中考数学历年各地市真题一元二次方程

合集下载

2020-2021全国中考数学一元二次方程组的综合中考真题汇总及答案

2020-2021全国中考数学一元二次方程组的综合中考真题汇总及答案

2020-2021全国中考数学一元二次方程组的综合中考真题汇总及答案一、一元二次方程1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得:10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y 万辆,根据题意得:2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y ,∴(14.4×90%+y )×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题2.解方程:(x+1)(x ﹣3)=﹣1.【答案】x 1x 2=1【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3,解得:x 1,x 2=13.解方程: 2212x x 6x 9-=-+() 【答案】124x x 23==-, 【解析】试题分析:先对方程的右边因式分解,直接开平方或移项之后再因式分解法求解即可.试题解析:因式分解,得2212x x 3-=-()()开平方,得12x x 3-=-,或12x x 3-=--()解得124x x 23==-, 4.已知:关于的方程有两个不相等实数根. (1) 用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值. 【答案】(I )kx 2+(2k -3)x+k -3 = 0是关于x 的一元二次方程. ∴ 由求根公式,得 . ∴或 (II ),∴. 而,∴,. 由题意,有∴即(﹡) 解之,得经检验是方程(﹡)的根,但,∴【解析】 (1)计算△=(2k-3)2-4k (k-3)=9>0,再利用求根公式即可求出方程的两根即可; (2)有(1)可知方程的两根,再有条件x 1>x 2,可知道x1和x2的数值,代入计算即可. 一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.请你解答下列问题:5.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值. 月份用水量(吨) 水费(元)四月35 59.5五月80 151【答案】6.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.7.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.8.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。

2023年中考数学真题分项汇编(全国通用):一元二次方程及其应用(解析版)

2023年中考数学真题分项汇编(全国通用):一元二次方程及其应用(解析版)

专题07一元二次方程及其应用A .23.2(1) 3.7xB .23.2(1) 3.7xC .23.7(1) 3.2xD .23.7(1) 3.2x 【答案】B【分析】设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,根据题意列出一元二次方程即可.【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,根据题意得,23.2(1) 3.7x .故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.4.(2023·黑龙江·统考中考真题)如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m ,则小路的宽是()A .5mB .70mC .5m 或70mD .10m【答案】A【分析】设小路宽为m x ,则种植花草部分的面积等于长为 1002m x ,宽为 502m x 的矩形的面积,根据花草的种植面积为23600m ,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小路宽为m x ,则种植花草部分的面积等于长为 1002m x ,宽为 502m x 的矩形的面积,依题意得: 1002502=3600x x 解得:15 x ,270x (不合题意,舍去),∴小路宽为5m .故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5.(2023·河南·统考中考真题)关于x 的一元二次方程280x mx 的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根移项得,241x x 两边同时加上4,即2445x x ∴2(2)5x ,故选:C .【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法是解题的关键.2 .故答案为:2 .【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.31.(2023·湖北黄冈·统考中考真题)已知一元二次方程230x x k 的两个实数根为12,x x ,若1212221x x x x ,则实数k _____________.【答案】5【分析】根据一元二次方程的根与系数的关系,得出12123,x x x x k ,代入已知等式,即可求解.【详解】解:∵一元二次方程230x x k 的两个实数根为12,x x ,∴12123,x x x x k∵1212221x x x x ,∴61k ,解得:5k ,故答案为:5 .【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.32.(2023·湖南·统考中考真题)某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程想想,设这两年绿化面积的年平均增长率为x ,则依题意列方程为__________.【答案】 2100011440x 【分析】设这两年绿化面积的年平均增长率为x ,依题意列出一元二次方程即可求解.【详解】解:设这两年绿化面积的年平均增长率为x ,则依题意列方程为 2100011440x ,故答案为: 2100011440x .【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.33.(2022秋·北京东城·九年级景山学校校考阶段练习)关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是______.【答案】k <1.【分析】由方程有两个不等实数根可得出关于k 的一元一次不等式,解不等式即可得出结论.【详解】∵关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根,∴△=2241k 0 ,解得:k 1 ,故答案为:k 1 .【点睛】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k 的一元一次不等式.熟知“在一元二次方程 2ax bx c 0a 0 中,若方程有两个不相等的实数根,则△=2b 4ac 0 ”是解答本题的关键.34.(2023·湖南岳阳·统考中考真题)已知关于x 的一元二次方程22220x mx m m 有两个不相等.....的实数根,且12122x x x x ,则实数m _________.【答案】3【分析】利用一元二次方程22220x mx m m 有两个不相等.....的实数根求出m 的取值范围,由根与系数关系得到212122,2x x m x x m m ,代入12122x x x x ,解得m 的值,根据求得的m 的取值范围,确定m 的值即可.【详解】解:∵关于x 的一元二次方程22220x mx m m 有两个不相等.....的实数根,∴22242480m m m m ,解得m>2,∵212122,2x x m x x m m ,12122x x x x ,∴2222m m m ,解得123,0m m (不合题意,舍去),∴3m 故答案为:3.【点睛】此题考查一元二次方程根的判别式和一元二次方程根与系数关系,熟练掌握根的判别式和根与系数关系的内容是解题的关键.三、解答题35.(2023秋·辽宁沈阳·九年级统考期末)解方程:2320x x .【答案】11x ,22x 【分析】首先将方程进行因式分解,然后根据因式分解的结果求出方程的解.【详解】解:2320x x (1)(2)0x x ∴10x 或20x ∴11x ,22x .【点睛】本题考查了解一元二次方程,解题的关键是掌握因式分解法求解方程.36.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求20202022 年买书资金的平均增长率.【答案】20%【分析】设20202022 年买书资金的平均增长率为x ,根据2022年买书资金 2020年买书资金 21x 建立方程,解方程即可得.【详解】解:设20202022 年买书资金的平均增长率为x ,由题意得: 2500017200x ,解得0.220%x 或 2.20x (不符合题意,舍去),答:20202022 年买书资金的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.37.(2023·湖北·统考中考真题)已知关于x 的一元二次方程 22210x m x m m .(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若 2220a b a b ,求m 的值.【答案】(1)见解析;(2)m 的值为1或2【分析】(1)根据一元二次方程根的判别式可进行求解;(2)根据一元二次方程根与系数的关系可进行求解.【详解】(1)证明:∵ 22Δ21410m m m ,∴无论m 取何值,方程都有两个不相等的实数根.。

中考数学一元二次方程经典60题

中考数学一元二次方程经典60题

本章学习内容由店主精心收集整理,请家长下载打印,祝学习顺利!其余系列请关注店铺或私信留言中考数学提分冲刺真题精析:一元二次方程一、解答题(共60小题)1.(2014•自贡)解方程:3x(x﹣2)=2(2﹣x)2.(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.3.(2014•扬州)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k 的值.4.(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?5.(2014•无锡)(1)解方程:x2﹣5x﹣6=0;(2)解不等式组:.6.(2014•乌鲁木齐)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)7.(2014•遂宁)解方程:x2+2x﹣3=0.8.(2014•随州)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y 与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)9.(2014•十堰)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足(x1﹣x2)2=16﹣x1x2,求实数m的值.10.(2014•齐齐哈尔)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB),且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根.线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线CD上一个动点,点Q是直线AB上一个动点.(1)求A、B两点的坐标;(2)求直线CD的解析式;(3)在坐标平面内是否存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标;若不存在,请说明理由.11.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.12.(2014•梅州)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.13.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.14.(2014•黄石)解方程:.15.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.16.(2014•葫芦岛)有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)17.(2014•衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.18.(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.用配方法解方程:x2﹣2x﹣24=0.19.(2014•防城港)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)20.(2014•鄂州)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.21.(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.22.(2013•自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.23.(2013•淄博)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求的值.24.(2013•漳州)解方程:x2﹣4x+1=0.25.(2013•义乌市)解方程(1)x2﹣2x﹣1=0(2)=.26.(2013•徐州)(1)解方程:x2﹣2x=1;(2)解不等式组:.27.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.28.(2013•无锡)(1)解方程:x2+3x﹣2=0;(2)解不等式组:.29.(2013•上海)解方程组:.30.(2013•山西)解方程:(2x﹣1)2=x(3x+2)﹣7.31.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.32.(2013•日照)(1)计算:.(2)已知,关于x的方程x2﹣2mx=﹣m2+2x的两个实数根x1、x2满足|x1|=x2,求实数m的值.33.(2013•南充)关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?34.(2013•乐山)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC 是等腰三角形时,求k的值.35.(2013•兰州)(1)计算:(﹣1)2013﹣2﹣1+sin30°+(π﹣3.14)0(2)解方程:x2﹣3x﹣1=0.36.(2013•荆州)已知:关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0(1)求证:无论k为任何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.37.(2013•黄石)解方程组:.38.(2013•杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.39.(2013•广州)解方程:x2﹣10x+9=0.40.(2013•防城港)已知关于x的方程x2+x+n=0有两个实数根﹣2,m.求m,n的值.41.(2013•达州)选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:x2﹣4x+2=(x﹣2)2﹣2;②选取二次项和常数项配方:,或③选取一次项和常数项配方:根据上述材料,解决下面问题:(1)写出x2﹣8x+4的两种不同形式的配方;(2)已知x2+y2+xy﹣3y+3=0,求x y的值.42.(2013•北京)已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.43.(2012•淄博)一元二次方程的某个根,也是一元二次方程的根,求k的值.44.(2012•永州)解方程:(x﹣3)2﹣9=0.45.(2012•无锡)(1)解方程:x2﹣4x+2=0(2)解不等式组:.46.(2012•温州)(1)计算:;(2)解方程:x2﹣2x=5.47.(2012•遂宁)解方程:x2+4x﹣2=0.48.(2012•绵阳)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.49.(2012•乐山)已知关于x的一元二次方程(x﹣m)2+6x=4m﹣3有实数根.(1)求m的取值范围;(2)设方程的两实根分别为x1与x2,求代数式x1•x2﹣x12﹣x22的最大值.50.(2012•黄石)解方程组:.51.(2012•菏泽)(1)先化简,再求代数式的值.,其中a=(﹣1)2012+tan60°.(2)解方程:(x+1)(x﹣1)+2(x+3)=8.52.(2012•巴中)解方程:2(x﹣3)=3x(x﹣3).53.(2012•安徽)解方程:x2﹣2x=2x+1.54.(2011•武汉)解方程:x2+3x+1=0.55.(2011•无锡)(1)解方程:x2+4x﹣2=0;(2)解不等式组.56.(2011•遂宁)解方程:x(2x+1)=8x﹣3.57.(2011•上海)解方程组:.58.(2011•清远)解方程:x2﹣4x﹣1=0.59.(2011•聊城)解方程:x(x﹣2)+x﹣2=0.60.(2011•黄石)解方程:.真题精析:一元二次方程参考答案与试题解析一、解答题(共60小题)1.(2014•自贡)解方程:3x(x﹣2)=2(2﹣x)考点:解一元二次方程-因式分解法.专题:因式分解.分析:先移项,然后提取公因式(x﹣2),对等式的左边进行因式分解.解答:解:由原方程,得(3x+2)(x﹣2)=0,所以3x+2=0或x﹣2=0,解得x1=﹣,x2=2.点评:本题考查了解一元二次方程﹣﹣因式分解法.因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.2.(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.考点:一元二次方程的应用;一元一次不等式的应用.专题:应用题.分析:(1)设用于购买书桌、书架等设施的为x元,则购买书籍的有(30000﹣x)元,利用“购买书刊的资金不少于购买书桌、书架等设施资金的3倍”,列出不等式求解即可;(2)根据“自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,且总集资额为20000元”列出方程求解即可.解答:解:(1)设用于购买书桌、书架等设施的为x元,则购买书籍的有(30000﹣x)元,根据题意得:30000﹣x≥3x,解得:x≤7500.答:最多用7500元购买书桌、书架等设施;(2)根据题意得:200(1+a%)×150(1﹣a%)=20000整理得:a2+10a﹣3000=0,解得:a=50或a=﹣60(舍去),所以a的值是50.点评:本题考查了一元二次方程的应用及一元一次不等式的应用,解题的关键是从题目中整理出等量关系和不等关系,难度不大.3.(2014•扬州)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.考点:根的判别式;一元二次方程的定义.分析:根据根的判别式令△=0,建立关于k的方程,解方程即可.解答:解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,∴△=0,∴[﹣(k﹣1)]2﹣4(k﹣1)×=0,整理得,k2﹣3k+2=0,即(k﹣1)(k﹣2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2.∴k=2.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?考点:一元二次方程的应用.专题:应用题.分析:设AB的长度为x,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.解答:解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.5.(2014•无锡)(1)解方程:x2﹣5x﹣6=0;(2)解不等式组:.考点:解一元二次方程-因式分解法;解一元一次不等式组.专题:计算题.分析:(1)方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1)方程变形得:(x﹣6)(x+1)=0,解得:x1=6,x2=﹣1;(2),由①得:x≥3;由②得:x>5,则不等式组的解集为:x>5.点评:此题考查了解一元二次方程﹣因式分解法,以及一元一次不等式组,熟练掌握运算法则是解本题的关键.6.(2014•乌鲁木齐)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)考点:一元二次方程的应用;一元一次不等式的应用.专题:增长率问题.分析:(1)设每月的增长率为x,那么2月份的生产收入为100(1+x),三月份的生产收入为100(1+x)2,根据1至3月份的生产收入累计可达364万元,可列方程求解.(2)设使用新设备y个月后,该厂所得累计利润不低于使用旧设备的累计利润,根据不等关系可列不等式求解.解答:解:(1)设每月的增长率为x,由题意得:100+100(1+x)+100(1+x)2=364,解得x=0.2,或x=﹣3.2(不合题意舍去)答:每月的增长率是20%.(2)设使用新设备y个月后,该厂所得累计利润不低于使用旧设备的累计利润,依题意有364+100(1+20%)2(y﹣3)﹣640≥(90﹣5)y,解得y≥12.故使用新设备12个月后,该厂所得累计利润不低于使用旧设备的累计利润.点评:本题考查理一元二次方程的应用和解题能力,关键是找到1至3月份的生产收入累计可达100万元和不等量关系可列方程和不等式求解.7.(2014•遂宁)解方程:x2+2x﹣3=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:观察方程x2+2x﹣3=0,可因式分解法求得方程的解.解答:解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.点评:解方程有多种方法,要根据实际情况进行选择.8.(2014•随州)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y 与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)考点:一元二次方程的应用;分段函数.专题:销售问题.分析:(1)根据分段函数可以表示出当0<x≤5,5<x≤30时由销售数量与进价的关系就可以得出结论;(2)由销售利润=销售价﹣进价,由(1)的解析式建立方程就可以求出结论.解答:解:(1)由题意,得当0<x≤5时y=30.当5<x≤30时,y=30﹣0.1(x﹣5)=﹣0.1x+30.5.∴y=;(2)当0<x≤5时,(32﹣30)×5=10<25,不符合题意,当5<x≤30时,[32﹣(﹣0.1x+30.5)]x=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.点评:本题考查了分段函数的运用,一元二次方程的解法的运用,解答时求出分段函数的解析式是关键.9.(2014•十堰)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足(x1﹣x2)2=16﹣x1x2,求实数m的值.考点:根的判别式;根与系数的关系.专题:判别式法.分析:(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x1+x2=﹣2(m+1),x1x2=m2﹣1;代入(x1﹣x2)2=16﹣x1x2,建立关于m的方程,据此即可求得m的值.解答:解:(1)由题意有△=[2(m+1)]2﹣4(m2﹣1)≥0,整理得8m+8≥0,解得m≥﹣1,∴实数m的取值范围是m≥﹣1;(2)由两根关系,得x1+x2=﹣(2m+1),x1•x2=m2﹣1,(x1﹣x2)2=16﹣x1x2(x1+x2)2﹣3x1x2﹣16=0,∴[﹣2(m+1)]2﹣3(m2﹣1)﹣16=0,∴m2+8m﹣9=0,解得m=﹣9或m=1∵m≥﹣1∴m=1.点评:本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.10.(2014•齐齐哈尔)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB),且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根.线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线CD上一个动点,点Q是直线AB上一个动点.(1)求A、B两点的坐标;(2)求直线CD的解析式;(3)在坐标平面内是否存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标;若不存在,请说明理由.考点:一元二次方程的解;一次函数综合题;正方形的性质;相似三角形的判定.专题:综合题.分析:(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,即可得到A、B两点的坐标;(2)先在Rt△AOB中利用勾股定理求出AB==10,根据线段垂直平分线的性质得到AC=AB=5.再由两角对应相等的两三角形相似证明△ACD∽△AOB,由相似三角形对应边成比例得出=,求出AD=,得到D点坐标(﹣,0),根据中点坐标公式得出C(3,4),然后利用待定系数法即可求出直线CD的解析式;(3)分两种情况进行讨论:①当点Q与点B重合时,先求出BM的解析式为y=x+8,设M (x,x+8),再根据BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐标;②当点Q与点A重合时,先求出AM的解析式为y=x﹣,设M(x,x﹣),再根据AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐标.解答:解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);(2)在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB==10,∵线段AB的垂直平分线CD交AB于点C,∴AC=AB=5.在△ACD与△AOB中,,∴△ACD∽△AOB,∴=,即=,解得AD=,∵A(6,0),点D在x轴上,∴D(﹣,0).设直线CD的解析式为y=kx+b,由题意知C为AB中点,∴C(3,4),∵D(﹣,0),∴,解得,∴直线CD的解析式为y=x+;(3)在坐标平面内存在点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长.∵AC=BC=AB=5,∴以点C、P、Q、M为顶点的正方形的边长为5,且点Q与点B或点A重合.分两种情况:①当点Q与点B重合时,易求BM的解析式为y=x+8,设M(x,x+8),∵B(0,8),BM=5,∴(x+8﹣8)2+x2=52,化简整理,得x2=16,解得x=±4,∴M1(4,11),M2(﹣4,5);②当点Q与点A重合时,易求AM的解析式为y=x﹣,设M(x,x﹣),∵A(6,0),AM=5,∴(x﹣)2+(x﹣6)2=52,化简整理,得x2﹣12x+20=0,解得x1=2,x2=10,∴M3(2,﹣3),M4(10,3);综上所述,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(10,3).点评:本题是一次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数的解析式,一元二次方程的解法,相似三角形的判定与性质,正方形的性质,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.11.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.考点:根与系数的关系;根的判别式.专题:代数综合题.分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;(2)根据(1)可知:m=1,继而可得一元二次方程为x2﹣2x+1=0,根据根与系数的关系,可得x1+x2=2,x1x2=1,再将x12+x22﹣x1x2变形为(x1+x2)2﹣3x1x2,则可求得答案.解答:解:∵一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=8﹣4m>0,解得m<2,故整数m的最大值为1;(2)∵m=1,∴此一元二次方程为:x2﹣2x+1=0,∴x1+x2=2,x1x2=1,∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.点评:此题考查了一元二次方程根与系数的关系与根的判别式.此题难度不大,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.掌握根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.12.(2014•梅州)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.考点:根的判别式;一元二次方程的解;根与系数的关系.专题:判别式法.分析:(1)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根;(2)写出根的判别式,配方后得到完全平方式,进行解答.解答:解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1•x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.点评:本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.13.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.考点:根与系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:(1)利用(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,求得m的值即可;(2)分7为底边和7为腰两种情况分类讨论即可确定等腰三角形的周长.解答:解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)①当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;②当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.点评:本题考查了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.14.(2014•黄石)解方程:.考点:高次方程.专题:计算题.分析:先把方程组的第二个方程进行变形,再代入方程组中的第一个方程,即可求出x,把x的值代入方程组的第二个方程,即可求出y.解答:解:,由方程x﹣2y=2得:4y2=15x2﹣60x+60(3),将(3)代入方程5x2﹣4y2=20,化简得:x2﹣6x+8=0,解此方程得:x=2或x=4,代入x﹣2y=2得:y=0或,即原方程组的解为或.点评:本题考查了解高次方程的应用,解此题的关键是能得出关于x定的一元二次方程,题目比较好,难度适中.15.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.考点:根与系数的关系;根的判别式;二次函数的最值.专题:代数综合题.分析:(1)首先根据根的判别式求出m的取值范围,利用根与系数的关系,求出符合条件的m 的值;(2)把利用根与系数的关系得到的关系式代入代数式,细心化简,结合m的取值范围求出代数式的最大值.解答:解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1解得:m1=,m2=(不合题意,舍去)∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.点评:此题考查根与系数的关系,一元二次方程的根的判别式△=b2﹣4ac来求出m的取值范围;解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.16.(2014•葫芦岛)有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤⑤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)考点:解一元二次方程-配方法.专题:阅读型.分析:(1)移项要变号;(2)移项后配方,开方,即可得出两个方程,求出方程的解即可.解答:解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为:⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n x2=﹣4n.点评:本题考查了解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.17.(2014•衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.考点:一元二次方程的应用.专题:增长率问题.分析:设这两年的年平均增长率为x,根据题意列出方程,求出方程的解即可得到结果.解答:解:设这两年的年平均增长率为x,根据题意得:5000(1+x)2=7200,即(1+x)2=1.44,开方得:1+x=1.2或x+1=﹣1.2,解得:x=0.2=20%,或x=﹣2.2(舍去).答:这两年的年平均增长率为20%.点评:考查了一元二次方程的应用,本题为增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.18.(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法.专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19.(2014•防城港)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)考点:一元二次方程的应用;一元一次不等式的应用.专题:增长率问题.分析:(1)根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.解答:解:(1)设从今年年初起每年新增电动车数量是x万辆,由题意可得出:今年将报废电动车:10×10%=1(万辆),∴[(10﹣1)+x](1﹣10%)+x≤11.9,解得:x≤2.答:从今年年初起每年新增电动车数量最多是2万辆;。

