中考培优专题用待定系数法求二次函数解析式(含答案)

合集下载

人教版九年级下册第22章 课时2 用待定系数法求二次函数的解析式(23页)

人教版九年级下册第22章 课时2 用待定系数法求二次函数的解析式(23页)
(1)图象经过点A(1,0),B(0,−3),对称轴是直线x=2;
解:∵图象经过点A(1,0),对称轴是直线x=2,
∴图象经过另一点(3,0).
∴设该二次函数的解析式为y=a(x−1)(x−3).
将点(0,−3)代入,得 −3=a·(−1)(−3)
解得 a=−1.
∴该二次函数的解析式为y=−(x−1)(x−3)=−x2+4x−3.
1=9a+4,
1
a


.
解得
3
1
2
y


(
x

5)
4.
∴二次函数的关系式为
3
当题目中有最值、对称轴等
条件时,可由此得出顶点坐
标,利用顶点式求解析式
合作探究
三、用交点法求二次函数的表达式
问题3 选取(−3,0),(−1,0),(0,−3),试求出这个
二次函数的表达式.并和同伴交流解题思路.
解:∵(−3,0)、(−1,0)是抛物线y=ax2+bx+c与x轴的
几个点应满足什么条件? 3个
由两点(两点的连线不与坐标轴平行)的坐标,可以确
定一次函数的解析式,类似地,由不共线(三点不在同
一直线上)的坐标,可以确定二次函数的解析式.
(2)如果一个二次函数的图象经过(−1,10 ),(1,4),(2,7)
三点,能求出这个二次函数的解析式吗?如果能,求出这个二次函数
随堂练习
1.已知二次函数的图象如图所示,则这个二次函数的表达式为( B )
A. y=x2-4x+5
B. y=x2-4x-5
C. y=x2+4x-5
D. y=x2+4x+5

人教版数学九年级上册:22.1.4 第2课时 用待定系数法求二次函数的解析式 (含答案)

人教版数学九年级上册:22.1.4   第2课时 用待定系数法求二次函数的解析式  (含答案)

第2课时 用待定系数法求二次函数的解析式1.已知二次函数的图象经过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( )A .y =2x 2+x +2B .y =x 2+3x +2C .y =x 2-2x +3D .y =x 2-3x +22.已知二次函数y =ax 2+bx +c 的图象如图22-1-27所示,那么这个函数的解析式为( )图22-1-27A .y =13x 2+23x +1B .y =13x 2+23x -1C .y =13x 2-23x -1D .y =13x 2-23x +13.已知A (0,3),B (2,3)是抛物线y =-x 2+bx +c 上两点,则该抛物线的顶点坐标是________. 4.已知在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 经过点A (3,0),B (2,-3),C (0,-3).(1)求抛物线的解析式;(2)设D 是抛物线上一点,且点D 的横坐标为-2,求△AOD 的面积.5.已知某二次函数的图象如图22-1-28所示,则这个二次函数的解析式为( )图22-1-28A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8D .y =2(x -1)2-86.已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是____________.(只需写一个)7.已知一个二次函数的图象经过点(4,-3),并且当x =3时,函数有最大值4,求该二次函数的解析式.8.某抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,顶点坐标为(-2,1),则该抛物线的函数解析式为( )A .y =12(x -2)2+1B .y =12(x +2)2-1C .y =12(x +2)2+1D .y =-12(x +2)2+19.若y =ax 2+bx +c ,则由表格中信息可知y 与x 之间的函数解析式是( )A.y =x 2-4x +3 B .y =x 2-3x +4 C .y =x 2-3x +3D .y =x 2-4x +810.某二次函数的图象如图22-1-29所示,则其解析式为________________.图22-1-2911.如果抛物线y =(k +1)x 2+x -k 2+2与y 轴的交点坐标为(0,1),那么k 的值是__________. 12.已知二次函数y =ax 2+bx +c 的图象经过原点及点(-2,-2),且图象与x 轴的另一个交点到原点的距离为4,那么该二次函数的解析式为________________________. 13.已知抛物线y =-12x 2+bx +c 经过点(1,0),(0,32).(1)求该抛物线的函数解析式;(2)将抛物线y =-12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后抛物线的函数解析式.14.[2019·永州] 如图22-1-30,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x =-1.(1)求此抛物线的函数解析式;(2)若P 是抛物线上点A 与点B 之间的动点(不包括点A 与点B),求△PAB 面积的最大值,并求出此时点P 的坐标.图22-1-3015.如图22-1-31,二次函数y=ax2+bx+c的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长的最大值.图22-1-3116.抛物线C:y=ax2+bx经过A(-4,0),B(-1,3)两点,求抛物线C的函数解析式.17.已知抛物线经过A(-5,0),B(0,5)两点,且其对称轴为直线x=-2,求此抛物线的函数解析式.答案1.D [解析] 设函数的解析式为y =ax 2+bx +c ,则⎩⎪⎨⎪⎧a +b +c =0,4a +2b +c =0,c =2,解得⎩⎪⎨⎪⎧a =1,b =-3,c =2.∴该函数的解析式为y =x 2-3x +2.2.C [解析] 根据图象可知抛物线经过点(-1,0),(3,0),(0,-1),设这个二次函数的解析式是y =ax 2+bx +c.根据题意,得⎩⎪⎨⎪⎧a -b +c =0,9a +3b +c =0,c =-1,解得⎩⎪⎨⎪⎧a =13,b =-23,c =-1. 所以这个二次函数的解析式是y =13x 2-23x -1.故选C .3.(1,4)4.解:(1)把A(3,0),B(2,-3),C(0,-3)代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧9a +3b +c =0,4a +2b +c =-3,c =-3,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.则抛物线的解析式为y =x 2-2x -3.(2)把x =-2代入抛物线的解析式,得y =5,即D(-2,5). ∵A(3,0),即OA =3,∴S △AOD =12×3×5=152.5.D [解析] 因为抛物线的顶点坐标是(1,-8), 所以设抛物线的函数解析式是y =a(x -1)2-8. 因为点(3,0)在这个二次函数的图象上, 所以0=a(3-1)2-8,解得a =2.所以这个二次函数的解析式为y =2(x -1)2-8.6.答案不唯一,如y =2x 2-1 [解析] ∵二次函数图象的顶点坐标为(0,-1),∴设该二次函数的解析式为y =ax 2-1.又∵二次函数的图象开口向上,∴a >0.∴这个二次函数的解析式可以是y =2x 2-1(答案不唯一).7.解:∵当x =3时,函数有最大值4, ∴函数图象的顶点坐标为(3,4). 故设此函数的解析式是y =a(x -3)2+4.再把(4,-3)代入函数解析式,得a×(4-3)2+4=-3,解得a =-7. 故二次函数的解析式是y =-7(x -3)2+4, 即y =-7x 2+42x -59.8.C [解析] 已知抛物线的顶点坐标,可以设顶点式y =a(x +2)2+1.又因为该抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,所以a =12,所以该抛物线的函数解析式是y=12(x +2)2+1. 9.A [解析] ∵当x =1时,ax 2=1,∴a =1. 将(-1,8),(0,3)分别代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧1-b +c =8,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3. ∴y 与x 之间的函数解析式是y =x 2-4x +3.故选A .10.y =-x 2+2x +3 [解析] 由图象可知,抛物线的对称轴是直线x =1,与y 轴交于点(0,3),与x 轴交于点(-1,0),设其解析式为y =ax 2+bx +c ,则⎩⎪⎨⎪⎧-b2a=1,c =3,a -b +c =0,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.故二次函数的解析式为y =-x 2+2x +3.11.1 [解析] ∵抛物线y =(k +1)x 2+x -k 2+2与y 轴的交点坐标为(0,1), ∴-k 2+2=1.解得k =±1. 又∵k +1≠0,∴k =1.故答案为1. 12.y =12x 2+2x 或y =-16x 2+23x[解析] ∵二次函数图象与x 轴的另一个交点到原点的距离为4, ∴这个交点坐标为(-4,0)或(4,0), ①若这个交点坐标为(-4,0),则⎩⎪⎨⎪⎧c =0,4a -2b +c =-2,16a -4b +c =0,解得⎩⎪⎨⎪⎧a =12,b =2,c =0,∴该二次函数的解析式为y =12x 2+2x ;②若这个交点坐标为(4,0), 则⎩⎪⎨⎪⎧c =0,4a -2b +c =-2,16a +4b +c =0,解得⎩⎪⎨⎪⎧a =-16,b =23,c =0,∴该二次函数的解析式为y =-16x 2+23x.故这个二次函数的解析式为y =12x 2+2x 或y =-16x 2+23x.13.解:(1)把(1,0),(0,32)代入抛物线的解析式得⎩⎨⎧-12+b +c =0,c =32,解得⎩⎪⎨⎪⎧b =-1,c =32.则抛物线的函数解析式为y =-12x 2-x +32.(2)y =-12x 2-x +32=-12(x +1)2+2,可将抛物线向右平移1个单位长度,再向下平移2个单位长度,其顶点恰好落在原点(平移方法不唯一),平移后抛物线的函数解析式为y =-12x 2.14.解:(1)∵抛物线的对称轴是直线x =-1且经过点A(-3,0), ∴抛物线还经过点(1,0).设抛物线的函数解析式为y =a(x -1)(x +3). 把B(0,3)代入,得3=-3a.解得a =-1.∴抛物线的函数解析式为y =-(x -1)(x +3)=-x 2-2x +3. (2)设直线AB 的函数解析式为y =kx +b. ∵A(-3,0),B(0,3),∴⎩⎪⎨⎪⎧-3k +b =0,b =3,解得{k =1,b =3. ∴直线AB 的函数解析式为y =x +3.过点P 作PQ ⊥x 轴于点Q ,交直线AB 于点M. 设P(x ,-x 2-2x +3),则M(x ,x +3), ∴PM =-x 2-2x +3-(x +3)=-x 2-3x.∴S △PAB =12(-x 2-3x)×3=-32(x +32)2+278.∴当x =-32时,S △PAB 有最大值,为278,此时y P =-(-32)2-2×(-32)+3=154,∴△PAB 面积的最大值为278,此时点P 的坐标为(-32,154).15.解:(1)∵抛物线的顶点C 的坐标为(1,4), ∴设二次函数的顶点式为y =a(x -1)2+4. 把B(3,0)代入,得0=a(3-1)2+4. 解得a =-1.∴二次函数的解析式为y =-(x -1)2+4=-x 2+2x +3. 令x =0,则y =3,∴点D 的坐标为(0,3).设直线BD 的解析式为y =mx +n ,把B(3,0),D(0,3)代入,得⎩⎪⎨⎪⎧0=3m +n ,3=n ,解得⎩⎪⎨⎪⎧m =-1,n =3.∴直线BD 的解析式为y =-x +3.(2)设点P 的横坐标为x ,则点P 的坐标为(x ,-x +3),点M 的坐标为(x ,-x 2+2x +3). ∵点P 在第一象限,∴线段PM 的长为y M -y P =-x 2+2x +3-(-x +3)=-x 2+3x =-(x -32)2+94.∴当x =32时,线段PM 的长有最大值,最大值是94.16.解:(1)将A(-4,0),B(-1,3)代入y =ax 2+bx中,得⎩⎪⎨⎪⎧16a -4b =0,a -b =3,解得⎩⎪⎨⎪⎧a =-1,b =-4,∴抛物线C 的函数解析式为y =-x 2-4x. 17.解:设抛物线的函数解析式为y =a(x +2)2+k. 代入A ,B 两点的坐标,得⎩⎪⎨⎪⎧(-5+2)2a +k =0,4a +k =5,解得⎩⎪⎨⎪⎧a =-1,k =9. 所以此抛物线的函数解析式为y =-(x +2)2+9,即y =-x 2-4x +5.。

