广东省深圳中学2020届高考数学 暑期复习讲义专练 模块五 解析几何(无答案)
2020高考数学名师预测 知识点05解析几何
![2020高考数学名师预测 知识点05解析几何](https://img.taocdn.com/s3/m/5b1d3bf648d7c1c709a1450c.png)
高考猜题专题05 解析几何一.选择题(共6小题,每小题5分,共30分)1若圆)0(222>=+r r y x 上恰有相异两点到直线02534=+-y x 的距离等于1,则r 的取值范围是:A .[4,6]B .)6,4[C .]6,4(D .)6,4(2、直线0=+-b y ax 与圆02222=+-+by ax y x 的图象可能是:3.从集合{1,2,3,…,11}中的任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||11,||9B x y x y =<<内的椭圆的个数是A .43B .72C .86D .904、 动点P (m,n )到直线5:-=x l 的距离为λ22n m +,点P 的轨迹为双曲线(且原点O为准线l 对应的焦点),则λ的取值为A 、λ∈RB 、λ=1C 、λ>1D 、0<λ<15.点P (-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为 ( )A .3B .13C .2D .126.点P 到点A (21,0),B (a ,2)及到直线x =-21的距离都相等,如果这样的点恰好只有一个,那么a 的值是 A .21B .23C .21或23D .-21或21 7.已知对k∈R,直线y-kx-1=0与椭圆1522=+my x 恒有公共点,则实数m 的取值范围是 ( )A .(0,1)B .(0,5)C .[1,5]∪(5,+∞)D .[1,5]8.在椭圆22221(0)x y a b a b+=>>中,12,F F 分别是其左右焦点,若122PF PF =,则该椭圆离心率的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .1,13⎡⎫⎪⎢⎣⎭C .10,3⎛⎫ ⎪⎝⎭D .10,3⎛⎤ ⎥⎝⎦9.如图所示,下列三图中的多边形均为正多边形,M 、N 是所在边的中点,双曲线均以图中的F 1,F 2为焦点,设图中的双曲线的离心率分别为e 1,e 2,e 3,则 ( )A .e 1>e 2>e 3B .e 1<e 2<e 3C .e 1=e 3<e 2D .e 1=e 3>e 210.设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1=ABc PBC S S ∆∆, λ2=ABC PCA S S ∆∆,λ3=ABCPAB S S∆∆,定义f (P )=(λ1, λ, λ3),若G 是△ABC 的重心,f (Q )=(21,31,61),则 A .点Q 在△GAB 内 B .点Q 在△GBC 内C .点Q 在△GCA 内D .点Q 与点G 重合11、 点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“正点”,那么下列结论中正确的是( )A .直线l 上的所有点都是“正点”B .直线l 上仅有有限个点是“正点”C .直线l 上的所有点都不是“正点”D .直线l 上有无穷多个点(点不是所有的点)是“正点” 12 若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( )A .1-或25-64 B .1-或214 C .74-或25-64D .74-或7二.填空题(共4小题,每小题5分,共20分)13、椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是:14、若不论k 为何实数,直线1+=kx y 与圆0422222=--+-+a a ax y x 恒有交点,则实数a 的取值范围是:15.直线y x a =+与圆224x y +=交于点,A B ,若2OA OB =-u u u r u u u rg (O 为坐标原点),则实数a 的值为 。
2020年高考数学大题分解专题05--解析几何
![2020年高考数学大题分解专题05--解析几何](https://img.taocdn.com/s3/m/fe54ddfca8114431b80dd83a.png)
2020年高考数学(理)大题分解专题05--解析几何(含答案)(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB .【肢解1】若4||||=+BF AF ,求l 的方程;【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知12342AF BF x x +=++=,所以1252x x +=, 联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x , 由0144)1212(22>--=∆m m 得12m <, 所以121212592m x x -+=-=,解得78m =-,所以直线l 的方程为3728y x =-,即12870x y --=.【肢解2】若3AP PB =,求||AB .大题肢解一直线与抛物线【解析】设直线l 方程为23x y t =+,联立2233x y t y x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)3(4294123134.设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p.弦长的计算方法:求弦长时可利用弦长公式,根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后进行整体代入弦长公式求解.温馨提示:注意两种特殊情况:(1)直线与圆锥曲线的对称轴平行或垂直;(2)直线过圆锥曲线的焦点.【拓展1】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若27||||=+BF AF ,求l 在y 轴上的截距. 【解析】设直线l 方程为m x y +=23,()11,A x y ,()22,B x y ,由抛物线焦半径公式可知123722AF BF x x +=++=,所以122x x +=, 联立2323y x m y x⎧=+⎪⎨⎪=⎩得04)12(12922=+-+m x m x ,由0144)1212(22>--=∆m m 得12m <, 所以12121229m x x -+=-=,解得21m =-,所以直线l 的方程为3122y x =-,令0=x 得21-=y , 所以直线l 在y 轴上的截距为21-.【拓展2】已知抛物线C :x y 32=的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若2AP PB =,)0,4(-M ,求ABM ∆的面积.【解析】设直线l 方程为23x y t =+, 联立2233x y ty x ⎧=+⎪⎨⎪=⎩得0322=--t y y ,由4120t ∆=+>得31->t , 由韦达定理知221=+y y ,t y y 321-=,因为PB AP 2=,所以212y y -=,所以22-=y ,41=y ,所以821-=y y .38-=t ,所以=-+⋅+=212214)(941||y y y y AB =-⨯-⋅+)8(429412132, 直线l 方程为2833x y =-,即0823=+-y x ,所以点)0,4(-M 到l 的距离13413|812|=+-=d , 所以ABM ∆的面积为413413221||21=⨯⨯=⋅d AB .1.(2019年山西太原一模)已知抛物线x y 42=的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若AOB ∆的面积为6,求||AB .【解析】由题意知抛物线x y 42=的焦点F 的坐标为)0,1(, 易知当直线AB 垂直于x 轴时,AOB ∆的面积为2,不满足题意, 所以可设直线AB 的方程为)0)(1(≠-=k x k y , 与x y 42=联立,消去x 得0442=--k y ky , 设),(11y x A ,),(22y x B ,由韦达定理知k y y 421=+,421-=y y , 变式训练一所以1616||221+=-k y y , 所以AOB ∆的面积为616161212=+⨯⨯k,解得2±=k , 所以6||11||212=-⋅+=y y kAB . 2.(2019年湖北荆州模拟)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于,A B 两点.(1)若3AF FB =,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.【解析】(1)依题意可设直线:1AB x my =+,将直线AB 与抛物线联立214x my y x =+⎧⎨=⎩⇒2440y my --=,设11(,)A x y ,22(,)B x y ,由韦达定理得121244y y my y +=⎧⎨=-⎩,因为3AF FB =,所以213y y -=,即312=m ,所以直线AB 的斜率为3或3-. (2)2212121212122()4161642OACB AOB S S OF y y y y y y y y m ∆==⋅⋅-=-=+-=+≥, 当0m =时,四边形OACB 的面积最小,最小值为4.(2020届广东省珠海市高三上学期期末)中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.大题肢解二【肢解1】求椭圆C 的方程; 【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【肢解1】求椭圆C 的方程;【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎛⎫ ⎪⎝⎭两点得()222222221011321m n m n ⎧-+=⎪⎪⎪⎨⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎩ 解得21n =,24m =, 所以椭圆:C 2214x y +=.【肢解2】设直线)0(21:≠+=m m x y l 与椭圆C 交于P ,Q 两点,求当所取何值时,OPQ ∆的面积最大.【解析】将直线1:,(0)2l y x m m =+>代入2214x y +=得:221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<.由韦达定理得122x x m +=-,21222x x m =-.()()22221212124442284x x x x x x m m m -=+-=--=-242121222OPQ S m x x m m m m ∆=-=-=-+. 由二次函数可知当21m =即1m =时,OPQ ∆的面积的最大.直线与圆锥曲线的相交弦长问题:设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=1+1k 2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2.【变式1】中心在坐标原点,对称轴为坐标轴的椭圆C 过)1,0(-A 、)21,3(B 两点,(1)求椭圆C 的方程; (2)设直线)0(21:>+=m m x y l 与椭圆C 交于P ,Q 两点,若APQ ∆的面积为1+m ,求m 的值.【解析】(1)由题意可设椭圆C 的方程为22221x y m n+=,代入()0,1A -、13,2B ⎫⎪⎭两点得()22222221011321m n n ⎧-+=⎪⎪⎪⎨⎛⎫ ⎪⎝⎭+= 解得21n =,24m =. 所以椭圆:C 2214x y +=.(2)将直线1:,(0)2l y x m m =+>代入2214x y +=得221442x x m ⎛⎫++= ⎪⎝⎭.整理得222220x mx m ++-=.()()2222422840m m m ∆=--=->得22m -<<设),(11y x P ,),(22y x Q ,韦达定理得122x x m +=-,21222x x m =-.所以)22(4)2()21(1||222---⋅+=m m PQ 252+-⋅=m ,由点到直线的距离公式得点)1,0(-A 到直线l 的距离5|22|m d +=. 变式训练二所以APQ ∆的面积为255|22|212+-⋅⋅+⋅m m 2|1|2+-⋅+=m m , 因为APQ ∆的面积为1+m ,所以12|1|2+=+-⋅+m m m ,解得1=m 或1-=m (舍去). 所以1=m .【变式2】已知椭圆)0(1:2222>>=+b a by a x C 的离心率为22,其中左焦点为)0,2(-F .(1)求椭圆C 的方程;(2)若直线m x y +=与椭圆C 交于不同的两点A ,B ,1ABF ∆的面积为)2(6-m ,求直线的方程.【解析】(1)由题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===222222c b a c a c 解得⎩⎨⎧==222b a ,所以椭圆C 的方程为14822=+y x . (2)设点),(11y x A ,),(22y x B ,由⎪⎩⎪⎨⎧+==+m x y y x 14822消去y 得0824322=-++m mx x , 由0)84(12)4(22>--=∆m m 得3232<<-m ,由韦达定理知3421mx x -=+,382221-=m x x ,所以)82(4)34(2||22---⋅=m m AB 367342+-=m , 由点到直线的距离公式得)0,2(1-F 到直线m x y +=的距离2|2|m d -=, 所以1ABF ∆的面积为36342|2|212+-⋅-⋅m m )2(6-=m ,解得3±=m ,满足3232<<-m ,所以所求直线方程为3+=x y 或3-=x y .1.(2019年山东高考模拟)已知圆22:4O x y +=,抛物线2:2(0)C x py p =>.(1)若抛物线C 的焦点F 在圆O 上,且A 为抛物线C 和圆O 的一个交点,求AF ; (2)若直线l 与抛物线C 和圆O 分别相切于,M N 两点,设()00,M x y ,当[]03,4y ∈时,求MN 的最大值.【解析】(1)由题意知(0,2)F ,所以4p =. 所以抛物线C 的方程为28x y =.将28x y =与224x y +=联立得点A 的纵坐标为2(52)A y =, 结合抛物线定义得||2522A pAF y =+=. (2)由22x py =得22x y p =,x y p'=,所以直线l 的斜率为0x p ,故直线l 的方程为()000xy y x x p-=-.即000x x py py --=. 又由0220||2py ON x p -==+得02084y p y =-且240y ->, 所以2222200||||||4MN OM ON x y =-=+- 220000020824244y py y y y y =+-=+-- ()2202200022001644164444y y y y y y -+=+-=+--- 2020641644y y =++--.令24t y =-,0[3,4]y ∈,则[5,12]t ∈,令64()16f t t t =++,则264()1f t t'=-; 当[5,8]t ∈时()0f t '≤,()f t 单调递减, 当(8,12]t ∈时()0f t '>,()f t 单调递增, 又64169(5)16555f =++=,64100169(12)16121235f =++=<, 所以max 169()5f x =,即||MN.2.(2020黑龙江省齐市地区普高联谊高二上学期期末)已知椭圆C :22221(0)x y a b a b+=>>过点)23,22(与点)22,1(--. (1)求椭圆C 的方程;(2)设直线l 过定点1(0,)2-,且斜率为()10k k -≠,若椭圆C 上存在A ,B 两点关于直线l 对称,O 为坐标原点,求k 的取值范围及AOB ∆面积的最大值.【解析】(1)由题意,可得2222231441214a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得222,1a b ==,所以椭圆的方程为2212x y +=.