广东省深圳市龙华二中2013届九年级上第三次月考数学试题
2013年深圳中学毕业考试数学试卷

甲 乙深圳中学2012-2013学年度第二学期九年级模拟试题数 学 试 卷说明:1.全卷23题,共8页,考试时间90分钟,满分100分.2.答题前,请将班级、姓名、准考证号(暂用4位班号代替)在答题卡上相应的位置填写或用2B 铅笔填涂。
3.做选择题时,请将选项的字母代号用2B 铅笔填在在答题卡上对应的位置;做解答题时,将解答过程用黑色钢笔或圆珠笔写在指定的框内. 一、选择题(本题10小题,每题3分,共30分,每小题有4个选项,其中只有一个正确的)1.计算:2 ☆ ) A .5 B .3 C .-3 D .-1 2. 如图,水平放置的下列几何体,主视图不是..长方形的是( ☆ )3. 一枚一角的硬币的直径约为0.022m ,用科学计数法表示为( ☆ ) A .62.210m -⨯ B .22.210m -⨯ C .32210m -⨯ D .12.210m -⨯4. 如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( ☆ )5. 解集在数轴上表示为如图所示的不等式组是( ☆) A .32x x>-⎧⎨⎩≥ B .32x x <-⎧⎨⎩≤ C .32x x <-⎧⎨⎩≥ D .32x x >-⎧⎨⎩≤6. 甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差24S =甲,乙同学成绩的方差23.1S =乙,则对他们测试成绩的稳定性判断正确的是( ☆ ) A .甲的成绩较稳定 B .乙的成绩较稳定C .甲、乙成绩稳定性相同D .甲、乙成绩的稳定性无法比较7. 从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同 的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( ☆ )A.a 2-b 2=(a -b )2B.(a +b )2=a 2+2ab +b 2C.(a -b )2=a 2-2ab +b 2 D.a 2-b 2=(a +b ) (a -b )沿虚线剪展 ABCD第5题A .B .C .D .E 第14题图8. 如图,Rt ABC △中,90ACB ∠=°,DE 过点C 且平行于AB , 若35BCE ∠=°,则A ∠的度数为( ☆ )A .35°B .45°C .55°D .65° 9 人均约为210m 提高到21.12m , 若每年的年增长率相同,则年增长率为 ( ☆ ) A .9% B .10% C .11% D .12% 10.下列图形中阴影部分的面积相等的是( ☆ )A .①②B .②③C .①④D .③④二.填空题(本大题6小题,每小题3分,共18分)11.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 ★ . 12.计算4133m m m -+++= ★ . 13.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形 与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形 的面积是13,小正方形的面积是1,直角三角形的两直角边长分别 为a 、b ,那么2()a b +的值是★.14.如图,要测量池塘两端A 、B 间的距离,在平面上取一点O ,连结 OA ,OB 的中点C D ,,测得25.5CD =米,则AB = ★ 米.15.观察下面的单项式:a ,22a -,34a ,48a -,.根据你发现的规律, 第8个式子是★ ;16.如图.在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .若双曲线xk y =经过点D ,则k= ★ .三、解答题(本大题共有7小题,共52分)③ ④第13题图17.(6分)计算:1132tan 45(3-⎛⎫--︒+- ⎪⎝⎭;18.(6分) 先化简再计算:y x yx y x +---222,其中x =3,y =2;19.(7分) 若把一组邻边的平方和与一条对角线的平方相等的四边形叫做勾股四边形,则矩形、直角梯形都是勾股四边形。
九年级数学第三次月考.doc

【本文由书林工作坊整理发布,谢谢你的关注!】1九年级数学第三次月考数 学 试 卷考生须知:1. 本卷共三大题,24小题. 全卷满分为150分,考试时间为120分钟.2. 答题前,请用蓝、黑墨水的钢笔或圆珠笔将学校、姓名、学号分别填在密封线内相应的位置上,不要遗漏.3. 本卷不另设答题卡和答题卷,请在本卷相应的位置上直接答题.答题必须用蓝、黑墨水的钢笔或圆珠笔(画图请用铅笔),答题 时允许使用计算器.参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标是24(,)24b ac b a a-- 一.选择题(本题共10小题,每小题4分,共40分)请选出各题中一个符合题意的正确选项填在相应的答案栏内,不选、 多选、错选均不给分.1. 若反比例函数(0)ky k x=≠的图象经过点(2,-3),则图象必经过另一点 A.(2,3)B.(-2,3)C.(3,2)D.(-2,-3)2. 已知圆锥的底面半径为3,母线长为5,则圆锥的侧面积是 A.15πB.15C.8πD.83. 将抛物线2y x =先向左平移1个单位,再向上平移1上个单位,得到的抛物线为 A.2(1)1y x =-- B.2(1)1y x =-+C.2(1)1y x =++D.2(1)1y x =+-4. 已知23a b =,则aa b +的值是 A.25 B.52C.35D.535. 如图,A 、B 、C 三点在⊙O 上,且∠AOB=80°,则∠C=A.100°B.80°C.50°D.40°6. 在同一坐标系中函数y kx =和ky x=的大致图象是(A)(B)(C)(D)7. 对于下列命题中,正确的是 A.所有的直角三角形都相似 B.所有的等边三角形都相似 C.所有的等腰三角形都相似D.所有的矩形都相似8. 如果α是锐角,且cos α=45,那么sin α的值是()A.45B.35C.34D.439. 已知二次函数2y ax bx c =++的图象如图所示,则一次函数y ax bc =+的图象不经过 A.第一象限B.第二象限C.第三象限D.第四象限10.探索以下规律,如图:…,根据以上规律,从2006到2008的箭头方向正确的是A. B.C.D.学校_________ 班级____________ 姓名_____________ 学号__________………………………………装………………………………订………………………………线…………………………………………用心思考,细心答题,相信你是最棒的!(第6题)ABOC(第9题)0 13 10【本文由书林工作坊整理发布,谢谢你的关注!】2二.填空题(本题共6小题,每小题5分,共30分)11.在Rt △ABC 中,已知∠C =900,AC =3,AB =5,则cosA = . 12.已知半径为6cm 的圆中,600的圆心角所对的弧长为cm.13.请写出一个顶点在x 轴上,且开口方向向下的二次函数:.14.已知△ABC ∽△A 1B 1C 1,且它们的相似比为23. 如果△ABC 的周长 为20cm ,那么△A 1B 1C 1的周长为cm.15.如图,已知⊙O 的直径为10,弦AB =6,点P 是弦AB 上的一个动 点,那么OP 的取值范围应该是 . 16.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转 2007次,点P 依次落在点P 1,P 2,P 3,P 4,…,P 2007的位 置,则P 2007的横坐标x 2007=__________.三.解答题(本题共8小题,共80分. 请务必写出解答过程) 17.