全国中考数学一元二次方程组的综合中考真题汇总及答案解析

全国中考数学一元二次方程组的综合中考真题汇总及答案解析

全国中考数学一元二次方程组的综合中考真题汇总及答案解析一、一元二次方程1.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c ba++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.2.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0. (1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长. 【答案】(1)k >34;(215 【解析】 【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=522m n +,利用完全平方公式进行变形即可求得答案. 【详解】(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根, ∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0, ∴k >34; (2)当k =2时,原方程为x 2-5x +5=0, 设方程的两个根为m ,n ,∴m+n=5,mn=5,∴矩形的对角线长为:()222215m n m n mn+=+-=.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.3.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.4.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.5.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m%,求出m的值.【答案】(1)120;(2)20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+52m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣920m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+52m%)+a[120×0.8(1﹣25%)﹣920m](1+15m%)=120×0.8a(1﹣25%)×2(1+ 152m%),即72a(1+52m%)+a(72﹣920m)(1+15m%)=144a(1+ 152m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.6.已知:关于的方程有两个不相等实数根.(1)用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k (k-3)=9>0,再利用求根公式即可求出方程的两根即可; (2)有(1)可知方程的两根,再有条件x 1>x 2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系. 请你解答下列问题:7.将m 看作已知量,分别写出当0<x<m 和x>m 时,与之间的函数关系式;8.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】 由韦达定理,有,.于是,对正整数,有原式=9.关于x 的一元二次方程()22210x k x k +-+=有两个不等实根1x ,2x .(1)求实数k 的取值范围;(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值. 【答案】(1) k <14;(2) k=0.【解析】【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=-(2k-1)=1-2k,x1•x2=k2,代入x1+x2+x1x2-1=0,即可求出k值.【详解】解:(1)∵关于x的一元二次方程x2+(2k-1)x+k2=0有两个不等实根x1,x2,∴△=(2k-1)2-4×1×k2=-4k+1>0,解得:k<14,即实数k的取值范围是k<14;(2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1•x2=k2,∵x1+x2+x1x2-1=0,∴1-2k+k2-1=0,∴k2-2k=0∴k=0或2,∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.10.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元;()2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?【答案】(1)2280;(2)15【解析】【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x列出方程:(10+x)(200-5x)=2625,求出x,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280()2因为1020020002625⨯=<.因此参加人比10人多, 设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=. 解得 15x = 225x =, ∵2005150x -≥, ∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游. 【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.11.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求没m 的最小整数值; (2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值. 【答案】(1)-4;(2)m=3 【解析】 【分析】(1)利用根的判别式的意义得到△≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到12(1)x x m +=-+,212124x x m =-,然后解关于m 的一元二次方程,即可确定m 的值. 【详解】解:(1)∵221(1)204x m x m +++-=有两个实数根,∴221(1)41(2)04m m ∆=+-⨯⨯-≥, ∴290m +≥, ∴92m ≥-;∴m 的最小整数值为:4m =-;(2)由根与系数的关系得:12(1)x x m +=-+,212124x x m =-, 由22212121184x x x x m ++=-得: ()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭∴22150m m +-=, 解得:3m =或5m =-; ∵92m ≥-, ∴3m =. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则12bx x a +=-,12c x x a=.也考查了根的判别式.解题的关键是熟练掌握根与系数的关系和根的判别式.12.关于x 的一元二次方程x 2﹣(m ﹣3)x ﹣m 2=0. (1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x 1,x 2,且|x 1|=|x 2|﹣2,求m 的值及方程的根.【答案】(1)证明见解析;(2)x 1=﹣,x 2=﹣1或 【解析】试题分析:(1)根据一元二次方程的判别式△=b 2﹣4ac 的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x 1+x 2=-b a ,x 1•x 2=ca,表示出两根的关系,得到x 1,x 2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解. 试题解析:(1)一元二次方程x 2﹣(m ﹣3)x ﹣m 2=0, ∵a=1,b=﹣(m ﹣3)=3﹣m ,c=﹣m 2,∴△=b 2﹣4ac=(3﹣m )2﹣4×1×(﹣m 2)=5m 2﹣6m+9=5(m ﹣35)2+365, ∴△>0,则方程有两个不相等的实数根;(2)∵x 1•x 2=ca=﹣m 2≤0,x 1+x 2=m ﹣3, ∴x 1,x 2异号,又|x 1|=|x 2|﹣2,即|x 1|﹣|x 2|=﹣2,若x 1>0,x 2<0,上式化简得:x 1+x 2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣1+2,x2=﹣1﹣2,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1﹣26,x2=1+26.13.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时:∵(a b-)2=a﹣2ab+b≥0∴a+b≥2ab,当且仅当a=b时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x>0时,x+1x的最小值为.当x<0时,x+1x的最大值为;(2)若y=27101x xx+++,(x>﹣1),求y的最小值;(3)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.【答案】(1)2;﹣2.(2)y的最小值为9;(3)四边形ABCD面积的最小值为25.【解析】【分析】(1)当x>0时,按照公式a+b ab a=b时取等号)来计算即可;当x<0时,﹣x>0,1x->0,则也可以按公式a+b ab a=b时取等号)来计算;(2)将y27101x xx++=+的分子变形,分别除以分母,展开,将含x的项用题中所给公式求得最小值,再加上常数即可;(3)设S△BOC=x,已知S△AOB=4,S△COD=9,由三角形面积公式可知:S△BOC:S△COD=S△AOB:S△AOD,用含x的式子表示出S△AOD,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥=2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.14.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。

2024年全国各省市数学中考真题汇编 专题6一元二次方程及其应用(11题)含详解

2024年全国各省市数学中考真题汇编 专题6一元二次方程及其应用(11题)含详解

专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .98k <B .98k ≤C .98k ≥D .98k <-3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .14.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=09.(2024·安徽·中考真题)解方程:223x x -=10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量y (件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=≠中,当0∆>时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解: △()2241280k k =-⨯⨯-=+>,∴方程有两个不相等的实数根.故选:A .2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .9k <B .98k ≤C .98k ≥D .98k <-【答案】B【分析】本题考查了判别式与一元二次方程根的情况,熟知一元二次方程有实数根的条件是解题的关键.根据一元二次方程有实数根的条件是0∆≥,据此列不等式求解即可.【详解】解:∵关于x 的一元二次方程2230x x k -+=有实数根,∴()2Δ3420k =--⨯≥,解得98k ≤.故选B .3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .4.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.【答案】-1【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【详解】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.9.(2024·安徽·中考真题)解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量(件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.【答案】(1)100=-+y x ;(2)该商品日销售额不能达到2600元,理由见解析。

中考一元二次方程真题汇总(附答案)

中考一元二次方程真题汇总(附答案)

中考一元二次方程专项训练一、单选题(注释)1、(2011甘肃兰州,1,4分)下列方程中是关于x的一元二次方程的是A.B.C.D.2、(2011安徽,8,4分)一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和23、(2011浙江省舟山,2,3分)一元二次方程的解是()A.B.C.或D.或4、(2011四川南充市,6,3分)方程(x+1)(x-2)=x+1的解是()A.2B.3C.-1,2D.-1,35、(2011江苏泰州,3,3分)一元二次方程x2=2x的根是A.x=2B.x="0"C.x1="0," x2=2D.x1="0," x2=-26、(2011甘肃兰州,10,4分)用配方法解方程时,原方程应变形为A.B.C.D.7、(2011台湾全区,31)关于方程式的两根,下列判断何者正确?A.一根小于1,另一根大于3B.一根小于-2,另一根大于2C.两根都小于0D.两根都大于28、(2011福建福州,7,4分)一元二次方程根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根9、(2011四川成都,6,3分)已知关于的一元二次方程有两个实数根,则下列关于判别式的判断正确的是()A.B.C.D.10、(2011重庆江津,9,4分)已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是()A.a<2B,a>2 C.a<2且a≠1 D.a<-2·11、(2011台湾台北,20)若一元二次方程式的两根为0、2,则之值为何?A.2B.5C.7D.812、(2011山东济宁,5,3分)已知关于x的方程x 2+bx+a=0有一个根是-a(a≠0),则a-b的值为A.-1B.0C.1D.213、(2011湖北荆州,9,3分)关于的方程有两个不相等的实根、,且有,则的值是A.1B.-1C.1或-1D.214、(2011江苏南通,7,3分)已知3是关于x的方程x2-5x+c=0的一个根,则这个方程的另一个根是-2 B. 2 C. 5 D. 615、(2011四川绵阳12,3)若x1,x2(x1 <x2)是方程(x -a)(x-b) =" 1(a" < b)的两个根,则实数x1,x2,a,b的大小关系为A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x216、(2011湖北黄石,9,3分)设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α,β,且,则α,β满足A.1<α<β<2B.1<α<2 <βC.α<1<β<2D.α<1且β>217、(2011四川凉山州,6,4分)某品牌服装原价173元,连续两次降价后售价价为127元,下面所列方程中正确的是()A.B.C.D.18、(2011山东威海,9,3分)关于x的一元二次方程有两个相等的实数根,则m的值是()A.B.C.D.或19、(2011山东潍坊,7,3分)关于x的方程的根的情况描述正确的是()A.k 为任何实数,方程都没有实数根B.k 为任何实数,方程都有两个不相等的实数根C.k 为任何实数,方程都有两个相等的实数根D.根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种20、(2011江苏苏州,8,3分)下列四个结论中,正确的是()A.方程x+=-2有两个不相等的实数根B.方程x+=1有两个不相等的实数根D.方程x+=a(其中a为常数,且|a|>2)有两个不相等的C.方程x+=2有两个不相等的实数根实数根21、(2011湖北鄂州,11,3分)下列说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为。

2019-2020中考数学真题培优专题《一元二次方程》(含答案解析)

2019-2020中考数学真题培优专题《一元二次方程》(含答案解析)