九年级上数学专题复习一:待定系数法求二次函数表达式(含答案)

九年级上数学专题复习一:待定系数法求二次函数表达式(含答案)

专题复习一 待定系数法求二次函数表达式二次函数表达式的三种形式:①一般式y=ax 2+bx+c(a ≠0);②顶点式y=a(x-m)2+k(a ≠0);③交点式(分解式)y=a(x-x 1)(x-x 2),求函数表达式时要根据已知条件合理选择表达式形式.1.一抛物线和抛物线y=-2x 2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的函数表达式为(B ).A.y=-2(x-1)2+3B.y=-2(x+1)2+3C.y=-(2x+1)2+3D.y=-(2x-1)2+32.如图所示,在平面直角坐标系中,二次函数y=ax 2+bx+c 的图象顶点为点A(-2,-2),且过点B(0,2),则y 关于x 的函数表达式为(D ).A.y=x 2+2B.y=(x-2)2+2C.y=(x-2)2-2D.y=(x+2)2-2(第2题) (第3题) (第4题) (第8题)3.如图所示为抛物线的图象,根据图象可知,抛物线的函数表达式可能为(A ). A.y=-x 2+x+2 B.y=-21x 2-21x+2 C.y=-21x 2-21x+1 D.y=x 2-x-2 4.如图所示,二次函数y=x 2+bx+c 的图象过点B(0,-2).该二次函数的图象与反比例函数y=-x8的图象交于点A(m ,4),则这个二次函数的表达式为(A ).A.y=x 2-x-2B.y=x 2-x+2C.y=x 2+x-2D.y=x 2+x+2 5.抛物线y=ax 2+bx+c(a ≠0)经过(1,2)和(-1,-6)两点,则a+c= -2 .6.已知二次函数y=ax 2+bx+c 的图象与x 轴交于A(1,0),B(3,0)两点,与y 轴交于点C(0,3),则二次函数的表达式为 y=x 2-4x+3 .7.老师给出一个函数,四位同学各指出了这个函数的一个性质:①函数的图象不经过第三象限;②函数的图象经过第一象限;③当x <2时,y 随x 的增大而减小;④当x <2时,y >0. 已知这四位同学的叙述都正确,请构造出满足上述所有性质的一个函数: y=(x-2)2(不唯一) . 8.如图所示,将Rt △AOB 绕点O 逆时针旋转90°,得到△A1OB1,若点A 的坐标为(2,1),过点A ,O ,A1的抛物线的函数表达式为 y=65x 2-67x . 9.根据下列条件求二次函数的表达式.(1)二次函数y=ax 2+bx+c 与x 轴的两个交点的横坐标是-21,23,与y 轴交点的纵坐标是-5,求这个二次函数的表达式.(2)二次函数图象的顶点在x 轴上,且图象过点(2,-2),(-1,-8),求此函数的表达式.【答案】(1)设抛物线的函数表达式为y=a (x+21)(x-23).把点(0,-5)代入,得a ×21×(-23)=-5,解得a=320.∴抛物线的函数表达式为y=320(x+21)(x-23)=320x 2-320x-5.(2)设抛物线的函数表达式为y=a (x-k )2.把点(2,-2),(-1,-8)代入,得()()⎪⎩⎪⎨⎧-=---=-812222k a k a ,解得⎪⎩⎪⎨⎧=-=592k a ,或⎩⎨⎧=-=12k a .∴抛物线的函数表达式为y=-92(x-5)2或y=-2(x-1)2.(第10题)10.在平面直角坐标系中,抛物线y=2x 2+mx+n 经过点A(0,-2),B(3,4). (1)求抛物线的函数表达式及对称轴.(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,且点D 的纵坐标为t ,记抛物线在A ,B 两点之间的部分为图象G(包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.【答案】(1)把点A(0,-2),B(3,4)代入抛物线y=2x 2+mx+n ,得⎩⎨⎧=++-=43182n m n ,解得⎩⎨⎧-=-=24n m .∴抛物线的函数表达式为y=2x 2-4x-2,对称轴为直线x=1.(第10题答图)(2)如答图所示,作出抛物线在A ,B 两点之间的图象G.由题意得C(-3,-4),二次函数y=2x 2-4x-2的最小值为-4,由函数图象得出点D 纵坐标的最小值为-4.设直线BC 的表达式为y=kx+b ,将点B ,C 的坐标代入得⎩⎨⎧-=+-=+4343b k b k ,解得⎪⎩⎪⎨⎧==034b k .∴直线BC 的表达式y=34x.当x=1时,y=34,∴t 的取值范围是-4≤t ≤34.11.已知二次函数y=ax 2+bx+c(a ≠0)的图象经过点A(1,0),B(0,-3),且对称轴为直线x=2,则这条抛物线的顶点坐标为(B ).A.(2,3)B.(2,1)C.(-2,1)D.(2,-1)12.若一次函数y=x+m 2与y=2x+4的图象交于x 轴上同一点,则m 的值为(D ). A.2 B.±2 C.2 D.±213.若所求的二次函数图象与抛物线y=2x 2-4x-1有相同的顶点,且在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧y 随x 的增大而减小,则所求二次函数的表达式为(D ). A.y=-x 2+2x-5 B.y=ax 2-2ax+a-3(a >0) C.y=-2x 2-4x-5 D.y=ax 2-2ax+a-3(a <0)14.如图所示,已知二次函数y=x 2+bx+c 的图象经过点(-1,0),(1,-2),该图象与x 轴的另一个交点为点C ,则AC 长为 3 .(第14题) (第16题)15.已知二次函数的图象经过原点及点(-2,-2),且图象与x 轴的另一个交点到原点的距离为4,那么该二次函数的表达式为 y=21x 2+2x 或y=-61x 2+32x . 16.如图所示,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上.若抛物线y=ax 2+bx+c 以点C 为顶点,且经过点B ,则这条抛物线的函数表达式为 y=21x 2-2x+2 .(第17题)17.如图所示,Rt △AOB 的直角边OA 在x 轴上,OA=2,AB=1,将Rt △AOB 绕点O 逆时针旋转90°得到Rt △COD ,抛物线y=-65x 2+bx+c 经过B ,D 两点. (1)求二次函数的表达式.(2)连结BD ,点P 是抛物线上一点,直线OP 把△BOD 的周长分成相等的两部分,求点P 的坐标.【答案】(1)∵Rt △AOB 绕点O 逆时针旋转90°得到Rt △COD ,∴CD=AB=1,OC=OA=2.则点B(2,1),D(-1,2),代入y=-65x 2+bx+c ,得⎪⎪⎩⎪⎪⎨⎧=+--=++-26512310c b c b ,解得⎪⎪⎩⎪⎪⎨⎧==31021c b .∴二次函数的表达式为y=-65x 2+21x+310.(第17题答图) (2)如答图所示,∵OA=2,AB=1,∴B(2,1).∵直线OP 把△BOD 的周长分成相等的两部分,且OB=OD ,∴DQ=BQ ,即点Q 为BD 的中点,D(-1,2).∴点Q 坐标为(21,23).设直线OP 的表达式为y=kx ,将点Q 坐标代入,得21k=23,解得k=3.∴直线OP 的表达式为y=3x.由⎪⎩⎪⎨⎧++-==310216532x x y xy 得⎩⎨⎧==3111y x ,⎩⎨⎧-=-=12422y x .∴点P 的坐标为(1,3)或(-4,-12).(第18题)18.在平面直角坐标系中,抛物线y=ax 2+bx+2过B(-2,6),C(2,2)两点. (1)试求抛物线的函数表达式.(2)记抛物线的顶点为D ,求△BCD 的面积. (3)若直线y=-21x 向上平移b 个单位所得的直线与抛物线段BDC(包括端点B ,C)部分有两个交点,求b 的取值范围.【答案】(1)由题意⎩⎨⎧=++=+-22246224b a b a ,解得⎪⎩⎪⎨⎧-==121b a .∴抛物线的函数表达式为y=21x 2-x+2.(2)如答图所示,∵y=21x 2-x+2=21(x-1)2+23.∴顶点D 的坐标为(1,23),对称轴为直线x=1.设直线BC 的函数表达式为y=kx+b.将B (-2,6),C (2,2)代入,得⎩⎨⎧=+=+-2262b k b k ,解得⎩⎨⎧=-=41b k .∴直线BC 的函数表达式为y=-x+4,∴对称轴与BC 的交点H(1,3).∴S △BDC=S△BDH+S △DHC =21×23×3+21×23×1=3. (3)由⎪⎪⎩⎪⎪⎨⎧+-=+-=221212x x y b x y 消去y 得x 2-x+4-2b=0,当Δ=0时,直线与抛物线相切,1-4(4-2b)=0,解得b=815.当直线y=-21x+b 经过点C 时,b=3,当直线y=-21x+b 经过点B 时,b=5.∵直线y=-21x 向上平移b 个单位所得的直线与抛物线段BDC(包括端点B ,C)部分有两个交点,∴815<b ≤3.(第19题)19.【贵港】将如图所示的抛物线向右平移1个单位,再向上平移3个单位后,得到的抛物线的函数表达式为(A ).A.y=(x-1)2+1B.y=(x+1)2+1C.y=2(x-1)2+1D.y=2(x+1)2+120.【广州】已知抛物线y1=-x 2+mx+n ,直线y 2=kx+b ,y 1的对称轴与y 2交于点A(-1,5),点A 与y 1的顶点B 的距离是4. (1)求y 1的函数表达式.(2)若y 2随着x 的增大而增大,且y 1与y 2都经过x 轴上的同一点,求y 2的函数表达式. 【答案】(1)∵抛物线y1=-x 2+mx+n ,直线y 2=kx+b ,y 1的对称轴与y 2交于点A(-1,5),点A与y 1的顶点B 的距离是4.∴B(-1,1)或(-1,9).∴-()12-⨯m=-1,()()14142-⨯--⨯m n =1或9,解得m=-2,n=0或8.∴y1=-x 2-2x 或y1=-x 2-2x+8.(2)①当y1=-x 2-2x 时,抛物线与x 轴的交点是(0,0)和(-2,0).∵y 1的对称轴与y 2交于点A(-1,5),∴y 1与y 2都经过x 轴上的同一点(-2,0).把(-1,5),(-2,0)代入得⎩⎨⎧=+-=+-025b k b k ,解得⎩⎨⎧==105b k .∴y 2=5x+10.②当y1=-x 2-2x+8时,令-x 2-2x+8=0,解得x=-4或2.∵y 2随着x 的增大而增大,且过点A(-1,5),∴y 1与y 2都经过x 轴上的同一点(-4,0).把(-1,5),(-4,0)代入得⎩⎨⎧=+-=+-045b k b k ,解得⎪⎪⎩⎪⎪⎨⎧==32035b k .∴y 2=35x+320.综上可得y 2=5x+10或y 2=35x+320.21.如图所示,直线y=-21x+2与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B ,C 和点A(-1,0). (1)求B ,C 两点的坐标. (2)求该二次函数的表达式.(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出点P 的坐标;如果不存在,请说明理由. (4)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时点E 的坐标.(第21题) 图1 图2(第21题答图)【答案】(1)令x=0,可得y=2;令y=0,可得x=4,∴B,C 两点的坐标分别为B (4,0),C (0,2).(2)设二次函数的表达式为y=ax 2+bx+c ,将点A ,B ,C 的坐标代入表达式得⎪⎩⎪⎨⎧==++=+-204160c c b a c b a ,解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=22321c b a .∴该二次函数的表达式为y=-21x 2+23x+2.(3)存在.∵y=-21x 2+23x+2=-21(x-23)2+825,∴抛物线的对称轴是直线x=23.∴OD=23.∵C (0,2),∴OC=2.在Rt △OCD 中,由勾股定理得CD=25.∵△PCD 是以CD 为腰的等腰三角形,∴CP 1=DP 2=DP 3=CD.如答图1所示,作CH ⊥对称轴直线x=23于点H ,∴HP 1=HD=2,∴DP 1=4.∴P 1(23,4),P 2(23,25),P 3(23,-25). (4)如答图2所示,过点C 作CM ⊥EF 于点M ,设E (a ,-21a+2),F (a ,-21a 2+23a+2),∴EF=-21a 2+23a+2-(-21a+2)=-21a 2+2a (0≤a ≤4).∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =21BD·OC+21EF·CM+21EF·BN=25+21a (-21a 2+2a )+21(4-a )(-21a 2+2a )=-a 2+4a+25=-(a-2)2+213,∴当a=2时,四边形CDBF 的面积最大,最大面积为213,此时点E 坐标为(2,1).。

