八年级数学线段、角的轴对称性3
八年级数学线段和角的轴对称性3
![八年级数学线段和角的轴对称性3](https://img.taocdn.com/s3/m/d949ff6b7fd5360cbb1adb06.png)
B
C
结论
内容:对任意三角形,存在一个点,这个点到三 角形的三边距离相等;这个点是任意两个内角的 平分线的交点。
解: BP平分ABC PD AB PF BC PD PF
CP平分ACB PE AC PF BC PE PF PD PE PF
武汉汗蒸房 / xqj219qox 汗蒸房装修 汗蒸房尺寸 汗蒸房安装 我的第一个老师——周老夫子,正因为有回给我们们拿书,所骑公共汽车与一台货车相互撞,从未以后继而不要想着所高一教书了。 兴奋的是,周老夫子目前已无大碍。曾经,对于我们一帮小鬼不应该顽皮在哪个地步,给周老夫子起的外号是“机器狼”。到目前, 我则是仿佛相当明晰,难的是对于我们本来不情愿说明别的事了,讲起“机器狼”,有不少说不出的关于高一的快乐回忆事情的能力。 在大约三四年级的就当前,又来了随机组合老夫子,他姓吴,如此对于我们给吴老夫子的外号为“老吴“。 有名村,正因为刚下过几天的雨,路并不好走。尽管如此,也反对不到我的执行。是怎么样进行工作的,经满了好多块麦地,麦子曾 经开端泛黄,收割的季节行将抵达。对我而言,那一条路再熟习不满了。上高一的就当前,可惜时常来回走。走在那一条熟习的家里, 大多数过往的点滴涌上了我的心头,我的思绪开端搞得会有些紊乱。但我很明显,目前不是认真思考别的事的就当前,接着我又一不 小心就很轻易苏醒了起来。我应该,我也置信,在新历史的某某天,我肯定有时去回忆起和回想每天那么多的原创内容发出来供我们 转载多的曾经与过往,我肯定让在下有充裕的时间和精力去回味和领悟、领会、顿悟、明白、感觉。
角平分线的性质定理
内容:角平分线上的点到角的两边距离相等; 如何证明?
解: 过点P作PC OA, PD OB PC OA, PD OB PCO PDO ___ OP平分AOB AOP _____ 在 COP和 DOP中 PCO PDO AOP _____ OP OP COP DOP PC PD
2.4 线段、角的轴对称性 课件 苏科版数学八年级上册
![2.4 线段、角的轴对称性 课件 苏科版数学八年级上册](https://img.taocdn.com/s3/m/8d07aa4fa200a6c30c22590102020740be1ecd92.png)
例 3 在铁路a的同侧有两个工厂A和B,要在铁路边建一货 场C,使A、B两个工厂到货场C的距离相等,试在图 2.4-6 中作出点C.
解题秘方:连接AB,作出线段AB的垂直平分线即可. 解:连接AB,作线段AB的垂直平分线交直线a于点C. 如图2.4-6, 点C即为所求.
方法点拨
尺规作图时要注意虚实线,即辅助性的线 用虚线,所要画的线用实线,同时要注意保留 作图痕迹.
3. 角平分线的判定定理与性质定理的关系 (1)如图2.4-9,都与距离有关,条件PD⊥OA,PE⊥OB 都具备; (2)点在角的平分线上 性质 (角的内部的)点到角两边的 判定 距离相等.
4. 拓展 三角形三个内角的平分线交于一点且这点到三边 的距离相等.
特别提醒
1. 使用该判定定理的前提是这个点必须在角的内部. 2. 角平分线的判定是由两个条件(垂线,线段相等) 得到一个结论(角平分线). 3. 角平分线的判定定理是证明两角相等的重要依据, 它比利用三角形全等证两角相等更方便快捷.
特别解读
1. 线段垂直平分线的性质中的“ 距离”是 “该点与这条线段两个端点的距离”.
2. 用线段垂直平分线的性质可直接证明线段相 等,不必再用三角形全等来证明,因此它为证明 线段相等提供了新方法.
例 1 如图2.4-2,在△ABC中,AB边的垂直平分线DE,分 别与AB边和AC边交于点D和点E,BC边的垂直平分
解题秘方:由线段垂直平分线的判定可知,证明 AD所在的直线上的点A和点D到线段EF的两个端 点的距离相等即可.
解:线段AD所在的直线是线段EF的垂直平分线. 证明:如图2.4-4,连接DE、DF. ∵ AD为∠BAC的平分线,∴∠EAD=∠FAD. 在△AED和△AFD中,
AE=AF, ቐ∠EAD=∠FAD,∴△AED≌△AFD. ∴ DE=DF.
人教版八年级数学上册《轴对称》优秀课件3
![人教版八年级数学上册《轴对称》优秀课件3](https://img.taocdn.com/s3/m/7c464012a7c30c22590102020740be1e650ecc3c.png)
求BC的长
M
N
B
C
2.如图,在Rt△ABC中,∠C=90,DE是AB的垂 直平分线,连接AE,∠CAE:∠DAE=1:2,
求∠B的度数。
C E
B
D
A
3、 如图,AD⊥BC,BD=DC,点C在AE 的垂直平分线上,AB、AC 、CE 的长度 有什么关系?AB+BD 与DE有什么关系?
AB=AC=CE AB+BD=DE
变式:将边换成角(口答)
4、如图,在△ABC中 ,AB=AC,点D在AC上,且 BD=BC=AD,
(1)写出△ABC中相等的线段和相等的角.
(2)求△ABC中∠A的度数.
A
D
B
C
5、趣味数学:
如图:点B、C、D、E、F在∠MAN的边上, ∠A=15°,AB=BC=CD=DE=EF,求∠ MEF的 度数。
A
(提示:过D作DG∥AE交BC于G 证△DFG≌△EFC即可)
D
B
GF
C
E
12、已知:如图,在等边△ABC中,D、E分别为BC、AC上 的点,且AE=CD,连结AD、BE交于点P,作BQ⊥AD于Q, 求证:
(1)∠APE=60°
(2)BP=2PQ.
