巧算和速算方法讲义

合集下载

第1讲 速算与巧算

第1讲 速算与巧算

第一章速算与巧算知识要点在速算与巧算中,主要是运算定律、性质和一些技巧方法的运用。

1.加法巧算。

(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

字母表示:a+b=b+a(2)加法结合律;三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再同第一个数相加,它们的和不变。

字母表示:a+b+c=(a+b)+c=a+(b+c)交换律和结合律通常是在一起使用。

如果多个数相加,任意交换加数的位置,它们的和不变,或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。

字母表示:a+b+c+d+e=d+(b+d+e)+c2.减法巧算。

(1)减法的运算性质(有时可以将减法的运算性质理解成填括号或去括号的性质):一个数减去几个数的和,等于从这个数里依次减去和中的每一个加数。

字母表示:a-(b+c+d)=a-b-c-d(2)一个数连续减去几个数,等于从这个数中减去这几个数的和。

字母表示:a-b-c-d=a-(b+c+d)3.乘法巧算。

(1)乘法交换律:两个数相乘,交换因数的位置,积不变。

字母表示:a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数结合起来相乘,再和第三个数相乘;也可以先把后两个数结合起来先乘,再和第一个数相乘,它们的积不变。

字母表示:a×b×c=(a×b)×c=a×(b×c)交换律和结合律通常是在一起使用。

如果多个数相乘,任意交换因数的位置,它们的积不变;可以选择两个因数相乘,得出便于运算的整十、整百、整千……的积,再将这个积与其他的因数相乘;有时可以把一个因数用几个因数相乘的形式表示,使其中一个因数与算式中其他的某个因数的积成为便于运算的数,然后再与其他的因数相乘,使计算快捷准确。

(3)积不变的规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。

速算与巧算方法完整版

速算与巧算方法完整版

速算与巧算方法HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】速算与巧算一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。

对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。

如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。

2.互补数先加。

例1 巧算下面各题:①36+87+64 ②99+136+101 ③ 1361+972+639+28解:①式=(36+64)+87②式=(99+101)+136 ③式=(1361+639)+(972+28) =200+136=336 =100+87=187 =2000+1000=30003.拆出补数来先加。

例2 ①198+873 ②548+996 ③9898+203解:①式=(198+2)+(873-2)(熟练之后,此步可略) ③式=(9898+102)+(203-102) =200+871=1071 ②式=(548-4)+(996+4) =10000+101=10101=544+1000=1544二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。

例 3① 300-73-27 ② -10解:①式= 300-(73+ 27) ②式=1000-(90+80+20+10) =1000-200=800 =300-100=2002.先减去那些与被减数有相同尾数的减数。

第一讲 速算与巧算(一)

第一讲    速算与巧算(一)

2. 用简便方法计算下面各题。 (1)43+39+38+40+39+41 (2)88+79+82+75+85+81 (3)785+992-185 (4)5131+4367-1131-1367 (5)632-156-232
3.用简便方法计算下面各题。 (1)375-88-12 (2)411-185-15
2.加法交换律、加法结合律; 3.分拆法; 4.多加几,要减几;少加几,再加几;多减几, 要加几。少减几,要减几;
5.减法性质。
例1.用简便方法计算下面各题。 (1)275+156+225+44 (2)9999+998+97+9 (3)68+192+40 (4)68+78+88+98 (5)529-395
(2)42+39+50-38-42+48+37
举一反三: 1.用简便方法计算下面各题。 (1)125+78+75+22
(2)172+55+62+45+28
(3)56+94+150
(4)9+97+996+995
(5)1996+2997+4998+3999
(6)653-498
(7)867-395-399 (8)865-489 (9)397-299+3999-399
3.拓展探究. (1)100-99+98-97+96-95+…+2-1 (2)1+11+21+31+…+101+11 (3)99998+9998+998+98+8 (4)99999+9999+999+99+9 (5)80-79+78-77+76-75+74-73+72-71
例2.用简便方法计算下面各题。 (1)50+56+48+46+52+60
(2)178+188-78
例3.用简便方法计算下面各题。 (1)867-45-55
(2)845-(45+130)

巧算和速算方法

巧算和速算方法

校本课程数学计算方法目录第一讲生活中几十乘以几十巧算方法 .............................. - 2 - 第二讲常用巧算速算中的思维与方法〔1〕 .................... - 4 - 第三讲常用巧算速算中的思维与方法〔2〕 .................... - 6 - 第四讲常用巧算速算中的思维与方法〔3〕 .................... - 9 - 第五讲常用巧算速算中的思维与方法〔4〕 ...................- 10 - 第六讲常用巧算速算中的思维与方法〔5〕 ...................- 14 - 第七讲常用巧算速算中的思维与方法〔6〕 ...................- 16 - 第八讲小数的速算与巧算.................................................- 18 - 第九讲乘法速算1..............................................................- 19 - 第十讲乘法速算2..............................................................- 21 - 第十一讲乘法速算3..............................................................- 23 - 第十二讲乘法速算4..............................................................- 23 - 第十三讲乘法速算5..............................................................- 24 - 第十四讲乘法速算6..............................................................- 25 - 第十五讲乘法速算7..............................................................- 28 - 第十六讲乘法速算8..............................................................- 30 - 注:《速算技巧》 ...............................................................- 33 -第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

一年级速算与巧算(讲义教案+测试)

一年级速算与巧算(讲义教案+测试)

速算与巧算之初步知识本源我们一起的目标:1.提高孩子的数字敏感度2.提高孩子5倍的计算速度和计算能力●解题方法:1.凑整法:把两个数加起来可以凑成整十、整百、整千、整万…,使得计算简便。

