数字信号处理试卷及答案6套
《数字信号处理》试题答案
一、填空题(本大题共7小题,每小题1分,共7分)1. 序列x (n) = sin(0.3πn + 0.25π),该序列的周期N 为 20 。
2. 序列x (n)存在傅里叶变换的充分条件是∑∞-∞=∞<n n x )( 。
3. 用DFT 对序列进行谱分析时,对序列截断引起主谱线向附近展宽的现象称为 频谱泄露 。
4. 全通滤波器的极点和零点是互为 共轭倒易 关系。
5. 对12点长序列x(n)做DIF-基2FFT 计算,其运算流图中每级的蝶形个数是 8个 。
6. 设计IIR 滤波器的脉冲响应不变法,不适合设计 高通、带阻 滤波器。
7. 用频率采样法设计FIR 数字滤波器,为了提高阻带衰减,可在频响间断点处内插一个或几个 采样点 。
二、判断改错题,正确打“✓”,错误打“✗”,并改错。
(本大题共4小题,每小题2分,共8分)8. 周期序列的傅里叶级数仍是周期离散的。
( ✓ )9.DIT-基2FFT 分解的基本方法是将序列x(n)按n 值前后对半分为2个序列。
( ✗ ) 修改替换:“的奇偶”10. 序列x(n)的N 点DFT 为X(k),则序列x *(n)的DFT 变换为X *(N -k)。
( ✗ ) 句尾插入:“,且X(N)=X(0)”11. 因果稳定的LTI 时域离散系统,其系统函数所有零点都必须在单位圆内。
( ✗ )修改插入:“极点”三、计算题(本大题共6小题,共42分)12.已知序列()(1)2(3),()2()(2)x n n n h n n n δδδδ=-+-=--,试计算循环卷积()()()y n x n h n =⊗,且循环卷积区间长度L=4。
(6分)解:求x(n)和h(n)的DFT :∑==34)()(n kn W n x k X k k W W 3442+=∑==34)()(n kn Wn h k H k W 24-2=求X(k)与H(k)的乘积:)()()(k X k H k Y =()k W 24-2=()k k W W 3442+k k k k W W W W 54343442--42+= k k k k W W W W 4343442--42+=k W 343=求Y(k)的反变换得: ())3(3-=n n y δ13. 若序列x (n )波形如下,且x (n )的FT 变换为X(e j ω),不直接求X(e j ω),完成下列运算:求 (1) X(e j π) = ? (2)2()?j X e d πωπω-=⎰(8分)解:(1)∵∑∑∑∞-∞=∞-∞=∞-∞=-=-==n n n nj j n x n j n n x en x e X )(]sin )[cos ()()(ππππ∴3121111)()(42=++-++-==∑-=n j n x e X π(2)由帕斯维尔定理,有∑⎰∞-∞=-=n j n x d e X 22)(2)(πωππω∴ππππωππω18)141111(2)(2)(2)(42222=+++++===∑∑⎰-=∞-∞=-n n j n x n x d e X14. 用微处理机对实序列作谱分析,要求谱分辨率F ≤100Hz ,信号最高频率为4kHz ,试确定以下各参数:(1)最小记录时间T Pmin ;(2)最大取样间隔T max ;(3)最少采样点数N min ;(4)若信号频带不变,采用基2FFT 做谱分析,求使谱分辨率提高1倍的N 值。
数字信号处理考试试题及答案
数字信号处理试题及答案一、 填空题(30分,每空1分)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散时间 信号,再进行幅度量化后就是 数字 信号。
2、已知线性时不变系统的单位脉冲响应为)(n h ,则系统具有因果性要求)0(0)(<=n n h ,系统稳定要求∞<∑∞-∞=n n h )(。
3、若有限长序列x (n )的长度为N ,h(n )的长度为M ,则其卷积和的长度L为 N+M-1。
4、傅里叶变换的几种形式:连续时间、连续频率-傅里叶变换;连续时间离散频率—傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、离散频率—离散傅里叶变换5、 序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样。
6、若序列的Fourier 变换存在且连续,且是其z 变换在单位圆上的值,则序列x (n)一定绝对可和.7、 用来计算N =16点DFT ,直接计算需要__256___次复乘法,采用基2FFT 算法,需要__32__ 次复乘法 .8、线性相位FIR 数字滤波器的单位脉冲响应()h n 应满足条件()()1--±=n N h n h 。
9. IIR 数字滤波器的基本结构中, 直接 型运算累积误差较大; 级联型 运算累积误差较小; 并联型 运算误差最小且运算速度最高。
10. 数字滤波器按功能分包括 低通 、 高通 、 带通 、 带阻 滤波器.11. 若滤波器通带内 群延迟响应 = 常数,则为线性相位滤波器。
12. ()⎪⎭⎫ ⎝⎛=n A n x 73cos π的周期为 14 13. 求z 反变换通常有 围线积分法(留数法)、部分分式法、长除法等.14. 用模拟滤波器设计IIR 数字滤波器的方法包括:冲激响应不变法、阶跃响应不变法、双线性变换法。