证明:(1)∵△ABC是等边三角形,
A
∴AB=AC=BC,∠C=∠ABC=60°,
(1)正面照镜子(左右对称——只改变左右) (2)水中倒影(上下对称——上下、左右都改变)
我思,我进步 1
4、下列图形中,不是轴对称图形的是( C )
A角
B 线段
C 任两边都不相等的三角形 D 等边三角形
5、下列图形中,只有一条对称轴的是( C )
八年级数学教案:线段、角的轴对称性(全4课时)
![八年级数学教案:线段、角的轴对称性(全4课时)](https://img.taocdn.com/s3/m/af53dd1ebfd5b9f3f90f76c66137ee06eff94e36.png)
课时NO: 主备人:审核人用案时间:年月日星期教学课题 2.4 线段、角的轴对称性(2)教学目标1.探索并证明线段垂直平分线的性质定理的逆定理,会用尺规作线段的垂直平分线;2.能利用所学知识提出问题并解决实际问题;3.经历探索线段的轴对称的过程,在“操作——探究——归纳——证明”的过程中培养思考的严谨性和表达的条理性.教学重点利用线段的轴对称性探索线段垂直平分线的性质定理的逆定理.教学难点灵活运用线段垂直平分线的性质解决实际问题.教学方法教具准备教学课件教学过程个案补充一.自主先学:实践探索一在一张薄纸上画一条线段AB,你能找出与线段AB的端点A、B距离相等的点吗?这样的点有多少个?实践探索二如果一个点在一条线段的垂直平分线上,那么这个点到这条线段两端的距离相等.反过来,如果一个点到一条线段的两端的距离相等,那么这个点在这条线段的垂直平分线上吗?如图2-21(1),若点Q在线段AB上,且QA=QB,则Q是线段AB的中点,则点Q在线段AB的垂直平分线上.如图2-21(2),若点Q是线段AB外任意一点,且QA=QB,那么点Q在线段AB的垂直平分线上吗?为什么?通过上述探索,你得到了什么结论?分析:全等三角形的判定与性质,线段垂直平分线的性质五.小结与反思:课外作业:布置作业板书设计教后札记实践探索四如果任意一个点在角平分线上,那么这个点到这个角的两边距离相等.反过来,结合上节课所学,你有什么猜想?如图2-26,若点Q 在∠AOB 内部,QD ⊥OA ,QE ⊥OB ,且QD =QE ,点Q 在∠AOB 的角平分线上吗?为什么?通过上述探索,你得到了什么结论?二.探究交流如图,△ABC 中,P 是角平分线AD ,BE 的交点。
求证:点P 在∠C 的平分线上。
三.交流展示OAB Q DE 2-26如图,AD∥BC,CD⊥AD,AE平分∠BAD,且E是DC的中点,EF⊥AB 于点F,判断AD、BC与AB之间的数量关系并说明理由。
苏科版数学八年级上册2.4《线段 角的轴对称性》教学设计1
![苏科版数学八年级上册2.4《线段 角的轴对称性》教学设计1](https://img.taocdn.com/s3/m/d77c7077182e453610661ed9ad51f01dc28157e1.png)
苏科版数学八年级上册2.4《线段角的轴对称性》教学设计1一. 教材分析《苏科版数学八年级上册2.4《线段角的轴对称性》》这一节主要介绍了线段和角的轴对称性质。
通过这一节的学习,学生可以了解线段和角的轴对称性质,并学会如何运用这些性质解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在学习这一节之前,已经学习了平面几何的基本概念,如点、线、角等,并掌握了一定的几何证明方法。
然而,对于轴对称性质的理解和运用,部分学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导,帮助学生理解和掌握轴对称性质。
三. 教学目标1.了解线段和角的轴对称性质,并能熟练运用这些性质解决实际问题。
2.培养学生的空间想象能力和逻辑思维能力。
3.提高学生解决几何问题的能力,培养学生的数学素养。
四. 教学重难点1.线段和角的轴对称性质的理解和运用。
2.轴对称性质在几何证明中的应用。
五. 教学方法1.采用直观演示法,通过实物和几何模型,让学生直观地感受轴对称性质。
2.运用讲解法,引导学生理解轴对称性质的内涵,并学会如何运用这些性质解决实际问题。
3.采用案例分析法,分析轴对称性质在几何证明中的应用,提高学生解决问题的能力。
4.运用练习法,巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备相关的几何模型和实物,如线段、角等。
2.准备PPT,展示相关的例题和练习题。
3.准备黑板,用于板书解题过程和几何证明。
七. 教学过程1.导入(5分钟)教师通过实物和几何模型,引导学生观察和思考轴对称性质。
例如,拿出一个矩形和一个圆形,让学生观察它们的轴对称性质。
2.呈现(10分钟)教师通过PPT呈现线段和角的轴对称性质的定义和定理,并用几何模型进行解释。
同时,给出一些例题,让学生初步了解轴对称性质的应用。
3.操练(10分钟)学生独立完成PPT上的练习题,巩固对轴对称性质的理解。
苏科版数学八年级上册2.4《线段 角的轴对称性》教学设计2
![苏科版数学八年级上册2.4《线段 角的轴对称性》教学设计2](https://img.taocdn.com/s3/m/8a136afed0f34693daef5ef7ba0d4a7303766c03.png)
苏科版数学八年级上册2.4《线段角的轴对称性》教学设计2一. 教材分析《苏科版数学八年级上册2.4《线段角的轴对称性》》这一节主要让学生理解线段和角的轴对称性质,学会运用轴对称性质解决实际问题。
教材通过丰富的实例,引导学生探究线段和角的轴对称性质,培养学生的动手操作能力和抽象思维能力。
二. 学情分析学生在七年级已经学习了轴对称的概念,对轴对称有了初步的认识。
但是,对于线段和角的轴对称性质,他们可能还比较陌生。
因此,在教学过程中,需要通过大量的实例和动手操作,让学生加深对线段和角的轴对称性质的理解。
