2019高考数学随机变量及其分布(专用):二项分布与正态分布
二项分布与正态分布
二项分布与正态分布二项分布与正态分布是概率统计学中两个重要的分布模型。
它们在实际应用中发挥着重要的作用,对于描述随机事件和现象的分布规律具有重要意义。
本文将分别介绍二项分布和正态分布的基本概念和性质,并对它们之间的关系进行探讨。
一、二项分布二项分布是概率统计学中最基本的离散型概率分布之一。
它描述了在n次独立重复试验中成功次数的概率分布。
其中,每次试验成功的概率为p,失败的概率为1-p。
试验次数n和成功次数X(取值范围为0到n)是二项分布的两个重要参数。
二项分布的概率质量函数可以表示为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,C(n, k)表示从n个物体中取出k个的组合数。
二项分布具有以下性质:1. 期望和方差:二项分布的期望为E(X) = np,方差为Var(X) = np(1-p)。
2. 归一性:二项分布的概率之和为1,即∑P(X=k) = 1,其中k的取值范围为0到n。
二、正态分布正态分布是概率统计学中最重要的连续型概率分布之一。
它以钟形曲线的形式描述了大量随机变量分布的特征。
正态分布由两个参数决定,即均值μ和标准差σ。
正态分布的概率密度函数可以表示为:f(x) = (1 / (σ * sqrt(2π))) * exp(-(x-μ)^2 / (2σ^2))其中,exp表示自然指数函数,sqrt表示开方。
正态分布具有以下性质:1. 对称性:正态分布呈现出关于均值对称的特点,即其左右两侧的曲线是镜像关系。
2. 均值和方差:正态分布的均值即为μ,方差即为σ^2。
3. 中心极限定理:当样本容量较大时,多个独立随机变量的均值近似服从正态分布。
三、二项分布与正态分布的关系在一些情况下,二项分布可以近似看作正态分布。
当试验次数n较大,成功概率p较接近0.5时,二项分布的概率分布形状逐渐接近于正态分布。
根据中心极限定理,当n足够大时,二项分布的均值和方差趋近于正态分布的均值和方差,因此可以用正态分布来近似描述二项分布的概率分布。
高考数学(理)一轮复习配套讲义: 二项分布与正态分布
第5讲二项分布与正态分布[最新考纲]1.了解条件概率和两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布.3.能解决一些简单的实际问题.知识梳理1.条件概率及其性质设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立.若事件A,B相互独立,则P(B|A)=P(B);事件A与B,A与B,A与B都相互独立.3.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,若用A i(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…A n)=P(A1)P(A2)P(A3)…P(A n).(2)二项分布在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X 服从二项分布,记为X~B(n,p),并称p为成功概率.4.正态分布(1)正态分布的定义及表示如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=bφμ,σ(x)d x,则称随⎠⎛a机变量X 服从正态分布,记为X ~N (μ,σ2).函数φμ,σ(x )=,x ∈R 的图象(正态曲线)关于直线x=μ对称,在x =μ处达到峰值1σ2π. (2)正态总体三个基本概率值 ①P (μ-σ<X ≤μ+σ)=0.682_6. ②P (μ-2σ<X ≤μ+2σ)=0.954_4. ③P (μ-3σ<X ≤μ+3σ)=0.997_4.辨 析 感 悟1.条件概率与相互独立事件的概率(1)若事件A ,B 相互独立,则P (B |A )=P (B ).(√)(2)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率,一定有P (AB )=P (A )·P (B ).(×)(3)(教材习题改编)袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是0.5.(√) 2.二项分布与正态分布(4)在正态分布函数φμ,σ(x )=中,μ是正态分布的期望值,σ是正态分布的标准差.(√)(5)二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生次数的概率分布.(√)(6)(2014·扬州调研改编)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰好第3次测试获得通过的概率是P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49.(×) [感悟·提升]1.古典概型中,A 发生的条件下B 发生的条件概率公式为P (B |A )=P (AB )P (A )=n (AB )n (A ),其中,在实际应用中P (B |A )=n (AB )n (A )是一种重要的求条件概率的方法. 2.P (A ·B )=P (A )·P (B )只有在事件A 、B 相互独立时,公式才成立,此时P (B )=P (B |A ),如(1),(2).3.判断一个随机变量是否服从二项分布,要看两点:一是是否为n 次独立重复试验.在每次试验中事件A 发生的概率是否均为p . 二是随机变量是否为在这n 次独立重复试验中某事件发生的次数.且P (X =k )=C k n p k (1-p )n -k 表示在独立重复试验中,事件A 恰好发生k 次的概率.考点一 条件概率【例1】 (1)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于( ). A.18 B.14 C.25 D.12(2)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”, 则P (B |A )=________.解析 (1)P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P (AB )P (A )=110410=14.(2)由题意可得,事件A 发生的概率P (A )=S 正方形EFGH S 圆O =2×2π×12=2π. 事件AB 表示“豆子落在△EOH 内”,则P(AB)=S△EOHS圆O=12×12π×12=12π.故P(B|A)=P(AB)P(A)=12π2π=14.答案(1)B(2)1 4规律方法(1)利用定义,求P(A)和P(AB),则P(B|A)=P(AB) P(A).(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),得P(B|A)=n(AB)n(A).【训练1】已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是().A.1127B.11 24C.827D.9 24解析设从1号箱取到红球为事件A,从2号箱取到红球为事件B.由题意,P(A)=42+4=23,P(B|A)=3+18+1=49,∴P(AB)=P(B|A)·P(A)=23×49=827,所以两次都取到红球的概率为827.答案 C考点二相互独立事件同时发生的概率【例2】(2013·陕西卷改编)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求“X ≥2”的事件概率. 审题路线 (1)甲选择3号和乙没选择3号是相互独立事件,利用相互独立事件概率乘法可求;(2)“X ≥2”表示事件“X =2”与“X =3”的和事件,根据互斥事件、相互独立事件的概率公式计算.解 (1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=C 12C 23=23,P (B )=C 24C 35=35.∵事件A 与B 相互独立,A 与B 相互独立.则A ·B 表示事件“甲选中3号歌手,且乙没选中3号歌手”. ∴P (A B )=P (A )·P (B )=P (A )·[1-P (B )]=23×25=415, (2)设C 表示事件“观众丙选中3号歌手”, 则P (C )=C 24C 35=35,依题意,A ,B ,C 相互独立,A ,B ,C 相互独立,且AB C ,A B C ,A BC ,ABC 彼此互斥.又P (X =2)=P (AB C )+P (A B C )+P (A BC ) =23×35×25+23×25×35+13×35×35=3375, P (X =3)=P (ABC )=23×35×35=1875,∴P (X ≥2)=P (X =2)+P (X =3)=3375+1875=1725.规律方法 (1)解答本题关键是把所求事件包含的各种情况找出来,从而把所求事件表示为几个事件的和事件.(2)求相互独立事件同时发生的概率的方法主要有 ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁或难以入手时,可从其对立事件入手计算.【训练2】 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (1)求乙投球的命中率p ;(2)求甲投球2次,至少命中1次的概率.解 (1)设“甲投一次球命中”为事件A ,“乙投一次球命中”为事件B . 由题意得:P (B )P (B )=116, 于是P (B )=14或P (B )=-14(舍去). 故p =1-P (B )=34. 所以乙投球的命中率为34.(2)法一 由题设知,P (A )=12,P (A )=12. 故甲投球2次,至少命中1次的概率为 1-P (A ·A )=1-P (A )P (A )=34. 法二 由题设知,P (A )=12,P (A )=12. 故甲投球2次,至少命中1次的概率为 C 12P (A )P (A )+P (A )P (A )=34. 考点三 正态分布下的概率【例3】 已知随机变量X 服从正态分布N (2,σ2),且P (X <4)=0.8,则P (0<X <2)=( ).A .0.6B .0.4C .0.3D .0.2 解析 由P (X <4)=0.8,得P(X≥4)=0.2,由题意知正态曲线的对称轴为直线x=2,P(X≤0)=P(X≥4)=0.2,∴P(0<X<4)=1-P(X≤0)-P(X≥4)=0.6,∴P(0<X<2)=12P(0<X<4)=0.3.答案 C规律方法(1)求解本题关键是明确正态曲线关于x=2对称,且区间[0,4]也关于x =2对称.(2)关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.【训练3】若在本例中,条件改为“已知随机变量X~N(3,1),且P(2≤X≤4)=0.682 6,”求P(X>4)的值.解∵随机变量X~N(3,1),∴正态曲线关于直线x=3对称,由P(2≤X≤4)=0.682 6,得P(X>4)=12[1-P(2≤X≤4)]=12(1-0.682 6)=0.158 7.考点四独立重复试验与二项分布【例4】某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料.(1)求甲中奖且乙、丙都没有中奖的概率;(2)求中奖人数X的分布列.审题路线(1)甲、乙、丙各购买一瓶饮料是否中奖,相互独立,由相互独立事件同时发生的概率乘法公式,第(1)问可求;(2)依题意随机变量X服从二项分布,不难求出分布列.解 (1)设甲、乙、丙中奖的事件分别为A ,B ,C ,且相互独立,那么A ,B ,C 相互独立.又P (A )=P (B )=P (C )=16,∴P (A ·B ·C )=P (A )P (B )P (C )=16·⎝ ⎛⎭⎪⎫562=25216, 即甲中奖且乙、丙都没有中奖的概率为25216. (2)X 的可能取值为0,1,2,3,且X ~B ⎝ ⎛⎭⎪⎫3,16,∴P (X =k )=C k 3⎝ ⎛⎭⎪⎫16k ⎝ ⎛⎭⎪⎫563-k(k =0,1,2,3). 则P (X =0)=C 03·5363=125216,P (X =1)=C 13·5263=2572, P (X =2)=C 23·563=572, P (X =3)=C 3363=1216,所以中奖人数X 的分布列为规律方法 (1)独立重复试验是在同样的条件下重复地、各次之间相互独立地进行的一种试验,在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.(2)求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后求概率.【训练4】 某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量X ,求X 的概率分布列及数学期望E (X ).解 (1)设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. (2)由题意,P (X =0)=C 03⎝ ⎛⎭⎪⎫1103=11 000, P (X =1)=C 13⎝ ⎛⎭⎪⎫1102×⎝ ⎛⎭⎪⎫1-110=271 000,P (X =2)=C 23×110×⎝ ⎛⎭⎪⎫1-1102=2431 000, P (X =3)=C 33⎝⎛⎭⎪⎫1-1103=7291 000. 所以,随机变量X 的概率分布列为X 0 1 2 3 P11 000271 0002431 0007291 000E (X )=0×11 000+1×271 000+2×2431 000+3×7291 000=2710.1.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算式为P (AB )=P (A )P (B ).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P (A ∪B )=P (A )+P (B ).2.在n 次独立重复试验中,事件A 恰好发生k 次可看做是C k n 个互斥事件的和,其中每一个事件都可看做是k 个A 事件与(n -k )个A 事件同时发生,只是发生的次序不同,其发生的概率都是p k (1-p )n -k .因此n 次独立重复试验中事件A 恰好发生k 次的概率为C k n p k (1-p )n -k. 3.若X 服从正态分布,即X ~N (μ,σ2),要充分利用正态曲线的对称性和曲线与x 轴之间的面积为1.易错辨析11——对二项分布理解不准致误【典例】 一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13. (1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列; (2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列.解 (1)将通过每个交通岗看做一次试验,则遇到红灯的概率为13,且每次试验结果是相互独立的, 故X ~B ⎝ ⎛⎭⎪⎫6,13.