(2)由题意,设直线AB 的方程为(0)y kx m k =+≠,由2212y kx m x y =+⎧⎪⎨+=⎪⎩,整理得222(12)4220k x kmx m +++-=, 所以∆>0,即2221k m +>,……….①且2121222422,1212km m x x x x k k-+=-=++, 所以线段AB 的中点横坐标02212km x k =-+,纵坐标为00212my kx m k=+=+,将00,x y 代入直线l 方程112y x k =--,可得2122k m += ……… ②,由①②可得232k <,又0k ≠,所以((0,22k ∈-⋃,又AB ==且原点O 到直线AB的距离d =所以2122(12)AOB m S AB d k ∆==+== 所以1m =时,AOB S ∆最大值2,此时2k =±,所以2k =±时,AOB S ∆最大值2.3.(2020福建省宁德市高三第一次质量检查)已知抛物线2:2C y px =的焦点为F,1(2Q 在抛物线C 上,且32QF. (1)求抛物线C 的方程及t 的值;(2)若过点(0,)M t 的直线l 与C 相交于,A B 两点,N 为AB 的中点,O 是坐标原点,且3AOBMONSS,求直线l 的方程.【解析】(1)因为3||2QF ,所以13222p ,所以2p =, 抛物线C 的方程为:24y x =, 将1(2Q 代入24y x =得2t =,(2)设1122(,),(,),A x y B x y 00(,),(0,2)N x y M ,显然直线l 的斜率存在,设直线l :2(0)y kx k =+≠,联立242y x y kx ⎧=⎨=+⎩,消去y 得224(1)40k x k x --+=,因为22Δ16(1)160k k ,得12k <且0k ≠, 所以1212224(1)4,k x x x x k k -+==, 因为ΔΔ3AOBMON S S ,所以||3||AB MN ,所以1200x -=-,即120x x x -=, 因为N 是AB 的中点,所以1202x x x +=, 所以22121212()()434x x x x x x ,整理得21212()16x x x x +=所以2224(1)64[]k k k ,解得1211,3k k =-=, 所以直线l 的方程为:2y x =-+或123y x =+.4.(2020福建省龙岩市上杭县第一中学月考)已知点A(0,-2),椭圆E:22221x y a b+=(a>b>0)的离心率为F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 【解析】(1)设(),0F c ,因为直线AF()0,2A-, 所以23c =,c =又222,2c b a c a ==-,解得2,1a b ==, 所以椭圆E 的方程为2214x y +=.(2)设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立22142,x y y kx +==-⎧⎪⎨⎪⎩,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,所以k <或k >由韦达定理知1212221612,1414k x x x x k k+==++.所以PQ ===, 点O 到直线l 的距离d =12OPQS d PQ ∆==设0t =>,则2243k t =+,所以244144OPQ t S t t t∆==≤=++,当且仅当2t =2=,解得k =时取等号,满足234k >, 所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或2y x =-.5.(2020广东省佛山市高三教学质量检测)已知椭圆C :()222210x y a b a b +=>>的离心率为12,点31,2A ⎛⎫⎪⎝⎭在椭圆C 上,直线1l 过椭圆C 的右焦点与上顶点,动直线2l :y kx =与椭圆C 交于M ,N 两点,交1l 于P 点.(1)求椭圆C 的方程;(2)已知O 为坐标原点,若点P 满足14OP MN =,求此时MN 的长度. 【解析】(1)由题意得12c e a ==,2223121ab ⎛⎫ ⎪⎝⎭+=,结合222a bc =+, 解得24a =,23b =,21c =,故所求椭圆C 的方程为22143x y +=. (2)易知定直线1l0y +=.联立22143y kxx y =⎧⎪⎨+=⎪⎩,整理得()223412k x +=,解得x =令M 点的坐标为221212,3434k k k ⎛⎫⎪ ⎪++⎝⎭. 因为14OP MN =,由对称性可知,点P 为OM 的中点,故2212123434(,)22k k k P ++, 又P 在直线1l :330x y +-=上,故221212343433022k k k ++⨯+-=, 解得10k =,2233k =,所以M 点的坐标为()2,0或643,55⎛⎫ ⎪ ⎪⎝⎭, 所以2OM =或2215,所以MN 的长度为4或4215.6.(2020广西名校高三上学期12月高考模拟)如图,中心为坐标原点O 的两圆半径分别为11r =,22r =,射线OT 与两圆分别交于A 、B 两点,分别过A 、B 作垂直于x 轴、y 轴的直线1l 、2l ,1l 交2l 于点P .(1)当射线OT 绕点O 旋转时,求P 点的轨迹E 的方程;(2)直线l :3y kx =+E 交于M 、N 两点,两圆上共有6个点到直线l 的距离为12时,求MN 的取值范围. 【解析】(1)设(),P x y ,OT 与x 轴正方向夹角为θ,则cos sin x OA y OB θθ⎧=⎪⎨=⎪⎩,即cos 2sin x y θθ=⎧⎨=⎩,化简得2214y x +=,即P 点的轨迹E 的方程为2214y x +=.(2)当两圆上有6个点到直线1的距离为12时,原点O 至直线l 的距离13,22d ⎛⎫∈ ⎪⎝⎭,即1322<<,解得21,113k ⎛⎫∈ ⎪⎝⎭,联立方程2214y kx y x ⎧=+⎪⎨+=⎪⎩得()22410k x ++-=, 设()11,M x y ,()22,N x y ,则12x x +=,12214x x k =-+, 所以MN ==()2224134144k k k +⎛⎫==- ⎪++⎝⎭, 则1616,135MN ⎛⎫∈ ⎪⎝⎭.7.(2020辽宁省沈阳市东北育才学校高三模拟)已知(2,0)P 为椭圆2222:1(0)x y C a b a b+=>>的右顶点,点M 在椭圆C 的长轴上,过点M 且不与x 轴重合的直线交椭圆C 于A B 、两点,当点M 与坐标原点O 重合时,直线PA PB 、的斜率之积为14-.(1)求椭圆C 的标准方程;(2)若2AM MB =,求OAB ∆面积的最大值. 【解析】(1)设1(A x ,1)y ,1(B x -,1)y -,则2121144PA PBy k k x ==--. 又2211221x y a b +=,代入上式可得2214b a -=-,又2a =,解得1b =. 所以椭圆C 的标准方程为:2214x y +=.(2)设直线AB 的方程为:(0)x ty m t =+≠,(22)m -.1(A x ,1)y ,2(B x ,2)y ,联立2244x ty m x y =+⎧⎨+=⎩,化为222(4)240t y mty m +++-=, 由韦达定理知12224mty y t+=-+,212244m y y t -=+, 因为2AM MB =,所以122y y =-,所以122152y y y y +=-,代入可得:22241694t m t +=+.所以OAB ∆的面积12213|()|||22S m y y my =-=,22222222222299416161694494(4)(94)(94)t t t S m y t t t t +==⨯⨯=⨯++++.所以212||1214949||||t S t t t ==++,当且仅当249t =时取等号. 所以OAB ∆面积的最大值为1.。
通用版2020高考数学二轮复习规范解答集训五解析几何文
![通用版2020高考数学二轮复习规范解答集训五解析几何文](https://img.taocdn.com/s3/m/ebb98b2548d7c1c709a14525.png)
所以Δ=(18km)2-4(9k2+8)(9m2-72)=0,
化简得m2=9k2+8.
所以 · =-8+m2-9k2=0,
所以 ⊥ ,
故∠MF1N为定值 .
(注:可以先通过k=0计算出此时∠MF1N= ,再验证一般性结论)
4.(20xx·合肥模拟)设椭圆E: + =1(a>b>0)的左、右焦点分别为F1,F2,过点F1的直线交椭圆E于A,B两点.若椭圆E的离心率为 ,△ABF2的周长为4 .
[解](1)由题意知动圆P与直线l:y=-1相切,且与定圆M:x2+(y-2)2=1外切,所以动点P到圆M的圆心M(0,2)的距离与到直线y=-2的距离相等,由抛物线的定义知,点P的轨迹是以M(0,2)为焦点,直线y=-2为准线的抛物线.
故所求点P的轨迹E的方程为x2=8y.
(2)设直线AB:y=kx+b,A(x1,y1),B(x2,y2),
(1)若AR∥FN,求 的值;
(2)若点R为线段MN的中点,设以线段AB为直径的圆为圆E,判断点R与圆E的位置关系.
[解]由已知,得F(1,0),设直线l的方程为x=my+1,与抛物线y2=4x联立,
得 消去x,得y2-4my-4=0,
设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.
通用版2020高考数学二轮复习规范解答集训五解析几何文
编 辑:__________________
时 间:__________________
规范解答集训(五) 解析几何
(建议用时:40分钟)
1.已知动圆E经过点F(1,0),且和直线l:x=-1相切.
(1)求该动圆圆心E的轨迹G的方程;
(2)已知点A(3,0),若斜率为1的直线l′与线段OA相交(不经过坐标原点O和点A),且与曲线G交于B,C两点,求△ABC面积的最大值.
2020高考数学复习纲要(附例题与解析)
![2020高考数学复习纲要(附例题与解析)](https://img.taocdn.com/s3/m/72751432360cba1aa811dae9.png)
内容要点: 每个章节内容包括:高考知识点、知识点解读、备考策略、知识整合、命题方向、规律 总结、答题示例。各要点内容都附有例题与解析。 第一部分 专题强化突破 专题一 集合、逻辑用语、向量、复数、算法、 推理与证明、不等式及线性规划 第一讲 集合与常用逻辑用语 第二讲 向量运算与复数运算、算法、推理与证明 第三讲 不等式及线性规划 专题二 函数与导数 第一讲 函数的图象与性质 第二讲 函数与方程及函数的应用 第三讲 导数的简单应用(文理) +定积分(理) 第四讲 导数的综合应用 专题二 规范答题示例 专题三 三角函数及解三角形 第一讲 三角函数的图象与性质 第二讲 三角恒等变换与解三角形 专题三 规范答题示例 专题四 数 列 第一讲 等差数列、等比数列 第二讲 数列求和及综合应用 专题四 规范答题示例 专题五 立 体 几 何 第一讲 空间几何体的三视图、表面积及体积 第二讲 点、直线、平面之间的位置关系 第三讲 用空间向量的方法解立体几何问题(理) 专题五 规范答题示例 专题六 解析几何 第一讲 直线与圆 第二讲 圆锥曲线的概念与性质、与弦有关的计算问题 第三讲 定点、定值、存在性问题 专题六 规范答题示例 专题七 概率与统计 第一讲 统计与统计案例 第二讲 概率及其应用(文) 第二讲 计数原理与二项式定理(理) 第三讲 概率、随机变量及其分布列(理) 专题七 规范答题示例 专题八 选修系列 4 第一讲 坐标系与参数方程 第二讲 不等式选讲
易混易错的概念、性质相结合考查 2.利用充要性求参数值或取值范围 备考策略 本部分内容在备考时应注意以下几个方面: (1)紧紧抓住集合的代表元素的实际意义,掌握集合问题的常见解法,活用数学思想解决 问题. (2)明确命题的条件和结论之间的关系,关注逻辑联结词和命题,明确命题的否定和否命 题的区别. (3)掌握必要条件、充分条件与充要条件的概念及应用. 预测 2019 年命题热点为: (1)集合的基本性质以及集合之间的基本关系与运算,与不等式的解集、函数的定义域、 值域、方程的解集等知识结合在一起考查. (2)与函数、数列、三角函数、不等式、立体几何、解析几何、概率统计等知识结合在一 起考查.
高三数学暑假补差讲义——解析几何
![高三数学暑假补差讲义——解析几何](https://img.taocdn.com/s3/m/965a971a7cd184254b353567.png)
直线方程k∈-,则直线的l的倾斜角α的取值范围是1.若直线l的斜率[1,4)2.经过点(1,5)A -,且与点(2,6)P ,(4,2)Q --距离相等的直线l 的方程是3.集合L ={l │直线l 与直线2y x =相交,且交点的横坐标恰好等于直线l 的斜率}, 点(2,2)-到L 中的直线0l 的距离最小,则直线0l 的方程是三.练习1.经过点和(2,0)-的直线的斜率是________,倾斜角是_________ 2.若点(2,4)A -关于点(,4)M x -的对称点为(1,)B y ,则x =______,y =_______ 3.直线410x y +-=的倾斜角α=4.直线12y x =关于直线1x =对称的直线方程是 5.过点(5,2),且倾斜角α满足4sin 5α=的直线l 的方程是6.直线l 过点(1,1)P 且其一个方向向量与向量(2,3)垂直,则直线l 的点方向式方程是___ 7.若直线1:260l ax y ++=与22:(1)(1)0l x a y a +-+-=平行,则实数a =_____ 8.若直线1:260l ax y ++=与22:20l x a y +-=垂直,则实数a =_____9.方程22620x xy y x y --++=表示两条相交直线,则这两条直线的夹角是_______ 10.点(1,2)P -到直线1:25l x y +=的距离为1d ,到直线2:31l x =的距离为2d ,则12d d +=_________11.点(2,2)P m n ++与点(4,6)Q n m --关于直线10x y +-=对称,则m n -=____ 12.平行于直线4360x y --=并且与它的距离等于2的直线方程是_________________ 13.过点(2,1)P 作直线l 分别交x 轴,y 轴正半轴于,A B 两点,求当PA PB ⋅取最小值时,直线l 的方程圆锥曲线一.知识点回顾0=(F 在l 上):轨迹是二.例题1.若点P 到直线1x =-的距离比它到点(2,0)的距离小1,则点P 的轨迹是_______,轨迹方程是_____________2.若实数,x y 满足22(2)3x y -+=,则yx的最大值是_____,2x y -的最小值是_____3.中心在原点,对称轴为坐标轴,椭圆短轴的一个顶点B 与两个焦点12,F F 组成的三角形的周长为4+1223F BF π∠=,则椭圆的方程是___________________4.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为,若直线:l y kx = 与双曲线C 恒有两个不同的交点A 和B ,且2OA OB ⋅>(O 为原点),求k 的取值范围5.若点A 的坐标为(3,2),点F 是抛物线22y x =的焦点,P 在抛物线上移动,当PA PF +取最小值时,P 点的坐标是_________三.练习1.求证:经过点00(,)P x y 且法向量是(,)a b 的直线l 的方程是00()()0a x x b y y -+-=2.已知(2,0)B -,(2,0)C ,分别求下列各动点,,P Q R 的轨迹方程。
2020版高考数学一轮复习第8章平面解析几何第5讲课后作业理含解析
![2020版高考数学一轮复习第8章平面解析几何第5讲课后作业理含解析](https://img.taocdn.com/s3/m/de83ce160242a8956aece49b.png)