15. 任一因果稳定系统都可以表示成全通系统和 最小相位系统 的级联。
二、选择题(20分,每空2分)1。
数字信号处理试题及答案
清华大学数字信号处理试卷数字信号处理一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( ) A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( )2A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
(完整版)数字信号处理试卷及答案_程培青(第三版),推荐文档
《数字信号处理》试卷 A 第 6 页 ( 共 6 页 )
数字信号处理基础 试卷答案及评分标准
一、 填空题:(共 28 分,每空 2 分)
7
建议收藏下载本文,以便随时学习! (1)2y(n),y(n-3) (2)f≥2fs (3)N,抽样 (4) X (k) xnWNnk n0
(5)递归型
(6)8
Z-1 0.5 -1.4
Z-1 -0.8 1
Z-1
Z-1
-0.8
1
3、
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格
复加所需时间T1 0.5106 N N 1 0.5106 512 511 0.130816s
所以T T1 T2 1.441536s
2、用 FFT 计算
复乘所需时间
T1
5 106
N 2
log2
N
5 106
512 2
log2
512
0.01152s
复加所需时间T2 0.5106 N log2 N 0.5106 512 log2 512 0.002304s
3、请画出 8 点的按频率抽取的(DIF)基-2 FFT 流图,要求输入自然数顺序,输出倒 位序。
2、用级联型结构实现以下系统函数,试问一共能构成几种级联型网络,并画出结构 图。
4Z 1Z 2 1.4Z 1 H (z) Z 0.5Z 2 0.9Z 0.8
专业班级:
学院名称
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格
。
A. 1
B.δ(w)
C. 2πδ(w)
数字信号处理期末试卷(含答案)全
数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。
A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。
A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。
A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。
数字信号处理试题及答案
数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。
A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。
A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。
答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。
答案:DFT三、简答题1. 简述数字滤波器的基本原理。
答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。
它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。
2. 解释什么是窗函数,并说明其在信号处理中的作用。
答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。
在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。
四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。
答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。
2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。
答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。
答案:数字信号处理在现代通信系统中扮演着至关重要的角色。
数字信号处理期末试卷(含答案)
数字信号处理期末试卷(含答案)填空题(每题2分,共10题)1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、 2、)()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。
5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。
6、FFT 利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。