所以X 的分布列为P (X =k )=C k 6⎝ ⎛⎭⎪⎫13k ·⎝ ⎛⎭⎪⎫236-k,k =0,1,2,3,4,5,6. (2)由于Y 表示这名学生在首次停车时经过的路口数,显然Y 是随机变量,其取值为0,1,2,3,4,5,6.其中:{Y =k }(k =0,1,2,3,4,5)表示前k 个路口没有遇上红灯,但在第k +1个路口遇上红灯,故各概率应按独立事件同时发生计算. P (Y =k )=⎝ ⎛⎭⎪⎫23k ·13(k =0,1,2,3,4,5),而{Y =6}表示一路没有遇上红灯. 故其概率为P (Y =6)=⎝ ⎛⎭⎪⎫236,因此Y 的分布列为:[易错警示]由于这名学生在各个交通岗遇到红灯的事件相互独立,可以利用二项分布解决,二项分布模型的建立是易错点;另外,对“首次停车前经过的路口数Y ”理解不当,将“没有遇上红灯的概率也当成13”.[防范措施] 独立重复试验中的概率公式P n (k )=C k n p k (1-p )n -k表示的是n 次独立重复试验中事件A 发生k 次的概率,p 与(1-p )的位置不能互换,否则该式子表示的意义就发生了改变,变为事件A 有k 次不发生的概率了. 【自主体验】(2013·辽宁卷)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 的分布列和数学期望.解 (1)设事件A =“张同学所取的3道题至少有1道乙类题”,则有A =“张同学所取的3道题都是甲类题”.因为P (A )=C 36C 310=16,所以P (A )=1-P (A )=56.(2)X 所有的可能取值为0,1,2,3. P (X =0)=C 02·⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252·15=4125; P (X =1)=C 12·⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·15+C 02⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252· 45=28125;P (X =2)=C 22·⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫250·15+C 12·⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·45=57125; P (X =3)=C 22·⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫250·45=36125. 所以X 的分布列为:所以E (X )=0×4125+1×28125+2×57125+3×36125=2.基础巩固题组一、选择题1.设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)的值是( ).A.316B.516C.716D.58 答案 B2.已知随机变量X 服从正态分布N (0,σ2).若P (X >2)=0.023,则P (-2≤X ≤2)=( ).A .0.477B .0.628C .0.954D .0.977 答案 C3.(2014·湖州调研)国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ). A.5960 B.35 C.12 D.160 答案 B4.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是被甲击中的概率为( ). A .0.45 B .0.6 C .0.65 D .0.75 答案 D5.(2013·湖北卷改编)假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为p 0.则p 0的值为( ).(参考数据:若X ~N (μ,σ2),有P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4.) A .0.954 4 B .0.682 6 C .0.997 4 D .0.977 2 答案 D 二、填空题6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 答案 357.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________. 答案 0.1288.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________. 答案 0.72 三、解答题9.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立. (1)求该地1位车主至少购买甲、乙两种保险中的一种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.10.某公交公司对某线路客源情况统计显示,公交车从每个停靠点出发后,乘客人数及频率如下表:(1)(2)全线途经10个停靠点,若有2个以上(含2个)停靠点出发后乘客人数超过18人的概率大于0.9,公交公司就考虑在该线路增加一个班次,请问该线路需要增加班次吗?能力提升题组 (建议用时:25分钟)一、选择题1.设随机变量X 服从正态分布N (μ,σ2),函数f (x )=x 2+4x +X 没有零点的概率是12,则μ=( ).A .1B .4C .2D .不能确定解析 根据题意函数f (x )=x 2+4x +X 没有零点时,Δ=16-4X <0,即X >4,根据正态密度曲线的对称性,当函数f (x )=x 2+4x +X 没有零点的概率是12时,μ=4. 答案 B2.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:a n =⎩⎨⎧-1,第n 次摸取红球,1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( ). A .C 57⎝⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫235 B .C 27⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135C .C 57⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫135D .C 37⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫235 解析 S 7=3即为7次摸球中,有5次摸到白球,2次摸到红球,又摸到红球的概率为23,摸到白球的概率为13.故所求概率为P =C 27⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫135. 答案 B 二、填空题3.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知 小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为________.解析 记“小球落入A 袋中”为事件A ,“小球落入B 袋中”为事件B ,则事件A 的对立事件为B ,若小球落入B 袋中,则小球必须一直向左落下或一直向右落下,故P (B )=⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫123=14,从而P (A )=1-P (B )=1-14=34.答案 34 三、解答题4.(2013·山东卷)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率.(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X 的分布列及数学期望. 解 (1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意知,各局比赛结果相互独立,故P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23×23=827, P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427. 所以,甲队以3∶0胜利,以3∶1胜利的概率都为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4, 由题意知,各局比赛结果相互独立, 所以P (A 4)=C 24⎝ ⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意知,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P(X=0)=P(A1+A2)=P(A1)+P(A2)=16 27,又P(X=1)=P(A3)=4 27,P(X=2)=P(A4)=4 27,P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=3 27,∴X的分布列为∴E(X)=0×1627+1×427+2×427+3×327=79.。
二项分布、泊松分布和正态分布的关系及其应用
二项分布、泊松分布和正态分布的关系及其应用二项分布、泊松分布和正态分布是统计学中常见的三种分布类型,它们在描述随机变量的分布和概率方面有着重要的应用。
本文将介绍这三种分布的基本概念和特点,探讨它们之间的关系,并结合实际应用场景进行分析。
一、二项分布二项分布是描述一组独立重复的伯努利试验中成功次数的概率分布,其中每次试验有两种可能的结果:成功或失败。
假设试验成功的概率为p,失败的概率为1-p,进行n次试验后成功的次数X服从二项分布。
二项分布的概率质量函数为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)C(n, k)表示组合数,表示在n次试验中成功k次的概率。
二项分布在实际应用中有着广泛的应用,例如在质量控制中描述次品率、在市场营销中描述广告点击率等。
二、泊松分布泊松分布是描述单位时间或单位空间内事件发生次数的概率分布,常用于描述罕见事件的发生概率,如自然灾害的发生次数、电话交换机接到呼叫的次数等。
泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!λ表示单位时间或单位空间内事件的平均发生率,k表示事件发生的次数。
泊松分布的特点是均值和方差相等,且当n充分大、p充分小、np=λ时,二项分布可以近似地表示为泊松分布。
泊松分布在实际应用中有着丰富的场景,如在交通流量预测中描述交通事故发生的次数、在医学统计中描述疾病发作的次数等。
三、正态分布正态分布(又称高斯分布)是统计学中最常见的连续型概率分布,其概率密度函数呈钟型曲线,具有单峰对称的特点。
正态分布在自然界和社会现象中均有广泛应用,如身高、体重、考试成绩等往往服从正态分布。
正态分布的概率密度函数为:f(x) = (1/sqrt(2πσ^2)) * e^(-(x-μ)^2 / 2σ^2)μ表示均值,σ^2表示方差。
正态分布具有许多有用的性质,比如68-95-99.7法则,大部分数据分布在均值附近,以及许多随机变量的总和或平均值都近似服从正态分布等。
二项分布与正态分布详解
在二项分布和正态分布中的应用举例
二项分布参数估计
正态分布参数估计
二项分布假设检验
正态分布假设检验
对于二项分布B(n, p),可以使 用样本比例作为成功概率p的 点估计。同时,根据二项分布 的性质,可以构造出p的置信 区间进行区间估计。
对于正态分布N(μ, σ^2),可 以使用样本均值作为总体均值 μ的点估计,样本方差作为总 体方差σ^2的点估计。同样地 ,可以构造出μ和σ的置信区间 进行区间估计。
02
通过对二项分布和正态分布进行深入剖析,探讨它们之间的联
系和区别,以便更好地理解这两种分布。
为后续概率论与数理统计学习打下基础
03
二项分布和正态分布是概率论与数理统计中的重要内容,掌握
它们对于后续学习具有重要意义。
预备知识
概率论基础知识
要理解二项分布和正态分布,首先需要具备概率论的基础知识, 如事件、概率、随机变量等概念。
正态分布转化为二项分布的条件
在实际应用中,如果某个连续型随机变量可以取整数值,且这些整数值出现的概率可以 用二项分布来描述,那么可以将这个连续型随机变量近似为二项分布。但需要注意的是
,这种转化通常需要在一定的精度范围内进行。
实际应用中的选择依据
• 在实际应用中,选择使用二项分 布还是正态分布通常需要考虑以 下因素:首先,需要判断随机变 量是离散的还是连续的;其次, 需要考虑随机变量所描述的实际 情况是否符合二项分布或正态分 布的定义和性质;最后,还需要 考虑样本量大小、数据分布情况 等因素来选择最合适的分布类型 进行建模和分析。
方差
正态分布的方差等于其标准差的平方,即D(X)=σ^2。
正态分布的应用举例
01 02
质量控制
高考数学复习知识点讲解教案第65讲 二项分布与超几何分布、正态分布
正态曲线: =
1
2π
−
⋅e
− 2
22
, ∈ ,其中 ∈ , > 0为参数,称
正态密度曲线
为正态密度函数,函数 的图象为_________________,简称正态曲线.
(2)
正态曲线的特点
=
①曲线是单峰的,它关于直线________对称.
②
=
1
曲线在________处达到峰值
3
[思路点拨](1)由题可求出一次试验成功的概率,设试验成功的次数为,可
知服从二项分布,再利用方差的性质即可求解.
[解析] 由题意得,启动一次出现的数字为 = 1010的概率 =
设试验成功的次数为,则~
所以的方差 = 54 ×
2
27
×
25
27
2
54,
27
=
2
1
3
2
3
× =
2
.
记选出女生的人数为,则服从超几何分布,③满足题意;
盒中有4个白球和3个黑球,每次从中随机摸出1个球且不放回,
记第一次摸出黑球时摸取的次数为,
则不服从超几何分布,④不满足题意.故填③.
5.已知随机变量 ∼
2
2,
0.35
, ≤ 0 = 0.15,则 2 ≤ ≤ 4 =______.
0 < < 1 ,用表示事件发生的次数,则的分布列为( = ) =
−
C 1 −
_________________________,
= 0,1,2,⋯ ,,称随机变量服从二项分布,记作
∼ , .
(2)
1 −
高考数学一轮复习二项分布与正态分布
目录
(1)解析 对于A,σ越小,正态分布的图象越瘦长,总体分布越集中在对称轴
附近,故A正确;对于B、C,由于正态分布图象的对称轴为μ=10,显然B、C
正确.D显然错误.故选D.
答案 D
目录
(2)为了解高三复习备考情况,某校组织了一次阶段考试.若高三全体学生的
数学成绩X近似服从正态分布N(100,17.52).已知成绩在117.5分以上(不含
(
)
1
A.
4
3
B.
4
9
C.
64
27
D.
64
解析:C 假设甲取胜为事件A,设每次甲胜的概率为p,由题意得,事件A发生
63
3
3
的次数X~B(3,p),则有1-(1-p) = ,得p= ,则事件A恰好发生一次
64
1 3
的概率为C3 × ×
4
4
3 2
9
1−
= .