(本题8分)计算: 3(2)2tan 45(21)-+- .18.(本题8分)如图,在△ABC 中,AD 、CE 是两条高,连结DE ,如果BE=2,EA=3,CE=4,在不添加任何辅助线和字母的条件下,请写出 三个正确结论(要求:分别为边的关系,角的关系,三角形相似的关系),并对其中三角形相似的结论给予证明.19.(本题8分)如图,一渔船正以每小时30海里的速度由南向北航行,在A 处看见小岛P 在船的北偏东30°方向上.2小时后,渔船行至B 处,此时看见小岛P 在船的北偏东75°方向上.求此时渔船距小岛P 的距离BP.………………………………装………………………………订………………………………线………………………………………………OABP(第15题)A BCE D第19题图(第19题)APB北【本文由书林工作坊整理发布,谢谢你的关注!】320.(本题8分)现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.图(1) 图(2)图(3) 图(4)观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.21. (本题10分)如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,且AB =5,BC =3.(1)求sin ∠BAC 的值;(2)如果OE ⊥AC ,垂足为E ,求OE 的长; (3)求tan ∠ADC 的值(结果保留根号).22.(本题12分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动. 下面两幅统计图反映了学生报名参加夏令营 的情况,请你根据图中的信息回答下列问题:报名人数分布直方图 报名人数扇形分布图(1)该年级报名参加丙组的人数为 ;(2)该年级报名参加本次活动的总人数 ,并补全频数分布直方图;(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?………………………………装………………………………订………………………………线………………………………………………【本文由书林工作坊整理发布,谢谢你的关注!】423.(本题12分)初三(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成 外观为长方形的三种框架,使长方形框架面积最大.小组讨论后,同学们做了以下三种试验:图案(1) 图案(2) 图案(3)请根据以上图案回答下列问题:(1)在图案(1)中,如果铝合金材料总长度(图中所有黑线的长度和)为6m ,当AB 为1m ,长方形框架ABCD 的面积是 m 2;(2)在图案(2)中,如果铝合金材料总长度为6m ,设AB 为x m ,长方形框架ABCD 的面积为S= (用含x 的代数式表示);当AB = m 时,框架ABCD 的面积S最大;在图案(3)中,如果铝合金材料总长度为l m, 设AB 为x m,当AB = m 时, 长方形框架ABCD 的面积S最大.(3)经过这三种情形的试验,他们发现对于图案(4)这样的情形也存在着一定的规律. … 探索: 如图案(4), 如果铝合金材料总长度为l m ,共有n条竖档时,那么当竖档AB 多少时,长方形框架ABCD 的面积最大. 图案(4)24.(本题14分)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D .(1)求直线AB 的解析式; (2)若S 梯形OBCD,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P ,O ,B 为顶点的三 角形与△OBA 相似.若存在,请求出所有符合条件的点P 的 坐标;若不存在,请说明理由.………………………………装………………………………订………………………………线………………………………………………。
2013年广东省深圳市2013年中考数学试题(解析版)

2013年深圳市初中毕业生学业考试数学试卷说明:1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好。
2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。
考试时间90分钟,满分100分。
3、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。
答题卡必须保持清洁,不能折叠。
4、考试结束,请将本试卷和答题卡一并交回.第一部分 选择题(本部分共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的) 1.-3的绝对值是( )A.3B.-3C.-31D.31答案:A解析:负数的绝对值是它的相反数,故选A 。
2.下列计算正确的是( )A.222)(b a b a +=+ B.22)ab (ab = C.523)(a a = D.32a a a =⋅ 答案:D解析:对于A ,因为,对于B :,对于C :,故A ,B ,C 都错,选D 。
3.某活动中,共募得捐款32000000元,将32000000用科学记数法表示为( )A.81032.0⨯B.6102.3⨯C.7102.3⨯D.61032⨯ 答案:C解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.32000000=7102.3⨯4.如下图,是轴对称图形但不是中心对称图形的是( )答案:B解析:A 、C 、D 都既是轴对称图形又是中心对称图形,而B 是轴对称图形,不是中心对称图形。
5.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A.最高分 B.中位数 C.极差 D.平均数 答案:B解析:21个数的中位数即为第11名的成绩,对比第11名即知自己是否被录取。
2013年广东省深圳市中考数学试卷及答案

深圳市2013年初中毕业生学业考试数学试卷1、 说明,答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定 位置上,将条形码粘贴好。
2、 全卷分两部分,第一部分为选择题,第二部分为非选择题,共 4页,满分100分,考试时间120分钟。
3、 本卷试题,考生必须在答题卡上按规定作答;在试卷上、草稿纸上作答的,其答案一律 无效,答题卡必须保持清洁,不能折叠。
一. 选择题(本部分共12小题,每小题3分,共36分,每小题给出4个选项, 其中只有一个是正确的) 13的绝对值是() A . 3B . - 3C .—丄D .丄332. 下列计算正确的是()A . (a+b ) 2=a 2+b 2B . (ab ) 2=ab 2C . (a 3) 2=a 5D . a?a =a 33. 某活动中,共募得捐款32000000元,将32000000用科学记数法表示为( )A . 0.32X108B . 3.2X106C . 3.2X 107D . 32X 1064 . (2013深圳)如图,是轴对称图形但不是中心对称图形的是(5. 某校有21名同学们参加某比赛,预赛成绩各不同,要取前 11名参加决赛, 小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这 21名同学成绩的()A .最高分B .中位数△ 等边三角形 C .极差D .平均数B .6. 分式一^的值为0,则()A . x= - 2B . x= ±C . x=2D . x=0A. 33B. —33 c.—78.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是(A . 8 或:B . 10 或二丿;C . 10 或一;10.下列命题是真命题的有(①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A. .1 个11.