2.分组法:把有规律的一些数字进行分组,便于计算。

3.用已知求未知:通过记住一些常用的计算结果,来解决一些未知的计算题。

4.最少分析法:先从最少的情况出发去考虑,可以得到一个解,再做适当地调整。

补充知识:● 1.去括号添括号在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”.● 2.带符号搬家在同级运算中,任何数字都可以带着符号移动.典型例题例1、计算:2+4+6+8+10+12+14+16+18+20=________.【练习1.1】5+7+9+11+13+15+17+19+21+23=_______.【练习1.2】2+3+4+5+15+16+17+18+20=________.例2、计算:147-81+25-19+46+75+54-17=________.【练习2.1】145+142+37+118-17+55=________. 【练习2.2】99+132-27+18-113-9=_______. 例3、计算:6996+999+97+97=________.【练习3.1】9+19+199+1999=_____. 【练习3.2】6998+999+995+99+97+9=________. 例4、计算:22-20+18-16+14-12+10-8+6-4+2-0=________.【练习4.1】10-9+8-7+6-5+4-3+2-1=_______. 【练习4.2】19-17+15-13+11-9+7-5+3=______. 例5、算:28-27-26+25+24-23-22+21+20-19-18+17+16=________.【练习5.1】1.13-12-11+10+9-8-7+6+5-4-3+2=________.【练习5.2】29-28+27+26-25+24+23-22+21+20-19+18=__________.例6、计算:10-20+30-40+50-60+70-80+90=________.【练习6.1】1-2+3-4+5-6+7-8+9-10+11=_______.【练习6.2】11-12+13-14+15-16+17-18+19=_______.例7、计算:(2+4+6+....+100)-(1+3+5+....+99)=_______. 【练习7.1】(2+4+6+8+10)-(1+3+5+7+9)=________.【练习7.2】(2+4+6+....+20)-(1+3+5+...+19)=________.例8、计算:5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=______【练习8.1】1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=________.【练习8.2】5+6+7+8+9+10=_________.例9、(1)把16只小鸡分别装进5个笼子里,每个笼子里都要有鸡,而且每个笼子里的鸡的只数也不能相同,如何分装?(2)按同样要求,把15只小鸡装进5个笼子能办得到吗?(3)按同样要求,把14只小鸡装进5个笼子能办得到吗?【练习9.1】(单选题)星期天,小明家来了9名客人,小明拿出一包糖,里面有54块。

第一讲速算与巧算

第一讲速算与巧算

第一讲速算与巧算第一讲速算与巧算速算技巧在计算中,通过“凑整”、“拆数”、“等积变形”、“应用补充的数”等方法改变运算方法、顺序,运用运算定律、性质、计算公式等,可以使我们的运算变得简便。

速算技巧(一)1.几个接近的数相加例1、计算898+899+901+907+895+911+898+897+906+890思路与技巧:求几个大小比较接近的加数的和,可以选择一个比较接近的数作为相同加数(有时又叫做“标准数”),用乘法求出这几个相同加数的和,然后加上少加的数,减去多加的数。

计算:8888+253+249+248+250+248+246+251+2552.换个方法用乘法分配律例2、1420×3.4+1.42×2300+14.2×430思路与技巧:积不变的规律应用一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。

1、当有几个乘式相加并且有一个因数相同时,可以考虑逆向利用乘法分配律进行简便计算。

2、如果一个因数数字相同而小数点位置不同,要首先利用积的变化规律使得其中一个因数相同,然后再利用乘法分配律。

计算:1.6×5.96+264×0.596+720×0.596速算技巧(二)1.巧用括号改变运算顺序引例:看谁算得又对又快,(1)562+314+438+286 (2)713-36-64 (3)713-(213-46)例1:计算: 63587-3963-2065+36413-4789-3183思路与技巧:在连减运算时,有时运用连减的规律a- (b+c)=a-b-ca- (b-c)=a-b+c计算:236.87-37.4-6.87-28.5-34.12.商不变的性质的应用被除数与除数同时扩大或缩小相同的倍数,所得的商不变.例2、计算(1)5000 ÷ 125 (2)(96000-96)÷(32000-32)(3)(97932-97.932)÷(32644-32.644)计算:(12344-123.44)÷(24688-246.88)速算技巧(三)运用运算律简便计算计算(1)80.8×125 (2)125×239×25×64×5乘法中的凑整规律:5×2=1025×4=100125×8=1000当乘法算式中有因数5、25、125,常常通果拆数和积不变的性质得到上面几个式子。

《速算与巧算》课件

《速算与巧算》课件

学习乘方运算的基本法则和 运算规律,能够快速算出各 种数字及变量的幂值。
学习倍数相同的乘除法,能 够快速计算各种数字或变量 的倍数和。
大数的简便计算
1
快速求数字各位数之和
采用数位拆分法,令各位数之和等于原数字
简单计算任意两整数之积
2
加上各个位数上的数字,以此类推。
使用竖式计算法,将要相乘的各个数字交叉
四则运算的技巧
1
整数加减
学习使用不进位加减、凑整和逆运算等方法,
整数乘法
2
快速计算两数之和或差。
学习口诀和倍数法等技巧,能够免除繁琐的
乘法计算,快速得出正确结果。
3
整数除法
学习用近似值代替真值的方法,或者人工展 开除法计算,快速得出商和余数。
小数的加减法
小数相加
通过对齐小数点后的数字,使用竖 式计算法或逐位相加等方法,快速 计算小数的和。
小数相减
通过增补小数位或对齐小数点后的 数字,使用竖式计算法或逐位相减 等方法,快速计算小数的差。
小数乘法
学习对齐小数点后的数字,从左向 右逐个相乘,并最后加上个位数后 位置的小数点得到结果。
乘法口诀表的应用
1 简便乘法
2 乘方运算
3 倍数乘除
通过将两个乘数按照其各位 数字对位相乘,使用竖式计 算法或节约计算等方法,快 速得出两数之积。
通过考虑质因数的分解等方 法,简化根式的表示,从而 便于进行根式运算。
针对带有根号的算式,使用 四则运算的规则和方法,正 确得出最终结果。
针对实数和虚数的不同运算 和表示,学习有效的计算方 法,轻松解决各种根式运算 问题。
总结:速算和巧算索数学、计算的过 程中逐渐发展起来的。在古代,人们就通过各种方法 完成了日常计算;如今,计算机的出现和普及,也让 速算和巧算技巧的应用更加便捷和广泛。

