物理二轮小题狂做专练+十二+机械能守恒定律、功能关系与能量守恒+Word版含解析
2024年高考物理二轮复习专题6:机械能守恒定律功能关系(附答案解析)
B 、由图可知,运动员的重力为400N ,质量为4004010
G m kg kg g ===,运动员的加速度最大为222400400/50/40
m m F mg a m s m s m --===,故B 错误;C 、由图可知,运动员在空中时间为7.5 5.52T s s s =-=,由运动的对称性可知,下落时间为1t s =,运动员上升的最高高度为221
A .前3s 内货物受拉力逐渐增大
B .最后2s 内货物只受重力作用
C .前3s 内与最后2s 内货物的平均速度相同
D .第3s 末至第5s 末的过程中,货物的机械能守恒
【分析】v t -图象的斜率表示加速度,由此求解加速度,从而分析货物的受力情况;根据匀变速直线运动平均速度的规律分析C 项,根据机械能是动能与势能之和分析D 项。
C 、根据匀变速直线运动中某段时间内,平均速度等于中间时刻速度,可知货物前3s 内的平均速度等于最后2s 内的平均速度,故C 正确;
D 、
货物的机械能由动能和重力势能构成,第3s 末至第5s 末的过程中,货物的动能不变,v t -图线和时间轴围成的面积为位移,根据图像可知货物的位移一直增大,货物的重力势能一直增加,则货物的机械能一直增加,故D 错误。
【解答】解:A 、小球下降过程中所受支持力不断减小,与半圆柱体分离后仅受重力作用,而重力不变,所以小球的合力是变化的,加速度是变化的,故A 错误;
B 、若小球从最高点释放,则由机械能守恒定律有212max mgR v =,解得小球落地时的最大速度2max v gR θ,小球下落的竖直距离为
高考物理二轮复习:机械能守恒、功能关系(含答案解析)
机械能守恒、功能关系热点一 机械能守恒定律的应用命题规律:该知识点为每年高考的重点,分析近几年高考试题,命题规律有以下三点: (1)判断某系统在某过程中机械能是否守恒.(2)结合物体的典型运动进行考查,如平抛运动、圆周运动、自由落体运动. (3)在综合问题的某一过程中遵守机械能守恒定律时进行考查.1.(2014·汕头一模)蹦床运动员与床垫接触的过程可简化为下述模型:运动员从高处落到处于自然状态的床垫(A 位置)上,随床垫一同向下做变速运动到达最低点(B 位置),如图所示.有关运动员从A 运动至B 的过程,下列说法正确的是( )A .运动员的机械能守恒B .运动员的速度一直减小C .合力对运动员做负功D .运动员先超重后失重[解析] 由能量守恒定律可知,运动员减少的机械能转化为床垫的弹性势能,故选项A 错误;当F 弹=mg 时,a =0,在此之前,F 弹<mg ,加速度方向向下(失重),物体做加速运动;在此之后,F 弹>mg ,加速度方向向上(超重),物体做减速运动,选项B 、D 错误;从A 位置到B 位置,由动能定理得W 合=-E k0,选项C 正确.[答案] C2.(多选)(2014·长春二模)如图所示,物体A 的质量为M ,圆环B 的质量为m ,通过轻绳连接在一起,跨过光滑的定滑轮,圆环套在光滑的竖直杆上,设杆足够长.开始时连接圆环的绳处于水平,长度为l ,现从静止释放圆环.不计定滑轮和空气的阻力,以下说法正确的是( ) A .当M =2m 时,l 越大,则圆环m 下降的最大高度h 越大 B .当M =2m 时,l 越大,则圆环m 下降的最大高度h 越小C .当M =m 时,且l 确定,则圆环m 下降过程中速度先增大后减小到零D .当M =m 时,且l 确定,则圆环m 下降过程中速度一直增大[解析] 由系统机械能守恒可得mgh =Mg (h 2+l 2-l ),当M =2m 时,h =43l ,所以A 选项正确;当M =m 时,对圆环受力分析如图,可知F T =mgcos θ>Mg ,故圆环在下降过程中系统的重力势能一直在减少,则系统的动能一直在增加,所以D 选项正确. [答案] AD3.如图所示,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )A .2R B.5R3C.4R 3D.2R 3[解析] 如图所示,以A 、B 为系统,以地面为零势能面,设A质量为2m ,B 质量为m ,根据机械能守恒定律有:2mgR =mgR +12×3mv 2,A 落地后B 将以v 做竖直上抛运动,即有12mv 2=mgh ,解得h =13R .则B 上升的高度为R +13R =43R ,故选项C 正确.[答案] C[总结提升] (1)机械能守恒定律的三种表达式 ①守恒观点:E k1+E p1=E k2+E p2 ②转化观点:ΔE p =-ΔE k ③转移观点:ΔE A 增=ΔE B 减(2)机械能守恒定律解题的基本思路 ①选取研究对象——物体系或物体.②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒. ③恰当地选取参考平面,确定研究对象初末态时的机械能. ④灵活选取机械能守恒的表达式列机械能守恒定律方程. ⑤解方程,统一单位,进行运算,求出结果,进行检验. 热点二 功能关系的应用命题规律:该知识点为每年高考的重点和热点,在每年的高考中都会涉及,分析近几年考题,命题规律有如下特点:(1)考查做功与能量变化的对应关系.(2)涉及滑动摩擦力做功与产生内能(热量)的考查.1.(2014·云南第一次检测)起跳摸高是学生经常进行的一项体育活动.一质量为m 的同学弯曲两腿向下蹲,然后用力蹬地起跳,从该同学用力蹬地到刚离开地面的起跳过程中,他的重心上升了h ,离地时他的速度大小为v .下列说法正确的是( ) A .该同学机械能增加了mghB .起跳过程中该同学机械能增量为mgh +12mv 2C .地面的支持力对该同学做功为mgh +12mv 2D .该同学所受的合外力对其做功为12mv 2+mgh[解析] 本题考查的是力做功和能的转化问题,该同学重心升高h ,重力势能增大了mgh ,又知离地时获得动能为12mv 2,则机械能增加了mgh +12mv 2,A 错,B 对;人与地面作用过程中,支持力对人做功为零,C 错;该同学所受合外力做功等于动能增量,则W 合=12mv 2,D 错.[答案] B2.(2014·高考山东卷)2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程.某航天爱好者提出“玉兔”回家的设想:如图,将携带“玉兔”的返回系统由月球表面发射到h 高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球.设“玉兔”质量为m ,月球半径为R ,月面的重力加速度为g 月.以月面为零势能面,“玉兔”在h 高度的引力势能可表示为E p =GMmhR R +h,其中G 为引力常量,M 为月球质量.若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为( )A.mg 月R R +h (h +2R ) B.mg 月RR +h (h +2R ) C.mg 月R R +h ⎝ ⎛⎭⎪⎫h +22R D.mg 月R R +h ⎝ ⎛⎭⎪⎫h +12R [解析] “玉兔”在h 高处做圆周运动时有G Mm R +h 2=mv 2R +h.发射“玉兔”时对“玉兔”做的功W =12mv 2+E p .在月球表面有GMm R 2=mg 月,联立各式解得W =mg 月R R +h ⎝ ⎛⎭⎪⎫h +12R .故选项D 正确,选项A 、B 、C 错误.[答案] D3.如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:(1)物块在车面上滑行的时间t ; (2)物块克服摩擦力做的功; (3)在此过程中转变成的内能.[解题指导] 解答本题时应把握以下两点:(1)正确分析物块和小车的受力情况及运动情况. (2)正确利用功能关系求摩擦力的功和产生的内能.[解析] (1)小车做匀加速运动时的加速度为a 1,物块做匀减速运动时的加速度为a 2,则a 1=μm 2g m 1=103 m/s 2,a 2=μg =5 m/s 2,v 0-a 2t =a 1t ,所以t =v 0a 1+a 2=2 m/s253m/s 2=0.24 s.(2)相对静止时的速度v =a 1t =0.8 m/s , 物块克服摩擦力做的功 W =12m 2(v 20-v 2)=0.336 J. (3)由功能关系可知,系统损失的机械能转化为内能,则 E =12m 2v 20-12(m 1+m 2)v 2=0.24 J. [答案] (1)0.24 s (2)0.336 J (3)0.24 J [总结提升] 解决功能关系问题应注意的三个方面分析清楚是什么力做功,并且清楚该力做正功,还是做负功;根据功能之间的对应关系,判定能的转化形式,确定能量之间的转化情况.也可以根据能量之间的转化情况,确定是什么力做功,尤其是可以方便计算变力做功的多少.功能关系反映了做功和能量转化之间的对应关系,功是能量转化的量度和原因,在不同问题中的具体表现不同.)用动力学和能量观点解决传送带问题命题规律:传送带是最重要的模型之一,近两年高考中虽没有出现,但解决该问题涉及的知识面较广,又能与平抛运动、圆周运动相综合,因此预计在2015年高考中出现的可能性很大,题型为选择题或计算题.[解析] (1)小物块在传送带上做匀加速运动的加速度a =μg =5 m/s 2(1分) 小物块与传送带共速时,所用时间t =v 0a=1 s(2分)运动的位移x =12at 2=2.5 m <(L -x P )=6 m(2分)故小物块与传送带共速后以v 0=5 m/s 的速度匀速运动到Q ,然后冲上光滑斜面到达N 点,由机械能守恒定律得12mv 20=mgy N (2分)解得y N =1.25 m .(1分)(2)小物块在传送带上相对传送带滑动的位移 x 相对=v 0t -x =2.5 m(2分)产生的热量Q =μmgx 相对=12.5 J .(2分)(3)设在坐标为x 1处轻轻将小物块放在传送带上,最终刚好能到达M 点,由能量守恒得 μmg (L -x 1)=mgy M (2分) 代入数据解得x 1=7 m(2分)故小物块在传送带上的位置横坐标范围为 0≤x <7 m .(2分)[答案] (1)1.25 m (2)12.5 J (3)0≤x <7 m [总结提升] (1)传送带模型题的分析流程:(2)皮带问题中的功能关系:传送带做的功W F =Fl 带,功率P =Fv 带;摩擦力做功W 摩=F 摩l ;物体与皮带间摩擦生热Q =F f l 相对.(3)如质量为m 的物体无初速度放在水平传送带上,最终与传送带共速,则在整个加速过程中物体获得的动能E k 及因摩擦而产生的热量Q ,有如下关系:E k =Q =12mv 2传.最新预测1 (多选)(2014·陕西西工大附中适应考)如图所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速率v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对传送带静止这一过程下列说法正确的是( )A .电动机多做的功为12mv 2B .摩擦力对物体做的功为12mv 2C .电动机增加的功率为μmgvD .传送带克服摩擦力做功为12mv 2解析:选BC.由能量守恒知电动机多做的功为物体动能增量和摩擦生热Q ,所以A 项错;根据动能定理,对物体列方程,W f =12mv 2,所以B 项正确;因为电动机增加的功率P =物体动能增量+摩擦生热时间=μmg v 2t +μmg v2tt=μmgv ,C 项正确;因为传送带与物体共速之前,传送带的路程是物体路程的2倍,所以传送带克服摩擦力做功是摩擦力对物体做功的2倍,即mv 2,D 项错误.最新预测2 (2014·德州二模)如图所示,轮半径r =10 cm 的传送带,水平部分AB 的长度L =1.5 m ,与一圆心在O 点、半径R =1 m 的竖直光滑圆轨道的末端相切于A 点,AB 高出水平地面H =1.25 m ,一质量m =0.1 kg 的小滑块(可视为质点),由圆轨道上的P 点从静止释放,OP 与竖直线的夹角θ=37°.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,滑块与传送带间的动摩擦因数μ=0.1,不计空气阻力. (1)求滑块对圆轨道末端的压力;(2)若传送带一直保持静止,求滑块的落地点与B 间的水平距离;(3)若传送带以v 0=0.5 m/s 的速度沿逆时针方向运行(传送带上部分由B 到A 运动),求滑块在传送带上滑行过程中产生的内能.解析:(1)从P 点到圆轨道末端的过程中,由机械能守恒定律得:mgR (1-cos 37°)=12mv 2在轨道末端由牛顿第二定律得:F N -mg =mv 2R由以上两式得F N =1.4 N由牛顿第三定律得,滑块对圆轨道末端的压力大小为1.4 N ,方向竖直向下. (2)若传送带静止,从A 到B 的过程中,由动能定理得:-μmgL =12mv 2B -12mv 2解得:v B =1 m/s滑块从B 点开始做平抛运动滑块的落地点与B 点间的水平距离为:x =v B 2Hg=0.5 m.(3)传送带向左运动和传送带静止时,滑块的受力情况没有变化,滑块从A 到B 的运动情况没有改变.所以滑块和传送带间的相对位移为:Δx =L +v 0v -v Bμg=2 m滑块在传送带上滑行过程中产生的内能为: Q =μmg Δx =0.2 J.答案:(1)1.4 N ,方向竖直向下 (2)0.5 m (3)0.2 J [失分防范] 解决传送带问题应注意以下四点摩擦力的方向及存在阶段的判断;物体能否达到与传送带共速的判断;计算产生的热量时,正确确定物体相对传送带滑动的距离;弄清能量转化关系:传送带消耗的能量等于物体获得的动能与产生的内能之和.一、选择题1.(多选)(2014·吉林质检)如图所示,长为L 的粗糙长木板水平放置,在木板的A 端放置一个质量为m 的小物块.现缓慢地抬高A 端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v ,重力加速度为g .下列判断正确的是( )A .整个过程物块所受的支持力垂直于木板,所以不做功B .物块所受支持力做功为mgL sin αC .发生滑动前静摩擦力逐渐增大D .整个过程木板对物块做的功等于物块机械能的增量解析:选BCD.由题意得,物块滑动前支持力属于沿运动轨迹切线方向的变力,由微元法可知在这个过程中支持力做正功,而且根据动能定理,在缓慢抬高A 端的过程中,W -mgL sin α=0,可知W =mgL sin α,所以A 项错,B 项正确.由平衡条件得在滑动前静摩擦力f 静=mg sin θ,当θ↑时,f 静↑,所以C 项正确.在整个过程中,根据除了重力以外其他力做功等于机械能的变化量可知D 项正确.2.(2014·高考上海卷)静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力.不计空气阻力,在整个上升过程中,物体机械能随时间变化关系是( )解析:选C.以地面为零势能面,以竖直向上为正方向,则对物体,在撤去外力前,有F -mg=ma ,h =12at 2,某一时刻的机械能E =ΔE =F ·h ,解以上各式得E =Fa 2·t 2∝t 2,撤去外力后,物体机械能守恒,故只有C 正确.3.(2014·芜湖一模)如图所示,质量分别为2m 和m 的A 、B 两物体用不可伸长的轻绳绕过轻质定滑轮相连,开始两物体处于同一高度,绳处于绷紧状态,轻绳足够长,不计一切摩擦.现将两物体由静止释放,在A 落地之前的运动中,下列说法中正确的是( ) A .A 物体的机械能增大B .A 、B 组成系统的重力势能增大C .下落时间t 过程中,A 的机械能减少了29mg 2t 2D .