三. 教学目标1.理解线段和角的轴对称性质。
2.学会运用轴对称性质解决实际问题。
3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.线段和角的轴对称性质的理解和运用。
2.如何引导学生发现和总结轴对称性质。
五. 教学方法1.实例教学:通过丰富的实例,让学生直观地感受线段和角的轴对称性质。
2.动手操作:让学生亲自动手操作,发现和总结线段和角的轴对称性质。
3.小组讨论:让学生分组讨论,培养学生的合作意识和沟通能力。
六. 教学准备1.准备相关的实例和图片。
2.准备一些线段和角的模型。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一些生活中的实例,如剪纸、折叠等,引导学生回顾轴对称的概念。
然后,提出本节课的主要学习内容:线段和角的轴对称性质。
2.呈现(10分钟)呈现一些线段和角的轴对称的实例,让学生直观地感受线段和角的轴对称性质。
同时,引导学生发现和总结线段和角的轴对称性质。
3.操练(10分钟)让学生分组讨论,每组选择一个线段或角,找出它的轴对称线,并动手操作验证。
然后,各组汇报自己的发现,全班交流。
4.巩固(10分钟)出示一些练习题,让学生运用轴对称性质解决问题。
同时,引导学生总结解题思路和方法。
5.拓展(10分钟)出示一些相关的实际问题,让学生运用轴对称性质解决问题。
如:设计一个轴对称的图案、计算线段的长度等。
八年级数学线段和角的轴对称性3
![八年级数学线段和角的轴对称性3](https://img.taocdn.com/s3/m/fa890cfaaf1ffc4fff47ac47.png)
顶部垂下缕缕簇簇怪蛇般的光影,看上去酷似金橙色的景色伴随着深红色的泪珠飘飘而下……大道左侧不远处是一片土灰色的仙草地,仙草地旁边紫、黑、红三色相交 的林带内不时出现闪动的异影和怪异的叫声……大道右侧远处是一片纯黄色的海峡,那里似乎还闪动着一片白象牙色的泥榆树林和一片墨绿色的鬼蕉树林……见有客到 ,大道两旁淡红色的闪影金基座上,正在喧闹的青鲸神和灰豹魔立刻变成了一个个凝固的雕像……这时,静静的泉水也突然喷出一簇簇、一串串直冲云霄的五光十色的 音符般的水柱和云丝般的水花……突然,满天遍地飞出数不清的梦幻,顷刻间绚丽多姿的梦幻就同时绽放,整个大地和天空立刻变成了怪异的海洋……空气中瞬间跳跃 出神奇的妖影之香……飞进主塔罕见的水红色蛋形大门,空阔安静、灿烂浪漫的大厅立刻让人眼前一亮,但扑面而来的空气也让人感到一种陶醉完美的味道……大厅的 地面是用明亮怪异的深灰色五光银和乳蓝色美仙冰铺成,四周高大的朦胧金墙壁雕绘着辉宏而粗犷的巨幅壁画……大厅前方,隐隐可见一座光彩亮丽、正被仙雾光环笼 罩的圣坛,但见仙雾朦胧萦绕,光环耀眼梦幻,所以很难看清圣坛上的身影和圣人……通向圣坛的豪华地毯两旁摆放着两排精美的硕大花盆,花盆中生长着整齐繁茂、 鲜花盛开、香气四溢的巨大乔本花卉……每个花盆前面都摆放着一只精巧怪异的大香炉,缕缕飘渺幽静、带着异香的紫烟正袅袅地升上大厅高高的穹顶……抬头看去, 大厅穹顶完全是用可自动变幻景物的神秘材料魔化而成,穹顶的景色一会儿是云海,一会儿是星空,一会儿是海底,一会儿是巨洞……穹顶中央巨大焰火雾淞般的梦幻 吊灯,四周是亿万造形奇异、色彩变幻的顶灯……蘑菇王子和知知爵士刚刚在两张镶着五色钻石的纯金座椅上坐下,只听一声悠长的号角响起,大厅突然辉煌灿烂起来 ,笼罩在圣坛上的仙雾很快散去……只见圣坛中央的宝座上仍然坐着主考官Y.依佛奇兹首相,两旁还是坐着那些副考官和监考官!一阵的钟声响过,主考官Y.依佛 奇兹首相站起身来,然后看着蘑菇王子和知知爵士问道:“你们两个准备好没有?”蘑菇王子答道:“我们准备好了!”主考官Y.依佛奇兹首相大声道:“那就开始 吧!”Y.依佛奇兹首相刚刚说完,就见亮红色个穿着亮红色天石天石袄的司仪官同时用手朝空中一指,随着六道闪光,整个大厅像菊花一样展开怒放,然后纷纷向远 方退去,逐渐消失在地平线之下……接着只见一座几乎无底透明、正在凌空盘踞的巨大巨龟形运动场,旋风般地在蘑菇王子和知知爵士的脚下展现出来,而悬空盘踞的 巨大运动
2.4线段、角的轴对称性(2)教案 2022--2023学年苏科版八年级数学上册
![2.4线段、角的轴对称性(2)教案 2022--2023学年苏科版八年级数学上册](https://img.taocdn.com/s3/m/de5d47f9c67da26925c52cc58bd63186bceb92b1.png)
2.4 线段、角的轴对称性(2)教案一、教学目标1.理解线段的轴对称性概念,并能够判断线段是否具有轴对称性;2.掌握角的轴对称性概念,并能够判断角是否具有轴对称性;3.能够运用轴对称性的知识解决相关问题。
二、教学重点1.理解线段的轴对称性概念;2.掌握角的轴对称性概念。
三、教学内容3.1 线段的轴对称性3.1.1 概念引入在上节课我们学习了线段的概念,今天我们将进一步探讨线段的性质。
请同学们回顾一下,如果一条线段可以沿着某条直线旋转180度后能够重合,我们就称这条线段具有轴对称性。
请大家思考,如何判断一条线段是否具有轴对称性?3.1.2 判断方法线段的轴对称性可以通过观察来判断。
我们可以找一根铅笔或者尺子,将线段的中点作为旋转的中心点,然后将线段旋转180度后尝试对折,如果能够完全重合,说明线段具有轴对称性;反之,则不具有轴对称性。
3.1.3 深化理解请同学们思考以下问题:•线段的中点在轴对称性中起到了什么作用?•如果一条线段有多个对称轴,那么它是否具有轴对称性?3.2 角的轴对称性3.2.1 概念引入角是由两条射线共同确定的形状。
我们知道,线段具有轴对称性,那么角是否也具有轴对称性呢?请思考一下。
3.2.2 判断方法角的轴对称性可以通过观察来判断。
我们可以找一张纸,将角的顶点与纸的一个端点重合,然后将纸沿着角的边旋转180度后尝试对折,如果能够完全重合,说明角具有轴对称性;反之,则不具有轴对称性。