第一讲 :速算与巧算

第一讲 :速算与巧算

速算与巧算速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。

速算巧算中会用到加法和减法,乘法和除法的运算定律和运算性质!巧算方法中,蕴含着一种重要的解决问题的策略:转化问题法。

即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或凑整从而变成一个易于算出结果的算式。

例1:9+99+999+9999(凑数法)即时练习:计算:(1)999999+99999+9999+999+99+9(2)9+98+996+9997(3)19999+2998+396+497(4)198+297+396+495(5)1998+2997+4995+5994(6)19998+39996+49995+69996例2:489+487+483+485+484+486+488(基准数)即时练习:计算:(1)50+52+53+54+51(2)262+266+270+268+264(3)89+94+92+95+93+94+88+96+87(4)381+378+382+383+379(5)1032+1028+1033+1029+1031+1030(6)2451+2452+2446+2453例3:(1)632—136—232 (2)128+186+72—86在一个没有括号的算式中,如果只有第一级计算,计算时可以根据运算定律和性质调换加数或减数的位置。

即时练习:(1)1208—569—208(2)283+69—183(3)132—85+68(4)2318+625—1318+375例4:(1)248+(152—127)(2)324—(124—97)(3)283+(358—183)计算有括号的加减混合运算时:括号前面是“+”,去掉括号不改号,括号前面是“-”,去掉括号要改号。

即时练习:(1)384+(252—166)(2)629+(320—129)(3)462—(262—129)(4)662—(315—238)(5)5623—(623—289)+452—(352—211)(6)736+678+2386—(336+278)—186例5:(1)286+879—679 (2)812—593+193=286+(879—679)=812—(593—193)=286+200 =812—400=486 =412计算没有括号的加建混合运算时:括号前面是“+”,添、去括号不改号,括号前面是“-”,添、去括号要改号。

1速算与巧算

1速算与巧算

第一讲速算与巧算一、运用加法运算定律巧算加法1.直接利用补数巧算加法如果两个数的和正好可以凑成整十、整百、整千,那么我们就可以说这两个数互为补数,其中的一个加数叫做另一个加数的补数。

如:28+52=80,49+51=100,936+64=1000。

其中,28和52互为补数;49和51互为补数;936和64互为补数。

在加法计算中,如果能观察出两个加数互为补数,那么根据加法交换律、结合律,可以把这两个数先相加,凑成整十、整百、整千,……再与其它加数相加,这样计算起来比较简便。

例1巧算下面各题:(1)42+39+58;(2)274+135+326+265。

解:(1)原式=(42+58)+39=100+39=139(2)原式=(274+326)+(135+265)=600+400=10002.间接利用补数巧算加法如果两个加数没有互补关系,可以间接利用补数进行加法巧算。

例2计算986+238。

解法1:原式=1000-14+238=1000+238-14=1238-14=1224解法2:原式=986+300-62=1286-62=1224以上两种方法是把其中一个加数看作整十、整百、整千……,再去掉多加的部分(即补数),所以可称为“凑整去补法”。

解法3:原式=(62+924)+238=924+(238+62)=924+300=1224解法4:原式=986+(14+224)=(986+14)+224=1224以上方法是把其中一个加数拆分为两个数,使其中一个数正好是另一个加数的补数。

