定为程序'optfun'的控制参数缺省值Opt=optimset('par1',val1,'par2',val2,...)Opt=optimset(oldopts,'par1',val1,...)opt=optimset(oldopts,newopts)可以设定的参数比较多,对fmincon,常用的有以下一些参数:Diagnostics 是否显示诊断信息('on' 或'off')Display 显示信息的级别('off' ,'iter' ,'final','notify')LargeScale 是否采用大规模算法('on' 或'off')MaxIter 最大迭代次数TolCon 约束的误差限TolFun 函数计算的误差限TolX 决策变量的误差限GradObj 目标函数是否采用分析梯度('on' ,'off')Jacobian 目标函数是否采用分析Jacob矩阵('on' ,'off')MaxFunEvals 目标函数最大调用次数GradConstr 非线性约束函数是否采用分析梯度('on' ,'off')2.8.3 注意事项fmincon中输出变量、输入参数不一定写全,可以缺省。
MATLAB非线性规划
MATLAB⾮线性规划MATLAB求解⾮线性规划可以使⽤ fmincon 函数,其数学模型可以写成如下形式:x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)其中,fun是⽬标函数,x0是初始值,A,b 规定线性不等式约束条件,Aeq,beq 规定线性等式约束条件,lb 规定可⾏解的数值下限,ub规定可⾏解的数值上限。
nonlcon是包含⾮线性约束条件(C(x),Ceq(x))的函数。
使⽤options所指定的优化选项执⾏最⼩化。
例如,使⽤MATLAB计算如下⾮线性规划。
x0 = [0.5,0];A = [1,-2];b = 1;Aeq = [2,1];beq = 1;x = fmincon(fun,x0,A,b,Aeq,beq)带有边界约束的,例如:fun = @(x)1+x(1)/(1+x(2)) - 3*x(1)*x(2) + x(2)*(1+x(1));lb = [0,0];ub = [1,2];% 没有线性约束,因此将这些参数设置为 []。
A = [];b = [];Aeq = [];beq = [];% 尝试使⽤⼀个位于区域中部的初始点。
x0 = (lb + ub)/2;x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)带有⾮线性约束的,例如:%% 主函数options=optimset('largescale','off');x = fmincon(@fun,rand(3,1),[],[],[],[],zeros(3,1),[], @nonlcon, options)%% ⽬标函数function f=fun(x)f=sum(x.^2)+8;end%% ⾮线性约束条件function [c,ceq]=nonlcon(x)c=[-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %⾮线性不等式约束ceq=[-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %⾮线性等式约束end特别注意:⽬标函数为最⼩化函数,fun是⼀个函数,fun接受向量或数组 x,并返回实数标量 f,即在 x 处计算的⽬标函数值。
第5讲 MATLAB非线性规划
s.t.
2
i 1
xij
xij
0,
d j , j 1,L , 6 i 1, 2, j 1, 2,L
,6
6
j1
xij
ei ,
i 1, 2
• for j=1:6
• aa(i,j)=sqrt((x(i)-a(j))^2+(y(i)-b(j))^2);
• end
•end
•CC=[aa(1,:) aa(2,:)];
s.t.
i 1
xij
xij 0,
d j , j 1,L , 6 i 1, 2, j 1, 2,L
,6
6
j1
xij
ei ,
i 1, 2
x0=[1 2 3 0 1 0 0 1 0 1 0 1];
[x,fval]=linprog(CC,A,B,Aeq,beq,VLB,VUB,x0) MATLAB(gying1)
x16
x26
目标:使得吨公里
… …
(a1, b1), d1 = 3 (a2, b2), d2 =5
(a6, b6), d6= 11
min
建立模型
1.目标函数为:
•根据假设2,所有的吨公里为:
mn
min f xij
i 1 j1
2.约束条件为:
( xi a j )2 ( yi bj )2
需求约束: 日储量约束: 非负约束:
2) 若约束条件中有非线性约束:G(X) 0 或Ceq(X)=0,则建 立M文件nonlcon.m定义函数G(X)与Ceq(X):
function [G,Ceq]=nonlcon(X) G=... Ceq=...