9、数字滤波网络系统函数为∑=--=NK kk z a z H 111)(,该网络中共有 条反馈支路。
10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。
一、选择题(每题3分,共6题)1、 1、 )63()(π-=n j en x ,该序列是 。
A.非周期序列B.周期6π=NC.周期π6=ND. 周期π2=N2、 2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
数字信号处理试题和答案
二.选择填空题
1、δ(n)的 z 变换是 A 。
A. 1
B.δ(w)
C. 2πδ(w)
D. 2π
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率 fs
与信号最高频率 fmax 关系为: A 。
A. fs≥ 2fmax
A.h(n)=δ(n)
B.h(n)=u(n)
C.h(n)=u(n)-u(n-1)
D.h(n)=u(n)-u(n+1)
21.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括( A )。
A.单位圆
B.原点
C.实轴
D.虚轴
22.已知序列 Z 变换的收敛域为|z|<1,则该序列为( C )。
A.有限长序列
。
A. 2y(n),y(n-3) B. 2y(n),y(n+3)
C. y(n),y(n-3)
D. y(n),y(n+3)
9、用窗函数法设计 FIR 数字滤波器时,加矩形窗时所设计出的滤波器,其过渡带
比加三角窗时
,阻带衰减比加三角窗时
。
A. 窄,小
B. 宽,小
C. 宽,大
D. 窄,大
10、在 N=32 的基 2 时间抽取法 FFT 运算流图中,从 x(n)到 X(k)需 B 级蝶形运
B。
A. N/2
B. (N-1)/2
C. (N/2)-1
D. 不确定
7、若正弦序列 x(n)=sin(30nπ/120)是周期的,则周期是 N= D 。
A. 2π
B. 4π
C. 2
数字信号处理及答案
《数字信号处理》考试试卷(附答案)一、填空(每空 2 分 共20分)1.连续时间信号与数字信号的区别是:连续时间信号时间上是连续的,除了在若干个不连续点外,在任何时刻都有定义,数字信号的自变量不能连续取值,仅在一些离散时刻有定义,并且幅值也离散化㈠。
2.因果系统的单位冲激响应h (n )应满足的条件是:h(n)=0,当n<0时㈡。
3.线性移不变系统的输出与该系统的单位冲激响应以及该系统的输入之间存在关系式为:()()*()()()m y n x n h n x m h n m ∞=-∞==-∑,其中x(n)为系统的输入,y(n)为系统的输出,h(n)w 为系统的单位冲激响应。
㈢。
4.若离散信号x (n )和h (n )的长度分别为L 、M ,那么用圆周卷积)()()(n h n x n y N O=代替线性卷积)()(n x n y l =*h (n)的条件是:1N L M ≥+-㈣。
5.如果用采样频率f s = 1000 Hz 对模拟信号x a (t ) 进行采样,那么相应的折叠频率应为 500 Hz ㈤,奈奎斯特率(Nyquist )为1000Hz ㈥。
6.N 点FFT 所需乘法(复数乘法)次数为2N ㈦。
7.最小相位延迟系统的逆系统一定是最小相位延迟系统㈧。
8.一般来说,傅立叶变换具有4形式㈨。
9.FIR 线性相位滤波器有4 种类型㈩。
二、叙述题(每小题 10 分 共30分) 1.简述FIR 滤波器的窗函数设计步骤。
答:(1)根据实际问题所提出的要求来确定频率响应函数()j d H e ω;(2.5分)(2)利用公式1()()2j j d d h n H e e d πωωπωπ-=⎰来求取()d h n ; (2.5分)(3)根据过渡带宽及阻带最小衰减的要求,查表选定窗的形状及N 的大小;(2.5分)(4)计算()()(),0,1,...1d h n h n w n n N ==-,便得到所要设计的FRI 滤波器。
信号处理试题及答案
信号处理试题及答案一、单项选择题(每题2分,共10分)1. 在数字信号处理中,离散傅里叶变换(DFT)的频域采样间隔为:A. 1/NB. NC. 1/TD. T答案:A2. 信号的傅里叶变换是将信号从时域变换到:A. 频域B. 时域C. 空间域D. 相位域答案:A3. 下列哪个不是线性时不变(LTI)系统的特性?A. 可加性B. 同态性C. 非时变性D. 因果性答案:C4. 在信号处理中,滤波器的目的是:A. 放大信号B. 衰减噪声C. 改变信号的频率D. 以上都不是答案:B5. 采样定理指出,为了无失真地重建一个连续信号,采样频率至少应为:A. 信号最高频率的两倍B. 信号最低频率的两倍C. 信号最高频率的一半D. 信号最低频率的一半答案:A二、填空题(每题2分,共10分)1. 一个连续时间信号的拉普拉斯变换是 \( F(s) \),其逆变换是________。
答案:\( f(t) = \mathcal{L}^{-1}\{F(s)\} \)2. 信号 \( x(t) \) 通过一个理想低通滤波器后,其频谱 \( X(f) \) 被限制在 \( |f| \leq \) ________。
答案:\( \frac{B}{2} \)3. 傅里叶级数展开的系数 \( c_n \) 表示信号的 ________。