2019-2020中考真题培优专题《一元二次方程》(含答案解析)一、单选题1.(2019·贵州中考真题)一元二次方程x 2﹣3x +1=0的两个根为x 1,x 2,则x 12+3x 2+x 1x 2﹣2的值是( )A .10B .9C .8D .72.(2019·内蒙古中考真题)若12x x ,是一元二次方程230x x +-=的两个实数根,则3221417-+x x 的值为( )A .﹣2B .6C .﹣4D .43.(2019·湖北中考真题)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( )A .14 B .13 C .12 D .234.(2019·内蒙古中考真题)已知等腰三角形的三边长分别为4a b 、、,且a 、b 是关于x 的一元二次方程21220x x m -++=的两根,则m 的值是( )A .34B .30C .30或34D .30或365.(2019·湖北中考真题)若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定6.(2019·黑龙江中考真题)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .77.(2019·新疆中考真题)若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤ B .54k > C .514k k ≠<且D .514k k ≤≠且 8.(2019·河南中考真题)一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根C .只有一个实数根D .没有实数根9.(2019·广东中考真题)关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .210.(2019·山东中考真题)已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( )A .2023B .2021C .2020D .201911.(2019·山东中考真题)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( )A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m =12.(2019·山东中考真题)若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠13.(2018·宁夏中考真题)若x 2-4x+c=0的一个根,则c 的值是( )A .1B .C .D .14.(2018·内蒙古中考真题)已知关于x 的一元二次方程x 2+2x+m ﹣2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为( )A .6B .5C .4D .3二、填空题15.(2019·四川中考真题)若关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根,则点(1, 3 )P a a +--在第____象限.16.(2019·宁夏中考真题)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程25140x x +-=即(5)14x x +=为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是2(5)x x ++,其中它又等于四个矩形的面积加上中间小正方形的面积,即24145⨯+,据此易得2x =.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程24120x x --=的正确构图是_____.(只填序号)17.(2019·湖北中考真题)已知 , 是关于 的方程 的两个不相等实数根,且满足 ,则 的值为__________.18.(2018·四川中考真题)已知x 1,x 2是一元二次方程x 2-2x-1=0的两实数根, 则12112121x x +++的值是__. 19.(2015·四川中考真题)已知实数m ,n 满足 , ,且 ,则 = .20.(2018·四川中考真题)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.21.(2014·内蒙古中考真题)已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m 2﹣mn+3m+n=___________.三、解答题22.(2019·湖南中考真题)关于x 的一元二次方程230x x k -+=有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.23.(2019·湖北中考真题)已知关于x 的一元二次方程26(41)0x x m -++=有实数根.(1)求m 的取值范围. (2)若该方程的两个实数根为1x 、2x ,且124x x -=,求m 的值.24.(2019·湖北中考真题)已知于x 的元二次方程26250x x a -++=有两个不相等的实数根12,x x .(1)求a 的取值范围;(2)若22121230x x x x +-…,且a 为整数,求a 的值.25.(2018·四川中考真题)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.26.(2019·重庆中考真题)某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少3%10a;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少1%4a.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少5%18a,求a的值.参考答案1.D【解析】【分析】先利用一元二次方程的解的定义得到x 12=3x 1-1,则x 12+3x 2+x 1x 2-2=3(x 1+x 2)+x 1x 2-3,接着利用根与系数的关系得到x 1+x 2=3,x 1x 2=1,然后利用整体代入的方法计算.【详解】∵x 1为一元二次方程x 2﹣3x+1=0的根,∴x 12﹣3x 1+1=0,∴x 12=3x 1﹣1,∴x 12+3x 2+x 1x 2﹣2=3x 1﹣1+3x 2+x 1x 2﹣2=3(x 1+x 2)+x 1x 2﹣3,根据题意得x 1+x 2=3,x 1x 2=1,∴x 12+3x 2+x 1x 2﹣2=3×3+1﹣3=7.故选:D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 2.A【解析】【分析】利用根与系数的关系可得出x 1+x 2=-1、x 1•x 2=-3,211x x 3+=,将代数式2132x 4x 17+﹣进行转化后,再代入数据即可得出结论.【详解】解:12x x ,是一元二次方程2x x 30+﹣=的两个实数根,12x x 1∴+=﹣,12x x 3=﹣,211x x 3+=,3221x 4x 17∴+﹣32211418--+=x x()()2222111418=-++-+x x x x ()211114418=---⨯-+x x21184418=---+x x()2118418=--++x x10432=-⨯=-故选:A .【点睛】本题考查了方程的解、根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则1212,b c x x x x a a+=-=. 3.C【解析】【分析】先根据一元二次方程有实数根求出ac≤4,继而画树状图进行求解即可.【详解】由题意,△=42-4ac≥0,∴ac≤4,画树状图如下:a 、c 的积共有12种等可能的结果,其中积不大于4的有6种结果数,所以a 、c 的积不大于4(也就是一元二次方程有实数根)的概率为61=122, 故选C.【点睛】本题考查了一元二次方程根的判别式,列表法或树状图法求概率,得到ac≤4是解题的关键.4.A【解析】【分析】分三种情况讨论,①当a=4时,②当b=4时,③当a=b 时;结合韦达定理即可求解;【详解】解:当4a =时,8b <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412b ∴+=,8b ∴=不符合;当4b =时,8a <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412a ∴+=,8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x m -++=的两根,1222a b ∴==,6a b ∴==,236m ∴+=,34m ∴=;故选:A .【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键.5.A【解析】【分析】利用一次函数性质得出k >0,b≤0,再判断出△=k 2-4b >0,即可求解.【详解】 解:一次函数y kx b =+的图象不经过第二象限,0k ∴>,0b ≤,240k b ∴∆=->,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键. 6.C【解析】【分析】设这种植物每个支干长出x 个小分支,根据主干、支干和小分支的总数是43,即可得出关于x 的一元二次方程,解之取其正值即可得出结论【详解】设这种植物每个支干长出x 个小分支,依题意,得:2143x x ++=,解得: 17x =-(舍去),26x =.故选:C .【点睛】此题考查一元二次方程的应用,解题关键在于列出方程7.D【解析】【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠ . 故选:D .【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键8.A【解析】【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:2240x x --=,1a \=,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>,∴方程由两个不相等的实数根.故选:A .【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.9.D【解析】【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--, 利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意.【详解】解:由韦达定理,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--,所以,()2142(2)3k k ----+=-,化简,得:24k =,解得:k =±2, 因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根,所以,△=()214(2)k k ---+=227k k +-〉0,k =-2不符合,所以,k =2故选:D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.10.A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab=-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=;故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 11.A【解析】【分析】设1x ,2x 是2220x mx m m +++=的两个实数根,由根与系数的关系得122x x m +=-,212x x m m ⋅=+,再由()2221212122x x x x x x +=+-⋅代入即可. 【详解】设1x ,2x 是2220x mx m m +++=的两个实数根,∴40m ∆=-≥,∴0m ≤,∴122x x m +=-,212x x m m ⋅=+,∴()2221212122x x x x x x +=+-⋅2224222212m m m m m =--=-=, ∴3m =或2m =-,∴2m =-,故选A .【点睛】本题考查一元二次方程根与系数的关系;牢记韦达定理,灵活运用完全平方公式是解题的关键.12.D【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨=----⎩…, 解得:32k ≥且k≠ . 故选D .【点睛】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.13.A【解析】【分析】把2x 2﹣4x +c =0就得到关于c 的方程,就可以解得c 的值.【详解】把2x 2﹣4x +c =0,得(22﹣4(2+c =0,解得:c =1.故选A .【点睛】本题考查的是一元二次方程的根即方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.B【解析】【分析】根据一元二次方程根的判别式和一元二次方程的解法结合已知条件进行分析解答即可.【详解】∵关于x 的一元二次方程x 2+2x+m ﹣2=0有两个实数根,∴△=()224120m =⨯⨯-≥,解得:3m ≤, 又∵m 为正整数,∴m=1或2或3,(1)当m=1时,原方程为x 2+2x-1=0,此时方程的两根均不为整数,故m=1不符合要求;(2)当m=2时,原方程为x 2+2x=0,此时方程的两根分别为0和-2,符合题中要求;(3)当m=3时,原方程为x 2+2x+1=0,此时方程的两根都为1,符合题中要求;∴ m=2或m=3符合题意,∴m 的所有符合题意的正整数取值的和为:2+3=5.故选B.【点睛】读懂题意,熟知“在一元二次方程()200ax bx c a ++=≠中,若方程有两个实数根,则△=240b ac -≥”是解答本题的关键.15.四.【解析】【分析】由二次项系数非零及根的判别式△>0,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,由a 的取值范围可得出a+1>0,-a-3<0,进而可得出点P 在第四象限,此题得解.【详解】∵关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根,∴201(1)4-04a a ≠⎧⎪⎨⎛⎫∆=--⨯⨯> ⎪⎪⎝⎭⎩, 解得:1a >-且0a ≠.∴10a +>,30a --<,∴点(1,3)P a a +--在第四象限.故答案为:四.【点睛】本题考查了根的判别式、一元二次方程的定义以及点的坐标,利用二次项系数非零及根的判别式△>0,找出关于a 的一元一次不等式组是解题的关键.16.②.【解析】【分析】仿造案例,构造面积是2(4)x x +-的大正方形,由它的面积为24124⨯+,可求出6x =,此题得解.【详解】解:24120x x --=即()412x x -=,∴构造如图②中大正方形的面积是2(4)x x +-,其中它又等于四个矩形的面积加上中间小正方形的面积,即24124⨯+,据此易得6x =.故答案为:②.【点睛】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.17.1 .【解析】【分析】根据根与系数的关系结合 ,可得出关于 的一元二次方程,解之即可得出 的值,根据方程的系数结合根的判别式 ,可得出关于 的一元二次不等式,把k 的值代入,进而即可确定 值,此题得解.【详解】是关于 的方程 的两个实数根,.,即 ,整理,得: ,解得: .关于 的方程 的两个不相等实数根,当k= 时,△=- <0,故k= 不符合题意;当k=1时,△=4>0;.故答案为:1.【点睛】本题考查了根与系数的关系以及根的判别式,利用根与系数的关系结合 - - ,求出 值是解题的关键. 18.6【解析】【分析】已知x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x 12﹣2 x 1﹣1=0,x 22﹣2 x 2﹣1=0,x 1+x 2=2,x 1·x 2=-1,即x 12=2 x 1+1, x 22=2 x 2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.【详解】∵x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,∴x 12﹣2 x 1﹣1=0, x 22﹣2 x 2﹣1=0,x 1+x 2=2,x 1·x 2=-1,即x 12=2 x 1+1, x 22=2 x 2+1, ∴12112121x x +++=()22212121222222212121221142 6.1x x x x x x x x x x x x +-+++==== 故答案为6.【点睛】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.19. .【解析】试题分析:由 时,得到m ,n 是方程 的两个不等的根,根据根与系数的关系进行求解.试题解析:∵ 时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴ , .∴原式= = =,故答案为: . 考点:根与系数的关系.20.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x 3,x 4,∴at 2+bt+1=0,由题意可知:t 1=1,t 2=2,∴t 1+t 2=3,∴x 3+x 4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.21.8【解析】试题分析:根据m+n=﹣=﹣2,m•n ﹣5,直接求出m 、n 即可解题. ∵m 、n 是方程x 2+2x ﹣5=0的两个实数根, ∴mn=﹣5,m+n=﹣2, ∵m 2+2m ﹣5=0 ∴m 2=5﹣2mm 2﹣mn+3m+n=(5﹣2m )﹣(﹣5)+3m+n=10+m+n=10﹣2=8考点:(1)、根与系数的关系;(2)、一元二次方程的解.22.(1)94k ≤;(2)m 的值为32. 【解析】【分析】(1)利用判别式的意义得到()2340k ∆=--≥,然后解不等式即可;(2)利用(1)中的结论得到k 的最大整数为2,解方程2320x x -+=解得121,2x x ==,把1x =和2x =分别代入一元二次方程()2130m x x m -++-=求出对应的m ,同时满足10m -≠. 【详解】解:(1)根据题意得()2340k ∆=--≥, 解得94k ≤; (2)k 的最大整数为2,方程230x x k -+=变形为2320x x -+=,解得121,2x x ==,∵一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根, ∴当1x =时,1130m m -++-=,解得32m =; 当2x =时,()41230m m -++-=,解得1m =,而10m -≠,∴m 的值为32. 【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.23.(1)2m ≤.(2)1m =.【解析】【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围; (2)由根与系数的关系可得出x 1+x 2=6,x 1x 2=4m+1,结合|x 1-x 2|=4可得出关于m 的一元一次方程,解之即可得出m 的值.【详解】(1)∵关于x 的一元二次方程x 2-6x+(4m+1)=0有实数根,∴△=(-6)2-4×1×(4m+1)≥0,解得:m≤ ;(2)∵方程x 2-6x+(4m+1)=0的两个实数根为x 1、x 2,∴x 1+x 2=6,x 1x 2=4m+1,∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42,即32-16m=16,解得:m=1.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)利用根与系数的关系结合|x 1-x 2|=4,找出关于m 的一元一次方程.24.(1)a<2;(2)-1,0,1【解析】【分析】(1)根据根的判别式,可得到关于a 的不等式,则可求得a 的取值范围;(2)由根与系数的关系,用a 表示出两根积、两根和,由已知条件可得到关于a 的不等式,则可求得a 的取值范围,再求其值即可.【详解】(1)关于x 的一元二次方程26250x x a -++=有两个不相等的实数根12,x x ,0∴∆>,即2(6)4(25)0a --+>,解得2a <;(2)由根与系数的关系知:12126,25x x x x a +==+,12,x x 满足221212x x x x 30+-…,()21212330x x x x ∴+-…,363(25)30a ∴-+…,3,2a ∴-… a 为整数,a ∴的值为1,0,1-.【点睛】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k 的取值范围是解题的关键,注意方程根的定义的运用.25.(1)见解析;(2)m=﹣1或m=3.【解析】【分析】(1)求出∆的值,即可判断出方程根的情况;(2)根据根与系数的关系即可求出答案.【详解】(1)由题意可知:△=(2m ﹣2)2﹣4(m 2﹣2m )=4>0,∴方程有两个不相等的实数根.(2)∵x 1+x 2=2m ﹣2,x 1x 2=m 2﹣2m ,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=10,∴(2m ﹣2)2﹣2(m 2﹣2m )=10,∴m 2﹣2m ﹣3=0,∴m=﹣1或m=3【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法,本题属于中等题型. 26.(1)该菜市场共有25个4平方米的摊位.(2)a 的值为50.【解析】【分析】(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位,根据菜市场毎月可收取管理费4500元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)由(1)可得出:5月份参加活动一的2.5平方米摊位及4平方米摊位的个数,再由参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少518%a ,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位,依题意,得:20420 2.524500x x ⨯+⨯⨯=,解得:25x =.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的2.5平方米摊位的个数为25240%20⨯⨯=(个),5月份参加活动一的4平方米摊位的个数为2520%5⨯=(个). 依题意,得:320(12%)20 2.5%10a a +⨯⨯⨯()1516%204%4a a ++⨯⨯⨯[20(12%)20a =+⨯⨯2.5+5(16%)a +5204]%18a ⨯⨯⨯, 整理,得:2500a a -=,解得:10a =(舍去),250a =. 答:a 的值为50.【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.。

《一元二次方程》专项练习和中考真题(含答案解析及点睛)

《一元二次方程》专项练习和中考真题(含答案解析及点睛)