第8章 平面解析几何 第5讲A 组 基础关1.已知椭圆的标准方程为x 2+y 210=1,则椭圆的焦点坐标为( )A .(10,0),(-10,0)B .(0,10),(0,-10)C .(0,3),(0,-3)D .(3,0),(-3,0)答案 C解析 椭圆x 2+y 210=1的焦点在y 轴上,a 2=10,b 2=1,故c 2=a 2-b 2=9,c =3.所以椭圆的焦点坐标为(0,3),(0,-3).2.(2018·合肥三模)已知椭圆E :y 2a 2+x 2b2=1(a >b >0)经过点A (5,0),B (0,3),则椭圆E 的离心率为( )A.23 B .53C .49D .59答案 A解析 由题意得a =3,b =5,所以c =a 2-b 2=9-5=2,离心率e =c a =23.3.设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .15答案 D解析 由椭圆方程x 216+y 212=1,可得c 2=4,所以|F 1F 2|=2c =4,而F 1F 2→=PF 2→-PF 1→,所以|F 1F 2→|=|PF 2→-PF 1→|,两边同时平方,得|F 1F 2→|2=|PF 1→|2-2PF 1→·PF 2→+|PF 2→|2,所以|PF 1→|2+|PF 2→|2=|F 1F 2→|2+2PF 1→·PF 2→=16+18=34,根据椭圆定义得|PF 1|+|PF 2|=2a =8,所以34+2|PF 1||PF 2|=64,所以|PF 1|·|PF 2|=15.故选D.4.(2018·武汉调研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)及点B (0,a ),过点B 与椭圆相切的直线交x 轴的负半轴于点A ,F 为椭圆的右焦点,则∠ABF =( )A .60°B .90°C .120°D .150°答案 B解析 由题意知,切线的斜率存在,设切线方程y =kx +a (k >0),与椭圆方程联立,⎩⎪⎨⎪⎧y =kx +a ,x 2a 2+y2b2=1,消去y 整理得(b 2+a 2k 2)x 2+2ka 3x +a 4-a 2b 2=0,由Δ=(2ka 3)2-4(b 2+a 2k 2)(a 4-a 2b 2)=0,得k =c a ,从而y =c a x +a 交x 轴于点A ⎝ ⎛⎭⎪⎫-a 2c ,0,又F (c,0),易知BA →·BF →=0,故∠ABF =90°.5.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.43 B .53 C .54 D .103答案 B解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点(0,-2),⎝ ⎛⎭⎪⎫53,43,∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53.故选B.6.(2018·南宁模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是( )A.12 B .22 C .32D .55答案 C解析 设直线x -y +5=0与椭圆x 2a 2+y 2b2=1相交于A (x 1,y 1),B (x 2,y 2)两点,因为AB 的中点M (-4,1),所以x 1+x 2=-8,y 1+y 2=2.易知直线AB 的斜率k =y 2-y 1x 2-x 1=1.⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y 22b 2=1,两式相减得,x 1+x 2x 1-x 2a 2+y 1+y 2y 1-y 2b 2=0,所以y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2,所以b 2a 2=14,于是椭圆的离心率e =ca=1-b 2a 2=32.故选C.7.过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,则△PQF 周长的最小值是( )A .14B .16C .18D .20答案 C解析 如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上、下顶点时,△PQF 1即△PQF 的周长取得最小值为10+2×4=18.8.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (-5,4),则椭圆的标准方程为________.答案x 245+y 236=1 解析 由题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由离心率e =55可得a 2=5c 2,所以b 2=4c 2,故椭圆的方程为x 25c 2+y 24c 2=1,将P (-5,4)代入可得c 2=9,故椭圆的方程为x 245+y 236=1.9.设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________.答案733解析 根据已知条件作出如图所示的图形.记圆x 2+(y -1)2=3的圆心为M ,由三角形的性质可得|PQ |≤|PM |+|MQ |=3+|MQ |,设点Q 坐标为(x ,y ),那么x 24+y 2=1,所以|QM |2=x 2+(y -1)2=4(1-y 2)+(y -1)2=-3y 2-2y +5,y ∈[-1,1],因此|QM |2≤163,即|QM |≤433,所以|PQ |≤433+3=733,所以P ,Q 两点间的最大距离为733. 10.(2018·厦门模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 在椭圆上,且PF 2垂直于x 轴,若直线PF 1的斜率为33,则该椭圆的离心率为________. 答案33解析 因为点P 在椭圆上,且PF 2垂直于x 轴,所以点P 的坐标为⎝ ⎛⎭⎪⎫c ,b 2a . 又因为直线PF 1的斜率为33,所以在Rt △PF 1F 2中, PF 2F 1F 2=33,即b 2a 2c =33.所以3b 2=2ac . 3(a 2-c 2)=2ac ,3(1-e 2)=2e , 整理得3e 2+2e -3=0, 又0<e <1,解得e =33. B 组 能力关1.如果椭圆x 236+y 29=1的弦AB 被点M (x 0,y 0)平分,设直线AB 的斜率为k 1,直线OM (O 为坐标原点)的斜率为k 2,则k 1k 2的值为( )A .4B .14C .-1D .-14答案 D解析 解法一:设A (x 1,y 1),B (x 2,y 2),因为弦AB 被点M (x 0,y 0)平分,所以x 1+x 2=2x 0,y 1+y 2=2y 0.易知k 1=y 1-y 2x 1-x 2,k 2=y 0x 0. ⎩⎪⎨⎪⎧x 2136+y 219=1,x 2236+y 229=1,两式相减得,x 1+x 2x 1-x 236+y 1+y 2y 1-y 29=0,所以y 1-y 2x 1-x 2=-14·x 1+x 2y 1+y 2=-14·x 0y 0, ∴k 1k 2=-14.解法二:设直线AB 的方程为y =k 1x +m ,A (x 1,y 1),B (x 2,y 2).代入椭圆方程并整理得,(1+4k 21)x 2+8k 1mx +4m 2-36=0,x 1+x 2=-8k 1m 1+4k 21,又中点M (x 0,y 0)在直线AB 上,所以y 1+y 22=k 1⎝ ⎛⎭⎪⎫x 1+x 22+m =m1+4k 21,从而得弦中点M 的坐标为⎝ ⎛⎭⎪⎫-4k 1m 1+4k 21,m 1+4k 21,∴k 2=m1+4k 21-4k 1m 1+4k 21=-14k 1,∴k 1k 2=-14. 2.(2018·昆明诊断)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.答案 (-3,0)或(3,0)解析 记椭圆的两个焦点分别为F 1,F 2,有|PF 1|+|PF 2|=2a =10. 则m =|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=25,当且仅当|PF 1|=|PF 2|=5,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25.∴点P 的坐标为(-3,0)或(3,0).3.(2018·内江三模)设P 是椭圆x 29+y 24=1第一象限弧上任意一点,过P 作x 轴的平行线与y轴和直线y =-23x 分别交于点M ,N .过P 作y 轴的平行线与x 轴和直线y =-23x 分别交于点R ,Q ,设O 为坐标原点,则△OMN 和△ORQ 的面积之和为________.答案 3解析 设P (x 0,y 0)(0<x 0<3,0<y 0<2),则M (0,y 0),联立⎩⎪⎨⎪⎧y =y 0,y =-23x ,解得y =y 0,x =-32y 0,所以N ⎝ ⎛⎭⎪⎫-32y 0,y 0, 所以S △OMN =12y 0×32y 0=34y 20.同理可得R (x 0,0),联立⎩⎪⎨⎪⎧x =x 0,y =-23x ,解得x =x 0,y =-23x 0,可得Q ⎝ ⎛⎭⎪⎫x 0,-23x 0.所以S △ORQ =12x 0×23x 0=13x 20.又x 209+y 204=1,所以△OMN 和△ORQ 的面积之和为34y 20+13x 20=3⎝ ⎛⎭⎪⎫x 209+y 204=3. 4.在平面直角坐标系xOy 中,点P 到两点(0,-3),(0,3)的距离之和等于4,设点P 的轨迹为C .(1)写出C 的方程;(2)设直线y =kx +1与C 交于A ,B 两点,k 为何值时O A →⊥O B →?此时|AB |的值是多少? 解 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆.它的短半轴长b = 22-32=1,故曲线C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1,消去y ,并整理得(k 2+4)x 2+2kx -3=0, 故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. ∵OA →⊥OB →,∴x 1x 2+y 1y 2=0. ∵y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=-4k 2+1k 2+4.又x 1x 2+y 1y 2=0,∴k =±12.当k =±12时,x 1+x 2=∓417,x 1x 2=-1217.|AB |=x 2-x 12+y 2-y 12=1+k 2x 2-x 12,而(x 2-x 1)2=(x 2+x 1)2-4x 1x 2 =42172+4×1217=43×13172, ∴|AB |=54×43×13172=46517. C 组 素养关1.(2018·东北三省四市教研联合体模拟)在平面直角坐标系中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12,点M ⎝ ⎛⎭⎪⎫1,32在椭圆C 上. (1)求椭圆C 的方程;(2)已知P (-2,0)与Q (2,0)为平面内的两个定点,过(1,0)点的直线l 与椭圆C 交于A ,B 两点,求四边形APBQ 面积的最大值.解 (1)∵c a =12,∴a =2c ,椭圆的方程为x 24c 2+y 23c2=1,将⎝ ⎛⎭⎪⎫1,32代入得14c 2+912c 2=1,∴c 2=1.∵椭圆的方程为x 24+y 23=1. (2)设l 的方程为x =my +1,联立⎩⎪⎨⎪⎧x 24+y 23=1,x =my +1,消去x ,得(3m 2+4)y 2+6my -9=0, 设点A (x 1,y 1),B (x 2,y 2), 有y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,有|AB |=1+m 2·121+m 23m 2+4=121+m23m 2+4,点P (-2,0)到直线l 的距离为31+m2,点Q (2,0)到直线l 的距离为11+m2,从而四边形APBQ 的面积S =12×121+m23m 2+4×41+m2=241+m 23m 2+4(或S =12|PQ ||y 1-y 2|). 令t =1+m 2,t ≥1,有S =24t 3t 2+1=243t +1t,设函数f (t )=3t +1t ,f ′(t )=3-1t2>0,所以f (t )在[1,+∞)上单调递增,有3t +1t ≥4,故S =24t 3t 2+1=243t +1t≤6,所以当t =1,即m =0时,四边形APBQ 面积的最大值为6.2.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点.线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.解 (1)证明:设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得m < ⎝ ⎛⎭⎪⎫1-14×3=32,且m >0,即0<m <32, 故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则由(1)及题设得(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0),x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝⎛⎭⎪⎫1,-32,|FP →|=32. 于是|FA →|=x 1-12+y 21= x 1-12+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12.同理| FB →|=2-x 22. 所以| FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则 2|d |=||FB →|-|FA →||=12|x 1-x 2|=12x 1+x 22-4x 1x 2. ②将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.。
解析几何小题压轴练-高考数学重点专题冲刺演练(学生版)
![解析几何小题压轴练-高考数学重点专题冲刺演练(学生版)](https://img.taocdn.com/s3/m/286d92f52dc58bd63186bceb19e8b8f67c1cef64.png)