下落时间t 时,B 所受拉力的瞬时功率为13mg 2t解析:选C.在A 下落的过程中,拉力对A 做负功,对B 做正功,A 的机械能减小,B 的机械能增大,A 、B 系统的机械能守恒,所以A 、B 错误.释放后,A 、B 物体都做初速度为零的匀加速直线运动.由牛顿第二定律得2mg -mg =3ma ,故加速度a =13g ,t 时间内A 物体下降高度为16gt 2,绳子拉力大小为43mg .拉力对A 物体所做负功为29mg 2t 2,A 物体机械能减少29mg 2t 2,C 对.下落时间t 时,B 物体的运动速度为13gt ,拉力功率大小为49mg 2t ,D 错.4.(2014·山西太原一模)将小球以10 m/s 的初速度从地面竖直向上抛出,取地面为零势能面,小球在上升过程中的动能E k 、重力势能E p 与上升高度h 间的关系分别如图中两直线所示.取g =10 m/s 2,下列说法正确的是( )A .小球的质量为0.2 kgB .小球受到的阻力(不包括重力)大小为0.20 NC .小球动能与重力势能相等时的高度为2013mD .小球上升到2 m 时,动能与重力势能之差为0.5 J 解析:选D.在最高点,E p =mgh 得m =0.1 kg ,A 项错误;由除重力以外其他力做功W 其=ΔE 可知:-fh =E 高-E 低,E 为机械能,解得f =0.25 N ,B 项错误;设小球动能和重力势能相等时的高度为H ,此时有mgH =12mv 2,由动能定理:-fH -mgH =12mv 2-12mv 20得H =209m ,故C项错;当上升h ′=2 m 时,由动能定理,-fh ′-mgh ′=E k2-12mv 20得E k2=2.5 J ,E p2=mgh ′=2 J ,所以动能与重力势能之差为0.5 J ,故D 项正确.5.(多选)(2014·钦州一模)如图所示,物体A 、B 通过细绳及轻质弹簧连接在轻滑轮两侧,物体A 、B 的质量分别为m 、2m .开始时细绳伸直,用手托着物体A 使弹簧处于原长,且A 与地面的距离为h ,物体B 静止在地面上.放手后物体A 下落,与地面即将接触时速度为v ,此时物体B 对地面恰好无压力.若在物体A 下落的过程中,弹簧始终处在弹性限度内,则A 接触地面前的瞬间( )A .物体A 的加速度大小为g ,方向竖直向下B .弹簧的弹性势能等于mgh -12mv 2C .物体B 有向上的加速度D .弹簧对物体A 拉力的瞬时功率大小为2mgv解析:选BD.当A 即将接触地面时,物体B 对地面无压力,对B 受力分析可知,细绳拉力等于轻弹簧弹力F =2mg ,选项C 错误;然后对A 受力分析可得:F -mg =ma ,可得a =g ,方向竖直向上,选项A 错误;A 下落过程中,A 与弹簧整体机械能守恒,可得mgh =E p +12mv 2,弹簧的弹性势能E p =mgh -12mv 2,选项B 正确;拉力的瞬时功率为P =Fv =2mgv ,选项D 正确.6.(2013·高考安徽卷)质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMmr,其中G 为引力常量,M 为地球质量.该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm ⎝ ⎛⎭⎪⎫1R 2-1R 1B .GMm ⎝ ⎛⎭⎪⎫1R 1-1R 2C.GMm 2⎝ ⎛⎭⎪⎫1R 2-1R 1D.GMm 2⎝ ⎛⎭⎪⎫1R 1-1R 2 解析:选C.人造卫星绕地球做圆周运动的向心力由万有引力提供.根据万有引力提供向心力得G Mm r 2=m v 2r①而动能E k =12mv 2②由①②式得E k =GMm2r③ 由题意知,引力势能E p =-GMm r④ 由③④式得卫星的机械能E =E k +E p =-GMm 2r由功能关系知,因摩擦而产生的热量Q =ΔE 减=E 1-E 2=GMm 2⎝ ⎛⎭⎪⎫1R 2-1R 1,故选项C 正确. 7.(2014·漳州一模)质量为m 的带电小球,在充满匀强电场的空间中水平抛出,小球运动时的加速度方向竖直向下,大小为2g3.当小球下降高度为h 时,不计空气阻力,重力加速度为g ,下列说法正确的是( ) A .小球的动能减少了mgh3 B .小球的动能增加了2mgh3C .小球的电势能减少了2mgh3D .小球的电势能增加了mgh解析:选B.小球受的合力F =23mg ,据动能定理,合力做功等于动能的增加,故ΔE k =Fh =23mgh ,选项A 错、B 对.由题意可知,电场力F 电=13mg ,电场力做负功,电势能增加,ΔE p=F 电·h =13mgh ,选项C 、D 均错.8.(多选)(2014·郑州三模)如图所示,竖直平面内有一个半径为R 的半圆形轨道OQP ,其中Q 是半圆形轨道的中点,半圆形轨道与水平轨道OE 在O 点相切,质量为m 的小球沿水平轨道运动,通过O 点进入半圆形轨道,恰好能够通过最高点P ,然后落到水平轨道上,不计一切摩擦阻力,下列说法正确的是( ) A .小球落地时的动能为2.5mgR B .小球落地点离O 点的距离为2RC .小球运动到半圆形轨道最高点P 时,向心力恰好为零D .小球到达Q 点的速度大小为3gR解析:选ABD.小球恰好通过P 点,mg =m v 20R 得v 0=gR .根据动能定理mg ·2R =12mv 2-12mv 20得12mv 2=2.5mgR ,A 正确.由平抛运动知识得t =4Rg,落地点与O 点距离x =v 0t =2R ,B 正确.P 处小球重力提供向心力,C 错误.从Q 到P 由动能定理-mgR =12m (gR )2-12mv 2Q 得v Q=3gR ,D 正确.9.(多选)(2014·海口调研)一物体静止在水平地面上,在竖直向上的拉力F 的作用下开始向上运动,如图甲所示.在物体运动过程中,空气阻力不计,其机械能E 与位移x 的关系图象如图乙所示,其中曲线上点A 处的切线的斜率最大.则( )A .在x 1处物体所受拉力最大B .在x 2处物体的速度最大C .在x 1~x 3过程中,物体的动能先增大后减小D .在0~x 2过程中,物体的加速度先增大后减小解析:选AC.除重力以外的力做的功量度了机械能的变化,故E -x 图象的斜率表示物体所受拉力的大小,在x 1处图象的斜率最大,故物体所受拉力最大,A 正确;在x 2处图象的斜率为零,故物体所受拉力为零,因此在x 2处之前的某一位置拉力就已经等于重力,速度达到最大,B 错误;在x 1~x 3的过程中,拉力先大于重力后小于重力最后为零,因此物体先加速再减速,物体的动能先增大后减小,C 正确;0~x 2的过程中拉力先大于重力,并且先增大后减小,最后减小到0,根据牛顿第二定律得物体的加速度先增大后减小再反向增大,D 错误.二、计算题10.(2014·云南部分名校统考)如图所示,与水平面夹角为θ=30°的倾斜传送带始终绷紧,传送带下端A 点与上端B 点间的距离为L =4 m ,传送带以恒定的速率v =2 m/s 向上运动.现将一质量为1 kg 的物体无初速度地放于A 处,已知物体与传送带间的动摩擦因数μ=32,取g =10 m/s 2,求:(1)物体从A 运动到B 共需多少时间? (2)电动机因传送该物体多消耗的电能.解析:(1)物体无初速度放在A 处后,因mg sin θ<μmg cos θ,则物体斜向上做匀加速直线运动.加速度a =μmg cos θ-mg sin θm=2.5 m/s 2物体达到与传送带同速所需的时间t 1=va=0.8 st 1时间内物体的位移L 1=v2t 1=0.8 m之后物体以速度v 做匀速运动,运动的时间t 2=L -L 1v=1.6 s物体运动的总时间t =t 1+t 2=2.4 s. (2)前0.8 s 内物体相对传送带的位移为 ΔL =vt 1-L 1=0.8 m因摩擦而产生的内能E 内=μmg cos θ·ΔL =6 JE 总=E k +E p +E 内=12mv 2+mgL sin θ+E 内=28 J.答案:(1)2.4 s (2)28 J11.(2014·济南一模)如图所示,在光滑水平地面上放置质量M =2 kg的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m =1 kg 的小滑块自A 点沿弧面由静止滑下,A 点距离长木板上表面高度h =0.6 m .滑块在木板上滑行t =1 s 后,和木板以共同速度v =1 m/s 匀速运动,取g =10 m/s 2.求:(1)滑块与木板间的摩擦力大小;(2)滑块沿弧面下滑过程中克服摩擦力做的功;(3)滑块相对木板滑行的距离及在木板上产生的热量. 解析:(1)对木板F f =Ma 1 由运动学公式得v =a 1t解得a 1=1 m/s 2,F f =2 N. (2)对滑块有-F f =ma 2设滑块滑上木板时的初速度为v 0,由公式v -v 0=a 2t解得a 2=-2 m/s 2,v 0=3 m/s滑块沿弧面下滑的过程中,由动能定理得mgh -WF f =12mv 20可得滑块克服摩擦力做的功为WF f =mgh -12mv 20=1.5 J.(3)t =1 s 内木板的位移x 1=12a 1t 2此过程中滑块的位移x 2=v 0t +12a 2t 2故滑块相对木板滑行距离L =x 2-x 1=1.5 m 产生的热量Q =F f ·L =3 J.答案:(1)2 N (2)1.5 J (3)1.5 m 3 J12.(2014·潍坊模拟)如图所示,水平轨道MN 与竖直光滑半圆轨道相切于N 点,轻弹簧左端固定在轨道的M 点,自然状态下右端位于P 点,将一质量为1 kg 的小物块靠在弹簧右端并压缩至O 点,此时弹簧储有弹性势能E p =18.5 J ,现将小物块无初速释放,已知OP =0.25 m ,PN =2.75 m ,小物块与水平轨道间的动摩擦因数μ=0.2,圆轨道半径R =0.4 m ,g 取10 m/s 2.求:(1)物块从P 点运动到N 点的时间;(2)分析说明物块能否通过半圆轨道最高点B .若能,求出物块在水平轨道上的落点到N 点的距离.若不能,简要说明物块的运动情况.解析:(1)从开始释放到小物块运动至P ,由能量守恒定律,E p -μmgx OP =12mv 2P解得:v P =6 m/s设物块由P 至N 用时为t ,由匀变速直线运动规律:x PN =v P t -12at 2μmg =ma解得:t =0.5 s 或t =5.5 s(舍去). (2)物块由P 至N ,由动能定理得:-μmgx PN =12mv 2N -12mv 2P设物块能够通过圆轨道最高点,在最高点B 物块速度大小为v B ,由机械能守恒定律得: 12mv 2N =2mgR +12mv 2B 解得:v B =3 m/s物块通过最高点的最小速度为v minmg =m v 2minR,v min =2 m/s因v B >v min ,故物块能通过B 点 通过B 点后做平抛运动:x =v B t2R =12gt 2解得:x =1.2 m.答案:(1)0.5 s (2)能通过B 点 1.2 m 第3讲 动力学和功能观点的应用热点一 用动力学观点解决多过程问题命题规律:力学中的多过程问题涉及的运动形式主要有匀变速直线运动、平抛运动、圆周运动,分析运动过程的关键是分析物体受力,然后利用牛顿运动定律分析物体的运动规律,高考对此类题的考查主要是牛顿运动定律和运动学公式的应用,题目难度不大,以中档题为主.1.(2014·武汉模拟)如图甲所示,质量M =1 kg 的薄木板静止在水平面上,质量m =1 kg 的铁块(可视为质点)静止在木板的右端.设最大静摩擦力等于滑动摩擦力,已知木板与水平面间的动摩擦因数μ1=0.05,铁块与木板之间的动摩擦因数μ2=0.2,重力加速度g =10 m/s 2.现给铁块施加一个水平向左的力F ,(1)若力F 恒为4 N ,经过时间1 s ,铁块运动到木板的左端,求木板的长度L ;(2)若力F 从零开始逐渐增加,且铁块始终在木板上没有掉下来.试通过分析与计算,在图乙中作出铁块受到的摩擦力F f 随力F 大小变化的图象. [解析] (1)对铁块,由牛顿第二定律F -μ2mg =ma 1 对木板,由牛顿第二定律μ2mg -μ1(M +m )g =Ma 2设木板的长度为L ,经时间t 铁块运动到木板的左端,则x 铁=12a 1t 2x 木=12a 2t 2又x 铁-x 木=L解得L =0.5 m.(2)①当F ≤μ1(m +M )g =1 N 时,系统没有被拉动,静摩擦力与外力成正比并保持大小相等,即F f =F②当F >μ1(m +M )g =1 N 时,若M 、m 相对静止,铁块与木板有相同的加速度a ,则 F -μ1(m +M )g =(m +M )a F -F f =ma解得F =2F f -1 N此时F f ≤μ2mg =2 N ,即F ≤3 N所以当1 N <F ≤3 N 时,F f =F2+0.5 N③当F >3 N 时,M 、m 相对滑动,此时铁块受到的摩擦力为F f =μ2mg =2 N F f -F 图象如图所示.[答案] (1)0.5 m (2)见解析图2.(2014·合肥高三质检)足够长光滑斜面BC 的倾角α=53°,小物块与水平面间的动摩擦因数μ=0.5,水平面与斜面之间在B 点有一小段弧形连接,一质量m =2 kg 的小物块静止于A 点.现用与水平方向成α=53°角的恒力F 拉小物块,如图所示,小物块经t 1=4 s 到达B 点,并迅速撤去拉力F ,A 、B 两点相距x 1=4 m(已知sin 53°=0.8,cos 53°=0.6,g 取10 m/s 2).求: (1)恒力F 的大小;(2)小物块从B 点沿斜面向上运动的最大距离x 2; (3)小物块停止运动时到B 点的距离x 3.[解析] (1)AB 段加速度a 1=2x 1t 21=0.5 m/s 2根据牛顿第二定律,有F cos α-μ(mg -F sin α)=ma 1解得:F =ma 1+μmgcos α+μsin α=2×0.5+0.5×2×100.6+0.5×0.8N =11 N.(2)到达B 点时,小物块的速度v =a 1t 1=2 m/s在BC 段的加速度:a 2=g sin 53°=8 m/s 2由v 2=2a 2x 2得:x 2=v 22a 2=222×8m =0.25 m.(3)小物块从B 向A 运动过程中,由μmg =ma 3,解得:a 3=μg =5 m/s 2滑行的位移x 3=v 22a 3=222×5m =0.4 m ,小物块停止运动时,离B 点的距离为0.4 m.[答案] (1)11 N (2)0.25 m (3)0.4 m 热点二 用功能观点解决多过程问题 命题规律:对于物体在变力作用下的多过程运动问题,不能利用牛顿运动定律和运动学公式求解,可利用动能定理进行求解.高考对此问题的考查主要涉及的运动形式有:变力作用下的直线运动、曲线运动,题目难度中等.1.(2014·温州五校联考)如图所示,在竖直平面内,粗糙的斜面轨道AB 的下端与光滑的圆弧轨道BCD 相切于B ,C 是最低点,圆心角∠BOC =37°,D 与圆心O 等高,圆弧轨道半径R =1.0 m ,现有一个质量为m =0.2 kg 可视为质点的小物体,从D 点的正上方E 点处自由下落,DE 距离h =1.6 m ,小物体与斜面AB 之间的动摩擦因数μ=0.5.取sin37°=0.6,cos 37°=0.8,g =10 m/s 2,求:(1)小物体第一次通过C 点时轨道对小物体的支持力F N 的大小; (2)要使小物体不从斜面顶端飞出,斜面的长度L AB 至少要多长; (3)若斜面已经满足(2)要求,小物体从E 点开始下落,直至最后在光滑圆弧轨道做周期性运动,在此过程中系统因摩擦所产生的热量Q 的大小. [解析] (1)小物体从E 到C ,由能量守恒得:mg (h +R )=12mv 2C ,①在C 点,由牛顿第二定律得:F N -mg =m v 2CR,②联立①②解得F N =12.4 N.(2)从E →D →C →B →A 过程,由动能定理得: W G -W f =0,③W G =mg [(h +R cos 37°)-L AB sin 37°],④ W f =μmg cos 37°L AB .⑤ 联立③④⑤解得L AB =2.4 m.(3)因为mg sin 37°>μmg cos 37°(或μ<tan 37°),所以,小物体不会停在斜面上,小物体最后以C 为中心,B 为一侧最高点沿圆弧轨道做往返运动,从E 点开始直至运动稳定,系统因摩擦所产生的热量, Q =ΔE p ,⑥ΔE p =mg (h +R cos 37°),⑦ 联立⑥⑦解得Q =4.8 J.[答案] (1)12.4 N (2)2.4 m (3)4.8 J2.如图甲所示,斜面AB 粗糙,倾角为θ=30°,其底端A 处有一垂直斜面的挡板.一质量为m =2 kg 的滑块从B 点处由静止释放,滑到底端A 处与挡板碰撞并反弹到最高点C 处,已知滑块与挡板碰撞时能量损失了19%,滑块的v -t 图象如图乙所示,重力加速度g =10 m/s 2. (1)求v -t 图象中的v 、t 的值;(2)求滑块与斜面间的动摩擦因数μ;(3)若滑块与挡板碰撞无能量损失,求滑块整个运动过程中通过的总路程s .[解析] (1)由v -t 图象知滑块反弹速率为v 2=9 m/s ,即反弹时能量为E k2=12mv 22=81 J ,因碰撞时能量损失19%,即滑块下滑到A 处时能量为E k1=E k21-η=100 J而E k1=12mv 2,代入数据得v =10 m/s。