《一元二次方程》专项练习1.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-【答案】D【分析】根据一元二次方程的定义,再将0x =代入原式,即可得到答案.【解析】解:∵关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,∴210a -=,10a -≠,则a 的值为:1a =-.故选D .【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义. 2.用换元法解方程21x x ++21x x +=2时,若设21x x +=y ,则原方程可化为关于y 的方程是( ) A .y 2﹣2y +1=0B .y 2+2y +1=0C .y 2+y +2=0D .y 2+y ﹣2=0 【答案】A 【分析】方程的两个分式具备倒数关系,设21x x+=y ,则原方程化为y+1y =2,再转化为整式方程y 2-2y+1=0即可求解. 【解析】把21x x+=y 代入原方程得:y +1y =2,转化为整式方程为y 2﹣2y +1=0.故选:A . 【点睛】考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.3.如果关于x 的一元二次方程2310kx x -+=有两个实数根,那么k 的取值范围是( )A .94k …B .94k -…且0k ≠C .94k …且0k ≠D .94k -… 【答案】C【分析】根据关于x 的一元二次方程kx 2-3x+1=0有两个实数根,知△=(-3)2-4×k×1≥0且k≠0,解之可得.【解析】解:∵关于x 的一元二次方程kx 2-3x+1=0有两个实数根,∴△=(-3)2-4×k×1≥0且k≠0,解得k≤94且k≠0,故选:C . 【点睛】本题主要考查根的判别式与一元二次方程的定义,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如32()x x x x px q =⋅=-=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,且0x >,则4323x x x -+的值为( )A .1B .3C .1+D .3【答案】C【分析】先求得2=+1x x ,代入4323x x x -+即可得出答案.【解析】∵210x x --=,∴2=+1x x ,x == ∴4323x x x -+=()()21213x+-x x++x =2221223x +x+-x -x+x =231-x +x+=()131-x++x+=2x ,∵x =,且0x >,∴x =,∴原式=2,故选:C . 【点睛】本题考查了一元二次方程的解,解题的关键是会将四次先降为二次,再将二次降为一次.5.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( ) A .6B .7C .8D .9 【答案】D【分析】根据球赛问题模型列出方程即可求解.【解析】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x ﹣1)=36, 化简,得x 2﹣x ﹣72=0,解得x 1=9,x 2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题. 6.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( )A .()5000127500x +=B .()5000217500x ⨯+=C .()2500017500x +=D .()()2500050001500017500x x ++++=【答案】C【分析】设我国2017年至2019年快递业务收入的年平均增长率为x ,根据增长率的定义即可列出一元二次方程.【解析】设我国2017年至2019年快递业务收入的年平均增长率为x ,∵2017年至2019年我国快递业务收入由5000亿元增加到7500亿元即2019年我国快递业务收入为7500亿元,∴可列方程:()2 500017500x +=,故选C .【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系得到方程.7.如图是一张长12cm ,宽10cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积224cm 是的有盖的长方体铁盒.则剪去的正方形的边长为______cm .【答案】2【分析】根据题意设出未知数,列出三组等【解析】设底面长为a,宽为b,正方形边长为解得a =10-2x ,b =6-x ,代入ab =24中得:整理得:2x 2-11x +18=0.解得x =2或x 【点睛】本题考查一元二次方程的应用8.已知a ,b 是方程230x x +-=的两个A .2023B .2021 【答案】A【分析】根据题意可知b=3-b 2,a+b=-1解.【解析】a ,b 是方程230x x +-=的两∴222201932019a b a b -+=-++【点睛】本题考查一元二次方程的根与系数9.一个三角形的两边长分别为2和5,【答案】13【分析】先利用因式分解法解方程x 2-8周长可求.【解析】解:∵x 2-8x +12=0,∴()x -∵三角形的两边长分别为2和5,第三边长∴三角形的第三边长是6,∴该三角形的周【点睛】本题考查了解一元二次方程的因式10.若关于x 的一元二次方程22x x ﹣A .1m < B .1m £三组等式解出即可.边长为x,由题意得:2()1221024x b a x ab +=⎧⎪+=⎨⎪=⎩,(10-2x )(6-x )=24,=9(舍去).故答案为2.,关键在于不怕设多个未知数,利用代数表示列出方程的两个实数根,则22019a b -+的值是( )C .2020D .2019,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=的两个实数根,∴23b b =-,1a b +=-,ab9()2220161620162023a b ab =+-+=++=;与系数的关系;根据根与系数的关系将所求式子进行,第三边长是方程28120x x -+=的根,则该三角形x +12=0,然后根据三角形的三边关系得出第三边的()260x -=,∴x 1=2,x 2=6,三边长是方程x 2-8x +12=0的根,当x =2时,2+2<5形的周长为:2+5+6=13.故答案为:13.的因式分解法及三角形的三边关系,熟练掌握相关性0m +=有实数根,则实数m 的取值范围是( )C .1m >D .m 1≥出方程.019=(a+b )2-2ab+2016即可求-3b =, 3;故选A . 子进行化简代入是解题的关键.三角形的周长为_______. 三边的长,则该三角形的 ,不符合题意,相关性质及定理是解题的关键.【答案】B【分析】根据方程的系数结合根的判别式0≥V ,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.【解析】Q 关于x 的一元二次方程220x x m +﹣=有实数根,2240m ∴=≥-V (-),解得: 1m ≤.故选B . 【点睛】本题考查了根的判别式,牢记“当0≥V 时,方程有实数根”是解题的关键.11.已知关于x 的一元二次方程x 2+bx ﹣1=0,则下列关于该方程根的判断,正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .实数根的个数与实数b 的取值有关【答案】A【分析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.【解析】解:∵△=b 2﹣4×(﹣1)=b 2+4>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为( ) A .1-B .4-C .4-或1D .1-或4 【答案】A【分析】通过根与系数之间的关系得到22m αβ+=-+,2m m αβ=-,由()2222αβαβαβ+=+-可求出m 的值,通过方程有实数根可得到[]()222(1)40m m m --≥-,从而得到m 的取值范围,确定m 的值. 【解析】解:∵方程222(1)0x m x m m +-+-=有两个实数根α,β,∴()21221m m αβ-+=-=-+,221m m m m αβ-==-, ∵()2222αβαβαβ+=+-,2212αβ+=∴()()2222212m m m -+-=-, 整理得,2340m m --=,解得,11m =-,24m =,若使222(1)0x m x m m +-+-=有实数根,则[]()222(1)40m m m --≥-, 解得,1m £,所以1m =-,故选:A .【点睛】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键.13.关于x 的一元二次方程22(2)620k x x k k ++++-=有一个根是0,则k 的值是_______.【答案】1【分析】把方程的根代入原方程得到220k k +-=,解得k 的值,再根据一元二次方程成立满足的条件进行取舍即可.【解析】∵方程22(2)620k x x k k ++++-=是一元二次方程,∴k+2≠0,即k ≠-2;又0是该方程的一个根,∴220k k +-=,解得,11k =,22k =-,由于k ≠-2,所以,k=1.答案为:1.【点睛】本题考查了一元二次方程的解.解此类题时,要擅于观察已知的是哪些条件,从而有针对性的选择解题方法.同时要注意一元二次方程成立必须满足的条件,这是容易忽略的地方.14.已知1x ,2x 是一元二次方程240x x --=的两实根,则12(4)(4)x x ++的值是_____.【答案】16【分析】由根与系数的关系可得121x x =+, 124x x =-,然后把所求式子利用多项式乘法法则展开后代入进行计算即可.【解析】1x Q ,2x 是一元二次方程240x x --=的两实根,121x x ∴+=, 124x x =-,12(4)(4)x x ∴++12124416x x x x =+++12124()16x x x x =+++44116=-+⨯+4416=-++16=, 故答案为:16.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值,熟练掌握根与系数的关系是解题的关键. 15.设a 、b 是方程220190x x +-=的两个实数根,则()()11a b --的值为_____.【答案】-2017【分析】根据根与系数的关系可得出1a b +=-,2019ab =-,将其代入()()()111a b ab a b --=-++中即可得出结论.【解析】∵a 、b 是方程220190x x +-=的两个实数根,∴1a b +=-,2019ab =-,∴()()()111a b ab a b --=-++2019112017=-++=-.故答案为:-2017.【点睛】本题考查了根与系数的关系,牢记“两根之和等于b a -,两根之积等于c a”是解题的关键. 16.已知12,x x 是一元二次方程2470x x --=的两个实数根,则2211224x x x x ++的值是_________.【答案】2【分析】由已知结合根与系数的关系可得:12x x +=4,12x x ⋅= -7,2211224x x x x ++=()212122x x x x ++,代入可得答案.【解析】解:∵12,x x 是一元二次方程2470x x --=的两个实数根,∴12x x +=4,12x x ⋅= -7,∴2211224x x x x ++=()212122x x x x ++=()2427+⨯-=2,故答案为:2. 【点睛】本题考查的知识点是一元二次方程根与系数的关系,难度不大,属于基础题17.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是( )A.12x(x+1)=110 B.12x(x﹣1【答案】D【分析】设有x个队参赛,根据参加一次足【解析】解:设有x个队参赛,则x(x 【点睛】本题考查的是一元二次方程的应用18.阅读理解:对于x3﹣(n2+1)x+n这类x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2理解运用:如果x3﹣(n2+1)x+n=0,那么因此,方程x﹣n=0和x2+nx﹣1=0的所有解决问题:求方程x3﹣5x+2=0的解为___【答案】x=2或x=﹣或x=﹣1【分析】将原方程左边变形为x3﹣4x﹣于x的方程求解可得.【解析】解:∵x3﹣5x+2=0,∴x3﹣4x∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(∴x﹣2=0或x2+2x﹣1=0,解得x=2【点睛】此题主要考查一元二次方程的应用19.若菱形ABCD的一条对角线长为8,A.16 B.24【答案】B【分析】解方程得出x=4或x=6,分两种6时,6+6>8,即可得出菱形ABCD的周长【解析】解:如图所示:∵四边形ABCD∵x2﹣10x+24=0,因式分解得:(x﹣4分两种情况:①当AB=AD=4时,4+4②当AB=AD=6时,6+6>8,∴菱形ABC【点睛】本题考查菱形的性质、解一元二次键.)=110 C.x(x+1)=110 D.x(x﹣1)=一次足球联赛的每两队之间都进行两场场比赛,共要比﹣1)=110.故选:D.的应用,找准等量关系列一元二次方程是解题的关键这类特殊的代数式可以按下面的方法分解因式:﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或的所有解就是方程x3﹣(n2+1)x+n=0的解._____..x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣或x=﹣1,故答案为:x=2或x=﹣的应用,解题的关键是根据题意找到解方程的方法边CD的长是方程x2﹣10x+24=0的一个根,则该菱形C.16或24 D.48分两种情况:①当AB=AD=4时,4+4=8,不能构成的周长.BCD是菱形,∴AB=BC=CD=AD,)(x﹣6)=0,解得:x=4或x=6,+4=8,不能构成三角形;ABCD的周长=4AB=24.故选:B.元二次方程-因式分解法、三角形的三边关系,熟练掌110共要比赛110场,可列出方程.的关键.:)=(x﹣n)(x2+nx﹣1).x2+nx﹣1=0,1]=0,据此得到两个关1)=0,或x=﹣1.方法.该菱形ABCD的周长为( )能构成三角形;②当AB=AD=熟练掌握并灵活运用是解题的关21.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______. 【答案】2. 【分析】根据“关于x 的一元二次方程ax 2+2x+2﹣c =0有两个相等的实数根”,结合根的判别式公式,得到关于a 和c 的等式,整理后即可得到的答案.【解析】解:根据题意得:△=4﹣4a (2﹣c )=0,整理得:4ac ﹣8a =﹣4,4a (c ﹣2)=﹣4,∵方程ax 2+2x+2﹣c =0是一元二次方程,∴a≠0,等式两边同时除以4a 得:12c a -=-,则12c a+=,故答案为2. 【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.22.中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为____________.【答案】x(x+12)=864【分析】本题理清题意后,可利用矩形面积公式,根据假设未知数表示长与宽,按要求列方程即可.【解析】因为宽为x ,且宽比长少12,所以长为x+12,故根据矩形面积公式列方程:x(x+12)=864,故答案:x(x+12)=864.【点睛】本题考查一元二次方程的实际应用,此类型题目去除复杂题目背景后,按照常规公式,假设未知数,列方程求解即可.23. 1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b =( )A .2-B .3-C .4D .6-【答案】A【分析】先把x=1代入方程220x ax b ++=得a+2b=-1,然后利用整体代入的方法计算2a+4b 的值【解析】将x =1代入方程x 2+ax +2b =0,得a +2b =-1,2a +4b =2(a +2b )=2×(-1)=-2.故选A. 【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键24.已知1x ,2x 是方程2320x x --=的两根,则2212x x +的值为( )A .5B .10C .11D .13【答案】D 【分析】先利用完全平方公式,得到2212x x +21212)2x x x x =+-(,再利用一元二次方程根与系数关系:12b x x a+=-,12c x x a=即可求解.【解析】解:2212x x +()221212)232213x x x x =+-=-⨯-=(故选:D . 【点睛】此题主要考查完全平方公式的应用和一元二次方程根与系数关系,灵活运用完全平方公式和一元二次方程根与系数关系是解题关键.25.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于_____.【答案】2028【分析】根据一元二次方程的解的概念和根与系数的关系得出x 12-4x 1=2020,x 1+x 2=4,代入原式=x 12-4x 1+2x 1+2x 2=x 12-4x 1+2(x 1+x 2)计算可得.【解析】解:∵x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,∴x 1+x 2=4,x 12﹣4x 1﹣2020=0,即x 12﹣4x 1=2020,则原式=x 12﹣4x 1+2x 1+2x 2=x 12﹣4x 1+2(x 1+x 2)=2020+2×4=2020+8=2028,故答案为:2028.【点睛】本题主要考查根与系数的关系,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 26.解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【解析】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.27.已知1x ,2x 是一元二次方程2220x x k -++=的两个实数根.(1)求k 的取值范围;(2)是否存在实数k ,使得等式12112k x x +=-成立?如果存在,请求出k 的值,如果不存在,请说明理由.【答案】(1)1k ≤-;(2)k =【分析】(1)根据方程的系数结合 ≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围; (2)根据根与系数的关系可得出x 1+x 2=2,x 1x 2=k +2,结合12112k x x +=-,即可得出关于k 的方程,解之即可得出k 值,再结合(1)即可得出结论.【解析】解:(1)∵一元二次方程有两个实数根,∴2(2)4(2)0k ∆=--+…解得1k ≤-;(2)由一元二次方程根与系数关系,12122,2x x x x k +==+ ∵12112k x x +=-,∴1212222x x k x x k +==-+即(2)(2)2k k +-=,解得k =.又由(1)知:1k ≤-,∴k =【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合12112k x x +=-,找出关于k 的方程. 28.已知关于x 的一元二次方程26(41)0x x m -++=有实数根.(1)求m 的取值范围.(2)若该方程的两个实数根为1x 、2x ,且124x x -=,求m 的值.【答案】(1)2m ≤.(2)1m =.【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围;(2)由根与系数的关系可得出x 1+x 2=6,x 1x 2=4m+1,结合|x 1-x 2|=4可得出关于m 的一元一次方程,解之即可得出m 的值.【解析】(1)∵关于x 的一元二次方程x 2-6x+(4m+1)=0有实数根,∴△=(-6)2-4×1×(4m+1)≥0,解得:m≤2;(2)∵方程x 2-6x+(4m+1)=0的两个实数根为x 1、x 2,∴x 1+x 2=6,x 1x 2=4m+1,∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42,即32-16m=16,解得:m=1.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)利用根与系数的关系结合|x 1-x 2|=4,找出关于m 的一元一次方程.29.已知关于x 的一元二次方程22(21)30x m x m +-+-=有实数根.(1)求实数m 的取值范围;(2)当m=2时,方程的根为12,x x ,求代数式221122(2)(42)x x x x +++的值.【答案】(1)134m ≤;(2)1. 【分析】(1)根据△≥0,解不等式即可;(2)将m=2代入原方程可得:x 2+3x+1=0,计算两根和与两根积,化简所求式子,可得结论.【解析】(1)△=2222(21)41(3)441412413m m m m m m --⨯⨯-=-+-+=-+∵原方程有实根,∴△=4130m -+≥解得134m ≤ (2)当m=2时,方程为x 2+3x+1=0,∴x 1+x 2=-3,x 1x 2=1,∵方程的根为x 1,x 2,∴x 12+3x 1+1=0,x 22+3x 2+1=0,∴(x 12+2x 1)(x 22+4x 2+2)=(x 12+2x 1+x 1-x 1)(x 22+3x 2+x 2+2)=(-1-x 1)(-1+x 2+2)=(-1-x 1)(x 2+1)=-x 2-x 1x 2-1-x 1=-x 2-x 1-2=3-2=1.【点睛】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于b a -,两根之积等于c a”是解题的关键. 30. 2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x 元,每个月的销量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?【答案】(1)y =220﹣2x ;(2)当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元;(3)当x =75,即售价为75元时,月利润最大,且最大月利润为2450元.【分析】(1)根据月销量等于涨价前的月销量,减去涨价(x-60)与涨价1元每月少售出的件数2的乘积,化简可得;(2)月销售量乘以每件的利润等于利润2250,解方程即可;(3)根据题意列出二次函数解析式,由顶点式,可知何时取得最大值及最大值是多少.【解析】(1)由题意得,月销售量y =100﹣2(x ﹣60)=220﹣2x (60≤x ≤110,且x 为正整数)答:y 与x 之间的函数关系式为y =220﹣2x .(2)由题意得:(220﹣2x )(x ﹣40)=2250化简得:x 2﹣150x +5525=0解得x 1=65,x 2=85答:当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元.(3)设每个月获得利润w 元,由(2)知w =(220﹣2x )(x ﹣40)=﹣2x 2+300x ﹣8800∴w =﹣2(x ﹣75)2+2450 ∴当x =75,即售价为75元时,月利润最大,且最大月利润为2450元.【点睛】此题考查一元二次方程的应用,二次函数的应用,解题关键在于理解题意得到等量关系列出方程. 31.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x (元),日销量为y (件),日销售利润为w (元).(1)求y 与x 的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w (元)与销售单价x (元)的函数关系式,当x 为何值时,日销售利润最大,并求出最大利润.【答案】(1)10280y x =-+;(2)10元;(3)x 为12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意列方程,解方程即可得到结论;(3)根据题意得到()()()26128010171210w x x x =--+=--+,根据二次函数的性质即可得到结论.【解析】解:(1)根据题意得,()20010810280y x x =--=-+,故y 与x 的函数关系式为10280y x =-+;(2)根据题意得,()()610280720x x --+=,解得:110x =,224x =(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,()()()261028010171210w x x x =--+=--+, 100-<Q ,∴当17x <时,w 随x 的增大而增大,当12x =时,960w =最大,答:当x 为12时,日销售利润最大,最大利润960元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.32.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?【答案】销售单价为180元时,公司每天可获利32000元【分析】根据题意设降价后的销售单价为x 元,由题意得到1003005200[32000]x x -+-()()=,则可得到答案. 【解析】解:设降价后的销售单价为x 元,则降价后每天可售出3005200[]x +-()个, 依题意,得:1003005200[32000]x x -+-()()=, 整理,得:2360324000x x +﹣=,解得:12180x x ==.180200<,符合题意. 答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元. 【点睛】本题考查二次函数的实际应用,解题的关键是熟练掌握二次函数的实际应用.《一元二次方程》中考真题1.已知2是关于x 的一元二次方程240x x m -+=的一个实数根,则实数m 的值是( ) A .0 B .1C .−3D .−1【答案】B【分析】把x =2+代入方程就得到一个关于m 的方程,就可以求出m 的值.【解析】解:根据题意得2(24(20m -⨯++=,解得1m =;故选:B .【点睛】本题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.2.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .只有一个实数根 【答案】A【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案. 【解析】解:根据定义得:2110,x x x =--=☆1,1,1,a b c ==-=-Q ()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A【点睛】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键.3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( ) A .4 B .5 C .6 D .7【答案】C【分析】设这种植物每个支干长出x 个小分支,根据主干、支干和小分支的总数是43,即可得出关于x 的一元二次方程,解之取其正值即可得出结论【解析】设这种植物每个支干长出x 个小分支,依题意,得:2143x x ++=, 解得: 17x =-(舍去),26x =.故选C .【点睛】此题考查一元二次方程的应用,解题关键在于列出方程4.关于x 的一元二次方程2(3)10x k x k +-+-=根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【答案】A【分析】先计算判别式,再进行配方得到△=(k-1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【解析】△=(k-3)2-4(1-k)=k 2-6k+9-4+4k=k 2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A .【点睛】本题考查的是根的判别式,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.5.已知关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,则m 的取值范围是( ) A .m <2 B .m≤2 C .m <2且m≠1 D .m≤2且m≠1【答案】D【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【解析】解:因为关于x 的一元二次方程x 2-2x +m =0有实数根,所以b 2-4ac =22-4(m -1)×1≥0,解得m≤2.又因为(m -1)x 2+2x +1=0是一元二次方程,所以m -1≠0.综合知,m 的取值范围是m≤2且m≠1,因此本题选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,找出关于m 的一元一次不等式组是解题的关键.6.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .180(1﹣x )2=461B .180(1+x 【答案】B【分析】本题为增长率问题,一般用增长后的180万只,4月份的利润将达到461万只【解析】解:从2月份到4月份,该厂家口故选:B .【点睛】本题考查了一元二次方程的实际应7.关于x 的一元二次方程22x mx +A .2m =- B .3m = 【答案】A【分析】设1x ,2x 是2220x mx m ++再由()2221212122x x x x x x +=+-⋅代入即可【解析】设1x ,2x 是222x mx m ++∴40m ∆=-≥,∴0m ≤,∴1x +∴()2221212122x x x x x x +=+-⋅4=∴3m =或2m =-,∴2m =-,故选【点睛】本题考查一元二次方程根与系数的8.已知关于x 的一元二次方程x 2+5x ﹣A .﹣7 B .7【答案】A【分析】根据根与系数的关系即可求出答案【解析】解:设另一个根为x ,则x +2【点睛】此题主要考查一元二次方程根与系9.设1x ,2x 是方程2234x x +-=的两)2=461 C .368(1﹣x )2=442 D .368(1+x 增长后的量=增长前的量×(1+增长率),如果设这个增万只”,即可得出方程.厂家口罩产量的平均月增长率为x ,根据题意可得方实际应用,理解题意是解题关键.20m m ++=的两个实数根的平方和为12,则m 的值C .3m =或2m =- D .3m =-或m =m +=的两个实数根,由根与系数的关系得12x x +=入即可. 0m +=的两个实数根,22x m =-,212x x m m ⋅=+,222222212m m m m m --=-=,A .系数的关系;牢记韦达定理,灵活运用完全平方公式m =0的一个根是2,则另一个根是( ) C .3D .﹣3出答案.=﹣5,解得x =﹣7.故选:A .根与系数的关系,正确理解一元二次方程根与系数的0的两个实数根,则1211+x x 的值为______. )2=442 设这个增长率为x ,根据“2月份可得方程:180(1+x )2=461,的值为( ) 22m -,212x x m m ⋅=+,方公式是解题的关键. 系数的关系是解题关键.【答案】34【分析】由韦达定理可分别求出1x +【解析】解:由方程2234x x +-=12121231132·24x x x x x x -++===-.故答案为【点睛】本题考查一元二次方程根与系数的10.如图,在一块长15m 、宽10m 的矩形空面积为126m 2,则修建的路宽应为_____【答案】1【分析】把所修的两条道路分别平移到矩形式列方程求解即可.【解析】解:设道路的宽为x m ,根据题意解得:x 1=1,x 2=24(不合题意,舍去【点睛】此题主要考查了一元二次方程的应本题的关键.11.已知关于x 的一元二次方程2x 【答案】1【分析】利用因式分解法求出x 1,x 2,再根【解析】解22430(0)x mx m m -+=解得x 1=3m,x 2=m ,∴3m-m=2解得m=1【点睛】此题主要考查解一元二次方程,12.一元二次方程()()32x x --=的根【答案】123,2==x x【分析】利用因式分解法把方程化为x-【解析】解:30x -=或20x -=,所以2x 与12x x g 的值,再化简要求的式子,代入即可得解0可知1232x x +=-,124·22x x -==- 案为:34 系数的关系,利用韦达定理可简便运算.矩形空地上,修建两条同样宽的相互垂直的道路,___米. 到矩形的最上边和最左边,则剩下的草坪是一个长方据题意得:(10﹣x )(15﹣x )=126, ),则道路的宽应为1米;故答案为:1.程的应用,把中间修建的两条道路分别平移到矩形地2430(0)mx m m -+=>的一个根比另一个根大2,再根据根的关系即可求解.> (x-3m )(x-m )=0 ∴x-3m=0或x-m=0 =1故答案为:1. ,解题的关键是熟知因式分解法的运用. 0的根是_____. -3=0或x-2=0,然后解两个一次方程即可. 所以123,2==x x .故答案为123,2==x x .可得解. ,剩余分栽种花草,要使绿化个长方形,根据长方形的面积公矩形地面的最上边和最左边是做,则m 的值为_____.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.13.三角形的两边长分别为4和7,第三边的长是方程28120x x -+=的解,则这个三角形的周长是________. 【答案】17【分析】先利用因式分解法求解得出x 的值,再根据三角形三边之间的关系判断能否构成三角形,从而得出答案. 【解析】解:解方程28120x x -+=得x 1=2,x 2=6,当x=2时,2+4=6<7,不能构成三角形,舍去; 当x=6时,2+6>7,能构成三角形,此时三角形的周长为4+7+6=17.故答案为:17.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为_____. 【答案】x (x ﹣12)=864.【分析】由长和宽之间的关系可得出宽为(x-12)步,根据矩形的面积为864平方步,即可得出关于x 的一元二次方程,此题得解.【解析】解:∵长为x 步,宽比长少12步,∴宽为(x ﹣12)步.依题意,得:x (x ﹣12)=864.【点睛】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.15.用配方法求一元二次方程()()23616x x +-=的实数根.【答案】1x 2x . 【分析】首先把方程化为一般形式为2x 2-9x-34=0,然后变形为29x x 172﹣=,然后利用配方法解方程. 【解析】原方程化为一般形式为22x 9x 340﹣﹣=,29x x 172﹣=,298181x x 1721616-++,29353x 416-(=,9x 4-±=,所以12x ,. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.16.已知关于x 的一元二次方程24280x x k --+=有两个实数根12,x x . (1)求k 的取值范围;(2)若33121224x x x x +=,求k 的值.。

2022年中考数学真题-专题07 一元二次方程(1)(全国通用解析版)