已知二次函数B. 2个y=a (x —1)2—c的图象如图所示,贝「次函数y=ax+c的大C. 3个致图象可能是(7. 在平面直角坐标系中,点P (—20, a)与点Q (b, 13)关于原点对称,则a+b的值为())的三个项点分别在这三条平行直线上,则si n a的值是()A.1B. 6 c.返 D .回317,而C二. 填空题(本题共4小题,每小题3分,共12 分)13 .分解因式:4x2- 8x+4= ____________ .14•写有中国” 美国” 英国” 韩国”的四张卡片,从中随机抽取一张,抽到卡片所对应的国家为亚洲的概率是_________ .15. 某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价_______ 元.16. 如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;••按这样的规律下去,第6幅图中有________ 个正方形.三. 解答题(本题共7小题,其中第17题5分,第18题6分,第19题7 分, 第20题8分,第21题8分,第22题9分,第23题9分,共52分)17. 计算:|-旋|+ Q)_1-4sin 45。
2013年广东省深圳市中考数学试卷+答案

2013年广东省深圳市中考数学试卷一、选择题(本部分共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)﹣3的绝对值是()A.3 B.﹣3 C.﹣13D.132.(3分)下列计算正确的是()A.(a+b)2=a2+b2B.(ab)2=ab2C.(a3)2=a5D.a•a2=a33.(3分)某活动中,共募得捐款32000000元,将32000000用科学记数法表示为()A.0.32×108B.3.2×106C.3.2×107D.32×1064.(3分)如图,是轴对称图形但不是中心对称图形的是()A.B. C.D.5.(3分)某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A.最高分B.中位数C.极差D.平均数6.(3分)分式xx2−4xx+2的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=07.(3分)在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.78.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.1440xx−100−1440xx=10B.1440xx=1440xx+100+10 C.1440xx=1440xx−100+10D.1440xx+100−1440xx=109.(3分)如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是()A.8或2√3 B.10或4+2√3C.10或2√3D.8或4+2√310.(3分)下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A..1个B.2个 C.3个 D.4个11.(3分)已知二次函数y=a(x﹣1)2﹣c的图象如图所示,则一次函数y=ax+c 的大致图象可能是()A. B.C.D.12.(3分)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A.13B.617C.√55D.√1010二、填空题(本题共4小题,每小题3分,共12分)13.(3分)分解因式:4x2﹣8x+4=.14.(3分)写有“中国”、“美国”、“英国”、“韩国”的四张卡片,从中随机抽取一张,抽到卡片所对应的国家为亚洲的概率是.15.(3分)某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.16.(3分)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形…按这样的规律下去,第7幅图中有个正方形.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)计算:|﹣√8|+(13)−1﹣4sin45°﹣(√2013−√2012)0.18.(6分)解不等式组:�9xx+5<8xx+743xx+2>1−23xx,并写出其整数解.19.(7分)2013年起,深圳市实施行人闯红灯违法处罚,处罚方式分为四类:“罚款20元”、“罚款50元”、“罚款100元”、“穿绿马甲维护交通”.如图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)实施首日,该片区行人闯红灯违法受处罚一共人;(2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是%;(3)据了解,“罚款20元”人数是“罚款50元”人数的2倍,请补全条形统计图;(4)根据(3)中的信息,在扇形统计图中,“罚款20元”所在扇形的圆心角等于度.20.(8分)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE.(1)求证:BD=DE.(2)若AC⊥BD,AD=3,S ABCD=16,求AB的长.21.(8分)如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.22.(9分)如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=−12x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(,),抛物线的表达式为;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP 的长.23.(9分)如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).(1)m为何值时,△OAB面积最大?最大值是多少?(2)如图2,在(1)的条件下,函数yy=kk xx(kk>0)的图象与直线AB相交于C、D两点,若SS△OOOOOO=18SS△OOOOOO,求k的值.(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).2013年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)﹣3的绝对值是()A.3 B.﹣3 C.﹣13D.13【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.故选:A.【点评】此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)下列计算正确的是()A.(a+b)2=a2+b2B.(ab)2=ab2C.(a3)2=a5D.a•a2=a3【分析】A、原式利用完全平方公式展开得到结果,即可作出判断;B、原式利用积的乘方运算法则计算得到结果,即可作出判断;C、原式利用幂的乘方运算法则计算得到结果,即可作出判断;D、原式利用同底数幂的乘法法则计算得到结果,即可作出判断.【解答】解:A、原式=a2+2ab+b2,本选项错误;B、原式=a2b2,本选项错误;C、原式=a6,本选项错误;D、原式=a3,本选项正确.故选D.【点评】此题考查了完全平方公式,合并同类项,去括号与添括号,以及同底数幂的除法,熟练掌握公式及法则是解本题的关键.3.(3分)某活动中,共募得捐款32000000元,将32000000用科学记数法表示为()A.0.32×108B.3.2×106C.3.2×107D.32×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:32 000 000=3.2×107,故选:C.