解析几何小题压轴练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·辽宁盘锦·盘锦市高级中学校考一模)已知双曲线x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,点P 在双曲线上,且∠F 1PF 2=60°,PF 2的延长线交双曲线于点Q ,若双曲线的离心率为e =72,则PQ F 1Q=()A.23B.813C.815D.122.(2023·山东潍坊·统考模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,点F 2与抛物线C 2:y 2=2px p >0 的焦点重合,点P 为C 1与C 2的一个交点,若△PF 1F 2的内切圆圆心的横坐标为4,C 2的准线与C 1交于A ,B 两点,且AB =92,则C 1的离心率为()A.94B.54C.95D.743.(2023·江苏南通·海安高级中学校考一模)双曲线C :x 2-y 2=4的左,右焦点分别为F 1,F 2,过F 2作垂直于x 轴的直线交双曲线于A ,B 两点,△AF 1F 2,△BF 1F 2,△F 1AB 的内切圆圆心分别为O 1,O 2,O 3,则△O 1O 2O 3的面积是()A.62-8B.62-4C.8-42D.6-424.(2023·湖南永州·统考二模)如图,F 1,F 2为双曲线的左右焦点,过F 2的直线交双曲线于B ,D 两点,且F 2D =3F 2B ,E 为线段DF 1的中点,若对于线段DF 1上的任意点P ,都有PF 1 ⋅PB ≥EF 1 ⋅EB 成立,则双曲线的离心率是()A.2B.3C.2D.55.(2023·河北·河北衡水中学校考模拟预测)已知椭圆x 2a 2+y 2b2=1a >b >0 的两焦点为F 1,F 2,x 轴上方两点A ,B 在椭圆上,AF 1与BF 2平行,AF 2交BF 1于P .过P 且倾斜角为αα≠0 的直线从上到下依次交椭圆于S ,T .若PS =βPT ,则“α为定值”是“β为定值”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不必要也不充分条件6.(2023·江苏南通·二模)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 在双曲线上,PF 1⊥PF 2,圆O :x 2+y 2=94(a 2+b 2),直线PF 1与圆O 相交于A ,B 两点,直线PF 2与圆O 相交于M ,N 两点.若四边形AMBN 的面积为9b 2,则C 的离心率为()A.54B.85C.52D.21057.(2023·浙江金华·浙江金华第一中学校考模拟预测)如图,已知椭圆C 1和双曲线C 2具有相同的焦点F 1-c ,0 ,F 2c ,0 ,A 、B 、C 、D 是它们的公共点,且都在圆x 2+y 2=c 2上,直线AB 与x 轴交于点P ,直线CP 与双曲线C 2交于点Q ,记直线AC 、AQ 的斜率分别为k 1、k 2,若椭圆C 1的离心率为155,则k 1⋅k 2的值为()A.2B.52C.3D.4二、多选题1.(2023·广东·统考一模)已知拋物线E :y 2=8x 的焦点为F ,点F 与点C 关于原点对称,过点C 的直线l 与抛物线E 交于A ,B 两点(点A 和点C 在点B 的两侧),则下列命题正确的是()A.若BF 为△ACF 的中线,则AF =2BFB.若BF 为∠AFC 的角平分线,则AF =6C.存在直线l ,使得AC =2AFD.对于任意直线l ,都有AF +BF >2CF2.(2023·广东深圳·深圳中学校联考模拟预测)已知P x 1,y 1 ,Q x 2,y 2 是椭圆x 24+9y 24=1上两个不同点,且满足x 1x 2+9y 1y 2=-2,则下列说法正确的是()A.2x 1+3y 1-3 +2x 2+3y 2-3 的最大值为6+25B.2x 1+3y 1-3 +2x 2+3y 2-3 的最小值为3-5C.x 1-3y 1+5 +x 2-3y 2+5 的最大值为25+2105D.x 1-3y 1+5 +x 2-3y 2+5 的最小值为10-223.(2023·浙江金华·浙江金华第一中学校考模拟预测)设F 1,F 2为椭圆x 24+y 23=1的左,右焦点,直线l过F 1交椭圆于A ,B 两点,则以下说法正确的是()A.△ABF 2的周长为定值8B.△ABF 2的面积最大值为23C.AF 1 2+AF 2 2的最小值为8D.存在直线l 使得△ABF 2的重心为16,144.(2023·江苏连云港·统考模拟预测)已知抛物线C :y 2=2px p >0 的焦点为F ,直线l 与C 交于A x 1,y 1 ,B x 2,y 2 两点,其中点A 在第一象限,点M 是AB 的中点,作MN 垂直于准线,垂足为N ,则下列结论正确的是()A.若直线l 经过焦点F ,且OA ⋅OB=-12,则p =2B.若AF =3FB ,则直线l 的倾斜角为π3C.若以AB 为直径的圆M 经过焦点F ,则ABMN的最小值为2D.若以AB 为直径作圆M ,则圆M 与准线相切5.(2023·辽宁·辽宁实验中学校考模拟预测)已知抛物线C :x 2=2py (p >0)的焦点为F ,斜率为34的直线l 1过点F 交C 于A ,B 两点,且点B 的横坐标为4,直线l 2过点B 交C 于另一点M (异于点A ),交C 的准线于点D ,直线AM 交准线于点E ,准线交y 轴于点N ,则()A.C 的方程为x 2=4yB.AB =254C.BD <AED.ND ⋅NE =46.(2023·山东青岛·统考一模)已知A 、B 是平面直角坐标系xOy 中的两点,若OA =λOB λ∈R ,OA⋅OB=r 2r >0 ,则称B 是A 关于圆x 2+y 2=r 2的对称点.下面说法正确的是()A.点1,1 关于圆x 2+y 2=4的对称点是-2,-2B.圆x 2+y 2=4上的任意一点A 关于圆x 2+y 2=4的对称点就是A 自身C.圆x 2+y -b 2=b 2b >0 上不同于原点O 的点M 关于圆x 2+y 2=1的对称点N 的轨迹方程是y =12bD.若定点E 不在圆C :x 2+y 2=4上,其关于圆C 的对称点为D ,A 为圆C 上任意一点,则ADAE为定值7.(2023·山东济宁·统考一模)已知F 1,F 2是椭圆C 1:x 2a 12+y 2a 22=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2a 22=1(a 2>0,b 2>0)的公共焦点,e 1,e 2分别是C 1与C 2的离心率,且P 是C 1与C 2的一个公共点,满足PF 1⋅PF 2=0,则下列结论中正确的是()A.a 12+b 12=a 22-b 22 B.1e 21+1e 22=2C.1e 1+3e 2的最大值为22 D.3e 1+1e 2的最大值为228.(2023·山东济南·一模)在平面直角坐标系xOy 中,由直线x =-4上任一点P 向椭圆x 24+y 23=1作切线,切点分别为A ,B ,点A 在x 轴的上方,则()A.∠APB 恒为锐角B.当AB 垂直于x 轴时,直线AP 的斜率为12C.|AP |的最小值为4D.存在点P ,使得(PA +PO )⋅OA=09.(2023·山东·沂水县第一中学校联考模拟预测)已知AB ,CD 是经过抛物线y 2=2x 焦点F 的互相垂直的两条弦,若AB 的倾斜角为锐角,C ,A 两点在x 轴上方,则下列结论中一定成立的是()A.AB 2+CD 2最小值为32B.设P x ,y 为抛物线上任意一点,则x +x -322+y -2 2的最小值为5C.若直线CD 的斜率为-3,则AF ⋅BF =4D.OA ⋅OB +OC ⋅OD =-3210.(2023·湖南·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,C 的一条渐近线l 的方程为y =3x ,且F 1到l 的距离为33,点P 为C 在第一象限上的点,点Q 的坐标为2,0 ,PQ 为∠F 1PF 2的平分线.则下列正确的是()A.双曲线的方程为x 29-y 227=1B.PF 1=3 PF 2C.OP =36D.点P 到x 轴的距离为315211.(2023·湖南·模拟预测)已知椭圆:Γ:x 2a2+y 23=1(a >3)的左、右焦点分别为F 1、F 2,右顶点为A ,点M 为椭圆Γ上一点,点I 是△MF 1F 2的内心,延长MI 交线段F 1F 2于N ,抛物线y 2=158(a +c )x (其中c为椭圆下的半焦距)与椭圆Γ交于B ,C 两点,若四边形ABF 1C 是菱形,则下列结论正确的是()A.|BC |=352 B.椭圆Γ的离心率是32C.1MF 1 +4MF 2的最小值为94 D.|IN ||MI |的值为12三、填空题1.(2023·广东揭阳·校考模拟预测)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点为F 1,F 2,P 是双曲线上一点,且∠F 1PF 2=π3.若ΔF 1PF 2的外接圆和内切圆的半径分别为R ,r ,且R =4r ,则双曲线的离心率为.2.(2023·浙江·校联考三模)已知椭圆E :x 24+y 2=1,椭圆的左右焦点分别为F 1,F 2,点A (m ,n )为椭圆上一点且m >0,n >0,过A 作椭圆E 的切线l ,并分别交x =2、x =-2于C 、D 点.连接CF 1、DF 2,CF 1与DF 2交于点E ,并连接AE .若直线l ,AE 的斜率之和为32,则点A 坐标为.3.(2023·辽宁葫芦岛·统考一模)已知双曲线M :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P为双曲线右支上的一点,Q 为△F 1F 2P 的内心,且2QF 1 +3QF 2 =4PQ,则M 的离心率为.4.(2023·辽宁·校联考一模)过双曲线C :x 2a 2-y 2b2=1a >0,b >0 焦点F 的直线与C 的两条渐近线的交点分分别为M 、N ,当MF +3FN =0时,FN =b .则C 的离心率为.5.(2023·河北邢台·校联考模拟预测)已知抛物线C :y 2=4x 的焦点为F ,经过F 的直线l ,l 与C 的对称轴不垂直,l 交C 于A ,B 两点,点M 在C 的准线上,若△ABM 为等腰直角三角形,则AB =.6.(2023·福建泉州·统考三模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,C 的渐近线与圆x 2+y 2=a 2在第一象限的交点为M ,线段MF 2与C 交于点N ,O 为坐标原点.若MF 1⎳ON ,则C 的离心率为.7.(2023·山东枣庄·统考二模)已知点A 1,2 在抛物线y 2=2px 上,过点A 作圆x -2 2+y 2=2的两条切线分别交抛物线于B ,C 两点,则直线BC 的方程为.8.(2023·湖北·宜昌市一中校联考模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e ≠22,C 的左右焦点分别为F 1,F 2,点A 在椭圆C 上满足∠F 1AF 2=π2.∠F 1AF 2的角平分线交椭圆于另一点B ,交y轴于点D .已知AB =2BD,则e =.9.(2023·湖北武汉·统考模拟预测)设F 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,A ,B 分别为双曲线E 的左右顶点,点P 为双曲线E 上异于A ,B 的动点,直线l :x =t 使得过F 作直线AP 的垂线交直线l 于点Q 时总有B ,P ,Q 三点共线,则ta 的最大值为.10.(2023·湖南株洲·统考一模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右焦点为F 1,F 2,过F 1的直线交椭圆C 于P ,Q 两点,若PF 1 =43F 1Q ,且PF 2 =F 1F 2,则椭圆C 的离心率为.11.(2023·湖南常德·统考一模)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =1,点P 为长方体表面上的动点,且PA ⋅PB=0,当CP 最小时,△ABP 的面积为.12.(2023·河北衡水·衡水市第二中学校考模拟预测)在平面直角坐标系中,椭圆E 以两坐标轴为对称轴,左,右顶点分别为A ,B ,点P 为第一象限内椭圆上的一点,P 关于x 轴的对称点为Q ,过P 作椭圆的切线l ,若l ⊥AP ,且△APQ 的垂心恰好为坐标原点O ,记椭圆E 的离心率为e ,则e 2的值为.。
2020高考数学总复习:解析几何
![2020高考数学总复习:解析几何](https://img.taocdn.com/s3/m/7f55c8d214791711cd79170e.png)
222高考数学总复习第六讲:解析几何高考解析几何试题一般共有 4 题(2 个选择题, 1 个填空题, 1 个解答题), 共计 30 分左右, 考查的知识点约为 20 个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥 曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线 中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查 直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识, 这 点值得考生在复课时强化. 一、圆锥曲线的几类基本习题一. 弦的中点问题具有斜率的弦中点问题,一般设曲线上两点为 ( x , y ) , ( x , y ) ,1122代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
例1 给定双曲线 x 2 - y 2 = 1 。
过 A (2,1)的直线与双曲线交于2两点 P 及 P ,求线段 P P 的中点 P 的轨迹方程。
1 212分析:设 P ( x , y ) , P ( x , y ) 代入方程得 x 2 - y 12 = 1 , x 2 - y 2 = 1 。
1 1122212两式相减得( x + x )( x - x ) - 1 ( y + y )( y - y ) = 0 。
1 2 1 2 1 2 1 2又设中点 P (x,y ),将 x + x = 2 x , y + y = 2 y 代入,当 x ≠ x 时121212得程。
因此所求轨迹方程是 8( x - 1) 2 - 1 2 a 2 b 22 x - 2 y · y 1 - y 2 = 0 。
2 x - x1 2又 k = y 1 - y 2 = y - 1 ,x - xx - 212代入得 2 x 2 - y 2 - 4 x + y = 0 。
当弦 P P 斜率不存在时,其中点 P (2,0)的坐标也满足上述方1 214( y - ) 2 2 = 1 。
2020高考数学二轮复习专题5平面解析几何课件理(解析版,新课标)
![2020高考数学二轮复习专题5平面解析几何课件理(解析版,新课标)](https://img.taocdn.com/s3/m/bd7cba02ce84b9d528ea81c758f5f61fb73628fc.png)
PART 03
圆锥曲线中的最值问题求 解策略
利用函数性质求最值
转化为基本函数
将圆锥曲线中的最值问题转化为基本 函数(如一次函数、二次函数等)的 最值问题,利用函数的单调性、极值 等性质求解。
构造函数法
通过构造函数,将问题转化为求函数 的最大值或最小值,利用导数等工具 求解。
利用不等式性质求最值
直线方程与斜率截距式
直一般线式方Ax程+By+C=0(A、B不同时为0)
;斜截式y=kx+b(k是斜率,b是y轴 上的截距);点斜式y-y1=k(x-x1)(直 线过定点(x1,y1),斜率为k);两点式 (y-y1)/(x-x1)=(y2-y1)/(x2-x1)(直线 过定点(x1,y1)和(x2,y2));截距式 (x/a)+(y/b)=1(a是x轴上的截距,b是
2018年高考全国卷Ⅱ理科数学第21题
考查了抛物线的定义和性质,以及直线与抛物线的位置关系。此题需要学生灵活运用抛物 线的定义和性质进行求解。
解题技巧总结
在解答平面解析几何问题时,学生需要熟练掌握各种曲线的定义、性质和方程,以及直线 与曲线的位置关系。同时,还需要灵活运用韦达定理、弦长公式等知识点,以及掌握一些 常用的解题技巧,如设而不求、点差法等。
XX
REPORTING
2023 WORK SUMMARY
2020高考数学二轮复 习专题5平面解析几何 课汇报人件:XX理(解析版,新课
标)Leabharlann X目录• 平面解析几何基本概念与性质 • 直线与圆、椭圆、双曲线和抛物线位置关系 • 圆锥曲线中的最值问题求解策略 • 平面解析几何中的综合问题应对策略 • 历年高考真题回顾与模拟题训练
学生自主命题尝试和互评互改
2020高考文科数学二轮专题辅导通用版课件:专题5 解析几何2.5.解答题 2
![2020高考文科数学二轮专题辅导通用版课件:专题5 解析几何2.5.解答题 2](https://img.taocdn.com/s3/m/8be247a4aaea998fcc220ec1.png)
B( c, c ). 2 2a
又直线OA的方程为y= x,
1
则A kAB=
a
又因为(Ac,B⊥c O),B,所以
c ( c ) a=-1,解得2aa2=3,
3
.
故双曲线Ca的方程为 -y2=1c. c
a
2
3g( 1 ) aa
x2
3
(2)由(1)知a= ,则直线l的方程为 -y0y=1(y0≠0),
(1)从特殊值入手,求出定值,再证明这个值与变量无关. (2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
【变式训练】 已知椭圆C: =1(a>b>0)的离心率为 ,短轴端点到焦点的距离为2.
x2 a2
y2 b2
3 2
(1)求椭圆C的方程. (2)设A,B为椭圆C上任意两点,O为坐标原点,且OA⊥OB.求证:原点O到直线AB的距离 为定值,并求出该定值.
t 12 ,
2k2 1
x1 , y1 1
所 所以以||O(t+M1|)·(|Ot-1N)||==|t-1|2,t=1(|舍去x)或1 0g, x2 ||
当t=0时,①式Δ>0,符合题意,
所以直线l方程为y=kx,
y1
1
y2 1
x1x 2 y1 1 y2 1
2 t2 1 || t 1 2
x0
22
4g 2x0 32 3 3y02 3 x0
22
.