4
64
目录
4.已知随机变量X服从正态分布N(3,1),且P(X>2c-1)=P(X<c+
5
5
125
2 3 1
2
36
2
P(η=2)=C3
= ,
5
5
125
3 3 0
8
3 2
P(η=3)=C3
= ,
5
5
125
目录
所以η的分布列为
η
0
1
2
3
P
27
125
54
125
36
125
8
125
所以E(η)=0×
27
54
36
8
6
二项分布与正态分布
二项分布与正态分布二项分布(Binomial Distribution)和正态分布(Normal Distribution)是统计学中常用的两种分布类型,它们在描述概率和随机变量的分布特征上有着重要的应用。
一、二项分布二项分布是一种离散概率分布,适用于两个互斥事件(成功和失败)发生的多次独立重复实验。
每个实验的结果只有两种可能性,并且各试验之间的概率不会发生变化。
该分布以两个参数来描述:n(实验次数)和p(事件成功的概率)。
二项分布的概率质量函数为P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中X为成功事件发生的次数,k为取值范围,C(n, k)表示组合数。
例如,某外卖平台的数据显示,在送达100份订单中,正好有20份遇到问题,成功率为0.2。
如果我们想要了解在送达下一个订单时会出现多少问题的概率分布,我们就可以使用二项分布来计算。
二、正态分布正态分布是一种连续概率分布,也被称为高斯分布。
在统计学中,正态分布常常用来描述一组数据中心性的表现,其图形呈钟形曲线。
正态分布由两个参数来描述:均值(μ)和标准差(σ^2)。
正态分布的概率密度函数为f(x) = 1 / (σ * √(2π)) * exp(-(x-μ)^2 /2σ^2),其中x为取值范围。
例如,在考试成绩分析中,如果我们知道某门考试的平均分是80分,标准差是10分,我们就可以使用正态分布来计算不同分数段的比例和概率。
三、二项分布与正态分布的关系当二项分布的参数n(实验次数)足够大,同时p(事件成功的概率)也足够接近0.5时,二项分布可以近似地用正态分布来描述。
根据中心极限定理(Central Limit Theorem),当样本容量足够大时,无论数据服从什么分布,其样本均值的分布均近似服从正态分布。
由于二项分布和正态分布之间的关系,我们可以利用正态分布的性质对二项分布进行近似计算。
这种近似计算可简化复杂的二项分布计算,并提高效率。
常用数据分布、二项分布,伯努利分布,正态分布
常用数据分布、二项分布,伯努利分布,正态分布数据分布数据分布是—种形象的数据描述方式,用各种统计图形将数据的分布形态形象地展现在图形上,指的是数据分概率分布或频数分布,即单个值在整个数据集中的分布。
基本概念1、随机变量:随机变量是随机事件在数量上的表现,按取值分类分为离散型随机变量和连续型随机变量。
例如随机在两男两女中抽取两个人,要求一男一女,有可能出现(男1 , 女1) 、(男1, 女2) 、(男2, 女1) 、(男2, 女2) I 我们关心的是—个男—个女,而并不关心是哪个男的配对哪个女的。
离散型随机变量:在一定区间内变星的取值为无数个或可数个,例如商品个数,人口总数等,主要包括:柏怒利随机变量、二项随机变量、几何随机变晕、泊松随机变星。
连续型随机变量在一定区间内变量的取值为无数个,数值无法进行一一列举,如血红蛋白的测定值等,主要包括:均匀随机变量、指数随机变量、伽马随机变量、正态随机变量。
2、古典概率:指事件中结果种类是确定的,且结果发生概率都相同,这种事件发生的概率被称古典概率,例如抛硬币和掷骰子等。
3、条件概率:指时间A在时间B已经发生的条件下所发生的的概率,例如掷骰子时第一次掷到1第二次掷到2的概率就是条件概率。
4、离散变量:指变量值可以按照—定顺序进行列举,通常以整数位取值的变量,例如:人口数、商品数等。
5、连续变量:指在一定区间中可以任意取值的变量,数值连续不断,可无限分隔,例如:生产零件的规格,身高体重等。
6、期望值:指在一个离散型随机变量试验中,每次可能出现的结果的概率乘以其结果的总和,不同于常识中的期望值,统计学中的期望值,也许和每—个结果都不相同离散变量分布1、二项分布:指在每次试验中只有两种可能的结果,例如:市场调研员询问消费者对某种洗发用品是否满意,其结果也只有两个,即满意与不满意;拨打朋友手机的结果,即接通与没接通。
如果某个事件或活动的结果多千两个,但只关心其中一个,也可以视为只有两个结果。
计数原理概率随机变量及其分布第七节二项分布正态分布及其应用课件
显著性水平
显著性水平是假设检验中用于确定临界值的概率值。
拒绝域
拒绝域是假设检验中用于决定是否拒绝假设的区域。
THANKS
感谢观看
相关系数具有对称性、范围性、无量 纲性等性质,它可以用来判断两个随 机变量之间的线性相关关系。
06
大数定律与中心极限定理
大数定律的定义及性质
定义
在试验次数很大时,频率的极限就是概率。
性质
大数定律表明,当试验次数足够多时,频率的分布接近于概率的分布。
中心极限定理的定义及性质
定义
设随机变量X1,X2,...,Xn是相互独立的随机 变量,且具有相同的分布函数,F(x)为其分 布函数,则对于任意实数a,有P(at≤Xn≤a+t)=1-Φ(t/σn)+O(1/n^2),其中 Φ(x)是标准正态分布函数,σn是 X1,X2,...,Xn的方差,t是任意实数。
协方差的定义
协方差是两个随机变量取值之间的线 性关系,它描述了两个随机变量之间 的联动关系。
协方差的性质
协方差具有可加性、可乘性和可微性 等性质,它还可以表示为相关系数、 皮尔逊相关系数等。
相关系数的定义
相关系数是协方差与两个随机变量各 自方差的比值,它描述了两个随机变 量之间的线性相关程度。
相关系数的性质
二项分布的方差为np(1-p),方差反 映了成功的次数的波动程度。
当p=0.5时,二项分布的期望值和方 差都达到最大,此时分布曲线最为分 散。
二项分布的应用
01
02
03
应用于组合数学
在组合数学中,二项式系 数和组合数都与二项分布 有关。
应用于保险精算
在保险精算中,二项分布 被用来计算在一定次数的 独立试验中成功的次数所 对应的概率。
知识讲解_高考总复习:二项分布与正态分布(基础)
高考总复习:二项分布与正态分布编稿:孙永钊审稿:张林娟【考纲要求】一、二项分布及其应用1、了解条件概率和两个事件相互独立的概念;2、理解n次独立重复试验的模型及二项分布;3、能解决一些简单的实际问题。
二、正态分布利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。
【知识网络】【考点梳理】考点一、条件概率1.条件概率的定义设A、B为两个事件,且P(A)>0,称P(B|A)=P(AB)/P(A)为在事件A发生的条件下,事件B 发生的条件概率。
要点诠释:条件概率不一定等于非条件概率。
若A,B相互独立,则P(B|A)=P(B)。
2.条件概率的性质①0≤P(B|A)≤1;②如果B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)。
考点二、独立重复试验及其概率公式1.事件的相互独立性设A、B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立。
2.判断相互独立事件的方法(1)利用定义:事件A、B相互独立,则P(AB)=P(A)·P(B);反之亦然。
(2)利用性质:A 与B 相互独立,则A 与B ,A 与B , A 与B 也都相互独立. (3)具体模型①有放回地摸球,每次摸球结果是相互独立的.②当产品数量很大时,不放回抽样也可近似看作独立重复试验. 要点诠释:要明确“至少有一个发生”“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的含义。
已知两个事件A 、B ,则A 、B 中至少有一个发生的事件为A ∪B ; A 、B 都发生的事件为AB ; A 、B 都不发生的事件为AB ;A 、B 恰有一个发生的事件为AB ∪AB ;A 、B 中至多有一个发生的事件为AB ∪AB ∪AB 。
3.独立重复试验 (1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,即若用(1,2,,)i A i n =表示第i 次试验结果,则123123()()()()()n n P A A A A P A A A A =(2)独立重复试验的概率公式如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中,事件A 恰好发生k 次的概率为:()(1)k k n kn nP k C P p -=-。
高三总复习数学课件 二项分布及其应用、正态分布
解析:根据n重伯努利试验公式得,该同学通过测试的概率为C×0.62×0.4+ 0.63=0.648.
答案:A
2.第六届世界互联网大会发布了 15 项“世界互联网领先科技成果”,其中有 5
项成果均属于芯片领域.现有 3 名学生从这 15 项“世界互联网领先科技成
果”中分别任选 1 项进行了解,且学生之间的选择互不影响,则恰好有 1 名
答案:B
2.(人教A版选择性必修第三册P77·T2改编)鸡接种一种疫苗后,有90%不会感
染某种病毒,如果有5只鸡接种了疫苗,则恰好有4只鸡没有感染病毒的概率
约为
()
A.0.33 B.0.66 C.0.5 D.0.45
答案:A
3.(湘教版选择性必修第二册 P130 ·例 4 改编)甲、乙两人进行乒乓球比赛,比
赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜
的概率均为23,则甲以 3∶1 的比分获胜的三册P87·习题T1改编)某学校高二年级数学学业质量 检测考试成绩X~N(80,25),如果规定大于或等于85分为A等,那么在参加考 试的学生中随机选择一名,他的成绩为A等的概率是________.(附:若X~ N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7) 解析:P(X≥85)=12[1-P(75≤ X< 85)]≈1-02.682 7≈0.158 7.
n重伯努利试验 ②特征:同一个伯努利试验重复做n次;各次试验的结
果_相__互__独__立___
2.二项分布 (1)二项分布的定义: 一般地,在 n 重伯努利试验中,设每次试验中事件 A 发生的概率为 p(0<p<1), 用 X 表示事件 A 发生的次数,则 X 的分布列为 P(X=k)=_C_kn_p_k_(_1_-__p_)n_-_k_,k= 0,1,2,…,n.如果随机变量 X 的分布列具有上式的形式,则称随机变量 X 服从 二项分布,记作 X~B(n,p) . (2)二项分布的均值与方差: 如果 X~B(n,p),那么 E(X)= np ,D(X)= np(1-p) .
高考数学总复习第十一章计数原理概率随机变量及其分布第七节二项分布超几何分布正态分布课件北师大版
从二项分布,即X~B(n,p)(其中p=
M
N
);若 远远小于N时,每抽取一次后,
采用不放回抽样的方法随机抽取则随 对N的影响很小,超几何分布
机变量X服从超几何分布
可以用二项分布近似
3.正态分布
(1)正态曲线
1
分布密度函数解析式为φμ,σ(x)=
2π
2
(-)
e 22
,x∈(-∞,+∞),其中实数μ,σ(σ>0)
)
1
2.设随机变量 X~B 6, 2 ,则 P(X=3)=(
5
A.16
3
B.16
5
C.8
)
3
D.8
答案 A
解析 因为 X~B
A.
1
6,
2
3
1
,所以由二项分布可得,P(X=3)=C63
2
1 3
12
=
5
.故选
16
3.已知随机变量X服从正态分布N(3,1),且P(X>2c-1)=P(X≤c+3),则
c=
因此,随机变量X在区间(μ-σ,μ+σ],(μ-2σ,μ+2σ],
(μ-3σ,μ+3σ]上取值的概率分别约为68.3%,95.4%,99.7%.
微点拨1.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线的关于直线
X=μ对称和曲线与x轴之间的面积为1.
2.在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取
答案
.