MATLAB求解非线性规划
经济管理学院:李继红
1 Matlab简介及操作环境
1.1 Matlab简介
由美国 DOCTORCLEVER MOLER 于 1980 年 开始研制并于1984年推出正式版本。以后陆续推 出了4.0,4.2和5.0版本,1999年初推出了功能更 为强大的5.3版本,2001年推出6.1版本,2003年 推出了6.5版本。2004年6月正式推出7.0版本。 MATLAB是建立在 C 语言基础上的高级语言, 并建立了自已独特的语言环境。
plot3(x,y,z,’s’)
plot3(x1,y1,z1,’s1’,x2,y2,z2,’s2’,·· ·) plot3例命:令t将=绘0制:二pi维/5图0形:1的0函*p数i;plot的特性扩展到三维空间。函 数格式除p了lo包t括3(第s三in维(t的),信co息s((t)比,t如);Z方向)之外,与二维函数
1、for循环
li1_6_1.m
• For循环可以按指定的次数重复执行一系列语 句。For循环的常见结构:
• for 变量 =表达式 循环语句
end
这里循环语句可以是一条或 多条,并且可以是变量的函 数
• 如:for k=初值: 增值: 终值
例:
% mzmfor.m
clear all
N=input('请输入矩阵的维数 N:');
6.4 switch-case语句
一般switch-case语句格式为: switch num case n1 command case n2 command case n3 command . . .otherwise Command
li1_6_4.m
7 数据的可视化
用Matlab求解非线性规划
用Matlab 求解非线性规划1.无约束优化问题)(min x f n Rx ∈,其中向量x 的n 个分量i x 都是决策变量,称)(x f 目标函数。
用Matlab 求解:先建立函数文件mbhs.m ,内容是)(x f 的表达式;再回到Matlab 命令区输入决策变量初值数据x0,再命令[x,fmin]=fminunc(@mbhs,x0) 如:)32(m in 22212x x R x +∈的最优解是.)0,0(T x = 用Matlab 计算,函数文件为 function f=mbhs(x)f=2*x(1)^2+3*x(2)^2;再输入初值 x0=[1;1]; 并执行上述命令,结果输出为 x =? fmin =? 略。
2.约束优化问题.),,...,2,1(,0)(),,...,2,1(,0)(..)(min U x L m i x h p i x g t s x f i i Rx n ≤≤===≤∈其中:向量x 的n 个分量i x 都是决策变量,称)(x f 目标函数、)(x g i 等式约束函数、)(x h i 不等式约束函数、L 下界、U 上界。
用Matlab 求解:先把模型写成适用于Matlab 的标准形式.,0)(,0)(,,..)(min U x L x h x g beq x Aeq b Ax t s x f n Rx ≤≤=≤=≤∈ 约束条件中:把线性的式子提炼出来得前两个式子;后三个式子都是列向量。
(如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===⨯⨯)()()([],[],,,11262x g x g x g beq Aeq b A p )再建立两个函数文件:目标函数mbhs.m ;约束函数yshs.m再回到Matlab 命令区,输入各项数据及决策变量初值数据x0,执行命令[x,fmin]=fmincon(@mbhs,x0,A,b,Aeq,beq,L,U,@yshs)例:单位球1222≤++z y x 内,曲面xy y x z 1.05.022--+=的上方,平面008.0=-++z y x 之上(不是上面),满足上述三个条件的区域记为D ,求函数)1cos()sin(2-+-+-z e z y x e xy xyz 在D 上的最大值、最大值点。
MATLAB优化工具箱--线性规划-非线性规划
fmincon函数求解形如下面的有约束非线性规 划模型
一般形式:
min f ( X ) s.t. AX b
Aeq X beq l X u c(X ) 0 ceq ( X ) 0
Matlab求解有约束非线性最小化 1.约束中可以有等式约束 2.可以含线性、非线性约束均可
数学实验
输入参数语法:
靠着楼房建有一个温室,温室高10英尺,延伸进 花园7英尺。清洁工要打扫温室上方的楼房的窗户。 他只有借助于梯子,一头放在花园中,一头靠在 楼房的墙上,攀援上去进行工作。他只有一架20 米长的梯子,你认为他能否成功?能满足要求的 梯子的最小长度是多少?请就以上问题建立数学 模型,并编程求解。
18
提示:
19
算失败
7
例题的求解程序
模型: max 6x1+4x2 s.t. 2x1+5x2 ≤100
4x1+2x2 ≤120
Matlab求解程序:
A=[2 5;4 2]; b=[100 120]; f=-[6 4]; [optx ,funvalue,exitflag]=linprog(f,A,b,[],[],[0
lb,ub,nonlcon)
16
学习小结
最优化问题建模的关键是先要确定三要素,再转
化为数学表达式(数学模型)。
学习中既要初步掌握最优化问题的建模步骤,也
要善于运用Matlab的优化工具箱求解优化模型。
有些模型可以采用多个Matlab函数求解,可以比
较结果,加深认识。
17
思考题
一幢楼房的后面是一个很大的花园。在花园中紧
3
Matlab求解线性规划模型 函数linprog
求解下列形式的线性规划模型:
Matlab无约束非线性规划的求解
Matlab ⽆约束⾮线性规划的求解标准形式:min f (X )没有任何的约束条件,在matlab 中,fminsearch() 和 fminunc() 可⽤于求解⾮线性规划。
fminsearch 是⽤单纯形法寻优fminunc 为⽆约束优化提供了⼤型优化和中型优化算法MATLAB 求解⽆约束⾮线性规划的步骤①⾸先建⽴⼀个函数M ⽂件, 如 fun.m ,⽤以储存⽬标函数。
②其次,调⽤格式[x.favl,exitflag,output]=fminunc('fun',X0,options) 或[x.favl,exitflag,output]=fminsearch('fun',X0,options)等号左侧:x:返回最优解。
favl :返回⽬标函数在最优解 x 点的函数值。
exitflag :返回算法的终⽌标志。
output :返回优化算法信息的⼀个数据结构。
等号右侧:第⼀个参数是调⽤⽬标函数储存的⽂件第⼆个参数是决策变量的初始值第三个输⼊参数 options 为设置优化选项参数例:给定初始值为[-1,1],求minf (x )=(4x 21+2x 22+4x 1x 2+2x 2+1)ex 11.编写函数fun.m:function f=fun(x)f=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);end 2.输⼊如下:x0=[-1,1];[x,f]=fminunc('fun',x0)3.运⾏结果显⽰:x =0.5000 -1.0000f =3.6609e-16min f (X )min f (x )=(4+2+4+2+1)x 21x 22x 1x 2x 2ex 1。
非线性规划的Matlab解法
⾮线性规划的Matlab解法
编写M ⽂件fun1.m 定义⽬标函数
function f=fun1(x);
% 定义⽬标函数
f=sum(x.^2)+8;
% .^2是矩阵中的每个元素都求平⽅。
^2是求矩阵的平⽅或两个相同的矩阵相乘,要求矩阵为⽅阵。
编写M⽂件fun2.m定义⾮线性约束条件
function[g,h]=fun2(x);
%定义⾮线性约束条件
g=[-x(1)^2+x(2)-x(3)^2
x(1)+x(2)^2+x(3)^2-20];
%⾮线性约束不等式条件
h=[-x(1)-x(2)^2+2
x(2)+2*x(3)^2-3];
编写主程序⽂件example2.m 如下:
[x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[],'fun2',optimset('largescale','off'))
%这是对寻优函数搜索⽅式的设定,
%LargeScale指⼤规模搜索,off表⽰在规模搜索模式关闭,Simplex指单纯形算法,on表⽰该算法打开。
%display指结果⽅式,有四种off | iter | notify | final,
%iter⼤概是指中间结果每步都显⽰,⼀般选择final显⽰最终结果。
在MATLAB运⾏窗⼝直接输⼊optimset可显⽰所有可设置的参数及对应的可选择的参数值。