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,是轴对称图形但不是中心对称图形的是()A.B. C.D.【分析】根据轴对称及中心对称概念,结合选项即可得出答案.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选B.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.5.(3分)某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A.最高分B.中位数C.极差D.平均数【分析】由于有21名同学参加百米竞赛,要取前11名参加决赛,故应考虑中位数的大小.【解答】解:共有21名学生参加预赛,取前11名,所以小颖需要知道自己的成绩是否进入前11.我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选:B.【点评】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)分式xx2−4xx+2的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=0【分析】分式的值为零:分子等于零,且分母不等于零.【解答】解:由题意,得x2﹣4=0,且x+2≠0,解得x=2.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.(3分)在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.7【分析】先根据关于原点对称的点的坐标特点:横坐标与纵坐标都互为相反数,求出a与b的值,再代入计算即可.【解答】解:∵点P(﹣20,a)与点Q(b,13)关于原点对称,∴a=﹣13,b=20,∴a+b=﹣13+20=7.故选:D.【点评】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.8.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.1440xx−100−1440xx=10B.1440xx=1440xx+100+10 C.1440xx=1440xx−100+10D.1440xx+100−1440xx=10【分析】首先表示出爸爸和小朱的速度,再根据题意可得等量关系:小朱走1440米的时间=爸爸走1440米的时间+10分钟,根据等量关系,表示出爸爸和小朱的时间,根据时间关系列出方程即可.【解答】解:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:1500−60xx=1500−60xx+100+10,即:1440xx=1440xx+100+10,故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,关键是分析题意,表示出爸爸和小朱的时间各走1440米所用时间,再由时间关系找出相等关系,列出方程.9.(3分)如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是()A.8或2√3 B.10或4+2√3C.10或2√3D.8或4+2√3【分析】根据三角函数可以计算出BC=4,AC=2√3,再根据中位线的性质可得CD=AD=√3,CF=BF=2,DF=1,然后拼图,出现两种情况,一种是拼成一个矩形,另一种拼成一个平行四边形,进而算出周长即可.【解答】解:由题意可得:AB=2,∵∠C=30°,∴BC=4,AC=2√3,∵图中所示的中位线剪开,∴CD=AD=√3,CF=BF=2,DF=1,如图1所示:拼成一个矩形,矩形周长为:1+1+2+√3+√3=4+2√3;如图2所示,可以拼成一个平行四边形,周长为:2+2+2+2=8,故选:D.【点评】此题主要考查了图形的剪拼,关键是根据画出图形,要考虑全面,不要漏解.10.(3分)下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A..1个B.2个 C.3个 D.4个【分析】根据有关的定理和定义作出判断即可得到答案.【解答】解:①对顶角相等正确,是真命题;②两直线平行,内错角相等正确,是真命题;③两个锐角对应相等的两个直角三角形应该是相似,而不是全等,原命题错误,是假命题;④有三个角是直角的四边形是矩形,正确,是真命题;⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,原命题错误,是假命题,故选:C.【点评】本题考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.11.(3分)已知二次函数y=a(x﹣1)2﹣c的图象如图所示,则一次函数y=ax+c 的大致图象可能是()A. B.C.D.【分析】首先根据二次函数图象得出a,c的值,进而利用一次函数性质得出图象经过的象限.【解答】解:根据二次函数开口向上则a>0,根据﹣c是二次函数顶点坐标的纵坐标,得出c>0,故一次函数y=ax+c的大致图象经过一、二、三象限,故选:A.【点评】此题主要考查了二次函数的图象以及一次函数的性质,根据已知得出a ,c 的值是解题关键.12.(3分)如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等,若等腰直角△ABC 的三个顶点分别在这三条平行直线上,则sinα的值是( )A .13B .617C .√55D .√1010 【分析】过点A 作AD ⊥l 1于D ,过点B 作BE ⊥l 1于E ,根据同角的余角相等求出∠CAD=∠BCE ,然后利用“角角边”证明△ACD 和△CBE 全等,根据全等三角形对应边相等可得CD=BE ,然后利用勾股定理列式求出AC ,再根据等腰直角三角形斜边等于直角边的√2倍求出AB ,然后利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:如图,过点A 作AD ⊥l 1于D ,过点B 作BE ⊥l 1于E ,设l 1,l 2,l 3间的距离为1,∵∠CAD +∠ACD=90°,∠BCE +∠ACD=90°,∴∠CAD=∠BCE ,在等腰直角△ABC 中,AC=BC ,在△ACD 和△CBE 中,�∠OOOOOO =∠BBOOBB ∠OOOOOO =∠BBBBOO =90°OOOO =BBOO ,∴△ACD ≌△CBE (AAS ),∴CD=BE=1,在Rt △ACD 中,AC=�OOOO 2+OOOO 2=�22+12=√5,在等腰直角△ABC 中,AB=√2AC=√2×√5=√10,∴sinα=1√10=√1010.故选:D.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.(3分)分解因式:4x2﹣8x+4=4(x﹣1)2.【分析】先提取公因式4,再根据完全平方公式进行二次分解即可求得答案.【解答】解:4x2﹣8x+4=4(x2﹣2x+1)=4(x﹣1)2.故答案为:4(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.14.(3分)写有“中国”、“美国”、“英国”、“韩国”的四张卡片,从中随机抽取一张,抽到卡片所对应的国家为亚洲的概率是12.【分析】由有“中国”、“美国”、“英国”、“韩国”的四张卡片,卡片所对应的国家为亚洲的有“中国”、“韩国”,利用概率公式求解即可求得答案.【解答】解:∵有“中国”、“美国”、“英国”、“韩国”的四张卡片,卡片所对应的国家为亚洲的有“中国”、“韩国”,∴从中随机抽取一张,抽到卡片所对应的国家为亚洲的概率是:24=12.