4
3
解析 因为X~N(3,1),所以正态曲线关于直线x=3对称,且P(X>2c-1)
=P(X≤c+3),所以2c-1+c+3=2×3,所以c= 4
随机变量及其分布--二项分布及其应用
二项分布及其应用知识点一、条件概率1.一般的,设A,B 为两个事件,且0)(>A P ,则称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的条件概率。
)|(A B P 读作:A 发生的条件下B 发生的概率。
2.条件概率的性质: (1)1)|(0≤≤A B P ;(2)必然事件的条件概率为1;不可能事件的条件概率为0. (3)若事件B 与C 互斥,)|()|()|(A C P A B P A C B P += 二、相互独立事件1.设A ,B 为两个事件,若)()()(B P A P AB P =,则称事件A 与事件B 相互独立。
2.条件概率的性质:(1)若事件A 与B 相互独立,则)()|(B P A B P =,)()|(A P B A P =,)()()(B P A P AB P =。
(2)如果事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 三、独立重复试验与二项分布 1.独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。
2.二项分布:一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则n k p p C k X P k n kk n ,,2,1,0,)1()( =-==-。
此时称随机变量X 服从二项分布,记作),(~p n B X题型一 条件概率【例1】已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910C.215D.115【例2】抛掷一枚质地均匀的骰子所得点数的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于 ( ) A.25 B.12 C.35D.45【例3】任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间⎝⎛⎭⎫0,13内的概率是多少? (2)在(1)的条件下,求该点落在⎝⎛⎭⎫15,1内的概率.【过关练习】1.电视机的使用寿命与显像管开关的次数有关.某品牌的电视机的显像管开关了10 000次后还能继续使用的概率是0.80,开关了1 5 000次后还能继续使用的概率是0.60,则已经开关了10 000次的电视机显像管还能继续使用到15 000次的概率是( ) A .0.75 B .0.60 C .0.48D .0.202.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________. 3.如图,EFGH 是以O 为圆心,半径为1的圆内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.4.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2个球使用,在第一次摸出新的条件下,第二次也取到新球的概率为( ) A.35 B.110 C.59D.255.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率.题型二 独立事件的概率【例1】把标有1,2的两张卡片随机地分给甲、乙;把标有3,4的两张卡片随机地分给丙、丁,每人一张,事件“甲得1号纸片”与“丙得4号纸片”是( ) A .互斥但非对立事件 B .对立事件 C .相互独立事件D .以上答案都不对【例2】在如图所示的电路图中,开关a ,b ,c 闭合与断开的概率都是12,且是相互独立的,则灯亮的概率是( )A.18B.38C.14D.78【例3】甲、乙两名学生通过某种听力测试的概率分别为12和13,两人同时参加测试,其中有且只有一人能通过的概率是( ) A.13 B.23 C.12D .1【例4】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级 摸出红、蓝球个数获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级. (1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额X 的分布列.【过关练习】1.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( ) A.29 B.118 C.13 D.232.某条道路的A ,B ,C 三处设有交通灯,这三盏灯在一分钟内平均开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是________.3.某天上午,李明要参加“青年文明号”活动.为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.4.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是________.5.从一副除去大小王的扑克牌(52张)中任取一张,设事件A 为“抽得K ”,事件B 为“抽得红牌”,事件A 与B 是否相互独立?是否互斥?是否对立?为什么?题型三 二项分布及其应用【例1】某一试验中事件A 发生的概率为p ,则在n 次独立重复试验中,A 发生k 次的概率为( ) A .1-p k B .(1-p )k p n -kC .(1-p )kD .C k n (1-p )k pn -k【例2】甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( ) A .0.216 B .0.36 C .0.432D .0.648【例3】若随机变量ξ~B ⎝⎛⎭⎫5,13,则P (ξ=k )最大时,k 的值为( ) A .5 B .1或2 C .2或3D .3或4【例4】甲、乙两人各射击一次击中目标的概率分别是23和34,假设两人射击是否击中目标,相互之间没有影响,每次射击是否击中目标,相互之间也没有影响. (1)求甲射击4次,至少1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.【过关练习】1.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( ) A .6 B .5 C .4D .32.连续掷一枚硬币5次,恰好有3次正面向上的概率为________.4.甲、乙两人投篮命中的概率分别为p 、q ,他们各投两次,若p =12,且甲比乙投中次数多的概率恰好等于736,则q 的值为________.5.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两位有效数字)课后练习【补救练习】1.为考察某种药物预防疾病的效果,科研人员进行了动物试验,结果如下表:A.35B.37C.911D.11152.某种动物活到20岁的概率是0.8,活到25岁的概率是0.4,则现龄20岁的这种动物活到25岁的概率是( ) A .0.32 B .0.5 C .0.4D .0.83.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512 C.14D.164.某人参加一次考试,4道题中答对3道为及格,已知他的解题正确率为0.4,则他能及格的概率约为( ) A .0.18 B .0.28 C .0.37D .0.485.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.【巩固练习】1.分别用集合M ={}2,4,5,6,7,8,11,12中的任意两个元素作分子与分母构成真分数,已知取出的一个元素是12,则取出的另一个元素与之构成可约分数的概率是( ) A.712 B.512 C.47D.1122.国庆节放假,甲,乙,丙去北京旅游的概率分别为13,14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ) A.5960 B.35 C.12D.1603.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12且从两个袋中摸球相互之间不受影响,从两袋中各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率4.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放在验钞机上检验发现是假钞,则第2张也是假钞的概率为________.5.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是多少?6.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.7.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是________.8.设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05.甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.则求甲、乙、丙每台机器在这个小时内需要照顾的概率分别为________,________,________.9.甲、乙、丙三人在同一办公室工作,办公室内只有一部电话机,经该机打进的电话是打给甲、乙、丙的概率分别是12,14,14,在一段时间内共打进三个电话,且各个电话之间相互独立,则这三个电话中恰有两个是打给乙的概率是________.10.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是________.11.某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率; (2)求至多有两人当选的概率.12.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率. (2)这名学生在上学路上因遇到红灯停留的总时间至多是4 min 的概率.【拔高练习】1.10个球中有一个红球,有放回的抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ) A .(110)2(910)n -kB .(110)k (910)n -kC .C k -1n -1(110)k (910)n -kD .C k -1n -1(110)k -1(910)n -k2.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动5次后位于点(2,3)的概率是( )A .(12)5B .C 25(12)5C .C 35(12)3D .C 25C 35(12)53.在某次考试中,要从20道题中随机地抽出6道题,考生能答对其中的4道题即可通过;能答对其中5道题就获得优秀.已知某考生能答对其中的10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.4.某公司招聘员工,指定三门考试课程,有两种考试方案: 方案一:考三门课程至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.(1)求该应聘者用方案一通过的概率; (2)求该应聘者用方案二通过的概率.5.口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{}a n :a n =⎩⎪⎨⎪⎧-1, 第n 次摸到红球,1, 第n 次摸到白球,如果S n 为数列{}a n 的前n 项和,求S 7=3的概率.。
第七节 二项分布与正态分布
1 / 19第七节 二项分布与正态分布命题导航课程标准(2017年版)命题预测1.结合古典概型,了解条件概率,能计算简单随机事件的条件概率.2.通过具体实例,了解伯努利试验,掌握二项分布及其数字特征,并能解决简单的实际问题. 3.通过误差模型,了解服从正态分布的随机变量.通过具体实例,借助频率直方图的几何直观,了解正态分布的特征. 4.了解正态分布的均值、方差及其含义.1.考向预测:相互独立事件同时发生的概率、独立重复试验与二项分布、正态分布是考查热点.2.学科素养:主要考查数据分析核心素养.1.条件概率(1)定义对于任何两个事件A 和B,在已知事件A 发生的条件下,事件B 发生的概率叫做① 条件概率 ,用符号② P(B|A) 来表示,其公式为P(B|A)=③ P (AB )P (A )(P(A)>0).在古典概型中,若用n(A)表示事件A 中基本事件的个数,则P(B|A)=n (AB )n (A ).(2)性质(i)④ 0≤P(B|A)≤1 ;(ii)如果B 和C 是两个互斥事件,那么P(B∪C|A)=⑤ P(B|A)+P(C|A) . 2.相互独立事件(1)对于事件A 、B,若A 的发生与B 的发生互不影响,则称⑥ A 、B 是相互独立事件 . (2)若A 与B 相互独立,则P(B|A)=⑦ P(B) ,P(AB)=P(B|A)·P(A)=⑧P(A)P(B) .(3)若A与B相互独立,则⑨A与B ,⑩A 与B ,A 与B 也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中事件发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C n k p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p) ,并称p为成功概率.4.正态曲线的特点(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线x=μ对称;(3)曲线在x=μ处达到峰值σ√2π;(4)曲线与x轴之间的面积为 1 ;(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“高瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.【常用结论】1.若事件A与B相互独立,则A与,A与,A与B也相互独立.2.若A1,A2,…,An相互独立,则P(A1A2…An)=P(A1)P(A2)·…·P(An).2 / 193 / 191.判断正误(正确的打“√”,错误的打“✕”). (1)条件概率一定不等于它的非条件概率.( )(2)对于任意两个互斥事件,公式P(AB)=P(A)P(B)都成立.( )(3)独立事件可能是互斥事件也可能不是互斥事件,而互斥事件一定不是独立事件.( ) (4)若事件A,B 相互独立,则P(B|A)=P(B).( )(5)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( )答案 (1)✕ (2)✕ (3)√ (4)√ (5)√2.已知P(B|A)=12,P(AB)=38,则P(A)等于( ) A.316 B.1316 C.34D.14答案 C3.设随机变量X~B (6,12),则P(X=3)等于( ) A.516 B.316 C.58 D.38答案 A4.某人射击,一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为 . 答案811255.某小区有两个相互独立的安全防范系统甲和乙,系统甲和系统乙在任意时刻发生故障的概率分别为18和p.若在任意时刻恰有一个系统不发生故障的概率为14,则p= . 答案 164 / 196.已知ξ~N(0,σ2)且P(-2≤ξ≤0)=0.4,则P(ξ>2)= . 答案 0.1条件概率典例1 (2016课标全国Ⅱ,18(1)(2))某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数0 1 2 3 4 ≥5 保 费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下: 一年内出险次数0 1 2 3 4 ≥5 概 率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率. 解析 (1)设A 表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B 表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P (AB )P (A )=P (B )P (A )=0.150.55=311. 因此所求概率为311. 方法技巧条件概率的求法(1)定义法:先求P(A)和P(AB),再由P(B|A)=P (AB )P (A )求P(B|A).