因为P(x0,y0)是C上一点,则
=1,代入上式x得02 3
y02
故M所F求2定值4为
NF 2
g 3 x02
2x0 32 3 3x0 22
4 3
广东省深圳中学2020届高考数学 暑期复习讲义专练 模块四 立体几何(无答案)
![广东省深圳中学2020届高考数学 暑期复习讲义专练 模块四 立体几何(无答案)](https://img.taocdn.com/s3/m/0087115976eeaeaad0f33000.png)
2020届高三暑期数学(理)复习时间安排及模块练习高三数学组暑期指南:(1)在做每一模块之前认真研读课本;(2)在做题过程中遇到不清楚的公式和概念,务必彻底弄清楚;(3)做解答题一定要注意书写格式的规范性;(4)建议时间:三角模块2天、概率统计2天、数列1天、立几2天、解析几何3天、函数与导数3天(可根据个人实际情况进行调整);(5)选做平面几何选讲、极坐标参数方程、不等式选讲对应的教材后面的练习.模块四:立体几何一、选择题1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖2.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.6B. 26C. 15D. 103.已知平面α⊥平面β,α∩β= l ,点A∈α,A ∉l ,直线AB∥l ,直线AC⊥l ,直线m∥α,m∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB∥m B. AC⊥m C. AB∥β D. AC⊥β4.设有直线m 、n 和平面α、β.下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m∥α5. 设直线m 与平面α相交但不.垂直,则下列说法中正确的是( ) A .在平面α内有且只有一条直线与直线m 垂直B .过直线m 有且只有一个平面与平面α垂直C .与直线m 垂直的直线不.可能与平面α平行 D .与直线m 平行的平面不.可能与平面α垂直6.如图,l A B A B αβαβαβ⊥=∈∈I ,,,,,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( )A .m n θϕ>>,B .m n θϕ><,C .m n θϕ<<,D .m n θϕ<>,二、填空题7.已知菱形ABCD 中,2AB =,120A ∠=o ,沿对角线BD 将ABD △折起,使二面角A BD C --为120o ,则点A 到BCD △所在平面的距离等于 . 8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 .9.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .10.如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图2).有下列四个命题:A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好经过点PD .若往容器内再注入a 升水,则容器恰好能装满其中真命题的代号是 .(写出所有真命题的代号) .三、解答题11. 如图,在四棱锥P-ABCD 中,则面PA D⊥底面ABCD ,侧棱PA =PD =2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC =2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 的距离为3?若存在,求出AQ QD的值;若不存在,请说明理由.12.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(Ⅰ)证明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的余弦值.。
【高考研究】2020版高考文数(五)解析几何热点问题ppt课件(含答案)
![【高考研究】2020版高考文数(五)解析几何热点问题ppt课件(含答案)](https://img.taocdn.com/s3/m/0d346b38eff9aef8941e0644.png)
因此b12=1, a12+43b2=1,
解得ab22==41,. … 3 分 (得分点 2)
故 C 的方程为x42+y2=1. …………5 分 (得分点 3)
(2)证明 设直线 P2A 与直线 P2B 的斜率分别为 k1,k2.
如果直线 l 的斜率不存在,l 垂直于 x 轴. 设 l:x=m,A(m,yA),B(m,-yA), k1+k2=yAm-1+-ymA-1=-m2=-1,得 m=2, 此时 l 过椭圆右顶点,不存在两个交点,
命题角度 1 圆锥曲线中定点问题 [例 1-1] (满分 12 分)(2017·全国Ⅰ卷)已知椭圆 C:xa22+yb22=1(a>b>0),四点 P1(1, 1),P2(0,1),P3-1, 23,P41, 23中恰有三点在椭圆 C 上.(1)求 C 的方程; (2)设直线 l 不经过 P2 点且与 C 相交于 A,B 两点.若直线 P2A 与直线 P2B 的斜率 的和为-1,证明:l 过定点.
(2)斜率为 k 的直线 l 与椭圆 C 交于两个不同的点 M,N.若 M 是椭圆的左顶点,
D 是直线 MN 上一点,且 DA⊥AM.点 G 是 x 轴上异于点 M 的点,且以 DN 为
直径的圆恒过直线 AN 和 DG 的交点,求证:点 G 是定点.
(1)解 设坐标原点为 O, ∵四边形 ABPQ 是平行四边形,∴|A→B|=|P→Q|, ∵|P→Q|=2|O→B|,∴|A→B|=2|O→B|,则点 B 的横坐标为3a, ∴又点c2=Q2的,坐∴标a2为=4a3,,即34椭,圆代入C 椭的圆方程C为的x4方2+程y2得2=b12.=2,
(1)解 ∵椭圆xa22+by22=1(a>b>0)的离心率为 22, ∴e2=ac22=a2-a2b2=12,得 a2=2b2,① 又点 Qb,ba在椭圆 C 上,∴ba22+ab24=1,②
2020年高考数学理科一轮复习讲义:第8章 平面解析几何 第5讲 Word版含解析
![2020年高考数学理科一轮复习讲义:第8章 平面解析几何 第5讲 Word版含解析](https://img.taocdn.com/s3/m/9bddf0a00066f5335a812191.png)
第5讲椭圆[考纲解读] 1.掌握两种求椭圆方程的方法:定义法、待定系数法,并能根据其标准方程及几何图形研究椭圆的几何性质(范围、对称性、顶点、离心率).(重点) 2.掌握直线与椭圆位置关系的判断,并能求解直线与椭圆相关的综合问题.(难点)[考向预测]从近三年高考情况来看,本讲为高考的必考内容.预测2020年将会考查:①椭圆标准方程的求解;②直线与椭圆位置关系的应用;③求解与椭圆性质相关的问题.试题以解答题的形式呈现,灵活多变、技巧强,具有一定的区分度,试题中等偏难.1.椭圆的定义(1)定义:在平面内到两定点F1,F2的距离的□01和等于□02常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做□03焦距.(2)集合语言:P={M||MF1|+|MF2|=□042a,且2a□05>|1F2|},|F1F2|=2c,其中a>c>0,且a,c为常数.注:当2a>|F1F2|时,轨迹为椭圆;当2a=|F1F2|时,轨迹为线段F1F2;当2a<|F1F2|时,轨迹不存在.2.椭圆的标准方程和几何性质3.直线与椭圆位置关系的判断直线与椭圆方程联立方程组,消掉y,得到Ax2+Bx+C=0的形式(这里的系数A一定不为0),设其判别式为Δ:(1)Δ>0⇔直线与椭圆□01相交;(2)Δ=0⇔直线与椭圆□02相切;(3)Δ<0⇔直线与椭圆□03相离.4.弦长公式(1)若直线y=kx+b与椭圆相交于两点A(x1,y1),B(x2,y2),则|AB|=□011+k2|x1-x2|=□021+1k2|y1-y2|.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长□032b2a,最长为□042a.5.必记结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)已知过焦点F1的弦AB,则△ABF2的周长为4a.1.概念辨析(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)方程mx2+ny2=1(m>0,n>0且m≠n)表示的曲线是椭圆.()(3)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(4)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案(1)×(2)√(3)√(4)√2.小题热身(1)椭圆x29+y24=1的离心率是()A.133B.53C.23D.59答案 B解析 由已知得a =3,b =2,所以c =a 2-b 2=32-22=5,离心率e =c a =53.(2)直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是( ) A .(1,+∞) B .(1,3)∪(3,+∞) C .(3,+∞) D .(0,3)∪(3,+∞)答案 B解析 把y =x +2代入x 2m +y 23=1得3x 2+m (x +2)2=3m ,整理得(3+m )x 2+4mx +m =0,由题意得Δ=(4m )2-4m (3+m )=12m (m -1)>0且3+m ≠0,又因为m >0且m ≠3,所以m >1且m ≠3,所以m 的取值范围是(1,3)∪(3,+∞).(3)(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.答案 ⎝ ⎛⎭⎪⎫x -322+y 2=254解析 由题意知,圆过椭圆的三个顶点(4,0),(0,2),(0,-2),设圆心为(a,0),其中a >0,由4-a =a 2+4,解得a =32,所以该圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.(4)已知动点P (x ,y )的坐标满足x 2+(y +7)2+x 2+(y -7)2=16,则动点P 的轨迹方程为________.答案 x 264+y 215=1解析 由已知得点P 到点A (0,-7)和B (0,7)的距离之和为16,且16>|AB |,所以点P 的轨迹是以A (0,-7),B (0,7)为焦点,长轴长为16的椭圆.显然a =8,c =7,故b 2=a 2-c 2=15,所以动点P 的轨迹方程为x 264+y 215=1.题型 一 椭圆的定义及应用1.过椭圆x 24+y 2=1的左焦点F 1作直线l 交椭圆于A ,B 两点,F 2是椭圆右焦点,则△ABF2的周长为()A.8 B.4 2 C.4 D.2 2 答案 A解析因为椭圆为x24+y2=1,所以椭圆的半长轴a=2,由椭圆的定义可得AF1+AF2=2a=4,且BF1+BF2=2a=4,∴△ABF2的周长为AB+AF2+BF2=(AF1+AF2)+(BF1+BF2)=4a=8.2.在平面直角坐标系xOy中,P是椭圆y24+x23=1上的一个动点,点A(1,1),B(0,-1),则|P A|+|PB|的最大值为() A.5 B.4 C.3 D.2 答案 A解析如图,∵椭圆y24+x23=1,∴焦点坐标为B(0,-1)和B′(0,1),连接PB′,AB′,根据椭圆的定义,得|PB|+|PB′|=2a=4,可得|PB|=4-|PB′|,因此|P A|+|PB|=|P A|+(4-|PB′|)=4+(|P A|-|PB′|).∵|P A|-|PB′|≤|AB′|,∴|P A|+|PB|≤4+|AB′|=4+1=5.当且仅当点P在AB′的延长线上时,等号成立.综上所述,可得|P A|+|PB|的最大值为5.3.已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°,S△PF1F2=33,则b=________.答案 3解析设|PF1|=t1,|PF2|=t2,则由椭圆的定义可得t1+t2=2a,①在△F1PF2中∠F1PF2=60°,所以t21+t22-2t1t2·cos60°=4c2,②由①2-②得3t1t2=4a2-4c2=4b2,所以S△F1PF2=12t1t2·sin60°=12×43b2×32=33,所以b=3.利用定义求焦点三角形及最值的方法1.设椭圆x29+y25=1的左、右焦点分别为F1,F2,过焦点F1的直线交椭圆于A(x1,y1),B(x2,y2)两点,若△ABF2的内切圆的面积为π,则|y1-y2|=() A.3 B.6C.9 D.12答案 A解析画出图形如图所示.∵椭圆方程为x 29+y 25=1, ∴a =3,b =5,c =2.又△ABF 2的内切圆的面积为π, ∴△ABF 2内切圆的半径r =1, ∴S △ABF 2=12×(|AB |+|BF 2|+|AF 2|)×r =12×4a ×r =2ar =6,又S △ABF 2=12×|y 1-y 2|×2c =2|y 1-y 2|, ∴2|y 1-y 2|=6,∴|y 1-y 2|=3.2.(2018·安徽皖江模拟)已知F 1,F 2是长轴长为4的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点,则△PF 1F 2面积的最大值为________.答案 2解析 解法一:∵△PF 1F 2的面积为12|PF 1||PF 2|·sin ∠F 1PF 2≤12⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=12a 2.又∵2a =4,∴a 2=4,∴△PF 1F 2面积的最大值为2.解法二:由题意可知2a =4,解得a =2.当P 点到F 1F 2距离最大时,S △PF 1F 2最大,此时P 为短轴端点,S △PF 1F 2=12·2c ·b =bc .又∵a 2=b 2+c 2=4,∴bc ≤b 2+c 22=2,∴当b =c =2时,△PF 1F 2面积最大,为2. 题型 二 椭圆的标准方程及应用1.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析方程x 2m -2+y26-m=1表示椭圆⇔⎩⎨⎧m -2>0,6-m >0,m -2≠6-m ,解得2<m <6且m ≠4,所以“2<m <6”是“方程x 2m -2+y 26-m =1表示椭圆”的必要不充分条件.2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为10,一个焦点的坐标是(-5,0),则椭圆的标准方程为________.答案 x 29+y 24=1解析 由题意得,该椭圆的焦点在x 轴上, c =5,2a +2b =10,即a +b =5, 又因为a 2-b 2=c 2=5,所以a -b =1,解得a =3,b =2. 所以椭圆的标准方程是x 29+y 24=1.3.已知A ⎝ ⎛⎭⎪⎫-12,0,B 是圆⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.答案 x 2+43y 2=1解析 如图,由题意知|P A |=|PB |,|PF |+|BP |=2.所以|P A |+|PF |=2且|P A |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+43y 2=1.1.定义法求椭圆的标准方程根据椭圆的定义确定a 2,b 2的值,再结合焦点位置求出椭圆的方程.其中常用的关系有:(1)b 2=a 2-c 2;(2)椭圆上任意一点到椭圆两焦点的距离之和等于2a ;(3)椭圆上一短轴顶点到一焦点的距离等于实半轴长a. 2.待定系数法求椭圆的标准方程的四步骤提醒:当椭圆的焦点位置不明确时,可设为x2 m+y2n=1(m>0,n>0,m≠n),也可设为Ax2+By2=1(A>0,B>0,且A≠B).可简记为“先定型,再定量”.1.与圆C1:(x+3)2+y2=1外切,且与圆C2:(x-3)2+y2=81内切的动圆圆心P的轨迹方程为________.答案x225+y216=1解析设动圆的半径为r,圆心为P(x,y),则有|PC1|=r+1,|PC2|=9-r. 所以|PC1|+|PC2|=10>|C1C2|,所以点P的轨迹是以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆,点P的轨迹方程为x225+y216=1.2.已知中心在坐标原点的椭圆过点A(-3,0),且离心率e=53,则椭圆的标准方程为________.答案x29+y24=1或y2814+x29=1解析若焦点在x轴上,由题知a=3,因为椭圆的离心率e=53,c=5,b=2,所以椭圆方程是x29+y24=1.若焦点在y轴上,则b=3,a2-c2=9,又离心率e=ca =53,解得a 2=814,所以椭圆方程是y2814+x29=1.题型三椭圆的几何性质1.已知椭圆C1:x212+y24=1,C2:x216+y28=1,则()A.C1与C2顶点相同B.C1与C2长轴长相同C.C1与C2短轴长相同D.C1与C2焦距相等答案 D解析由两个椭圆的标准方程可知:C1的顶点坐标为(±23,0),(0,±2),长轴长为43,短轴长为4,焦距为42;C2的顶点坐标为(±4,0),(0,±22),长轴长为8,短轴长为42,焦距为4 2.故选D.2.(2018·全国卷Ⅱ)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为36的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.23B.12C.13D.14答案 D解析依题意易知|PF2|=|F1F2|=2c,且P在第一象限内,由∠F1F2P=120°可得P点的坐标为(2c,3c).又因为k AP=36,即3c2c+a=36,所以a=4c,e=14,故选D.条件探究将举例说明2中点P满足的条件改为“椭圆C上存在点P,使∠F1PF2=90°”,求C的离心率的取值范围.