3.2.3 深化理解请同学们思考以下问题:•角的顶点在轴对称性中起到了什么作用?•如果一个角有多个对称轴,那么它是否具有轴对称性?四、教学设计4.1 概念讲解通过黑板演示和讲解,向学生介绍线段和角的轴对称性的概念及判断方法。
引导学生思考相关问题,并与学生进行互动讨论。
4.2 实践练习让学生分成小组,互相配对进行实践练习。
每个小组准备一张纸和一支铅笔或尺子,根据老师提供的线段和角的图形,判断其是否具有轴对称性,并给出相应的理由。
1.4线段、角的轴对称性(2)
![1.4线段、角的轴对称性(2)](https://img.taocdn.com/s3/m/9ef4830902020740be1e9bda.png)
学案1.4线段、角的轴对称性(2)【学习目标】:1、让学生经历角的折叠过程探索角的对称性,并发现角平分线的性质和判定点在一个角的平分线上的方法;2、使学生会运用角平分线的性质定理解决生活中的相关问题;3、培养学生实践探索的科学习惯;4、在“操作—探究—归纳—说理”的过程中学会有条理地思考和表达,提高演绎推理能力. 【重点难点】:角平分线的性质和判定【预习指导】:1、在一张薄纸上任意画一个角(∠AOB ),折纸,使两边OA、OB重合,你发现折痕与∠AOB有什么关系?结论:2、在∠AOB的内部任意取折痕上的一点P,分别画点P到OA和OB的垂线段PC和PD,再沿原折痕重新折叠,由此你能发现角平分线上的点有什么性质?结论:几何符号:∵∴3、反之,如果一个角内一点具备到这个角两边的距离相等,那么这个点的位置有何特征?结论:几何符号:∵∴【典题选讲】:例1、任意画∠O,在∠O的两边上分别截取OA、OB,使OA=OB,过点A画OA的垂线,过点B画OB的垂线,设两条垂线相交于点P,点O在∠APB的平分线上吗?为什么?PBA例2、已知:如图,在ΔABC中.O是∠B、∠C外角的平分线的交点,那么点O在∠A的平分线上吗?为什么?F【学习体会】:【课堂练习】:1、 画一画:已知∠AOB 和C 、D 两点,请在图中标出一点E ,使得点E 到OA 、OB 的距离相等,而且E 点到C 、D 的距离也相等.2、 已知:在ΔABC 中,D 是BC 上一点,DF ⊥AB 于E,DE ⊥AC 于F,且DE=DF. 线段AD 与EF有何关系?并说明理由.3、 已知:在∠ABC 中,D 是∠ABC 平分线上一点,E 、F 分别在AB 、AC 上,且DE=DF. 试判断∠BED 与∠BFD 的关系,并说明理由.( 编写者:李晓红)O BAC D· ·A C。
苏科版数学八年级上册2.4《线段、角的轴对称性》教学设计1
![苏科版数学八年级上册2.4《线段、角的轴对称性》教学设计1](https://img.taocdn.com/s3/m/60185a902dc58bd63186bceb19e8b8f67c1cef96.png)
苏科版数学八年级上册2.4《线段、角的轴对称性》教学设计1一. 教材分析苏科版数学八年级上册2.4《线段、角的轴对称性》是学生在学习了轴对称的概念和性质的基础上进一步研究线段和角的对称性。
这一节的内容主要包括线段的轴对称性、角的轴对称性以及如何寻找线段和角的轴对称线。
教材通过丰富的图形和实例,引导学生探究和发现轴对称的性质,从而培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节内容之前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称的。
但是,对于如何寻找线段和角的轴对称线,以及如何应用轴对称的性质解决实际问题,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行指导和帮助。
三. 教学目标1.理解线段和角的轴对称性,掌握寻找线段和角的对称轴的方法。
2.能够运用轴对称的性质解决实际问题,提高解决问题的能力。
3.培养学生的观察能力、推理能力和合作能力。
四. 教学重难点1.重点:线段和角的轴对称性,寻找线段和角的对称轴的方法。
2.难点:如何运用轴对称的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生观察、思考和发现轴对称的性质。
2.利用图形和实例,直观地展示线段和角的轴对称性,帮助学生理解和掌握。
3.运用小组合作的学习方式,鼓励学生相互交流、讨论,共同解决问题。
4.注重练习和反馈,及时发现和纠正学生的错误,提高学生的解题能力。
六. 教学准备1.准备相关的图形和实例,用于展示和解释线段和角的轴对称性。
2.设计一些练习题,帮助学生巩固所学知识。
3.准备黑板和粉笔,用于板书和展示解题过程。
七. 教学过程1.导入(5分钟)通过一个简单的轴对称图形,引导学生回顾轴对称的基本概念和性质。
提问:你们知道什么是轴对称吗?轴对称有哪些性质?2.呈现(15分钟)展示一些线段和角的图形,让学生观察和思考它们是否具有轴对称性。
提问:你们能找出这些线段和角的轴对称线吗?3.操练(10分钟)让学生分组合作,每组选择一个线段或角,尝试找出它的对称轴。
2.4 线段角的轴对称性复习 课件
![2.4 线段角的轴对称性复习 课件](https://img.taocdn.com/s3/m/e0ecea0c647d27284b73518e.png)
角的对称性
实际问题1
南京市政府为了方便居民的生活, 计划在三个住宅小区 A 、 B 、 C 之间 修建一个购物中心,试问,该购物 中心应建于何处,才能使得它到三 个 小 区 的 距 离 相 等 .
A
B
C
苏科版八年级数学上
苏科版八年级数学上
苏科版八年级数学上
苏科版八年级数学上
苏科版八年级数学上
苏科版八年级数学上
角的对称性
应用举例
如图,△ABC中,AB的垂直平分线分 别交AB、BC于点D、E,AC的垂直平分线 分别交AC、BC于点F、G,要求△AEG的 周长,还需添加什么条件?