(2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n(A),再求事件AB 所包含的基本事件数n(AB),得P(B|A)=n (AB )n (A ).5 / 19(3)缩样法:缩小样本空间的方法,就是去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解,它能化繁为简.1-1 甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则在甲市为雨天的条件下,乙市也为雨天的概率为( )A.0.6B.0.7C.0.8D.0.66答案 A1-2 现有3道理科题和2道文科题,共5道题,若不放回地一次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为( )A.310B.25C.12D.35答案 C 设“第1次抽到理科题”为事件A,“第2次抽到理科题”为事件B,则P(B|A)=P (AB )P (A )=3×2A 5235=12.故选C.相互独立事件的概率典例2 某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.规定一名运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为23,34,35,他们出线与未出线是相互独立的.(1)求这次选拔赛中,这三名运动员至少有一名出线的概率;(2)记在这次选拔赛中,甲、乙、丙三名运动员的得分之和为随机变量ξ,求随机变量ξ的分布列.解析 (1)记“甲出线”为事件A,“乙出线”为事件B,“丙出线”为事件C,“甲、乙、丙三名运动员至少有一名出线”为事件D,则P(D)=1-P(A B C )=1-13×14×25=2930.(2)由题意可得,ξ的所有可能取值为0,1,2,3,6 / 19则P(ξ=0)=P(A B C )=13×14×25=130;P(ξ=1)=P(A B C )+P(A B C )+P(A B C)=23×14×25+13×34×25+13×14×35=1360; P(ξ=2)=P(AB C )+P(A B C)+P(A BC)=23×34×25+23×14×35+13×34×35=920; P(ξ=3)=P(ABC)=23×34×35=310. 所以ξ的分布列为ξ 0 1 2 3 P1301360920310方法技巧相互独立事件的概率的求法(1)直接法:利用相互独立事件的概率乘法公式直接求解;(2)间接法:正面计算较复杂(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.2-1 甲、乙两人玩投篮游戏,规则如下:两人轮流投篮,每人至多投2次,甲先投,若有人投中即停止投篮,结束游戏,已知甲每次投中的概率为14,乙每次投中的概率为13,求:(1)乙投篮次数不超过1的概率;(2)记甲、乙两人投篮次数总和为ξ,求ξ的分布列.解析 (1)记“甲投篮投中”为事件A,“乙投篮投中”为事件B.“乙投篮次数不超过1”包括三种情况:第一种是甲第1次投篮投中,第二种是甲第1次投篮未投中而乙第1次投篮投中,第三种是甲、乙第1次投篮均未投中而甲第2次投篮投中,故所求的概率P=P(A+A ·B+A ·B ·A) =P(A)+P(A ·B)+P(A ·B ·A)=P(A)+P()·P()·P(A)=14+34×13+34×23×14=58. (2)甲、乙投篮次数总和ξ的值为1,2,3,4,P(ξ=1)=P(A)=14;7 / 19P(ξ=2)=P(A ·B)=34×13=14; P(ξ=3)=P(A ·B ·A)=34×23×14=18; P(ξ=4)=P(A ·B ·A )=34×23×34=38. 所以甲、乙投篮次数总和ξ的分布列为ξ 1 2 3 4 P1 1 1 3 独立重复试验与二项分布典例3 (1)已知种植某种树苗,成活率为0.9.若种植这种树苗5棵,则恰好成活4棵的概率约为( )A.0.33B.0.66C.0.5D.0.45(2)设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=59,则P(η≥1)= . 答案 (1)A (2)6581解析 (1)种植这种树苗5棵,恰好成活4棵的概率为C 540.94(1-0.9)≈0.33. (2)P(ξ≥1)=1-P(ξ<1)=1-C 20p 0·(1-p)2=59,所以p=13,所以P(η≥1)=1-P(η=0)=1-C 40(13)0(23)4=1-1681=6581.方法技巧1.判断随机变量X 服从二项分布的条件(X~B(n,p))(1)X 的取值为0,1,2,…,n.(2)P(X=k)=C nk p k (1-p)n-k(k=0,1,2,…,n,p 为试验成功的概率). 2.判断某种随机变量是否服从二项分布的关键点 (1)在每一次试验中,事件发生的概率相同. (2)各次试验中的事件是相互独立的.8 / 19(3)在每一次试验中,试验的结果只有两个,即发生与不发生.▶提醒 在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为独立重复试验,进而判断是否服从二项分布.3-1 甲、乙两名运动员练习定点投球,已知在该点每次投篮甲命中的概率是0.8,乙命中的概率是0.9,每人投两次,则甲、乙都恰好命中一次的概率为( )A.0.32B.0.18C.0.50D.0.057 6答案 D 甲命中一次的概率为C 21×0.8×(1-0.8)=0.32,乙命中一次的概率为C 21×0.9×(1-0.9)=0.18,他们投篮命中与否相互独立,所以甲、乙都恰好命中一次的概率P=0.32×0.18=0.057 6.3-2 在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只需在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名学生中选做第22题的学生个数为ξ,求ξ的分布列.解析 (1)设事件A 表示“甲选做第21题”,事件B 表示“乙选做第21题”,则甲、乙两名学生选做同一道题的事件为“AB+AB ”,且事件A 、B 相互独立.故P(AB+)P(B )=12×12+(1-12)×(1-12)=12. (2)随机变量ξ的可能取值为0,1,2,3,4,且ξ~B (4,12), 则P(ξ=k)=C 4k (12)k(1-12)4-k=C 4k (12)4(k=0,1,2,3,4).故ξ的分布列为ξ 0 1234P116 1 38 1 116正态分布典例4 (2017课标全国Ⅰ理,19,12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线在正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.129.969.9610.019.929.9810.0410 .2 6 9.9110.1310.029.2210.0410.059.95经计算得x=116∑i=116xi=9.97,s=√116∑i=116(x i-x)2=√116(∑i=116x i2-16x2)≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数x作为μ的估计值μ^,用样本标准差s作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.997 4.9 / 1910 / 190.997 416≈0.959 2,√0.008≈0.09.解析 (1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.997 4,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.002 6,故X~B(16,0.002 6).因此P(X≥1)=1-P(X=0)=1-0.997 416≈0.040 8. X 的数学期望为EX=16×0.002 6=0.041 6.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x =9.97,s≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02,因此μ的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1 591.134,剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008, 因此σ的估计值为√0.008≈0.09. 方法技巧3σ原则的应用(1)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ)或(μ-3σ,μ+3σ)中的哪一个.(2)充分利用正态分布密度曲线的对称性和曲线与x 轴之间的面积为 1.(3)①正态分布密度曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等;②P(X<σ)=1-P(X≥σ),P(X≤μ-σ)=P(X≥μ+σ).(4)解决实际问题时,读取题目中的有用信息,确定正态分布的参数μ,σ的值,从而求事件的概率.4-1 设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲线如图所示,则有( )A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2答案 A μ反映的是正态分布的平均水平,直线x=μ是正态密度曲线的对称轴,由题图可知μ1<μ2;σ反映的是正态分布的离散程度,σ越大,越分散,曲线越“矮胖”,σ越小,越集中,曲线越“瘦高”,由题图可知σ1<σ2.4-2 某人乘车从A地到B地,所需时间(分钟)服从正态分布N(30,100),求此人在40分钟至50分钟到达目的地的概率.注:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)≈0.682 7,P(μ-2σ<X<μ+2σ)≈0.954 5,P(μ-3σ<X<μ+3σ)≈0.997 3.解析由μ=30,σ=10,P(μ-σ<X<μ+σ)≈0.682 7知,此人在20分钟至40分钟到达目的地的概率为0.682 7,又P(μ-2σ<X<μ+2σ)≈0.954 5,所以此人在10分钟至20分钟和40分钟至50分钟到达目的地的概率为0.954 5-0.682 7=0.271 8,由正态曲线关于直线x=30对称得此人在40分钟至50分钟到达目的地的概率为0.135 9.11 / 1912 / 19为了拓展网络市场,某公司为手机客户端用户推出了多款APP 应用,如“农场”“音乐”“读书”等.市场调查表明,手机用户在选择以上三种应用时,选择“农场”、“音乐”、“读书”的概率分别为12,13,16.现有甲、乙、丙三位手机客户端用户独立任意选择以上三种应用中的一种进行安装.(1)求三人所选择的应用互不相同的概率;(2)记ξ为三人中选择的应用是“农场”与“音乐”的人数,求ξ的分布列. 解析 记第i 名用户选择的应用是“农场”、“音乐”、“读书”分别为事件A i ,B i ,C i ,i=1,2,3.由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2,C 3相互独立,A i ,B j ,C k (i,j,k=1,2,3且i,j,k 互不相同)相互独立,且P(A i)=12,P(B i )=13,P(C i )=16. (1)他们选择的应用互不相同的概率P=6·P(A 1B 2C 3)=6P(A 1)P(B 2)P(C 3)=16.(2)设3位用户选择的应用是“读书”的人数是η,由已知得η~(3,16),且ξ=3-η, 所以P(ξ=0)=P(η=3)=C 33×(16)3=1216,P(ξ=1)=P(η=2)=C 32×(16)2×56=15216, P(ξ=2)=P(η=1)=C 31×16×(56)2=75216, P(ξ=3)=P(η=0)=C 30×(56)3=125216.故ξ的分布列为ξ 0 1 2 3 P121615216 7521612521613 / 19A 组 基础题组1.打靶时甲每打10次,可中靶8次;乙每打10次,可中靶7次,两人打靶相互独立.若两人同时射击一个目标,则他们都中靶的概率是( ) A.35B.34C.1225D.1425答案 D2.袋中有大小完全相同的2个白球和3个黄球,逐个不放回地摸出两球,设“第一次摸得白球”为事件A,“摸得的两球同色”为事件B,则P(B |A )=( ) A.110 B.15 C.14D.25答案 C3.(2018广东茂名一模)设X~N(1,1),其正态分布密度曲线如图所示,那么向正方形ABCD 中随机投掷10 000个点,则落入阴影部分的点的个数的估计值是( )(注:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)≈68.27%,P(μ-2σ<X≤μ+2σ)≈95.45%)A.7 539B.6 038C.7 028D.6 587答案 D4.甲、乙两名羽毛球运动员要进行三场比赛,且这三场比赛可看作三次独立重复试验,若甲至少取胜一次的概率为6364,则甲恰好取胜一次的概率为( ) A.14B.34C.964D.2764答案 C5.甲、乙两人同时解答某一问题,解答成功的概率是0.8,已知甲单独解答成功的概率是0.6,甲、乙单独解答成功与否互不影响,则乙单独解答成功的概率是 .14 / 19答案 0.56.甲、乙两个狙击手对同一个目标各射击一次,其命中率分别为0.9,0.95.现已知目标被击中,则它被乙击中的概率是 .(精确到小数点后三位) 答案 0.955解析 设“目标被击中”为事件A,“目标被乙击中”为事件B,则P(A)=0.9×(1-0.95)+(1-0.9)×0.95+0.9×0.95=0.995,P(AB)=P(B)=0.95, 所以P(B|A)=P (AB )P (A )=0.950.995≈0.955.7.某气象站天气预报的准确率为80%,计算(结果保留到小数点后两位): (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率. 解析 令X 表示5次预报中预报准确的次数,则X~B (5,45). (1)“5次预报中恰有2次准确”的概率为P(X=2)=C 52×(45)2×(1-45)3=10×1625×1125≈0.05. (2)“5次预报中至少有2次准确”的概率为P(X≥2)=1-P(X=0)-P(X=1)=1-C 50×(45)0×(1-45)5-C 51×45×(1-45)4=1-0.000 32-0.006 4≈0.99.(3)“5次预报中恰有2次准确,且其中第3次预报准确”的概率为C 41×45×(1-45)3×45≈0.02.8.一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出现故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p,计算在这一时间段内. (1)恰有一套设备能正常工作的概率; (2)能进行通讯的概率.解析 记“第一套通讯设备能正常工作”为事件A,“第二套通讯设备能正常工作”为事件B. 由题意知P(A)=p 3,P(B)=p 3, P(A )=1-p 3,P(B )=1-p 3.15 / 19(1)恰有一套设备能正常工作的概率为P( B +B)=P(=p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)两套设备都不能正常工作的概率为 P(B )=P()·P(B )=(1-p 3)2.至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P(A )=1-P(A )·P(p 3)2=2p 3-p 6.B 组 提升题组1.如图,在网格状小地图中,一机器人从A(0,0)点出发,每秒向上或向右行走1格到相应顶点,已知向上的概率是23,向右的概率是13,则6秒后到达B(4,2)点的概率为( )A.16729 B.80243 C.4729 D.20243答案 D 根据题意可知,机器人每秒运动一次, 则6秒共运动6次,若其从A(0,0)点出发,6秒后到达B(4,2), 则需要向右走4步,向上走2步, 故其6秒后到达B的概率为C 62·(23)2(13)4=60729=20243.2.(2018江西南昌模拟)口袋中装有大小、形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,已知第一次取得红球,则第二次取得白球的概率为 . 答案3516 / 19解析 设事件A 表示“第一次取得红球”,事件B 表示“第二次取得白球”,则P(A)=26=13,P(AB)=26×35=15,∴第一次取得红球后,第二次取得白球的概率为P(B|A)=P (AB )P (A )=1513=35. 3.“过大年,吃水饺”是我国很多地方过春节的一大习俗.2019年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标值,所得频率分布直方图如下:(1)求所抽取的100包速冻水饺的该项质量指标值的平均数x (同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布N(μ,σ2),利用该正态分布,求Z 落在(14.55,38.45]内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中该项质量指标值位于(10,30)内的包数为X,求X 的分布列和数学期望.附:计算得所抽查的这100包速冻水饺的该项质量指标值的标准差为σ=√142.75≈11.95;若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.682 7,P(μ-2σ<ξ≤μ+2σ)=0.954 5. 