高考物理二轮小题狂做专练十二机械能守恒定律、功能关系与能量守恒Word版含解析
高考物理二轮小题狂做专练十二机械能守恒定律、功能关系与能量守恒Word版含解析A.火箭在匀速下降过程中机械能守恒B.火箭在减速下降过程中携带的检测仪器处于失重状态C.火箭在减速下降过程中合力做功,等于火箭机械能的变化D.火箭着地时,火箭对地的作用力大于自身的重力2.【安徽省2019届高三10月份联考】质量为m的子弹,以水平速度射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是()A.子弹动能的减少量与木块动能增加量相等B.阻力对子弹做的功与子动能的变化量相等C.子弹克服阻力做的功与子弹对木块做的功相等D.子弹克服阻力做的功等于系统克服摩擦所产生的内能3.【安徽省阜阳三中2018-2019学年高三考试】如图所示,重10 N的滑块在倾角为30°的斜面上,从a点由静止下滑,到b点接触到一个轻弹簧.滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点,已知ab=0.8 m,bc =0.4 m,那么在整个过程中()A.滑块滑到b点时动能最大B.滑块动能的最大值是6 JC.从c到b弹簧的弹力对滑块做的功是6 JD.滑块整个过程机械能守恒4.【江苏省姜堰中学2017-2018学年度高考模拟】如图所示,半径为R的金属环竖直放置,环上套有一质量为m的小球,小球开始时静止于最低点。
现给小球一冲击,使它以初速度开始运动。
小球运动到环的最高点时与环恰无作用力,小球从最低点运动到最高点的过程中()A.小球机械能守恒B.小球在最低点时对金属环的压力是6mgC.小球在最高点时,速度为0D.小球机械能不守恒,且克服摩擦力所做的功是0.5mgR。
5.【全国市级联考2017-2018学年高考调研】如图所示,倾角为、长度为的光滑固定斜面,其底端与长木板上表面等高,原来静止在光滑水平地面上,左端与斜面接触但不粘连,斜面底端与的上表面接触处圆滑。
一可视为质点的小滑块从斜面顶端处由静止开始下滑,最终刚好未从上滑下。
高中物理第十二章 电能 能量守恒定律精选测试卷复习练习(Word版 含答案)
高中物理第十二章 电能 能量守恒定律精选测试卷复习练习(Word 版 含答案)一、第十二章 电能 能量守恒定律实验题易错题培优(难)1.某实验小组要测量干电池组(两节)的电动势和内阻,实验室有下列器材:A 灵敏电流计G (量程为0~10mA ,内阻约为100Ω)B 电压表V (量程为0~3V ,内阻约为10kΩ)C .电阻箱R 1(0~999.9Ω)D .滑动变阻器R 2(0~10Ω,额定电流为1A)E.旧电池2节F.开关、导线若干(1)由于灵敏电流计的量程太小,需扩大灵敏电流计的量程.测量灵敏电流计内阻的电路如图甲所示,调节R 2和电阻箱,使得电压表示数为2.00V ,灵敏电流计示数为4.00mA ,此时电阻箱接入电路的电阻为398.3Ω,则灵敏电流计内阻为___________Ω(保留一位小数).(2)为将灵敏电流计的量程扩大为100mA ,该实验小组将电阻箱与灵敏电流计并联,则应将电阻箱R 1的阻值调为___________Ω(保留三位有效数字).(3)把扩大量程后的电流表接入如图乙所示的电路,根据测得的数据作出G U I - (U 为电压表的示数,G I 为灵敏电流计的示数)图象如图丙所示则该干电池组的电动势E =___________V ,内阻r =___________Ω(保留三位有效数字)【答案】101.7 11.3 2.910.01± 9.10.2±【解析】【分析】(1)根据题意应用欧姆定律可以求出电流表内阻.(2)把灵敏电流计改装成电流表需要并联分流电阻,应用并联电路特点与欧姆定律求出并联电阻阻值.(3)由闭合电路欧姆定律确定出G U I -的关系式,结合图象求得E ,r .【详解】(1)[1]灵敏电流计内阻:132.00398.3101.74.0010g U R R I -=-=-=⨯Ω(2)[2]灵敏电流计满偏电流为10mA ,把它改装成100mA 的电流表,电流表量程扩大了10倍,并联电阻分流为90mA ,为电流计的9倍,由并联电路特点可知,并联电阻阻值:101.711.399g R R ===并Ω (3)[3][4]电流表示数:10G I I =,由图示电路图可知,电源电动势:10G E U Ir U I r =+=+整理得:()10G U E r I =-由图示G U I -图象可知,电源电动势:E =2.91V ,图象斜率:k =10r =32.91 2.00911010G U I -∆-==∆⨯ 电源内阻:r =9.1Ω。
小题狂练高中物理必修2功和能《功能关系、能量守恒》典型题精排版(含答案)
《功能关系、能量守恒》典型题(精排版)精品推荐1.在跳高运动的发展史上,其中有以下四种不同的过杆姿势,如图所示,则在跳高运动员消耗相同能量的条件下,能越过最高横杆的过杆姿势为( )2.如图所示,一质量均匀的不可伸长的绳索重为G,A、B两端固定在天花板上,今在最低点C施加一竖直向下的力将绳索拉至D点,在此过程中绳索AB的重心位置将( )A.逐渐升高 B.逐渐降低C.先降低后升高D.始终不变3.体育比赛中的“3 m跳板跳水”的运动过程可简化为:质量为m的运动员走上跳板,跳板被压缩到最低点C,跳板又将运动员竖直向上弹到最高点A,然后运动员做自由落体运动,竖直落入水中,跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,他在水中减速下降高度为h,而后逐渐浮出水面,则下列说法正确的是(g为当地的重力加速度)( )A.运动员从C点到A点运动过程中处于超重状态B.运动员从C点开始到落水之前机械能守恒C.运动员从入水至速度减为零的过程中机械能减少了(F-mg)hD.运动员从入水至速度减为零的过程中机械能减少了Fh4.如图所示,一轻弹簧左端与物体A相连,右端与物体B相连.开始时,A、B均在粗糙水平面上不动,弹簧处于原长状态.在物体B上作用一水平向右的恒力F,使物体A、B向右运动.在此过程中,下列说法中正确的为( ) A.合外力对物体A所做的功等于物体A的动能增量B.外力F做的功与摩擦力对物体B做的功之和等于物体B的动能增量C.外力F做的功及摩擦力对物体A和B做功的代数和等于物体A 和B的动能增量及弹簧弹性势能增量之和D.外力F做的功加上摩擦力对物体B做的功等于物体B的动能增量与弹簧弹性势能增量之和5.如图所示,把小车放在光滑的水平桌面上,用轻绳跨过定滑轮使之与盛有砂子的小桶相连,已知小车的质量为M,小桶与砂子的总质量为m,把小车从静止状态释放后,在小桶下落竖直高度为h的过程中,若不计滑轮及空气的阻力,下列说法中正确的是( )A.绳拉车的力始终为mgB.当M远远大于m时,才可以认为绳拉车的力为mgC.小车获得的动能为mghD.小车获得的动能为Mmgh/(M+m)6.如图所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板(A位置)上,随跳板一同向下运动到最低点(B位置).对于运动员从开始与跳板接触到运动至最低点的过程,下列说法中正确的是( ) A.运动员到达最低点时,其所受外力的合力为零B.在这个过程中,运动员的动能一直在减小C.在这个过程中,跳板的弹性势能一直在增加D.在这个过程中,运动员所受重力对他做的功小于跳板的作用力对他做的功7.如图所示甲、乙两种粗糙面不同的传送带.倾斜于水平地面放置.以同样恒定速率v向上运动.现将一质量为m的小物体(视为质点)轻轻放在A处,小物体在甲传送带上到达B处时恰好达到传送带的速率v;在乙传送带上到达离B竖直高度为h的C处时达到传送带的速率v.已知B处离地面高度为H,则在物体从A到B的运动过程中( )A.两种传送带对小物体做功相等B.将小物体传送到B处,两种传送带消耗的电能相等C.两种传送带与小物体之间的动摩擦因数不同D.将小物体传送到B处,两种系统产生的热量相等8.如图所示有三个斜面1、2、3,斜面1与2底边相同,斜面2和3高度相同,同一物体与三个斜面的动摩擦因数相同,当他们分别沿三个斜面从顶端由静止下滑到底端时,下列说法正确的是( ) A.沿2、3斜面运动的时间t2>t3B.沿1、2斜面运动过程中克服摩擦力做功W1<W2C.沿1、3斜面运动过程中物体损失的机械能ΔE1>ΔE3D .物块在三种情况下到达底端的动能E k1>E k2>E k39.如图所示,一个小环沿竖直放置的光滑圆环轨道做圆周运动.小环从最高点A (初速度为零)滑到最低点B 的过程中,小环线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )10.当今流行一种“蹦极”运动,如图所示,距河面45 m 高的桥上A 点系弹性绳,另一端系住重50 kg 男孩的脚,弹性绳原长AB 为15 m ,设男孩从桥面自由下坠直至紧靠水面的C 点,末速度为0.假定整个过程中,弹性绳遵循胡克定律,绳的质量、空气阻力忽略不计,男孩视为质点.弹性势能可用公式:E p =kx 22(k 为弹性绳的劲度系数,x 为弹性绳的形变长度)计算.(g =10 m/s 2)则:(1)男孩在最低点时,绳具有的弹性势能为多大?绳的劲度系数又为多大?(2)在整个运动过程中,男孩的最大速度又为多大?11.如图所示,质量m=1 kg的物块从h=0.8 m高处沿光滑斜面滑下,到达底部时通过光滑圆弧BC滑至水平传送带CD上,CD部分长L=2 m.传送带在皮带轮带动下以v=4 m/s的速度逆时针传动,物块与传送带间动摩擦因数μ=0.3.求:(1)物块滑到C、D两点时的速度大小各为多少?(2)物块从C滑到D的过程中,皮带对物块做多少功?(3)物块从C滑到D的过程中,因摩擦产生的热量是多少?参考答案1解析:运动员经过助跑后,跳起过杆时,其重心升高,在四种过杆姿势中背越式相对于杆的重心位置最低,所以在消耗相同能量的条件下,该种过杆姿势能越过更高的横杆.选项D正确.答案:D2解析:由题意知外力对绳索做正功,机械能增加,重心升高,故选A.答案:A3解析:运动员从C点到A点的运动过程,跳板对运动员的弹力先是大于重力,后小于重力,最后弹力为零,故运动员先处于超重状态,后处于失重状态,A错误;运动员从C点开始到落水之前,除重力做功外,跳板弹力对运动员做功,运动员机械能增加,B错误;运动员从入水至速度减为零的过程中,除重力(或弹力)以外的力对运动员所做的功等于其机械能的变化量,故C错误,D正确.答案:D4解析:由动能定理可知,合外力对物体A所做的功等于物体A 的动能增量,合外力对B做的功等于物体B动能的增量,而合外力对B 所做的功等于外力F做的功、摩擦力对B做的功和弹簧弹力对B做的功之和,选项A正确,B错误;物体B克服弹簧弹力做的功应大于弹簧的弹性势能的增加量,所以外力F做的功及摩擦力对物体A和B做功的代数和应大于物体B的动能增量及弹簧弹性势能增量之和,选项D 错误;取整体为研究对象,由功能关系可以判断,外力F做的功及摩擦力对物体A和B做功的代数和等于系统的机械能的增量,选项C正确.答案:AC5解析:整体在小桶和砂子重力mg 作用下做加速运动,只有在M 远远大于m 时,才可以认为绳拉车的力为mg ,选项A 错误,B 正确;由能的转化与守恒定律可知,小桶和砂子减少的重力势能mgh 转化为整体的动能,所以小车获得的动能为Mmgh /(M +m ),选项C 错误,D 正确.答案:BD6解析:A 位置运动员只受重力,向下运动所受到跳板给他的支持力越来越大,运动员先加速后减速;动能先增大后减小,B 位置速度为0,但向上的合力最大,由动能定理可知,D 对.答案:CD7解析:A →B ,由动能定理,W -MgH =12mv 2,A 对;动摩擦因数μ明显不同;A →B 摩擦力做功一样,但甲一直产生热量,而乙中只有AC 段产生热量,所以产生热量不同,再由能量守恒则消耗的电能不等.答案:AC8解析:设2、3高度为h ,倾角为θ,a =g sinθ-μg cos θ,所以hsin θ=12at 2 t = 2h a sin θ= 2hgθ-μcos θsin θ,所以t 2<t 3; 1、2底边为l ,则W =μmg cos θ·lcos θ=μmgl ,所以W 1=W 2;W =μmg cos θ·h sin θ=μmgh cot θ,所以W 2<W 3,ΔE 1<ΔE 3,D 对.答案:D9解析:考虑环下降过程中受到的各个力的做功情况,重力做正功,圆环对小环的支持力始终与小环运动方向垂直,不做功,由动能定理ΔE k =12mv 2=mgh ,v 2与h 的关系为线性关系,又因h =0时,v 也为零.所以图象过原点,只有B 符合条件,选B.答案:B10解析:男孩从桥面自由下落到紧靠水面的C 点的过程中,重力势能的减少量对应弹性势能的增加量,男孩速度最大时,应为加速度为零的位置.(1)由功能转化关系可知,mgh =E p ,E p =50×10×45 J=2.25×104 J又E p =12kx 2,x =45 m -15 m =30 m 所以k =2E p x 2=2×2.25×104302N/m =50 N/m. (2)男孩加速度为零时,mg =kx ′,得x ′=10 m ,由能的转化和守恒定律得:mg (h AB +x ′)=12kx ′2+12mv 2m ,所以v m =20 m/s. 答案:(1)2.25×104 J 50 N/m (2)20 m/s11解析:(1)由机械能守恒定律mgh =12mv 21 解得物块到达C 点的速度v 1=2gh =4 m/s物块在皮带上滑动的加速度a =μg =3 m/s 2由运动学公式-2aL =v 22-v 21解得物块到达D 点的速度v 2=v 21-2aL =2 m/s(2)皮带对物块做功W =-μmgL =-6 J(3)物块从C 滑到D 的时间t 1=v 2-v 1-a =23s 物块与皮带相对滑动距离s 1=vt 1+L物块在皮带上滑动的过程中产生的热量 Q =μmgs 1得Q =14 J答案:(1)4 m/s 2 m/s (2)-6 J (3)14 J。
推荐2019高考物理二轮小题狂做专练十二机械能守恒定律、功能关系与能量守恒含解析
1.【浙江省2017普通高校招生选考科目考试物理试题】火箭发射回收是航天技术的一大进步。
如图所示,火箭在返回地面前的某段运动,可看成先匀速后减速的直线运动,最后撞落在地面上。