A D B
苏科版八年级数学上
F C
G E 苏科版八年级数学上
苏科版八年级数学上
苏科版八年级数学上 苏科版八年级数学上
C A
苏科版八年级数学上
角的对称性
■在正方形ABCD上,P在AC上,E是AB上 一定点,则当点P运动到何处时,△PBE 的周长最小?
A D
E
P
B
苏科版八年级数学上
C
苏科版八年级数学上 苏科版八年级数学上
角的对称性
已知:在ΔABC中,D是BC上一点,DF⊥AB于
A、1个 C、3个
B、2个 D、4个
E B D F C
苏科版八年级数学上
苏科版八年级数学上
苏科版八年级数学上
角பைடு நூலகம்对称性
3.如图:在△ABC中,∠B=90°, BC=18cm,AD是角平分线,且BD: CD=1:2,则点D到AC的距离是 6 ______cm.
A
B D
苏科版八年级数学上 苏科版八年级数学上
2.4线段、角的轴对称性(3)教学设计
![2.4线段、角的轴对称性(3)教学设计](https://img.taocdn.com/s3/m/2fe2ab22647d27284b735171.png)
让学生感受角平分线点的共性,几何画板的一般性图形验证,较好地进行了图形证明.
指导学生活动.
练习:课本P55练习.
延伸:在平面内确定一点M,使它到AB、AC的距离相等且MB=MC.
这题是线段垂直平分线性质和角平分线性质的综合应用.
借助网格画线段的垂直平分线和角平分线有利于学生明确其区别,也有利于学生动手操作,获得成功,调动学生学习的积极性.
小结
1.经历了画图、折纸、猜想、归纳的活动过程,探索得到了角的轴对称性:角是轴对称图形,对称轴是角平分线所在的直线.
2.本节课我们还证明了角平分线的性质定理:角平分线上的点到角的两边的距离相等;反过来,角的内部到角的两边距离相等的点在角的平分线上,从中我们可以发现图形的位置关系与数量关系的内在联系,你能举例说明这种内在的联系吗?
动手操作,验证猜想,描述发现,明确结论.
在操作中感知角的轴对称性,培养口头表达能力.
实践探索三
角平分线是否也有像线段垂直平分线一样的特殊性质呢?
如图,在∠AOB的角平分线OC任意取一点P,PD⊥OA,PE⊥OB,PD与PE相等吗?为什么?
通过证明,你发现了什么?用语言描述你得到的结论.
学生独立思考、积极探究.方法不一,具体如下:
总结
角平分线上的点有什么特点?
讨论后共同小结:
角平分线上的点到角两边的距离相等.
师生互动,锻炼学生的口头表达能力,培养学生勇于发表自己看法的能力.
实践探索四
如果任意一个点在角平分线上,那么这个点到这个角的两边距离相等.反过来,结合上节课所学⊥OA,QE⊥OB,且QD=QE,点Q在∠AOB的角平分线上吗?为什么?
线段、角的轴对称性
![线段、角的轴对称性](https://img.taocdn.com/s3/m/61edbd692f3f5727a5e9856a561252d381eb2050.png)
第04讲线段、角的轴对称性【学习目标】1、理解对应点连线被对称轴垂直平分的性质。
2、了解线段的垂直平分线和角平分线的概念,探索并掌握其性质与判定方法。
【基础知识】1.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C 在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE2.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.【考点剖析】一.角平分线的性质(共6小题)1.(2021秋•焦作期末)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,下列选项正确的是()A.PQ<5B.PQ>5C.PQ≥5D.PQ≤52.(2021秋•渑池县期末)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AB=8,△ABD的面积为16,则CD的长为()A.2B.4C.6D.83.(2021秋•锡山区期末)如图,已知△ABC的周长是10,∠B和∠C的平分线交于P点,过P点作BC的垂线交BC于点D,且PD=2,则△ABC的面积是.4.(2021秋•石城县期末)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,且E为AB的中点.(1)求∠B的度数.(2)若DE=5,求BC的长.5.(2021秋•如皋市期末)如图,在四边形ABCD中,∠A=90°,AD=4cm,BC=7cm,对角线BD平分∠ABC,则△BCD的面积为cm2.6.(2022春•丹徒区月考)如图,AE平分∠BAD,DE平分∠ADC,AB⊥BC于B,∠1+∠2=90°.求证:DC⊥BC.二.线段垂直平分线的性质(共7小题)7.(2021秋•高青县期末)如图,在△ABC中,DE垂直平分BC交AB于点D,交BC于点E.若AB=10cm,AC=8cm,则△ACD的周长是()A.12cm B.18cm C.16cm D.14cm8.(2021秋•江都区期末)如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=114°,则∠EAF为()A.40°B.44°C.48°D.52°9.(2022•工业园区模拟)如图,在Rt△ABC中,∠C=90°,直线DE是边AB的垂直平分线,连接BE.(1)若∠A=35°,则∠CBE=°;(2)若AE=3,EC=1,求△ABC的面积.10.(2021秋•鼓楼区校级月考)在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.若BC=15,求△AEG的周长.11.(2021秋•梁溪区校级期中)如图,△ABC中,∠BAC=105°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)如果BC=8,求△DAF的周长.12.(2022•建湖县一模)如图,在Rt△ABC中,∠ACB=90°,BC的垂直平分线分别交AB、BC于点D、E,若AC=5cm,BC=12cm,则△ACD的周长为cm.13.(2022•宿城区校级开学)如图,△ABC中,DE垂直平分AB交AB于点D,交BC于点E,∠B=30°,∠ACE=50°,则∠EAC=.【过关检测】一、单选题1.(2020·江苏八年级月考)三名同学分别站在一个三角形三个顶点的位置上,他们在玩抢凳子的游戏,要求在他们中间放一个凳子,抢到凳子者获胜,为使游戏公平,凳子应放的最适当的位置在三角形的( )A .三条角平分线的交点B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点2.