22.1.5用待定系数法求二次函数解析式同步测试含答案.doc

22.1.5用待定系数法求二次函数解析式同步测试含答案.doc

《22.1.5 用待定系数法求二次函数解析式》一、选择题:1.二次函数的图象经过(0,3),(﹣2,﹣5),(1,4)三点,则它的解析式为()A.y=x2+6x+3 B.y=﹣3x2﹣2x+3 C.y=2x2+8x+3 D.y=﹣x2+2x+32.已知抛物线经过点(0,4),(1,﹣1),(2,4),那么它的对称轴是直线()A.x=﹣1 B.x=1 C.x=3 D.x=﹣33.抛物线y=ax2+bx+c经过点(3,0)和(2,﹣3),且以直线x=1为对称轴,则它的解析式为()A.y=﹣x2﹣2x﹣3 B.y=x2﹣2x﹣3 C.y=x2﹣2x+3 D.y=﹣x2+2x﹣34.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣35.根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的解析式为()x …﹣1 0 1 2 …y …﹣1 ﹣﹣2 ﹣…A.y=x2﹣x﹣B.y=x2+x﹣C.y=﹣x2﹣x+D.y=﹣x2+x+6.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x27.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是()A .y=x 2﹣x ﹣2B .y=﹣x 2﹣x+2C .y=﹣x 2﹣x+1D .y=﹣x 2+x+28.已知二次函数y=ax 2+bx+c 的图象如图所示,则点M (,a )在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:9.若抛物线y=ax 2+bx+c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为______.10.与抛物线y=x 2的形状和开口方向相同,顶点为(3,1)的二次函数解析式为______.11.若抛物线y=x 2﹣4x+c 的顶点在x 轴上,则c 的值是______.12.已知二次函数y=a (x+1)2﹣b (a ≠0)有最小值1,则a______b .13.抛物线y=﹣x 2+bx+c 的图象如图所示,则此抛物线的解析式为______.14.二次函数y=x 2﹣2x ﹣3的图象关于原点O (0,0)对称的图象的解析式是______.15.请写出一个开口向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式______.16.抛物线y=ax 2+bx+c 上部分点的横坐标x ,纵坐标y 的对应值如下表:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法中正确的是______.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线;④在对称轴左侧,y随x增大而增大.17.已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B(4,0)两点,顶点C到x轴的距离为2,则此抛物线的解析式为______.18.已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为______.三、解答题:19.求出符合条件的二次函数解析式:(1)二次函数图象经过点(﹣1,0),(1,2),(0,3);(2)二次函数图象的顶点坐标为(﹣3,6),且经过点(﹣2,10);(3)二次函数图象与x轴的交点坐标为(﹣1,0),(3,0),与y轴交点的纵坐标为9.20.已知二次函数的图象如图所示,求此抛物线的解析式.21.已知二次函数的对称轴为x=2,且在x轴上截得的线段长为6,与y轴的交点为(0,﹣2),求此二次函数的解析式.22.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0)、B(2,0)两点,交y轴于点C(0,﹣2),过点A、C画直线.(1)求二次函数的解析式;(2)若点P在x轴正半轴上,且PA=PC,求OP的长.23.已知抛物线与x轴交于A、B两点.(1)求证:抛物线的对称轴在y轴的左侧;(2)若(O为坐标原点),求抛物线的解析式;(3)设抛物线与y轴交于点C,若△ABC是直角三角形.求△ABC的面积.《22.1.5 用待定系数法求二次函数解析式》参考答案与试题解析一、选择题:1.二次函数的图象经过(0,3),(﹣2,﹣5),(1,4)三点,则它的解析式为()A.y=x2+6x+3 B.y=﹣3x2﹣2x+3 C.y=2x2+8x+3 D.y=﹣x2+2x+3【解答】解:设二次函数的解析式为:y=ax2+bx+c,把(0,3),(﹣2,﹣5),(1,4)代入得解得,所以二次函数的解析式为:y=﹣x2+2x+3,故选:D.2.已知抛物线经过点(0,4),(1,﹣1),(2,4),那么它的对称轴是直线()A.x=﹣1 B.x=1 C.x=3 D.x=﹣3【解答】解:设二次函数解析式为y=ax2+bx+c,把点(0,4),(1,﹣1),(2,4)代入可得,解得,则二次函数解析式为y=5x2﹣10x+4=5(x﹣1)2﹣1,对称轴x=1.故选:B.3.抛物线y=ax2+bx+c经过点(3,0)和(2,﹣3),且以直线x=1为对称轴,则它的解析式为()A.y=﹣x2﹣2x﹣3 B.y=x2﹣2x﹣3 C.y=x2﹣2x+3 D.y=﹣x2+2x﹣3【解答】解:把(3,0)与(2,﹣3)代入抛物线解析式得:,由直线x=1为对称轴,得到﹣=1,即b=﹣2a,代入方程组得:,解得:a=1,b=﹣2,c=﹣3,则抛物线解析式为y=x2﹣2x﹣3,故选B4.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3【解答】解:∵抛物线对称轴为直线x=2,∴可排除B、D选项,将点(0,1)代入A中,得(x﹣2)2+1=(0﹣2)2+1=5,故A选项错误,代入C中,得(x﹣2)2﹣3=(0﹣2)2﹣3=1,故C选项正确.故选:C.5.根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的解析式为()x …﹣1 0 1 2 …y …﹣1 ﹣﹣2 ﹣…A.y=x2﹣x﹣B.y=x2+x﹣C.y=﹣x2﹣x+D.y=﹣x2+x+【解答】解:∵抛物线过点(0,﹣)和(2,﹣),∴抛物线的对称轴为直线x=1,∴抛物线的顶点坐标为(1,﹣2)设抛物线解析式为y=a(x﹣1)2﹣2,把(﹣1,﹣1)代入得4a﹣2=﹣1,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣.故选A.6.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.7.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是()A.y=x2﹣x﹣2 B.y=﹣x2﹣x+2C.y=﹣x2﹣x+1 D.y=﹣x2+x+2【解答】解:A、由图象可知开口向下,故a<0,此选项错误;B、抛物线过点(﹣1,0),(2,0),根据抛物线的对称性,顶点的横坐标是,而y=﹣x2﹣x+2的顶点横坐标是﹣=﹣,故此选项错误;C、y=﹣x2﹣x+1的顶点横坐标是﹣,故此选项错误;D、y=﹣x2+x+2的顶点横坐标是,并且抛物线过点(﹣1,0),(2,0),故此选项正确.故选D.8.已知二次函数y=ax2+bx+c的图象如图所示,则点M(,a)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:从图象得出,二次函数的对称轴在一,四象限,且开口向上,∴a>0,﹣>0,因此b<0,∵二次函数的图象与y轴交于y轴的负半轴,∴c<0,∴a>0,>0,则点M(,a)在第一象限.故选:A.二、填空题:9.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为y=﹣x2+4x﹣3 .【解答】解:设抛物线的解析式为y=a(x﹣2)2+1,将B(1,0)代入y=a(x﹣2)2+1得,a=﹣1,函数解析式为y=﹣(x﹣2)2+1,展开得y=﹣x2+4x﹣3.故答案为y=﹣x2+4x﹣3.10.与抛物线y=x2的形状和开口方向相同,顶点为(3,1)的二次函数解析式为y=(x﹣3)2+1 .【解答】解:设抛物线解析式为y=a(x﹣3)2+1,因为抛物线y=a(x﹣3)2+1与抛物线y=x2的形状和开口方向相同,所以a=,所以所求抛物线解析式为y=(x﹣3)2+1.故答案为y=(x﹣3)2+1.11.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是 4 .【解答】解:∵y=x2﹣4x+c=(x﹣2)2+c﹣4,∴其顶点坐标为(2,c﹣4),∵顶点在x轴上,∴c﹣4=0,解得c=4,故答案为:4.12.已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a >b.【解答】解:∵二次函数y=a(x+1)2﹣b(a≠0)有最小值,∴抛物线开口方向向上,即a>0;又最小值为1,即﹣b=1,∴b=﹣1,∴a>b.故答案是:>.13.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3 .【解答】解:据题意得解得∴此抛物线的解析式为y=﹣x2+2x+3.14.二次函数y=x2﹣2x﹣3的图象关于原点O(0,0)对称的图象的解析式是y=﹣x2﹣2x+3 .【解答】解:可先从抛物线y=x2﹣2x﹣3上找三个点(0,﹣3),(1,﹣4),(﹣1,0).它们关于原点对称的点是(0,3),(﹣1,4),(1,0).可设新函数的解析式为y=ax2+bx+c,则c=3,a﹣b+c=4,a+b+c=0.解得a=﹣1,b=﹣2,c=3.故所求解析式为:y=﹣x2﹣2x+3.15.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式y=(x﹣2)2﹣1 .【解答】解:因为开口向上,所以a>0∵对称轴为直线x=2,∴﹣=2∵y轴的交点坐标为(0,3),∴c=3.答案不唯一,如y=x2﹣4x+3,即y=(x﹣2)2﹣1.16.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法中正确的是①③④.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线;④在对称轴左侧,y随x增大而增大.【解答】解:根据图表,当x=﹣2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);∴抛物线的对称轴是直线x=3﹣=,根据表中数据得到抛物线的开口向下,∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6,并且在直线x=的左侧,y随x增大而增大.所以①③④正确,②错.故答案为:①③④.17.已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B(4,0)两点,顶点C到x轴的距离为2,则此抛物线的解析式为y=﹣x2+x+或y=x2﹣x﹣.【解答】解:∵抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B(4,0)两点,∴抛物线的对称轴为直线x=1,∵顶点C到x轴的距离为2,∴C点坐标为(1,2)或(1,﹣2),设抛物线解析式为y=a(x+2)(x﹣4),把C(1,2)代入得a×3×(﹣3)=2,解得a=﹣,所以此时抛物线解析式为y=﹣(x+2)(x ﹣4)=﹣x2+x+;把C(1,﹣2)代入得a×3×(﹣3)=﹣2,解得a=,所以此时抛物线解析式为y=(x+2)(x﹣4)=x2﹣x﹣,∴抛物线解析式为y=﹣x2+x+或y=x2﹣x﹣.故答案为y=﹣x2+x+或y=x2﹣x﹣.18.已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为y=﹣x2+x或y=x2+x..【解答】解:设二次函数的解析式为y=ax2+bx+c(a≠0),当图象与x轴的另一交点坐标为(1,0)时,把(0,0)、(1,0)、(﹣,﹣)代入得,解方程组得,则二次函数的解析式为y=﹣x2+x;当图象与x轴的另一交点坐标为(﹣1,0)时,把得,解方程组得,则二次函数的解析式为y=x2+x.所以该二次函数解析式为y=﹣x2+x或y=x2+x.三、解答题:19.求出符合条件的二次函数解析式:(1)二次函数图象经过点(﹣1,0),(1,2),(0,3);(2)二次函数图象的顶点坐标为(﹣3,6),且经过点(﹣2,10);(3)二次函数图象与x轴的交点坐标为(﹣1,0),(3,0),与y轴交点的纵坐标为9.【解答】解:(1)设二次函数解析式为y=ax2+bx+c,根据题意得,解得,所以二次函数解析式为y=﹣2x2+x+3;(2)二次函数解析式为y=a(x+3)2+6,把(﹣2,10)代入得a×(﹣2+3)2+6=10,解得a=4,所以二次函数解析式为y=4(x+3)2+6;(3)设二次函数解析式为y=a(x+1)(x﹣3),把(0,9)代入得a×1×(﹣3)=9,解得a=﹣3,所以二次函数解析式为y=﹣3(x+1)(x﹣3)=﹣3x2+6x+9.20.已知二次函数的图象如图所示,求此抛物线的解析式.【解答】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(5,0),∴抛物线与x轴的另一个交点坐标为(﹣3,0)设抛物线解析式为y=a(x+3)(x﹣5),把(0,3)代入得a×3×(﹣5)=3,解得a=﹣,∴抛物线解析式为y=﹣(x+3)(x﹣5)=﹣x2+x+3.21.已知二次函数的对称轴为x=2,且在x轴上截得的线段长为6,与y轴的交点为(0,﹣2),求此二次函数的解析式.【解答】解:∵二次函数的对称轴为x=2,且在x轴上截得的线段长为6,∴抛物线与x轴的交点坐标为(﹣1,0),(5,0),设抛物线解析式为y=a(x+1)(x﹣5),把(0,﹣2)代入得a•1•(﹣5)=﹣2,解得a=,∴抛物线解析式为y=(x+1)(x﹣5)=x2﹣x﹣2.22.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0)、B(2,0)两点,交y轴于点C(0,﹣2),过点A、C画直线.(1)求二次函数的解析式;(2)若点P在x轴正半轴上,且PA=PC,求OP的长.【解答】解:(1)∵二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0)、B(2,0),∴设该二次函数的解析式为:y=a(x﹣2)(x+1)(a≠0).将x=0,y=﹣2代入,得﹣2=a(0﹣2)(0+1),解得a=1,∴抛物线的解析式为y=(x﹣2)(x+1),即y=x2﹣x﹣2;(2)如图.由(1)知,抛物线的解析式为y=x2﹣x﹣2,则C(0,﹣2).设OP=x,则PA=PC=x+1,在Rt△POC中,由勾股定理,得x2+22=(x+1)2,解得,x=,即OP=.23.已知抛物线与x轴交于A、B两点.(1)求证:抛物线的对称轴在y轴的左侧;(2)若(O为坐标原点),求抛物线的解析式;(3)设抛物线与y轴交于点C,若△ABC是直角三角形.求△ABC的面积.【解答】(1)证明:∵m>0,∴x=﹣=﹣<0,∴抛物线的对称轴在y轴的左侧;(2)解:设抛物线与x 轴交点为A (x 1,0),B (x 2,0),则x 1+x 2=﹣m <0,x 1•x 2=﹣m 2<0,∴x 1与x 2异号,又∵=>0,∴OA >OB ,由(1)知:抛物线的对称轴在y 轴的左侧, ∴x 1<0,x 2>0,∴OA=|x 1|=﹣x 1 ,OB=x 2,代入得: =, =,从而,解得m=2, 经检验m=2是原方程的根,∴抛物线的解析式为y=x 2+2x ﹣3;(3)解:当x=0时,y=﹣m 2∴点C (0,﹣ m 2),∵△ABC 是直角三角形,∴AB 2=AC 2+BC 2,∴(x 1﹣x 2)2=x 12+(﹣m 2)2+x 22+(﹣m 2)2 ∴﹣2x 1•x 2=m 4∴﹣2(﹣m 2)=m 4,解得m=,∴S △ABC =×AB •OC=|x 1﹣x 2|•=×2m ×m 2=.。