不计火箭质量的变化,则()A.火箭在匀速下降过程中机械能守恒B.火箭在减速下降过程中携带的检测仪器处于失重状态C.火箭在减速下降过程中合力做功,等于火箭机械能的变化D.火箭着地时,火箭对地的作用力大于自身的重力2.【安徽省2019届高三10月份联考】质量为m的子弹,以水平速度射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是()A.子弹动能的减少量与木块动能增加量相等B.阻力对子弹做的功与子动能的变化量相等C.子弹克服阻力做的功与子弹对木块做的功相等D.子弹克服阻力做的功等于系统克服摩擦所产生的内能3.【安徽省阜阳三中2018-2019学年高三考试】如图所示,重10 N的滑块在倾角为30°的斜面上,从a点由静止下滑,到b点接触到一个轻弹簧.滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点,已知ab=0.8 m,bc=0.4 m,那么在整个过程中()一、单选题十二机械能守恒定律、功能关系与能量A.滑块滑到b点时动能最大B.滑块动能的最大值是6 JC.从c到b弹簧的弹力对滑块做的功是6 JD.滑块整个过程机械能守恒4.【江苏省姜堰中学2017-2018学年度高考模拟】如图所示,半径为R的金属环竖直放置,环上套有一质量为m的小球,小球开始时静止于最低点。
现给小球一冲击,使它以初速度v0=√6Rg开始运动。
小球运动到环的最高点时与环恰无作用力,小球从最低点运动到最高点的过程中()A.小球机械能守恒B.小球在最低点时对金属环的压力是6mgC.小球在最高点时,速度为0D.小球机械能不守恒,且克服摩擦力所做的功是0.5mgR。
5.【全国市级联考2017-2018学年高考调研】如图所示,倾角为α=37o、长度为x=3m的光滑固定斜面,其底端与长木板B上表面等高,原来B静止在光滑水平地面上,左端与斜面接触但不粘连,斜面底端与B的上表面接触处圆滑。
新课标2020版高考物理二轮复习专题二第2讲机械能守恒定律功能关系精练含解
机械能守恒定律 功能关系(45分钟) [刷基础]1.(2019·四川内江第一次模拟)如图所示,弹性轻绳的一端套在手指上,另一端与弹力球连接,用手将弹力球以某一竖直向下的初速度向下抛出,抛出后手保持不动.从球抛出瞬间至球第一次到达最低点的过程中(弹性轻绳始终在弹性限度内,空气阻力忽略不计),下列说法正确的是( )A .绳伸直以后,绳的拉力始终做负功,球的动能一直减小B .该过程中,手受到的绳的拉力先增大后减小C .该过程中,重力对球做的功大于球克服绳的拉力做的功D .最低点时,球、绳和地球组成的系统势能最大解析:绳伸直以后,绳的拉力始终做负功,但重力大于拉力时球的速度增大,故球的动能增大,当重力与拉力相等时球的速度最大,动能最大;继续向下,当重力小于拉力时球的速度减小,则球的动能减小,A 错误.该过程中,手受到绳的拉力一直增大,B 错误.该过程中重力对球做的功小于球克服绳的拉力做的功,C 错误.在最低点时,小球的动能为零,球、绳和地球组成的系统势能最大,D 正确.答案:D2.(2019·河南周口高三年级上学期期末调研)如图所示,一足够长的粗糙斜面固定在水平地面上,一小物块从斜面底端以初速度v 0沿斜面上滑至最高点的过程中损失的机械能为E .若小物块以2v 0的初速度沿斜面上滑,则滑至最高点的过程中损失的机械能为( )A .E B.2E C .2ED .4E解析:对小物块上滑过程受力分析可知,重力和摩擦力做负功,由动能定理可知-F 合s=0-12mv 20,则初速度由v 0变为2v 0时,可知滑行位移为s ′=4s ;而由功能关系可知除重力做功以外的摩擦力做负功使得机械能减小,即F f ·s =E ,故位移变为4倍后,摩擦力不变,可得损失的机械能为原来的4倍,E ′=4E ,故选项D 正确.答案:D3.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功 1 900 J ,他克服阻力做功100 J .韩晓鹏在此过程中( )A .动能增加了1 900 JB .动能增加了2 000 JC .重力势能减小了1 900 JD .重力势能减小了2 000 J解析:运动员在运动过程中受到重力和阻力的作用,合力做的功等于动能的增加量,故动能增加了ΔE k =1 900 J -100 J =1 800 J ,选项A 、B 错误;重力做多少正功,重力势能就减小多少,故重力势能减小了1 900 J ,选项C 正确,D 错误.答案:C4.(2019·湖北八校高三联考)如图所示,倾角为α=37°、长度为x =3 m 的光滑固定斜面,其底端与长木板B 上表面等高,原来B 静止在光滑水平地面上,左端与斜面接触但不粘连,斜面底端与B 的上表面接触处圆滑.一可视为质点的小滑块A 从斜面顶端处由静止开始下滑,最终A 刚好未从B 上滑下.已知A 、B 的质量相等,A 与B 上表面间的动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2,则下列说法正确的是( )A .A 在斜面上运动的时间为 3 sB .A 在B 上滑动过程中,系统动量和机械能均守恒C .A 的最终速度为 3 m/sD .长木板B 的长度为1 m解析:斜面长x =3 m ,小滑块下滑的加速度a =g sin 37°,下滑时间为t =2xg sin 37°=2×310×0.6s =1 s ,A 错误;A 在B 上运动过程中,存在摩擦力,故机械能不守恒,但A和B 组成的系统动量守恒,B 错误;下滑到底端时的速度为v 0=2ax =2×6×3 m/s =6 m/s ,在水平面上运动过程中,A 和B 系统动量守恒,故mv 0=2mv ,解得两者最终速度为v =3 m/s ,C 正确;最终A 刚好未从B 上滑下,说明A 滑到B 最右端时,两者速度相等,设木板B 的长度为L ,则根据能量守恒定律可得μmgL =12mv 20-12·2mv 2,解得L =1.8 m ,D 错误.答案:C5.(多选)(2019·山东潍坊高三期末)将质量为m 的小球在距地面高度为h 处抛出,抛出时的速度大小为v 0,小球落到地面时的速度大小为2v 0,若小球受到的空气阻力不能忽略,则对于小球下落的整个过程,下面说法中正确的是( )A .小球克服空气阻力做的功小于mghB .重力对小球做的功等于mghC .合外力对小球做的功小于mv 20 D .重力势能的减少量等于动能的增加量解析:从抛出到落地过程中动能变大了,重力做的功大于克服空气阻力所做的功,而这个过程中重力对小球做的功为mgh ,所以选项A 、B 正确;从抛出到落地过程中,合外力做的功等于小球动能的变化量,W 合=ΔE k =12m (2v 0)2-12mv 20=32mv 20>mv 20,选项C 错误;因为小球在下落的过程中克服空气阻力做功,所以重力势能的减少量大于动能的增加量,选项D 错误.答案:AB6.(多选)(2018·高考江苏卷)如图所示,轻质弹簧一端固定,另一端连接一小物块,O 点为弹簧在原长时物块的位置.物块由A 点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B 点.在从A 到B 的过程中,物块( )A .加速度先减小后增大B .经过O 点时的速度最大C .所受弹簧弹力始终做正功D .所受弹簧弹力做的功等于克服摩擦力做的功解析:物体从A 点到O 点过程,刚开始弹簧弹力大于摩擦力,弹力大于摩擦力过程,合力向右,加速度也向右,由于弹力减小,摩擦力不变,小球所受合力减小,加速度减小,弹力等于摩擦力时速度最大,此位置在A 点与O 点之间;弹力小于摩擦力时,合力方向与运动方向相反,弹力减小,摩擦力大小不变,物体所受合力增大,物体的加速度随弹簧形变量的减小而增加,物体做减速运动;从O 点到B 点的过程弹力增大,合力向左,加速度继续增大,选项A 正确,选项B 错误.从A 点到O 点过程,弹簧由压缩恢复原长弹力做正功,从O 点到B 点的过程,弹簧伸长,弹力做负功,故选项C 错误.从A 到B 的过程中根据动能定理知弹簧弹力做的功等于物体克服摩擦力做的功,故选项D 正确.答案:AD7.(多选)如图所示,物体A 、B 通过细绳及轻质弹簧连接在轻滑轮两侧,物体B 的质量为2m ,放置在倾角为30°的光滑斜面上,物体A 的质量为m ,用手托着物体A 使弹簧处于原长,细绳伸直,A 与地面的距离为h ,物体B 静止在斜面上挡板P 处.放手后物体A 下落,与地面即将接触时速度大小为v ,此时物体B 对挡板恰好无压力,则下列说法正确的是( )A .弹簧的劲度系数为mghB .此时弹簧的弹性势能等于mgh -12mv 2C .此时物体A 的加速度大小为g ,方向竖直向上D .此后物体B 可能离开挡板沿斜面向上运动解析:物体A 即将落地时,弹簧伸长量为h ,物体B 受力平衡,所以kh =2mg sin θ,所以k =mg h ,选项A 对;物体A 落地前,系统机械能守恒,所以弹性势能等于mgh -12mv 2,选项B 对;物体A 即将落地时,对A 应用牛顿第二定律得mg -kh =ma ,所以a =0,选项C 错;物体A 落地后,弹簧不再伸长,故物体B 不可能离开挡板沿斜面向上运动,选项D 错.答案:AB8.(多选)(2019·安徽皖南八校高三联考)如图甲所示,水平传送带始终以恒定速率v 1向右运行,质量为m 的物块,以v 2的初速度从与传送带等高的光滑水平地面上的A 处向左滑入传送带,若从物块滑上传送带开始计时,物块在传送带上运动的v t 图象(以地面为参考系)如图乙所示,已知v 2>v 1,则( )A .t 1时刻,物块离A 处的距离达到最大B .t 2时刻,物块相对传送带滑动的距离达到最大C .0~t 3时间内,物块一直受到方向向右的摩擦力D .t 1~t 2时间内,由于带动物块电动机多做的功为mv 21解析:t 1时刻小物块向左运动到速度为零,离A 处的距离达到最大,故A 正确.t 2时刻前小物块相对传送带向左运动,之后相对静止,故B 正确.t 2~t 3时间内小物块不受摩擦力作用,故C 错误.t 1~t 2时间内,小物块在滑动摩擦力作用下,做匀加速运动,对小物块,有μmgv 12(t 2-t 1)=12mv 21,t 1~t 2时间内,小物块增加的动能为12mv 21,小物块相对传送带的位移Δx =v 1(t 2-t 1)-v 12(t 2-t 1)=v 12(t 2-t 1),则系统产生的内能为μmg ·v 12(t 2-t 1)=12mv 21,电动机多做的功等于小物块增加的动能和系统产生的内能之和,即mv 21,故D 正确.答案:ABD9.如图所示,在竖直平面内有一固定光滑轨道,其中AB 是长为x =10 m 的水平直轨道,BCD 是圆心为O 、半径为R =10 m 的34圆弧轨道,两轨道相切于B 点.在外力作用下,一小球从A 点由静止开始做匀加速直线运动,到达B 点时撤除外力.已知小球刚好能沿圆轨道经过最高点C ,重力加速度g 取10 m/s 2.求:(1)小球在AB 段运动的加速度的大小;(2)小球从D 点运动到A 点所用的时间.(结果可用根式表示)解析:(1)小滑块恰好通过最高点,则有mg =m v 2CR解得v C =gR =10 m/s从B 到C 的过程中机械能守恒,有 12mv 2B =12mv 2C +mg ·2R 解得v B =5gR =10 5 m/s从A 到B 根据速度位移公式得v 2B =2ax 解得a =25 m/s 2.(2)从C 到D 的过程中机械能守恒,有 12mv 2D =12mv 2C +mg ·R 解得vD =3gR =10 3 m/s由B 到C 再到A 的过程机械能守恒,故v A =v B =10 5 m/s小球从D →A 做加速度为g 的匀加速运动,由速度公式得v A =v D +gt 解得t =(5-3)s.答案:(1)25 m/s 2 (2)(5-3)s[刷综合]10.(多选)如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将小环从与定滑轮等高的A 处由静止释放,当小环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .环与重物、地球组成的系统机械能守恒B .小环到达B 处时,重物上升的高度也为dC .小环在B 处的速度与重物上升的速度大小之比等于22D .小环下落到B 处时的速度为 (3-22)gd解析:环与重物、地球组成的系统,只有小环和重物的重力做功,系统机械能守恒,选项A 正确;小球到达B 时,重物上升高度h =(2-1)d =0.414d ,选项B 错误;把小环的速度沿轻绳方向和垂直于轻绳方向分解,沿轻绳方向的分速度等于重物上升的速度v 1,有v cos 45°=v 1,解得v =2v 1,选项C 错误;对小环与重物、地球组成的系统,由机械能守恒定律得mgd -2mgh =12·2mv 21+12mv 2,解得v =(3-22)gd ,选项D 正确.答案:AD11.(多选)如图所示,甲、乙两传送带与水平面的夹角相同,都以恒定速率v 向上运动.现将一质量为m 的小物体(视为质点)轻轻放在A 处,小物体在甲传送带上被传送到B 处时恰好达到传送带的速率v ,在乙传送带上被传送到离B 处竖直高度为h 的C 处时达到传送带的速率v .已知B 处离地面的高度均为H ,则在小物体从A 到B 的过程中( )A .小物体与甲传送带间的动摩擦因数较小B .两传送带对小物体做功相等C .甲传送带消耗的电能比较大D .两种情况下因摩擦产生的热量相等解析:根据公式v 2=2ax 可知,物体加速度关系a 甲<a 乙,再由牛顿第二定律μmg cos θ-mg sin θ=ma 得知,μ甲<μ乙,故A 正确;传送带对小物体做功等于小物体的机械能的增加量,动能增加量相等,重力势能的增加量也相同,故两传送带对小物体做功相等,故B 正确;由摩擦生热Q =F f x相对知,甲图中vt 12=H sin θ,Q 甲=F f1x 1=F f1(vt 1-vt 12)=F f1Hsin θ,F f1-mg sin θ=ma 1=m v 22Hsin θ,乙图中Q 乙=F f2x 2=F f2H -h sin θ,F f2-mg sin θ=ma 2=m v 22H -hsin θ,解得Q 甲=mgH +12mv 2,Q 乙=mg (H -h )+12mv 2,Q 甲>Q 乙,根据能量守恒定律,电动机消耗的电能E 电等于摩擦产生的热量Q 与物体增加机械能之和,因物块两次从A 到B 增加的机械能相同,Q 甲>Q乙,所以将小物体传送到B 处,甲传送带消耗的电能更多,故C 正确,D 错误. 答案:ABC12.(2019·全国百强校高三调研考试)如图,轻质弹簧左端固定,右端连接一个光滑的滑块A ,弹簧的劲度系数k =500 N/m ,弹簧的弹性势能表达式为E p =12kx 2(x 为弹簧的形变量).滑块B 靠在A 的右侧与A 不连接,A 、B 滑块均可视为质点,质量都为1 kg ,最初弹簧的压缩量为x 0=9 cm ,由静止释放A 、B ,A 到平台右端距离L =15 cm ,平台离地高为H =5 m ,在平台右侧与平台水平相距s 处有一固定斜面,斜面高为d =4.8 m ,倾角θ=37°.若B 撞到斜面上时,立刻以沿斜面的速度分量继续沿斜面下滑.B 与水平面和斜面之间动摩擦因数均为0.5,若B 在斜面上滑动时有最大的摩擦生热,g 取10 m/s 2,求:(1)B 离开平台的速度v 1等于多少? (2)斜面距平台右端距离s 为多少? (3)B 滑到斜面底端的速度v B 为多大?解析:(1)A 、B 分离时,A 、B 的加速度相同,A 、B 间弹力为0 对B 分析:μmg =ma ,解得a =μg =5 m/s 2对A 分析:kx 1=ma ,解得x 1=ma k=0.01 m =1 cm 弹簧伸长量1 cm 时,A 、B 分离, 由释放至A 、B 分离,根据能量守恒可得 12kx 20=12kx 21+μmg (x 0+x 1)+12·2mv 20 分离后,对物体B :-μmg (L -x 0-x 1)=12mv 21-12mv 20解得v 1=1 m/s.(2)B 在斜面滑动时有最大的摩擦生热,则B 在斜面顶端滑上斜面,从抛出到刚落到斜面上的过程中,做平抛运动,在竖直方向上H -d =12gt 2,解得t =0.2 s ;在水平方向上s =v 1t =0.2 m.(3)平抛竖直分速度v y =2g (H -d )=2 m/s ,B 沿斜面的速度为v =v 1cos 37°+v y sin 37°=2 m/s ,在斜面上:mgd -μmg cos θdsin θ=12mv 2B -12mv 2, 解得v B =6 m/s.答案:(1)1 m/s (2)0.2 m (3)6 m/s。