2022年中考数学真题-专题07 一元二次方程(1)(全国通用解析版)

专题07 一元二次方程一.选择题1. 关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,则这两根之积为( ) A. 13 B. 23 C. 1 D. 13- 【答案】D【解析】【分析】根据一元二次方程根与系数的关系即可求解. 【详解】解:关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,设另一根为2x ,则223x x +=, 213x ∴=-, 213xx ∴=-, 故选:D【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.2. 方程2430x x ++=的两个根为( )A. 121,3x x ==B. 121,3x x =-=C. 121,3x x ==-D. 121,3x x =-=-【答案】D【解析】【分析】将243x x ++进行因式分解,243=(1)(3)x x x x ++++,计算出答案.【详解】∵243=(1)(3)x x x x ++++∴(1)(3)=0x x ++∴1213x x =-=-,故选:D .【点睛】本题考查解一元二次方程,解题的关键是熟练掌握因式分解法解一元二次方程.3. 下列一元二次方程有实数解的是( )A. 2x 2﹣x +1=0B. x 2﹣2x +2=0C. x 2+3x ﹣2=0D. x 2+2=0 【答案】C【解析】【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A 选项中,224(1)42170b ac =-=--⋅⋅=-<△,故方程无实数根; B 选项中,2(2)41240=--⋅⋅=-<△,故方程无实数根;C 选项中,2341(2)170=-⋅⋅-=>△,故方程有两个不相等的实数根;D 选项中,80=-<△,故方程无实数根;故选C .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.4. 用配方法解方程x 2-2x =2时,配方后正确的是( )A. ()213x +=B. ()216x +=C. ()213x -=D. ()216x -= 【答案】C【解析】【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.【详解】解:x 2-2x =2,x 2-2x +1=2+1,即(x -1)2=3.故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5. 若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( )A. 36B. 36-C. 9D. 9- 【答案】C【解析】【分析】根据判别式的意义得到2640c ∆=-=,然后解关于c 的一次方程即可.【详解】解:∵方程260x x c ++=有两个相等的实数根∵26410c ∆=-⨯⨯=解得9c =故选:C .【点睛】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的跟与24b ac ∆=-的关系,关键是分清楚以下三种情况:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根. 6. 已知m 为方程2320220x x +-=的根,那么32220252022m m m +-+的值为( )A. 2022-B. 0C. 2022D. 4044 【答案】B【解析】【分析】根据题意有2320220m m +-=,即有32320220m m m +-=,据此即可作答.【详解】∵m 为2320220x x +-=的根据,∴2320220m m +-=,且m ≠0,∴32320220m m m +-=,则有原式=322(32022)(32022)000m m m m m +--+-=-=,故选:B .【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为2320220x x +-=得到2320220m m +-=是解答本题的关键.7. 已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( )A. 0,4B. 1,5C. 1,-5D. -1,5【答案】D【解析】【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可. 【详解】抛物线2y x mx =+的对称轴为直线2x =,221m ∴-=⨯, 解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.8. 学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A. 2625(1)400x -=B. 2400(1)625x +=C. 2625400x =D. 2400625x =【答案】B【解析】【分析】第一年共植树400棵,第二年植树400(1+x )棵,第三年植树400(1+x )²棵,再根据题意列出方程即可.【详解】第一年植树为400棵,第二年植树为400(1+x )棵,第三年400(1+x )²棵,根据题意列出方程:2400(1)625x +=.故选:B .【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.9. 一元二次方程22560x x -+=的根的情况为( )A. 无实数根B. 有两个不等的实数根C. 有两个相等的实数根D. 不能判定【答案】A【解析】【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:∵Δ=(−5)2−4×2×6=-23<0,∴方程无实数根.故选:A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.10. 已知关于x 的方程()22210x m x m --+=的两实数根为1x ,2x ,若()()12113++=x x ,则m 的值为( )A. 3-B. 1-C. 3-或3D. 1-或3【答案】A【解析】【分析】利用根与系数的关系以及()22=2140∆--≥m m 求解即可. 【详解】解:由题意可知:1221221x x m x x m+=-⎧⎨⋅=⎩,且()22=2140∆--≥m m ∵()()121212111=3++=⋅+++x x x x x x ,∴()22113+-+=m m ,解得:3m =-或1m =,∵()22=2140∆--≥m m ,即14m ≤, ∴3m =-,故选:A 【点睛】本题考查根与系数的关系以及根据方程根的情况确定参数范围,解题的关键是求出14m ≤,再利用根与系数的关系求出3m =-或1m =(舍去). 11. 小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( )A. ()22001242x +=B. ()22001242x -= C.()20012242x += D. ()20012242x -=【答案】A【解析】【分析】平均增长率为x ,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.【详解】解:由题意得:第一天揽件200件,第三天揽件242件,∴可列方程为:()22001242x +=,故选:A .【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般.12. 关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是( )A. 4k >B. 4k <C. 4k <-D. 1k > 【答案】A【解析】【分析】根据一元二次方程根的判别式小于0即可求解.【详解】解:∵关于x 的一元二次方程240x x k -+=无实数解,∴1640k ∆=-<解得:4k >故选:A∵【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.13. 临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x ,则根据题意,可列方程为( )A. 8(12)11.52x +=B. 28(1)11.52x ⨯+=C. 28(1)11.52x +=D. ()28111.52x += 【答案】C【解析】 【分析】设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,即可得.【详解】解:设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,∴28(1+)=11.52x故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.14. 若关于x 的一元二次方程20x x k +-=有两个实数根,则k 的取值范围是( ) A. 14k >- B. 14k ≥- C. 14k <- D. 14k ≤- 【答案】B【解析】 【分析】根据关于x 的一元二次方程x 2+x -k =0有两个实数根,得出Δ=b 2-4ac ≥0,即1+4k ≥0,从而求出k 的取值范围.【详解】解:∵x 2+x -k =0有两个实数根,∴Δ=b 2-4ac ≥0,即1+4k ≥0,解得:k ≥-14, 故选:B .【点睛】本题考查一元二次方程根的判别式,掌握Δ>0⇔方程有两个不相等的实数根;Δ=0⇔方程有两个相等的实数根;Δ<0⇔方程没有实数根是本题的关键. 15. 我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A. ()316210x x -=B. ()316210x -=C. ()316210x x -=D. 36210x = 【答案】A【解析】【分析】设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x −1)文,依题意得:3(x −1)x =6210,故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16. 一元二次方程210x x +-=的根的情况是( )A. 有两个不相等的实数根B. 没有实数根C. 有两个相等的实数根D. 只有一个实数根【答案】A【解析】【分析】计算一元二次方程根的判别式进而即可求解.【详解】解:241450b ac ∆=-=+=>∴一元二次方程210x x +-=的根的情况是有两个不相等的实数根, 故选:A.【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.17. 已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( )A. 0B. -10C. 3D. 10【答案】A【解析】【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∴mn =-5,m 2+2m -5=0,∴m 2+2m =5,∴22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键. 18. 若关于x 的一元二次方程2210ax x 有两个不相等的实数根,则a 的取值范围是( )A. 0a ≠B. 1a >-且0a ≠C. 1a ≥-且0a ≠D. 1a >- 【答案】B【解析】【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根, ∴a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.19. 关于x 的方程2320x kx --=实数根的情况,下列判断正确的是( )A. 有两个相等实数根B. 有两个不相等实数根C. 没有实数根D. 有一个实数根 【答案】B【解析】【分析】根据根的判别式直接判断即可得出答案.【详解】解:对于关于x 的方程2320x kx --=,∵()22341(2)980k k ∆=--⨯⨯-=+>,∴此方程有两个不相等的实数根.故选B .【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20. 中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A. 2B. 32C. 12 【答案】A【解析】【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为a +1,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tan α的值即可.【详解】∵小正方形与每个直角三角形面积均为1, ∴大正方形的面积为5,∴小正方形的边长为1设直角三角形短的直角边为a ,则较长的直角边为a +1,其中a >0, ∴a 2+(a +1)2=5,其中a >0,解得:a 1=1,a 2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键.二、填空题21. 请填写一个常数,使得关于x 的方程22+-x x ____________0=有两个不相等的实数根.【答案】0(答案不唯一) 【解析】【分析】设这个常数为a ,利用一元二次方程根的判别式求出a 的取值范围即可得到答案.【详解】解:设这个常数为a , ∵要使原方程有两个不同的实数根, ∴()2=240a ∆-->, ∴1a <,∴满足题意的常数可以为0, 故答案为:0(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,熟知一元二次方程根的判别式是解题的关键.22. 方程2x 2+1=3x 的解为________. 【答案】1211,2x x == 【解析】【分析】先移项,再利用因式分解法解答,即可求解. 【详解】解:移项得:22310x x -+=, ∵()()2110x x --=, ∵210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.23. 若一元二次方程2240x x m -+=有两个相等的实数根,则m =________. 【答案】2 【解析】【分析】由方程有两个相等的实数根可知,利用根的判别式等于0即可求m 的值,【详解】解:由题意可知:2a =,4b =-,c m =240b ac =-=, ∴16420m -⨯⨯=, 解得:2m =. 故答案为:2.【点睛】本题考查了利用一元二次方程根的判别式24b ac =-△求参数:方程有两个不相等的实数根时,0>;方程有两个相等的实数根时,0=;方程无实数根时,△<0等知识.会运用根的判别式和准确的计算是解决本题的关键. 24. 若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是_________.【答案】【解析】【分析】由题意解一元二次方程2640x x -+=得到3x =+3x =-据勾股定理得到直角三角形斜边的长是【详解】解:一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,∴由公式法解一元二次方程2640x x -+=可得66322x ±===±∴==,故答案为:【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.25. 已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______. 【答案】1 【解析】【分析】由一元二次方程根的判别式列方程可得答案. 【详解】解:一元二次方程有两个相等的实数根, 可得判别式0=, ∴440k -=, 解得:1k =. 故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.26. 一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______. 【答案】1 【解析】【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解. 【详解】解:2430x x -+=243101x x -++=+2441x x -+=()221x -=∴1k = 故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.27. 已知一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,则x 1•x 2=_____. 【答案】3 【解析】【分析】直接根据一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系求解即可. 【详解】解:∵一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,∴x 1•x 2=31=3.故答案为3.【点睛】此题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握若方程的两根分别为x 1,x 2,则x 1+x 2=-12•c x x baa=,.28. 若关于x 的一元二次方程220x x k -+=有实数根,则实数k 的取值范围是_____. 【答案】1k ≤ 【解析】【分析】由关于x 的一元二次方程220x x k -+=有实数根,可得440,k 再解不等式可得答案.【详解】解: 关于x 的一元二次方程220x x k -+=有实数根, ∴()22410k ∆=--⨯⨯≥, 即440,k解得:1k ≤ . 故答案为:1k ≤.【点睛】本题考查的是一元二次方程根的判别式的应用,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根. 29. 已知实数12,x x 是方程210x x +-=的两根,则12x x =______. 【答案】1- 【解析】【分析】由一元二次方程根与系数的关系直接可得答案. 【详解】解: 实数12,x x 是方程210x x +-=的两根,1211,1x x故答案为:1-【点睛】本题考查的是一元二次方程根与系数的关系,掌握“12cx x a=”是解本题的关键.30. 某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x (0x >),则x =_________(用百分数表示). 【答案】30% 【解析】【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x 的一元二次方程,解方程即可.【详解】解:设新注册用户数的年平均增长率为x (0x >),则2020年新注册用户数为100(1+x )万,2021年的新注册用户数为100(1+x )2万户, 依题意得100(1+x )2=169,解得:x 1=0.3,x 2=-2.3(不合题意舍去), ∴x =0.3=30%,故答案为:30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.31. 设1x ,2x 是方程2230x x +-=的两个实数根,则2212x x +的值为________.【答案】10 【解析】【分析】由根与系数的关系,得到122x x +=-,123x x =-,然后根据完全平方公式变形求值,即可得到答案. 【详解】解:根据题意,∵1x ,2x 是方程2230x x +-=的两个实数根, ∴122x x +=-,123x x =-,∴2212122212()2(2)2(3)10x x x x x x =+-=--⨯-=+;故答案为:10.【点睛】本题考查了一元二次方程根与系数的关系,完全平方公式变形求值,解题的关键是掌握得到122x x +=-,123x x =-.32. 如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为______cm (玻璃瓶厚度忽略不计).【答案】7.5 【解析】【分析】如详解中图所示,将题中主视图做出来,用垂径定理、勾股定理计算即可.【详解】如下图所示,设球的半径为r cm ,则OG =EG -r =EF -GF -r =EF -AB -r =32-20-r =(12-r )cm , ∵EG 过圆心,且垂直于AD , ∵G 为AD 的中点, 则AG =0.5AD =0.5×12=6cm , 在Rt OAG 中,由勾股定理可得,222OA OG AG =+, 即222(12)6r r =-+, 解方程得r =7.5, 则球的半径为7.5cm .【点睛】本题考查了主视图、垂径定理和勾股定理的运用,准确做出立体图形的主视图是解题的关键.33. 已知关于x 的一元二次方程220x x m ++=有两个不相等的实数根,则实数m 的取值范围是______. 【答案】1m < 【解析】【分析】根据判别式的意义得到22410m ∆=-⨯⨯>,然后解不等式求出m 的取值即可.【详解】解:根据题意得22410m ∆=-⨯⨯>, 解得1m <,所以实数m 的取值范围是1m <. 故答案为:1m <.【点睛】本题考查了根的判别式:一元二次方程()200++=≠ax bx c a 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.34. 我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.【答案】289 【解析】【分析】设直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,由切线长定理可得,直角三角形的内切圆的半径等于2a b c+-,即6a b c +-=,根据小正方的面积为49,可得()249a b -=,进而计算2c 即22a b +即可求解.【详解】解:设四个全等的直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,直角三角形的内切圆半径为3,小正方形的面积为49,∴()23492a b c a b +-=-=,, ∴6a b c +-=①,7a b -=②,131,22c c a b +-∴==, 222a b c +=③,22213122c c c +-⎛⎫⎛⎫∴+= ⎪ ⎪⎝⎭⎝⎭, 解得=17c 或5c =-(舍去), 大正方形的面积为2217289c ==, 故答案为:289.【点睛】本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆的半径等于2a b c +-是解题的关键.35. 已知实数a 、b 满足a -b 2=4,则代数式a 2-3b 2+a -14的最小值是________. 【答案】6 【解析】【分析】根据a -b 2=4得出24b a =-,代入代数式a 2-3b 2+a -14中,通过计算即可得到答案. 【详解】∵a -b 2=4 ∴24b a =-将24b a =-代入a 2-3b 2+a -14中得:()2222341423142a a a b a a a a =--+-=---+-()2222221313a a a a a --=-+-=--∵240b a =-≥ ∴4a ≥当a=4时,()213a --取得最小值为6 ∴222a a --的最小值为6 ∵22231422a a a b a --=-+- ∴22314a b a -+-的最小值6 故答案为:6.【点睛】本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.三、解答题36. 解方程:x 2-2x -3=0 【答案】121,3x x =-= 【解析】【分析】利用因式分解法解一元二次方程即可得. 【详解】解:2230x x --=,(1)(3)0x x +-=,10x +=或30x -=, 1x =-或3x =,故方程的解为121,3x x =-=.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(配方法、因式分解法、公式法、换元法等)是解题关键. 37. 已知关于x 的一元二次方程2320x x k ++-=有实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 【答案】(1)k 174≤; (2)k =3 【解析】【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可; (2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值. 【小问1详解】解:∵一元二次方程2320x x k ++-=有实数根. ∴∆≥0,即32-4(k -2)≥0, 解得k 174≤∵方程的两个实数根分别为12,x x ,∴12123,2x x x x k -+==-,∵()()12111x x ++=-,∴121211x x x x +++=-,∴2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.38. 建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【答案】(1)20% (2)18个【解析】【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为x ,根据2019年投入资金2(1)x ⨯+=2021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.【小问1详解】解:设该市改造老旧小区投入资金的年平均增长率为x ,根据题意得:21000(1)1440x +=,解这个方程得,10.2x =,2 2.2x =-,经检验,0.220%x ==符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%.设该市在2022年可以改造y 个老旧小区,由题意得:80(115%)1440(120%)y ⨯+≤⨯+, 解得181823y ≤. ∵y 为正整数,∴最多可以改造18个小区.答:该市在2022年最多可以改造18个老旧小区.【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式.39. 阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=b a -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= .(2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n m m n +的值.(3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值. 【答案】(1)32;12- (2)132-(3或【解析】【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n m m n +进行变形求解即可;(3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t-进行变形求解即可. 【小问1详解】解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2, ∴123322b x x a -+=-=-=,1212c x x a ⋅==-. 故答案为:32;12-. 【小问2详解】∵一元二次方程2x 2-3x -1=0的两根分别为m 、n , ∴3322b m n a -+=-=-=,12c mn a ==-, ∴22n m m n m n mn++= ()22m n mn mn +-= 23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=- 132=- 【小问3详解】∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根, ∴3322b s t a -+=-=-=,12c st a ==-, ∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 924=+ 174=∴2t s -=或2t s -=-,当2t s -=时,11212t s s t st --===-当t s -=时,11212t s s t st --===- 综上分析可知,11s t-或. 【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出2t s -=或2t s -=-,是解答本题的关键. 40. 某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【答案】(1)4月份再生纸的产量为500吨(2)m 的值20(3)6月份每吨再生纸的利润是1500元【解析】【分析】(1)设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可; (2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【小问1详解】解:设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨, 由题意得:()2100800x x +-=,解得:300x =,∴2100500x -=,答:4月份再生纸的产量为500吨;【小问2详解】 解:由题意得:500(1%)10001%6600002m m ⎛⎫+⋅+= ⎪⎝⎭, 解得:%20%m =或% 3.2m =-(不合题意,舍去)∴20m =,∴m 的值20;【小问3详解】解:设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅∴()2120011500y +=答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.41. 已知关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根1x ,2x .(1)求k 的取值范围;(2)若125x x =,求k 的值.【答案】(1)34k >(2)2【解析】【分析】(1)利用一元二次方程根的判别式大于0建立不等式,解不等式即可得;(2)先利用一元二次方程的根与系数的关系可得21215x x k =+=,再结合(1)的结论即可得.【小问1详解】 解:关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根,∴此方程根的判别式()()2221410k k ∆=+-+>, 解得34k >. 【小问2详解】解:由题意得:21215x x k =+=,解得2k =-或2k =,由(1)已得:34k >, 则k 的值为2.【点睛】本题考查了一元二次方程根的判别式、以及根与系数的关系,熟练掌握一元二次方程的相关知识是解题关键.42. 已知关于x 的一元二次方程22230x x m --=.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.【答案】(1)见解析 (2)1m =±【解析】【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.【小问1详解】()22224241(3)412b ac m m ∆=-=--⨯⋅-=+,∵2120m ≥,∴241240m +≥>,∴该方程总有两个不相等的实数根; 【小问2详解】方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-,∵25αβ+=,∴52αβ=-,∴522ββ-+=,解得:3β=,1α=-,∴23133m -=-⨯=-,即1m =±.【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系.43. 阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务。