答案:\( n \) 次谐波分量4. 离散时间信号的Z变换定义为 \( X(z) = \sum_{n=-\infty}^{\infty} x[n] \cdot z^{-n} \),其中 \( z \) 是一个复数,\( x[n] \) 是信号的 ________。
答案:离散样本5. 一个信号的功率谱密度(PSD)是其傅里叶变换的 ________。
答案:平方的绝对值三、简答题(每题5分,共15分)1. 请简述什么是信号的频谱分析。
答案:频谱分析是一种分析信号在频域中的表现的方法,它可以帮助我们理解信号的频率成分及其分布情况。
数字信号处理试卷及答案
数字信号处理试卷及答案一、选择题(共20题,每题2分,共40分)1.在数字信号处理中,什么是采样定理?–[ ] A. 信号需要经过采样才能进行数字化处理。
–[ ] B. 采样频率必须是信号最高频率的两倍。
–[ ] C. 采样频率必须是信号最高频率的四倍。
–[ ] D. 采样频率必须大于信号最高频率的两倍。
2.在数字信号处理中,离散傅立叶变换(DFT)和离散时间傅立叶变换(DTFT)之间有什么区别?–[ ] A. DFT和DTFT在计算方法上有所不同。
–[ ] B. DFT是有限长度序列的傅立叶变换,而DTFT是无限长度序列的傅立叶变换。
–[ ] C. DFT只能用于实数信号的频谱分析,而DTFT可以用于复数信号的频谱分析。
–[ ] D. DFT和DTFT是完全相同的。
3.在数字滤波器设计中,零相移滤波器主要解决什么问题?–[ ] A. 相位失真–[ ] B. 幅度失真–[ ] C. 时域响应不稳定–[ ] D. 频域响应不稳定4.数字信号处理中的抽样定理是什么?–[ ] A. 抽样频率必须大于信号最高频率的两倍。
–[ ] B. 抽样频率必须是信号最高频率的两倍。
–[ ] C. 抽样频率必须是信号最高频率的四倍。
–[ ] D. 信号频率必须是抽样频率的两倍。
5.在数字信号处理中,巴特沃斯滤波器的特点是什么?–[ ] A. 频率响应为低通滤波器。
–[ ] B. 具有无限阶。
–[ ] C. 比其他类型的滤波器更加陡峭。
–[ ] D. 在通带和阻带之间有一个平坦的过渡区域。
…二、填空题(共5题,每题4分,共20分)1.离散傅立叶变换(DFT)的公式是:DFT(X[k]) = Σx[n] * exp(-j * 2π * k * n / N),其中X[k]表示频域上第k个频率的幅度,N表示序列的长度。
2.信号的采样频率为fs,信号的最高频率为f,根据采样定理,信号的最小采样周期T应满足:T ≤ 1 / (2* f)3.时域上的离散信号可以通过使用巴特沃斯滤波器进行时域滤波。
数字信号处理试题与答案_计算题
《数字信号处理》计算型试题解答A 卷三、(15分)已知LSI 离散时间系统的单位抽样响应为:⑴ 求该系统的系统函数)(z H ,并画出零极点分布图; ⑵ 写出该系统的差分方程。
解:⑴ 系统的系统函数)(z H 是其单位抽样响应()h n 的z 变换,因此:11111071113333():111111211242424z z z z z H z ROC z z z z z z z ---⎛⎫+-+ ⎪⎝⎭=+==>⎛⎫⎛⎫⎛⎫⎛⎫------ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 零点:1,03z =- 极点:11,24z = 零极点分布图:()10171()3234n n h n u n ⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⑵ 由于()1112111111()333111()1114824z z Y z H z X z z z z z ------++===⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭所以系统的差分方程是311()(1)(2)()(1)483y n y n y n x n x n --+-=+-四、(15分) 已知序列()x n 的z 变换为求其可能对应的几种不同ROC 的z 反变换。
Im[]j z 2()341zX z z z =-+解:1121211()34134(1)(3)z z z X z z z z z z z ------===-+-+-- 设11()13A BX z z z--=+-- 有111131(1)()23(3)()2z z A z X z B z X z -=-==-==-=-故111111()121213X z z z --⎛⎫⎪⎛⎫=- ⎪ ⎪-⎝⎭ ⎪-⎝⎭ 由于()X z 有两个极点:11,3z z ==。
所以()X z 的三个不同ROC 分别为:ROC1:z 11ROC2:z 131ROC3:z 3><<<于是可得()X z 的三个不同的ROC 对应的序列分别为:111ROC1:z 1()()()2231111ROC2:z 1()(1)()32231111ROC3:z ()(1)(1)3223nnn x n u n u n x n u n u n x n u n u n ⎛⎫>=- ⎪⎝⎭⎛⎫<<=---- ⎪⎝⎭⎛⎫<=---+-- ⎪⎝⎭五、(10分)已知一因果系统差分方程为()3(1)()y n y n x n +-=,求:⑴ 系统的单位脉冲响应()h n ; ⑵ 若2()()()x n n n u n =+,求()y n 。