2024届高考复习 专题12 机械能守恒定律的理解与应用、功能关系与能量守恒(原卷版)
专题12 机械能守恒定律的理解与应用、功能关系与能量守恒目录题型一机械能守恒的判断 (1)题型二单物体的机械能守恒问题 (2)题型三连接体的机械能守恒问题 (4)类型1 轻绳连接的物体系统 (5)类型2 轻杆连接的物体系统 (6)类型3 含“弹簧类”系统的机械能守恒 (7)题型四功能关系的理解和应用 (9)类型1功能关系的理解 (9)类型2 功能关系与图像的结合 (10)类型3 功能关系的综合应用 (12)题型五能量守恒定律的理解和应用 (13)题型一机械能守恒的判断【解题指导】机械能是否守恒的三种判断方法(1)利用机械能的定义判断:若物体动能、势能之和不变,则机械能守恒.(2)利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功(或做功代数和为0),则机械能守恒.(3)利用能量转化判断:若物体或系统与外界没有能量交换,物体或系统也没有机械能与其他形式能的转化,则机械能守恒.【例1】(2022·广东惠州一中月考)(多选)如图所示,将一个内外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一固定的竖直墙壁(不与槽粘连).现让一小球自左端槽口A点的正上方由静止开始下落,从A点与半圆形槽相切进入槽内,则下列说法正确的是()A.小球在半圆形槽内运动的全过程中,只有重力对它做功B.小球从A点向半圆形槽的最低点运动的过程中,小球的机械能守恒C.小球从A点经最低点向右侧最高点运动的过程中,小球与半圆形槽组成的系统机械能守恒D.小球从下落到从右侧离开半圆形槽的过程中,机械能守恒【例2】如图所示,小球从高处下落到竖直放置的轻弹簧上,弹簧一直保持竖直,空气阻力不计,那么小球从接触弹簧开始到将弹簧压缩到最短的过程中,下列说法中正确的是()A.小球的动能一直减小B.小球的机械能守恒C.克服弹力做功大于重力做功D.最大弹性势能等于小球减少的动能【例3】(2022·湖南永州市模拟)伽利略在研究力和运动的关系的时候,采用两个平滑对接的斜面,一个斜面固定,让小球从斜面上滚下,小球又滚上另一个倾角可以改变的斜面,斜面倾角逐渐减小直至为零,如图1所示。
高中物理第十二章 电能 能量守恒定律精选测试卷训练(Word版 含解析)
高中物理第十二章电能能量守恒定律精选测试卷训练(Word版含解析)一、第十二章电能能量守恒定律实验题易错题培优(难)1.某研究性学习小组利用伏安法测定某一电池组的电动势和内阻,实验原理如图甲所示,其中,虚线框内为用灵敏电流计G改装的电流表A,V为标准电压表,E为待测电池组,S为开关,R为滑动变阻器,R0是标称值为4.0Ω的定值电阻.①已知灵敏电流计G的满偏电流I g=100μA、内阻r g=2.0kΩ,若要改装后的电流表满偏电流为200mA,应并联一只Ω(保留一位小数)的定值电阻R1;②根据图甲,用笔画线代替导线将图乙连接成完整电路;③某次试验的数据如下表所示:该小组借鉴“研究匀变速直线运动”试验中计算加速度的方法(逐差法),计算出电池组的内阻r= Ω(保留两位小数);为减小偶然误差,逐差法在数据处理方面体现出的主要优点是.④该小组在前面实验的基础上,为探究图甲电路中各元器件的实际阻值对测量结果的影响,用一已知电动势和内阻的标准电池组通过上述方法多次测量后发现:电动势的测量值与已知值几乎相同,但内阻的测量值总是偏大.若测量过程无误,则内阻测量值总是偏大的原因是.(填选项前的字母)A.电压表内阻的影响 B.滑动变阻器的最大阻值偏小C.R1的实际阻值比计算值偏小 D.R0的实际阻值比标称值偏大测量次数12345678电压表V读数U/V 5.26 5.16 5.04 4.94 4.83 4.71 4.59 4.46改装表A读数I/mA20406080100120140160【答案】(2)①1.0 ②如图所示③ 1.66 充分利用测得的数据④CD【解析】解:1.根据改装后电表的量程1g ggI rI IR=+,代入解得11.0R=Ω.2.实物图如图所示3.根据闭合电路的欧姆定律()E U I R r=++可得UR rI∆+=∆,故1551U UR rI I-+=-,或2662U UI I--或3773U UI I--或()()()123456784884515.664U U U U U U U UU UI I I I+++⋅+++-==Ω--可得: 1.66r=Ω.因充分利用测得的数据,故减少一次测量的偶然误差.4.实验中,电压表为标准电压表,由于电动势的测量值与已知值几乎相同,说明电压表和滑动变阻器对实验没有影响.电压表的变化量和电流表的变化量比值的绝对值为电源内阻r和定值电阻0R之和,当1R的实际阻值比计算值偏小时,电流表的读数比实际值偏小,则测得内阻将偏大,C正确.当0R的实际阻值比标称值偏大时,算得的电源内阻也偏大,D正确.2.一研究学习小组,为了测定两节串联干电池组的电动势E和内电阻r,实验器材有:一只DIS电流传感器(可视为理想电流表,测得的电流用I表示),一只电阻箱(阻值用R 表示),一只开关和导线若干。
高中物理第十二章 电能 能量守恒定律精选测试卷练习卷(Word版 含解析)
高中物理第十二章电能能量守恒定律精选测试卷练习卷(Word版含解析)一、第十二章电能能量守恒定律实验题易错题培优(难)1.在练习使用多用电表的实验中,(1)某同学使用多用电表的欧姆档粗略测量一定值电阻的阻值R x,先把选择开关旋到“×10”挡位,测量时指针偏转如图所示.以下是接下来的测量过程:a.将两表笔短接,调节欧姆档调零旋钮,使指针对准刻度盘上欧姆档的零刻度,然后断开两表笔b.旋转选择开关至交流电压最大量程处(或“OFF”档),并拔出两表笔c.将选择开关旋到“×1”挡d.将选择开关旋到“×100”挡e.将选择开关旋到“×1k ”挡f.将两表笔分别连接到被测电阻的两端,读出阻值R x,断开两表笔以上实验步骤中的正确顺序是________(填写步骤前的字母).(2)重新测量后,指针位于如图所示位置,被测电阻的测量值为____Ω.(3)如图所示为欧姆表表头,已知电流计的量程为I g=100μA,电池电动势为E=1.5V,则该欧姆表的内阻是____kΩ,表盘上30μA刻度线对应的电阻值是____kΩ.(4)为了较精确地测量另一定值电阻的阻值R y,采用如图所示的电路.电源电压U恒定,电阻箱接入电路的阻值可调且能直接读出.①用多用电表测电路中的电流,则与a点相连的是多用电表的____(选填“红”或“黑”)表笔.②闭合电键,多次改变电阻箱阻值R,记录相应的R和多用电表读数I,得到R-1I的关系如图所示.不计此时多用电表的内阻.则R y=___Ω,电源电压U=___V.(5)一半导体电阻的伏安特性曲线如图所示.用多用电表的欧姆挡测量其电阻时,用“×100”挡和用“×1k”挡,测量结果数值不同.用____(选填“×100”或“×1k”)挡测得的电阻值较大,这是因为____________.【答案】dafb 2200 15kΏ35kΩ红 200 8 ×1k 欧姆表中挡位越高,内阻越大;由于表内电池的电动势不变,所以选用的挡位越高,测量电流越小;该半导体的电阻随电流的增大而减小,所以选用的档位越高,测得的电阻值越大【解析】【分析】【详解】(1)[1]先把选择开关旋到“×10”挡位,测量时指针偏转如图所示.指针指在示数较大处,为使指针指在刻度盘中央附近,应换用“×100 ”挡(几百×10=几十×100),再欧姆调零,测量,整理器材.实验步骤中的正确顺序是:dafb(2)[2]重新测量后,指针位于如图所示位置,被测电阻的测量值为221002200⨯Ω=Ω (3)[3]电表内阻461.5 1.51015k Ω10010g E R I -==Ω=⨯Ω=⨯内 [4]当电表指针指在30μA 刻度线上时EI R R =+内,整理得 4461.5 1.510 3.51035k Ω3010E R R I -=-=-⨯Ω=⨯Ω=⨯内 (4)[5]①多用电表测电路中的电流, a 点与电源正极相连,则与a 点相连的是多用电表的红表笔.[6][7]②由欧姆定律可得()y U I R R =+整理得y UR R I=- 由图象的纵截距得:200y R =Ω由图象的斜率得:4000V 8V 7525U -==-(5)[8][9]欧姆表挡位越高,内阻越大;由于表内电池的电动势不变,所以选用的挡位越高,测量同一电阻时电路中电流越小;该半导体的电阻随电流的减小而增大,所以选用的档位越高,测得的电阻值越大.所以选“×1k”挡测得的电阻值较大.2.现要测量电压表的内阻和电源的电动势,提供的器材有:电源E(电动势约为6V,内阻不计),电压表V1(量程0~2.5V,内阻约为2.5kΩ),电压表V2(量程0~3v,内阻约为10kΩ),电阻箱R0(最大阻值为9999.9Ω),滑动变阻器R1(最大阻值为3kΩ),滑动变阻器R2(最大阻值为500Ω),单刀双掷开关一个,导线若干(1)如图(1)所示的甲、乙、丙三图是几位同学为完成本次验而设计的电路图,你认为选用哪一个电路图完成本次实验最合理?_______ (填“甲”、“乙”“丙”)(2)电路中应选用滑动变阻器_______(选填“R1”或“R2”) (3)按照下列步骤进行实验:①闭合开关前,将滑动变阻器和电阻箱连入电路的阻值调至最大;②闭合开关,将电阻箱调到6Ωk,调节滑动变阻器至适当的位置,此时电压表V1的示数为1.60V 电压表V2的示数为2.40V;③保持滑动变阻器连入电路的阻值不变,再将电阻箱调到2kΩ, 此时电压表V1的示数如图(2)所示,其示数为_______V,电压表V2的数为1.40V(4)根据以上实验数据,计算得到电源的电动势为_______V,电压表V1的内阻为_______KΩ,电,压表V2的内阻为_______KΩ. 【答案】丙 1R 2.10V 5.60V 2.5k Ω 2.5k Ω 【解析】 【分析】考查测电阻、电源电动势的方法,根据欧姆定律综合分析可得。
高考物理二轮专题复习文档:重难专题强化练——“机械能守恒定律 功能关系”课后冲关 Word版含解析
重难专题强化练——“机械能守恒定律功能关系”课后冲关一、高考真题集中演练——明规律1.(2016·四川高考)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员。
他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J。
韩晓鹏在此过程中()A.动能增加了1 900 J B.动能增加了2 000 JC.重力势能减小了1 900 J D.重力势能减小了2 000 J解析:选C根据动能定理得韩晓鹏动能的变化ΔE=W G+W f=1 900 J-100 J=1 800 J>0,故其动能增加了1 800 J,选项A、B错误;根据重力做功与重力势能变化的关系W G =-ΔE p,所以ΔE p=-W G=-1 900 J<0,故韩晓鹏的重力势能减小了1 900 J,选项C 正确,选项D错误。
2.(2017·全国卷Ⅱ)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直。
一小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时对应的轨道半径为(重力加速度大小为g)()A.v216g B.v28gC.v24g D.v22g解析:选B设轨道半径为R,小物块从轨道上端飞出时的速度为v1,由于轨道光滑,根据机械能守恒定律有mg×2R=12m v2-12m v12,小物块从轨道上端飞出后做平抛运动,对运动分解有:x=v1t,2R=12gt2,求得x=-16⎝⎛⎭⎫R-v28g2+v44g2,因此当R-v28g=0,即R=v28g时,x取得最大值,B项正确,A、C、D项错误。
3.[多选](2013·山东高考)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮。
质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行。
高考物理二轮复习专题归纳—动能定理、机械能守恒定律、能量守恒定律(全国版)
高考物理二轮复习专题归纳—动能定理、机械能守恒定律、能量守恒定律(全国版)考点一动能定理的综合应用1.应用动能定理解题的步骤图解:2.应用动能定理的四点提醒:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2022·广东深圳市联考)如图所示,一半圆弧形细杆ABC竖直固定在水平地面上,AC为其水平直径,圆弧半径BO=3.6m.质量为m=4.0kg的小圆环(可视为质点,小环直径略大于杆的粗细)套在细杆上,在大小为50N、沿圆的切线方向的拉力F作用下,从A点由静止开始运动,到达B点时对细杆的压力恰好为0.已知π取3.14,重力加速度g取10m/s2,在这一过程中摩擦力做功为()A.66.6J B.-66.6JC .210.6JD .-210.6J 答案B 解析小圆环到达B 点时对细杆的压力恰好为0,则有mg =m v 2r,拉力F 沿圆的切线方向,根据动能定理有F ·2πr 4-mgr +W f =12mv 2,又r =3.6m ,解得摩擦力做功为W f =-66.6J ,故选B.例2(2022·河南信阳市质检)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来,如图是滑板运动的轨道.BC 和DE 是竖直平面内的两段光滑的圆弧形轨道,BC 的圆心为O 点,圆心角θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道间的动摩擦因数μ=0.4.某运动员从轨道上的A 点以v =4m/s 的速度水平滑出,在B 点刚好沿着轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点距水平轨道CD 的竖直高度分别为h =2m 和H =3m ,忽略空气阻力.(g =10m/s 2)(1)运动员从A 点运动到B 点的过程中,求到达B 点时的速度大小v B ;(2)求水平轨道CD 的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,求出回到B 点时速度的大小.如果不能,求出最后停止的位置距C 点的距离.答案(1)8m/s (2)5.5m (3)见解析解析(1)运动员从A 点运动到B 点的过程中做平抛运动,到达B 点时,其速度沿着B点的切线方向,可知运动员到达B点时的速度大小为v B=v cos60°,解得v B=8m/s(2)从B点到E点,由动能定理得mgh-μmgL-mgH=0-12mv B2代入数值得L=5.5m(3)设运动员能到达左侧的最大高度为h′,从E点到第一次返回到左侧最高处,由动能定理得mgH-μmgL-mgh′=0解得h′=0.8m<2m故运动员不能回到B点.