解析 (1)所抽取的100包速冻水饺的该项质量指标值的平均数x =5×0.1+15×0.2+25×0.3+35×0.25+45×0.15=26.5. (2)①∵Z 服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95, ∴P(14.55<Z≤38.45)=P(26.5-11.95<Z≤26.5+11.95)≈0.682 7, ∴Z 落在(14.55,38.45]内的概率是0.682 7. ②根据题意得X~B (4,12),P(X=0)=C 40(12)4=116;P(X=1)=C 41(12)4=14; P(X=2)=C 42(12)4=38;17 / 19P(X=3)=C 43(12)4=14; P(X=4)=C 44(12)4=116.∴X 的分布列为X 0 1 2 3 4 P116143814116∴E(X)=2.4.某生物产品每一个生产周期的成本为20万元,此产品的产量受气候影响、价格受市场影响,二者均具有随机性,且互不影响,该产品在一个生产周期的具体情况如下表:产量(吨) 30 50 概率 0.5 0.5 市场价格(万元/吨) 0.6 1 概率0.40.6(1)设X(单位:万元)表示1个生产周期的此产品的利润,求X 的分布列;(2)连续生产3个周期,求这3个生产周期中至少有2个生产周期的利润不少于10万元的概率.(注:假设生产的产品全部售出)解析 (1)设A 表示事件“产品产量为30吨”,B 表示事件“产品市场价格为0.6万元/吨”, 则P(A)=0.5,P(B)=0.4,由题意可知,利润=产量×市场价格-成本,即50×1-20=30,50×0.6-20=10,30×1-20=10,30×0.6-20=-2, ∴X 的所有可能取值为30,10,-2,则P(X=30)=P(A )P(B )=(1-0.5)×(1-0.4)=0.3,P(X=10)=P()P(B)+P(A)P(B )=(1-0.5)×0.4+0.5×(1-0.4)=0.5,18 / 19P(X=-2)=P(A)P(B)=0.5×0.4=0.2, 则X 的分布列为X 30 10 -2 P0.30.50.2(2)设C i 表示事件“第i 个生产周期的利润不少于10万元”(i=1,2,3), 则C 1,C 2,C 3相互独立,由(1)知,P(C i )=P(X=30)+P(X=10)=0.3+0.5=0.8(i=1,2,3),∴3个生产周期的利润均不少于10万元的概率为P(C 1C 2C 3)=P(C 1)P(C 2)P(C 3)=(0.8)3=0.512, 3个生产周期中有2个生产周期的利润不少于10万元的概率为P(C 1C 2C 3)+P(C 1C 2C 3)+P(C 1C 2C 3)=3×(0.8)2×0.2=0.384.∴3个生产周期中至少有2个生产周期的利润不少于10万元的概率为0.512+0.384=0.896. 素养拓展5.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为23,13,则小球落入A 袋中的概率为( )A.34B.14C.13D.23答案 D 由题意知,小球落入A 袋中的概率P(A)=1-P(B) =1-(13×13×13+23×23×23)=23.6.如果{a n }不是等差数列,但若∃k∈N *,使得a k +a k+2=2a k+1,那么称{a n }为“局部等差”数列.已知数列{x n }的项数为4,记事件A:集合{x 1,x 2,x 3,x 4}⊆{1,2,3,4,5},事件B:{x n }为“局部等差”数列,则条件概率P(B|A)=()A.415B.730C.15D.16答案 C7.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是.答案①③解析因为射击一次击中目标的概率是0.9,所以第3次击中目标的概率是0.9,所以结论①正确;因为连续射击4次,且各次射击是否击中目标相互之间没有影响,所以本题是一个独立重复试验,根据独立重复试验的公式得到恰好击中目标3次的概率是C43×0.93×0.1,所以结论②不正确;至少击中目标1次的概率用对立事件表示是1-0.14,所以结论③正确.19 / 19。
高考数学 考点 第十一章 计数原理、随机变量及其分布 11.5 二项分布与正态分布(理)-人教版高三
考点11.5 二项分布与正态分布1.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB )P (A )(P (A )>0). 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ). (2)条件概率具有的性质 ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A ,B ,若事件A 的发生与事件B 的发生互不影响,则称事件A ,B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)P (AB )=P (A )P (B )⇔A 与B 相互独立. 3.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率.4.两点分布与二项分布的均值、方差(1)若随机变量X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). 5.正态分布(1)正态曲线:函数φμ,σ(x )=12πσ22()2ex μσ--,x∈(-∞,+∞),其中实数μ和σ为参数(σ>0,μ∈R).我们称函数φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态总体在三个特殊区间内取值的概率值①P(μ-σ<X≤μ+σ)≈0.682 7;②P(μ-2σ<X≤μ+2σ)≈0.954 5;③P(μ-3σ<X≤μ+3σ)≈0.997 3.概念方法微思考1.条件概率中P(B|A)与P(A|B)是一回事吗?提示不一样,P(B|A)是在A发生的条件下B发生的概率,P(A|B)是在B发生的条件下A发生的概率.2.“事件相互独立”与“事件互斥”有何不同?提示两事件互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件发生与否对另一事件发生的概率没有影响,两事件相互独立不一定互斥.1.(2017•新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:)cm.根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X 及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s =≈,其中i x 为抽取的第i 个零件的尺寸,1i =,2,⋯,16.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.9974P Z μσμσ-<<+=,160.99740.9592≈,0.09≈.【解析】(1)由题可知尺寸落在(3,3)μσμσ-+之内的概率为0.9974, 则落在(3,3)μσμσ-+之外的概率为10.99740.0026-=,因为001616(0)(10.9974)0.99740.9592P X C ==⨯-⨯≈, 所以(1)1(0)0.0408P X P X =-==, 又因为~(16,0.0026)X B , 所以()160.00260.0416E X =⨯=;(2)(ⅰ)如果生产状态正常,一个零件尺寸在ˆˆˆˆ(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在ˆˆˆˆ(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由9.97x =,0.212s ≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查. 剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下的数据的平均数为 1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下的数据的样本方差为 221(1591.1349.221510.02)0.00815--⨯≈,因此σ0.09.1.(2020•青羊区校级模拟)设随机变量X ,Y 满足:31Y X =-,~(2,)X B p ,若5(1)9P X =,则()(D Y =)A .4B .5C .6D .7 【答案】A【解析】随机变量X ,Y 满足:31Y X =-,~(2,)X B p ,5(1)9P X =, 0224(0)1(1)(1)9P X P X C p ∴==-=-=, 解得13p =,1~(2,)3X B ∴,114()2(1)339D X ∴=⨯⨯-=,4()9()949D Y D X ∴==⨯=. 故选A .2.(2020•奎文区校级模拟)设随机变量X 服从1(6,)2B ,则(3)P X =的值是()A .316B .516C .38D .58【答案】B【解析】随机变量X 服从1(6,)2,3336611205(3)()()22216P X C ∴====故选B .3.(2019•道里区校级三模)已知随机变量X 服从二项分布(,)B n p .若()2E X =,4()3D X =,则(p =) A .34B .23C .13D .14【答案】C【解析】由随机变量X 服从二项分布(,)B n p . 又()2E X =,4()3D X =, 所以24(1)3np np p =⎧⎪⎨-=⎪⎩,解得:13p =,故选C .4.(2019•道里区校级一模)设随机变量~(2,)B p ξ,~(4,)B p η,若5(1)9P ξ=,则(2)P η的值为() A .3281B .1127C .6581D .1681【答案】B【解析】随机变量~(2,)B p ξ,5(1)9P ξ=, 002251(1)9C p p ∴--=,13P ∴=,1~(4,)3B η∴,22233144044412121211(2)()()()()()()33333327P C C C η∴=⨯+⨯+=,故选B .5.(2020•某某模拟)已知随机变量ξ服从正态分布2(,)N μσ,若(2)(8)0.15P P ξξ<=>=,则(25)(P ξ<=)A .0.3B .0.35C .0.5D .0.7 【答案】B【解析】根据题意,正态分布2(,)N μσ, 若(2)(8)0.15P P ξξ<=>=,则5μ=,即这组数据对应的正态曲线的对称轴5x =,则(5)0.5P ξ<=, 又由(2)0.15P ξ<=,得(25)0.50.150.35P ξ<=-=. 故选B .6.(2020•红岗区校级模拟)在如图所示的正方形中随机投掷40000个点,则落入阴影部分(曲线C为正态分布(2,4)N -的密度曲线)的点的个数的估计值为()(附2:~(,)x N μσ,则()0.6827P X μσμσ-<+=,(22)0.9545P X μσμσ-<+=.)A .906B .1359C .2718D .3413 【答案】B 【解析】~(2,4)X N -∴阴影部分的面积(02)S P X =1[(62)(10)]2P x P x =--- 1(0.95450.6827)0.13592=-=, 则在正方形中随机投一点, 该点落在阴影内的概率为0.13594P =,∴落入阴影部分的点的个数的估计值为0.13594000013594⨯≈. 故选B .7.(2020•某某三模)已知随机变量X 服从正态分布2(2,)N σ,且(02)0.3P X =,则(4)(P X >=)A .0.6B .0.2C .0.4D .0.35 【答案】B【解析】由随机变量X 服从正态分布2(2,)N o , 所以正态曲线的对称轴是2x =, 又(02)0.3P X =,所以(4)(0)0.50.30.2P X P X >=<=-=. 故选B .8.(2020•某某模拟)在某项测量中,测量结果ξ服从正态分布(1N ,2)(0)σσ>,若ξ在(0,2)内取值的概率为0.6,则ξ在(2,)+∞内取值的概率为() A .0.8B .0.4C .0.3D .0.2 【答案】D【解析】2~(1,)N ξσ,(2)(0)P P ξξ∴>=<, 又(02)0.6P ξ<<=,∴10.6(2)0.22P ξ->==. 故选D .9.(2020•某某模拟)若随机变量ξ服从正态分布2(,)N μσ,则()0.6827P μσξμσ-<+=,(22)0.9545P μσξμσ-<+=,设2~(1,)N ξσ,且(3)0.15865P ξ=,在平面直角坐标系xOy 中,若圆222x y σ+=上恰有两个点到直线1250x y c -+=的距离为1,则实数c 的取值X 围为() A .(26-,13)(13-⋃,26)B .(26,26)- C .(39-,13)(13-⋃,39)D .(39,39)- 【答案】C【解析】由题意知:1(3)(1)[1(13)]2P P P ξξξ=-=--<<,(13)0.6827P ξ∴-<<=,11σ∴-=-,13σ+=.2σ∴=.故圆的方程为224x y +=,圆心为(0,0),半径为2.如图,1L ,2L 表示与1250x y c -+=平行的直线,OA ,OB ,OC 共线且垂直于1L ,2L . 当1BC AC ==时,圆上分别恰有1个,3个点到直线的距离等于1,此时圆心到直线的距离分别为3,1.当直线介于1L ,2L 之间时,符合题意. 故13<<,13||39c ∴<<,3913c ∴-<<-或1339c <<.故选C .10.(2020•某某二模)2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,已知某工厂生产口罩的质量指标~(15,0.0025)N ξ,单位为g ,该厂每天生产的质量在(14.9,15.05)g g 的口罩数量为818600件,则可以估计该厂每天生产的质量在15.15g 以上的口罩数量为()参考数据:若2~(,)N ξμσ,则()0.6827P μσξμσ-<<+=,(22)0.9545P μσξμσ-<<+=,(33)0.9973P μσξμσ-<<+=.A .158 700B .22 750C .2 700D .1 350 【答案】D【解析】由题意知,~(15,0.0025)N ξ,即15μ=,20.0025σ=,即0.05σ=; 所以0.68270.9545(14.915.05)(2)0.81862P P ξμσξμσ+<<=-<<+==,所以该厂每天生产的口罩总量为8186000.81861000000÷=(件), 又10.9973(15.15)(3)2P P ξξμσ->=>+=, 所以估计该厂每天生产的质量在15.15g 以上的口罩数量为10.9973100000013502-⨯=(件). 故选D .11.(2020•某某模拟)若随机变量X 服从正态分布(N μ,2)(0)σσ>,则(||)0.6826P X μσ-≈,(||2)0.9544P X μσ-≈,(||3)0.9974P X μσ-≈.已知某校1000名学生某次数学考试成绩服从正态分布(110,100)N ,据此估计该校本次数学考试成绩在130分以上的学生人数约为() A .159B .46C .23D .13 【答案】C【解析】由题意,110μ=,10σ=, 故10.9544(130)(2)0.02282P X P X μσ->=>+==. ∴估计该校本次数学考试成绩在130分以上的学生人数约为10000.022822.823⨯=≈.故选C .12.(2020•某某模拟)已知随机变量(2,1)X N ∽,其正态分布密度曲线如图所示.若在边长为1的正方形OABC 内随机取一点,则该点恰好取自黑色区域的概率为()附:若随机变量2~(,)N ξμσ,则()0.6826P μσξμσ-+=,(22)0.9544P μσξμσ-+=.A .0.1359B .0.6587C .0.7282D .0.8641 【答案】D【解析】由题意1(01)(0.95440.6826)0.13592P X <=⨯-=.在正方形OABC 内随机取一点,则该点恰好落在阴影部分的概率为110.13590.864111P ⨯-==⨯.故选D .13.(2020•某某模拟)某公司生产了一批新产品,这种产品的综合质量指标值x 服从正态分布2(100,)N σ且(80)0.2P x <=.现从中随机抽取该产品1000件,估计其综合质量指标值在[100,120]内的产品件数为()A .200B .300C .400D .600 【答案】B【解析】因为综合质量指标值x 服从正态分布2(100,)N σ且(80)0.2P x <=. (80)(120)0.2P x P x ∴<=>=,(100)(100)0.5P x P x ==. (100120)(100)(120)0.3P x P x P x ∴=->=.故综合质量指标值在[100,120]内的产品件数为10000.3300⨯=. 故选B .14.(2020•某某一模)已知随机变量X 服从正态分布(0,1)N ,随机变量Y 服从正态分布(1,1)N ,且(1)0.1587P X >=,则(12)(P Y <<=)A .0.1587B .0.3413C .0.8413D .0.6587 【答案】B【解析】由已知得(1)0.1587(2)P X P Y >==>, (2)1(2)0.8413P Y P Y ∴<=->=.