所以可称为“拆分凑补法”。

3.相接近的若干数求和下面的加法算式是若干个大小相接近的数连加,这样的加法算式也可以用巧妙的办法进行计算。

例3计算71+73+69+74+68+70+69。

解:经过观察,算式中7个加数都接近70,我们把70称为“基准数”。

我们把这7个数都看作70,则变为7个70。

如果多加了,就减去,少加了再加上,这样计算比较简便。

1第一讲 速算与巧算

1第一讲 速算与巧算

第一讲速算与巧算知识导航:计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领.准确.快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率.节省计算时间,更可以锻炼记忆力,提高分析.判断能力,促进思维和智力的发展.1.要认真观察算式中数的特点,算式中运算符号的特点.2.掌握基本的运算定律:乘法交换律.乘法结合律.乘法分配律.3.掌握速算与巧算的方法:如等差数列求知.凑整.拆数等等.例1.19199199919999199999++++解析:运用凑整法来解十分方便,也不容易出错误.解:原式=)1)1+(−20−−−+−+200020000((200000)()1200)1(1=5222220−=222215【巩固】898998999899998999998+++++=解析:个位数都是8,加2正好可以凑整得10,每个数加2就会多出12,所以还要在最后减12.解:原式=12++++10−+1000000100000100001000100=1111098例2.539540541542543544545++++++解析:这七个数均差1,且个数为7,是单数,所以中间数就是七个数的平均数.解:原式5427=×=3794【巩固】(445443440439433434)6+++++÷解析:这6个数相差并不均匀,但是可以看出都比较接近440,采用移多补少的方法求和.解:原式=6−×+(÷)440146=439例3.482594115932359×+×−×解析:先改变运算顺序,带着符号搬家,把4159×与×与32359×交换位置,4825932359×都有公共因数59,用乘法分配律将48259×与32359×的差算出再与41159×求和.解:原式482593235941159=×−×+×59(482323)41159=×−+×5915941159=×+×159(5941)=×+159100=×15900=【巩固】9999222233333334×+×解析:数虽然比较大,但是仔细观察就能发现有共同之处,可以进行拆数找到相同的因数,再利用乘法分配律进行计算.解:原式=33343333222233333×+××=)33346666(3333+×=100003333×=33330000例4.10099989796321+−+−++−+⋯解析:仔细观察就会发现:符号是交替出现的,这是一个等差数列,从后向前看从1到100一共是100个数,从前向后看不管100和1,中间部分两数相减的差都是1,中间部分是98个,两个一组有98÷2=49个1.解:原式100(9998)(9796)(32)1=+−+−++−+⋯100491=++150=【巩固】989796959493929190894321+−−++−−++−−−++⋯解析:加减交替出现,观察可知两加两减结果是98+97-96-95=4,最后的2和1不算在内,可知四个一组有244)298(=÷−个4.解:原式=12)3456(...)91929394()95969798(++−−+++−−++−−+=3244+×=99例5.200920102010201020092009×−×解析:仔细观察每一个数,找出它们的共同特点,20102010可分解成201010001×这是四位数的复写如10001,abcd abcdabcd ×=三位数的复写1001,abcabc ×=abc 二位数的复写101,ab abab ×=这个规律在简便运算中常用到.解:原式20092010100012010200910001=××−××0=【巩固】9898989899999999101010111111111×÷÷解析:因为abababab ab =×1010101,aaaaaaaa a =×11111111.解:原式=111111111010101111111119101010198÷÷×××=998×=882例6.(11637)(163756)(1163756)(1637)++×++−+++×+解析:设数法.可将某些括号内的数用字母代替,设163756a ++=,1637b +=,这样就达到简便的目的.也可用口诀来解答.解:方法一:设163756a ++=1637b+=(11637)(163756)(1163756)(1637)++×++−+++×+=(1)(1)b a a b+×−+×=a ab b ab+−−=a b −(,a b 分别用原式代入)=1637561637++−−=56方法二:观察算式,记口诀:有头无尾,无头有尾,有头有尾,无头无尾,结果头乘尾.算式中1为头,56为尾.原式=561×=56【巩固】(31735)(173549)(3173549)(1735)++×++−+++×+解:设a =++35173,b=+3517原式=ba b a ×+−+×)49()49(=bab a ab 4949−−+=)(49b a −×=)351735173(49−−++×=349×=147课后作业1.(1351989)(2461988)++++−++++=⋯⋯解析:按照等差数列的分组求和方法,前括号从第二项开始每项的数比后面括号中的相应的数大1,可以进行分组,此为方法1;另一方法,按照等差数列求和公式分别求出两者之和再相减.解:法1:原式=1+++−⋯3(+−−1988)21989)(5()4=1×÷21+1988=995法2:求项公式:(末项-首项)÷公差+1;前括号有:9952-2+÷(项)11988=)12−项;后括号有:99419891÷+(=原式=2+−×+(÷×÷1988994)19892(2)1995=989030990025−=9952.389387383385384386388++++++=解析:找基准数,这几个数都和385接近,采用多加,少减的方法解:原式=3−+++×+−711385+242=27023.777777777777777++++=解析:将7按照所在的数位来计算,解:原式=70000+××××++527+37000470700=70000+++21001400028035+=864154.999995++++998997996解析:凑整法解:原式=1+−−+−+−+10001000210001000−3541000=155000−=49855.2008++++++2005(÷2006)20102011200720082009解析:括号里的数移多补少正好都能凑成2008共有7个,所以是2008的7倍.解:原式=2008×72008÷=76.12345×+×−999899991234512345×解析:数比较大,但是仍然符合乘法分配律的情况解:原式=)+×(12345−9998999=1000012345×=1234500007.1234314243212413+++解析:数字1、2、3、4,在个位.十位.百位.千位上均各出现一次.解:原式1111222233334444=+++1111(1234)=×+++111110=×11110=8.�100100100111222333÷⋯⋯⋯������个个个的结果解:�100100100111222333÷⋯⋯⋯������个个个��10010010099099311122211131000233334=÷÷=÷=⋯⋯⋯���⋯�����⋯�����个个个个个9.计算889899899989999++++解析:观察题目的特点发现:8可以看作19−,可以看作190−,899可以看作1900−……,又是连加的算式.根据这个特点,可以看作9,90,900,9000与90000的和再减去5个1的和.解:899998999899898++++=19000019000190019019−+−+−+−+−=51)900009000900909(×−++++=599999−=99994还可以这样想:889899899989999++++=)189999()18999()1899()189(4++++++++=900009000900904++++=9999410.486250480375×+×解:原式=480625480375×+×)625375(480+×=1000480×=480000=。

第二讲 速算与巧算

第二讲 速算与巧算

第二讲速算与巧算第二讲速算与巧算第二讲速算与巧算(一)专题鼓励:1、凑成整十、整百、整千的数,把一些接近整十、整百、整千的数看成接近的数进行简算,对于原数与整十、整百、整千相差的数,要根据“多加减去,少加还要加,多减要加上,少减还要减”的原则进行处理。

2、利用运算定律使运算简便。

典型例题:例1、计算:(1)548+397(2)2867+502解析:(1)式中的397吻合400,548+400就化后原式加之397多提了“3”,所以必须在算式后面乘以“3”:548+397=58+400-3=948-3=945(2)式中的502接近500,2867+500就比原式加上502少加了“2”,所以应在算式后面再加上“2”:2867+502=2867+500+2=3367+2=3369基准2、排序:(1)736-197(2)2463-304解析:(1)式中的197接近200,用736-200就比原来减去197多减了“3”,所以要在算式后加之“3”:736-197=736-200+3=536+3=539(2)式中的304接近300,2643-300比原来减去304少减了“4”,所以要在后面再减去“4”:2463-304=2463-300-4=2163-4=2159恶搞训练:用简便方法计算下面各题:(1)、472+198(2)、402+2729(3)、278-199(4)、2645-403基准3、排序:(1)、2739-325-175(2)、856-(156+78)解析:(1)通过观察可以发现(1)式中的减数175和325正好可以凑成整百数,应用加法性质并使排序方便快捷。