人教版九上数学二次函数的解析式、图象和性质(培优专题)

人教版九上数学二次函数的解析式、图象和性质(培优专题)

二次函数的解析式、图象和性质(培优专题)典例剖析类型一用待定系数法求二次函数的解析式例 1 的图象经过两点,且以二次函数的解析式【变式题组】1.已知抛物线的顶点为C,与x轴相交于点A,B两点(点A在点B的左侧),点C关于x,我们称以A,对称轴与y轴平行的抛物线为抛物线的“梦之星”抛物线,直线为抛物线的“梦之星”直线。

若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是和,则这条抛物线的解析式为。

2.用描点法画二次函数的图象时,列了如下表格:根据表格上的信息回答问题:该二次函数在x=3时,y= 。

类型二二次函数与几何变换例2 在平面直角坐标系中,将抛物线绕着它与y轴的交点旋转,所得抛物线的解析式是。

例3 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为,则()【变式题组】3.将抛物线向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为。

4. 矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为。

标为(2,b);⑤当x<2时,y随x增大而增大。

其中结论正确的是___.(填上正确的结论序号)【变式题组】A.1个B.2个C.3个D.4个类型四二次函数与直线使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由。

【变式题组】A.1个B.2个C.3个D.4个大值?若存在,请求出最大值;若不存在,请说明理由。

类型五二次函数与几何图形的综合应用秒。

过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;出点Q的坐标;若不存在,请说明理由.11. 已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,−1),B(3,−1),动点P从点O Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.课后训练:C13,若P(37,m)在第13段抛物线C13上,则m=___.求点P的坐标。

第12课 用待定系数法求二次函数解析式(顶点式或交点式) -2020年中考数学专项突破课之二次函数

第12课 用待定系数法求二次函数解析式(顶点式或交点式) -2020年中考数学专项突破课之二次函数

中考专项突破课 二次函数第12课 用待定系数法求二次函数解析式(顶点式或交点式)一、典例分析例1:对称轴为2x =-,顶点在x 轴上,并与y 轴交于点(0,3)的抛物线解析式为 .【解析】设抛物线解析式为2(2)y a x =+,把(0,3)代入可得43a =,解得34a =, 所以抛物线解析式为23(2)4y x =+, 故答案为:23(2)4y x =+. 例2:已知二次函数图象与x 轴的两个交点的坐标为(3,0)-、(1,0),且与y 轴的交点为(0,3)-,求这个函数解析式和抛物线的顶点坐标.【解析】设抛物线解析式为(3)(1)y a x x =+-,把(0,3)-代入得3(1)3a -=-g g ,解得1a =,所以抛物线解析式为2(3)(1)23y x x x x =+-=+-,而2223(1)4y x x x =+-=+-,所以抛物线得顶点坐标为(1,4)-.二、知识点小结:三、知识点检测1.抛物线的顶点为(1,4)-,与y 轴交于点(0,3)-,则该抛物线的解析式为( )A .223y x x =--B .223y x x =+-C .223y x x =-+D .2233y x x =--【解析】设抛物线的解析式为2(1)4y a x =--,将(0,3)-代入2(1)4y a x =--,得:23(01)4a -=--,解得:1a =,∴抛物线的解析式为22(1)423y x x x =--=--.故选:A .2.已知抛物线的顶点为(1,3)--,与y 轴的交点为(0,5)-,求抛物线的解析式.【解析】根据题意设2(1)3y a x =+-,将(0,5)-代入得:35a -=-,解得:2a =-,则抛物线解析式为222(1)3245y x x x =-+-=---.故抛物线的解析式为2245y x x =---.3.已知二次函数2286y x x =-+.(1) 把它化成2()y a x h k =-+的形式为: 22(2)2y x =-- .(2) 直接写出抛物线的顶点坐标: ;对称轴: .(3) 求该抛物线于坐标轴的交点坐标 .【解析】 (1)2222862(44)862(2)2y x x x x x =-+=-+-+=--;(2)22(2)2y x =--Q , ∴抛物线的顶点坐标是:(2,2)-;对称轴是:2x =;(3)2286y x x =-+Q , ∴当0y =时,22860x x -+=,解得11x =,23x =,∴抛物线与x 轴的交点坐标为(1,0),(3,0);当0x =时,6y =,∴抛物线与y 轴的交点坐标为(0,6).故答案为22(2)2y x =--;(2,2)-,2x =.4.已知抛物线2y ax bx c =++顶点坐标为(4,1)-,与y 轴交于点(0,3),求这条抛物线的解析式.【解析】设这条抛物线的解析式为2(4)1y a x =--,把点(0,3)代入2(4)1y a x =--得14a =, ∴这条抛物线的解析式为21(4)14y x =-- 即21234y x x =-+. 5.已知抛物线的顶点坐标是(3,1)-,与y 轴的交点是(0,4)-,求这个抛物线的关系式.【解析】根据抛物线的顶点坐标是(3,1)-,设抛物线解析式为:2(3)1y a x =--,把y 轴的交点是(0,4)-代入得:13a =-, ∴抛物线的关系式为21(3)13y x =---. 6.已知某二次函数图象与x 轴交于点(3,0)A 与点(2,0)B -,且函数图象与y 轴交于(0,3),求二次函数的解析式.【解析】设抛物线解析式为(3)(2)y a x x =-+,把(0,3)代入得(3)23a -=g g ,解得12a =-, 所以抛物线解析式为2111(3)(2)3222y x x x x =--+=-++. 7.已知抛物线的顶点坐标为(1,2)M -,且经过点(2,3)N ,求此二次函数的解析式及抛物线与y 轴的交点坐标.【解析】设2()y a x h k =++过顶点(1,2)M -,得:2(1)2y a x =-- Q 经过点(2,3)N ,23(21)2a ∴=--,5a ∴=,25(1)2y x ∴=--,当0x =时,25(01)23y =--= ∴抛物线与y 轴的交点坐标为(0,3).8.已知二次函数的图象以(1,4)A -为顶点,且过点(2,5)B -.(1)求该二次函数的表达式;(2)求该二次函数图象与y 轴的交点坐标.【解析】(1)由顶点(1,4)A -,可设二次函数关系式为2(1)4(0)y a x a =++≠.Q 二次函数的图象过点(2,5)B -, ∴点(2,5)B -满足二次函数关系式, 25(21)4a ∴-=++,解得1a =-. ∴二次函数的关系式是2(1)4y x =-++;(2)令0x =,则2(01)43y =-++=, ∴图象与y 轴的交点坐标为(0,3).。

《用待定系数法求二次函数的解析式》同步练习(含答案)

《用待定系数法求二次函数的解析式》同步练习(含答案)