设运动员从E点开始返回后,在CD段滑行的路程为s,全过程由动能定理得mgH-μmgs=0解得总路程s=7.5m由于L=5.5m所以可得运动员最后停止的位置在距C点2m处.考点二机械能守恒定律及应用1.判断物体或系统机械能是否守恒的三种方法定义判断法看动能与势能之和是否变化能量转化判断法没有与机械能以外的其他形式的能转化时,系统机械能守恒做功判断法只有重力(或弹簧的弹力)做功时,系统机械能守恒2.机械能守恒定律的表达式3.连接体的机械能守恒问题共速率模型分清两物体位移大小与高度变化关系共角速度模型两物体角速度相同,线速率与半径成正比关联速度模型此类问题注意速度的分解,找出两物体速度关系,当某物体位移最大时,速度可能为0轻弹簧模型①同一根弹簧弹性势能大小取决于弹簧形变量的大小,在弹簧弹性限度内,形变量相等,弹性势能相等②由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零)说明:以上连接体不计阻力和摩擦力,系统(包含弹簧)机械能守恒,单个物体机械能不守恒.例3(2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P 点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积答案C 解析如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12mv 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R ,则v =L g R,故C 正确,A 、B 、D错误.例4(多选)(2022·黑龙江省八校高三期末)如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),重力加速度为g,则在圆环下滑到最大距离的过程中()A.弹簧对圆环先做正功后做负功B.弹簧弹性势能增加了3mgLC.圆环重力势能与弹簧弹性势能之和先减小后增大D.圆环下滑到最大距离时,所受合力为零答案BC解析弹簧一直伸长,故弹簧对圆环一直做负功,A错误;由题可知,整个过程动能的变化量为零,根据几何关系可得圆环下落的高度h=2L2-L2=3L,根据能量守恒定律可得,弹簧弹性势能增加量等于圆环重力势能的减少量,则有ΔE p=mgh=3mgL,B正确;弹簧与小圆环组成的系统机械能守恒,则有ΔE k+ΔE p重+ΔE p弹=0,由于小圆环在下滑到最大距离的过程中先是做加速度减小的加速运动,再做加速度增大的减速运动,所以动能先增大后减小,则圆环重力势能与弹簧弹性势能之和先减小后增大,C正确;圆环下滑到最大距离时,加速度方向竖直向上,所受合力方向为竖直向上,D错误.考点三能量守恒定律及应用1.含摩擦生热、焦耳热、电势能等多种形式能量转化的系统,优先选用能量守恒定律.2.应用能量守恒定律的基本思路(1)守恒:E初=E末,初、末总能量不变.(2)转移:E A减=E B增,A物体减少的能量等于B物体增加的能量.(3)转化:|ΔE减|=|ΔE增|,减少的某些能量等于增加的某些能量.例5(2021·山东卷·18改编)如图所示,三个质量均为m的小物块A、B、C,放置在水平地面上,A紧靠竖直墙壁,一劲度系数为k的轻弹簧将A、B连接,C紧靠B,开始时弹簧处于原长,A、B、C均静止.现给C施加一水平向左、大小为F的恒力,使B、C一起向左运动,当速度为零时,立即撤去恒力,一段时间后A 离开墙壁,最终三物块都停止运动.已知A、B、C与地面间的滑动摩擦力大小均为f,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内.(弹簧的弹性势能可表示为:E p=12kx2,k为弹簧的劲度系数,x为弹簧的形变量)(1)求B、C向左移动的最大距离x0和B、C分离时B的动能E k;(2)为保证A能离开墙壁,求恒力的最小值F min;(3)若三物块都停止时B、C间的距离为x BC,从B、C分离到B停止运动的整个过程,B克服弹簧弹力做的功为W,通过推导比较W与fx BC的大小;答案(1)2F-4fkF2-6fF+8f2k(2)(3+102)f(3)W<fx BC解析(1)从开始到B、C向左移动到最大距离的过程中,以B、C和弹簧为研究对象,由功能关系得Fx0=2fx0+12kx02弹簧恢复原长时B、C分离,从弹簧最短到B、C分离,以B、C和弹簧为研究对象,由能量守恒定律得12kx02=2fx0+2E k联立方程解得x0=2F-4f kE k=F2-6fF+8f2k.(2)当A刚要离开墙时,设弹簧的伸长量为x,以A为研究对象,由平衡条件得kx =f若A刚要离开墙壁时B的速度恰好等于零,这种情况下恒力为最小值F min,从弹簧恢复原长到A刚要离开墙的过程中,以B和弹簧为研究对象,由能量守恒定律得E k=12kx2+fx结合第(1)问结果可知F min=(3±10 2 )f根据题意舍去F min=(3-102)f,所以恒力的最小值为F min=(3+10 2 )f.(3)从B、C分离到B停止运动,设B的位移为x B,C的位移为x C,以B为研究对象,由动能定理得-W-fx B=0-E k以C为研究对象,由动能定理得-fx C=0-E k由B、C的运动关系得x B>x C-x BC联立可知W<fx BC.1.(2022·江苏新沂市第一中学高三检测)如图所示,倾角为θ的斜面AB段光滑,BP 段粗糙,一轻弹簧下端固定于斜面底端P处,弹簧处于原长时上端位于B点,可视为质点、质量为m的物体与BP之间的动摩擦因数为μ(μ<tanθ),物体从A点由静止释放,将弹簧压缩后恰好能回到AB的中点Q.已知A、B间的距离为x,重力加速度为g,则()A.物体的最大动能等于mgx sinθB.弹簧的最大形变量大于1x2C.物体第一次往返中克服摩擦力做的功为1mgx sinθ2D.物体第二次沿斜面上升的最高位置在B点答案C解析物体接触弹簧前,由机械能守恒定律可知,物体刚接触弹簧时的动能为E k=mgx sin θ,物体接触弹簧后,重力沿斜面向下的分力先大于滑动摩擦力和弹簧弹力的合力,物体先加速下滑,后来重力沿斜面向下的分力小于滑动摩擦力和弹簧弹力的合力,物体减速下滑,所以当重力沿斜面向下的分力等于滑动摩擦力和弹簧弹力的合力时物体所受的合力为零,速度最大,动能最大,所以物体的最大动能一定大于mgx sin θ,A 错误;设弹簧的最大压缩量为L ,弹性势能最大为E p ,物体从A 到最低点的过程,由能量守恒定律得mg (L +x )sin θ=μmgL cos θ+E p ,物体从最低点到Q 点的过程,由能量守恒得mg (L +x 2)sin θ+μmgL cos θ=E p ,联立解得L =x tan θ4μ,由于μ<tan θ,但未知它们的具体参数,则无法说明弹簧的最大形变量是否大于12x ,B 错误;第一次往返过程中,根据能量守恒定律,可知损失的能量等于克服摩擦力做的功,则有ΔE =2μmgL cos θ=12mgx sin θ,C 正确;设从Q 到第二次最高点位置C ,有mgx QC sin θ=2μmgL ′cos θ,如果L ′=L ,则有x QC =x 2,即最高点为B ,但由于物体从Q 点下滑,则弹簧的最大形变量L ′<L ,所以最高点应在B 点上方,D 错误.2.(2022·广东省六校联盟联考)如图所示,小明在离水面高度h 0=1.8m 的岸边,将一质量m =20g 的小石片以水平初速度v 0=8m/s 抛出,玩“打水漂”.小石片在水面上滑行时受到的水平阻力恒为F f =0.4N ,在水面上弹跳数次后沿水面的速度减为零,并以a =0.5m/s 2的加速度沿竖直方向沉入水深h =1m 的河底.假设小石片每次均接触水面Δt =0.04s 后跳起,跳起时竖直方向上的速度与此时沿水面滑行的速度之比为常数k =0.75.取重力加速度g =10m/s 2,不计空气阻力.求小石片:(1)沉入河底前瞬间的速度大小v t ;(2)从开始抛出到沉入河底前瞬间的整个过程中,水对小石片做的功W ;(3)从抛出到开始下沉的时间t .答案(1)1m/s (2)-1.19J (3)6.4s 解析(1)小石片沉入河底时的速度v t 2=2ah ,解得v t =1m/s(2)小石片从开始抛出到沉入河底前瞬间的整个过程,由动能定理有mg (h 0+h )+W =12mv t 2-12mv 02,解得W =-1.19J (3)小石片先做平抛运动,竖直方向有h 0=12gt 12,解得t 1=0.6s 小石片在水面上滑行时加速度a ′=-F f m=-20m/s 2,每次滑行的速度变化量Δv =a ′Δt =-0.8m/s ,而n =v 0|Δv |=10次,即小石片接触水面滑行了10次,空中跳起了9次,第n 次跳起后的水平速度v xn =v 0+n Δv =(8-0.8n )m/s ,竖直速度v yn =kv xn ,空中飞行时间t n =2v yn g ,可得第n 次弹起后在空中飞行的时间为t n =65(1-0.1n )s ,在空中的飞行总时间t 2=∑91t n=5.4s ,在水面上滑行的时间为t 3=0.04×10s =0.4s ,总时间t =t 1+t 2+t 3,解得t =6.4s.专题强化练[保分基础练]1.(2022·河北保定市高三期末)如图所示,固定在竖直面内横截面为半圆的光滑柱体(半径为R ,直径水平)固定在距离地面足够高处,位于柱体两侧质量相等的小球A 、B (视为质点)用细线相连,两球与截面圆的圆心O 处于同一水平线上(细线处于绷紧状态).在微小扰动下,小球A 由静止沿圆弧运动到柱体的最高点P .不计空气阻力,重力加速度大小为g .小球A 通过P 点时的速度大小为()A.gRB.2gRC.π2-1gR D.π2gR 答案C 解析对A 、B 组成的系统,从开始运动到小球A 运动到最高点的过程有mg ·πR 2-mgR =12×2mv 2,解得v =π2-1gR ,故选C.2.(多选)(2022·广东省模拟)如图所示,一弹性轻绳(弹性绳的弹力与其伸长量成正比,且弹性绳的弹性势能E p =12kx 2,其中k 是弹性绳的劲度系数,x 是弹性绳的伸长量)穿过内壁光滑、不计粗细的硬质圆管AB ,弹性绳左端固定在A 点,右端连接一个质量为m 的小球,小球穿过竖直光滑固定的杆,A 、B 、C 三点在同一水平线上,弹性绳的自然长度与圆管AB 的长度相等.将小球从C 点由静止释放,小球到达D 点时的速度为零,B 、C 两点的距离为h ,C 、D 两点的距离为2h .重力加速度大小为g ,弹性绳始终在弹性限度内.下列说法正确的是()A.小球从C点运动到D点的过程中,小球对杆的弹力不变B.小球从C点运动到D点的过程中,小球的重力势能与弹性绳的弹性势能之和先增大后减小C.弹性绳的劲度系数为2mghD.当B点右侧的弹性绳与杆的夹角为45°时,小球的速度最大答案AD解析小球对杆的弹力方向总是水平向左,当B点右侧的弹性绳与杆的夹角为α时,杆对小球的弹力大小F1=khsinα·sinα=kh,结合牛顿第三定律可知,小球对杆的弹力大小恒为F2=F1=kh,A正确;小球从C点运动到D点的过程中,小球先做加速直线运动后做减速直线运动,即小球的动能先增大后减小,根据机械能守恒定律可知,该过程中小球的重力势能与弹性绳的弹性势能之和先减小后增大,B错误;小球从C点运动到D点的过程,根据机械能守恒定律有mg·2h+12kh2=1 2kx BD2,又x BD2-h2=(2h)2,联立解得k=mgh,C错误;当小球在竖直方向上所受合力为零时,小球的速度最大,设此时B点右侧的弹性绳与杆的夹角为θ,有mg=khsinθ·cosθ,代入数据解得θ=45°,D正确.3.(多选)(2022·重庆市涪陵第五中学高三检测)如图所示,轻绳的一端系一质量为m的金属环,另一端绕过定滑轮悬挂一质量为5m的重物.金属环套在固定的竖直光滑直杆上,定滑轮与竖直杆之间的距离OQ=d,金属环从图中P点由静止释放,OP与直杆之间的夹角θ=37°,不计一切摩擦,重力加速度为g,sin37°=0.6,cos37°=0.8,则()A.金属环从P上升到Q的过程中,重物所受重力的瞬时功率先增大后减小B.金属环从P上升到Q的过程中,绳子拉力对重物做的功为103mgdC.金属环在Q点的速度大小为2gd3D.若金属环最高能上升到N点,则ON与直杆之间的夹角α=53°答案AD解析金属环在P点时,重物的速度为零,则重物所受重力的瞬时功率为零,当环上升到Q点,环的速度与绳垂直,则重物的速度为零,此时,重物所受重力的瞬时功率也为零,故金属环从P上升到Q的过程中,重物所受重力的瞬时功率先增大后减小,故A正确;金属环从P上升到Q的过程中,设绳子拉力做的功为W,对重物应用动能定理有W+W G=0,则W=-W G=-5mg(dsinθ-d)=-103 mgd,故B错误;设金属环在Q点的速度大小为v,对环和重物整体,由动能定理得5mg(dsinθ-d)-mgdtanθ=12mv2,解得v=2gd,故C错误;若金属环最高能上升到N点,则整个过程中,金属环和重物整体的机械能守恒,有5mg(dsinθ-dsinα)=mg(dtanθ+dtanα),解得α=53°,故D正确.4.(2021·浙江1月选考·11)一辆汽车在水平高速公路上以80km/h的速度匀速行驶,其1s内能量分配情况如图所示.则汽车()A.发动机的输出功率为70kWB.每1s消耗的燃料最终转化成的内能是5.7×104J C.每1s消耗的燃料最终转化成的内能是6.9×104J D.每1s消耗的燃料最终转化成的内能是7.0×104J 答案C解析据题意知,发动机的输出功率为P=Wt=17kW,故A错误;根据能量守恒定律结合能量分配图知,1s消耗的燃料最终转化成的内能为进入发动机的能量,即6.9×104J,故B、D错误,C正确.[争分提能练]5.(2022·山西太原市高三期末)如图甲所示,一物块置于粗糙水平面上,其右端通过水平弹性轻绳固定在竖直墙壁上.用力将物块向左拉至O处后由静止释放,用传感器测出物块的位移x和对应的速度,作出物块的动能E k-x关系图像如图乙所示.其中0.10~0.25m间的图线为直线,其余部分为曲线.已知物块与水平面间的动摩擦因数为0.2,取g=10m/s2,弹性绳的弹力与形变始终符合胡克定律,可知()A.物块的质量为0.2kgB.弹性绳的劲度系数为50N/mC.弹性绳弹性势能的最大值为0.6JD.物块被释放时,加速度的大小为8m/s2答案D解析由分析可知,x=0.10m时,弹性绳恢复原长,根据动能定理有μmgΔx=ΔE k,则m=ΔE kμgΔx=0.300.2×10×0.25-0.10kg=1kg,所以A错误;动能最大时弹簧弹力等于滑动摩擦力,则有kΔx1=μmg,Δx1=0.10m-0.08m=0.02m,解得k=100 N/m,所以B错误;根据能量守恒定律有E pm=μmgx m=0.2×1×10×0.25J=0.5J,所以C错误;物块被释放时,加速度的大小为a=kΔx m-μmgm=100×0.10-0.2×1×101m/s2=8m/s2,所以D正确.6.(多选)(2022·广东揭阳市高三期末)图为某蹦极运动员从跳台无初速度下落到第一次到达最低点过程的速度-位移图像,运动员及装备的总质量为60kg,弹性绳原长为10m,不计空气阻力,g=10m/s2.下列说法正确的是()A.下落过程中,运动员机械能守恒B.运动员在下落过程中的前10m加速度不变C.弹性绳最大的弹性势能约为15300JD.速度最大时,弹性绳的弹性势能约为2250J答案BCD 解析下落过程中,运动员和弹性绳组成的系统机械能守恒,运动员在绳子绷直后机械能一直减小,所以A 错误;运动员在下落过程中的前10m 做自由落体运动,其加速度恒定,所以B 正确;在最低点时,弹性绳的形变量最大,其弹性势能最大,由能量守恒定律可知,弹性势能来自运动员减小的重力势能,由题图可知运动员下落的最大高度约为25.5m ,所以E p =mgH m =15300J ,所以C 正确;由题图可知,下落约15m 时,运动员的速度最大,根据能量守恒可知此时弹性绳的弹性势能约为E pm =mgH -12mv m 2=2250J ,所以D 正确.7.