中考数学一元二次方程专题(附答案)

中考数学一元二次方程专题(附答案)

中考数学⼀元⼆次⽅程专题(附答案)中考数学⼀元⼆次⽅程专题(附答案)⼀、单选题(共12题;共24分)1.下列⼀元⼆次⽅程有两个相等实数根的是()A. x2﹣2x+1=0B. 2x2﹣x+1=0C. 4x2﹣2x﹣3=0D. x2﹣6x=02.⽅程=0有两个相等的实数根,且满⾜=,则的值是()A. -2或3B. 3C. -2D. -3或23.若关于x的⼀元⼆次⽅程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A. ﹣1B. 0C. 1D. 24.若关于的⼀元⼆次⽅程有两个不相等的实数根,则⼀次函数的图象可能是:A. B. C. D.5.下列⼀元⼆次⽅程中,有两个相等实数根的是()A. x2﹣8=0B. 2x2﹣4x+3=0C. 9x2﹣6x+1=0D. 5x+2=3x26.已知m、n、4分别是等腰三⾓形(⾮等边三⾓形)三边的长,且m、n是关于的⼀元⼆次⽅程的两个根,则k的值等于A. 7B. 7或6C. 6或D. 67.⽅程(x-1)?(x2+17x-3)=0的三根分别为x1,x2,x3 .则x1x2+x2x3+x1x3 =()A. 14B. 13C. -14D. -208.⼀元⼆次⽅程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆⼼距O1O2=4,则⊙O1和⊙O2的位置关系()A. 外离B. 外切C. 相交D. 内切9.已知关于的⽅程有两个实数根,则的取值范围是( )A. B. C. 且 D. 且10.设a、b、c和S分别为三⾓形的三边长和⾯积,关于x的⽅程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的⼤⼩关系为( ).A. Δ=16S2B. Δ=-16S2C. Δ=16SD. Δ=-16S11.下列⽅程中,有两个不相等实数根的是().A. x2-4x+4=0B. x2+3x-1=0C. x2+x+1=0D. x2-2x+3=012.已知⼆次函数y=ax2+2ax+3a-2(a是常数,且a≠0)的图象过点M(x1,-1),N(x2,-1),若MN的长不⼩于2,则a的取值范围是()A. a≥B. 0C. - ≤a<0D. a≤-⼆、填空题(共6题;共12分)13.等腰三⾓形的腰和底边的长是⽅程x2-20x+91=0的两个根,则此三⾓形的周长为________.14.已知x=-1是⽅程x2+ax+4=0的⼀个根,则⽅程的另⼀个根为________ 。

中考数学一元二次方程-经典压轴题及答案

中考数学一元二次方程-经典压轴题及答案

中考数学一元二次方程-经典压轴题及答案一、一元二次方程真题与模拟题分类汇编(难题易错题)21.解方程:(1-2x)(x2-6x+9)。

答案】x1=1/4,x2=-2/3.解析】题目分析:先对方程的右边因式分解,然后直接开平方或移项之后再因式分解法求解即可。

解题分析】因式分解,得到22(1-2x)=(x-3)。

开平方,得到1-2x=x-3,或1-2x=-(x-3)。

解得x1=1/4,x2=-2/3.2.已知关于x的一元二次方程mx-(m+2)x+2m-3=0.1)当m取什么值时,方程有两个不相等的实数根?2)当m=4时,求方程的解。

答案】(1)当m>-1且m≠0时,方程有两个不相等的实数根;(2)x1= (3+5)/4,x2= (3-5)/4.解析】分析】(1)方程有两个不相等的实数根,Δ>0,代入求m取值范围即可,注意二次项系数≠0;(2)将m=4代入原方程,求解即可。

详解】1) 当mx-(m+2)x+2m-3=0,即(m-2)x+2m-3=0.根据求根公式,得到Δ=(m+2)2-4m(m-2)=4m+4>0.因为m≠0,所以m>-1,解得m>-1.因为二次项系数≠0,所以m≠2,解得m≠2.所以当m>-1且m≠0时,方程有两个不相等的实数根。

2) 当m=4时,将m=4代入原方程,得到4x2-6x+1=0.根据求根公式,得到x1=(3+5)/4,x2=(3-5)/4.所以当m=4时,方程的解为x1=(3+5)/4,x2=(3-5)/4.点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是解决本题的关键。

3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x为何值时,活动区的面积达到1344m2?答案】当x=13m时,活动区的面积达到1344m2.解析】分析】根据“活动区的面积=矩形空地面积-阴影区域面积”列出方程,可解答。

中考数学一元二次方程(大题培优)附答案解析

中考数学一元二次方程(大题培优)附答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关. (1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克? (2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,例如润滑用油量为89kg 时,用油的重复利用率为61.6%. ①润滑用油量为80kg ,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg ,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少? 【答案】(1)28(2)①76%②75,84% 【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg ); (2)①60%+1.6%(90﹣80)=76%; ②设润滑用油量是x 千克,则 x{1﹣[60%+1.6%(90﹣x )]}=12, 整理得:x 2﹣65x ﹣750=0, (x ﹣75)(x+10)=0, 解得:x 1=75,x 2=﹣10(舍去), 60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%. 考点:一元二次方程的应用2.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1x =,234x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m+->,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1x =,2x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.3.用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1 ∴△=b 2-4ac=16+8=24>0∴x=2b a-±=41222-=-±⨯∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0 [(y+2)+(3y-1)][ (y+2)-(3y-1)]=0 即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.4.已知关于x 的方程x 2﹣2x +m ﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该方程的根都是整数,求m的值.【答案】(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.5.关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.【答案】(1)证明见解析;(2)-1.【解析】【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根.(2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.【详解】(1)证明:依题意,得.,∴.∴方程总有两个实数根.由.可化为:得,∵方程的两个实数根都是正整数,∴.∴.∴的最小值为.【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.6.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.7.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.8.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【答案】(1)换元,降次;(2)x1=﹣3,x2=2.【解析】【详解】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.9.关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.【答案】(1)证明见解析;(2)x1=﹣,x2=﹣1或【解析】试题分析:(1)根据一元二次方程的判别式△=b2﹣4ac的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x1+x2=-ba,x1•x2=ca,表示出两根的关系,得到x1,x2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解.试题解析:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣35)2+365,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2=ca=﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣x2=﹣1,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1,x210.若两个一次函数的图象与x轴交于同一点,则称这两个函数为一对“x牵手函数”,这个交点为“x牵手点”.(1)一次函数y=x﹣1与x轴的交点坐标为;一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,则a=;(2)已知一对“x牵手函数”:y=ax+1与y=bx﹣1,其中a,b为一元二次方程x2﹣kx+k﹣4=0的两根,求它们的“x牵手点”.【答案】(1)(1,0),a=﹣2;(2)“x牵手点”为(12-,0)或(12,0).【解析】【分析】(1)根据x轴上点的坐标特征可求一次函数y=x-1与x轴的交点坐标;把一次函数y=x-1与x轴的交点坐标代入一次函数y=ax+2可求a的值;(2)根据“x牵手函数”的定义得到a+b=0,根据根与系数的关系求得k=0,可得方程x2-4=0,解得x1=2,x2=-2,再分两种情况:①若a=2,b=-2,②若a=-2,b=2,进行讨论可求它们的“x牵手点”.【详解】解:(1)当y=0时,即x﹣1=0,所以x=1,即一次函数y=x﹣1与x轴的交点坐标为(1,0),由于一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,所以0=a+2,解得a=﹣2;(2)∵y=ax+1与y=bx﹣1为一对“x牵手函数”∴11a b-=,∴a+b=0.∵a,b为x2﹣kx+k﹣4=0的两根∴a+b=k=0,∴x2﹣4=0,∴x1=2,x2=﹣2.①若a=2,b=﹣2则y=2x+1与y=﹣2x﹣1的“x牵手点”为1,02⎛⎫- ⎪⎝⎭;②若a=﹣2,b=2则y=﹣2x+1与y=2x﹣1的“x牵手点”为(12,0 )∴综上所述,“x牵手点”为1,02⎛⎫- ⎪⎝⎭或(12,0)【点睛】本题考查了根与系数的关系、一次函数的性质和一次函数图象上点的坐标特征的运用.。

一元二次方程(优选真题60道)中考数学真题(全国通用)(解析版)

一元二次方程(优选真题60道)中考数学真题(全国通用)(解析版)