用待定系数法求二次函数的解析式 同步练习题基础题知识点1 利用“三点式”求二次函数解析式1.已知二次函数y =-x 2+bx +c 的图象经过A(2,0),B(0,-6)两点,则这个二次函数的解析式为12______________________.2.若二次函数y =ax 2+bx +c 的x 与y 的部分对应值如下表:x -7-6-5-4-3-2y-27-13-3353则此二次函数的解析式为____________________.3.已知二次函数y =ax 2+bx +c ,当x =0时,y =1;当x =-1时,y =6;当x =1时,y =0.求这个二次函数的解析式.4.如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标.知识点2 利用“顶点式”求二次函数解析式5.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =(x -1)2+829D .y =2(x -1)2-86.已知抛物线的顶点坐标为(4,-1),与y 轴交于点(0,3),求这条抛物线的解析式.知识点3 利用“交点式”求二次函数解析式7.如图所示,抛物线的函数表达式是( )A .y =x 2-x +412B .y =-x 2-x +412C .y =x 2+x +412D .y =-x 2+x +4128.已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),则该二次函数的解析式为_______________.9.已知二次函数经过点A(2,4),B(-1,0),且在x 轴上截得的线段长为2,求该函数的解析式.中档题10.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .y =x 2-x -2B .y =-x 2-x +21212C .y =-x 2-x +11212D .y =-x 2+x +211.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( )A .b =2,c =4B .b =2,c =-4C .b =-2,c =4D .b =-2,c =-412.二次函数的图象如图所示,则其解析式为________________.13.已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线所对应的函数关系式为________________.14.设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为___________________________________.15.如图,已知抛物线的顶点为A(1,4),抛物线与y 轴交于点B(0,3),与x 轴交于C ,D 两点.点P 是x 轴上的一个动点.(1)求此抛物线的解析式;(2)当PA +PB 的值最小时,求点P 的坐标.16.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.综合题17.设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.参考答案基础题1.y =-x 2+4x -62.y =-2x 2-12x -13123.由题意,得解得∴二次函数的解析式为y =2x 2-3x +1. {a +b +c =0,a -b +c =6,c =1,){a =2,b =-3,c =1.)4.(1)∵抛物线y =x 2+bx +c 与x 轴交于A(-1,0),B(3,0)两点,∴解得∴二{1-b +c =0,9+3b +c =0.){b =-2,c =-3.)次函数解析式是y =x 2-2x -3.(2)∵y =x 2-2x -3=(x -1)2-4,∴抛物线的对称轴为x =1,顶点坐标为(1,-4). 5.D 6.依题意,设y =a(x -h)2+k.将顶点坐标(4,-1)和与y 轴交点(0,3)代入,得3=a(0-4)2-1.解得a =.∴这条抛物线的解析式为y =(x -4)2-1. 14147.D8.y =x 2-x -29.∵B(-1,0)且在x 轴上截得的线段长为2,∴与x 轴的另一个交点坐标为(1,0)或(-3,0).设该函数解析式为y =a(x -x 1)(x -x 2),把A(2,4),B(-1,0),(1,0)代入得a(2+1)(2-1)=4,解得a =.所以43y =(x +1)(x -1).同理,把A(2,4),B(-1,0),(-3,0)代入,可以求得y =(x +1)(x +3).∴函数的43415解析式为y =(x +1)(x -1)或y =(x +1)(x +3).43415中档题10.D 11.D 12.y =-x 2+2x +3 13.y =x 2-2x -3 14.y =x 2-x +2或y =-x 2+x +2 1814183415.(1)∵抛物线顶点坐标为(1,4),∴设y =a(x -1)2+4.∵抛物线过点B(0,3),∴3=a(0-1)2+4,解得a =-1.∴抛物线的解析式为y =-(x -1)2+4,即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x 轴于点P.设AE 解析式为y =kx +b ,则解得∴y AE =7x -3.∵当y =0时,{k +b =4,b =-3,){k =7,b =-3.)x =,∴点P 的坐标为(,0). 373716.(1)∵A(1,0),B(3,0),∴设抛物线解析式为y =a(x -1)(x -3).∵抛物线过(0,-3),∴-3=a(-1)×(-3).解得a =-1.∴y =-(x -1)(x -3)=-x 2+4x -3.∵y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1).(2)答案不唯一,如:先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y =-x 2,平移后抛物线的顶点为(0,0)落在直线y =-x 上.综合题17.(1)当k =0时,y =-(x -1)(x +3),所画函数图象图略.(2)①三个图象都过点(1,0)和点(-1,4);②图象总交x 轴于点(1,0);③k 取0和2时的函数图象关于点(0,2)中心对称;④函数y =(x -1)[(k -1)x +(x -3)]的图象都经过点(1,0)和点(-1,4);等等.(其他正确结论也行) (3)将函数y 2=(x -1)2的图象向左平移4个单位,再向下平移2个单位,得到函数y 3=(x +3)2-2,∴当x=-3时,函数y3取最小值,等于-2.。

初三中考数学专项练习 待定系数法求二次函数的解析式—知识讲解(提高)

初三中考数学专项练习 待定系数法求二次函数的解析式—知识讲解(提高)

待定系数法求二次函数的解析式—知识讲解(提高)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1. 已知抛物线经过A ,B ,C 三点,当时,其图象如图1所示.求抛物线的解析式,写出顶点坐标.图1【答案与解析】设所求抛物线的解析式为().由图象可知A,B,C的坐标分别为(0,2),(4,0),(5,-3).∴=++=++=-⎧⎨⎪⎩⎪ca b ca b c216402553,,,解之,得抛物线的解析式为该抛物线的顶点坐标为.【总结升华】这道题的一个特点是题中没有直接给出所求抛物线经过的点的坐标,需要从图象中获取信息.已知图象上三个点时,通常应用二次函数的一般式列方程求解析式.要特别注意:如果这道题是求“图象所表示的函数解析式”,那就必须加上自变量的取值范围.2.(2016•丹阳市校级模拟)形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为.【思路点拨】形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,因此可设顶点式为y=﹣2(x﹣h)2+k,其中(h,k)为顶点坐标.将顶点坐标(0,﹣5)代入求出抛物线的关系式.【答案】y=﹣2x2﹣5.【解析】解:∵形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,设抛物线的关系式为y=﹣2(x﹣h)2+k,将顶点坐标是(0,﹣5)代入,y=﹣2(x﹣0)2﹣5,即y=﹣2x2﹣5.∴抛物线的关系式为y=﹣2x2﹣5.【总结升华】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.3. 已知抛物线的顶点坐标为(-1,4),与轴两交点间的距离为6,求此抛物线的函数关系式. 【答案与解析】因为顶点坐标为(-1,4),所以对称轴为,又因为抛物线与轴两交点的距离为6,所以两交点的横坐标分别为: ,, 则两交点的坐标为(,0)、(2,0);求函数的函数关系式可有两种方法: 解法(1):设抛物线的函数关系式为顶点式:(a ≠0),把(2,0)代入得,所以抛物线的函数关系式为;解法(2):设抛物线的函数关系式为两点式:(4)y a x =+(x-2)(a ≠0),把(-1,4)代入得,所以抛物线的函数关系式为:4(4)9y x =-+(x-2); 【总结升华】在求函数的解析式时,要根据题中所给条件选择合适的形式. 举一反三:【变式】(2014•永嘉县校级模拟)已知抛物线经过点(1,0),(﹣5,0),且顶点纵坐标为,这个二次函数的解析式 . 【答案】y=﹣x 2﹣2x+ .提示:设抛物线的解析式为y=a (x+2)2+,将点(1,0)代入,得a (1+2)2+=0, 解得a=﹣,即y=﹣(x+2)2+,∴所求二次函数解析式为y=﹣x 2﹣2x+.类型二、用待定系数法解题4.(2015春•石家庄校级期中)已知二次函数的图象如图所示,根据图中的数据, (1)求二次函数的解析式;(2)设此二次函数的顶点为P ,求△ABP 的面积.【答案与解析】 解:(1)由二次函数图象知,函数与x 轴交于两点(﹣1,0),(3,0), 设其解析式为:y=a (x+1)(x ﹣3), 又∵函数与y 轴交于点(0,2), 代入解析式得, a ×(﹣3)=2, ∴a=﹣,∴二次函数的解析式为:,即;(2)由函数图象知,函数的对称轴为:x=1, 当x=1时,y=﹣×2×(﹣2)=, ∴△ABP 的面积S===.【总结升华】此题主要考查二次函数图象的性质,对称轴及顶点坐标,另外巧妙设函数的解析式,从而来减少计算量.【答案与解析】(1)把A(2,0),B(0,-6)代入212y x bx c =-++ 得220,6,b c c -++=⎧⎨=-⎩ 解得4,6.b c =⎧⎨=-⎩∴ 这个二次函数的解析式为21462y x x =-+-. (2)∵ 该抛物线的对称轴为直线44122x =-=⎛⎫⨯- ⎪⎝⎭,∴ 点C 的坐标为(4,0), ∴ AC =OC-OA =4-2=2. ∴ 1126622ABC S AC OB ==⨯⨯=△.【总结升华】求△ABC 的面积时,一般要将坐标轴上的边作为底边,另一点的纵(横)坐标的绝对值为高进行求解.(1)将A 、B 两点坐标分别代入解析式求出b ,c 的值.(2)先求出点C 的坐标再求出△ABC 的面积.举一反三:【变式】已知二次函数图象的顶点是(12)-,,且过点302⎛⎫ ⎪⎝⎭,.(1)求二次函数的表达式;(2)求证:对任意实数m ,点2()M m m -,都不在这个二次函数的图象上. 【答案】(1)23212+--=x x y ; (2)证明:若点2()M m m -,在此二次函数的图象上,则221(1)22m m -=-++. 得2230m m -+=.△=41280-=-<,该方程无实根.所以原结论成立.。

部编数学九年级上册待定系数法求二次函数解析式(讲+练)【7种题型】2023考点题型精讲 解析版含答案

部编数学九年级上册待定系数法求二次函数解析式(讲+练)【7种题型】2023考点题型精讲 解析版含答案

22.1.5待定系数法求二次函数解析式二次函数解析式常见有以下几种形式 : (1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).注意:确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.题型1:一般式求二次函数解析式-一个或两个参数未知1.若抛物线y =x 2+bx +c 的对称轴为y 轴,且点P (2,6)在该抛物线上,则c 的值为( ) A .﹣2B .0C .2D .4【答案】C 【解析】【解答】解:∵抛物线y =x 2+bx+c 的对称轴为y 轴,∴b =0,∵点P (2,6)在该抛物线上,∴6=4+c ,解得:c =2.题型2:一般式求二次函数解析式-a、b、c未知2.二次函数y=ax2+bx+c(a≠0)的图象过点A(﹣1,8)、B(2,﹣1),与y轴交于点C(0,3),求二次函数的表达式.【答案】解:把A(﹣1,8)、B(2,﹣1),C(0,3)都代入y=ax2+bx+c中,得a−b+c=84a+2b+c=−1c=3,解得a=1b=−4c=3,的三元一次方程组,解出a、b、c的值即得y=−x+6x−5,然后将其化为顶点式,即可得出结论.题型3:顶点式求二次函数解析式3.已知抛物线的顶点是A(2,﹣3),且交y 轴于点B(0,5),求此抛物线的解析式.应的y值,则可得点A的坐标.【变式3-2】已知如图,抛物线的顶点D的坐标为(1,-4),且与y轴交于点C(0,-3).(1)求该函数的关系式;(2)求该抛物线与x轴的交点A,B的坐标.【答案】解:(1)∵抛物线的顶点D的坐标为(1,−4),∴设抛物线的函数关系式为y=a(x−1)2−4,又∵抛物线过点C(0,-3),∴-3=a(0−1)2−4,解得a=1,∴抛物线的函数关系式为y=(x−1)2−4,即y=x2−2x−3;( 2 )令y=0,得:x2−2x−3=0,解得x1=3,x2=−1.所以坐标为A(-1,0),B(3,0).【解析】【分析】(1)设出抛物线方程的顶点式,将点C的坐标代入即可求得抛物线方程;(2)对该抛物线令y=0,解二元一次方程即可求得点A,B的坐标.题型4:交点式求二次函数解析式4.已知二次函数y=ax2+bx+c的图像经过A(-1,0),B(3,0),C(0,-3)三点,求这个二次函数的解析式.【答案】解:设抛物线的解析式为y=a(x+1)(x-3),把C(0,-3)代入得a×1×(-3)=-3,解得a=1,所以这个二次函数的解析式为y=(x+1)(x-3)=x2-2x-3【解析】【分析】根据A,B,C三点的坐标特点,设出所求函数的交点式,再将C点的坐标代入即可求出a的值,从而得出抛物线的解析式。

用待定系数法求二次函数解析式(专题复习)