解 解法一:椭圆上存在点P 使∠F 1PF 2=90°⇔以原点O 为圆心,以c 为半径的圆与椭圆有公共点⇔b ≤c ,如图,由b ≤c ,得a 2-c 2≤c 2,即a 2≤2c 2,解得e =c a ≥22,又0<e <1,故椭圆C 的离心率的取值范围是⎣⎢⎡⎭⎪⎫22,1.解法二:设P (x 0,y 0)为椭圆上一点,则x 20a 2+y 20b 2=1. PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0), 若∠F 1PF 2=90°,则PF 1→·PF 2→=x 20+y 20-c 2=0.∴x 20+b 2⎝ ⎛⎭⎪⎫1-x 20a 2=c 2,∴x 20=a 2(c 2-b 2)c 2.∵0≤x 20≤a 2,∴0≤c 2-b 2c 2≤1.∴b 2≤c 2,∴a 2≤2c 2,∴22≤e <1.1.利用椭圆几何性质的注意点及技巧 (1)注意椭圆几何性质中的不等关系在求与椭圆有关的一些范围问题时,经常用到x ,y 的范围,离心率的范围等不等关系.(2)利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系.2.求椭圆离心率的方法(1)直接求出a ,c ,利用离心率公式e =ca 求解. (2)由a 与b 的关系求离心率,利用变形公式e =1-b 2a 2求解.如举例说明2.(3)由椭圆的定义求离心率.e =c a =2c2a ,而2a 是椭圆上任意一点到两焦点的距离之和,2c 是焦距,从而与焦点三角形联系起来.1.(2018·长沙模拟)椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E 的标准方程为( )A.x 22+y 22=1B .x 22+y 2=1 C.x 24+y 22=1 D .y 24+x 22=1答案 C解析 易知b =c =2,故a 2=b 2+c 2=4,从而椭圆E 的标准方程为x 24+y 22=1.2.已知F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点,A 为右顶点,P 是椭圆上的一点,PF ⊥x 轴,若|PF |=34|AF |,则该椭圆的离心率是________.答案 14解析 根据椭圆几何性质可知|PF |=b 2a ,|AF |=a +c ,所以b 2a =34(a +c ),即4b 2=3a 2+3ac .又因为b 2=a 2-c 2,所以有4(a 2-c 2)=3a 2+3ac ,整理可得4c 2+3ac -a 2=0,两边同除以a 2,得4e 2+3e -1=0,所以(4e -1)·(e +1)=0,由于0<e <1,所以e =14.题型 四 直线与椭圆的综合问题角度1 椭圆与向量的综合问题1.(2018·六安舒城中学模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,AF →=2FB →.则椭圆C 的离心率是________.答案 23解析 设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0. 直线l 的方程为y =3(x -c ),其中c =a 2-b 2.联立⎩⎪⎨⎪⎧y =3(x -c ),x 2a 2+y 2b 2=1,得(3a 2+b 2)y 2+23b 2cy -3b 4=0.解得y 1=-3b 2(c +2a )3a 2+b 2,y 2=-3b 2(c -2a )3a 2+b 2.因为AF →=2FB →,所以-y 1=2y 2.即3b 2(c +2a )3a 2+b 2=2·-3b 2(c -2a )3a 2+b 2.得离心率e =c a =23.角度2 弦长及弦中点问题2.(1)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2B .455C .4105D .8105(2)直线y =x +m 被椭圆2x 2+y 2=2截得的线段的中点的横坐标为16,则中点的纵坐标为________.答案 (1)C (2)-13解析 (1)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎨⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5. Δ=(8t )2-4×5×4(t 2-1)>0,得t 2<5. ∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2·⎝ ⎛⎭⎪⎫-85t 2-4×4(t 2-1)5=425·5-t 2,当t =0时,|AB |max =4105.(2)解法一:由⎩⎨⎧y =x +m ,2x 2+y 2=2,消去y 并整理得3x 2+2mx +m 2-2=0,设线段的两端点分别为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2m3,∴-2m 3=13,解得m =-12.由截得的线段的中点在直线y =x -12上,得中点的纵坐标y =16-12=-13. 解法二:设线段的两端点分别为A (x 1,y 1),B (x 2,y 2),则2x 21+y 21=2,2x 22+y 22=2.两式相减得2(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0. 把y 1-y 2x 1-x 2=1,x 1+x 2=13代入上式,得y 1+y 22=-13,则中点的纵坐标为-13. 角度3 直线与椭圆的位置关系及综合问题3.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是( ) A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5答案 D解析 直线y =kx +1恒过定点(0,1),若直线y =kx +1与椭圆x 25+y 2m =1总有公共点, 则点(0,1)在椭圆x 25+y 2m =1内部或在椭圆上,所以1m ≤1,由方程x 25+y 2m =1表示椭圆,则m >0且m ≠5,综上知m 的取值范围是m ≥1且m ≠5.4.(2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 解 (1)由已知得F (1,0),直线l 的方程为x =1.由已知可得,点A 的坐标为⎝ ⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22.所以直线AM 的方程为y =-22x +2或y =22x - 2. (2)证明:当l 与x 轴重合时,∠OMA =∠OMB =0°.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以∠OMA =∠OMB . 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得 k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0. 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0.从而k MA +k MB =0,故直线MA ,MB 的倾斜角互补, 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB .1.解决椭圆中与向量有关问题的方法(1)将向量条件坐标表示,再利用函数、方程知识建立数量关系. (2)利用向量关系转化成相关的等量关系.(3)利用向量运算的几何意义转化成图形中位置关系解题. 2.弦中点问题的解决策略(1)根与系数的关系:直线与椭圆方程联立、消元,利用根与系数的关系表示中点坐标.(2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率的关系. 3.求解直线与椭圆相交的弦长问题的步骤(1)设直线Ax +By +C =0与椭圆mx 2+ny 2=1(m >0,n >0,m ≠n )的两个交点坐标分别为E (x 1,y 1),F (x 2,y 2).(2)把直线方程与椭圆方程联立方程组,消元得到一个一元二次方程.(3)利用根与系数的关系,得到x 1+x 2与x 1x 2或y 1y 2与y 1+y 2.(4)把与E ,F 有关要求的量(如弦长|EF |、直线与椭圆相关的图形面积等)用E ,F 的坐标表示出来,并变形为只含x 1+x 2与x 1x 2(或y 1+y 2与y 1y 2)的形式.(5)将(3)中所得的含有参数的式子等量代入(4)中,得到含参数的代数式,经过其他运算得到化简结果.4.重要结论(1)椭圆中最短的焦点弦为通径,长度为2b 2a .(2)设斜率为k (k ≠0)的直线l 与椭圆C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k 2·|y 1-y 2|=1+1k 2·(y 1+y 2)2-4y 1y 2.1.已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程. 解 (1)由⎩⎨⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0,因为直线与椭圆有公共点,所以Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52.(2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由(1)知,5x 2+2mx +m 2-1=0, 所以x 1+x 2=-2m 5,x 1x 2=15(m 2-1), 所以|AB |=(x 1-x 2)2+(y 1-y 2)2=2(x 1-x 2)2 =2[(x 1+x 2)2-4x 1x 2]= 2⎣⎢⎡⎦⎥⎤4m 225-45(m 2-1) =2510-8m 2.所以当m =0时,|AB |最大,即被椭圆截得的弦最长,此时直线方程为y =x . 2.(2018·沈阳质检)已知P 点坐标为(0,-2),点A ,B 分别为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,直线BP 交E 于点Q ,△ABP 是等腰直角三角形,且PQ →=32QB →.(1)求椭圆E 的方程;(2)设过点P 的动直线l 与E 相交于M ,N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.解 (1)由△ABP 是等腰直角三角形,得a =2,B (2,0). 设Q (x 0,y 0),则由PQ →=32QB →,得⎩⎪⎨⎪⎧x 0=65,y 0=-45,代入椭圆方程得b 2=1, 所以椭圆E 的方程为x 24+y 2=1.(2)依题意得,直线l 的斜率存在,方程设为y =kx -2. 联立⎩⎪⎨⎪⎧y =kx -2,x 24+y 2=1,消去y 并整理得(1+4k 2)x 2-16kx +12=0.(*)因直线l 与E 有两个交点,即方程(*)有不等的两实根, 故Δ=(-16k )2-48(1+4k 2)>0,解得k 2>34. 设M (x 1,y 1),N (x 2,y 2),由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=16k1+4k 2,x 1x 2=121+4k 2,因坐标原点O 位于以MN 为直径的圆外, 所以OM →·ON →>0,即x 1x 2+y 1y 2>0,又由x 1x 2+y 1y 2=x 1x 2+(kx 1-2)(kx 2-2) =(1+k 2)x 1x 2-2k (x 1+x 2)+4 =(1+k 2)·121+4k 2-2k ·16k 1+4k 2+4>0,解得k 2<4,综上可得34<k 2<4, 则32<k <2或-2<k <-32.则满足条件的斜率k 的取值范围为⎝ ⎛⎭⎪⎫-2,-32∪⎝ ⎛⎭⎪⎫32,2.高频考点 求椭圆的离心率问题考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.[典例1] 从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24 B .12 C .22 D .32答案 C解析 由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-ba ,由于OP ∥AB ,∴-y 0c =-b a ,y 0=bc a ,把P ⎝ ⎛⎭⎪⎫-c ,bc a 代入椭圆方程得(-c )2a 2+⎝ ⎛⎭⎪⎫bc a 2b 2=1,即⎝ ⎛⎭⎪⎫c a 2=12,∴e =c a =22. [典例2] (2018·芜湖模拟)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c,0).圆C :(x -c )2+y 2=1上所有点都在椭圆E 的内部,过椭圆上任一点M 作圆C 的两条切线,A ,B 为切点,若∠AMB =θ,θ∈⎣⎢⎡⎦⎥⎤π3,π2,则椭圆C 的离心率为( )A .2- 2B .3-2 2 C.32- 2 D .2-1答案 B解析 圆C :(x -c )2+y 2=1的圆心为右焦点F (c,0),半径为1,(1)当M 位于椭圆的右顶点(a,0)时,|MF |取得最小值a -c ,此时|MA |取得最小值,即有∠AMB=π2,sinπ4=1a-c,可得a-c=2,①(2)当M位于椭圆的左顶点(-a,0),|MF|取得最大值a+c.此时|MA|取得最大值,即有∠AMB=π3,sin π6=1a+c,可得a+c=2,②由①②解得a=1+22,c=1-22,则e=ca=2-22+2=3-2 2.。
2021年高考数学 暑期复习讲义专练 模块五 解析几何
![2021年高考数学 暑期复习讲义专练 模块五 解析几何](https://img.taocdn.com/s3/m/38899b04b9f3f90f77c61b5f.png)
2021年高考数学暑期复习讲义专练模块五解析几何暑期指南:(1)在做每一模块之前认真研读课本;(2)在做题过程中遇到不清楚的公式和概念,务必彻底弄清楚;(3)做解答题一定要注意书写格式的规范性;(4)建议时间:三角模块2天、概率统计2天、数列1天、立几2天、解析几何3天、函数与导数3天(可根据个人实际情况进行调整);(5)选做平面几何选讲、极坐标参数方程、不等式选讲对应的教材后面的练习.xx届高三暑期数学(理)复习时间安排及模块练习高三数学组暑期指南:(1)在做每一模块之前认真研读课本;(2)在做题过程中遇到不清楚的公式和概念,务必彻底弄清楚;(3)做解答题一定要注意书写格式的规范性;(4)建议时间:三角模块2天、概率统计2天、数列1天、立几2天、解析几何3天、函数与导数3天(可根据个人实际情况进行调整);(5)选做平面几何选讲、极坐标参数方程、不等式选讲对应的教材后面的练习.模块五:解析几何一、选择题1. 双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( )A .B .C .D .2.斜率为1的直线与椭圆相交于、两点,则的最大值为( )A.2B.C.D.3.若直线与双曲线的右支相交于不同的两点,则实数的取值范围是( )A .B .C .D .4.抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,,垂足为,则的面积是( )A .B .C .D .5.已知直线.127))(3(22=-∈-=y m x R k x k y 与双曲线某学生作了如下变形:由 消去y 后得到形如的方程,当A=0时,该方程有一解;当A≠0时,恒成立.假设学生的演算过程是正确的,则实数m 的取值范围为()A.B.C.D.6.设抛物线与直线有两个交点,其横坐标分别是,而直线与轴交点的横坐标是,那么的关系是()A B C D二、填空题7.已知抛物线上存在关于直线对称的相异两点、,则 .8.已知以为焦点的椭圆与直线有且仅有一个公共点,则椭圆的长轴长为9.点P在曲线上,则P到直线的距离的最大值为 .10.已知两点、,给出下列曲线方程:①,②,③,④.在曲线上存在点满足的所有曲线方程是_________.三、解答题11.若是抛物线上的不同两点,弦(不平行于轴)的垂直平分线与轴相交于点,则称弦是点的一条“相关弦”.已知当时,点存在无穷多条“相关弦”.给定.(Ⅰ)证明:点的所有“相关弦”的中点的横坐标相同;(Ⅱ)试问:点的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用表示);若不存在,请说明理由.12.已知椭圆的左、右焦点分别为,过的直线交椭圆于两点,过的直线交椭圆于两点,且,垂足为(Ⅰ)设点的坐标为,证明:;(Ⅱ)求四边形的面积的最小值一、选择题1.双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为()A. B. C. D.2.斜率为1的直线与椭圆相交于、两点,则的最大值为( )A.2B.C.D.3.若直线与双曲线的右支相交于不同的两点,则实数的取值范围是( )A .B .C .D .4.抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,,垂足为,则的面积是( )A .B .C .D .5.已知直线.127))(3(22=-∈-=y m x R k x k y 与双曲线某学生作了如下变形:由 消去y 后得到形如的方程,当A=0时,该方程有一解;当A≠0时,恒成立.假设学生的演算过程是正确的,则实数m 的取值范 围为 ( )A .B .C .D .6.设抛物线与直线有两个交点,其横坐标分别是,而直线与轴交点的横坐标是,那么的关系是( )A B C D二、填空题7.已知抛物线上存在关于直线对称的相异两点、,则 .8.已知以为焦点的椭圆与直线有且仅有一个公共点,则椭圆的长轴长为9.点P 在曲线上,则P 到直线的距离的最大值为 .10.已知两点、,给出下列曲线方程:①,②,③,④.在曲线上存在点满足的所有曲线方程是_________.三、解答题11.若是抛物线上的不同两点,弦(不平行于轴)的垂直平分线与轴相交于点,则称弦是点的一条“相关弦”.已知当时,点存在无穷多条“相关弦”.给定.(Ⅰ)证明:点的所有“相关弦”的中点的横坐标相同;(Ⅱ)试问:点的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用表示);若不存在,请说明理由.12.已知椭圆的左、右焦点分别为,过的直线交椭圆于两点,过的直线交椭圆于两点,且,垂足为(Ⅰ)设点的坐标为,证明:;(Ⅱ)求四边形的面积的最小值36427 8E4B 蹋D31962 7CDA 糚B34109 853D 蔽 37320 91C8 釈36342 8DF6 跶31792 7C30 簰F21777 5511 唑27412 6B14 欔B ~。