又(1)(1)0.5P Y P Y ==,(12)(2)(1)0.3413P Y P Y P Y ∴<<=<-=.故选B .15.(2020•某某模拟)已知随机变量X 服从正态分布(1,4)N ,(2)0.3P X >=,(0)(P X <=) A .0.2B .0.3C .0.7D .0.8 【答案】B【解析】随机变量X 服从正态分布(1,4)N ,∴正态分布曲线的对称轴为1X =,2μ=,又(2)0.3P X >=,(0)(2)0.3P X P X <=>=, 故选B .16.(2020•道里区校级一模)某地区有10000名高三学生参加了网上模拟考试,其中数学分数服从正态分布(120,9)N ,成绩在(117,126]之外的人数估计有()(附:若X 服从2(,)N μσ,则()0.682P X μσμσ-<+=,(22)0.9545)P X μσμσ-<+= A .1814人B .3173人C .5228人D .5907人 【答案】A【解析】由数学分数服从正态分布(120,9)N ,得120μ=,3σ=. 则(117126)(117123)(123126)P x P X P X <=<+<1()[(22)()]2P X P X P X μσμσμσμσμσμσ=-<++-<+--<+10.682(0.95450.682)0.818252=+-=.则成绩在(117,126]之内的人数估计有8183,∴成绩在(117,126]之外的人数估计有1817,与1814最接近.故选A .17.(2020•某某模拟)已知某市居民在2019年用于手机支付的个人消费额ξ(单位:元)服从正态分布(2000N ,2100),则该市某居民手机支付的消费额在(1900,2200)内的概率为()附:随机变量ξ服从正态分布2(,)N μσ,则()0.6826P μσξμσ-<<+=,(22)0.9544P μσξμσ-<<+=,(33)0.9974P μσξμσ-<<+=.A .0.9759B .0.84C .0.8185D .0.4772 【答案】C【解析】ξ服从正态分布(2000N ,2100), 2000μ∴=,100σ=,则1(19002200)()[(22)()]2P P P P ξμσξμσμσξμσμσξμσ<<=-<<++-<<+--<<+10.6826(0.95440.6826)0.81852=+-=.故选C .18.(2020•某某市模拟)已知2~(1,)X N σ,若(11)P X a -<<=,则(3)(P X >=) A .12a -B .1a -C .a D .12a + 【答案】A【解析】作出该函数图象,易知关于直线1x =对称,所以(11)(13)P X P X a -<<=<<=, 则121(3)(1))22a P X P X a ->=<-==-即为所求. 故选A .19.(2019•某某模拟)设随机变量1~(6,)2X B ,则(3)P X ==__________.【答案】516【解析】随机变量X 服从二项分布1(6,)2B ,3336115(3)()(1)2216P X C ∴==⨯-=.故答案为:516. 20.(2020•呼和浩特模拟)为了更好地贯彻党的“五育并举”的教育方针,某市要对全市中小学生“体能达标”情况进行了解,决定通过随机抽样选择几个样本校对学生进行体能达标测试,并规定测试成绩低于60分为不合格,否则为合格,若样本校学生不合格人数不超过其总人数的5%,则该样本校体能达标为合格.已知某样本校共有1000名学生,现从中随机抽取40名学生参加体能达标测试,首先将这40名学生随机分为甲、乙两组,其中甲乙两组学生人数的比为3:2,测试后,两组各自的成绩统计如下:甲组的平均成绩为70,方差为16,乙组的平均成绩为80,方差为36.(Ⅰ)估计该样本校学生体能测试的平均成绩; (Ⅱ)求该样本校40名学生测试成绩的标准差s ;(Ⅲ)假设该样本校体能达标测试成绩服从正态分布2(,)N μσ,用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值估计该样本校学生体能达标测试是否合格? (注:①本题所有数据的最后结果都精确到整数;②若随机变量z 服从正态分布,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974)P Z μσμσ-<<+=.【解析】(1)由题知,甲、乙两组学生数分别为24和16, 则这40名学生测试成绩的平均分702480167440x ⨯+⨯==.故可估计该样本校学生体能测试的平均成绩为74. (2)由2211()n i i s x x n ==-∑变形得22211()n i i s x nx n ==-∑,设第一组学生的测试成绩分别为1x ,2x ,3x ,⋯,24x , 第二组学生的测试成绩分别为25x ,26x ,27x ,⋯,40x , 则第一组的方差为222222112241[()2470]424s x x x =++⋯+-⨯=, 解得:222212224(1670)x x x ++⋯+=⨯+. 第二组的方差为22222225264021[()1680]616s x x x =++⋯+-⨯=, 解得:222225264016(3680)x x x ++⋯+=⨯+. 这40名学生的方差为2222222212242526401[()40]40s x x x x x x x =++⋯++++⋯- 2221[24(1670)16(3680)4074]4840=⨯++⨯+-⨯=,所以7s =≈. 综上,标准差7s =.(3)由74x =,7s ≈,得μ的估计值为ˆ74μ=,σ的估计值ˆ7σ=,故(74277427)0.9544P X -⨯<<+⨯=,即(6088)0.9544P X <<=, 所以11(60)(88)[1(6088)](10.9544)0.022822P X P X P X <==-<<=-=.从而,在全校1000名学生中,“不合格”的有10000.022822.823⨯=≈(人). 而235%1000<, 故可估计该样本校学生“体能达标”测试合格.21.(2020•潍坊模拟)为了严格监控某种零件的一条生产线的生产过程,某企业每天从该生产线上随机抽取10000个零件,并测量其内径(单位:)cm .根据长期生产经验,认为这条生产线正常状态下生产的零件的内径X 服从正态分布2(,)N μσ.如果加工的零件内径小于3μσ-或大于3μσ+均为不合格品,其余为合格品.(1)假设生产状态正常,请估计一天内抽取的10000个零件中不合格品的个数约为多少; (2)若生产的某件产品为合格品则该件产品盈利;若生产的某件产品为不合格品则该件产品亏损.已知每件产品的利润L (单位:元)与零件的内径X 有如下关系:5,3,4,3,6,3,5,3.X X L X X μσμσμσμσμσμσ-<-⎧⎪--⎪=⎨-+⎪⎪->+⎩求该企业一天从生产线上随机抽取10000个零件的平均利润.附:若随机变量X 服从正态分布2(,)N μσ,有()0.6826P X μσμσ-<+=,(22)0.9544P X μσμσ-<+=,(33)0.9974P X μσμσ-<+=.【解析】(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974, 从而抽取一个零件为不合格品的概率为0.0026. 因此一天内抽取的10000个零件中不合格品的个数约为: 100000.002626⨯=;(2)由题意,(3)0.0013P X μσ<-=.1(3)(0.99740.6826)0.15742P X μσμσ-<+=-=;(3)0.99740.15740.8400P X μσμσ-+=-=; (3)0.0013P X μσ>+=.故随机抽取10000个零件的平均利润:为1000010000(50.001340.157460.840050.0013)56566L =-⨯+⨯+⨯-⨯=元.22.(2020•某某模拟)法国数学家庞加是个喜欢吃面包的人,他每天都会购买一个面包,面包师声称自己出售的每个面包的平均质量是1000g ,上下浮动不超过50g .这句话用数学语言来表达就是:每个面包的质量服从期望为1000g ,标准差为50g 的正态分布.(1)假设面包师的说法是真实的,从面包师出售的面包中任取两个,记取出的两个面包中质量大于1000g 的个数为ξ,求ξ的分布列和数学期望;(2)作为一个善于思考的数学家,庞加莱每天都会将买来的面包称重并记录,25天后,得到数据如表,经计算25个面包总质量为24468g . 庞加莱购买的25个面包质量的统计数据(单位:)g尽管上述数据都落在(950,1050)上,但庞加菜还是认为面包师撒谎,根据所附信息,从概率角度说明理由 附:①若2~(,)X N μσ,从X 的取值中随机抽取25个数据,记这25个数据的平均值为Y ,则由统计学知识可知:随机变量2~(,)25Y N σμ;②若2~(,)N ημσ,则()0.6826P μσημσ-<<+=,(22)0.9544P μσημσ-<<+=,(33)0.9974P μσημσ-<<+=;③通常把发生概率在0.05以下的事件称为小概率事件. 【解析】(1)由题意知,ξ的所有可能取值为0,1,2, 0022111(0)()()224P C ξ===;12111(1)222P C ξ==⨯⨯=;2202111(2)()()224P C ξ===.ξ∴的分布列为:1110121424E ξ∴=⨯+⨯+⨯=;(2)记面包师制作的每个面包的质量为随机变量X . 假设面包师没有撒谎,则~(1000X N ,250),根据附①,从X 的取值中随机抽取25个数据,记这25个数据的平均值为Y , 则~(1000Y N ,210),庞加莱记录的25个面包质量,相当于从X 的取值中随机抽取了25个数据. 这25个数据的平均值为24468978.72100021098025Y ==<-⨯=. 由附②数据知,10.9544(980)0.02280.052P Y -<==<. 由附③知,事件“980Y <”为小概率事件.∴“假设面包师没有撒谎”有误.故庞加莱认为面包师撒谎.。
2019年高考数学考点突破——随机变量及其分布(理科专用):二项分布与正态分布
二项分布与正态分布【考点梳理】1.条件概率2.事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),那么称事件A 与事件B 相互独立. (2)性质:假设事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立,P (B |A )=P (B ),P (A |B )=P (A ).3.独立重复试验与二项分布 (1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,其中A i (i =1,2,…,n )是第i 次试验结果,那么P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ).(2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,那么P (X =k )=C k n pk (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.4.正态分布 (1)正态分布的定义如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x ,那么称随机变量X 服从正态分布,记为X ~N (μ,σ2).其中φμ,σ(x )()222x μσ-- (σ>0).(2)正态曲线的性质①曲线位于x 轴上方,与x 轴不相交,与x 轴之间的面积为1; ②曲线是单峰的,x =μ对称;③曲线在x =μ处到达峰值1σ2π;④当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高〞,表示总体的分布越集中;σ越大,曲线越“矮胖〞,表示总体的分布越分散.(3)正态总体在三个特殊区间内取值的概率值 ①P (μ-σ<X ≤μ+σ)=0.6826; ②P (μ-2σ<X ≤μ+2σ)=0.9544; ③P (μ-3σ<X ≤μ+3σ)=0.9974. 【考点突破】考点一、条件概率【例1】(1)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内〞,B 表示事件“豆子落在扇形OHE (阴影局部)内〞,那么P (B |A )=________.(2)某个电路开关闭合后会出现红灯或绿灯闪烁,开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,那么在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A .110B .15C .25D .12 [答案] (1) 14(2) C[解析] (1)由题意可得,事件A 发生的概率P (A )=S 正方形EFGH S 圆O =2×2π×12=2π.事件AB 表示“豆子落在△EOH 内〞,那么P (AB )=S △EOH S 圆O =12×12π×12=12π.故P (B |A )=P ABP A =12π2π=14. (2)设“开关第一次闭合后出现红灯〞为事件A ,“第二次闭合后出现红灯〞为事件B ,那么由题意可得P (A )=12,P (AB )=15,那么在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P 〔AB 〕P 〔A 〕=1512=25.应选C.【类题通法】1. 利用定义,分别求P (A )和P (AB ),得P (B |A )=P 〔AB 〕P 〔A 〕,这是求条件概率的通法.2. 借助古典概型概率公式,先求事件A 包含的根本领件数n (A ),再求事件A 与事件B 的交事件中包含的根本领件数n (AB ),得P (B |A )=n 〔AB 〕n 〔A 〕.【对点训练】1.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数〞,事件B =“取到的2个数均为偶数〞,那么P (B |A )=( )A .18B .14C .25D .12 [答案] B[解析] 法一 P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P 〔AB 〕P 〔A 〕=11025=14.法二 事件A 包括的根本领件:(1,3),(1,5),(3,5),(2,4)共4个. 事件AB 发生的结果只有(2,4)一种情形,即n (AB )=1. 故由古典概型概率P (B |A )=n 〔AB 〕n 〔A 〕=14.2.某盒中装有10只乒乓球,其中6只新球、4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( )A .35B .59C .110D .25 [答案] B[解析] 第一次摸出新球记为事件A ,那么P (A )=35,第二次取到新球记为事件B ,那么P (AB )=C 26C 210=13,∴P (B |A )=P 〔AB 〕P 〔A 〕=1335=59. 考点二、相互独立事件同时发生的概率【例2】12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列; (2)假设有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. [解析] (1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为:(2)设Y 概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148. 所以这2辆车共遇到1个红灯的概率为1148.【类题通法】①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁(如求用“至少〞表述的事件的概率)或难以入手时,可从其对立事件入手计算.【对点训练】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)假设新产品A 研发成功,预计企业可获利润120万元;假设新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.[解析] 记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},那么H =E F , 于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),那么X 的可能取值为0,100,120,220,因为P (X =0)=P (E F )=13 ×25=215,P (X =100)=P (E F )=13×35=315=15, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=615=25.故所求的分布列为【例3】空气质量指数(AirQuality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上为严重污染. 一环保人士记录去年某地六月10天的AQI 的茎叶图如图.(1)利用该样本估计该地六月空气质量为优良(AQI ≤100)的天数;(2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列.[解析] (1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,∴该样本中空气质量为优良的频率为610=35,从而估计该地六月空气质量为优良的天数为30×35=18.