用待定系数法求二次函数解析式(专题复习)
y= -1(x+1)(x-3) = -x2+2x+3
知识回顾 Knowledge Review
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
3.交点式 y=a(x-x1)(x-x2) 知道抛物线与x轴的两个交点的坐
标,或一个交点的坐标及对称轴方程或顶 点的横坐标时选用两根式比较简便. (1)当△=b2- 4ac≥0 ,抛物线与x轴相交
y=ax2+bx+c=a(x-x1)(x-x2) △=b2- 4ac>0 ,交点有两个, 分别是: (x1, 0)和(x2, 0) △=b2- 4ac =0,交点只有一个 即顶点[-b/2a,(4ac-b2)/4a] △=b2- 4ac <0 ,无交点
解:设二次函数解析式为y=ax2+bx+c ∵ 图象过B(0,2) ∴ c=2 ∴ y=ax2+bx+2 ∵ 图象过A(2,-4),C(-1,2)两点 ∴ -4=4a+2b+2
2=a-b+2 解得 a=-1,b=-1 ∴ 函数的解析式为:
y=-x2-x+2
2. 顶点式 y=a(x-h)2+k (a≠0)已知对称轴
y=a(x-1)2+4 ∵抛物线过点(-1, 0) ∴ 0=a(-1-1)2+4 得 a= -1
∴ 函数的解析式为: y= -1(x-1)2+4= -x2+2x+3
解法3:(交点式) 由题意可知两根为x1=-1、x2=3 设二次函数解析式为y=a(x-x1)(x-x2) 则有: y=a(x+1)(x-3) ∵ 函数图象过点(1,4) ∴ 4 =a(1+1)(1-3) 得 a= -1 ∴ 函数的解析式为:

专题1:用待定系数法求二次函数解析式

专题1:用待定系数法求二次函数解析式

专题1:用待定系数法求二次函数解析式一、【经典例题】1.(1)如果一个二次函数的图象经过(-1,-11)(2,8)(0,-8)三点,求出这个二次函数的解析式.(2)如果一个二次函数的顶点为(2,1)且经过点(0,3),求出这个二次函数的解析式.(3)已知二次函数的图象与x 轴交于A (—2,0),B (6,0)两点,与y 轴交于点C (0,- 4)求二次函数解析式.2.如图,已知抛物线的对称轴为直线x=-1,且经过A (1,0),B (0,-3)两点.(1)求抛物线的解析式;(2)在抛物线的对称轴x=-1上,是否存在点M,使它到点A 的距离与到点B 的距离之和最小,如果存在求出点M 的坐标,如果不存在请说明理由.()20y ax bx c a =++≠3.如图,抛物线的开口向下,与x 轴交于A ,B 两点(A 在B 左侧),与y 轴交于点C .已知C (0,4),顶点D 的横坐标为﹣,B (1,0).求抛物线的解析式;二、【练习】1.已知二次函数的图象经过(1,0)、(2,0)和(0,2)三点,则该函数的解析式是( )A .y =2x 2+x+2B .y =x 2+3x+2C .y =x 2﹣2x+3D .y =x 2﹣3x+2 2.二次函数y=x 2+bx+c 的图象经过点(4,-3),(3,0).(1)求b 、c 的值; (2)求该二次函数图象的顶点及坐标和对称轴.3.如图,平面直角坐标系中,四边形OABC 为菱形,点A 在x 轴的正半轴上,BC 与y 轴交于点D ,点C 的坐标为(﹣3,4).(1)点A 的坐标为 ;(2)求过点A 、O 、C 的抛物线解析式,并求它的顶点坐标;4.(如图,直线3y x =-+与x 轴,y 轴分别相交于点B ,点C ,经过B 、C 两点的抛物线()20y ax bx c a =++≠与x 轴的另一交点为A ,顶点为P ,且对称轴是直线2x =.求A 点的坐标及该抛物线的函数表达式.5.如图,ABCD中,A(﹣1,0),B(0,2),BC=3,求经过B、C、D的抛物线的解析式.6.如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2过点C.求抛物线的解析式.。

九年级数学待定系数法求二次函数的解析式

九年级数学待定系数法求二次函数的解析式
X -7 -6 -5 -4 -3 -2
y -27 -13 -3 3 5 3
则当x=1时,y的值为 A.5 B.-3 C.-13 D.-27
5. 已知二次函数中,其函数与自变量之间 的部分对应值如下表所示:

x …0 1 2 3 4 …
y …4 1 0 1 4 …
点A(x1,y1)、B(x2,y2)在函数的图象上,
部分图象如图所示,则关于x的一元二次方程
x2 2x k 0 的一个解x1 3,另一个
解 x2 ;
y
O1 3
x
(第15题图)
22.1.4二次函数 y=ax2+bx+c的图象
8 6 4 2
-4 -2
24
1.完成下列表格:
二次函数 开口方向 对称轴 顶点坐标
y=2(x+3)2+5
向上 直线x=-3 (-3,5)
y 1 (x 4)2 4 2
x
如何平移:
y 3 (x 1)2 4
y 3 (x 1)2 2 4
y 3 (x 3)2 3 4
y 3 (x 5)2 2 4
发展性训练
1.由y=3(x+2)2+4的图像经过怎样的平移 变换,可以得到y=3x2的图像.
右移2单位,下移4单位
2.把函数y=x2-2x的图像向右平移2个单 位,再向下平移3个单位所得图像对应 的函数解析式为
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析 式:
伴随抛物线的解析式: y=-2x2+1 。
伴随直线的解析式: y=-2x+1 。
(2)若一条抛物线的伴随抛物线和伴随直线分别是y= -x2-3和y= -

中考数学高频考点专题练习-待定系数法求二次函数解析式

中考数学高频考点专题练习-待定系数法求二次函数解析式

中考数学高频考点专题练习-待定系数法求二次函数解析式一、解答题1.如图,在平面直角坐标系xoy中,已知抛物线2y x bx c=++与x轴交于A、B两点,与y轴交于点C,直线AC的函数解析式为y=(1)求该抛物线的函数关系式与B点坐标;(2)已知点D (m,0)是线段OA上的一个动点,过点作x轴的垂线l分别与直线AC和抛物线交于E、F两点,当m为何值时,△CEF恰好是以EF为底边的等腰三角形?(3)在(2)问条件下,当△CEF恰好是以EF为底边的等腰三角形时,若P是直线AC上的一个动点,设P的横坐标为x,①连接FP,求12PF PA+最小值;①若①APF不小于45°,请直接写出x的取值范围.2.在平面直角坐标系中,抛物线y=-x2+2mx的顶点为A,直线l:y=x-1与x轴交于点B.(1)如图,已知点A的坐标为(2,4),抛物线与直线l在第一象限交于点C.①求抛物线的解析及点C的坐标;①点M为线段BC上不与B,C重合的一动点,过点M作x轴的垂线交x轴于点D,交抛物线于点E,设点M的横坐标t.当EM>BD时,求t的取值范围;①S 关于m 的函数关系式;①S 的最小值及S 取最小值时m 的值.3.如图,对称轴为x =﹣1的抛物线y=ax 2+bx +c (a ≠0)与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0).(1)求点B 的坐标.(2)已知a =1,C 为抛物线与y 轴的交点.①求抛物线的解析式.①若点P 在抛物线上,且S△POC =4S△BOC ,求点P 的坐标.①设点Q 是线段AC 上的动点,作QD ①x 轴交抛物线于点D ,请直接写出线段QD 长度的最大值和对应的点Q 的坐标.4.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴相交于原点O 和点()4,0B ,点()3,A m 在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan OAB ∠的值.5.如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(2)若直线y =kx 23+(k ≠0)与抛物线有两个交点,交点的横坐标分别为x 1,x 2,当x 12+x 22=10时,求k 的值; (3)当﹣4<x ≤m 时,y 有最大值43m ,求m 的值. 6.如图,已知直线334y x =+交x 轴负半轴于点A ,交y 轴于点C ,抛物线238y x bx c =-++经过点A 、C ,与x 轴的另一交点为B .()1求抛物线的解析式;()2设抛物线上任一动点P 的横坐标为m .①若点P 在第二象限抛物线上运动,过P 作PN x ⊥轴于点N 交直线AC 于点M ,当直线AC 把线段PN 分成2:3两部分时,求m 的值;①连接CP ,以点P 为直角顶点作等腰直角三角形CPQ ,当点Q 落在抛物线的对称轴上时,请直接写出点P 的坐标.7.如图,抛物线2y x bx c =-++与x 轴相交于A ,B 两点(点A 位于点B 的左侧),与y 轴相交于点C ,M 是抛物线的顶点,直线1x =是抛物线的对称轴,且点C 的坐标为(0,3).(1)求抛物线的解析式;(2)已知P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若,PD m PCD =△的面积为S .①求S 与m 之间的函数关系式,并写出自变量m 的取值范围;①当S 取得最大值时,求点P 的坐标.(3)在(2)的条件下,在线段MB 上是否存在点P ,使PCD 为等腰三角形?如果存在,直接写出满足条件的点P 的8.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B(4,0),C(8,0),D(8,8).抛物线y=ax 2+bx 过A ,C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发,沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动,速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE①AB 交AC 于点E ,过点E 作EF 上AD 交AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长?9.在平面直角坐标系内,反比例函数和二次函数y =a (x 2+x ﹣1)的图象交于点A (1,a )和点B (﹣1,﹣a ). (1)求直线AB 与y 轴的交点坐标;(2)要使上述反比例函数和二次函数在某一区域都是y 随着x 的增大而增大,求a 应满足的条件以及x 的取值范围; (3)设二次函数的图象的顶点为Q ,当Q 在以AB 为直径的圆上时,求a 的值.10.如图,抛物线23y ax bx =++与x 轴交于点(3,0)A -和点(1,0)B -.(1)求抛物线的解析式;(2)将抛物线沿x 轴向右平移t 个单位长度,使它经过点(0,1),求出t 的值.11.在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0)、B (3,0)两点,与y 轴交于C 点,D 为抛物线顶点.(2)如图1,连接AD ,交y 轴于点E ,点P 是第一象限的抛物线上的一个动点,连接PD 交x 轴于F ,连接EF 、AP ,若S △ADP =3S △DEF ,求点P 的坐标.(3)点Q 是抛物线对称轴上一动点,连接OQ 、AQ ,设①AOQ 外接圆圆心为H ,当sin①OQA 的值最大时,请求出点H 的坐标.12.已知一个抛物线经过点()3,0,()1,0-和()2,6-.(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标和对称轴;13.如图,抛物线y =ax 2+bx +2与直线AB 相交于A (﹣1,0),B (3,2),与x 轴交于另一点C .(1)求抛物线的解析式;(2)在y 上是否存在一点E ,使四边形ABCE 为矩形,若存在,请求出点E 的坐标;若不存在,请说明理由;(3)以C 为圆心,1为半径作①C ,D 为①O 上一动点,求DA 的最小值. 14.若抛物线的顶点坐标是(1,16),并且抛物线与轴两交点间的距离为8,(1)试求该抛物线的关系式; (2)求出这条抛物线上纵坐标为12的点的坐标.15.如图,已知抛物线与x 轴交于A (﹣1,0)、B (5,0)两点,与y 轴交于点C (0,5).(1)求该抛物线所对应的函数关系式;(2)D 是第一象限内抛物线上的一个动点(与点C 、B 不重合),过点D 作DF ①x 轴于点F ,交直线BC 于点E ,连接BD 、CD .设点D 的横坐标为m ,①BCD 的面积为S .①求S 关于m 的函数关系式及自变量m 的取值范围;①当m 为何值时,S 有最大值,并求这个最大值;①直线BC 能否把①BDF 分成面积之比为2:3的两部分?若能,请求出点D 的坐标;若不能,请说明理由.16.如图,已知直线y x c =-+交x 轴于点B ,交y 轴于点C ,抛物线23y ax bx =++经过点()1,0A -,与直线y x c =-+交于B C 、两点,点P 为抛物线上的动点,过点P 作PE x ⊥轴,交直线BC 于点F ,垂足为E .(1)求抛物线的解析式;(2)当点P 位于抛物线对称轴右侧时,点Q 为抛物线对称轴左侧一个动点,过点Q 作QD x ⊥轴,垂足为点D .若四边形DEPQ 为正方形时求点P 的坐标;(3)P Q 、关于抛物线对称轴对称,若PQF △是以点P 为顶角顶点的等腰直角三角形时,请直接写出点P 的横坐标. 17.如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图像与y 轴交于点(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)(1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时①CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.参考答案:1.(1)232333y x =B (1, 0).(2)当m= -1时,△CEF 恰好是以EF 为底边的等腰三角形.(3)①12PF PA +433313x --<≤ 2.(1)①24y x x =-+;C 313+113+;①1<t <13(2)①S =2111222m m -+;①当m =12时,取最小值,最小值为383.(1)点B 的坐标为(1,0)(2)①223y x x =+-;①(4,21)或()4,5-;①QD 有最大值94,点Q 的坐标为3(2-,9)2-.4.(1)24y x x =-+,它的对称轴为:2x =;(2)25.(1)()21233y x =--+;(2)1222,,3k k ==;(3)95.4m =-或 6.(1)233 384y x x =--+;(1)①43m =-或3m =-;①P 点坐标为()4,0-或210,33⎛⎫- ⎪⎝⎭或()2,0或410,33⎛⎫- ⎪⎝⎭7.(1)223y x x =-++ (2)①213(04)42S m m m =-+<≤;①S 有最大值为94,此时3,32P ⎛⎫ ⎪⎝⎭(3)存在,(637,1867)-+-或(47,227)-+8.(1)点A 的坐标为(4,8).抛物线的解析式为:y=一12x 2+4x .(2)线段EG 最长为2.9.(1)求直线AB 与y 轴的交点坐标(0,0);(2)a <0且x ≤﹣12;(3)a =23 10.(1)243y x x =++(2)t 的值为222211.(1)y =x 2﹣2x ﹣3(2)P (6,2)(3)H (﹣122H (﹣12212.(1)2246y x x =--(2)顶点坐标为()1,8-;对称轴为直线1x =13.(1)y =12-x 2+32x +2 (2)存在,E (0,﹣2)(3)DA14.1)或(2)(-1,12)(3,12)15.(1)245y x x =-++ (2)①()25250522s m m m =-+<<;①当52m =时,S 有最大值,最大值为1258; ①能,点D 的坐标为26539⎛⎫ ⎪⎝⎭,或33524⎛⎫ ⎪⎝⎭,16.(1)223y x x =-++;(2)四边形DEPQ 为正方形时点P 的坐标为)2和()22-;(3)点P 的横坐标为2或1- 17.(1)2--23y x x =+;顶点D 的坐标为(-1,4)(2)M 点坐标为(-1,4)(3)当点P 的坐标为315(,)24-时,①CPB 的面积有最大值,且最大值为27.8。