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧绳子始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L ,现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置为E 点,D 、E 两点间距离为L 2,若A 、B 的质量分别为4m 和m ,A 与斜面之间的动摩擦因数μ=38,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 在从C 运动至D 的过程中的加速度大小;(2)物体A 从C 至D 点时的速度大小;(3)弹簧的最大弹性势能.答案(1)120g(2)gL10(3)38mgL解析(1)物体A从C运动到D的过程,对物体A、B整体进行受力分析,根据牛顿第二定律有4mg sin30°-mg-4μmg cos30°=5ma解得a=1 20 g(2)物体A从C运动至D的过程,对整体应用动能定理有4mgL sin30°-mgL-4μmgL cos30°=12·5mv2解得v=gL 10(3)当A、B的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对A、B整体应用动能定理得4mg(L+L2)sin30°-mg(L+L2)-μ·4mg cos30°(L+L2)-W弹=0-0解得W弹=38mgL则弹簧具有的最大弹性势能E p=W弹=38mgL.8.(2022·广东卷·13)某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型.竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态.当滑块从A处以初速度v0为10m/s向上滑动时,受到滑杆的摩擦力f为1N,滑块滑到B处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动.已知滑块的质量m=0.2kg,滑杆的质量M=0.6kg,A、B间的距离l=1.2m,重力加速度g 取10m/s 2,不计空气阻力.求:(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大小N 1和N 2;(2)滑块碰撞前瞬间的速度大小v 1;(3)滑杆向上运动的最大高度h .答案(1)8N 5N (2)8m/s (3)0.2m 解析(1)当滑块处于静止时桌面对滑杆的支持力等于滑块和滑杆的重力,即N 1=(m +M )g =8N当滑块向上滑动时受到滑杆的摩擦力为1N ,根据牛顿第三定律可知滑块对滑杆的摩擦力也为1N ,方向竖直向上,则此时桌面对滑杆的支持力为N 2=Mg -f ′=5N.(2)滑块开始向上运动到碰前瞬间根据动能定理有-mgl -fl =12mv 12-12mv 02代入数据解得v 1=8m/s.(3)由于滑块和滑杆发生完全非弹性碰撞,即碰后两者共速,取竖直向上为正方向,碰撞过程根据动量守恒定律有mv 1=(m +M )v碰后滑块和滑杆以速度v 整体向上做竖直上抛运动,根据动能定理有-(m +M )gh =0-12(m +M )v 2代入数据联立解得h =0.2m.[尖子生选练]9.(2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB、圆心为O1的半圆形光滑轨道BCD、圆心为O2的半圆形光滑细圆管轨道DEF、倾角也为37°的粗糙直轨道FG组成,B、D和F为轨道间的相切点,弹性板垂直轨道固定在G点(与B点等高),B、O1、D、O2和F点处于同一直线上.已知可视为质点的滑块质量m=0.1kg,轨道BCD和DEF的半径R=0.15m,轨道AB长度l AB=3m,滑块与轨道FG间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin37°=0.6,cos37°=0.8.滑块开始时均从轨道AB上某点静止释放.(1)若释放点距B点的长度l=0.7m,求滑块到最低点C时轨道对其支持力F N的大小;(2)设释放点距B点的长度为l x,滑块第一次经F点时的速度v与l x之间的关系式;(3)若滑块最终静止在轨道FG的中点,求释放点距B点长度l x的值.答案(1)7N(2)v=12l x-9.6,其中l x≥0.85m(3)见解析解析(1)滑块由静止释放到C点过程,由能量守恒定律有mv C2mgl sin37°+mgR(1-cos37°)=12在C点由牛顿第二定律有F N-mg=m v C2R解得F N=7N(2)要保证滑块能到F点,必须能过DEF的最高点,当滑块恰能达到最高点时,根据动能定理可得mgl1sin37°-(3mgR cos37°+mgR)=0解得l1=0.85m因此要能过F点必须满足l x≥0.85m能过最高点,则能到F点,根据动能定理可得mgl x sin37°-4mgR cos37°=12mv2,解得v=12l x-9.6,其中l x≥0.85m.(3)设摩擦力做功为第一次到达中点时的n倍mgl x sin37°-mg l FG2sin37°-nμmg l FG2cos37°=0,l FG=4Rtan37°解得l x=7n+615m(n=1,3,5,…)又因为l AB≥l x≥0.85m,l AB=3m,当n=1时,l x1=13 15m当n=3时,l x2=9 5 m当n=5时,l x3=41 15m.。
人教版高中物理第十二章 电能 能量守恒定律精选试卷练习卷(Word版 含解析)
人教版高中物理第十二章电能能量守恒定律精选试卷练习卷(Word版含解析)一、第十二章电能能量守恒定律实验题易错题培优(难)1.为了测定电源电动势E、内电阻r和定值电阻R o的阻值,某同学利用DIS(数字化信息系统)设计了如图甲所示的电路.闭合电键S1,调节滑动变阻器的滑动触头P向某方向移动时,用电压传感器1、电压传感器2和电流传感器测得数据,井根据测量数据计算机分别描绘了如图乙所示的M、N两条U-I直线,请回答下列问题(1)图乙中的M、N两条图线,根据电压传感器1和电流传感器的数据画得的是___________,根据电压传感器 2和电流传感器的数据面得的是___________(填图线M或图线N)(2)图乙中两直线交点表示电路的工作状态是___________.A.滑动变阻器的滑动头P滑到了最右端 B.滑动变阻器的滑动头P滑到了最左端C.定值电阻R o上消耗的功率为2.5W D.电源的输出功率最大(3)根据图乙可以求得定值电阻R o=______Ω,电源电动势E=______V,内电阻r=______Ω. 【答案】N M BD 2.5 1.5 1.25【解析】【详解】(1)[1][2].从电路连接可以看出,电流表A的读数增大时,电压传感器1的读数减小,电压传感器2的读数增大.故图线N是电压传感器1和电流传感器的数据绘制的图象,图线M是电压传感器2和电流传感器的数据绘制的图象(2)[3].图象中两直线的交点表示电压传感器1的读数与电压传感器2的读数相等,即滑动变阻器的阻值为0,故滑动变阻器的滑动触头P滑到了最左端,故A错误,B正确;图象可以得出电阻R0的阻值大于电源的内阻,滑动变阻器的阻值减小,电源的输出功率增大,两直线的交点对应滑动变阻器的阻值为0,即电源的输出功率最大,故D正确;、定值电阻R0消耗功率为:P=U2I=1.0×0.4 W=0.4W,故C错误;所以选择BD.(3)[4][5][6].从图象a的斜率可以得出定值电阻R0的阻值为:01.002.5 0.40R-==Ω-;从甲同学的图象可以得出图象在U轴上的截距为1.50 V,即电源的电动势为:E=1.50 V,图象斜率的绝对值为:1.5 1.0 1.250.4k -== 即电源的内阻为: r =1.25Ω.【点睛】(1)从电路连接结合电流表和电压表的读数变化判断描绘的图线的含义.(2)由图可知,图象由纵坐标的交点为电动势;由图象与横坐标的交点利用闭合电路欧姆定律可求得内电阻.(3)图象中两直线的交点表示电压传感器1的读数与电压传感器2的读数相等,即滑动变阻器的阻值为0,根据图象求解.2.某同学欲测量一电容器的电容,他采用高电阻放电法来测量,电路图如图甲所示.其原理是测出电容器在充电电压为U 时所带的电荷量Q ,从而求出其电容C .该实验的操作步骤如下:(1)先判断电容器的好坏,使用万用表的电阻挡进行测量,观察到万用表指针向右偏转较大角度,又逐渐返回到起始位置,此现象说明电容器是____(选填“好”、“坏”)的; (2)按如图甲所示电路原理图连接好实验电路,将开关S 接通____(选填“1”、“2”),对电容器进行充电,调节可变电阻R 的阻值,再将开关S 接通另一端,让电容器放电,观察微安表的读数,直到微安表的初始指针接近满刻度;(3)此时让电容器先充电,记下这时的电压表读数U 0=2.9V ,再放电,并同时开始计时,每隔5 s 或10 s 读一次微安表的读数i ,将读数记录在预先设计的表格中。
高考物理二轮复习 第一二 功 第6讲 功能关系 机械能守恒律和能量守恒律练习
拾躲市安息阳光实验学校第6讲 功能关系 机械能守恒定律和能量守恒定律构建网络·重温真题1.(2019·全国卷Ⅱ)(多选)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和。
取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图所示。
重力加速度取10 m/s 2。
由图中数据可得( )A .物体的质量为2 kgB .h =0时,物体的速率为20 m/sC .h =2 m 时,物体的动能E k =40 JD .从地面至h =4 m ,物体的动能减少100 J 答案 AD解析 由于E p =mgh ,所以E p 与h 成正比,斜率k =mg ,由图象得k =20 N ,因此m =2 kg ,A 正确;当h =0时,E p =0,E 总=E k =12mv 20,因此v 0=10 m/s ,B错误;由图象知h =2 m 时,E 总=90 J ,E p =40 J ,由E 总=E k +E p 得E k =50 J ,C 错误;h =4 m 时,E 总=E p =80 J ,即此时E k =0,即从地面至h =4 m ,动能减少100 J ,D 正确。
2.(2019·江苏高考)(多选)如图所示,轻质弹簧的左端固定,并处于自然状态。
小物块的质量为m ,从A 点向左沿水平地面运动,压缩弹簧后被弹回,运动到A 点恰好静止。
物块向左运动的最大距离为s ,与地面间的动摩擦因数为μ,重力加速度为g ,弹簧未超出弹性限度。
在上述过程中( )A .弹簧的最大弹力为μmgB .物块克服摩擦力做的功为2μmgsC .弹簧的最大弹性势能为μmgsD .物块在A 点的初速度为2μgs 答案 BC解析 物块向左运动压缩弹簧,弹簧最短时,弹簧弹力最大,物块具有向右的加速度,弹簧弹力大于摩擦力,即F m >μmg ,A 错误;根据功的公式,物块克服摩擦力做的功W =μmgs +μmgs =2μmgs ,B 正确;从物块将弹簧压缩到最短至物块运动到A 点静止的过程中,根据能量守恒定律,弹簧的弹性势能通过摩擦力做功转化为内能,故E pm =μmgs ,C 正确;根据能量守恒定律,在整个过程中,物体的初动能通过摩擦力做功转化为内能,即12mv 2=2μmgs ,所以v =2μgs ,D 错误。
2021高考物理二轮小题狂做专练十二机械能守恒定律功能关系与能量守恒Word版含解析(1)
1.【浙江省2017普通高校招生选考科目考试物理试题】火箭发射回收是航天技术的一大进步。
如图所示,火箭在返回地面前的某段运动,可看成先匀速后减速的直线运动,最后撞落在地面上。
不计火箭质量的变化,则()A.火箭在匀速下降过程中机械能守恒B.火箭在减速下降过程中携带的检测仪器处于失重状态C.火箭在减速下降过程中合力做功,等于火箭机械能的变化D.火箭着地时,火箭对地的作用力大于自身的重力2.【安徽省2019届高三10月份联考】质量为m的子弹,以水平速度射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是()A.子弹动能的减少量与木块动能增加量相等B.阻力对子弹做的功与子动能的变化量相等C.子弹克服阻力做的功与子弹对木块做的功相等D.子弹克服阻力做的功等于系统克服摩擦所产生的内能3.【安徽省阜阳三中2018-2019学年高三考试】如图所示,重10 N的滑块在倾角为30°的斜面上,从a点由静止下滑,到b点接触到一个轻弹簧.滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点,已知ab=0.8 m,bc=0.4 m,那么在整个过程中()A.滑块滑到b点时动能最大B.滑块动能的最大值是6 JC.从c到b弹簧的弹力对滑块做的功是6 JD.滑块整个过程机械能守恒一、单选题十二机械能守恒定律、功能关系与能量4.【江苏省姜堰中学2017-2018学年度高考模拟】如图所示,半径为R的金属环竖直放置,环上套有一质量为m的小球,小球开始时静止于最低点。
现给小球一冲击,使它以初速度v0=√6Rg开始运动。
小球运动到环的最高点时与环恰无作用力,小球从最低点运动到最高点的过程中()A.小球机械能守恒B.小球在最低点时对金属环的压力是6mgC.小球在最高点时,速度为0D.小球机械能不守恒,且克服摩擦力所做的功是0.5mgR。
5.【全国市级联考2017-2018学年高考调研】如图所示,倾角为α=37o、长度为x=3m的光滑固定斜面,其底端与长木板B上表面等高,原来B静止在光滑水平地面上,左端与斜面接触但不粘连,斜面底端与B的上表面接触处圆滑。
人教版高中物理第十二章 电能 能量守恒定律精选试卷练习卷(Word版 含解析)