三年(2021-2023)中考数学真题分项汇编【全国通用】一元二次方程(优选真题60道)一.选择题(共20小题)1.(2023•新疆)用配方法解一元二次方程x2﹣6x+8=0配方后得到的方程是()A.(x+6)2=28B.(x﹣6)2=28C.(x+3)2=1D.(x﹣3)2=1【分析】利用解一元二次方程﹣配方法,进行计算即可解答.【解答】解:x2﹣6x+8=0,x2﹣6x=﹣8,x2﹣6x+9=﹣8+9,(x﹣3)2=1,故选:D.【点评】本题考查了解一元二次方程﹣配方法,熟练掌握解一元二次方程﹣配方法是解题的关键.2.关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,则m的取值范围是()A.m<32B.m>3C.m≤3D.m<3【分析】根据方程的系数结合根的判别式Δ>0,可得出关于m的一元一次不等式,解之即可得出m的取值范围,对照四个选项即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4×1×(m﹣2)=12﹣4m>0,解得:m<3.故选:D.【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.3.(2023•滨州)一元二次方程x2+3x﹣2=0根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定【分析】利用一元二次方程根的判别式求解即可.【解答】解:由题意得,Δ=32﹣4×1×(﹣2)=17>0,∴方程有两个不相等的实数根.故选:A.【点评】本题主要考查了一元二次方程根的判别式,对于一元二次方程ax2+bx+c=0(a≠0),若Δ=b2﹣4ac>0,则方程有两个不相等的实数根,若Δ=b2﹣4ac=0,则方程有两个相等的实数根,若Δ=b2﹣4ac<0,则方程没有实数根.4.(2023•天津)若x1,x2是方程x2﹣6x﹣7=0的两个根,则()A.x1+x2=6B.x1+x2=﹣6C.x1x2=76D.x1x2=7【分析】根据一元二次方程根与系数的关系进行判断即可.【解答】解:∵x1,x2是方程x2﹣6x﹣7=0的两个根,∴x1+x2=6,x1x2=﹣7,故选:A.【点评】本题考查了一元二次方程根与系数的关系,应掌握:设x1,x2是一元二次方程y=ax2+bx+c(a≠0)的两个实数根,则x1+x2=−ba,x1x2=ca.5.(2023•永州)某市2020年人均可支收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x,则下面所列方程正确的是()A.2.7(1+x)2=2.36B.2.36(1+x)2=2.7C.2.7(1﹣x)2=2.36D.2.36(1﹣x)2=2.7【分析】利用2022年间每年人均可支配收入=2020年间每年人均可支配收入×(1+每年人均可支配收入的增长率)2,即可得出关于x的一元二次方程,此题得解.【解答】解:根据题意得2.36(1+x)2=2.7.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.(2023•乐山)若关于x的一元二次方程x2﹣8x+m=0两根为x1、x2,且x1=3x2,则m的值为()A.4B.8C.12D.16【分析】首先根据根与系数的关系得出x1+x2=8,再根据x1=3x2,求得x1,x2,进一步得出x1x2=m求得答案即可.【解答】解:∵一元二次方程x2﹣8x+m=0的两根为x1,x2,∴x1+x2=8,∵x1=3x2,解得x1=6,x2=2,∴m=x1x2=6×2=12.故选:C.【点评】本题考查了根与系数的关系.二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.7.(2023•内江)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如:3⊗2=22﹣3×2=﹣2,则关于x 的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】根据运算“⊗”的定义将方程(k﹣3)⊗x=k﹣1转化为一般式,由根的判别式Δ=(k﹣1)2+4>0,即可得出该方程有两个不相等的实数根.【解答】解:∵(k﹣3)⊗x=k﹣1,∴x2﹣(k﹣3)x=k﹣1,∴x2﹣(k﹣3)x﹣k+1=0,∴Δ=[﹣(k﹣3)]2﹣4×1×(﹣k+1)=(k﹣1)2+4>0,∴关于x的方程(k﹣3)⊗x=k﹣1有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式和实数的运算,牢记“当Δ>0时,方程有两个不相等的实数根”是解决问题的关键.8.已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【分析】先利用第四象限点的坐标特征得到ac<0,则判断Δ>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第四象限,∴a>0,c<0,∴ac<0,∴方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax 2+bx +c =0有两个不相等的实数根.故选:A .【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.9.关于x 的一元二次方程x 2+2ax +a 2﹣1=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关【分析】先计算一元二次方程根的判别式,根据根的判别式得结论.【解答】解:∵Δ=(2a )2﹣4×1×(a 2﹣1)=4a 2﹣4a 2+4=4>0.∴关于x 的一元二次方程x 2+2ax +a 2﹣1=0有两个不相等的实数根.故选:C .【点评】本题主要考查了一元二次方程根的判别式,掌握“根的判别式与方程的解的关系”是解决本题的关键.10.(2023•泸州)若一个菱形的两条对角线长分别是关于x 的一元二次方程x 2﹣10x +m =0的两个实数根,且其面积为11,则该菱形的边长为( )A .√3B .2√3C .√14D .2√14【分析】先设出菱形两条对角线的长,利用根与系数的关系及对角线与菱形面积的关系得等式,再根据菱形的边长与对角线的关系求出菱形的边长.【解答】解:设菱形的两条对角线长分别为a 、b ,由题意,得{a +b =10ab =22. ∴菱形的边长=√(a 2)2+(b 2)2=12√a 2+b 2=12√(a +b)2−2ab=12√100−44=12√56=√14.故选:C.【点评】本题主要考查了根与系数的关系及菱形的性质,掌握菱形对角线与菱形的面积、边长间的关系,根与系数的关系及等式的变形是解决本题的关键.11.(2023•台湾)利用公式解可得一元二次方程式3x2﹣11x﹣1=0 的两解为a、b,且a>b,求a值为何()A.−11+√1096B.−11+√1336C.11+√1096D.11+√1336【分析】利用公式法即可求解.【解答】解:3x2﹣11x﹣1=0,这里a=3,b=﹣11,c=﹣1,∴Δ=(﹣11)2﹣4×3×(﹣1)=133>0,∴x=11±√1332×3=11±√1336,∵一元二次方程式3x2﹣11x﹣1=0 的两解为a、b,且a>b,∴a的值为11+√1336.故选:D.【点评】本题考查了解一元二次方程﹣公式法,能熟练运用公式法解答方程是解此题的关键.12.(2022•淮安)若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的值可以是()A.﹣2B.﹣1C.0D.1【分析】根据根的判别式列出不等式求出k的范围即可求出答案.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴Δ=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k<﹣1,故选:A.【点评】本题考查了根的判别式,牢记“当Δ<0时,方程无实数根”是解题的关键.13.(2022•攀枝花)若关于x的方程x2﹣x﹣m=0有实数根,则实数m的取值范围是()A.m<14B.m≤14C.m≥−14D.m>−14【分析】根据判别式的意义得到Δ=1+4m≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣x﹣m=0有实数根,∴Δ=(﹣1)2﹣4(﹣m)=1+4m≥0,解得m≥−1 4,故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.14.(2022•内蒙古)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如3⊗2=22﹣3×2=﹣2,则关于x的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】根据运算“⊗”的定义将方程(k﹣3)⊗x=k﹣1转化为一般式,由根的判别式Δ=(k﹣1)2+4>0,即可得出该方程有两个不相等的实数根.【解答】解:∵(k﹣3)⊗x=k﹣1,∴x2﹣(k﹣3)x=k﹣1,∴x2﹣(k﹣3)x﹣k+1=0,∴Δ=[﹣(k﹣3)]2﹣4×1×(﹣k+1)=(k﹣1)2+4>0,∴关于x的方程(k﹣3)⊗x=k﹣1有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式和实数的运算,牢记“当Δ>0时,方程有两个不相等的实数根”是解决问题的关键.15.(2022•巴中)对于实数a,b定义新运算:a※b=ab2﹣b,若关于x的方程1※x=k有两个不相等的实数根,则k的取值范围()A.k>−14B.k<−14C.k>−14且k≠0D.k≥−14且k≠0【分析】根据新定义运算法则列方程,然后根据一元二次方程的概念和一元二次方程的根的判别式列不等式求解即可.【解答】解:根据定义新运算,得x2﹣x=k,即x2﹣x﹣k=0,∵关于x的方程1※x=k有两个不相等的实数根,∴Δ=(﹣1)2﹣4×(﹣k)>0,解得:k>−1 4,故选:A.【点评】本题考查一元二次方程的根的判别式,新定义等,熟练掌握根的判别式Δ=b2﹣4ac与根的情况的关系是解题的关键.16.(2022•安顺)定义新运算a*b:对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如3*2=(3+2)(3﹣2)﹣1=5﹣1=4.若x*k=2x(k为实数)是关于x的方程,则它的根的情况是()A.有一个实数根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【分析】已知等式利用题中的新定义化简,计算出根的判别式的值,判断即可.【解答】解:根据题中的新定义化简得:(x+k)(x﹣k)﹣1=2x,整理得:x2﹣2x﹣1﹣k2=0,∵Δ=4﹣4(﹣1﹣k2)=4k2+8>0,∴方程有两个不相等的实数根.故选:B.【点评】此题考查了根的判别式,方程的定义,以及实数的运算,弄清题中的新定义是解本题的关键.17.(2022•鄂尔多斯)下列说法正确的是()①若二次根式√1−x有意义,则x的取值范围是x≥1.②7<√65<8.③若一个多边形的内角和是540°,则它的边数是5.④√16的平方根是±4.⑤一元二次方程x2﹣x﹣4=0有两个不相等的实数根.A.①③⑤B.③⑤C.③④⑤D.①②④【分析】根据二次根式有意义的条件、估算无理数的大小、算术平方根、平方根和多边形的内角和定理,根的判别式判断即可.【解答】解:①若二次根式√1−x有意义,则1﹣x≥0,解得x≤1.故x的取值范围是x≤1,题干的说法是错误的.②8<√65<9,故题干的说法是错误的.③若一个多边形的内角和是540°,则它的边数是5是正确的.④√16=4的平方根是±2,故题干的说法是错误的.⑤∵Δ=(﹣1)2﹣4×1×(﹣4)=17>0,∴一元二次方程x2﹣x﹣4=0有两个不相等的实数根,故题干的说法是正确的.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了二次根式有意义的条件、估算无理数的大小、算术平方根、平方根和多边形.18.(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为()A.﹣4B.−14C.14D.4【分析】根据根的判别式的意义得到12﹣4m=0,然后解一次方程即可.【解答】解:根据题意得Δ=12﹣4m=0,解得m=1 4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.19.(2022•呼和浩特)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045B.4044C.2022D.1【分析】把x=x1代入方程表示出x12﹣2022=x1,代入原式利用完全平方公式化简,再根据根与系数的关系求出所求即可.【解答】解:把x=x1代入方程得:x12﹣x1﹣2022=0,即x12﹣2022=x1,∵x1,x2是方程x2﹣x﹣2022=0的两个实数根,∴x1+x2=1,x1x2=﹣2022,则原式=x1(x12﹣2022)+x22=x12+x22=(x1+x2)2﹣2x1x2=1+4044=4045.故选:A.【点评】此题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解本题的关键.20.(2021•遵义)在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数p,得到方程的两个根是5,﹣4,则原来的方程是()A.x2+2x﹣3=0B.x2+2x﹣20=0C.x2﹣2x﹣20=0D.x2﹣2x﹣3=0【分析】先设这个方程的两根是α、β,根据两个根是﹣3,1和两个根是5,﹣4,得出α+β=﹣p=﹣2,αβ=q=﹣20,从而得出符合题意的方程.【解答】解:设此方程的两个根是α、β,根据题意得:α+β=﹣p=﹣2,αβ=q=﹣20,则以α、β为根的一元二次方程是x2+2x﹣20=0.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−b a ,x1•x2=ca.二.填空题(共20小题)21.(2023•随州)已知关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,则x1+x2﹣x1x2的值为.【分析】直接利用根于系数的关系x1+x2=−ba=3,x1x2=ca=1,再代入计算即可求解.【解答】解:∵关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,∴x1+x2=−−31=3,x1x2=11=1,∴x1+x2﹣x1x2=3﹣1=2.故答案为:2.【点评】本题主要考查根与系数的关系,熟记根与系数的关系时解题关键.根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.22.(2023•岳阳)已知关于x的方程x2+mx﹣20=0的一个根是﹣4,则它的另一个根是.【分析】设方程的另一个解为t,则利用根与系数的关系得﹣4t=﹣20,然后解一次方程即可.【解答】解:设方程的另一个解为t,根据根与系数的关系得﹣4t=﹣20,解得t=5,即方程的另一个根为5.故答案为:5.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=−ba,x1x2=ca.23.(2023•内江)已知a、b是方程x2+3x﹣4=0的两根,则a2+4a+b﹣3=.【分析】根据一元二次方程的解的定义得到a2+3a﹣4=0,a2=﹣3a+4,再根据根与系数的关系得到a+b =﹣3,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2+3x﹣4=0的根,∴a2+3a﹣4=0,∴a2=﹣3a+4,∵a,b是方程x2+3x﹣4=0的两根,∴a+b=﹣3,∴a2+4a+b﹣3=﹣3a+4+4a+b﹣3=a+b+1=﹣3+1=﹣2.故答案为:﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=−ba ,x1•x2=ca,也考查了一元二次方程的解.24.(2023•岳阳)已知关于x的一元二次方程x2+2mx+m2﹣m+2=0有两个不相等的实数根x1、x2,且x1+x2+x1•x2=2,则实数m=.【分析】根据方程的系数结合根的判别式Δ>0,可得出关于m的一元一次不等式,解之可得出m的取值范围,由根与系数的关系,可得出x1+x2=﹣2m,x1•x2=m2﹣m+2,结合x1+x2+x1•x2=2,可得出关于m的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:∵原方程有两个不相等的实数根,∴Δ=(2m)2﹣4×1×(m2﹣m+2)>0,∴m>2.∵x1,x2是关于x的一元二次方程x2+2mx+m2﹣m+2=0的两个实数根,∴x1+x2=﹣2m,x1•x2=m2﹣m+2,∵x1+x2+x1•x2=2,∴﹣2m+m2﹣m+2=2,解得:m1=0(不符合题意,舍去),m2=3,∴实数m的值为3.故答案为:3.【点评】本题考查了根的判别式以及根与系数的关系,由根与系数的关系结合x1+x2+x1•x2=2,找出关于m的一元二次方程是解题的关键.25.(2023•上海)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是.【分析】由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程ax2+6x+1=0没有实数根,∴Δ<0,即62﹣4a<0,解得:a>9,故答案为:a>9.【点评】本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.26.(2023•上海)已知关于x的方程√x−14=2,则x=.【分析】方程两边平方得出x﹣14=4,求出方程的解,再进行检验即可.【解答】解:√x−14=2,方程两边平方得:x﹣14=4,解得:x=18,经检验x=18是原方程的解.故答案为:18.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键,注意:解无理方程一定要进行检验.27.(2023•枣庄)若x=3是关于x的方程ax2﹣bx=6的解,则2023﹣6a+2b的值为.【分析】把x=3代入方程求出3a﹣b的值,代入原式计算即可求出值.【解答】解:把x=3代入方程得:9a﹣3b=6,即3a﹣b=2,则原式=2023﹣2(3a﹣b)=2023﹣4=2019.故答案为:2019.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.28.(2023•金昌)关于x的一元二次方程x2+2x+4c=0有两个不相等的实数根,则c=(写出一个满足条件的值).【分析】根据方程的系数结合根的判别式,即可得出Δ=4﹣16c>0,解之即可得出c的取值范围,任取其内的一个数即可.【解答】解:∵方程x2+2x+4c=0有两个不相等的实数根,∴Δ=22﹣16c>0,解得:c<1 4.故答案为:0(答案不唯一).【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.29.(2023•怀化)已知关于x的一元二次方程x2+mx﹣2=0的一个根为﹣1,则m的值为,另一个根为.【分析】将x=﹣1代入原方程,可得出关于m的一元一次方程,解之即可得出m的值,再结合两根之积等于﹣2,即可求出方程的另一个根.【解答】解:将x=﹣1代入原方程可得1﹣m﹣2=0,解得:m=﹣1,∵方程的两根之积为ca=−2,∴方程的另一个根为﹣2÷(﹣1)=2.故答案为:﹣1,2.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于−ba,两根之积等于ca”是解题的关键.30.(2023•连云港)若W=5x2﹣4xy+y2﹣2y+8x+3(x、y为实数),则W的最小值为.【分析】将原式进行配方,然后根据偶次幂的非负性即可求得答案.【解答】解:W=5x2﹣4xy+y2﹣2y+8x+3=x2+4x2﹣4xy+y2﹣2y+8x+3=4x2﹣4xy+y2﹣2y+x2+8x+3=(4x2﹣4xy+y2)﹣2y+x2+8x+3=(2x﹣y)2﹣2y+x2+4x+4x+3=(2x﹣y)2+4x﹣2y+x2+4x+3=(2x﹣y)2+2(2x﹣y)+1﹣1+x2+4x+4﹣4+3=[(2x﹣y)2+2(2x﹣y)+1]+(x2+4x+4)﹣2=(2x﹣y+1)2+(x+2)2﹣2,∵x,y均为实数,∴(2x﹣y+1)2≥0,(x+2)2≥0,∴原式W≥﹣2,即原式的W的最小值为:﹣2,解法二:由题意5x2+(8﹣4y)x+(y2﹣2y+3﹣W)=0,∵x为实数,∴(8﹣4y)2﹣20(y2﹣2y+3﹣W)≥0,即5W≥(y+3)2﹣10≥﹣10,∴W≥﹣2,∴W的最小值为:﹣2,故答案为:﹣2.【点评】本题考查配方法的应用及偶次幂的非负性,利用配方法把原式整理为“平方+常数”的形式是解题的关键.31.已知方程x2﹣3x﹣4=0的根为x1,x2,则(x1+2)•(x2+2)的值为.【分析】直接利用根与系数的关系作答.【解答】解:∵方程x2﹣3x﹣4=0的根为x1,x2,∴x1+x2=3,x1•x2=﹣4,∴(x1+2)•(x2+2)=x1•x2+2x1+2x2+4=﹣4+2×3+4=6.故答案为:6.【点评】本题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=−ba,x1•x2=ca.32.(2023•重庆)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程.【分析】设该市新建智能充电桩个数的月平均增长率为x,根据第一个月新建了301个充电桩,第三个月新建了500个充电桩,即可得出关于x的一元二次方程.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.33.(2023•重庆)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为.【分析】根据今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,列一元二次方程即可.【解答】解:根据题意,得1501(1+x)2=1815,故答案为:1501(1+x)2=1815.【点评】本题考查了一元二次方程的应用,理解题意并根据题意建立等量关系是解题的关键.34.(2023•达州)已知x1,x2是方程2x2+kx﹣2=0的两个实数根,且(x1﹣2)(x2﹣2)=10,则k的值.【分析】先求出(x1+x2),x1x2的值,然后把(x1﹣2)(x2﹣2)=10的左边展开,将其代入该关于k的方程,通过解方程来求k的值.【解答】解:∵x1,x2是方程2x2+kx﹣2=0的两个实数根,∴x1+x2=−k2,x1•x2=﹣1,∴(x1﹣2)(x2﹣2)=x1•x2﹣2(x1+x2)+4=﹣1﹣2×(−k2)+4=10,解得k=7.故答案为:7.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个根为x1,x2,则x1+x2=−ba ,x1x2=ca,也考查了代数式的变形能力.35.(2023•扬州)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则实数k的取值范围为.【分析】根据方程有两个不相等的实数根结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵方程x2+2x+k=0有两个不相等的实数根,∴Δ=b2﹣4ac=22﹣4k=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了根的判别式,根据方程有两个不相等的实数根结合根的判别式得出4﹣4k>0是解题的关键.36.(2023•连云港)关于x的一元二次方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是.【分析】根据根的判别式得到Δ=4﹣4a>0,然后解不等式即可.【解答】解:根据题意得Δ=4﹣4a>0,解得a<1.故答案为a<1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.37.(2022•巴中)α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为.【分析】α2﹣2α﹣β=α2﹣α﹣(α+β)=4,然后根据方程的解的定义以及一元二次方程根与系数的关系,得到关于k的一元一次方程,即可解得答案.【解答】解:∵α、β是方程x2﹣x+k﹣1=0的根,∴α2﹣α+k﹣1=0,α+β=1,∴α2﹣2α﹣β=α2﹣α﹣(α+β)=﹣k+1﹣1=﹣k=4,∴k=﹣4,故答案是:﹣4.【点评】本题考查了一元二次方程的解以及根与系数的关系,掌握根与系数的关系是解题的关键.38.(2022•鄂州)若实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,则1a+1b的值为.【分析】由实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,知a、b可看作方程x2﹣4x+3=0的两个不相等的实数根,据此可得a+b=4,ab=3,将其代入到原式=a+bab即可得出答案.【解答】解:∵实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,∴a、b可看作方程x2﹣4x+3=0的两个不相等的实数根,则a+b=4,ab=3,则原式=a+bab=43,故答案为:4 3.【点评】本题主要考查根与系数的关系,解题的关键是根据方程的特点得出a、b可看作方程x2﹣4x+3=0的两个不相等的实数根及韦达定理.39.(2021•南通)若m,n是一元二次方程x2+3x﹣1=0的两个实数根,则m3+m2n3m−1的值为.【分析】先根据一元二次方程的解的定义得到m2+3m﹣1=0,再根据根与系数的关系得到m+n=﹣3,再将其代入所求式子即可求解.【解答】解:m,n是一元二次方程x2+3x﹣1=0的两个实数根,∴m2+3m﹣1=0,∴3m﹣1=﹣m2,∴m+n=﹣3,∴m3+m2n3m−1=m2(m+n)3m−1=−3m2−m2=3,故答案为3.【点评】本题考查了根与系数的关系,熟练掌握一元二次方程的解与方程的关系得到3m﹣1=﹣m2是解题的关键.40.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为.【分析】根据一元二次方程的定义解决问题即可,注意答案不唯一.【解答】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,∴满足条件的方程可以为:x2﹣2=0(答案不唯一),故答案为:x2﹣2=0(答案不唯一).【点评】本题考查一元二次方程的定义,解题的关键是理解题意,灵活运用所学知识解决问题.三.解答题(共20小题)41.(2023•南充)已知关于x 的一元二次方程x 2﹣(2m ﹣1)x ﹣3m 2+m =0.(1)求证:无论m 为何值,方程总有实数根;(2)若x 1,x 2是方程的两个实数根,且x 2x 1+x 1x 2=−52,求m 的值. 【分析】(1)由判别式Δ=(4m ﹣1)2≥0,可得答案;(2)根据根与系数的关系知x 1+x 2=2m ﹣1,x 1x 2=﹣3m 2+m ,由x 2x 1+x 1x 2=−52进行变形直接代入得到5m 2﹣7m +2=0,求解可得.【解答】(1)证明:∵Δ=[﹣(2m ﹣1)]2﹣4×1×(﹣3m 2+m )=4m 2﹣4m +1+12m 2﹣4m=16m 2﹣8m +1=(4m ﹣1)2≥0,∴方程总有实数根;(2)解:由题意知,x 1+x 2=2m ﹣1,x 1x 2=﹣3m 2+m ,∵x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2x 1x 2−2=−52, ∴(2m−1)2−3m 2+m −2=−52,整理得5m 2﹣7m +2=0, 解得m =1或m =25.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a .也考查了根的判别式.42.(2023•遂宁)我们规定:对于任意实数a 、b 、c 、d 有[a ,b ]*[c ,d ]=ac ﹣bd ,其中等式右边是通常的乘法和减法运算,如:[3,2]*[5,1]=3×5﹣2×1=13.(1)求[﹣4,3]*[2,﹣6]的值;(2)已知关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,求m 的取值范围.【分析】(1)用新定义运算法则列式计算;(1)先根据新定义得到x (mx +1)﹣m (2x ﹣1)=0,再把方程化为一般式,接着根据题意得到Δ=(1﹣2m )2﹣4m •m ≥0且m ≠0,解不等式即可.【解答】解:(1)[﹣4,3]*[2,﹣6]=﹣4×2﹣3×(﹣6)=10;(2)根据题意得x (mx +1)﹣m (2x ﹣1)=0,整理得mx 2+(1﹣2m )x +m =0,∵关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,∴Δ=(1﹣2m )2﹣4m •m ≥0且m ≠0,解得m ≤14且m ≠0.【点评】本题属于新定义题型,考查一元二次方程根的判别式,解一元一次不等式,根据题意得到关于m 的不等式是解题的关键.43.(1)解方程:x 2﹣2x ﹣1=0;(2)解不等式组:{2x −1≥11+x 3<x −1. 【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)方程移项得:x 2﹣2x =1,配方得:x 2﹣2x +1=2,即(x ﹣1)2=2,开方得:x ﹣1=±√2,解得:x 1=1+√2,x 2=1−√2;(2){2x −1≥1①1+x 3<x −1②, 由①得:x ≥1,由②得:x >2,则不等式组的解集为x >2.【点评】此题考查了解一元一次不等式组,以及解一元二次方程﹣配方法,熟练掌握不等式组的解法及方程的解法是解本题的关键.44.如图,某小区矩形绿地的长宽分别为35m ,15m .现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m ,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.【分析】(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据扩充后的矩形绿地面积为800m,即可得出关于x的一元二次方程,解之即可得出x的值,将其正值分别代入(35+x)及(15+x)中,即可得出结论;(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据实地测量发现新的矩形绿地的长宽之比为5:3,即可得出关于y的一元一次方程,解之即可得出y值,再利用矩形的面积计算公式,即可求出新的矩形绿地面积.【解答】解:(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据题意得:(35+x)(15+x)=800,整理得:x2+50x﹣275=0解得:x1=5,x2=﹣55(不符合题意,舍去),∴35+x=35+5=40,15+x=15+5=20.答:新的矩形绿地的长为40m,宽为20m.(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据题意得:(35+y):(15+y)=5:3,即3(35+y)=5(15+y),解得:y=15,∴(35+y)(15+y)=(35+15)×(15+15)=1500.答:新的矩形绿地面积为1500m2.【点评】本题考查了一元二次方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)找准等量关系,正确列出一元一次方程.45.(2022•广州)已知T=(a+3b)2+(2a+3b)(2a﹣3b)+a2.(1)化简T;(2)若关于x的方程x2+2ax﹣ab+1=0有两个相等的实数根,求T的值.【分析】(1)根据完全平方公式和平方差公式化简T;(2)根据根的判别式可求a2+ab,再代入计算可求T的值.【解答】解:(1)T=(a+3b)2+(2a+3b)(2a﹣3b)+a2=a2+6ab+9b2+4a2﹣9b2+a2=6a2+6ab;(2)∵关于x的方程x2+2ax﹣ab+1=0有两个相等的实数根,∴Δ=(2a)2﹣4(﹣ab+1)=0,∴a2+ab=1,∴T=6×1=6.【点评】本题考查了整式的混合运算,根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.46.(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.【分析】(1)先根据数轴确定a、b的正负,再利用乘法法则确定ab;(2)根据方程的系数特点,选择配方法、公式法或因式分解法.【解答】解:(1)由数轴上点的坐标知:a<0<b,∴a<b,ab<0.故答案为:<,<.(2)①利用公式法:x2+2x﹣1=0,Δ=22﹣4×1×(﹣1)=4+4=8,∴x=−2±√b2−4ac2=−2±√82=−2±2√22=﹣1±√2.∴x1=﹣1+√2,x2=﹣1−√2;②利用因式分解法:x2﹣3x=0,∴x(x﹣3)=0.∴x1=0,x2=3;③利用配方法:x2﹣4x=4,两边都加上4,得x2﹣4x+4=8,∴(x﹣2)2=8.∴x﹣2=±2√2.∴x1=2+2√2,x2=2﹣2√2;④利用因式分解法:x2﹣4=0,∴(x+2)(x﹣2)=0.∴x1=﹣2,x2=2.【点评】本题考查了数轴、一元二次方程的解法,掌握数轴的意义、一元二次方程的解法是解决本题的关键.47.(2022•齐齐哈尔)解方程:(2x+3)2=(3x+2)2.【分析】方程开方转化为一元一次方程,求出解即可.【解答】解:方程:(2x+3)2=(3x+2)2,开方得:2x+3=3x+2或2x+3=﹣3x﹣2,解得:x1=1,x2=﹣1.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握方程的解法是解本题的关键.48.(2022•泰州)如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?【分析】要求路宽,就要设路宽应为x米,根据题意可知:矩形地面﹣所修路面积=草坪面积,利用平移更简单,依此列出等量关系解方程即可.【解答】解:设路宽应为x米。

中考数学一元二次方程综合经典题

中考数学一元二次方程综合经典题
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根 x1、x2. (1)求 k 的取值范围; (2)若 x1+x2=1﹣ k 3
2 【解析】
试题分析:(1)方程有两个实数根,可得 b2 4ac 0,代入可解出 k 的取值范围;
5.图 1 是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为 △ ABC 和△ DEF,其中∠ B=90°,∠ A=45°,BC= ,∠ F=90°,∠ EDF=30°, EF=2.将△ DEF 的斜边 DE 与△ ABC 的斜边 AC 重合在一起,并将△ DEF 沿 AC 方向移动.在移动过程中, D、E 两点始终在 AC 边上(移动开始时点 D 与点 A 重合). (1)请回答李晨的问题:若 CD=10,则 AD= ; (2)如图 2,李晨同学连接 FC,编制了如下问题,请你回答: ①∠ FCD 的最大度数为 ; ②当 FC∥ AB 时,AD= ; ③当以线段 AD、FC、BC 的长度为三边长的三角形是直角三角形,且 FC 为斜边时,AD= ; ④△ FCD 的面积 s 的取值范围是 .
角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.
6.将 m 看作已知量,分别写出当 0<x<m 和 x>m 时, 与 之间的函数关系式;
7.已知 为正整数,二次方程
的两根为
,求下式的值:
【答案】
【解析】 由韦达定理,有

.于是,对正整数
,有
原式=
8.工人师傅用一块长为 10dm,宽为 6dm 的矩形铁皮制作一个无盖的长方体容器,需要将 四角各裁掉一个正方形.(厚度不计)求长方体底面面积为 12dm2 时,裁掉的正方形边长 多大?