中考培优专题用待定系数法求二次函数解析式(含答案)

中考培优专题用待定系数法求二次函数解析式(含答案)

中考培优专题用待定系数法求二次函数解析式(含答案)一、单选题(共有3道小题)1.函数20y ax a =≠,()的图象经过点(a ,8),则a 的值为( )A.±2B.-2C.2D.32.二次函数()21,0y ax bx a =+-≠的图象经过点(1,1),则1a b ++ 的值是() A.-3 B.-1 C.2 D.3 3.若抛物线2=++y x ax b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1=x ,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A .(-3,-6) B .(-3,0) C .(-3,-5) D .(-3,-1)二、填空题(共有11道小题)4.已知二次函数2y ax =. 若当1x =-时,2y =,那么a =______5.已知二次函数m x x y ++=2的图象过点(1,3),则m 的值为6.二次函数2ax y =的图象过(2,1),则二次函数的表达式为____________.7.已知一条抛物线的形状与22x y =相同,但开口方向相反,且与x 轴的交点坐标是(1,0)、(-4,0),则该抛物线的关系式是 .8.若二次函数的图象开口向下,且经过(2,﹣3)点.符合条件的一个二次函数的解析式为 .9.若抛物线c bx ax y ++=2的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为 .10.已知一条抛物线的开口大小、方向与2x y =均相同,且与x 轴的交点坐标是(-2,0)、(3,0),则该抛物线的关系式是 .11.将抛物线221y x x =+-向上平移,使它经过点A(0,3),则所得新抛物线的表达式为12.如图,已知抛物线2y x bx c =-++的对称轴为直线1x =,且与x 轴的一个交点为(3,0),那么它对应的函数解析式为13.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小.这个函数解析式为 .(写出一个即可)14.已知抛物线()k m x a y +-=21与()k m x a y ++=22关于y 轴对称,我们称1y 与2y 互为“和谐抛物线”.请写出抛物线7642++-=x x y 的“和谐抛物线” .三、解答题(共有9道小题)15.某二次函数图象如图,试计算其表达式。

中考数学专项培优训练--二次函数面积最值问题(含解析)

中考数学专项培优训练--二次函数面积最值问题(含解析)

二次函数几何动点问题(含解析)一、面积最大值问题1.(2020九上·休宁月考)如图,已知二次函数的图象经过点、和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为,并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,求的最大面积.2.(2021·芜湖模拟)如图,抛物线与直线相交于点,,且这条抛物线的对称轴为.(1)若将该抛物线平移使其经过原点,且对称轴不变,求平移后的抛物线的表达式及k的值:(2)设P为直线下方的抛物线上一点,求面积的最大值及此时P点的坐标.3.(2020九上·寻乌期末)已知二次函数的图象的对称轴是直线,它与x轴交于A、B两点,与y轴交于点C,点A的坐标是.(1)请在平面直角坐标系内画出示意图,并根据图象直接写出时x的取值范围;(2)求此图象所对应的函数关系式;(3)若点P是此二次函数图象上位于x轴上方的一个动点,求面积的最大值.4.(2020九上·瑶海月考)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(-1,0),且对称轴为直线x=1(1)求该抛物线的解析式;(2)点M是第四象限内抛物线上的一点,当△BCM的面积最大时,求点M的坐标;5.(2020·洞头模拟)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.6.(2020九上·山亭期末)己知:如图,抛物线与坐标轴分别交于点,点是线段上方抛物线上的一个动点,(1)求抛物线解析式:(2)当点运动到什么位置时,的面积最大?7.(2020九上·旬阳期末)已知抛物线经过点,,与y轴交于点C.(1)求这条抛物线的解析式;(2)如图,点P是第三象限内抛物线上的一个动点,求四边形面积的最大值.8.(2020九上·永年期末)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,6),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)当C为抛物线顶点的时候,求的面积.(3)是否存在这样的点P,使的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.二、等腰三角形问题9.(2020九上·呼和浩特期中)如图,抛物线y= +bx+c的对称轴为x=﹣1,该抛物线与x轴交于A、B 两点,且A点坐标为(1,0),交y轴于C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并予证明.(3)在对称轴上是否存在一点P,使得△ACP为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.10.(2020·肇东模拟)如图,抛物线与y轴交于点A(0,3),与x轴交于点B(4,0).(1)求抛物线的解析式;(2)连接AB,点C为线段AB上的一个动点,过点C作y轴的平行线交抛物线于点D,设C点的横坐标为m,线段CD长度为d(d≠0).求d与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,连接AD,是否存在m值,使△ACD是等腰三角形?若存在,求出m的值;若不存在,请说明理由.三、直角三角形问题11.(2020九下·扎鲁特旗月考)如图,二次函数的图象经过点,直线与y轴交于点为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E是直线上方抛物线上一点,过E分别作和y轴的垂线,交直线于不同的两点在G的左侧),求周长的最大值;(3)是否存在点E,使得是以为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.12.(2020九上·芦淞期末)如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,直线经过点C,与x轴交于点D.(1)求该抛物线的函数关系式;(2)点P是(1)中的抛物线上的一个动点,设点P的横坐标为t(0<t<3).①求△PCD的面积的最大值;②是否存在点P,使得△PCD是以CD为直角边的直角三角形?若存在,求点P的坐标;若不存在,请说明理由.13.(2020九上·泉州期中)如图,直线交轴于点,交轴于点B,抛物线的顶点为,且经过点.(1)求该抛物线所对应的函数表达式;(2)点是抛物线上的点,是以为直角边的直角三角形,请直接写出点的坐标.四、平行四边形问题14.(2019九上·武威期中)如图,抛物线y=x2+bx+c与直线y=x﹣3交于,B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线对应的函数解析式;(2)以O,A,P,D为顶点的平行四边形是否存在若存在,求点P的坐标;若不存在,说明理由.15.(2020九上·广丰期末)如图二次函数的图像交轴于、,交轴于,直线平行于周,与抛物线另一个交点为.(1)求函数的解析式;(2)若是轴上的动点,是抛物线上的动点,求使以、、、为顶点的四边形是平行四边形的的横坐标.16.(2020九上·桐城期末)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.(1)如图,当点C的横坐标为1时,求直线BC的表达式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.答案解析部分一、综合题1.【答案】(1)设,把A点坐标代入得:,∴二次函数的解析式是(2),轴,P在上,∴,∵点,∴直线OA的解析式为y=x,又点C在直线OA上,∴点C(m,m)当点P在直线OA的上方时,,,,,开口向下,当m= 时,PC有最大值,即当点P在直线OA的上方时,线段PC的最大值是.(3)∵A点坐标,且PC有最大值,∴.【解析】【分析】(1)利用待定系数法求解即可;(2)由题意可知,易求得直线OA 的解析式,可得点,由= ,利用二次函数最值求法求解即可;(3)根据点A坐标和PC的最大值即可求解.2.【答案】(1)解:抛物线过点,,且这条抛物线的对称轴为.代入得,解得.∴抛物线为.∵该抛物线平移使得其经过原点,且对称轴不变,∴平移后的抛物线为.将代入得.(2)解:如图,过P作轴,交于Q.设,则,则.∴.∵∴当时,的面积最大,,当t=2时,∴.【解析】【分析】利用待定系数法求一次函数的解析式和二次函数式的解析式。

2019中考数学专题练习-待定系数法求二次函数解析式(含解析)

2019中考数学专题练习-待定系数法求二次函数解析式(含解析)

2019中考数学专题练习-待定系数法求二次函数解析式(含解析)一、单选题1.已知抛物线y=x2+bx+c(其中b,c是常数)经过点A(2,6),且抛物线的对称轴与线段BC有交点,其中点B(1,0),点C(3,0),则c的值不可能是()A. 4B. 6C. 8D. 102.当k取任意实数时,抛物线y=﹣9(x﹣k)2﹣3k2的顶点所在的曲线的解析式是()A. y=3x2B. y=9x2C. y=﹣3x2D. y=﹣9x23.芳芳在平面直角坐标系画了一个二次函数的图象,并将该图象的特点写在如图所示的卡片上,则该二次函数的解析式为()①开口向下;②顶点是原点;③过点(6,﹣6).A. y=﹣B. y=C. y=﹣6x2D. y=6x24.二次函数的图象如图所示,则这个二次函数的解析式为()A.y (x﹣2)2+3B.y= (x﹣2)2﹣3C.y=﹣(x﹣2)2+3D.y=﹣(x﹣2)2﹣35.已知抛物线y=x2﹣8x+c的顶点在x轴上,则c等于()A. 4B. 8C. -4D. 166.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A. 8B. 14C. 8或14D. ﹣8或﹣147.已知二次函数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为()A. y=3x2+6x+1B. y=3x2+6x﹣1C. y=3x2﹣6x+1D. y=﹣3x2﹣6x+18.已知抛物线过点A(2,0),B(﹣1,0),与y轴交于点C,且OC=2.则这条抛物线的解析式为()A. y=x2﹣x﹣2B. y=﹣x2+x+2C. y=x2﹣x﹣2或y=﹣x2+x+2D. y=﹣x2﹣x﹣2或y=x2+x+29.已知点(-1,2)在二次函数y=ax2的图象上,那么a的值是()A.1B.2C.D.-10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A. y=﹣2(x﹣1)2+3B. y=﹣2(x+1)2+3C. y=﹣(2x+1)2+3D. y=﹣(2x﹣1)2+311.若抛物线经过(0,1)、(﹣1,0)、(1,0)三点,则此抛物线的解析式为()A. y=x2+1B. y=x2﹣1C. y=﹣x2+1D. y=﹣x2﹣112.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A. y=﹣3(x﹣1)2+3B. y=3(x﹣1)2+3C. y=﹣3(x+1)2+3D. y=3(x+1)2+313.若抛物线的顶点坐标是(﹣2,1)且经过点(1,﹣8),则该抛物线的表达式是()A.y=﹣9(x﹣2)2+1B.y=﹣7(x﹣2)2﹣1C.y=﹣(x+2)2+1D.y=﹣(x+2)2﹣114.与y=2(x﹣1)2+3形状相同的抛物线解析式为()A. y=1+x2B. y=(2x+1)2C. y=(x﹣1)2D. y=2x215.对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是()A. y=﹣2x2+8x+3B. y=﹣2x‑2﹣8x+3C. y=﹣2x2+8x﹣5D. y=﹣2x‑2﹣8x+2二、填空题16.若抛物线y=ax2经过点A ( ,-9),则其解析式为________。