故答案为:12.【点评】此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.15.(3分)某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价2750元.【分析】设空调的标价为x元,根据销售问题的数量关系利润=售价﹣进价=进价×利润率建立方程求出其解就可以了.【解答】解:设空调的标价为x元,由题意,得80%x﹣2000=2000×10%,解得:x=2750.故答案为:2750.【点评】本题是一道关于销售问题的运用题,考查了利润=售价﹣进价=进价×利润率在实际问题中的运用,解答时根据销售问题的数量关系建立方程是关键.16.(3分)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形…按这样的规律下去,第7幅图中有140个正方形.【分析】观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…从而得到答案.【解答】解:观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…第n个有:16n(n+1)(2n+1)个正方形,第7个有1+4+9+16+25+36+49=140个正方形,故答案为:140.【点评】本题考查了图形的变化类问题,解题的关键是仔细关系图形并找到规律,本题采用了穷举法.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)计算:|﹣√8|+(13)−1﹣4sin45°﹣(√2013−√2012)0.【分析】本题涉及绝对值、负指数幂、特殊角的三角函数值、0指数幂等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=|﹣2√2|+113﹣4×√22﹣1=2√2+3﹣2√2﹣1=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握绝对值、负指数幂、特殊角的三角函数值、0指数幂等考点的运算.18.(6分)解不等式组:�9xx+5<8xx+743xx+2>1−23xx,并写出其整数解.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:�9xx+5<8xx+7①43xx+2>1−23xx②∵解不等式①得:x<2,解不等式②得:x>﹣12,∴不等式组的解集为:﹣12<x<2,即不等式组的整数解为:0、1.【点评】本题考查了解一元一次不等式(组),一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.19.(7分)2013年起,深圳市实施行人闯红灯违法处罚,处罚方式分为四类:“罚款20元”、“罚款50元”、“罚款100元”、“穿绿马甲维护交通”.如图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)实施首日,该片区行人闯红灯违法受处罚一共200人;(2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是65%;(3)据了解,“罚款20元”人数是“罚款50元”人数的2倍,请补全条形统计图;(4)根据(3)中的信息,在扇形统计图中,“罚款20元”所在扇形的圆心角等于72度.【分析】(1)根据罚款100元的有10人,占的比例是5%,即可求得调查的总人数;(2)百分比的定义即可求解;(3)求得先“罚款20元”人数是“罚款50元”人数的和,然后根据“罚款20元”人数是“罚款50元”人数的2倍,即可求得各自的人数,从而作出统计图;(4)利用360度乘以对应的比例即可求得.【解答】解:(1)10÷5%=200(人).故答案是:200;(2)130200×100%=65%,故答案是:65;(3)“罚款20元”人数是“罚款50元”人数的和是:200﹣10﹣130=60(人),则罚款20元”人数是40人,“罚款50元”人数是20.;(4)“罚款20元”所在扇形的圆心角等于360×40200=72°.故答案是:72.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE.(1)求证:BD=DE.(2)若AC⊥BD,AD=3,S ABCD=16,求AB的长.【分析】(1)由AD∥BC,CE=AD,可得四边形ACED是平行四边形,即可证得AC=DE,又由等腰梯形的性质,可得AC=BD,即可证得结论;(2)首先过点D作DF⊥BC于点F,可证得△BDE是等腰直角三角形,由S ABCD=16,可求得BD的长,继而求得答案.【解答】(1)证明:∵AD∥BC,CE=AD,∴四边形ACED是平行四边形,∴AC=DE,∵四边形ABCD是等腰梯形,AD∥BC,AB=DC,∴AC=BD,∴BD=DE.(2)解:过点D作DF⊥BC于点F,∵四边形ACED是平行四边形,∴CE=AD=3,AC∥DE,∵AC⊥BD,∴BD⊥DE,∵BD=DE,=12BD•DE=12BD2=12BE•DF=12(BC+CE)•DF=12(BC+AD)•DF=S梯形ABCD=16,∴S△BDE∴BD=4√2,∴BE=√2BD=8,∴DF=BF=EF=12BE=4,∴CF=EF﹣CE=1,∴由勾股定理得AB=CD=�OOFF2+OOFF2=√17.【点评】此题考查了等腰三角形的性质、等腰直角三角形的性质与判定、平行四边形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21.(8分)如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.【分析】根据已知得出旗杆高度,进而得出GM=MH,再利用勾股定理求出半径即可.【解答】解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m,∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m.如图,设小桥的圆心为O,连接OM、OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m.在Rt△OGM中,由勾股定理得:∴OG2=OM2+42,∴r2=(r﹣2)2+16,解得:r=5,答:小桥所在圆的半径为5m.【点评】此题主要考查了垂径定理以及勾股定理的应用,根据已知得出关于r的等式是解题关键.22.(9分)如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=−12x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(6,2),抛物线的表达式为y=−12x2+92x﹣7;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP 的长.【分析】(1)如答图1,作辅助线,证明△AOC≌△CEB,由此得到点B的坐标;再由点C、B的坐标,利用待定系数法求出抛物线的表达式;(2)如答图2,作辅助线,求出△BCD三边的长度,再利用勾股定理的逆定理判定其为直角三角形,从而问题得证;(3)如答图3,利用勾股定理依次求出CQ、CF、AF的长度,然后利用垂径定理AP=2AF求出AP的长度.【解答】(1)解:如答图1所示,过点B作BE⊥x轴于点E.∵AC⊥BC,∴∠ACO+∠BCE=90°,∵∠ACO+∠OAC=90°,∠BCE+∠CBE=90°,∴∠OAC=∠BCE,∠ACO=∠CBE.∵在△AOC与△CEB中,�∠OOOOOO =∠BBOOBB OOOO =BBOO ∠OOOOOO =∠OOBBBB∴△AOC ≌△CEB (ASA ).