数字信号处理考试试卷(附答案)
数字信号处理考试试卷(附答案)一、 填空题(每题2分,共10题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是时域离散信号,再进行幅度量化后就是数字信号。
2、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为)]()([21)(*n x n x n x e -+=。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L 8≥时,二者的循环卷积等于线性卷计。
5、用来计算N =16点DFT ,直接计算需要_________(N 2 =16×16=256)次复乘法,采用基2FFT 算法,需要________(NN 2log 2=8×4=32)次复乘法,运算效率为___(NNNN N 222log 2log 2==32÷4=8) 6、FFT 利用(knN W 的对称性,周期性和特殊值减少乘法运算次数),(将较大N 点DFT 分解为若干小点DFT 的组合)来减少运算量 7、数字信号处理的三种基本运算是:(乘法,加法,单位延迟)8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性(关于πω=奇对称)相位有何特性?(A 类线性相位ωωωθ5.221)(-=--=N ) 9、数字滤波网络系统函数为∑=--=NK kk z a z H 111)(,该网络中共有 N 条反馈支路。
10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是11.0<ks e(取s T 1.0=)。
二、 选择题(每题3分,共6题)1、 )63()(π-=n j en x ,该序列是A 。
(完整word版)数字信号处理试卷及答案(word文档良心出品)
A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。
三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
数字信号处理试卷及答案
A一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。
A.非周期序列B.周期6π=NC.周期π6=ND. 周期π2=N2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列 二、 填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和 四种。
三、1)(-≤≥⎩⎨⎧-=n n b a n x nn求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
(8分)B一、单项选择题(本大题12分,每小题3分)1、)125.0cos()(n n x π=的基本周期是 。
数字信号处理试题和答案
一. 填空题1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。
3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。
4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。
5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。
6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。
7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。
8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。
9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。
10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。
12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)=x((n-m))N R N(n)。
13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。
14.线性移不变系统的性质有交换率、结合率和分配律。
15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。
16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。
17.如果通用计算机的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此计算机上计算210点的基2 FFT需要10 级蝶形运算,总的运算时间是______μs。