高考数学必备讲义第5讲解析几何问题的题型与方法课标试题
![高考数学必备讲义第5讲解析几何问题的题型与方法课标试题](https://img.taocdn.com/s3/m/34e7a0df3086bceb19e8b8f67c1cfad6195fe97a.png)
卜人入州八九几市潮王学校2021年高考数学必备讲义第5讲解析几何问题的题型与方法〔一〕直线和圆的方程直线的倾斜角和斜率,直线方程的点斜式和两点式,直线方程的一般式。
两条直线平行与垂直的条件,两条直线的交角,点到直线的间隔。
用二元一次不等式表示平面区域,简单的线性规划问题。
曲线与方程的概念,由条件列出曲线方程。
圆的HY方程和一般方程,圆的参数方程。
(二)圆锥曲线方程椭圆及其HY方程,椭圆的简单几何性质,椭圆的参数方程。
双曲线及其HY方程,双曲线的简单几何性质。
抛物线及其HY方程,抛物线的简单几何性质。
二、考试要求(一)直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件纯熟地求出直线方程。
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的间隔公式,可以根据直线的方程判断两条直线的位置关系。
3.理解二元一次不等式表示平面区域。
4.理解线性规划的意义,并会简单的应用。
5.理解解析几何的根本思想,理解坐标法。
6.掌握圆的HY方程和一般方程,理解参数方程的概念,理解圆的参数方程。
(二)圆锥曲线方程1.掌握椭圆的定义、HY 方程和椭圆的简单几何性质。
2.掌握双曲线的定义、HY 方程和双曲线的简单几何性质。
3.掌握抛物线的定义、HY 方程和抛物线的简单几何性质。
4.理解圆锥曲线的初步应用。
三、复习目的1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据条件,纯熟地选择恰当的方程形式写出直线的方程,纯熟地进展直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式〔组〕表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目的函数、可行解、可行域、最优解等根本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,理解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.“曲线的方程〞、“方程的曲线〞的意义,理解解析几何的根本思想,掌握求曲线的方程的方法.4.掌握圆的HY 方程:222)()(r b y a x =-+-〔r >0〕,明确方程中各字母的几何意义,能根据圆心坐标、半径纯熟地写出圆的HY 方程,能从圆的HY 方程中纯熟地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进展一般方程和HY 方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩〔θ为参数〕,明确各字母的意义,掌握直线与圆的位置关系的断定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的HY 方程;记住椭圆、双曲线和抛物线的各种HY 方程;能根据条件,求出椭圆、双曲线和抛物线的HY 方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线〔双曲线的渐近线〕等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的HY 方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的断定方法.四、双基透视高考解析几何试题一般一共有4题(2个选择题,1个填空题,1个解答题),一共计30分左右,考察的知识点约为20个左右。
(全国卷)2020届高考数学 专题阶段评估模拟卷5 解析几何 文
![(全国卷)2020届高考数学 专题阶段评估模拟卷5 解析几何 文](https://img.taocdn.com/s3/m/b82987a002768e9951e738f2.png)
专题阶段评估(五) 解析几何———————————————————————————————————— 【说明】 本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题格内,第Ⅱ卷可在各题后直接作答,共150分,考试时间120分钟.第Ⅰ卷 (选择题 共60分)只有一项是符合题目要求的)1.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0 C .x +y +1=0D .x +y =02.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为( )A .y =±22x B .y =±2x C .y =±2xD .y =±12x3.(2013·陕西卷)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定4.已知双曲线x 2a 2-y 2b 2=1和椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a ,b ,m 为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形5.圆x 2+y 2-ax +2=0与直线l 相切于点A (3,1),则直线l 的方程为( ) A .2x -y -5=0 B .x -2y -1=0 C .x -y -2=0D .x +y -4=06.已知k ∈R ,则直线y =k (x -1)+2被圆x 2+y 2-2x -2y =0截得的弦长的最小值为( )A. 2 B .1 C .2 2D .27.(2013·广东省惠州市调研)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点与抛物线y 2=410x 的焦点重合,且双曲线的离心率等于103,则该双曲线的方程为( ) A .x 2-y 29=1B .x 2-y 2=15 C .x 29-y 2=1D .x 29-y 29=18.(2013·深圳市调研)已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线交于一点M (1,m ),点M 到抛物线焦点的距离为3,则双曲线的离心率等于( )A .3B .4C .13D .149.(2013·山东卷)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=010.(2013·安徽省“江南十校”联考)已知直线l 过抛物线y 2=4x 的焦点F ,交抛物线于A 、B 两点,且点A 、B 到y 轴的距离分别为m ,n ,则m +n +2的最小值为( )A .4 2B .6 2C .4D .611.(2013·全国卷Ⅰ)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C .x 227+y 218=1 D .x 218+y 29=1 12.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)(c >0)作圆x 2+y 2=a 24的切线,交双曲线右支于点P ,切点为E ,若OE →=12(OF →+OP →),则双曲线的离心率为( )A.10 B .105C .102D . 2第Ⅱ卷 (非选择题 共90分)13.已知直线l 1:ax -y +2a +1=0和l 2:2x -(a -1)y +2=0(a ∈R ),则l 1⊥l 2的充要条件是a =________.14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________. 15.(2013·广州市调研)圆x 2+y 2+2x +4y -15=0上到直线x -2y =0的距离为5的点的个数是________.16.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为________.三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx +1与圆C 相交于P 、Q 两点.(1)求圆C 的方程;(2)若OP →·OQ →=-2,求实数k 的值.18.(本小题满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A 、B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.19.(本小题满分12分)(2013·北京东城期末)已知椭圆C 的中心在原点,一个焦点为F (0,2),且长轴长与短轴长的比是2∶1.(1)求椭圆C 的方程;(2)若椭圆C 上在第一象限的一点P 的横坐标为1,过点P 作倾斜角互补的两条不同的直线PA ,PB 分别交椭圆C 于另外两点A ,B ,求证:直线AB 的斜率为定值.20.(本小题满分12分)(2013·广东湛江二模)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.21.(本小题满分13分)(2013·皖南八校三模)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),F 1(-c,0),F 2(c,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,点F 2(c,0)到直线l :x =a 2c的距离为3.(1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA →⊥OB →,求出该圆的方程.22.(本小题满分13分)(2013·开封第一次模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,其左、右焦点分别是F 1、F 2,过点F 1的直线l 交椭圆C 于E 、G 两点,且△EGF 2的周长为4 2.(1)求椭圆C 的方程;(2)若过点M (2,0)的直线与椭圆C 相交于两点A 、B ,设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|PA →-PB →|<253时,求实数t 的取值范围.详解答案 一、选择题1.A 由题意知直线l 与直线PQ 垂直, 所以k l =-1k PQ =-14-21-3=1, 又因为直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0. 2.A 由题意得,双曲线的离心率e =c a =3,故a b =22,故双曲线的渐近线方程为y =±22x ,选A. 3.B 由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b 2<1,故直线与圆相交.4.B 双曲线x 2a 2-y 2b2=1的离心率e 1=1+b 2a 2,椭圆x 2m 2+y 2b 2=1的离心率e 2= 1-b 2m2, 则1+b 2a 2·1-b 2m2=1,即m 2=a 2+b 2. 5.D 由已知条件可得32+12-3a +2=0,解得a =4,此时圆x 2+y 2-4x +2=0的圆心为C (2,0),半径为2,则直线l 的方程为y -1=-1k AC(x -3)=-x +3,即x +y -4=0,故应选D.6.D 因为直线y =k (x -1)+2过定点A (1,2),而该点与圆心(1,1)的距离为1,已知当定点A (1,2)为弦的中点时,其弦长最短,其值为2r 2-d 2=22-1=2.7.C 由已知可得抛物线y 2=410x 的焦点坐标为(10,0),a 2+b 2=10.又双曲线的离心率e =10a =103,a =3,b =1,∴双曲线的方程为x 29-y 2=1.故选C.8.A 点M 到抛物线焦点的距离为p2+1=3,∴p =4,∴抛物线方程为y 2=8x ,∴m 2=8.双曲线的渐近线方程y =±b a x ,两边平方得y 2=b 2a2x 2,把(1,m )代入上式得8=b 2a 2,即b 2=8a 2.∴双曲线的离心率e =c a =a 2+b 2a =a 2+8a 2a 2=3. 9.A 设P (3,1),圆心C (1,0),切点为A 、B ,则P 、A 、C 、B 四点共圆,且PC 为圆的直径,∴四边形PACB 的外接圆方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54①,圆C :(x -1)2+y 2=1②,①-②得2x +y -3=0,此即为直线AB 的方程.10.C 因为m +n +2=(m +1)+(n +1)表示点A 、B 到准线的距离之和,所以m +n +2表示焦点弦AB 的长度,因为抛物线焦点弦的最小值是其通径的长度,所以m +n +2的最小值为4.11.D 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1. ②①-②得x 1+x 2x 1-x 2a2=-y 1-y 2y 1+y 2b2,∴y 1-y 2x 1-x 2=-b 2x 1+x 2a 2y 1+y 2. ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a2.而k AB =0--13-1=12,∴b 2a 2=12,∴a 2=2b 2,∴c 2=a 2-b 2=b 2=9,∴b =c =3,a =32, ∴E 的方程为x 218+y 29=1. 12.C 如图所示,设F ′为双曲线的右焦点,连接PF ′,由题意,知OE ⊥PF ,|OE |=a 2,又因为OE →=12(OF →+OP →),所以E 为PF 中点,所以|OP |=|OF |=c , |EF |=c 2-a 24.所以|PF |=2c 2-a 24.又因为|OF |=|OF ′|,|EF |=|PE |, 所以PF ′∥OE ,|PF ′|=2|OE |=a .因为|PF |-|PF ′|=2a ,所以2c 2-a 24-a =2a ,即c =102a ,故e =c a =102. 二、填空题13.解析: l 1⊥l 2的充要条件是2a +(a -1)=0, 解得a =13.答案: 1314.解析: 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),因为AB 过F 1且A ,B 在椭圆上,如图,则△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,解得a =4.又离心率e =c a =22,故c =2 2. 所以b 2=a 2-c 2=8,所以椭圆C 的方程为x 216+y 28=1.答案:x 216+y 28=1 15.解析: 圆的方程x 2+y 2+2x +4y -15=0化为标准式为(x +1)2+(y +2)2=20,其圆心坐标为(-1,-2),半径r =25,由点到直线的距离公式得圆心到直线x -2y =0的距离d =|-1-2×-2|12+-22=355,如图所示,圆到直线x -2y =0的距离为5的点有4个.答案: 416.解析: 由题可知A 1(-1,0),F 2(2,0),设P (x ,y )(x ≥1),则PA 1→=(-1-x ,-y ),PF 2→=(2-x ,-y ),PA 1→·PF 2→=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5,∵x ≥1,函数f (x )=4x 2-x -5的图象的对称轴为x =18,∴当x =1时,PA 1→·PF 2→取最小值-2.答案: -2 三、解答题17.解析: (1)设圆心C (a ,a ),半径为r . 因为圆C 经过点A (-2,0),B (0,2), 所以|AC |=|BC |=r ,易得a =0,r =2, 所以圆C 的方程是x 2+y 2=4.(2)因为OP →·OQ →=2×2×cos〈OP →,OQ →〉=-2,且OP →与OQ →的夹角为∠POQ , 所以cos ∠POQ =-12,∠POQ =120°,所以圆心C 到直线l :kx -y +1=0的距离d =1, 又d =1k 2+1,所以k =0.18.解析: (1)易知直线与抛物线的交点坐标为(8,-8),∴82=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .(2)直线l 2与l 1垂直,故可设l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8x x =y +m 得y 2-8y -8m =0,Δ=64+32m >0,∴m >-2. y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 1y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0,∴m =8或m =0(舍), ∴l 2:x =y +8,M (8,0),故S △FAB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3y 1+y 22-4y 1y 2=24 5.19.解析: (1)设椭圆C 的方程为y 2a 2+x 2b2=1(a >b >0).由题意得⎩⎨⎧a 2=b 2+c 2,a ∶b =2∶1,c =2,解得a 2=4,b 2=2.所以椭圆C 的方程为y 24+x 22=1.