(一个数边续乘以几个数,等同于这个数乘以这几个数的和。

)(1)2739-325-175=2739-(325+175)=2739-500=2239(2)题目中856与156有相同的尾数,可以先减,是上面减法性质的反用。

(1)856-(156+78)=856-156-78=700-78=622基准4、排序:(1)、3652-289+348(2)、497+303解析:(1)式中的3652与348可以凑成整千数,先加起来,然后再减去289。

常用的巧算和速算方法

常用的巧算和速算方法

常用的巧算和速算方法巧算和速算方法是指通过一些技巧和简便的方式来进行快速计算的方法。

下面将介绍一些常用的巧算和速算方法,包括简单加减乘除的快速计算以及一些应用于特定情况下的技巧。

一、加法的巧算方法:1.巧用9法则:对于两位数相加,将个位数保持不变,十位数加1、例如,27+9=36,23+9=322.拆分相加法:将两个数分别拆分成十位数和个位数,然后分别相加,再将结果相加。

例如,36+48=30+40+6+8=70+14=84二、减法的巧算方法:1.同余法:对于两个数的差相等的情况,这两个数对任意一个数同余。

例如,38-13=28-3=252.借位法:将被减数的个位拆分成10的倍数,然后借位。

例如,87-29=80+7-20+9=60+17=77三、乘法的巧算方法:1.交换计算次序:对于两个数相乘,可以交换两个数的位置,如2×3=3×22.象形法:找到一个更接近的数近似计算,然后再进行修正。

例如,36×17≈40×20-4×5=800-20=780。

四、除法的巧算方法:1.近似商法:找到一个更接近的数进行计算,然后再进行修正。

例如,84÷6≈80÷6+4÷6=13.3+0.7=142.拆分法:将数字拆分成10的倍数,然后进行计算。

例如,84÷6=70÷6+14÷6=11+2.3=13.3五、应用于特殊情况的速算技巧:1.平方的巧算:对于以5结尾的数的平方,只需将这个数除以2,再在最后一位加上5、例如,35²=3×4=12,最后加上5,得12253.百分比的快速计算:对于折扣率为10%、20%、25%、50%和75%的情况,可以直接将原价按照9、8、7、5和4的比例进行计算。

这些巧算和速算方法可以在日常生活和工作中帮助我们更快地进行计算,提高计算的准确性和效率。

通过熟练运用巧算和速算方法,我们可以更好地应对数学问题和实际情况,使计算变得更加简单和方便。

(优质讲义)速算与巧算ppt讲义

(优质讲义)速算与巧算ppt讲义
=64×(43+37)+80×36 =64×80+80×36 =80×(64+36) =80×100 =8000
小结:多次运用乘法分配律
我爱展示
简算:
(1)54×69-12×54+57×46
=54×(69-12)+57×46 =54×57+57×46 =57×(54+46) =57×100 =5700
小结:补“1”型:巧用乘法分配律
我爱展示
(1) 55×101-55
=55×101-55×1 =55×(101-1) =55×100 =5500
(2)96×37+96×64-96
=96×37+96×64-96×1 =96×(37+64-1) =96×100 =9600
• 计算:43×64+64×37+80×36
我爱展示
用简便方法计算下面各题。 (1)15.63-(5.72+1.63)
=15.63-5.72-1.63 =15.63-1.63-5.72 =14-5.72 =8.28
(2)18.42-(15.47-1.58)
=18.42-15.47+1.58 =18.42+1.58-15.47 =20-15.47 =4.53
62+1
观察数字特征,能否拆成相同的因数?
56×63+62×44 =56×(62+1)+62×44 =56×62+56×1+62×44 =56×62+62×44+56×1 =62×(56+44)+56 =62×100+56 =6200+56 =6256
我爱展示
简算:49×62-48×63
=49×(63-1)-48×63 =49×63-49-48×63 =63×(49-48)-49 =63-49 =14
(2)23×136-45×23-91×13

四年级数学专题讲义第一讲 速算与巧算

四年级数学专题讲义第一讲 速算与巧算

第一讲速算与巧算〖内容概述〗计算是数学学习的根本,任何问题到最终都要归结为数的计算,从而得到最终结果。

而计算的方法的好坏直接决定我们的解题速度。

一个好的计算方法,往往使得原本计算量很大计算简化,从而节省我们的时间。

在本讲里我们主要向大家介绍一些常规的计算技巧,其中包括凑整构造法,拆分法构造法,分组构造法,推理计算及等差数列法等。

〖经典例题〗例1.计算9999+999+99+9= 。

分析:如果直接计算难度会较大,所以我们要寻找一种简单的解题方法来解决此题。

不难发现每个数如果加上1后就会凑成整十、整百、整千,因此我们用凑正法计算。

9999+999+99+9=10000-1+1000-1+100-1+10-1=11110-4=11106。

例2、计算1396×25×18分析:算式里有25,我们就要找到4,原式=698×2×25×2×9=698×9×100=(6980-698)×100=628200.这里注意的是4可以不是从同一个数里找,也可以从两个数里分别找出2,然后凑成4.〖方法总结〗本题我们用到的是凑整法。