中考数学历年各地市真题 一元二次方程

中考数学历年各地市真题 一元二次方程

中考数学历年各地市真题部分省市中考数学试题分类汇编一元二次方程7.(2010年安徽省芜湖市)关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足()A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠5【关键词】方程根的定义、一元二次方程根的判别式、分类讨论【答案】A14.(2010年安徽省芜湖市)已知x 1、x 2为方程x 2+3x +1=0的两实根,则x 12+8x 2+20=__________.【关键词】一元二次方程根的定义及一元二次方程根与系数的关系【答案】1-13.(2010年浙江台州市)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 ▲ . 【关键词】一元二次方程的应用 【答案】100)1(1202=-x6.(2010年益阳市)一元二次方程)0(02≠=++a c bx ax 有两个不相等...的实数根,则ac b 42-满足的条件是 A.ac b 42-=0 B.ac b 42->0 C.ac b 42-<0 D.ac b 42-≥0【关键词】根的判别式【答案】B(2010年四川省眉山)已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为A .7-B .3-C .7D .3【关键词】根与系数的关系(第 14 题) 67 8 9 10 12 3 4 5 6 7 8 9 10【答案】D(2010年四川省眉山)一元二次方程2260x -=的解为___________________.【关键词】一元二次方程的解法【答案】x =(2010年广东省广州市)已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求4)2(222-+-b a ab 的值。

【关键词】分式化简,一元二次方程根的判别式【答案】解:∵)0(012≠=++a bx ax 有两个相等的实数根, ∴⊿=240b ac -=,即240b a -=. ∵2222222222244444)2(aab b a a ab b a a ab b a ab =+-=-++-=-+- ∵0a ≠,∴4222==a b a ab1.(2010年浙江省绍兴市)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?【答案】(1)∵ 30 000÷5 000=6, ∴ 能租出24间.(2)设每间商铺的年租金增加x 万元,则(30-5.0x )×(10+x )-(30-5.0x )×1-5.0x ×0.5=275, 2 x 2-11x +5=0, ∴ x =5或0.5,∴ 每间商铺的年租金定为10.5万元或15万元.1.(2010年四川省眉山市)已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为A .7-B .3-C .7D .3【关键词】一元二次方程的根与系数的关系【答案】D2.(2010年四川省眉山市)一元二次方程2260x -=的解为___________________.【关键词】一元二次方程【答案】x =(2010年日照市)如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是(A )-3,2 (B )3,-2 (C )2,-3 (D )2,319.(2010年安徽中考)在国家下身的宏观调控下,某市的商品房成交价由今年3月分的14000元/2m 下降到5月份的12600元/2m⑴问4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0≈)⑵如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破10000元/2m ?请说明理由。

2023中考数学一元二次方程历年真题及答案

2023中考数学一元二次方程历年真题及答案

2023中考数学一元二次方程历年真题及答案一、真题回顾在准备中考数学一元二次方程的学习中,了解历年真题是非常重要的。

下面是2023年中考数学一元二次方程的历年真题及答案,供您参考。

1. 2008年中考真题已知一元二次方程x² - 3x - 18 = 0的两个解分别为m和n,求m² + n²的值。

解析:根据一元二次方程的性质可知,x² - 3x - 18 = 0的两个解之和等于-(-3)/1=3,即m + n = 3。

根据解的性质可知,m² + n² = (m + n)² - 2mn,代入已知条件可得:(m + n)² - 2mn = 3² - 2(-18)=57。

2. 2010年中考真题方程x² - 4x + b = 0有两个相等的实数根,求b的值。

解析:已知方程x² - 4x + b = 0有两个相等的实数根,根据一元二次方程的性质可知,判别式D = (-4)² - 4 * 1 * b = 16 - 4b = 0。

解方程16 - 4b = 0,可得b = 4。

3. 2015年中考真题已知方程x² - mx + n = 0的两个解之和等于3,两列解之积等于-2,求m和n的值。

解析:根据一元二次方程的性质可知,x1 + x2 = m/1 = 3,x1 * x2 = n/1 = -2。

解得m = 3,n = -2。

4. 2019年中考真题已知一元二次方程x² + px + 10 = 0的一个解是-2,求p的值。

解析:已知一元二次方程的一个解是-2,根据解的性质可知,(-2)² + p(-2) + 10 = 0,即4 - 2p + 10 = 0。

解方程-2p + 14 = 0,得p = 7。

二、参考答案1. 2008年中考真题答案:m² + n² = 57;2. 2010年中考真题答案:b = 4;3. 2015年中考真题答案:m = 3,n = -2;4. 2019年中考真题答案:p = 7。

中考数学一元二次方程综合经典题含详细答案

中考数学一元二次方程综合经典题含详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10.【解析】【分析】 分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论.【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4.∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形.∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.2.解方程: 2212x x 6x 9-=-+() 【答案】124x x 23==-, 【解析】试题分析:先对方程的右边因式分解,直接开平方或移项之后再因式分解法求解即可.试题解析:因式分解,得2212x x 3-=-()()开平方,得12x x 3-=-,或12x x 3-=--()解得124x x 23==-,3.关于x 的方程(k -1)x 2+2kx+2=0(1)求证:无论k 为何值,方程总有实数根.(2)设x 1,x 2是方程(k -1)x 2+2kx+2=0的两个根,记S=++ x 1+x 2,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.【答案】(1)详见解析;(2)S 的值能为2,此时k 的值为2.【解析】试题分析:(1) 本题二次项系数为(k -1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k 的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解; ②当k-1≠0即k≠1时,方程为一元二次方程, △=(2k )²-4×2(k-1)=4k²-8k +8="4(k-1)" ² +4>0方程有两不等根综合①②得不论k 为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂= ∴S=++ x 1+x 2 =====2k-2=2,解得k=2,∴当k=2时,S 的值为2∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.4.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值. 【答案】(1)m 的最小整数值为4-;(2)3m =【解析】【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题.【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯- ⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥- ∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =- 92m ≥- 3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.5.校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m 2的矩形花圃吗?若能,请举例说明;若不能,请说明理由. (2)若篱笆再增加4m ,围成的矩形花圃面积能达到170m 2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20考点:一元二次方程的应用.7.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【答案】(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)(100+x2×20)=2240,化简,得 x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90% 60⨯.答:该店应按原售价的九折出售.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a元,在不考虑其他因素的条件下,当a定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x元/件,乙种商品的进货单价是y元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9.阅读下面的材料,回答问题:解方程x 4﹣5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x 2=y ,那么x 4=y 2,于是原方程可变为y 2﹣5y +4=0 ①,解得y 1=1,y 2=4. 当y =1时,x 2=1,∴x =±1;当y =4时,x 2=4,∴x =±2;∴原方程有四个根:x 1=1,x 2=﹣1,x 3=2,x 4=﹣2.(1)在由原方程得到方程①的过程中,利用 法达到 的目的,体现了数学的转化思想.(2)解方程(x 2+x )2﹣4(x 2+x )﹣12=0.【答案】(1)换元,降次;(2)x 1=﹣3,x 2=2.【解析】【详解】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.10.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【答案】(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC 的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.。

2022年全国各省中考数学真题分类解析一元二次方程

2022年全国各省中考数学真题分类解析一元二次方程

(2022•泰州中考)如图,在长为50m 、宽为38m 的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m 2,道路的宽应为多少?【解析】设路宽应为x 米根据等量关系列方程得:(50﹣2x )(38﹣2x )=1260,解得:x =4或40,40不合题意,舍去,所以x =4.答:道路的宽应为4米.(2022·牡丹江中考)如图,直线MN 与x 轴,y 轴分别相交于A ,C 两点,分别过A ,C 两点作x 轴,y 轴的垂线相交于B 点,且OA ,OC (OA >OC )的长分别是一元二次方程x 2﹣14x +48=0的两个实数根.(1)求C 点坐标;(2)求直线MN 的解析式;(3)在直线MN 上存在点P ,使以点P ,B ,C 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.【解析】(1)解方程x 2﹣14x +48=0得x 1=6,x 2=8.∵OA ,OC (OA >OC )的长分别是一元二次方程x 2﹣14x +48=0的两个实数根,∴OC =6,OA =8.∴C (0,6);(2)设直线MN 的解析式是y =kx +b (k ≠0).由(1)知,OA =8,则A (8,0).∵点A 、C 都在直线MN 上,∴{8k +b =0b =6,解得,{k =−34b =6,∴直线MN 的解析式为y =−34x +6; (3)∵A (8,0),C (0,6),∴根据题意知B (8,6).∵点P 在直线MN :y =−34x +6上,∴设P (a ,−34a +6)当以点P ,B ,C 三点为顶点的三角形是等腰三角形时,需要分类讨论: ①当PC =PB 时,点P 是线段BC 的中垂线与直线MN 的交点,则P 1(4,3); ②当PC =BC 时,a 2+(−34a +6﹣6)2=64,解得,a =±325,则P 2(−325,545),P 3(325,65); ③当PB =BC 时,(a ﹣8)2+(34a ﹣6+6)2=64,解得,a =25625,则−34a +6=−4225,∴P 4(25625,−4225). 综上所述,符合条件的点P 有:P 1(4,3),P 2(−325,545),P 3(325,65),P 4(25625,−4225).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学历年各地市真题部分省市中考数学试题分类汇编
一元二次方程
7.(2010年安徽省芜湖市)关于x 的方程(a -5)x 2
-4x -1=0有实数根,则
a 满足()
A .a ≥1
B .a >1且a ≠5
C .a ≥1且a ≠5
D .a ≠5
【关键词】方程根的定义、一元二次方程根的判别式、分类讨论
【答案】A
14.(2010年安徽省芜湖市)已知x 1、x 2为方程x 2+3x +1=0的两实根,则x 12
+8x 2+20
=__________.
【关键词】一元二次方程根的定义及一元二次方程根与系数的关系【答案】
1
13.(2010年浙江台州市)某种商品原价是
120
元,经两次降价后的价格是
100元,求平均
每次降价的百分率.设平均每次降价的百分率为
x ,可列方程为
▲.
【关键词】一元二次方程的应用【答案】100
)
1
(1202
x 6.(2010年益阳市)一元二次方程
)0(02
a
c
bx ax
有两个不相等...的实数根,
则ac b
42
满足的条件是A.ac b 42=0 B.ac b 42>0 C.ac b
42
<0
D.ac b
42
≥0
【关键词】根的判别式【答案】B
(2010年四川省眉山)已知方程
2
52
0x
x 的两个解分别为
1x 、2x ,则1212
x x x x 的值为A .7
B .
3C .7
D .3
【关键词】根与系数的关系
(第14题)
6
7891011甲乙
1234
5
6
7
89
10


【答案】D
(2010年四川省眉山)一元二次方程
2
260x
的解为___________________.
【关键词】一元二次方程的解法【答案】3
x
(2010年广东省广州市)已知关于
x 的一元二次方程
)0(012
a bx
ax
有两个相等
的实数根,求
4
)
2(2
2
2
b
a
ab 的值。

【关键词】分式化简,一元二次方程根的判别式【答案】解:∵)0(01
2
a
bx ax
有两个相等的实数根,
∴⊿=2
40b
ac
,即2
40b
a


2
2
2
2
2
2
2
2
2
2
2
44444
)
2(a
ab b
a a
ab
b
a a ab
b
a
ab ∵0a ,∴
4
2
2
2
a
b a
ab 1.(2010年浙江省绍兴市)某公司投资新建了一商场
,共有商铺30间.据预测,当每间的
年租金定为10万元时,可全部租出.每间的年租金每增加
5 000元,少租出商铺1间.该
公司要为租出的商铺每间每年
交各种费用1万元,未租出的商铺每间每年交各种费用 5 000元.
(1)当每间商铺的年租金定为
13万元时,能租出多少间?
(2)当每间商铺的年租金定为多少万元时
,该公司的年收益(收益=租金-各种费用)
为275万元?
【答案】(1)∵
30 000÷5 000=6,

能租出24间.
(2)设每间商铺的年租金增加
x 万元,则
(30-
5
.0x )×(10+x )-(30-
5
.0x )×1-
5
.0x ×0.5=275,
2 x 2
-11x +5=0,
∴x =5或0.5,
∴每间商铺的年租金定为
10.5万元或15万元.
1.(2010年四川省眉山市)已知方程2
520x x 的两个解分别为
1x 、2x ,则1212
x x x x 的值为A .7B .
3C .7 D .3
【关键词】一元二次方程的根与系数的关系
【答案】D
2.(2010年四川省眉山市)一元二次方程
2
260x
的解为___________________.
【关键词】一元二次方程【答案】3
x
(2010年日照市)如果关于x 的一元二次方程
x 2
+px +q =0的两根分别为
x 1=2,x 2=1,那
么p ,q 的值分别是(A )-3,2
(B )3,-2
(C )2,-3 (D )2,3
19.(2010年安徽中考)在国家下身的宏观调控下,某市的商品房成交价由今年
3月分的
14000
元/2
m 下降到5月份的12600
元/2
m
⑴问4、5两月平均每月降价的百分率是多少?(参考数据:95.09
.0)
⑵如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否
会跌破10000元/2
m ?请说明理由。

【关键词】一元二次方程的应用【答案】
(1)解:设4、5月份平均每月降价的百分率为
x ,根据题意得
2
14000(1
)
12600x 化简得2
(1)
0.9
x 解得1
2
0.05, 1.95(x x 不合题意,舍去)
因此4、5月份平均每月降价的百分率为
5%。

(2)解:如果按此降价的百分率继续回落,估计
7月份的商品房成交均价为
2
12600(1)
126000.91134010000
x 由此可知,7月份该市的商品房成交均价不会跌破
10000元/m
2
1. (2010年兰州市)上海世博会的某纪念品原价
168元,连续两次降价
a %后售价为128
元. 下列所列方程中正确的是A .128)
%1(1682
a B .128)
%1(1682
a C .128
)%21(168a D .128
)
%1
(1682
a 【关键词】一元二次方程应用
【答案】B
2. (2010年兰州市)已知关于x 的一元二次方程01
)12
x x
m
(有实数根,则m 的
取值范围是

【关键词】一元二次方程根与系数关系
【答案】4
5m 且m ≠1 1.(2010
福建泉州市惠安县
)方程:0252
x
的解是__________________.
【关键词】一元二次方程的解法【答案】5
,52
1x x 2.(2010
年山东聊城)2009年我市实现国民生产总值为
1376亿元,计划全市国民生产总值
以后三年都以相同的增长率一实现,并且2011年全市国民生产总值要达到
1726亿元.
(1)求全市国民生产总值的年平均增第率(精确到1%)
(2)求2010年至2012年全市三年可实现国民生产总值多少亿元?(精确到
1亿元)
【关键词】一元二次方程的应用
【答案】(1)设全市国民生产总值的年平均增长率为x ,
根据题意,得:1726)1(13762
x ∴25.1)
1
(2
x ,∴1.11
x
,∴%101.01
x ,1.21
x (不合题意,舍去).
答:全市国民生产总值的年平均增长率约为
10%.
(2) 1376(1+10%)+1726+1726(1+10%)=1513.6+1726+1898.6≈5138(亿)
答:2010年至2012年全市三年可实现国民生产总值约为
5138亿元
(2010年安徽省B 卷)5. 关于
x 的方程2
(6)860a x
x 有实数根,则整数a 的最大
值是()
A .6
B .7
C .8
D .9
【关键词】根的判别式一元一次不等式
【答案】C .
(2010年安徽省B 卷)11.若n (
0n )是关于x 的方程2
20x
mx n 的根,则m +n
的值为____________.【关键词】一元二次方程【答案】
2
1、(2010福建德化)已知关于
x 的一元二次方程的一个根是
1,写出一个符合条件的
方程:答案:如12
x

1、(2010福建德化)已知关于
x 的一元二次方程的一个根是
1,写出一个符合条件的
方程:答案:如12
x

1.(2010年台湾省)若a 为方程式(x 17)2=100的一根,b 为方程式(y 4)2=17的一根,
且a 、b 都是正数,则
a b 之值为何?
(A) 5 (B) 6 (C) 83(D) 1017。

【关键词】一元二次方程
【答案】B。

相关文档
最新文档