(2021·江苏八年级期中)如图所示,在四边形ABCD 中,90BCD ∠=︒,AB BD ⊥于点B ,点E 是BD 的中点,连接AE ,CE ,则AE 与CE 的大小关系是( )A .AE CE <B .AE CE =C .AE CE >D .2AE CE =3.(2021·江苏八年级专题练习)到三角形三个顶点距离相等的点是( )的交点.A .三角形三边垂直平分线的交点B .三角形三条高的交点C .三角形三条中线的交点D .三角形三条角平分线的交点4.(2021·江苏泰州中学附属初中八年级月考)如图,在ABC 中,34A ∠=︒分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧分别相交于点M 、N ,直线MN 与AC 相交于点E .过点C 作CD AB ⊥,垂足为点D ,CD 与BE 相交于点F .若BD CE =,则BFC ∠的度数为( )A .102︒B .107︒C .108︒D .124︒5.(2021·江苏八年级专题练习)如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题6.(2020·南京市金陵汇文学校八年级开学考试)如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为点D ,E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =___________°.7.(2021·江苏八年级期中)如图,△ABC 中,边BC 的垂直平分线分别交AB 、BC 于点E 、D ,AC =5,△AEC 的周长为12,则AB =___.8.(2021·江苏八年级期中)如图,在△ABC 中,按以下步骤作图:①以B 为圆心,任意长为半径作弧,交AB 于D ,交BC 于E ;②分别以D ,E 为圆心,以大于12DE 的同样长为半径作弧,两弧交于点F ;③作射线BF 交AC 于G .如果AB =9,BC =12,△ABG 的面积为18,则△CBG 的面积为_____.9.(2019·江苏)如图,在四边形ABCD 中,∠A =90°,AD = 6 ,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.10.(2019·江苏苏州·八年级月考)如图,在ABC 中,90C ∠=︒,O 为ABC 的两角平分线的交点,且10cm AB =,8cm BC =,6cm CA =,则点O 到边AB 的距离为__________.三、解答题11.(2018·江苏)作图题:(1)在图1中,画出CDE △关于直线AB 的对称图形C D E '''.(2)在图2中,已知AOB ∠和C 、D 两点,在AOB ∠内部找一点P ,使PC PD =,且P 到AOB ∠的两边OA 、OB 的距离相等.12.(2018·苏州市吴江区青云中学八年级月考)作图题:(1)近年来,国家实施农村医疗卫生改革,某县计划在甲村、乙村之间设立一座定点医疗站点P ,甲、乙两村坐落在两相交公路内(如图所示).医疗站P 必须符合下列条件:①到两公路OA 、OB 的距离相等;②到甲、乙两村的距离也相等.请确定P 点的位置.(用尺规作图,保留作图痕迹,不写作法.)(2)如图,先将ABC 向下平移3个单位得到111A B C △,再以直线l 为对称轴将111A B C △翻折得到222A B C △,请在所给的方格纸中依次作出111A B C △和222A B C △.13.(2019·江苏)已知,如图,在△ACB 中,∠C =90°.(1) 作∠B 的平分线BD 交AC 于点D .(要求尺规作图,保留痕迹)(2) 过点D 作斜边AB 的垂线段,垂足为点E . (要求尺规作图,保留痕迹)(3) 求证:CD =ED .第04讲线段、角的轴对称性【学习目标】2、理解对应点连线被对称轴垂直平分的性质。
数学八年级上册第二章《线段、角的轴对称性》教案
![数学八年级上册第二章《线段、角的轴对称性》教案](https://img.taocdn.com/s3/m/f200cde302768e9951e73898.png)
教学课题数学八年级上册第二章——《线段、角的轴对称性》教案课型新授教学目标:1.探索并证明线段垂直平分线的性质定理的逆定理,会用尺规作线段的垂直平分线; 2.能利用所学知识提出问题并解决实际问题;3.经历探索线段的轴对称的过程,在“操作——探究——归纳——证明”的过程中培养思考的严谨性和表达的条理性教学重点、难点:1、利用线段的轴对称性探索线段垂直平分线的性质定理的逆定理.2、灵活运用线段垂直平分线的性质解决实际问题.教学方法与手段:多媒体教学教学过程:教师活动学生活动设计意图实践探索一在一张薄纸上画一条线段AB,你能找出与线段AB 的端点A、B距离相等的点吗?这样的点有多少个?动手操作,交流发现激发兴趣,点明主题.衔接上一节课,渗透数学“逆向思维”的数学研究策略..实践探索二:如果一个点在一条线段的垂直平分线上,那么这个点到这条线段两端的距离相等.反过来,如果一个点到一条线段的两端的距离相等,那么这个点在这条线段的垂直平分线上吗?如图2-21(1),若点Q在线段AB上,且QA =QB,则Q是线段AB的中点,则点Q在线段AB 的垂直平分线上.1.猜想线段垂直平分线性质定理的逆定理;2.自学课本上点Q在线段上的情形,思考点Q不在线段上时的证明;3.学生证明逆定理.教师提出问题,帮助学生合理猜想,培养学生的逆向思维能力.两个步骤兼顾了“任意性”和“完备性”,让学生感受线段垂直平分线上点的共性,几何画板的一般性图形验证,客观的得到了其是一类点的集合.如图2-21(2),若点Q是线段AB外任意一点,且QA=QB,那么点Q在线段AB的垂直平分线上吗?为什么?通过上述探索,你得到了什么结论?教师利用几何画板验证线段垂直平分线是到线段两端距离相等的点的集合. 4.学生讨论、归纳得到线段垂直平分线性质定理的逆定理,线段垂直平分线是到线段两端距离相等的点的集合实践探索三你能运用实践探索二得到的结论,用尺规画出任一条线段的垂直平分线吗?如果能,说说你作图的依据.课本上用尺规作线段的垂直平分线时,为什么要画“两弧的交点”,而且“半径要大于12 AB”呢?在线段AB所在直线外取一点C,连接AC,用刚学的方法画出AC的垂直平分线l1,与AB的垂直平分线l2交于点O,再连接BC,并作出它的垂直平分线.你发现了什么?得到什么结论?这又是为什么呢?1.学生尝试操作、小组交流;2.小组代表汇报画法,并说明作图依据;3.说明作法中“两弧的交点”“半径要大于12AB”的原因;5.进行延伸作图,观察现象,思考原因.从实践探索二出发,引导学生利用圆规的等距性找到确定线段垂直平分线的两点,强调“两交点”及“半径”,确保作图成功.延伸作图以及图形观察一方面“学以致用”,另一方面为例1的解决作出铺垫.例1 已知:如图2-22,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O.求证:点O 在BC的垂直平分线上. 1.学生结合实践探索三思考;2.尝试证明;在实践探索三的基础上学生开始逐渐学会综合利用性质定A B。