∴CE=OA=4,BE=OC=2,∴OE=OC +CE=6.∴B 点坐标为(6,2). ∵点C (2,0),B (6,2)在抛物线y=−12x 2+bx +c 上,∴�−12×22+2bb +cc =0−12×62+6bb +cc =2, 解得b=92,c=﹣7. ∴抛物线的表达式为:y=−12x 2+92x ﹣7. (2)证明:在抛物线表达式y=−12x 2+92x ﹣7中,令y=0,即−12x 2+92x ﹣7=0, 解得x=2或x=7,∴D (7,0).如答图2所示,过点B 作BE ⊥x 轴于点E ,则DE=OD ﹣OE=1,CD=OD ﹣OC=5. 在Rt △BDE 中,由勾股定理得:BD=�BBBB 2+OOBB 2=�22+12=√5;在Rt △BCE 中,由勾股定理得:BC=�BBBB 2+OOBB 2=�22+42=√20.在△BCD 中,BD=√5,BC=√20,CD=5,∵BD 2+BC 2=CD 2∴△BCD 为直角三角形,∠CBD=90°,∴∠CBD=∠ACB=90°,∴AC ∥BD .(3)解:如答图3所示:由(2)知AC=BC=√20,又AQ=5,则在Rt △ACQ 中,由勾股定理得:CQ=�OOAA 2−OOOO 2=�52−(√20)2=√5.过点C 作CF ⊥PQ 于点F ,∵S=12AC•CQ=12AQ•CF,△ACQ∴CF=AAAA⋅AACC AACC=√20⋅√55=2.在Rt△ACF中,由勾股定理得:AF=�OOOO2−OOFF2=�(√20)2−22=4.由垂径定理可知,AP=2AF,∴AP=8.【点评】本题是二次函数综合题型,考查了二次函数的图象与性质、待定系数法、全等三角形、勾股定理、勾股定理的逆定理、垂径定理等知识点.本题设计考点清晰,层次合理:第(1)问主要考查全等三角形和待定系数法,第(2)问主要考查勾股定理及其逆定理,第(3)问主要考查垂径定理与勾股定理.23.(9分)如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).(1)m为何值时,△OAB面积最大?最大值是多少?(2)如图2,在(1)的条件下,函数yy=kk xx(kk>0)的图象与直线AB相交于C、D两点,若SS△OOOOOO=18SS△OOOOOO,求k的值.(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).【分析】(1)由A(m,0),B(0,n),可以表示出OA=m,OB=n,由三角形的面积公式就可以求出结论;(2)由(1)的结论可以求出点A点B的坐标,就可以求出直线AB的解析式,根据双曲线的对称性就可以求出S△OBD =S△OAC的值,再由三角形的面积公式就可以求出其值;(3)根据平移的性质可以求得△O′C′D′∽△O′CD,再由相似三角形的性质就可以求出就可以求出S△O′C′D′和S△O′CD的面积关系,从而可以求出S与运动时间t之间的函数关系式.【解答】解:(1)∵A(m,0),B(0,n),∴OA=m,OB=n.∴S△AOB=mmmm2.∵m +n=20,∴n=20﹣m ,∴S △AOB =mm (20−mm )2=−12m 2+10m=﹣12(m ﹣10)2+50 ∵a=﹣12<0, ∴抛物线的开口向下, ∴m=10时,S 最大=50;(2)∵m=10,m +n=20,∴n=10,∴A (10,0),B (0,10),设AB 的解析式为y=kx +b ,由图象,得�0=10kk +bb 10=bb,解得:�kk =−1bb =10, y=﹣x +10.∵SS △OOOOOO =18SS △OOOOOO , ∴设S △OCD =8a .则S △OAC =a ,∴S △OBD =S △OAC =a ,∴S △AOB =10a ,∴10a=50,∴a=5,∴S △OAC =5,∴12OA•y=5, ∴y=1.1=﹣x +10,x=9∴C (9,1),∴1=kk 9,∴k=9;(3)移动后重合的部分的面积是△O′C′D′,t秒后点O的坐标为O′(t,0),O′A=10﹣t,O′E=10.∵C′D′∥CD,∴△O′C′D′∽△O′CD,∴OO′DD′OO′DD=OO′AA OO′EE=10−tt10,∴SS△OO′CC′DD′SS△OO′CCDD=(OO′DD′OO′DD)2=(10−tt10)2S=40•(10−tt10)2,∴SS=25tt2−8tt+40(0<t<10).【点评】本题考查了二次函数的最值的运用,反比例函数的图象的对称性的运用,相似三角形的相似比与面积之比的关系的运用,动点问题直线问题的运用,解答时求出函数的解析式及交点坐标是解答本题的关键.。
初三数学第三次月考试题

初三数学第三次月测试题班别姓名 座号 得分一、选择题〔每题3分〕1.计算()2323x x -的结果是〔 〕A 、56x - B 、26xC 、62x -D 、2x ≠-2.以下图形,既是中央对称图形,又是轴对称图形的是〔 〕A 、等边三角形B 、矩形C 、正五边形D 、等腰梯形 3.以下是方程1112xx x--=,去分母后的结果,正确的选项是〔 〕A 、211x --=B 、11x x -+=C 、212x x -+=D 、212x x --= 4.把代数式29xy x -分解因式,结果正确的选项是〔 〕A 、()29x y -B 、()23x y +C 、()()33x y y +-D 、()()99x y y +-5.如图,AD BC ,点E 在BD 的延长线上,假设155ADE ∠=︒,那么DBC ∠的度数为〔 〕 A 、155° B 、50°C 、45°D 、25°二、填空题〔每题4分〕6.函数24xy x =-自变量x 的取值范围是.7.如图,AB DE AB DE =且,请你添加 一个条件,使ABC ≌DEF ,添加的条件.8.不等式组211841x x x x ->+⎧⎨+<-⎩的解集是.9.如图,菱形ABCD 中,60B ∠=︒,4AB =,那么以AC 为边长的正方形ACEF 的周长是.10.用“⌦〞定义新运算,对于任意实数a ,b ,都有〔a ⌦21b b =+〕. 例如:7⌦,那么5⌦3=;当m 为实数时,m ⌦〔m ⌦2〕=.三、解做题〔每题6分〕11.解方程:2210x x --=12()1120072-⎛⎫--+ ⎪⎝⎭13.解方程组7 3442 x yx y-=⎧⎨+=⎩14.BD AC,且12DB AC=,E是AC的中点.求证:BC = DE.15.作图题AOB∠,线段CD.求作:一点P,使P到AOB∠两边的距离相等,且到线段CD两端点的距离相等〔尺规作图,不要求写作法〕.四、解做题〔每题7分〕16.〔应用题〕如以下图,某农科站有一块长方形实验田,面积为1200㎡,现要将其分为A、B、C、D四个区,其中A区为正方形,D区的长是30m,宽是20m,那么A区的面积是多少平方米?17.ABC中,CAB∠的平分线AD与BC的垂直平分线DE交于点D,DM AB M⊥于,DN AC⊥的延长线于N,求证:BM = CN.〔1〕〔2〕班别姓名 座号18.ABC 中,22.5B ∠=︒,60C ∠=︒,AB 的垂直平分线DF 交BC 于点D,BD =AE BC E ⊥于,求EC 的长.19.某产品每件本钱价20元,试销阶段产品的日销售量y 〔件〕与每件产品的销售价x 〔元〕之间的关系如下表:〔1〕假设日销售量y 〔件〕是每件产品的销售价的一次函数,求y 与x 的函数关系式 〔2〕要使日销售利润为1600元,每件销售价应定为多少元?五、解做题〔每题9分〕20.小明、小芳做一个“配色〞游戏,右图是可以转动的转盘,它们被分成面积相等的几个扇形,并涂上图上所示的颜色,同时转动两个转盘〔红色和蓝色能配成紫色,黄色和蓝色能配成绿色〕假设配成紫色,那么小芳获胜,假设配成绿色,那么小明获胜. 〔1〕利用树状图成列表的方法表示游戏所有可能出现的结果. 〔2〕此游戏规那么对小明、小芳公平吗?试说明理由?21.反比例函数()0ky k x=<的图象过点A ()m ,过A 作AB x ⊥轴于点B,且AOB〔1〕求k 的值和m 的值.〔2〕假设一次函数1y ax =+的图象与反比例函数的图象交于A 、B 两点,求另一交点B 的坐标.22.如图,在等腰梯形ABCD 中,AD BC ,M 、N 为AD 、BC 中点,E 、F 分别为BM 、CM 的中点.〔1〕证实四边形MFNE 是菱形.〔2〕当梯形的高与底边也存在怎样的数量关系时,菱形MFNE 是正方形,证实你的看法.。