当我们遇到需要计算的数跟整十、整百、整千接近时,我们就可以将其凑成整十、整百、整千来计算,从而避免了直接计算带来的麻烦。

有时为了计算的方便我们不一定非要凑成整十、整百的数,只要好算就可以,如:999991234554321--,我们只要将后面的两个相加,这样就很好算了。

像许多数相加后再除以另一个数时,我们也只要凑成除数的倍数即可。

此外,在加法的巧算里,尾数互补先相加;减法的巧算里,尾数相同先相减。

乘法巧算找朋友(5和2,25和4,125和8);除法巧算找倍数,先相除。

〖巩固练习〗1.计算:1.9+1.99+1.999+199.99+19999.9+1999999=_______。

2.计算2.19 6.480.51 1.38 5.480.62++---3.计算60000÷2÷8÷5÷1254.计算5÷(7÷11)÷(11÷15)÷(15÷21)5.计算(1l×l0×9×…×3×2×1)÷(22×24×25×27).6.计算(87+56+73+75+83+63+57+53+67+78+65+77+84+62)÷147.计算1999×125×168与0.125×32×0.25〖经典例题〗例3.计算999×222+333×334= 。

小学四年级速算与巧算讲义

小学四年级速算与巧算讲义

第一讲速算与巧算加减法速算与巧算中常用的三大基本思想:1.凑整(目标:整十、整百、整千...(1)补数:两个数相加,若能恰好凑成整十、整百、整千...,就把其中的一个数叫做另一个数的“补数”(2)如何求补数:高位找9,个位找10.。

2.分拆(分拆后能够凑成整十、整百、整千...)3.基准数法常见加减法巧算原理运用的定律:a)加法交换律:a+b=b+a a+b+c+d=d+b+a+cb)加法结合律:a+b+c=(a+b)+c=a+(b+c)一、加法中的巧算1)“凑整法”(找互补的数先加起来)例1.24+44+56(凑整)例2.53+36+47(凑整)例3.96+15(分拆法)例4. 188+873(分拆法)例5. 22+19+23+18+21(基准数法)课堂练习:(1)36+87+64(2)99+136+101(3)1361+972+639+28(4)98+87(5)548+996(6)(49+54+48+53+49+53)÷6二、减法中的巧算去括号添括号法则:(1)a+(b-c)=a+b-c,a-(b+c)=a-b-c,a-(b-c)=a-b+c神经依旧制作贡献(2)a+b-c=a+(b-c),a-b+c=a-(b-c),a-b-c=a-(b+c)1)把几个可以凑成“整数”的减数先加起来,再从被减数中减去例7:300-73-272)先减去那些与被减数有相同尾数的减数。

例8:4723-(723+189)3)利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。

例9:467+997课堂练习:(1) 172-36-34(2) 1000-90-20-10-80(3) 2356-159-256(4) 495-(95-48)(5) 323+199三、加减混合式的巧算(带着符号搬家)例10. 325+46-125+54课堂练习:(1) 537-(543-163)-57(2) 947+(372-447)-572课后作业:计算:(1)28+44+39+62+56+21(2)1987-178-822(3)178-47-53(4)9+99+999(5)5678-(326+678)(6)4583+898(7)478-128+122-72(8)2000-1347-253+1593。

第一讲 速算与巧算

第一讲  速算与巧算

第一讲 速算与巧算知识导航:1. 掌握运算性质和定律,应用性质和定律进行简便计算。

2. 利用和 差 积 商的变化规律进行巧算。

3. 在计算稍复杂的题时,根据题中运算符号或数字特点,合理的把参加运算的数字拆开,合并,再进行重新组合,这是常用的方法之一。

4. 简算灵活性强,难度大,算前要认真审题,弄清楚数或算式的结构特点,确定运算性质,定律是正用还是反用;是局部用还是整体用;是直接用还是变形用。

典型例题分析:例1:2001÷200120022001例2888888888888123456787654321⨯++++++++++++++例3.10981.......543143213211⨯⨯++⨯⨯+⨯⨯+⨯⨯ 基本练习; 1.23311723233114⨯++⨯ 2.199920022003⨯3.1321311301÷ 4.(4.8×7.5×8.1)÷(2.4×2.5×2.7)5.÷⨯85.4(41)53315.66.3185⨯+- 6.351549995499549⨯+++7.(2×4×8×16×32)×(0.5×0.625×0.125×0.25)8.计算 0.2004×2005.2005-0.2005×2004.20049.1+90117721155611342111301920171215613+++++++拓展提高;1.9.1×4.8×6.13.141217÷÷÷ 2.471471471÷1571571573120062005200620042005-⨯⨯+ 4.6.65.54.43.32.21.12.13118.86.64.42.2++++++++++5.1001×200111991981981981335+÷+6.69121345611728186414321216169121++++++7.818181182182218218181818⨯ 8.100971.......131011071741411⨯++⨯+⨯+⨯+⨯9.10...43211...432113211211+++++++++++++++塞题精选;1. 把4/7化成小数后是多少?小数点后第2000位的数是几?2一本书页数需要6909个数码,这本书一共有多少页?3用1至8这八个自然数中的四个数组成四位数,从个位到千位的数字依次增大,且任意两个数字的差都不是1,这样的四位数共有多少个?4一家三口人,爸爸比妈妈大3岁,现在他们一家人的年龄之和是80岁,10年前全家人的年龄之和是51岁,女儿今年多少岁?5 两人做移火柴棍的游戏,游戏的规则如下:两人从一堆火柴棍中轮流移走1到7根,直到移尽为止。