(2)证明:由题意知,两直线PA ,PB 的斜率必存在,设PB 的斜率为k .又由(1)知,P (1,2),则直线PB 的方程为y -2=k (x -1).由⎩⎪⎨⎪⎧y -2=k x -1,y 24+x 22=1,得(2+k 2)x 2+2k (2-k )x +(2-k )2-4=0. 设A (x A ,y A ),B (x B ,y B ),则x B =1·x B =k 2-22k -22+k 2, 同理可得x A =k 2+22k -22+k2, 则x A -x B =42k 2+k 2,y A -y B =-k (x A -1)-k (x B -1)=8k2+k 2.所以k AB =y A -y Bx A -x B=2为定值. 20.解析: (1)∵双曲线的渐近线为y =±b ax ,∴a =b , ∴c 2=a 2+b 2=2a 2=4,∴a 2=b 2=2, ∴双曲线方程为x 22-y 22=1.(2)设点A 的坐标为(x 0,y 0),∴直线AO 的斜率满足y 0x 0·(-3)=-1, ∴x 0=3y 0.①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程得3y 20+y 20=c 2,即y 0=12c ,∴x 0=32c ,∴点A 的坐标为⎝ ⎛⎭⎪⎫32c ,c 2,代入双曲线方程得 34c 2a2-14c 2b 2=1,即34b 2c 2-14a 2c 2=a 2b 2,② 又∵a 2+b 2=c 2,∴将b 2=c 2-a 2代入②式,整理得 34c 4-2a 2c 2+a 4=0, ∴3⎝ ⎛⎭⎪⎫c a 4-8⎝ ⎛⎭⎪⎫c a2+4=0,∴ (3e 2-2)(e 2-2)=0,∵e >1,∴e =2,∴双曲线的离心率为 2.21.解析: (1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c =2a ,得a =2c .又由a 2c-c =3,解得c =1,a =2,b = 3.∴椭圆E 的方程为x 24+y 23=1.(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y =kx +m ,则r =|m |k 2+1,r 2=m 2k 2+1,①由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m 消去y ,整理得(3+4k 2)x 2+8kmx +4(m 2-3)=0,设A (x 1,y 1),B (x 2,y 2),有⎩⎪⎨⎪⎧x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-33+4k 2.又∵OA →⊥OB →,∴x 1x 2+y 1y 2=0,即4(1+k 2)(m 2-3)-8k 2m 2+3m 2+4k 2m 2=0,化简得m 2=127(k 2+1),②由①②求得r 2=127.所求圆的方程为x 2+y 2=127.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,-y 1),∵OA →⊥OB →,∴OA →·OB →=0,有x 21-y 21=0,x 21=y 21,代入x 214+y 213=1,得x 21=127.此时仍有r 2=|x 21|=127. 综上,总存在以原点为圆心的圆x 2+y 2=127满足题设条件.22.解析: (1)由题意知椭圆的离心率e =c a =22,∴e 2=c 2a 2=a 2-b 2a 2=12,即a 2=2b 2.又△EGF 2的周长为42,即4a =42,∴a 2=2,b 2=1. ∴椭圆C 的方程为x 22+y 2=1.(2)由题意知直线AB 的斜率存在,即t ≠0.设直线AB 的方程为y =k (x -2),A (x 1,y 1),B (x 2,y 2),P (x ,y ),由⎩⎪⎨⎪⎧y =k x -2x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0.由Δ=64k 4-4(2k 2+1)(8k 2-2)>0,得k 2<12.x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k2,∵OA →+OB →=tOP →,∴(x 1+x 2,y 1+y 2)=t (x ,y ),x =x 1+x 2t=8k 2t 1+2k 2,y =y 1+y 2t =1t[k (x 1+x 2)-4k ]=-4kt1+2k2. ∵点P 在椭圆C 上,∴8k22[t 1+2k 2]2+2-4k2[t1+2k 2]2=2, ∴16k 2=t 2(1+2k 2).∵|PA →-PB →|<253,∴1+k 2|x 1-x 2|<253,∴(1+k 2)[(x 1+x 2)2-4x 1x 2]<209,∴(1+k 2)⎣⎢⎡⎦⎥⎤64k 41+2k22-4·8k 2-21+2k 2<209,∴(4k 2-1)(14k 2+13)>0,∴k 2>14. ∴14<k 2<12. ∵16k 2=t 2(1+2k 2),∴t 2=16k 21+2k 2=8-81+2k2,又32<1+2k 2<2,∴83<t 2=8-81+2k 2<4, ∴-2<t <-263或263<t <2,∴实数t 的取值范围为⎝ ⎛⎭⎪⎫-2,-263∪⎝ ⎛⎭⎪⎫263,2.。
2020学年高中数学模块复习课讲义苏教版必修5(2021-2022学年)
![2020学年高中数学模块复习课讲义苏教版必修5(2021-2022学年)](https://img.taocdn.com/s3/m/add4f3a633687e21ae45a979.png)
模块复习课一、正、余弦定理及其应用1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2a=b sin AbsinA<a<b a≥ba>b(1)S=错误!未定义书签。
a·h a(ha表示边a上的高);(2)S=\f(1,2)ab sin C=错误!acsin B=错误!未定义书签。
bcsin A;(3)S=错误!未定义书签。
r(a+b+c)(r为三角形内切圆半径).二、等差数列及其前n项和1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式如果等差数列{an}的首项为a1,公差为d,那么它的通项公式是a n=a1+(n-1)d。
3.等差中项由三个数a,A,b组成的等差数列可以看成最简单的等差数列.这时,A叫做a与b的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n=am+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=am+a n.(3)若{a n}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d。
(4)若{a n},{b n}是等差数列,则{pa n+qb n}也是等差数列.(5)若{a n}是等差数列,公差为d,则a k,ak+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(6)数列S m,S2m-Sm,S3m-S2m,…构成等差数列.5.等差数列的前n项和公式设等差数列{an}的公差为d,其前n项和S n=错误!未定义书签。
或S n=na1+错误!d.6.等差数列的前n项和公式与函数的关系Sn=错误!未定义书签。
n2+错误!未定义书签。
n.数列{a n}是等差数列⇔S n=An2+Bn(A,B为常数)ﻬ7.等差数列的前n项和的最值在等差数列{a n}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则S n存在最小值.三、等比数列及其前n项和1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).2.等比数列的通项公式设等比数列{a n}的首项为a1,公比为q,则它的通项a n=a1·qn-1(a1≠0,q≠0).3.等比中项如果在a与b中插入一个数G,使得a,G,b成等比数列,那么根据等比数列的定义,错误!未定义书签。
【精品推荐】2020高考数学(文科)专题复习课标 通用版(课件) 专题5 解析几何专题5 第3讲
![【精品推荐】2020高考数学(文科)专题复习课标 通用版(课件) 专题5 解析几何专题5 第3讲](https://img.taocdn.com/s3/m/7bb2733301f69e31433294fd.png)
解析 (1)连接 PF1,由△POF2 为等边三角形可知在△ F1PF2 中,∠F1PF2=90°,|PF2|=c,|PF1|= 3c,于是 2a =|PF1|+|PF2|=( 3+1)c,故 C 的离心率为 e=ac= 3- 1.
是 y-y0=-y30(x-2),即 y=-y30(x-5). 所以线段 AB 的垂直平分线经过定点(5,0).
(2) 直 线 AB 和 抛 物 线 方 程 联 立 得
y-y0=y30x-2, y2=6x,
化简得 y2-2y0y+2y20-12=0,Δ=
4y20-4(2y20-12)=-4y20+48>0,解得 y20<12.由题意可得
• 4.(2020·四川五校联考)已知A,B为抛物线y2=6x上的两个 不重合的动点,且A(x1,y1),B(x2,y2)满足x1≠x2,x1+x2= 4.
• (1)证明:线段AB的垂直平分线经过定点;
• (2)若线段AB的垂直平分线与x轴交于点C,求△ABC面积的 最大值.
解析 (1)证明:设线段 AB 的中点为 M(x0,y0),由题 意知 y0≠0,x0=x1+2 x2=2,y0=y1+2 y2,因为 kAB=yx22- -yx11 =yy6222- -yy6211=y1+6 y2=y30,所以线段 AB 的垂直平分线的方程
所以 k1k2 是定值.
2.(2020·贵州贵阳摸底考试)已知椭圆 C 的中心在原
点,一个焦点为 F1(-
3,0),且椭圆 C 经过点 P
3,12.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届高三暑期数学(理)复习时间安排及模块练习
高三数学组
暑期指南:
(1)在做每一模块之前认真研读课本;
(2)在做题过程中遇到不清楚的公式和概念,务必彻底弄清楚;
(3)做解答题一定要注意书写格式的规范性;
(4)建议时间:三角模块2天、概率统计2天、数列1天、立几2天、解析几何3天、函数与导数3天(可根据个人实际情况进行调整);
(5)选做平面几何选讲、极坐标参数方程、不等式选讲对应的教材后面的练习.
2020届高三暑期数学(理)复习时间安排及模块练习
高三数学组
暑期指南:
(1)在做每一模块之前认真研读课本;
(2)在做题过程中遇到不清楚的公式和概念,务必彻底弄清楚;
(3)做解答题一定要注意书写格式的规范性;
(4)建议时间:三角模块2天、概率统计2天、数列1天、立几2天、解析几何3天、函数与导数3天(可根据个人实际情况进行调整);
(5)选做平面几何选讲、极坐标参数方程、不等式选讲对应的教材后面的练习.
模块五:解析几何
一、选择题
1. 双曲线22
221x y a b
-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o 的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )
A B C D .3
2.斜率为1的直线l 与椭圆14
22
=+y x 相交于A 、B 两点,则AB 的最大值为( )
A.2
B.5
54 C.5104 D.5108 3.若直线2y kx =+与双曲线226x y -=的右支相交于不同的两点,则实数k 的取值范围
是( )
A
.33⎛- ⎝⎭
B
.0,3⎛ ⎝⎭C
.3⎛⎫- ⎪ ⎪⎝⎭ D
.,13⎛⎫-- ⎪ ⎪⎝⎭
4.抛物线24y x =的焦点为F ,准线为l ,经过F
x 轴上方
的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )
A .4 B
. C
. D .8
5.已知直线.127
))(3(2
2=-∈-=y m x R k x k y 与双曲线某学生作了如下变形:由 ⎪⎩⎪⎨⎧=--=127
)3(2
2y m x x k y 消去y 后得到形如02=++C Bx Ax 的方程,当A=0时,该方程有一解; 当A≠0时,≥-=∆AC B 42恒成立.假设学生的演算过程是正确的,则实数m 的取值范 围为 ( )
A .),9[+∞
B .]9,0(
C .]3,0(
D .),3[+∞ 6.设抛物线2(0)y ax a =>与直线(0)y kx b k =+≠有两个交点,其横坐标分别是12.x x ,
而直线(0)y kx b k =+≠与x 轴交点的横坐标是3x ,那么123,,x x x 的关系是( ) A 312x x x =+ B 321111x x x =+ C 132111x x x =+ D 123x x x =+ 二、填空题
7.已知抛物线2
3y x =+上存在关于直线0x y +=对称的相异两点A 、B ,则AB = .
8.已知以12(2,0),(2,0)F F -为焦点的椭圆与直线043=++y x 有且仅有一个公共点,则椭圆的长轴长为
9.点P 在曲线227428x y +=上,则P 到直线32160x y --=的距离的最大值为 . 10.已知两点5
(1,)4M 、5(4,)4N --,给出下列曲线方程:①4210x y +-=,②22
3x y +=, ③1222=+y x ,④1222
=-y x .在曲线上存在点P 满足MP NP =的所有曲线方程是
_________.
三、解答题
11.若A B ,是抛物线2
4y x =上的不同两点,弦AB (不平行于y 轴)的垂直平分线与x 轴相交于点P ,则称弦AB 是点P 的一条“相关弦”.已知当2x >时,点(0)P x ,存在无穷多条“相关弦”.给定02x >. (Ⅰ)证明:点0(0)P x ,
的所有“相关弦”的中点的横坐标相同; (Ⅱ)试问:点0(0)P x ,
的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用0x 表示);若不存在,请说明理由.
12.已知椭圆22
132
x y +=的左、右焦点分别为1F ,2F 过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P
(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132
x y +<; (Ⅱ)求四边形ABCD 的面积的最小值
一、选择题
1. 双曲线22
221x y a b
-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o
的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )
A
B
C
D
2.斜率为1的直线l 与椭圆14
22
=+y x 相交于A 、B 两点,则AB 的最大值为( ) A.2 B.5
54 C.5104 D.5108 3.若直线2y kx =+与双曲线226x y -=的右支相交于不同的两点,则实数k 的取值范围
是( )
A
.33⎛
- ⎝⎭ B
.0,3⎛
⎝⎭C
.3⎛⎫- ⎪ ⎪⎝⎭ D
.,13⎛⎫-- ⎪ ⎪⎝⎭
4.抛物线24y x =的焦点为F ,准线为l ,经过F
x 轴上方
的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )
A .4 B
. C
. D .8
5.已知直线.127
))(3(2
2=-∈-=y m x R k x k y 与双曲线某学生作了如下变形:由 ⎪⎩⎪⎨⎧=--=127
)3(22y m x x k y 消去y 后得到形如02=++C Bx Ax 的方程,当A=0时,该方程有一解; 当A≠0时,≥-=∆AC B 42恒成立.假设学生的演算过程是正确的,则实数m 的取值范
围为 ( )
A .),9[+∞
B .]9,0(
C .]3,0(
D .),3[+∞ 6.设抛物线2(0)y ax a =>与直线(0)y kx b k =+≠有两个交点,其横坐标分别是12.x x ,
而直线(0)y kx b k =+≠与x 轴交点的横坐标是3x ,那么123,,x x x 的关系是( )
A 312x x x =+
B 32111x x x =+
C 13211x x x =+
D 123x x x =+ 二、填空题
7.已知抛物线2
3y x =+上存在关于直线0x y +=对称的相异两点A 、B ,则AB = .
8.已知以12(2,0),(2,0)F F -为焦点的椭圆与直线043=++y x 有且仅有一个公共点,则椭圆的长轴长为
9.点P 在曲线227428x y +=上,则P 到直线32160x y --=的距离的最大值为 . 10.已知两点5
(1,)4M 、5(4,)4N --,给出下列曲线方程:①4210x y +-=,②22
3x y +=, ③1222=+y x ,④1222
=-y x .在曲线上存在点P 满足MP NP =的所有曲线方程是_________.
三、解答题
11.若A B ,是抛物线2
4y x =上的不同两点,弦AB (不平行于y 轴)的垂直平分线与x 轴相交于点P ,则称弦AB 是点P 的一条“相关弦”.已知当2x >时,点(0)P x ,存在无穷多条“相关弦”.给定02x >. (Ⅰ)证明:点0(0)P x ,
的所有“相关弦”的中点的横坐标相同; (Ⅱ)试问:点0(0)P x ,
的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用0x 表示);若不存在,请说明理由.
12.已知椭圆22
132
x y +=的左、右焦点分别为1F ,2F 过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P
(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132
x y +<; (Ⅱ)求四边形ABCD 的面积的最小值。