九年级数学第一学期第三次月考试卷.doc

1九年级数学第一学期第三次月考试卷(卷一)本卷满分100分 命题人:一、选择题(本大题12个小题,每小题3分,共36分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的。
1.下列各式中,是最简二次根式的是( )。
A .18 B .b a 2 C . 22b a + D .32 2.三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是 ( )A . 24B . 24或58C . 48D . 583.方程x ²-x +2=0根的情况是( )A. 只有一个实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 没有实数根 4.下列语句中不正确的有( )①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧 A .3个 B.2个 C.1个 D.4个5. 由一已知点P 到圆上各点的最大距离为5,最小距离为1,则圆的半径为( ) A .2或3 B. 3 C. 4 D. 2 或46.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )A .12 B. 11 C. 10 D. 97. 下列四个函数中,y 的值随着x 值的增大而减小的是( )A.x y 2=B. ()01>=x xy C. 1+=x y D. ()02>=x x y 8.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( ) A. 8 B. 14 C. 8或14 D. -8或-149.把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( ) A.()1232+-=x y B.()1232-+=x y C.()1232--=x y D.()1232++=x y10.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是( )A.相离B.相切C.相切或相交D.相交11.有一个多边形的边长分别是4cm 、5cm 、6cm 、4cm 、5cm ,和它相似的一个多边形最长边为8cm ,那么这个多边形的周长是( )A .12cmB .18cm C. 32cm D. 48cm 12.下列图形既是轴对称图形,又是中心对称图形的是( )A B C D 二、填空题(本大题12个小题,每小题2分,共24分) 13.若x 、y 都为实数,且152********+-+-=x x y ,则y x +2=________。
广东省深圳市龙华二中九年级上第三次月考数学试题.doc

上学期九年级数学第三次月考试卷 时间:120分钟 满分:150分温馨提示:带着愉悦的心情,载着自信与细心,凭着沉着与冷静,迈向理想的彼岸! 一、选择题(每小题4分,共32分):每小题有四个答案,其中有且只有一个答案是正确的.请在答题卷上相应题目的答题区域内作答,答对的得3分,答错、不答或答案超过一个的一律得0分.1是同类二次根式的是( )A B C D . 2.将点A (3,2)向.右.平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(5,2) B .(3,4) C .(1,2) D .(3,0) 3.已知关于x 的方程230x kx --=的一个根为3,则k 的值为( ) A .1 B .1- C .2 D .2- 4.将方程2410x x +-=配方后,原方程变形为( ) A .2(2)5x += B .2(4)5x += C .2(2)5x -= D .2(2)5x +=- 5.如图,在⊙O 中,弦AB∥CD,若∠ABC=40°, 则∠BOD=( )A. 20° B .40° C .50° D .80° 6.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若∠ABC=120°,OC=3,则的长为( )A .πB .2πC .3πD .5π7.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A .16 B .13 C .12 D .238.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )二、耐心填一填(每小题4分共32分)9.计算:=+312______10. 方程260x x --=的解是11.已知方程2740x x -+=的两个根分别为1x 、2x ,则12x x ⋅的值为________.12. 一个正多边形的一个外角为︒60,则这个正多边形的边数是_____.13.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色不同外都相同.从中任取一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是14.在Rt △ABC 中,∠C =900,AC =3,BC =4,若以C 点为圆心,r 为半径所作的圆与斜边 AB只有一个公共点,则r 的范围是15.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是3,那么另一组数据2x 1-1,2x 2-1, 2x 3-1,2x 4-1,2x 5-1的平均数是________,方差是________。
广东省深圳市龙华二中九年级上期中考试数学试题.doc

九年级数学期中考试卷 2013.11(满分:150分,完卷时间:120分钟)班级 姓名 座号 分数一、精心选一选:(3284=⨯‘分)1、若m -3为二次根式,则m 的取值为 ( )A .m≤3B .m <3C .m≥3D .m >32、下列四个图形中,即是轴对称图形又是中心对称图形的有( ).A.1个 B .2个 C .3个 D .4个3、下列方程,是一元二次方程的是( )①3x 2+x=20, ②2x 2-3xy+4=0, ③412=-xx , ④ x 2=4-, ⑤ 0432=--x x A .①② B .①②④⑤ C .①③④ D .①④⑤4、下列计算错误..的是( ) A = = D.3=5、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x 名同学,那么根据题意列出的方程是( )A .x (x+1)=182B .x (x-1)=182C .2x (x+1)=182D .x (1-x )=182×26、如图,在44⨯的正方形网格中,MNP ∆绕某点旋转︒90,得到111P N M ∆,则其旋转中心可以是( )A .点EB .点FC .点GD .点H7=-a 的取值范围是( )(A )0a ≥ (B )02a ≤≤ (C )20a -≤≤ (D )2a ≤- 8、如图P 是等腰Rt △ABC 内一点, 90=∠ABC ,PA=3,PB=22,PC=5,则∠APB 的度数 ( ).A. 135B. 115C. 105D.90 第6题图P 第8题图C 二、细心填一填(3284=⨯‘分)9、方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是______.10、计算:(1)23-______32-;(2)5的整数部分是_________11、如图,平行四边形ABCD 的两条对角线AC 与BD 相交于直角坐标系 的原点.若点A 的坐标为(-2,3),则点C 的坐标为 .12、若关于x 的一元二次方程 22(1)410a x x a --+-= 的一根是0, 则 a = 。