九年级培优第2讲:用待定系数法求二次函数的解析式

九年级培优第2讲:用待定系数法求二次函数的解析式

(D)
A.6
B.5
C.4
D.3
4.设抛物线 y=ax2+bx+c(a≠0)过 A(0,2),B(4,3),C 三点,其中点 C 在直线 x=2 上,且点 C
到抛物线的对称轴的距离等于 1,则抛物线的函数解析式为__y=1x2-1x+2 或__y=-1x2+3x+
84
84
2__.
5.已知抛物线 y=a(x-3)2+2 经过点(1,-2).
(1)n 为奇数,且 l 经过点 H(0,1)和 C(2,1),求 b,c 的值,并直接写出哪个格点是该抛物线上
的顶点;
(2)n 为偶数,且 l 经过点 A(1,0)和 B(2,0),通过计算说明点 F(0,2)和 H(0,1)是否在抛物线上;
(3)若 l 经过这九个格点中的三个,直接写出满足这样条件的抛物线条
2.抛物线 y=x2+bx+c 的图象先向右平移 2 个单位,再向下平移 3 个单位,所得图象
的函数解析式为 y=(x-1)2-4,则 b,c 的值为
()
A.b=2,c=-6
B.b=2,c=0
C.b=-6,c=8
D.b=-6,c=2
3.已知二次函数 y=a(x-h)2+k(a>0),其图象过点 A(0,2),B(8,3),则 h 的值可以是
D.(0,-6)
2.抛物线 y=x2+bx+c 的图象先向右平移 2 个单位,再向下平移 3 个单位,所得图象的函数解析式
为 y=(x-1)2-4,则 b,c 的值为
(B)
A.b=2,c=-6
B.b=2,c=0
C.b=-6,c=8
D.b=-6,c=2
3.已知二次函数 y=a(x-h)2+k(a>0),其图象过点 A(0,2),B(8,3),则 h 的值可以是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考培优专题用待定系数法求二次函数解析式(含答案)一、单选题(共有3道小题)1.函数20y ax a =≠,()的图象经过点(a ,8),则a 的值为( )A.±2B.-2C.2D.32.二次函数()21,0y ax bx a =+-≠的图象经过点(1,1),则1a b ++ 的值是( )A.-3B.-1C.2D.33.若抛物线2=++y x ax b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1=x ,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)二、填空题(共有11道小题)4.已知二次函数2y ax =. 若当1x =-时,2y =,那么a =______ 5.已知二次函数m x x y ++=2的图象过点(1,3),则m 的值为 6.二次函数2ax y =的图象过(2,1),则二次函数的表达式为____________. 7.已知一条抛物线的形状与22x y =相同,但开口方向相反,且与x 轴的交点坐标是(1,0)、(-4,0),则该抛物线的关系式是 .8.若二次函数的图象开口向下,且经过(2,﹣3)点.符合条件的一个二次函数的解析式为 .9.若抛物线c bx ax y ++=2的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为 .10.已知一条抛物线的开口大小、方向与2x y =均相同,且与x 轴的交点坐标是(-2,0)、(3,0),则该抛物线的关系式是 .11.将抛物线221y x x =+-向上平移,使它经过点A(0,3),则所得新抛物线的表达式为 12.如图,已知抛物线2y x bx c =-++的对称轴为直线1x =,且与x 轴的一个交点为(3,0),那么它对应的函数解析式为13.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小.这个函数解析式为 .(写出一个即可) 14.已知抛物线()k m x a y +-=21与()k m x a y ++=22关于y 轴对称,我们称1y 与2y 互为“和谐抛物线”.请写出抛物线7642++-=x x y 的“和谐抛物线” .三、解答题(共有9道小题)15.某二次函数图象如图,试计算其表达式。

16.已知一个二次函数的图象过A (1,5)、B (-1,-1)、C (2,11)三点,求这个二次函数的解析式。

17.已知抛物线过A(―1,―9),B(1,―3),C (3,―5)三点,求抛物线的解析式.18.已知二次函数的图象与x 轴的交点坐标是(-1,0),(5,0),且函数的最值是3.求出该二次函数的关系式.19.如图,抛物线22y ax x c =++经过点A (0,3),B (-1,0),请回答下列问题: (1)求抛物线的解析式;(2)抛物线的顶点为D ,对称轴与x 轴交于点E ,连接BD ,求BD 的长.20.设二次函数()2y ax bx a b =+-+(a ,b 是常数,a ≠0).(1)判断该二次函数图象与x 轴的交点的个数,说明理由.(2)若该二次函数图象经过A (-1,4),B (0,-1),C (1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a +b <0,点P (2,m )(m >0)在该二次函数图象上,求证:a >0.21.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB =xm.(1)若花园的面积为1922m, 求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.22.某二次函数图象经过原点及点11,24⎛⎫- ⎪⎝⎭,且图象与x轴的另一交点到原点的距离为1,求该函数的解析式23.在平面直角坐标系xOy中,抛物线cbxaxy++=2的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b= (用含a 的代数式表示); ②当2EF 的值最小时,求抛物线的解析式;(2)若a=,当0<x <1,抛物线上的点到x 轴距离的最大值为3时,求b 的值.参考答案一、单选题(共有3道小题) 1.C 2.D3.解:∵某定弦抛物线的对称轴为直线x =1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y =x (x -2)=x 2-2x =(x -1)2-1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y =(x -1+2)2-1-3=(x +1)2-4. 当x =-3时,y =(x +1)2-4=0, ∴得到的新抛物线过点(-3,0). 故选:B .二、填空题(共有11道小题) 4.2 5.1 6.241x y =7.()()412+--=x x y 8.答案不唯一.例如:522+--=x x y 9.342-+-=x x y 10.()()32-+=x x y11.223y x x =++或()212y x =++12.223y x x =-++或()214y x =--+13.52+-=x y14.7642+--=x x y 或4374342+⎪⎭⎫ ⎝⎛+-=x y 三、解答题(共有9道小题)15.解:由图可知,该抛物线的顶点为:(1,1),且过点(0,-1) 所以可设抛物线的解析式为:()211y a x =-- 将点(0,-1)代入上式可得:()21011a -=-- 解得:2a =-所以抛物线的解析式为:()2211y x =---16.解:设二次函数的解析式为:()2,0y ax bx c a =++≠ 将A (1,5)、B (-1,-1)、C (2,11)代数上式可得:511142a b c a b c a b c =++⎧⎪-=-+⎨⎪=++⎩,解得:131a b c =⎧⎪=⎨⎪=⎩所以解析式为:231y x x =++17.解:设抛物线的解析式为()2,0y ax bx c a =++≠,将A(―l ,―9),B(1,―3),C(3,―5)三点分别代入抛物线的解析式,得:9,3,935a b c a b c a b c -+=-⎧⎪++=-⎨⎪++=-⎩解得:l35a b c =-⎧⎪=⎨⎪=-⎩∴235y x x =+--.18.解:由题可设解析式为()()15+-=x x a y由题可知顶点坐标为(2,3)代入(2,3)得:()()12523+-=a解得:31-=a∴()()1531+--=x x y19.解:(1)抛物线22y ax x c =++经过点A(0,3),B(-1,0)所以3023c a =⎧⎨=-+⎩,解得13a c =-⎧⎨=⎩所以抛物线的解析式为223y x x =-++ (2)由(1)知,抛物线的顶点坐标为(1,4)所以= 20.解:(1)设y =0∴0=ax 2+bx -(a +b )∵△=b 2-4•a [-(a +b )]=b 2+4ab +4a 2=(2a +b )2≥0 ∴方程有两个不相等实数根或两个相等实根. ∴二次函数图象与x 轴的交点的个数有两个或一个 (2)当x =1时,y =a +b -(a +b )=0 ∴抛物线不经过点C把点A (-1,4),B (0,-1)分别代入得4()1()a b a b a b =--+⎧⎨-=-+⎩ 解得32a b =⎧⎨=-⎩∴抛物线解析式为y =3x 2-2x -1 (3)当x =2时m =4a +2b -(a +b )=3a +b >0① ∵a +b <0 ∴-a -b >0② ①②相加得: 2a >0 ∴a >021.解:(1)由题意,得()28192x x -=解这个方程,得1212,16x x ==(2)花园面积()()22814196S x x x =-=--+ 由题意,知62815x x ≥⎧⎨-≥⎩解得613x ≤≤在613x ≤≤范围内,S 随x 的增大而增大.∴当13x =时,()()2max 1314196195?S m =--+= 22.解:由题可知:另一交点为(1,0)或(-1,0)由于图象经过原点若另一交点为(1,0),则可设函数表达式为:()1y ax x =- 代入11,24⎛⎫-⎪⎝⎭,可得13a =所以函数表达式为:()21111333y x x x x =-=- 若另一交点为(-1,0),则可设函数表达式为:()1y ax x =+ 代入11,24⎛⎫-⎪⎝⎭,可得1a =- 所以函数表达式为:()21y x x x x =--=-+ 综上,函数表达式为:21133y x x =-或2y x x =-+ 23.解:(1)①∵抛物线c bx ax y ++=2的开口向上,且经过点A (0,), ∴c=,∵抛物线经过点B (2,﹣), ∴﹣=4a+2b+, ∴b=﹣2a ﹣1, 故答案为:﹣2a ﹣1;②由①可得抛物线解析式为()23122++-=x a ax y ,令y=0可得()023122=++-x a ax , ∵()04341412423412222>+⎪⎭⎫ ⎝⎛-=+-=⨯-+=∆a a a a a ,∴方程有两个不相等的实数根,设为1x 、2x ,∴a a x x 1221+=+,ax x 2321=,∴()()3111244222212212212+⎪⎭⎫⎝⎛-=+-=-+=-=a a a a x x x x x x EF ,∴当a=1时,EF 2有最小值,即EF 有最小值, ∴抛物线解析式为2332+-=x x y ;(2)当a=时,抛物线解析式为23212++=bx x y , ∴抛物线对称轴为x=﹣b ,∴只有当x=0、x=1或x=﹣b 时,抛物线上的点才有可能离x 轴最远, 当x=0时,y=,当x=1时,y=+b+=2+b ,当x=﹣b 时,()()2321232122+-=+-+-=b b b b y , ①当|2+b|=3时,b=1或b=﹣5,且顶点不在0<x <1范围内,满足条件; ②当323212=+-b 时,b=±3,对称轴为直线x=±3,不在0<x <1范围内,故不符合题意,综上可知b 的值为1或﹣5.。

相关文档
最新文档