小学奥数第一讲:速算与巧算

小学奥数第一讲:速算与巧算

小学奥林匹克数学第一集:第一讲:速算与巧算一、例题讲解十个数字,几种计算符号,构造了千变万化的数学计算,计算要做到又快又正确。

关键在于掌握运算技巧,“硬算”加“巧算”。

“巧算”是对算式整体以及其中的每个数进行观察,剖析算式的特点和各数之间的可能存在的联系。

恰当地利用运算定律,改组运算顺序,使计算简便易行。

要达到“速”与“巧”主要掌握以下几点计算技巧:1.凑成容易算的数,在心算中培养凑整、搭配、替代的思维习惯。

如凑成整十、整百、整千……又如若干比较接近的数相加时,可选择一个基数作为计算基础。

在此数上加上或减去这个基数的相差数。

2.利用运算定律简化运算。

3.根据某些算式的定律,学会创造条件,进行分组,分类地计算,使计算简便。

4.适当配对,能使计算简便。

例1:610+270+190分析:题中610+190=800,凑成整百数,所以先把“+190”搬家,搬到“+270”的前面,然后再把610+190的和算出来。

解:610+270+190=(610+190)+270=800+270=1070(说明:加法的结合律和交换律是计算中常用的方法。

)例2:320-60+180分析:题中320+180的和是整百数,可以先把“+180”搬到“-60”的前面,再算出320与180的和。

解:320-60+180=(320+180)-60=500-60=440例3:6998+995+97+59分析:题中6998、995、97和59接近整千、整百、整十的数。

可以先把这些加数分别看作:7000-2、1000-5、100-3、60-1,然后再算出(7000+1000+100+60)-(2+5+3+1)的结果。

解:6998+995+97+59=7000-2+1000-5+100-3+60-1=(7000+1000+100+60)-(2+5+3+1)=8160-11=8149例4:计算18+21+23+20+15+19分析:先确定一个数作为基准,并将其他数与这个数作比较。

乘法的速算与巧算

乘法的速算与巧算

25 知识导航 主要内容第三讲 乘法的速算与巧算一、乘法一、乘法结合律结合律:(a (a××b)b)××c=a c=a××(b (b××c)c);;牢记并灵活运用三个特殊的牢记并灵活运用三个特殊的牢记并灵活运用三个特殊的等式等式:2×5=10, 45=10, 4××25=10025=100,, 8 8××125=1000二、二、乘法分配律乘法分配律:a ×(b+c)=a (b+c)=a××b+a b+a××c ; a a××(b-c)=a (b-c)=a××b-a b-a××c熟悉提熟悉提公因式公因式:a :a××b+a b+a××c=a c=a××(b+c); a (b+c); a××b-a b-a××c=a c=a××(b-c)一、乘法结合律:一、乘法结合律:(a (a (a××b)b)××c=a c=a××(b (b××c)总结:多个数相乘,任意总结:多个数相乘,任意交换交换相乘的次序,其积不变如:(2×3﹚×﹚×44=2×﹙×﹙33×4﹚但是在计算中,两数的但是在计算中,两数的但是在计算中,两数的乘积乘积是整十、整百、整千的要先乘,为此,要牢记下面三个特殊的等式面三个特殊的等式: 2: 2: 2××5=10, 45=10, 4××25=10025=100,, 8 8××125=1000 利用这三个等式简化计算:利用这三个等式简化计算:5×12= 512= 5××24= 524= 5××28= 2525××12= 2512= 25××24= 2524= 25××28= 125125××16= 12516= 125××24= 12524= 125××32=1、列出25乘以4的1倍到9倍的式子和答案;倍的式子和答案;2、列出125乘以8的1倍到9倍的式子和答案;倍的式子和答案;3、特殊因数的巧算:一个数×、特殊因数的巧算:一个数×101010,数后添,数后添0;一个数×一个数×一个数×100100100,数后添,数后添0000;;一个数×一个数×一个数×100010001000,数后添,数后添000000;;………………以此类推。

常用的巧算和速算方法

常用的巧算和速算方法

常用的巧算和速算方法一、加法巧算和速算方法凑整法 凑整法是加法巧算和速算中最常用的方法之一。

它的基本思想是将加数凑成整十、整百、整千等,然后再进行计算。

例如,计算 23+45+55 时,可以将 45 和55 凑成 100,然后再加上 23,得到 123。

交换律和结合律 交换律和结合律是加法运算中的基本定律,它们可以帮助我们简化计算。

例如,计算 23+45+55 时,可以先将 45 和 55 相加,得到 100,然后再加上23,得到 123。

基准数法 基准数法是一种将加数都近似地看作某个基准数的方法。

例如,计算23+22+24+21 时,可以将 23 看作基准数,然后将其他加数都近似地看作 23,得到23×4=92。

二、减法巧算和速算方法凑整法 凑整法同样适用于减法巧算和速算。

例如,计算 100-45 时,可以将 45 凑成50,然后再用 100 减去 50,得到 50。

交换律和结合律 交换律和结合律在减法运算中同样适用。

例如,计算 100-45-55时,可以先将 45 和 55 相加,得到 100,然后再用 100 减去 100,得到 0。

基准数法 基准数法在减法运算中也可以使用。

例如,计算 100-45-55 时,可以将100 看作基准数,然后将其他减数都近似地看作 100,得到 100-100=0。

三、乘法巧算和速算方法乘法分配律 乘法分配律是乘法运算中的基本定律,它可以帮助我们简化计算。

例如,计算 25×(40+4)时,可以先将 40 和 4 分别乘以 25,然后将结果相加,得到25×40+25×4=1000+100=1100。

乘法结合律 乘法结合律是乘法运算中的另一个基本定律,它可以帮助我们简化计算。

例如,计算 25×4×25 时,可以先将 25 和 4 相乘,得到 100,然后再将 100 乘以 25,得到 2500。

乘法交换律 乘法交换律是乘法运算中的基本定律之一,它可以帮助我们简化计算。

完整版小学数学三年级速算与巧算技巧

完整版小学数学三年级速算与巧算技巧

第一讲:速算与巧算关键培养孩子的思维习惯:遇到计算题先观察,再思考,然后选择适合的速算方法!所谓“一看〞“二想〞“三选择〞一、分组法适用于有一定规律的加减混合运算,通过加减重新组合,将原有计算转变为较小数或相同数的计算,从而简便计算过程。