广东省深中、宝中、北环中学2013届九年级数学第三次(5月)模拟试题 北师大版

2012—2013学年九年级第三次模拟考试数学试 卷说明:1.全卷分两部分,第一部分为选择题,第二部分为非选择题。
考试时间90分钟,满分100分。
2.考生必须在答题卷上按规定作答;答题卷必须保持整洁,不能折叠。
3.本卷选择题1—12,每小题选出答案后,用2B 铅笔将答题卷选择题答题区内对应题目的答案标号涂黑;非选择题的答案(含作辅助线)必须用规定的笔,写在答题卷指定的答题区内,写在本卷或其他地方无效..。
一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的) 1.下列运算结果是负数的是( )A.)3(--B.2)3(-C.3--D.23-3月20日报道,全球管理咨询公司麦肯锡预计中国网络销售额将达到4200亿美元(约合2.6万人民币),中国将因此成为世界最大的网络零售市场,其中数据4200亿用科学记数法表示,错误的是×103×1011C ×104×107万3.如图1,平放在台面上的圆锥体的主视图是图1 A . B . C . D . 4.下列各图中,不是中心对称图形的是( )5. 若点P (a,b )到x 轴的距离为4,到y 轴的距离为5,且点P (a,b )在第四象限内,则点P 坐标是A .(5,-4)B .(5,4)C .(-5,-4)D .(-5,4)6.某商场以90元出售甲商品,亏了25%,于是就把原价100元的商品加价25%卖出,那么这家商场在这两笔生意总体上是( )A 、赚了B 、亏了C 、不亏也不赢D 、不能确定7. 众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A .50,20B .50,30C .50,50D .135,508.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面 (接缝忽略不计),则这个圆锥的底面半径是( ). A .1.5 B .2 C .3 D .69.下列命题中正确的是( )A .平分弦的直径垂直于弦;B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上学期九年级数学第三次月考试卷 时间:120分钟 满分:150分
温馨提示:带着愉悦的心情,载着自信与细心,凭着沉着与冷静,迈向理想的彼岸! 一、选择题(每小题4分,共32分):每小题有四个答案,其中有且只有一个答案是正确的.请在答题卷上相应题目的答题区域内作答,答对的得3分,答错、不答或答案超过一个的一律得0分.
1 )
A B C D . 2.将点A (3,2)向.右.平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(5,2) B .(3,4) C .(1,2) D .(3,0) 3.已知关于x 的方程230x kx --=的一个根为3,则k 的值为( ) A .1 B .1- C .2 D .2- 4.将方程2410x x +-=配方后,原方程变形为( ) A .2(2)5x += B .2(4)5x += C .2(2)5x -= D .2(2)5x +=- 5.如图,在⊙O 中,弦AB∥CD,若∠ABC=40°, 则∠BOD=( )
A. 20° B .40° C .50° D .80° 6.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若∠ABC=120°,OC=3,则的长为( )
A .π
B .2π
C .3π
D .5π
7.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )
A .
16 B .13 C .12 D .23
8.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
二、耐心填一填(每小题4分共32分)
9.计算:=+312______
10. 方程260x x --=的解是
11.已知方程2740x x -+=的两个根分别为1x 、2x ,则12x x ⋅的值为________.
12. 一个正多边形的一个外角为︒60,则这个正多边形的边数是_____.
13.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色不同外都相同.从中任取一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是
14.在Rt △ABC 中,∠C =900,AC =3,BC =4,若以C 点为圆心,r 为半径所作的圆与斜边 AB
只有一个公共点,则r 的范围是
15.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是3,
那么另一组数据2x 1-1,2x 2-1, 2x 3-1,2x 4-1,2x 5-1的平均数是________,方差是________。
16.如图,已知Rt △ABC 中,∠C=90°,AC =2,BC=1,若以C 为圆心,CB 为半径的圆交AB 于点P ,则AP =
三、认真答一答(写出必要的解题步骤,共86分).
17.计算(每小题5分,共10分)
(1) 2484554+-+ (2)
2
1418122-+-
18.解方程(每小题6分,共12分)
(1)2430x x --= (2)2(3)2(3)0x x x -+-=
19.(本题满分10分)已知关于x 的方程x 2+3x+k 2=0的一个根是-1,求另一根和k 值。
20. (本题满分10分) 有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.
(1)请写出其中一个三角形的第三边的长;
(2)设组中最多有n 个三角形,求n 的值;
(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.
21. (本题满分10分)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出三个不同类型的正确结论;(6分)
(2)若BC=8,ED=2,求⊙O的半径;(4分)
22. (本题满分10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC 的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).
(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1,并写出A1的坐标;
(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算Rt△A1B1C1在上述旋转过程中C1所经过的路程.
23. (本题满分10分)如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,,射线PN与⊙O相切于
点Q,A、B两点同时从P点出发,点A以5cm/秒的速度沿射线PM方向运动,点B以4c m /秒的速度沿射线PN方向运动,设运动时间为t秒.
(1)求PQ的长;
(2)当t为何值时,直线AB与⊙O相切?
24. (本题满分14分)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD 边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.。