人教版高中物理第十二章 电能 能量守恒定律精选试卷练习卷(Word 版 含解析)一、第十二章 电能 能量守恒定律实验题易错题培优(难)1.用图甲中所示的电路测定一种特殊的电池的电动势和内阻,它的电动势E 约为8V ,内阻r 约为30Ω,已知该电池允许输出的最大电流为40mA .为防止调节滑动变阻器时造成短路,电路中用了一个定值电阻充当保护电阻,除待测电池外,可供使用的实验器材还有:A .电流表A(量程0.05A ,内阻约为0.2Ω)B .电压表V(量程6V ,内阻20kΩ)C .定值电阻R 1(阻值100Ω,额定功率1W)D .定值电阻R 2(阻值200Ω,额定功率1W) E.滑动变阻器R 3(阻值范围0~10Ω,额定电流2A) F.滑动变阻器R 4(阻值范围0~750Ω,额定电流1A) G.导线和单刀单掷开关若干个(1)为了电路安全及便于操作,定值电阻应该选___________;滑动变阻器应该选___________.(均填写器材名称代号)(2)接入符合要求的实验器材后,闭合开关S ,调整滑动变阻器的阻值,读取电压表和电流表的示数.取得多组数据,作出了如图乙所示的图线.根据图象得出该电池的电动势E 为___________V ,内阻r 为___________Ω.(结果均保留2位有效数字) 【答案】R 2 R 4 7.8 29 【解析】 【分析】(1)应用欧姆定律求出电路最小电阻,然后选择保护电阻;根据电源内阻与保护电阻的阻值,选择滑动变阻器.(2)电源的U -I 图象与纵轴交点的坐标值是电源的电动势,图象斜率的绝对值是电源内阻. 【详解】(1)[1]为保护电源安全,电路最小电阻8Ω200Ω0.040R ==最小, 保护电阻阻值至少为200Ω30Ω170Ω100Ω-=>,则保护电阻应选定值电阻2R ;[2]电源等效电阻(电源内阻与保护电阻之和)为200Ω,为进行多次实验,测出多组实验数据,滑动变阻器应选滑动变阻器4R .(2)[3]由电源U -I 图象可知,图象与纵轴的交点坐标值是7.8,则电源电动势E =7.8V , [4]图象斜率7.82290.034U k I ∆==≈Ω∆, 电源内阻222920029r k R =-=Ω-Ω=Ω.2.某位同学用如图甲所示的多用电表测量电阻,要用到选择开关和两个部件.请根据下列步骤完成电阻测量:(1)在使用前,发现多用电表指针如图乙所示,则他应调节__________ (选填或或). (2)正确处理完上述步骤后,他把开关打在欧姆挡,把红黑表笔短接,发现指针如图丙所示,则他应调节__________ (选填或或).(3)正确处理完上述步骤后,他把红黑表笔接在某定值电阻两端,发现指针如图丁所示,则他应采取的措施是①___________________;②____________________.(4)正确处理完上述步骤后,他把红黑表笔接在定值电阻两端,发现指针如图戊所示,则该定值电阻的阻值___________.【答案】(1)S (2)T (3)①将打到欧姆挡; ②将两表笔短接,重新调节,使指针指在欧姆零刻度线处 (4)【解析】【分析】【详解】(1)在使用前,发现多用电表指针如图乙所示,则应机械调零,即他应调节S使针调到电流的零档位.(2)把开关打在欧姆挡,把红黑表笔短接,即欧姆调零,应该调到电阻的零档位,此时要调节欧姆调零旋钮,即T(3)他把红黑表笔接在某定值电阻两端,发现指针如图丁所示,说明待测电阻较小,应该换小挡,即换挡,换挡必调零,所以要重新调零即将两表笔短接,重新调节,使指针指在欧姆零刻度线处.(4)根据欧姆表读数原则可知欧姆表的读数为【点睛】要熟练万用表的使用规则,并且要注意在换挡时一定要欧姆调零.3.听说水果也能做电池,某兴趣小组的同学将一个土豆做成水果电池.同学们通过查阅资料知道这种水果的电动势大约1伏左右,又用量程为0~3V、内阻约50kΩ的伏特表测其两极时读数为0.96V.可是当他们将四个这样的水果电池串起来给标为3V,0.5A的小灯泡供电时,灯泡并不发光.检查灯泡、线路均没有故障,而用伏特表直接测量其电压确实能达到3V多.(1)据你分析,出现这种现象的原因应当是:__________(不要求写分析、推导过程).(2)为了能尽可能准确测定水果电池的电动势和内阻,若实验室除了导线和开关外,还有以下一些器材可供选择:A.电流表A1(量程为0~0.6A ,内阻为1Ω)B.灵敏电流表A2(量程为0~0.6mA ,内阻为800Ω)C.灵敏电流表A3(量程为0~300μA ,内阻未知)D.滑动变阻器R1(最大阻值约10Ω)E.滑动变阻器R2(最大阻值约2kΩ)F.变阻箱(0~9999Ω)①实验中应选择的器材是_____________(填器材前的字母代号).②在方框中画出应采用的电路________.【答案】水果电池的内阻太大. BF【解析】 【分析】 【详解】(1)根据闭合电路欧姆定律可得电路电流EI R r=+,要想灯泡发光,就得有较大电流,只是电动势高还不行,必须内阻也小才行,所以灯泡不亮的原因是水果电池的内阻太大. (2)①本题中电流表1A 量程太大,3A 内阻未知,所以选2A 较好;由于没有电压表,所以选电阻箱将电路串联,利用闭合电路欧姆定律可以测出内阻.故实验中应选择的器材是B 、F .②实验电路如下图【点睛】测电源电动势和内阻的方法虽然各不相同,但是都是根据闭合电路欧姆定设计的.4.某同学有个超霸(GP )9V 电池如图甲所示,他欲测量该电池的电动势和内阻(内阻约为25Ω)。
2021年高考物理二轮复习练案:第6讲 功能关系和能量守恒 Word版
2021年高考物理二轮复习练案:第6讲功能关系和能量守恒Word版----fd77ca6c-6ea2-11ec-b6e5-7cb59b590d7d2021年高考物理二轮复习练案:第6讲功能关系和能量守恒word版专题二第6课限时:40分钟一、多项选择题(该题共有8个子题,其中1~4个是单选题,5~8个是多选题)1.(2021山东省潍坊一模)如图所示,在竖直面内固定一光滑的硬质杆ab,杆与水平面的夹角为θ,在杆的上端a处套一质量为m的圆环,圆环上系一轻弹簧,弹簧的另一端固定在与a处在同一水平线上的o点,o、b两点处在同一竖直线上。
由静止释放圆环后,圆环沿杆从a运动到b,在圆环运动的整个过程中,弹簧一直处于伸长状态,则下列说法正确的是导学号86084121(d)a、环的机械能保持不变。
B.弹簧总是对环产生负功。
C.弹簧的弹性势能逐渐增加d.圆环和弹簧组成的系统机械能守恒【分析】根据几何关系,当环和o点之间的连接线垂直于杆时,弹簧的长度最短,弹簧的弹性势能最小。
因此,在从a到C的过程中,弹簧对环做正功,而在从C到B的过程中,弹簧对环做负功,因此环的机械能发生变化。
所以a是错的,B是错的;当环与o点的连线与杆垂直时,弹簧的长度最短,弹簧的弹性势能最小,所以弹簧的弹性势能先减小后增大。
故c错误;在整个的过程中只有重力和弹簧的弹力做功,所以圆环和弹簧组成的系统机械能守恒。
故d正确;故选d。
2.(广东肇庆2022年第二次模拟考试)如图所示,一个长球和一个轻杆分别用一个小球a和B固定,两个球都是m,两个球的半径忽略不计,杆的长度为L。
首先将杆AB垂直放置在垂直壁上,轻轻1振动小球b,使小球b在水平面上由静止开始向右滑动,当小球a沿墙下滑距离为l 时,二不计摩擦。
下列说法正确的是导学号86084122(c)a、球a和B的速度是1gl213gl2b.小球a和b的速度都为十一c.小球a的速度为3gl,小球b的速度为gl二千二百一十一d.小球a的速度为gl,小球b的速度为3gl二百二十一[解析]当小球a沿墙下滑距离为l时,设此时a球的速度为va,b球的速度为vb。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.【浙江省2017普通高校招生选考科目考试物理试题】火箭发射回收是航天技术的一大进步。
如图所示,火箭在返回地面前的某段运动,可看成先匀速后减速的直线运动,最后撞落在地面上。
不计火箭质量的变化,则()A.火箭在匀速下降过程中机械能守恒B.火箭在减速下降过程中携带的检测仪器处于失重状态C.火箭在减速下降过程中合力做功,等于火箭机械能的变化D.火箭着地时,火箭对地的作用力大于自身的重力2.【安徽省2019届高三10月份联考】质量为m的子弹,以水平速度射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是()A.子弹动能的减少量与木块动能增加量相等B.阻力对子弹做的功与子动能的变化量相等C.子弹克服阻力做的功与子弹对木块做的功相等D.子弹克服阻力做的功等于系统克服摩擦所产生的内能3.【安徽省阜阳三中2018-2019学年高三考试】如图所示,重10 N的滑块在倾角为30°的斜面上,从a点由静止下滑,到b点接触到一个轻弹簧.滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点,已知ab=0.8 m,bc=0.4 m,那么在整个过程中()A.滑块滑到b点时动能最大B.滑块动能的最大值是6 JC.从c到b弹簧的弹力对滑块做的功是6 JD.滑块整个过程机械能守恒一、单选题十二机械能守恒定律、功能关系与能量4.【江苏省姜堰中学2017-2018学年度高考模拟】如图所示,半径为R的金属环竖直放置,环上套有一质量为m的小球,小球开始时静止于最低点。
现给小球一冲击,使它以初速度开始运动。
小球运动到环的最高点时与环恰无作用力,小球从最低点运动到最高点的过程中()A.小球机械能守恒B.小球在最低点时对金属环的压力是6mgC.小球在最高点时,速度为0D.小球机械能不守恒,且克服摩擦力所做的功是0.5mgR。
5.【全国市级联考2017-2018学年高考调研】如图所示,倾角为、长度为的光滑固定斜面,其底端与长木板上表面等高,原来静止在光滑水平地面上,左端与斜面接触但不粘连,斜面底端与的上表面接触处圆滑。
一可视为质点的小滑块从斜面顶端处由静止开始下滑,最终刚好未从上滑下。
已知、的质量相等, 与上表面间的动摩擦因数,重力加速度取。
()A.在斜面上运动的时间为B.在上滑动过程中,系统动量和机械能均守恒C.的最终速度为D.长木板的长度为二、多选题6.【安徽省皖南八校2019届高三10月份联考物理】如图甲所示,水平传送带始终以恒定速率v1向右运行,质量为m的物块,以v2的初速度从与传送带等高的光滑水平地面上的A处向左滑入传送带,若从物块滑上传送带开始计时,物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示,已知v2>v1则()A.t1时刻,物块离A处的距离达到最大B.t2时刻,物块相对传送带滑动的距离达到最大C.0-t3时间内,物块一直受到方向向右的摩擦力D.t1—t2时间内,由于带动物块电动机多做的功为mv127.【湖北省三市2017-2018学年高三联考】如图所示,小球从高处下落到竖直放置的轻弹簧上,在将弹簧压缩到最短的整个过程中,下列关于小球和弹簧的能量叙述中正确的是()A.小球的机械能守恒B.弹簧的弹性势能增大C.小球刚接触弹簧时,动能最大D.小球和弹簧组成的系统机械能守恒8.【辽宁省2017-2018学年高三大联考】质量为的子弹,以水平速度射入静止在水平面上质量为的木块,并留在其中.在此过程中,木块的动能增加了,那么此过程产生的内能可能为()A.B.C.D.三、解答题半部AB是一长为2R的竖直细管,上半部BC是半径为R的四分之一圆弧弯管,管口C处切线水平,AB管内有原长为R、下端固定的轻质弹簧。
在弹簧上端放置一粒质量为m的鱼饵,解除锁定后弹簧可将鱼饵弹射出去。
投饵时,每次总将弹簧长度压缩到0.5R后锁定,此时弹簧的弹性势能为6mgR(g为重力加速度)。
不计鱼饵在运动过程中的机械能损失,求:(1)鱼饵到达管口C时的速度大小v1。
(2)鱼饵到达管口C时对管子的作用力大小和方向。
(3)已知地面比水面高出1.5R,若竖直细管的长度可以调节,圆弧弯道管BC可随竖直细管一起升降。
求鱼饵到达水面的落点与AB所在竖直线OO'之间的最大距离Lmax。
10.【全国百强校2019届高三调研考试】如图,轻质弹簧左端固定,右端连接一个光滑的滑块A,弹簧的劲度系数,弹簧的弹性势能表达式为(为弹簧的形变量)。
滑块B靠在A的右侧与A不连接,A、B滑块均可视为质点,质量都为,最初弹簧的压缩量为,由静止释放A、B,A到平台右端距离,平台离地高为,在平台右侧与平台水平相距S处有一固定斜面,斜面高为,倾角。
若B撞到斜面上时,立刻以沿斜面的速度分量继续沿斜面下滑。
B与水平面和斜面之间动摩擦因数均为0.5,若B在斜面上滑动时有最大的摩擦生热,求:(1)B离开平台的速度等于多少?(2)斜面距平台右端距离S为多少?(3)B滑到斜面底端的速度为多大?答案与解析一、单选题1.【解析】火箭匀速下降过程中.动能不变.重力势能减小,故机械能减小,A错误:火箭在减速下降时.携带的检测仪器受到的支持力大于自身重力力.故处在超重状态.B错误.由功能关系知.合力做功等于火箭动能变化.而除重力外外的其他力做功之和等于机械能变化,故C错误。
火箭着地时.加速度向上.所以火箭对地面的作用力大子自身重力,D正确。
【答案】D2.【解析】A. 由能量转化可知,子弹动能的减少量等于木块动能增加量和系统增加的内能之和,故A错误;B. 对于子弹来说只有阻力做功,其效果就是子弹动能减少,子弹动能的减少和阻力对子弹所做的功数值上相等,所以B正确;C. 子弹对木块做的功等于木块的动能,小于子弹克服阻力做的功,故C错误;D. 子弹克服阻力做功使损失的动能一部分转化成了系统的内能,一部分转化成了木块的动能,故D错误。
故选:B。
【答案】B3.【解析】当滑块的合力为0时,滑块速度最大,设滑块在b和c之间的d点时合力为0,速度最大,选项A 错误;滑块从a到d,运用动能定理得:mgh ad+W弹=E Kd-0,mgh ad<6J,W弹<0,所以E Kd<6J,故B错误。
滑块从a到c,运用动能定理得:mgh ac+W弹′ -0,代入数据解得:W弹′ -6J。
则从c到b弹簧的弹力对滑块做的功也是6 J,故C正确。
整个过程中弹簧、滑块与地球组成的系统机械能守恒,没有与系统外发生能量转化;滑块在整个过程中机械能不守恒。
故D错误。
故选C。
【答案】C4.【解析】小球在最高点与环作用力恰为0时,设速度为v,则mg=m,解得:v=;从最低点到最高点,由动能定理得:-mg2R-W克=mv2-mv02;解得:W克=0.5mgR,所以机械能不守恒,且克服摩擦力所做的功是0.5mgR,故AC错误,D正确。
在最低点,根据向心力公式得:N-mg=,解得:N=7mg,故B错误;故选D。
【答案】D5.【解析】斜面长x=3m,故小滑块下滑的加速度,下滑时间为,A 错误;A在B上运动过程中,存在摩擦力,故机械能不守恒,但A和B组成的系统动量守恒,B错误;下滑到底端时的速度为,在水平面上运动过程中,A和B系统动量守恒,故,解得两者最终使得为,C正确;最终A刚好未从B上滑下,说明A滑到B最右端时,两者速度相等,设木板B的长度为L,则根据能量守恒定律可得,解得,D 错误。
【答案】C6.【解析】A 、t 1时刻小物块向左运动到速度为零,离A 处的距离达到最大,故A 正确; B 、t 2时刻前小物块相对传送带向左运动,之后相对静止,故B 正确; C 、t 2~t 3时间内小物块不受摩擦力作用,故C 错误; D 、t 1~t 2时间内,小物块在滑动摩擦动力作用下,做匀加速运动,小物块增加的动能为;设小物块的位移为x ,根据动能定理,fx=。
小物块相对传送带的位移也为x ,则系统转化成的内能为Q=f △x=;由于带动物块电动机多做的功为等于小物块增加的动能和系统产生的内能为mv 12,故D 正确;故选:ABD 。
【答案】ABD7.【解析】在将弹簧压缩到最短的整个过程中,弹簧的弹力对小球做负功,故小球的机械能不守恒,故A 错误;在压缩到最短的过程中,小球对弹簧始终做正功,故弹簧的弹性势能移植增大,故B 正确;小球从接触弹簧到将弹簧压缩到最短的过程中,弹簧的弹力逐渐增大,弹簧的弹力先小小球受到的重力,后大于重力,合力先向下后向上,所以小球先向下加速运动,后向下减速运动,所以小球的动能先变大后变小,故C 错误;对于小球从接触弹簧到将弹簧压缩到最短的过程中,小球的动能、重力势能和弹簧的弹性势能这三种形式的能量相互转化,没有与其他形式的能发生交换,也就说小球的动能、重力势能和弹簧的弹性势能之和保持不变,故D 正确;故选BD 。
【答案】BD8.【解析】设子弹的初速度为V ,射入木块后子弹与木块共同的速度为v ,木块的质量为M ,子弹的质量为m.根据动量守恒定律得:mV=(M+m)v 得,v=木块获得的动能为△E k =( )系统产生的内能为Q=- ( )所以:由于木块的质量大于子弹的质量,所以:<1,即:Q>E k =8J ,可知AB 正确,CD 错误。
故选:AB 。
【答案】AB9.【解析】(1)鱼饵到达管口C 的过程中弹簧的弹性势能转化为鱼饵的重力势能和动能,有:二、多选题三、解答题解得(2)设C处管子对鱼饵的作用力向下,大小设为F,根据牛顿第二定律有:解得由牛顿第三定律可得鱼饵对管子的作用力F′ 6mg,方向向上。
(3)设AB长度为h,对应平抛水平距离为x,由机械能守恒定律有:由平抛运动的规律得,解得当时,x的最大值则10.【解析】(1)A、B分离时,A、B的加速度相同,A、B间弹力为0对B分析:,解得对A分析::,解得弹簧伸长量时,A、B分离,由释放至A、B分离,根据能量守恒可得分离后,物体B:解得:(2)从抛出到刚落到斜面上的过程中,做自由落体运动,即,解得;在水平方向上,(3)平抛竖直分速度,B在斜面滑动有最大的摩擦生热,则B在斜面顶端滑上斜面,其沿斜面的速度为,B在斜面上:,解得情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。