(2)由(1)估计某天空气质量为优良的概率为35,ξ的所有可能取值为0,1,2,3,且ξ~B ⎝⎛⎭⎪⎫3,35.∴P (ξ=0)=⎝ ⎛⎭⎪⎫253=8125,P (ξ=1)=C 13⎝ ⎛⎭⎪⎫35⎝ ⎛⎭⎪⎫252=36125,P (ξ=2)=C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫25=54125, P (ξ=3)=⎝ ⎛⎭⎪⎫353=27125,ξ的分布列为ξ 0 1 2 3 P8125361255412527125【类题通法】利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P(X=k)=C k n p k(1-p)n-k的三个条件:(1)在一次试验中某事件A发生的概率是一个常数p;(2)n次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n次试验中事件A恰好发生了k次的概率.【对点训练】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如下图的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4∶2∶1.(1)求这些产品质量指标值落在区间[75,85]内的频率;(2)假设将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间[45,75)内的产品件数为X,求X的分布列.[解析] (1)设这些产品质量指标值落在区间[75,85]内的频率为x,那么落在区间[55,65),[65,75)内的频率分别为4x,2x.依题意得(0.004+0.012+0.019+0.030)×10+4x+2x+x=1,解得x=0.05.所以这些产品质量指标值落在区间[75,85]内的频率为0.05.(2)由(1)得,这些产品质量指标值落在区间[45,75)内的频率为0.3+0.2+0.1=0.6,将频率视为概率得p=0.6.从该企业生产的这种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X服从二项分布B(n,p),其中n=3,p=0.6.因为X的所有可能取值为0,1,2,3,且P(X=0)=C03×0.60×0.43=0.064,P(X=1)=C13×0.61×0.42=0.288,P(X=2)=C23×0.62×0.41=0.432,P(X=3)=C33×0.63×0.40=0.216,所以X 的分布列为X 0 1 2 3 P0.0640.2880.4320.216考点四、正态分布【例4】(1)随机变量ξ服从正态分布N(2,σ2),且P (ξ<4)=0.8,那么P (0<ξ<2)=( ) A .0.6 B .0.4 C .0.3 D .0.2(2)某班有50名学生,一次考试后数学成绩ξ(ξ∈N)近似服从正态分布N (100,102),P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数约为________.[答案] (1) C (2) 10[解析] (1)画出正态曲线如图,结合图象知:P (ξ<0)=P (ξ>4)=1-P (ξ<4)=1-0.8=0.2,P (0<ξ<2)=12P (0<ξ<4)=12[1-P (ξ<0)-P (ξ>4)]=12(1-0.2-0.2)=0.3.(2)由题意,知P (ξ>110)=1-2P 90≤ξ≤1002=0.2,所以该班学生数学成绩在110分以上的人数约为0.2×50=10. 【类题通法】对于正态分布N (μ,σ2),由x =μ是正态曲线的对称轴知:(1)对任意的a ,有P (X <μ-a )=P (X >μ+a );(2)P (X <x 0)=1-P (X ≥x 0);(3)P (a <X <b )=P (X <b )-P (X ≤a ).【对点训练】1.设随机变量ξ服从正态分布N(1,σ2),假设P (ξ<2)=0.8,那么P (0<ξ<1)的值为________.[答案] 0.3[解析] P (0<ξ<1)=P (ξ<2)-P (ξ<1)=0.8-0.5=0.3.2.某地高三理科学生有15 000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),P (80<ξ≤100)=0.35,假设按成绩分层抽样的方式抽取100份试卷进行分析,那么应从120分以上的试卷中抽取( )A .5份B .10份C .15份D .20份 [答案] C[解析] ∵数学成绩ξ服从正态分布N (100,σ2),P (80<ξ≤100)=0.35,∴P (80<ξ≤120)=2×0.35=0.70,∴P (ξ>120)=12×(1-0.70)=0.15,∴应抽取的份数为100×0.15=15.。
二项分布、泊松分布和正态分布的区别及联系
二项分布、泊松分布和正态分布的区别及联系二项分布、泊松分布和正态分布的区别及联系?被浏览8,9732 个答复猴子微信公众号:猴子聊人物之前你已经了解概率的根底知识〔如果还不知道概率能干啥,在生活中有哪些应用的例子,可以看我之前的?投资赚钱与概率?〕。
今天我们来聊聊几种特殊的概率分布。
这个知识目前来看,还没有人令我满意的答案,因为其他人多数是在举数学推导公式。
我这个人是最讨厌数学公式的,但是这并不阻碍我用统计概率思维做很多事情。
相比熟悉公式,我更想知道学的这个知识能用到什么地方。
可惜,还没有人讲清楚。
今天,就让我来当回雷锋吧。
首先,你想到的问题肯定是:1. 什么是概率分布?2. 概率分布能当饭吃吗?学了对我有啥用?好了,我们先看下:什么是概率分布?1. 什么是概率分布?要明白概率分布,你需要知道先两个东东:1〕数据有哪些类型2〕什么是分布数据类型〔统计学里也叫随机变量〕有两种。
第1种是离散数据。
离散数据根据名称很好理解,就是数据的取值是不连续的。
例如掷硬币就是一个典型的离散数据,因为抛硬币的就2种数值〔也就是2种结果,要么是正面,要么是反面〕。
你可以把离散数据想象成一块一块垫脚石,你可以从一个数值调到另一个数值,同时每个数值之间都有明确的间隔。
第2种是连续数据。
连续数据正好相反,它能取任意的数值。
例如时间就是一个典型的连续数据1.25分钟、1.251分钟,1.2512分钟,它能无限分割。
连续数据就像一条平滑的、连绵不断的道路,你可以沿着这条道路一直走下去。
什么是分布呢?数据在统计图中的形状,叫做它的分布。
其实我们生活中也会聊到各种分布。
比方下面不同季节男人的目光分布.。
各位老铁,来一波美女,看看你的目光停在哪个分布的地方。
美女也看了,现在该专注学习了吧。
现在,我们已经知道了两件事情:1〕数据类型〔也叫随机变量〕有2种:离散数据类型〔例如抛硬币的结果〕,连续数据类型〔例如时间〕2〕分布:数据在统计图中的形状现在我们来看看什么是概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项分布与正态分布【考点梳理】1.条件概率2.事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. (2)性质:若事件A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立,P (B |A )=P (B ),P (A |B )=P (A ).3.独立重复试验与二项分布 (1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,其中A i (i =1,2,…,n )是第i 次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ).(2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.4.正态分布 (1)正态分布的定义如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x ,则称随机变量X 服从正态分布,记为X ~N (μ,σ2).其中φμ,σ(x )()222x μσ-- (σ>0).(2)正态曲线的性质①曲线位于x 轴上方,与x 轴不相交,与x 轴之间的面积为1; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π;④当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.(3)正态总体在三个特殊区间内取值的概率值 ①P (μ-σ<X ≤μ+σ)=0.6826; ②P (μ-2σ<X ≤μ+2σ)=0.9544; ③P (μ-3σ<X ≤μ+3σ)=0.9974. 【考点突破】考点一、条件概率【例1】(1)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.(2)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A .110B .15C .25D .12 [答案] (1) 14(2) C圆O “豆子落在△EOH 内”,则P (AB )=S △EOH S 圆O =12×12π×12=12π.故P (B |A )=P ABP A =12π2π=14.(2)设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P (AB )P (A )=1512=25.故选C.【类题通法】1. 利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ),这是求条件概率的通法.2. 借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ).【对点训练】1.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A .18B .14C .25D .12 [答案] B[解析] 法一 P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P (AB )P (A )=11025=14.法二 事件A 包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个. 事件AB 发生的结果只有(2,4)一种情形,即n (AB )=1.故由古典概型概率P (B |A )=n (AB )n (A )=14.2.某盒中装有10只乒乓球,其中6只新球、4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( )A .35B .59C .110D .25 [答案] B[解析] 第一次摸出新球记为事件A ,则P (A )=35,第二次取到新球记为事件B ,则P (AB )=C 26C 210=13,∴P (B |A )=P (AB )P (A )=1335=59. 考点二、相互独立事件同时发生的概率【例2】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. [解析] (1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为:(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148. 所以这2辆车共遇到1个红灯的概率为1148.【类题通法】求相互独立事件同时发生的概率的主要方法 ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.【对点训练】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.[解析] 记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F , 于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=P (E F )=13 ×25=215, P (X =100)=P (E F )=13×35=315=15, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=615=25.故所求的分布列为【例3】空气质量指数(AirQuality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上为严重污染. 一环保人士记录去年某地六月10天的AQI 的茎叶图如图.(1)利用该样本估计该地六月空气质量为优良(AQI ≤100)的天数;(2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列.[解析] (1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,∴该样本中空气质量为优良的频率为610=35,从而估计该地六月空气质量为优良的天数为30×35=18.(2)由(1)估计某天空气质量为优良的概率为35,ξ的所有可能取值为0,1,2,3,且ξ~B ⎝ ⎛⎭⎪⎫3,35. ∴P (ξ=0)=⎝ ⎛⎭⎪⎫253=8125,P (ξ=1)=C 13⎝ ⎛⎭⎪⎫35⎝ ⎛⎭⎪⎫252=36125,P (ξ=2)=C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫25=54125, P (ξ=3)=⎝ ⎛⎭⎪⎫353=27125,ξ的分布列为【类题通法】利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P (X =k )=C k n p k(1-p )n -k的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率. 【对点训练】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4∶2∶1.(1)求这些产品质量指标值落在区间[75,85]内的频率;(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间[45,75)内的产品件数为X,求X的分布列.[解析] (1)设这些产品质量指标值落在区间[75,85]内的频率为x,则落在区间[55,65),[65,75)内的频率分别为4x,2x.依题意得(0.004+0.012+0.019+0.030)×10+4x+2x+x=1,解得x=0.05.所以这些产品质量指标值落在区间[75,85]内的频率为0.05.(2)由(1)得,这些产品质量指标值落在区间[45,75)内的频率为0.3+0.2+0.1=0.6,将频率视为概率得p=0.6.从该企业生产的这种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X服从二项分布B(n,p),其中n=3,p=0.6.因为X的所有可能取值为0,1,2,3,且P(X=0)=C03×0.60×0.43=0.064,P(X=1)=C13×0.61×0.42=0.288,P(X=2)=C23×0.62×0.41=0.432,P(X=3)=C33×0.63×0.40=0.216,所以X的分布列为【例4】(1)已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)=( ) A.0.6 B.0.4 C.0.3 D.0.2(2)某班有50名学生,一次考试后数学成绩ξ(ξ∈N)近似服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数约为________.[答案] (1) C (2) 10[解析] (1)画出正态曲线如图,结合图象知:P (ξ<0)=P (ξ>4)=1-P (ξ<4)=1-0.8=0.2,P (0<ξ<2)=12P (0<ξ<4)=12[1-P (ξ<0)-P (ξ>4)]=12(1-0.2-0.2)=0.3.(2)由题意,知P (ξ>110)=1-2Pξ2=0.2,所以该班学生数学成绩在110分以上的人数约为0.2×50=10. 【类题通法】对于正态分布N (μ,σ2),由x =μ是正态曲线的对称轴知:(1)对任意的a ,有P (X <μ-a )=P (X >μ+a );(2)P (X <x 0)=1-P (X ≥x 0);(3)P (a <X <b )=P (X <b )-P (X ≤a ).【对点训练】1.设随机变量ξ服从正态分布N(1,σ2),若P (ξ<2)=0.8,则P (0<ξ<1)的值为________. [答案] 0.3[解析] P (0<ξ<1)=P (ξ<2)-P (ξ<1)=0.8-0.5=0.3.2.某地高三理科学生有15 000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),已知P (80<ξ≤100)=0.35,若按成绩分层抽样的方式抽取100份试卷进行分析,则应从120分以上的试卷中抽取( )A .5份B .10份C .15份D .20份 [答案] C[解析] ∵数学成绩ξ服从正态分布N (100,σ2),P (80<ξ≤100)=0.35,∴P (80<ξ≤120)=2×0.35=0.70,∴P (ξ>120)=12×(1-0.70)=0.15,∴应抽取的份数为100×0.15=15.。