数学八年级上第一章线段角的轴对称性
![数学八年级上第一章线段角的轴对称性](https://img.taocdn.com/s3/m/cd3efe8777232f60dccca12b.png)
第6课时线段、角的轴对称性(2)预学目标1.通过预习,知道角是轴对称图形,并理解角的对称轴是角平分线所在的直线.2.熟记定理:角平分线上的点到角的两边距离相等.理解此定理中的“距离”为两条垂线段的长度,要应用此定理,需要有两个垂直条件.3.熟记定理:角的内部到角的两边距离相等的点,在这个角的平分线上.4.尝试完成知识梳理中的填空,初步掌握两个定理的表示方法及简单应用.5.从知识梳理2中体会当给出已知角平分线的条件时,常用辅助线是作垂线段.知识梳理1.角的轴对称性角_______(填“是”或“不是”)轴对称图形,对称轴是______________________.2.角平分线的性质和判定(1)如图1,OE平分∠AOB,P是OE上的一点,PC⊥OB,PD⊥OA,垂足分别为点C、D,根据角平分线的性质填空:∵OE平分/AOB,PC上OB,PD__OA,∴_______(角平分线上的点到角的两边距离相等).(2)如图2,已知△ABC,先作出∠B、∠C的平分线,相交于点O,过点O作OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为点D、E、F,再填空:∵BO平分∠ABC,OD⊥AB,OE⊥BC,∴OD=OE( ).∵CO平分∠ACB,OE⊥BC,OF⊥AC,∴_______=_______.∴_______=_______=_______,即三角形的角平分线的交点到三边的距离相等.∵OD=OF,OD⊥AB,OF⊥AC(即点O到∠BAC的两边AB、AC的距离相等),∴点O在_______的平分线上( ).3.角平分线作图的简单应用“西气东输”是造福子孙后代的创世工程,现有两条高速公路l1、l2和两个城镇A、B (如图3),准备建一个燃气控制中心站P,使中心站到两条公路的距离相等,并且到两个城镇的距离相等,请你画出中心站的位置.(保留画图痕迹,不写画法)例题精讲例1 如图①,已知直线l及其两侧的两点A、B.(1)在直线l上求作一点P,使PA=PB.(2)在直线l上求作一点Q,使l平分∠AQB.提示:(1)要使PA=PB,则点P在线段AB的垂直平分线上;(2)若在l上再取一点C,则由题意得∠AQC=∠BQC.把A、B两点转化到直线l的同侧就容易多了.解答:如图②和图③.点评:(1)点P满足两个条件:在直线l上,且在线段AB的垂直平分线上,因此,找出它们的交点即可;(2)利用轴对称把问题简化.作点B关于直线l的对称点B',再延长AB'交l于点Q.由对称性得∠BQC=∠B'QC,由作法可知∠AQC=∠B'QC=∠BQC,满足题意.例2 如图,AD是△ABC的角平分线,DE、DF分别是△ABD、△ACD的高,试说明AD垂直平分EF.提示:说明点A和点D都在线段EF的垂直平分线上即可.解答:∵DE、DF分别是△ABD、△ACD的高,∴DE⊥AB,DF⊥AC.∵AD是△ABC的角平分线,∴DE=DF.∴点D在线段EF的垂直平分线上.∵AD=AD,∴Rt△ADE≌Rt△ADF (HL).∴AE=AF.∴点A在线段EF的垂直平分线上.∴AD垂直平分EF.点评:此题综合了角平分线的定理和线段的垂直平分线的逆定理,也可以标出AD和EF的交点,通过说明两次全等来解决问题,同学们可以试一试.热身练习1.到三角形三边距离相等的点是( )A.三条高线的交点B.三条中线的交点C.三条垂直平分线的交点D.三条内角平分线的交点2.如图,在△ABC中,∠C=90°,AD平分∠BAC,CD=5,则点D到AB的距离为____.3.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A、B.下列结论中,不一定成立的是( )A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP 4.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,DE垂直平分线段AB.(1)试找出图中相等的线段,并说明理由.(2)若DE=1 cm,BD=2 cm,求AC的长.5.如图,在△ABC中,AD平分∠BAC,交BC于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,且BD=DC,则EB=FC成立吗?并说明理由.参考答案1.D 2.5 3.D 4.(1) DA=DB,EA=EB=CB,DC=DE根据角平分线的定理和垂直平分线的定理及三角形全等即得(2) AC=3 cm 5.EB=FC。
8年级数学-轴对称的性质及线段角的轴对称性
![8年级数学-轴对称的性质及线段角的轴对称性](https://img.taocdn.com/s3/m/63e7c745700abb68a882fb9a.png)
N
3
例 3、已知:如图 2-22,在△ABC 中,AB、AC 的垂直平分线 l1、l2 相交于点 O.求证:点
O 在 BC 的垂直平分线上.
A
O
课堂练习:
B
C
1、如图,DE 是 BC 的中垂线,如果△ACD 的周长为 17 cm,△ABC 的周长为 25 cm,
根据这些条件,你可以求出哪条线段的长?
等?
A
A B
公路
B
C
9、如右上图,滨海政府为了方便居民的生活,计划在三个住宅小区 A、B、C 之间修建一个
购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等.
10、在下图中分别作出点 P 关于 OA、OB 的对称点 C、D,连结 C、D 交 OA 于 M,交 OB 于 N,
若 CD=5 厘米,求ΔPMN 的周长.
12
A
OB
在一张薄纸上画一条线段 AB,你能找出与线段 AB 的端点 A、B 距离相等的点吗?这样的点
有多少个?
活动二:
1、如果一个点在一条线段的垂直平分线上,那么这个点到这条线段两端的距离相等.反过
来,如果一个点到一条线段的两端的距离相等,那么这个点在这条线段的垂直平分线上吗?
①如图(1),若点 Q 在线段 AB 上,且 QA=QB,则 Q 是线段 AB 的中点,则点 Q 在线段
2:3,则点 D 到 AB 的距离为__________cm.