观察:1、数字有一定规律2、符号有一定规律方法:看符号,找周期。

根据符号的规律划分周期,进行分组计算。

切记不要忘了第一个数的符号!1、简单分组例:10-9+8-7+6-5+4-3+2-1+-+-+-+-+-〔符号周期为+、-,两个数为一组〕那么原式=〔10-9〕+〔8-7)+〔6-5〕+〔4-3〕+〔2-1〕=1+1+1+1+1=52、分组有剩余例:20+19–18+17–16+15–14+13–12+11–10++-+-+-+-+-〔符号周期为+、-,两个数一组,但第一个数多余出来了〕那么原式=20+〔19-18〕+〔17-16〕+〔15-14〕+〔13-12〕+〔11-10〕=20+1+1+1+1+1=253、复杂分组例:48+47-46-45+44+43–42–41+40+39–38–37+36++--++--++--+〔符号周期为+、+、-,-,四个数一组〕那么原式=〔48+47-46-45〕+〔44+43–42–41〕+〔40+39–38–37〕+36=4+4+4+36=48例:15+14–13+12+11–10+9+8–7+6+5–4+3+2-1++-++-++-++-++-〔符号周期为+、+、-,三个数一组〕那么原式=〔15+14–13〕+〔12+11–10〕+〔9+8–7〕+〔6+5–4〕+〔3+2–1〕=16+13+10+7+4〔这里提醒孩子也要善于观察,每组后两个数先做运算得1,再加第一个数比拟简便〕=〔16+4〕+〔13+7〕+10=20+20+10=504、重新分〔即符号或数字的律不好用,需要察重新“排〞分〕例:1-2+3-4+5-6+7-8+9-10+11察,数字和符号都是有律的,可是按照〔1-2〕+〔3-4〕⋯⋯分的,每个括号里都不减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识疏导】
一、小数乘法
1、小数乘整数计算方法:
1)先把小数扩大成整数
2)按整数乘法乘法法则计算出积
3)看被乘数有几位小数点,就从积的右边起数出几位点上小数点。

若积的末尾有0可以去掉
2、小数乘小数的计算方法:
1)先把小数扩大成整数
2)按整数乘法乘法法则计算出积
3)看积中有几位小数就从积的右边起数出几位,点上小数点。

如果乘得的积的位数不够,要在前面用0补足。

二、小数除法
1、小数除整数的计算方法:
1)按照整数除法的法则去除
2)商的小数点要和被除数的小数点对齐
3)如果除到被除数的末尾仍有余数就在后面添上0再继续除。

4)除得的商的哪一位上不够商1就要在那一位上写0占位。

2、小数除法的计算方法
1)一看:看清被除数有几位小数
2)二移:把除数和被除数的小数点同时向右移动相同的位置,使除数变成整数,当被除数位数不足时,用
“0”补足。

3)三算:按照小数除整数的计算法则进行计算。

3、乘法的交换律、结合律、分配律同样适用于小数乘法,应用这些运算定律,可以使计算简便。

乘法交换律 a×b=b×a
乘法结合律 a×(b×c)=(a×b)×c
乘法分配律 a×(b+c)=a×b+a×c a×(b—c)=a×b—a×c
4、除法性质:a÷b÷c=a÷(b×c)
推广(a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c
常用的巧算和速算的方法
【例题精析】
例1、顺逆相加
1+ 2 + 3+ 4+ 5+……+100
+100+99+ 98+ 97+ 96+……+1
101+ 101+101+101+101+……+101
101100 2
=5050
举一反三
3+5+7+……+97+99=
例2、分组计算
① 4.75-9.64+8.25-1.36=_____. ②3.17-2.74+4.7+5.29-0.26+6.3=_____
例3、乘法分配律与结合律
①(5.25+0.125+5.75)⨯8=_____. ②34.5⨯8.23-34.5+2.77⨯34.5=
②③19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.
常用的整十整百整千 :_________________________________________________
例4、由小推大
计算“100”的方阵的和
1 2 3 4 5 6 (100)
2 3 4 5 6 7 (101)
3 4 5 6 7 8 (102)
4 5 6 7 8 9 (103)
5 6 7 8 9 10 (104)
6 7 8 9 10 11 (105)
………………………
100 101 102 103 104 105 (199)
先化大为小
计算“5⨯5”的方阵
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
对角线上五个5之和为25 ,五个斜行每个斜行数之和都为25,所以“5⨯5”方阵和为255=125 即5⨯5=125
所以,“100”的方阵和为=1000 000
例5、凑整方法
计算13.5⨯9.9+6.5⨯10.1=_____. 1.5×105= 104×2.5= 2.5×32×12.5=
举一反三
计算 25×12 = 125×72 = 17×32-17×22= 3200÷4÷25 =
例6、整体思想
计算 32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.5378.
原式=32.14+64.28⨯0.5378⨯(0.25+0.75-8⨯0.125)
=32.14+64.28⨯0.5378⨯0
=32.14
举一反三
(1)计算(2+3.15+5.87)(3.15+5.87+7.32)-(2+3.15+5.87+7.32)(3.15+5.87)的值
例7、拆数加减
+++++++
=+ + + + +
(1-)+()+
=1- =
举一反三
计算(1)(2)
(3)+ =
例8、个数折半
(1)分母相同的所有真分数相加。

举一反三
+
(2)分母为偶数,分子为奇数的所有同分母的真分数相加。

举一反三
(3)分母相同的所有最简真分数相加。

举一反三
【家庭作业】
1、计算题
6.5×8.4 3.2×2.5 2.6×1.08
15.6÷12 328÷16 12.6÷0.28
2、脱式计算
72×0.81+10.4 7.06×2.4-5.7 50.4×1.9-1.8 1.08×0.8÷0.27 2.05÷0.82+33.6 44.28÷0.9÷4.1 5.5×17.3+6.7×5.5 3.8+4.29+2.1+4.2 9.07-22.78÷3.4。

相关文档
最新文档