4.如右图,AB∥CD,点 P 到 AB,BC,CD 距离都相等,则∠P=
5.如图,直线 a,b,c 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路
的距离相等,可供选择的地址有
处?如何选?在图中画出来
2.4++线段、角的轴对称性+同步练习++2024—-2025学年苏科版八年级数学上册++++
![2.4++线段、角的轴对称性+同步练习++2024—-2025学年苏科版八年级数学上册++++](https://img.taocdn.com/s3/m/c329394a5e0e7cd184254b35eefdc8d376ee14c4.png)
2.4 线段、角的轴对称性一.选择题1.已知线段AB垂直平分线上有两点C、D,若∠ADB=80°,∠CAD=10°,则∠ACB=()A.80°B.90°C.60°或100°D.40°或90°2.如图,AP平分∠CAB,PD⊥AC于点D,若PD=6,点E是边AB上一动点,关于线段PE叙述正确的是()A.PE=6B.PE>6C.PE≤6D.PE≥63.如图,在Rt△ABC中,∠BAC=90°,AC的垂直平分线分别交BC,AC于点D,E,若AB=3,AC=4,则△ADE的周长为()A.12B.6C.8D.74.如图,已知BD是△ABC的角平分线,DE⊥BC,垂足为E,AB=4,△ABD的面积是4,则DE的长是()A.1B.2C.4D.无法计算5.如图,AB是线段CD的垂直平分线,垂足为点G,E,F是AB上两点.下列结论不正确的是()A.EC=CD B.EC=ED C.CF=DF D.CG=DG6.如图,在△ABC中,DE是AC的垂直平分线.若AE=2,△ABD的周长为8,则△ABC的周长为()A.9B.10C.11D.127.已知△ABC内部有一点P,且点P到边AB、AC、BC的距离都相等,则这个点是()A.三条角平分线的交点B.三边高线的交点C.三边中线的交点D.三边中垂线的交点8.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则BE等于()A.2B.C.D.二.填空题1.如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,且EF⊥BC,垂足为点F,DE=4,则EF的值为.2.如图,DE是△ABC的边AB的垂直平分线,垂足为点D,DE交AC于点E,且AC=7,△BEC的周长为11,则BC的长为.3.如图,在△ABC中,∠C=90°,AP是角平分线,若CP=3,AB=12,则△ABP的面积为.4.如图,在△ABC中,点D是AC的中点,分别以点A,C为圆心,大于的长为半径作弧,两弧交于F,直线FD交BC于点E,连接AE,若AD=2.5,△ABE的周长为13,则△ABC的周长为.5.如图,直线L为线段AB的垂直平分线,交AB于M,在直线L上取一点C1,使得MC1=MB,得到第一个三角形ABC1;在射线MC1上取一点C2,使得C1C2=BC1;得到第二个三角形△ABC2;在射线MC1上取一点C3,使得C2C3=BC2,得到第三个三角形△ABC3…依次这样作下去,则第2022个三角形△ABC2022中∠AC2022B的度数为.三.解答题1.如图所示,在△ABC中,AB、AC的垂直平分线分别交BC于点D、E,垂足分别为点M、N.(1)若△ADE的周长为16,求BC的长;(2)若∠BAC=108°,求∠DAE的度数.2.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)请说明AE=AF的理由;(2)若AB﹣AC=2,CF=1,求线段BE的长.3.如图,已知△ABC,AD是∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.(1)求证:AD垂直平分EF;(2)若AB+AC=10,DE=3,求△ABC的面积.4.如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF,ON于点B,点C,连接AB,PB.(1)如图1,当P,Q两点都在射线ON上时,则线段AB与PB的数量关系是.(2)如图2,当P,Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;5.如图,在△ABC中,∠BAC=110°,DE垂直平分AB,分别交AB、BC于点D、E.MN垂直平分AC,分别交AC、BC于点M、N.连接AE、AN.(1)求∠EAN的度数;(2)若△AEN的周长为15,则BC的长为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随堂练习
E
如图,△ABC中,AB的 垂直平分线分别交AB、BC于点D、E, AC的垂直平分线分别交AC、BC于点F、 G,要求△AEG的周长,还需添加什么 条件?
A D B E G F C
随堂练习
装饰线条岗石线条 柕痋爿
●本节课你还有哪些疑问?
A
B
线段的垂直平分线是到线段两端距 离相等的点的集合.
已知:如图,在ΔABC中, AB、 BC的中垂线交于点O,那么点O在AC的中垂 线吗?为什么?
M
例题讲解
E O ·
Aቤተ መጻሕፍቲ ባይዱ
B
C
F
N
如图,在△ABC中, ∠ACB=900,AB的中垂线交BC于E,垂足 为D,∠CAE:∠EAB=3:2,则∠B=___ .
线段、角的轴对称性
■你对线段有哪些认识?
A B
线段是轴对称图形.它有两条 对称轴,分别为:线段的中垂线, 线段本身所在的直线.
如图,已知:直线CD是线段AB的垂直 平分线,点M是直线CD上任一点,连结 MA、MB,则MA=MB,你能说明理 由吗? C
M A
0 D
B
结论
线段的垂直平分线上的点到这条线 段两个端点的距离相等.
B D C
结论
与一条线段两个端点距离相等
的点,在这条线段的垂直平分线上.
C A
M
B
0
N
∵ MA=MB ∴点M在线段AB的垂直平分线上
点P在线 段AB的垂 直平分线 MN上
P
PA=PB
M
N 性质定理:线段垂直平分线上的点和这条 线段两个端点的距离相等. 判定定理:和一条线段两个端点距离相等 的点,在这条线段的垂直平分线上.
C
A
M B N
0
∵点M是线段AB的垂直平分线上的点
∴MA=MB
牛刀小试 如图,CD是AB的中垂线,点M是 CD右侧一点,你能判断MA、MB的 大小吗?请说明理由.
C M
E
A 0 D B
生活中的数学 如图,在架设电线杆时,为了确保 它与地面垂直,一般在它的某一处用 两根同样长的绳子固定在地面上,只 要使底部D上在BC的 A 中点处,电线杆就 与地面垂直了,你 能说明理由吗?